code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
"""Copied from http://svn.sourceforge.jp/svnroot/slothlib/CSharp/Version1/SlothLib/NLP/Filter/StopWord/word/Japanese.txt""" STOP_WORDS = set( """ あそこ あたり あちら あっち あと あな あなた あれ いくつ いつ いま いや いろいろ うち おおまか おまえ おれ がい かく かたち かやの から がら きた くせ ここ こっち こと ごと こちら ごっちゃ これ これら ごろ さまざま さらい さん しかた しよう すか ずつ すね すべて ぜんぶ そう そこ そちら そっち そで それ それぞれ それなり たくさん たち たび ため だめ ちゃ ちゃん てん とおり とき どこ どこか ところ どちら どっか どっち どれ なか なかば なに など なん はじめ はず はるか ひと ひとつ ふく ぶり べつ へん ぺん ほう ほか まさ まし まとも まま みたい みつ みなさん みんな もと もの もん やつ よう よそ わけ わたし ハイ 上 中 下 字 年 月 日 時 分 秒 週 火 水 木 金 土 国 都 道 府 県 市 区 町 村 各 第 方 何 的 度 文 者 性 体 人 他 今 部 課 係 外 類 達 気 室 口 誰 用 界 会 首 男 女 別 話 私 屋 店 家 場 等 見 際 観 段 略 例 系 論 形 間 地 員 線 点 書 品 力 法 感 作 元 手 数 彼 彼女 子 内 楽 喜 怒 哀 輪 頃 化 境 俺 奴 高 校 婦 伸 紀 誌 レ 行 列 事 士 台 集 様 所 歴 器 名 情 連 毎 式 簿 回 匹 個 席 束 歳 目 通 面 円 玉 枚 前 後 左 右 次 先 春 夏 秋 冬 一 二 三 四 五 六 七 八 九 十 百 千 万 億 兆 下記 上記 時間 今回 前回 場合 一つ 年生 自分 ヶ所 ヵ所 カ所 箇所 ヶ月 ヵ月 カ月 箇月 名前 本当 確か 時点 全部 関係 近く 方法 我々 違い 多く 扱い 新た その後 半ば 結局 様々 以前 以後 以降 未満 以上 以下 幾つ 毎日 自体 向こう 何人 手段 同じ 感じ """.split() )
normal
{ "blob_id": "254afebcc909c805d1e4972a0910eb4451d1e64e", "index": 8704, "step-1": "<mask token>\n", "step-2": "<mask token>\nSTOP_WORDS = set(\n \"\"\"\nあそこ\nあたり\nあちら\nあっち\nあと\nあな\nあなた\nあれ\nいくつ\nいつ\nいま\nいや\nいろいろ\nうち\nおおまか\nおまえ\nおれ\nがい\nかく\nかたち\nかやの\nから\nがら\nきた\nくせ\nここ\nこっち\nこと\nごと\nこちら\nごっちゃ\nこれ\nこれら\nごろ\nさまざま\nさらい\nさん\nしかた\nしよう\nすか\nずつ\nすね\nすべて\nぜんぶ\nそう\nそこ\nそちら\nそっち\nそで\nそれ\nそれぞれ\nそれなり\nたくさん\nたち\nたび\nため\nだめ\nちゃ\nちゃん\nてん\nとおり\nとき\nどこ\nどこか\nところ\nどちら\nどっか\nどっち\nどれ\nなか\nなかば\nなに\nなど\nなん\nはじめ\nはず\nはるか\nひと\nひとつ\nふく\nぶり\nべつ\nへん\nぺん\nほう\nほか\nまさ\nまし\nまとも\nまま\nみたい\nみつ\nみなさん\nみんな\nもと\nもの\nもん\nやつ\nよう\nよそ\nわけ\nわたし\nハイ\n上\n中\n下\n字\n年\n月\n日\n時\n分\n秒\n週\n火\n水\n木\n金\n土\n国\n都\n道\n府\n県\n市\n区\n町\n村\n\n\n各\n第\n方\n何\n的\n度\n文\n者\n性\n体\n人\n他\n今\n部\n課\n係\n外\n類\n達\n気\n室\n口\n誰\n用\n界\n会\n首\n男\n女\n別\n話\n私\n屋\n店\n家\n場\n等\n見\n際\n観\n段\n略\n例\n系\n論\n形\n間\n地\n員\n線\n点\n書\n品\n力\n法\n感\n作\n元\n手\n数\n彼\n彼女\n子\n内\n楽\n喜\n怒\n哀\n輪\n頃\n化\n境\n俺\n奴\n高\n校\n婦\n伸\n紀\n誌\nレ\n行\n列\n事\n士\n台\n集\n様\n所\n歴\n器\n名\n情\n連\n毎\n式\n簿\n\n\n\n\n回\n匹\n個\n席\n束\n歳\n目\n通\n面\n円\n玉\n枚\n\n前\n後\n左\n右\n次\n先\n\n春\n夏\n秋\n冬\n\n\n\n一\n二\n三\n四\n五\n六\n七\n八\n九\n十\n百\n千\n万\n億\n兆\n\n\n下記\n上記\n時間\n今回\n前回\n場合\n一つ\n年生\n自分\nヶ所\nヵ所\nカ所\n箇所\nヶ月\nヵ月\nカ月\n箇月\n名前\n本当\n確か\n時点\n全部\n関係\n近く\n方法\n我々\n違い\n多く\n扱い\n新た\nその後\n半ば\n結局\n様々\n以前\n以後\n以降\n未満\n以上\n以下\n幾つ\n毎日\n自体\n向こう\n何人\n手段\n同じ\n感じ\n\"\"\"\n .split())\n", "step-3": "\"\"\"Copied from http://svn.sourceforge.jp/svnroot/slothlib/CSharp/Version1/SlothLib/NLP/Filter/StopWord/word/Japanese.txt\"\"\"\nSTOP_WORDS = set(\n \"\"\"\nあそこ\nあたり\nあちら\nあっち\nあと\nあな\nあなた\nあれ\nいくつ\nいつ\nいま\nいや\nいろいろ\nうち\nおおまか\nおまえ\nおれ\nがい\nかく\nかたち\nかやの\nから\nがら\nきた\nくせ\nここ\nこっち\nこと\nごと\nこちら\nごっちゃ\nこれ\nこれら\nごろ\nさまざま\nさらい\nさん\nしかた\nしよう\nすか\nずつ\nすね\nすべて\nぜんぶ\nそう\nそこ\nそちら\nそっち\nそで\nそれ\nそれぞれ\nそれなり\nたくさん\nたち\nたび\nため\nだめ\nちゃ\nちゃん\nてん\nとおり\nとき\nどこ\nどこか\nところ\nどちら\nどっか\nどっち\nどれ\nなか\nなかば\nなに\nなど\nなん\nはじめ\nはず\nはるか\nひと\nひとつ\nふく\nぶり\nべつ\nへん\nぺん\nほう\nほか\nまさ\nまし\nまとも\nまま\nみたい\nみつ\nみなさん\nみんな\nもと\nもの\nもん\nやつ\nよう\nよそ\nわけ\nわたし\nハイ\n上\n中\n下\n字\n年\n月\n日\n時\n分\n秒\n週\n火\n水\n木\n金\n土\n国\n都\n道\n府\n県\n市\n区\n町\n村\n\n\n各\n第\n方\n何\n的\n度\n文\n者\n性\n体\n人\n他\n今\n部\n課\n係\n外\n類\n達\n気\n室\n口\n誰\n用\n界\n会\n首\n男\n女\n別\n話\n私\n屋\n店\n家\n場\n等\n見\n際\n観\n段\n略\n例\n系\n論\n形\n間\n地\n員\n線\n点\n書\n品\n力\n法\n感\n作\n元\n手\n数\n彼\n彼女\n子\n内\n楽\n喜\n怒\n哀\n輪\n頃\n化\n境\n俺\n奴\n高\n校\n婦\n伸\n紀\n誌\nレ\n行\n列\n事\n士\n台\n集\n様\n所\n歴\n器\n名\n情\n連\n毎\n式\n簿\n\n\n\n\n回\n匹\n個\n席\n束\n歳\n目\n通\n面\n円\n玉\n枚\n\n前\n後\n左\n右\n次\n先\n\n春\n夏\n秋\n冬\n\n\n\n一\n二\n三\n四\n五\n六\n七\n八\n九\n十\n百\n千\n万\n億\n兆\n\n\n下記\n上記\n時間\n今回\n前回\n場合\n一つ\n年生\n自分\nヶ所\nヵ所\nカ所\n箇所\nヶ月\nヵ月\nカ月\n箇月\n名前\n本当\n確か\n時点\n全部\n関係\n近く\n方法\n我々\n違い\n多く\n扱い\n新た\nその後\n半ば\n結局\n様々\n以前\n以後\n以降\n未満\n以上\n以下\n幾つ\n毎日\n自体\n向こう\n何人\n手段\n同じ\n感じ\n\"\"\".split()\n)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from datetime import * import datetime import time time_one = datetime.time(1, 2, 3) print("Time One :: ", time_one) time_two = datetime.time(hour=23, minute=59, second=59, microsecond=99) print("Time Two :: ", time_two) date_one = datetime.date(month=3, year=2019, day=31) print("Date One :: ", date_one) today = datetime.date.today() print("Today :: ", today, today.timetuple()) print("Difference Between Time :: ", timedelta(time_two.second) - timedelta(time_one.second)) print("Today :: ", datetime.date.today()) print("Time.asctime() :: ", time.asctime()) now = time.gmtime() print("time.asctime(time.gmtime) :: ", time.asctime(now)) start = time.time() time.sleep(3) stop = time.time() print(stop - start)
normal
{ "blob_id": "1ed7dba63db38e53a1dc5fac3c36f0dd98075c1f", "index": 4305, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Time One :: ', time_one)\n<mask token>\nprint('Time Two :: ', time_two)\n<mask token>\nprint('Date One :: ', date_one)\n<mask token>\nprint('Today :: ', today, today.timetuple())\nprint('Difference Between Time :: ', timedelta(time_two.second) - timedelta\n (time_one.second))\nprint('Today :: ', datetime.date.today())\nprint('Time.asctime() :: ', time.asctime())\n<mask token>\nprint('time.asctime(time.gmtime) :: ', time.asctime(now))\n<mask token>\ntime.sleep(3)\n<mask token>\nprint(stop - start)\n", "step-3": "<mask token>\ntime_one = datetime.time(1, 2, 3)\nprint('Time One :: ', time_one)\ntime_two = datetime.time(hour=23, minute=59, second=59, microsecond=99)\nprint('Time Two :: ', time_two)\ndate_one = datetime.date(month=3, year=2019, day=31)\nprint('Date One :: ', date_one)\ntoday = datetime.date.today()\nprint('Today :: ', today, today.timetuple())\nprint('Difference Between Time :: ', timedelta(time_two.second) - timedelta\n (time_one.second))\nprint('Today :: ', datetime.date.today())\nprint('Time.asctime() :: ', time.asctime())\nnow = time.gmtime()\nprint('time.asctime(time.gmtime) :: ', time.asctime(now))\nstart = time.time()\ntime.sleep(3)\nstop = time.time()\nprint(stop - start)\n", "step-4": "from datetime import *\nimport datetime\nimport time\ntime_one = datetime.time(1, 2, 3)\nprint('Time One :: ', time_one)\ntime_two = datetime.time(hour=23, minute=59, second=59, microsecond=99)\nprint('Time Two :: ', time_two)\ndate_one = datetime.date(month=3, year=2019, day=31)\nprint('Date One :: ', date_one)\ntoday = datetime.date.today()\nprint('Today :: ', today, today.timetuple())\nprint('Difference Between Time :: ', timedelta(time_two.second) - timedelta\n (time_one.second))\nprint('Today :: ', datetime.date.today())\nprint('Time.asctime() :: ', time.asctime())\nnow = time.gmtime()\nprint('time.asctime(time.gmtime) :: ', time.asctime(now))\nstart = time.time()\ntime.sleep(3)\nstop = time.time()\nprint(stop - start)\n", "step-5": "from datetime import *\nimport datetime\nimport time\ntime_one = datetime.time(1, 2, 3)\nprint(\"Time One :: \", time_one)\n\ntime_two = datetime.time(hour=23, minute=59, second=59, microsecond=99)\nprint(\"Time Two :: \", time_two)\n\ndate_one = datetime.date(month=3, year=2019, day=31)\nprint(\"Date One :: \", date_one)\n\ntoday = datetime.date.today()\nprint(\"Today :: \", today, today.timetuple())\n\nprint(\"Difference Between Time :: \", timedelta(time_two.second) - timedelta(time_one.second))\nprint(\"Today :: \", datetime.date.today())\n\nprint(\"Time.asctime() :: \", time.asctime())\nnow = time.gmtime()\nprint(\"time.asctime(time.gmtime) :: \", time.asctime(now))\n\nstart = time.time()\ntime.sleep(3)\nstop = time.time()\nprint(stop - start)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Carl Bunge Washington State University June 2018 Adapted from @author: Luka Denies from TU Delft. Changelog: 11/2017 - Integration of CoolProp 06/2018 - Update to OpenFOAM-5.x (Mass-based thermodynamics (for example: cpMcv to CpMCv)) 03/2019 - Update to include parahydrogen properties from Refprop """ import CoolProp.CoolProp as CP import numpy as np import matplotlib.pyplot as plt #Fluid for thermodynamic properties (rho, Cp, CpMcv, H, S, c, E, thermal conductivity) CP.set_reference_state('parahydrogen','NBP') fluid_thermo ='parahydrogen' #Fluid for transport model (viscosity) CP.set_reference_state('hydrogen','NBP') fluid_transport = 'hydrogen' #**************************************************************************************** #Temperature limits (set within subcritical region for saturation tables) T0 = 15 #Temperature start (K) TMax = 32 #Temperature end (K) #Pressure limits p0 = 0.1e5 #Pa pMax = 5.5e5 #Pa #**************************************************************************************** Tcrit = CP.PropsSI("Tcrit",fluid_thermo) Ts = [] ps = [] pRange = [] rho = [] mu = [] mu_l = [] mu_v = [] kappa = [] kappa_l = [] kappa_v = [] Cp = [] Cp_l = [] Cp_v = [] H = [] H_l = [] H_v = [] CpMCv = [] CpMCv_l = [] CpMCv_v = [] E = [] E_l = [] E_v = [] S = [] S_l = [] S_v = [] c = [] c_l = [] c_v = [] pSat = [] i = 0 j = 0 p = p0 T = T0 #Build (p, T) tables while p<pMax: pRange.append(p) TRange = [] T = T0 rho.append([0]) Cp.append([0]) Cp_l.append([0]) Cp_v.append([0]) mu.append([0]) mu_l.append([0]) mu_v.append([0]) kappa.append[0]) kappa_l.append([0]) kappa_v.append([0]) CpMCv.append([0]) CpMCv_l.append([0]) CpMCv_v.append([0]) H.append([0]) H_l.append([0]) H_v.append([0]) E.append([0]) E_l.append([0]) E_v.append([0]) S.append([0]) S_l.append([0]) S_v.append([0]) c.append([0]) c_l.append([0]) c_v.append([0]) pSat.append([0]) rho[i][0] = rhoCur = CP.PropsSI('D','T',T,'P',p,fluid_thermo) CpCur = CP.PropsSI('C','D',rhoCur,'T',T,fluid_thermo) Cp[i][0] = CpCur Cp_l[i][0] = CP.PropsSI('C','T',T,'Q',0,fluid_thermo) Cp_v[i][0] = CP.PropsSI('C','T',T,'Q',1,fluid_thermo) mu_l[i][0] = CP.PropsSI('V','T',T,'Q',0,fluid_transport) mu_v[i][0] = CP.PropsSI('V','T',T,'Q',1,fluid_transport) mu[i][0] = CP.PropsSI('V','D',rhoCur,'T',T,fluid_transport) kappa_l[i][0] = CP.PropsSI('L','T',T,'Q',0,'REFPROP::parahydrogen') kappa_v[i][0] = CP.PropsSI('L','T',T,'Q',1,'REFPROP::parahydrogen') kappa[i][0] = CP.PropsSI('L','D',rhoCur,'T',T,'REFPROP::parahydrogen') CpMCv_l[i][0] = CP.PropsSI('O','T',T,'Q',0,fluid_thermo) CpMCv_v[i][0] = CP.PropsSI('O','T',T,'Q',1,fluid_thermo) CpMCv[i][0] = CpCur-CP.PropsSI('O','D',rhoCur,'T',T,fluid_thermo) H_l[i][0] = CP.PropsSI('H','T',T,'Q',0,fluid_thermo) H_v[i][0] = CP.PropsSI('H','T',T,'Q',1,fluid_thermo) H[i][0] = CP.PropsSI('H','D',rhoCur,'T',T,fluid_thermo) E_l[i][0] = CP.PropsSI('U','T',T,'Q',0,fluid_thermo) E_v[i][0] = CP.PropsSI('U','T',T,'Q',1,fluid_thermo) E[i][0] = CP.PropsSI('U','D',rhoCur,'T',T,fluid_thermo) S_l[i][0] = CP.PropsSI('S','T',T,'Q',0,fluid_thermo) S_v[i][0] = CP.PropsSI('S','T',T,'Q',1,fluid_thermo) S[i][0] = CP.PropsSI('S','D',rhoCur,'T',T,fluid_thermo) c_l[i][0] = CP.PropsSI('A','T',T,'Q',0,fluid_thermo) c_v[i][0] = CP.PropsSI('A','T',T,'Q',1,fluid_thermo) c[i][0] = CP.PropsSI('A','D',rhoCur,'T',T,fluid_thermo) pSat[i][0] = CP.PropsSI('P','T',T,'Q',0,fluid_thermo) TRange.append(T) while T<TMax: j += 1 dT = 1 # Tstep [K] ************************************************************** T += dT rhoCur = CP.PropsSI('D','T',T,'P',p,fluid_thermo) rho[i].append(rhoCur) CpCur = CP.PropsSI('C','D',rhoCur,'T',T,fluid_thermo) CpCur_l = CP.PropsSI('C','T',T,'Q',0,fluid_thermo) CpCur_v = CP.PropsSI('C','T',T,'Q',1,fluid_thermo)) Cp_l[i].append(CP.PropsSI('C','T',T,'Q',0,fluid_thermo)) Cp_v[i].append(CP.PropsSI('C','T',T,'Q',1,fluid_thermo)) Cp[i].append(CpCur) mu_l[i].append(CP.PropsSI('V','T',T,'Q',0,fluid_transport)) mu_v[i].append(CP.PropsSI('V','T',T,'Q',1,fluid_transport)) mu[i].append(CP.PropsSI('V','D',rhoCur,'T',T,fluid_transport)) kappa_l[i].append(CP.PropsSI('L','T',T,'Q',0,'REFPROP::parahydrogen')) kappa_v[i].append(CP.PropsSI('L','T',T,'Q',1,'REFPROP::parahydrogen')) kappa[i].append(CP.PropsSI('L','D',rhoCur,'T',T,'REFPROP::parahydrogen')) CpMCv_l[i].append((CP.PropsSI('C','T',T,'Q',0,fluid_thermo))-(CP.PropsSI('O','T',T,'Q',0,fluid_thermo))) CpMCv_v[i].append((CP.PropsSI('C','T',T,'Q',1,fluid_thermo))-(CP.PropsSI('O','T',T,'Q',1,fluid_thermo))) CpMCv[i].append((CpCur-CP.PropsSI('O','D',rhoCur,'T',T,fluid_thermo))) H_l[i].append(CP.PropsSI('H','T',T,'Q',0,fluid_thermo)) H_v[i].append(CP.PropsSI('H','T',T,'Q',1,fluid_thermo)) H[i].append(CP.PropsSI('H','D',rhoCur,'T',T,fluid_thermo)) E_l[i].append(CP.PropsSI('U','T',T,'Q',0,fluid_thermo)) E_v[i].append(CP.PropsSI('U','T',T,'Q',1,fluid_thermo)) E[i].append(CP.PropsSI('U','D',rhoCur,'T',T,fluid_thermo)) S_l[i].append(CP.PropsSI('S','T',T,'Q',0,fluid_thermo)) S_v[i].append(CP.PropsSI('S','T',T,'Q',1,fluid_thermo)) S[i].append(CP.PropsSI('S','D',rhoCur,'T',T,fluid_thermo)) c_l[i].append(CP.PropsSI('A','T',T,'Q',0,fluid_thermo)) c_v[i].append(CP.PropsSI('A','T',T,'Q',1,fluid_thermo)) c[i].append(CP.PropsSI('A','D',rhoCur,'T',T,fluid_thermo)) pSat[i].append(CP.PropsSI('P','T',T,'Q',0,fluid_thermo)) TRange.append(T) i += 1 ps.append([p]*len(TRange)) rhoPseudoCrit = CP.PropsSI('D','T',Tcrit,'P',p,fluid_thermo) dp = 0.5e5 # Pstep [Pa] **************************************************************** p += dp print p Ts.append(TRange) print "Calculations done, now writing" pSatFile = open("pSat","w") for i,p in enumerate(pRange): sList = ["\t" + str(pSat[i][j]) + " " + str(Ts[i][j]) + "\n" for j in range(len(Ts[i]))] pSatFile.write("".join(sList)) pSatFile.write("") pSatFile.close() mu_lFile = open("mu_l","w") for i,p in enumerate(pRange): sList = ["\t" + str(mu_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] mu_lFile.write("".join(sList)) mu_lFile.write("") mu_lFile.close() mu_vFile = open("mu_v","w") for i,p in enumerate(pRange): sList = ["\t" + str(mu_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] mu_vFile.write("".join(sList)) mu_vFile.write("") mu_vFile.close() muFile = open("mu","w") for i,p in enumerate(pRange): sList = ["\t" + str(mu[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] muFile.write("".join(sList)) muFile.write("") muFile.close() rhoFile = open("rho","w") rhoFile.write("\n") for i,p in enumerate(pRange): rhoFile.write("") sList = ["\t" + str(rho[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] rhoFile.write("".join(sList)) rhoFile.write("") rhoFile.close() Cp_lFile = open("Cp_l","w") CpFile.write("\n") for i,p in enumerate(pRange): Cp_lFile.write("") sList = ["\t" + str(Cp_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] Cp_lFile.write("".join(sList)) Cp_lFile.write("") Cp_lFile.close() Cp_vFile = open("Cp_v","w") Cp_vFile.write("\n") for i,p in enumerate(pRange): Cp_vFile.write("") sList = ["\t" + str(Cp_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] Cp_vFile.write("".join(sList)) Cp_vFile.write("") Cp_vFile.close() CpFile = open("Cp","w") CpFile.write("\n") for i,p in enumerate(pRange): CpFile.write("") sList = ["\t" + str(Cp[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] CpFile.write("".join(sList)) CpFile.write("") CpFile.close() kappa_lFile = open("kappa_l","w") kappa_lFile.write("\n") for i,p in enumerate(pRange): kappa_lFile.write("") sList = ["\t" + str(kappa_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] kappa_lFile.write("".join(sList)) kappa_lFile.write("") kappa_lFile.close() kappa_vFile = open("kappa_v","w") kappa_vFile.write("\n") for i,p in enumerate(pRange): kappa_vFile.write("") sList = ["\t" + str(kappa_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] kappa_vFile.write("".join(sList)) kappa_vFile.write("") kappa_vFile.close() kappaFile = open("kappa","w") kappaFile.write("\n") for i,p in enumerate(pRange): kappaFile.write("") sList = ["\t" + str(kappa[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] kappaFile.write("".join(sList)) kappaFile.write("") kappaFile.close() CpMCv_lFile = open("CpMCv_l","w") CpMCv_lFile.write("\n") for i,p in enumerate(pRange): CpMCv_lFile.write("") sList = ["\t" + str(CpMCv_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] CpMCv_lFile.write("".join(sList)) CpMCv_lFile.write("") CpMCv_lFile.close() CpMCv_vFile = open("CpMCv_v","w") CpMCv_vFile.write("\n") for i,p in enumerate(pRange): CpMCv_vFile.write("") sList = ["\t" + str(CpMCv_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] CpMCv_vFile.write("".join(sList)) CpMCv_vFile.write("") CpMCv_vFile.close() CpMCvFile = open("CpMCv","w") CpMCvFile.write("\n") for i,p in enumerate(pRange): CpMCvFile.write("") sList = ["\t" + str(CpMCv[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] CpMCvFile.write("".join(sList)) CpMCvFile.write("") CpMCvFile.close() H_lFile = open("H_l","w") H_lFile.write("\n") for i,p in enumerate(pRange): H_lFile.write("") sList = ["\t" + str(H_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] H_lFile.write("".join(sList)) H_lFile.write("") H_lFile.close() H_vFile = open("H_v","w") H_vFile.write("\n") for i,p in enumerate(pRange): H_vFile.write("") sList = ["\t" + str(H_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] H_vFile.write("".join(sList)) H_vFile.write("") H_vFile.close() HFile = open("H","w") HFile.write("\n") for i,p in enumerate(pRange): HFile.write("") sList = ["\t" + str(H[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] HFile.write("".join(sList)) HFile.write("") HFile.close() E_lFile = open("E_l","w") E_lFile.write("\n") for i,p in enumerate(pRange): E_lFile.write("") sList = ["\t" + str(E_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] E_lFile.write("".join(sList)) E_lFile.write("") E_lFile.close() E_vFile = open("E_v","w") E_vFile.write("\n") for i,p in enumerate(pRange): E_vFile.write("") sList = ["\t" + str(E_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] E_vFile.write("".join(sList)) E_vFile.write("") E_vFile.close() EFile = open("E","w") EFile.write("\n") for i,p in enumerate(pRange): EFile.write("") sList = ["\t" + str(E[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] EFile.write("".join(sList)) EFile.write("") EFile.close() S_lFile = open("S_l","w") S_lFile.write("\n") for i,p in enumerate(pRange): S_lFile.write("") sList = ["\t" + str(S_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] S_lFile.write("".join(sList)) S_lFile.write("") S_lFile.close() S_vFile = open("S_v","w") S_vFile.write("\n") for i,p in enumerate(pRange): S_vFile.write("") sList = ["\t" + str(S_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] S_vFile.write("".join(sList)) S_vFile.write("") S_vFile.close() SFile = open("S","w") SFile.write("\n") for i,p in enumerate(pRange): SFile.write("") sList = ["\t" + str(S[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] SFile.write("".join(sList)) SFile.write("") SFile.close() c_lFile = open("c_l","w") c_lFile.write("\n") for i,p in enumerate(pRange): c_lFile.write("") sList = ["\t" + str(c_l[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] c_lFile.write("".join(sList)) c_lFile.write("") c_lFile.close() c_vFile = open("c_v","w") c_vFile.write("\n") for i,p in enumerate(pRange): c_vFile.write("") sList = ["\t" + str(c_v[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] c_vFile.write("".join(sList)) c_vFile.write("") c_vFile.close() cFile = open("c","w") cFile.write("\n") for i,p in enumerate(pRange): cFile.write("") sList = ["\t" + str(c[i][j]) + " " + str(Ts[i][j]) + " " + str(p) + "\n" for j in range(len(Ts[i]))] cFile.write("".join(sList)) cFile.write("") cFile.close() #Previous dT method to save computational time: #dT = drho/CP.PropsSI('d(D)/d(P)|T','D',rhoCur,'T',T,fluid_thermo)*CP.PropsSI('d(P)/d(T)|D','D',rhoCur,'T',T,fluid_thermo) #Previous dP method to save computational time: #drho/CP.PropsSI('d(D)/d(P)|T','D',rhoPseudoCrit,'T',Tcrit,fluid_thermo)
normal
{ "blob_id": "7ac15f422ca2cd0d30e936b7dd17c96e1f3abff0", "index": 8429, "step-1": "\"\"\"\nCarl Bunge\nWashington State University\nJune 2018\n\nAdapted from @author: Luka Denies from TU Delft.\n\nChangelog:\n11/2017 - Integration of CoolProp\n06/2018 - Update to OpenFOAM-5.x (Mass-based thermodynamics (for example: cpMcv to CpMCv))\n03/2019 - Update to include parahydrogen properties from Refprop\n\n\"\"\"\n\nimport CoolProp.CoolProp as CP\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n#Fluid for thermodynamic properties (rho, Cp, CpMcv, H, S, c, E, thermal conductivity)\nCP.set_reference_state('parahydrogen','NBP')\nfluid_thermo ='parahydrogen'\n\n#Fluid for transport model (viscosity)\nCP.set_reference_state('hydrogen','NBP')\nfluid_transport = 'hydrogen'\n\n#****************************************************************************************\n\n#Temperature limits (set within subcritical region for saturation tables)\nT0 = 15 #Temperature start (K)\nTMax = 32 #Temperature end (K)\n\n#Pressure limits\np0 = 0.1e5 #Pa\npMax = 5.5e5 #Pa\n\n#****************************************************************************************\n\nTcrit = CP.PropsSI(\"Tcrit\",fluid_thermo)\n\nTs = []\nps = []\npRange = []\n\nrho = []\nmu = []\nmu_l = []\nmu_v = []\nkappa = []\nkappa_l = []\nkappa_v = []\nCp = []\nCp_l = []\nCp_v = []\nH = []\nH_l = []\nH_v = []\nCpMCv = []\nCpMCv_l = []\nCpMCv_v = []\nE = []\nE_l = []\nE_v = []\nS = []\nS_l = []\nS_v = []\nc = []\nc_l = []\nc_v = []\npSat = []\n\ni = 0\nj = 0\n\np = p0\nT = T0\n\n#Build (p, T) tables\nwhile p<pMax:\n pRange.append(p)\n TRange = []\n T = T0\n rho.append([0])\n Cp.append([0])\n Cp_l.append([0])\n Cp_v.append([0])\n mu.append([0])\n mu_l.append([0])\n mu_v.append([0])\n kappa.append[0])\n kappa_l.append([0])\n kappa_v.append([0])\n CpMCv.append([0])\n CpMCv_l.append([0])\n CpMCv_v.append([0])\n H.append([0])\n H_l.append([0])\n H_v.append([0])\n E.append([0])\n E_l.append([0])\n E_v.append([0])\n S.append([0])\n S_l.append([0])\n S_v.append([0])\n c.append([0])\n c_l.append([0])\n c_v.append([0])\n pSat.append([0])\n rho[i][0] = rhoCur = CP.PropsSI('D','T',T,'P',p,fluid_thermo)\n CpCur = CP.PropsSI('C','D',rhoCur,'T',T,fluid_thermo) \n Cp[i][0] = CpCur\n Cp_l[i][0] = CP.PropsSI('C','T',T,'Q',0,fluid_thermo) \n Cp_v[i][0] = CP.PropsSI('C','T',T,'Q',1,fluid_thermo)\n mu_l[i][0] = CP.PropsSI('V','T',T,'Q',0,fluid_transport) \n mu_v[i][0] = CP.PropsSI('V','T',T,'Q',1,fluid_transport)\n mu[i][0] = CP.PropsSI('V','D',rhoCur,'T',T,fluid_transport)\n kappa_l[i][0] = CP.PropsSI('L','T',T,'Q',0,'REFPROP::parahydrogen') \n kappa_v[i][0] = CP.PropsSI('L','T',T,'Q',1,'REFPROP::parahydrogen')\n kappa[i][0] = CP.PropsSI('L','D',rhoCur,'T',T,'REFPROP::parahydrogen') \n CpMCv_l[i][0] = CP.PropsSI('O','T',T,'Q',0,fluid_thermo) \n CpMCv_v[i][0] = CP.PropsSI('O','T',T,'Q',1,fluid_thermo)\n CpMCv[i][0] = CpCur-CP.PropsSI('O','D',rhoCur,'T',T,fluid_thermo) \n H_l[i][0] = CP.PropsSI('H','T',T,'Q',0,fluid_thermo) \n H_v[i][0] = CP.PropsSI('H','T',T,'Q',1,fluid_thermo)\n H[i][0] = CP.PropsSI('H','D',rhoCur,'T',T,fluid_thermo)\n E_l[i][0] = CP.PropsSI('U','T',T,'Q',0,fluid_thermo) \n E_v[i][0] = CP.PropsSI('U','T',T,'Q',1,fluid_thermo)\n E[i][0] = CP.PropsSI('U','D',rhoCur,'T',T,fluid_thermo) \n S_l[i][0] = CP.PropsSI('S','T',T,'Q',0,fluid_thermo) \n S_v[i][0] = CP.PropsSI('S','T',T,'Q',1,fluid_thermo)\n S[i][0] = CP.PropsSI('S','D',rhoCur,'T',T,fluid_thermo)\n c_l[i][0] = CP.PropsSI('A','T',T,'Q',0,fluid_thermo) \n c_v[i][0] = CP.PropsSI('A','T',T,'Q',1,fluid_thermo) \n c[i][0] = CP.PropsSI('A','D',rhoCur,'T',T,fluid_thermo)\n pSat[i][0] = CP.PropsSI('P','T',T,'Q',0,fluid_thermo)\n TRange.append(T)\n while T<TMax:\n j += 1\n dT = 1 # Tstep [K] **************************************************************\n T += dT\n rhoCur = CP.PropsSI('D','T',T,'P',p,fluid_thermo)\n rho[i].append(rhoCur)\n CpCur = CP.PropsSI('C','D',rhoCur,'T',T,fluid_thermo) \n CpCur_l = CP.PropsSI('C','T',T,'Q',0,fluid_thermo)\n CpCur_v = CP.PropsSI('C','T',T,'Q',1,fluid_thermo)) \n Cp_l[i].append(CP.PropsSI('C','T',T,'Q',0,fluid_thermo))\n Cp_v[i].append(CP.PropsSI('C','T',T,'Q',1,fluid_thermo))\n Cp[i].append(CpCur)\n mu_l[i].append(CP.PropsSI('V','T',T,'Q',0,fluid_transport))\n mu_v[i].append(CP.PropsSI('V','T',T,'Q',1,fluid_transport))\n mu[i].append(CP.PropsSI('V','D',rhoCur,'T',T,fluid_transport))\n kappa_l[i].append(CP.PropsSI('L','T',T,'Q',0,'REFPROP::parahydrogen'))\n kappa_v[i].append(CP.PropsSI('L','T',T,'Q',1,'REFPROP::parahydrogen'))\n kappa[i].append(CP.PropsSI('L','D',rhoCur,'T',T,'REFPROP::parahydrogen'))\n CpMCv_l[i].append((CP.PropsSI('C','T',T,'Q',0,fluid_thermo))-(CP.PropsSI('O','T',T,'Q',0,fluid_thermo)))\n CpMCv_v[i].append((CP.PropsSI('C','T',T,'Q',1,fluid_thermo))-(CP.PropsSI('O','T',T,'Q',1,fluid_thermo)))\n CpMCv[i].append((CpCur-CP.PropsSI('O','D',rhoCur,'T',T,fluid_thermo)))\n H_l[i].append(CP.PropsSI('H','T',T,'Q',0,fluid_thermo))\n H_v[i].append(CP.PropsSI('H','T',T,'Q',1,fluid_thermo))\n H[i].append(CP.PropsSI('H','D',rhoCur,'T',T,fluid_thermo))\n E_l[i].append(CP.PropsSI('U','T',T,'Q',0,fluid_thermo))\n E_v[i].append(CP.PropsSI('U','T',T,'Q',1,fluid_thermo))\n E[i].append(CP.PropsSI('U','D',rhoCur,'T',T,fluid_thermo))\n S_l[i].append(CP.PropsSI('S','T',T,'Q',0,fluid_thermo))\n S_v[i].append(CP.PropsSI('S','T',T,'Q',1,fluid_thermo))\n S[i].append(CP.PropsSI('S','D',rhoCur,'T',T,fluid_thermo))\n c_l[i].append(CP.PropsSI('A','T',T,'Q',0,fluid_thermo))\n c_v[i].append(CP.PropsSI('A','T',T,'Q',1,fluid_thermo))\n c[i].append(CP.PropsSI('A','D',rhoCur,'T',T,fluid_thermo))\n pSat[i].append(CP.PropsSI('P','T',T,'Q',0,fluid_thermo))\n TRange.append(T)\n i += 1\n ps.append([p]*len(TRange)) \n rhoPseudoCrit = CP.PropsSI('D','T',Tcrit,'P',p,fluid_thermo)\n dp = 0.5e5 # Pstep [Pa] ****************************************************************\n p += dp\n print p\n Ts.append(TRange)\nprint \"Calculations done, now writing\"\n\npSatFile = open(\"pSat\",\"w\")\n\nfor i,p in enumerate(pRange):\n sList = [\"\\t\" + str(pSat[i][j]) + \" \" + str(Ts[i][j]) + \"\\n\" for j in range(len(Ts[i]))]\n pSatFile.write(\"\".join(sList)) \npSatFile.write(\"\")\npSatFile.close()\n\nmu_lFile = open(\"mu_l\",\"w\")\n\nfor i,p in enumerate(pRange):\n sList = [\"\\t\" + str(mu_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n mu_lFile.write(\"\".join(sList)) \nmu_lFile.write(\"\")\nmu_lFile.close()\n\nmu_vFile = open(\"mu_v\",\"w\")\n\nfor i,p in enumerate(pRange):\n sList = [\"\\t\" + str(mu_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n mu_vFile.write(\"\".join(sList)) \nmu_vFile.write(\"\")\nmu_vFile.close()\n\nmuFile = open(\"mu\",\"w\")\n\nfor i,p in enumerate(pRange):\n sList = [\"\\t\" + str(mu[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n muFile.write(\"\".join(sList)) \nmuFile.write(\"\")\nmuFile.close()\n\nrhoFile = open(\"rho\",\"w\")\nrhoFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n rhoFile.write(\"\")\n sList = [\"\\t\" + str(rho[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n rhoFile.write(\"\".join(sList))\nrhoFile.write(\"\")\nrhoFile.close()\n\nCp_lFile = open(\"Cp_l\",\"w\")\nCpFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n Cp_lFile.write(\"\")\n sList = [\"\\t\" + str(Cp_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n Cp_lFile.write(\"\".join(sList))\nCp_lFile.write(\"\")\nCp_lFile.close()\n\nCp_vFile = open(\"Cp_v\",\"w\")\nCp_vFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n Cp_vFile.write(\"\")\n sList = [\"\\t\" + str(Cp_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n Cp_vFile.write(\"\".join(sList))\nCp_vFile.write(\"\")\nCp_vFile.close()\n\nCpFile = open(\"Cp\",\"w\")\nCpFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n CpFile.write(\"\")\n sList = [\"\\t\" + str(Cp[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n CpFile.write(\"\".join(sList))\nCpFile.write(\"\")\nCpFile.close()\n\nkappa_lFile = open(\"kappa_l\",\"w\")\nkappa_lFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n kappa_lFile.write(\"\")\n sList = [\"\\t\" + str(kappa_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n kappa_lFile.write(\"\".join(sList))\nkappa_lFile.write(\"\")\nkappa_lFile.close()\n\nkappa_vFile = open(\"kappa_v\",\"w\")\nkappa_vFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n kappa_vFile.write(\"\")\n sList = [\"\\t\" + str(kappa_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n kappa_vFile.write(\"\".join(sList))\nkappa_vFile.write(\"\")\nkappa_vFile.close()\n\nkappaFile = open(\"kappa\",\"w\")\nkappaFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n kappaFile.write(\"\")\n sList = [\"\\t\" + str(kappa[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n kappaFile.write(\"\".join(sList))\nkappaFile.write(\"\")\nkappaFile.close()\n\nCpMCv_lFile = open(\"CpMCv_l\",\"w\")\nCpMCv_lFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n CpMCv_lFile.write(\"\")\n sList = [\"\\t\" + str(CpMCv_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n CpMCv_lFile.write(\"\".join(sList))\nCpMCv_lFile.write(\"\")\nCpMCv_lFile.close()\n\nCpMCv_vFile = open(\"CpMCv_v\",\"w\")\nCpMCv_vFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n CpMCv_vFile.write(\"\")\n sList = [\"\\t\" + str(CpMCv_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n CpMCv_vFile.write(\"\".join(sList))\nCpMCv_vFile.write(\"\")\nCpMCv_vFile.close()\n\nCpMCvFile = open(\"CpMCv\",\"w\")\nCpMCvFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n CpMCvFile.write(\"\")\n sList = [\"\\t\" + str(CpMCv[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n CpMCvFile.write(\"\".join(sList))\nCpMCvFile.write(\"\")\nCpMCvFile.close()\n\nH_lFile = open(\"H_l\",\"w\")\nH_lFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n H_lFile.write(\"\")\n sList = [\"\\t\" + str(H_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n H_lFile.write(\"\".join(sList))\nH_lFile.write(\"\")\nH_lFile.close()\n\nH_vFile = open(\"H_v\",\"w\")\nH_vFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n H_vFile.write(\"\")\n sList = [\"\\t\" + str(H_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n H_vFile.write(\"\".join(sList))\nH_vFile.write(\"\")\nH_vFile.close()\n\nHFile = open(\"H\",\"w\")\nHFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n HFile.write(\"\")\n sList = [\"\\t\" + str(H[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n HFile.write(\"\".join(sList))\nHFile.write(\"\")\nHFile.close()\n\nE_lFile = open(\"E_l\",\"w\")\nE_lFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n E_lFile.write(\"\")\n sList = [\"\\t\" + str(E_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n E_lFile.write(\"\".join(sList))\nE_lFile.write(\"\")\nE_lFile.close()\n\nE_vFile = open(\"E_v\",\"w\")\nE_vFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n E_vFile.write(\"\")\n sList = [\"\\t\" + str(E_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n E_vFile.write(\"\".join(sList))\nE_vFile.write(\"\")\nE_vFile.close()\n\nEFile = open(\"E\",\"w\")\nEFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n EFile.write(\"\")\n sList = [\"\\t\" + str(E[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n EFile.write(\"\".join(sList))\nEFile.write(\"\")\nEFile.close()\n\nS_lFile = open(\"S_l\",\"w\")\nS_lFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n S_lFile.write(\"\")\n sList = [\"\\t\" + str(S_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n S_lFile.write(\"\".join(sList))\nS_lFile.write(\"\")\nS_lFile.close()\n\nS_vFile = open(\"S_v\",\"w\")\nS_vFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n S_vFile.write(\"\")\n sList = [\"\\t\" + str(S_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n S_vFile.write(\"\".join(sList))\nS_vFile.write(\"\")\nS_vFile.close()\n\nSFile = open(\"S\",\"w\")\nSFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n SFile.write(\"\")\n sList = [\"\\t\" + str(S[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n SFile.write(\"\".join(sList))\nSFile.write(\"\")\nSFile.close()\n\nc_lFile = open(\"c_l\",\"w\")\nc_lFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n c_lFile.write(\"\")\n sList = [\"\\t\" + str(c_l[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n c_lFile.write(\"\".join(sList))\nc_lFile.write(\"\")\nc_lFile.close()\n\nc_vFile = open(\"c_v\",\"w\")\nc_vFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n c_vFile.write(\"\")\n sList = [\"\\t\" + str(c_v[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n c_vFile.write(\"\".join(sList))\nc_vFile.write(\"\")\nc_vFile.close()\n\ncFile = open(\"c\",\"w\")\ncFile.write(\"\\n\")\n\nfor i,p in enumerate(pRange):\n cFile.write(\"\")\n sList = [\"\\t\" + str(c[i][j]) + \" \" + str(Ts[i][j]) + \" \" + str(p) + \"\\n\" for j in range(len(Ts[i]))]\n cFile.write(\"\".join(sList))\ncFile.write(\"\")\ncFile.close()\n\n#Previous dT method to save computational time:\n#dT = drho/CP.PropsSI('d(D)/d(P)|T','D',rhoCur,'T',T,fluid_thermo)*CP.PropsSI('d(P)/d(T)|D','D',rhoCur,'T',T,fluid_thermo)\n\n#Previous dP method to save computational time:\n#drho/CP.PropsSI('d(D)/d(P)|T','D',rhoPseudoCrit,'T',Tcrit,fluid_thermo)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding: utf-8 -*- """ Created on Mon Mar 6 12:20:45 2017 @author: 7 """ from os import listdir from PIL import Image as PImage from scipy import misc import numpy as np from Image_loader import LoadImages """ def LoadImages(path): # return array of images imagesList = listdir(path) loadedImages = [] for image in imagesList: img = misc.imread(path + image) loadedImages.append(img) return loadedImages """ def ModifyImages(path,path1): # modify images to same scale imagesList = listdir(path) for image in imagesList: old_img = PImage.open(path + image) old_size = old_img.size new_size = (540,420) new_img = PImage.new("L", new_size) new_img.paste(old_img,((new_size[0]-old_size[0])//2,(new_size[1]-old_size[1])//2)) new_img.save(path1 + image) """ path = "train\\" path1 = "train_modified\\" ModifyImages(path,path1) imgs = LoadImages(path1) a = np.array( imgs ) print (a.shape) print("finished") path = "test\\" path1 = "test_modified\\" ModifyImages(path,path1) imgs = LoadImages(path1) a = np.array( imgs ) print (a.shape) print("finished") path = "train_cleaned\\" path1 = "train_cleaned_modified\\" ModifyImages(path,path1) imgs = LoadImages(path1) a = np.array( imgs ) print (a.shape) print("finished") """
normal
{ "blob_id": "9cad36de6231f310ef9022f16f6ed0da83a003b3", "index": 9757, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef ModifyImages(path, path1):\n imagesList = listdir(path)\n for image in imagesList:\n old_img = PImage.open(path + image)\n old_size = old_img.size\n new_size = 540, 420\n new_img = PImage.new('L', new_size)\n new_img.paste(old_img, ((new_size[0] - old_size[0]) // 2, (new_size\n [1] - old_size[1]) // 2))\n new_img.save(path1 + image)\n\n\n<mask token>\n", "step-3": "<mask token>\nfrom os import listdir\nfrom PIL import Image as PImage\nfrom scipy import misc\nimport numpy as np\nfrom Image_loader import LoadImages\n<mask token>\n\n\ndef ModifyImages(path, path1):\n imagesList = listdir(path)\n for image in imagesList:\n old_img = PImage.open(path + image)\n old_size = old_img.size\n new_size = 540, 420\n new_img = PImage.new('L', new_size)\n new_img.paste(old_img, ((new_size[0] - old_size[0]) // 2, (new_size\n [1] - old_size[1]) // 2))\n new_img.save(path1 + image)\n\n\n<mask token>\n", "step-4": "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Mon Mar 6 12:20:45 2017\r\n\r\n@author: 7\r\n\"\"\"\r\n\r\nfrom os import listdir\r\nfrom PIL import Image as PImage\r\nfrom scipy import misc\r\nimport numpy as np\r\nfrom Image_loader import LoadImages\r\n\"\"\"\r\ndef LoadImages(path):\r\n # return array of images\r\n imagesList = listdir(path)\r\n loadedImages = []\r\n for image in imagesList:\r\n img = misc.imread(path + image)\r\n loadedImages.append(img)\r\n return loadedImages\r\n\"\"\"\r\n\r\n\r\ndef ModifyImages(path,path1):\r\n # modify images to same scale\r\n\r\n imagesList = listdir(path)\r\n for image in imagesList:\r\n old_img = PImage.open(path + image)\r\n old_size = old_img.size\r\n new_size = (540,420)\r\n new_img = PImage.new(\"L\", new_size) \r\n new_img.paste(old_img,((new_size[0]-old_size[0])//2,(new_size[1]-old_size[1])//2))\r\n new_img.save(path1 + image)\r\n\r\n\"\"\"\r\npath = \"train\\\\\"\r\npath1 = \"train_modified\\\\\"\r\nModifyImages(path,path1)\r\nimgs = LoadImages(path1)\r\na = np.array( imgs )\r\nprint (a.shape)\r\nprint(\"finished\")\r\n\r\n\r\npath = \"test\\\\\"\r\npath1 = \"test_modified\\\\\"\r\n\r\nModifyImages(path,path1)\r\nimgs = LoadImages(path1)\r\na = np.array( imgs )\r\nprint (a.shape)\r\nprint(\"finished\")\r\n\r\npath = \"train_cleaned\\\\\"\r\npath1 = \"train_cleaned_modified\\\\\"\r\n\r\nModifyImages(path,path1)\r\nimgs = LoadImages(path1)\r\na = np.array( imgs )\r\nprint (a.shape)\r\nprint(\"finished\")\r\n\"\"\"", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" Python shell for Diofant. This is just a normal Python shell (IPython shell if you have the IPython package installed), that adds default imports and run some initialization code. """ import argparse import ast import atexit import code import os import readline import rlcompleter from diofant.interactive.session import (AutomaticSymbols, IntegerDivisionWrapper, unicode_identifiers) __all__ = () parser = argparse.ArgumentParser(description=__doc__, prog='python -m diofant') parser.add_argument('--no-wrap-division', help="Don't wrap integer divisions with Fraction", action='store_true') parser.add_argument('-a', '--auto-symbols', help="Automatically create missing Symbol's", action='store_true') parser.add_argument('--no-ipython', help="Don't use IPython", action='store_true') parser.add_argument('--unicode-identifiers', help='Allow any unicode identifiers', action='store_true') def main(): args, ipython_args = parser.parse_known_args() lines = ['from diofant import *', 'init_printing()', "a, b, c, d, t, x, y, z = symbols('a:d t x:z')", "k, m, n = symbols('k m n', integer=True)", "f, g, h = symbols('f g h', cls=Function)", 'init_printing(pretty_print=True, use_unicode=True)'] try: import IPython import traitlets except ImportError: args.no_ipython = True if not args.no_ipython: config = traitlets.config.loader.Config() shell = config.InteractiveShell ast_transformers = shell.ast_transformers if not args.no_wrap_division: ast_transformers.append(IntegerDivisionWrapper()) shell.confirm_exit = False config.TerminalIPythonApp.display_banner = False config.TerminalInteractiveShell.autoformatter = None app = IPython.terminal.ipapp.TerminalIPythonApp.instance(config=config) app.initialize(ipython_args) shell = app.shell for l in lines: shell.run_cell(l, silent=True) if args.auto_symbols: shell.run_cell('from diofant.interactive.session import AutomaticSymbols') shell.run_cell('ip = get_ipython()') shell.run_cell('ip.ast_transformers.append(AutomaticSymbols(ip.user_ns))') shell.run_cell('del ip') if args.unicode_identifiers: shell.run_cell('from diofant.interactive.session import unicode_identifiers') shell.run_cell('ip = get_ipython()') shell.run_cell('ip.input_transformers_cleanup.append(unicode_identifiers)') shell.run_cell('del ip') app.start() else: ast_transformers = [] source_transformers = [] ns = {} if not args.no_wrap_division: ast_transformers.append(IntegerDivisionWrapper()) if args.auto_symbols: ast_transformers.append(AutomaticSymbols(ns)) if args.unicode_identifiers: source_transformers.append(unicode_identifiers) class DiofantConsole(code.InteractiveConsole): """An interactive console with readline support.""" def __init__(self, ast_transformers=[], source_transformers=[], **kwargs): super().__init__(**kwargs) readline.set_completer(rlcompleter.Completer(ns).complete) readline.parse_and_bind('tab: complete') history = os.path.expanduser('~/.python_history') readline.read_history_file(history) atexit.register(readline.write_history_file, history) self.ast_transformers = ast_transformers self.source_transformers = source_transformers def runsource(self, source, filename='<input>', symbol='single'): for t in self.source_transformers: source = '\n'.join(t(source.splitlines())) try: tree = ast.parse(source) except SyntaxError: return True for t in self.ast_transformers: tree = t.visit(tree) ast.fix_missing_locations(tree) source = ast.unparse(tree) source = source.split('\n') source = ';'.join(source) return super().runsource(source, filename=filename, symbol=symbol) c = DiofantConsole(ast_transformers=ast_transformers, source_transformers=source_transformers, locals=ns) for l in lines: c.push(l) c.interact('', '') if __name__ == '__main__': # pragma: no branch main()
normal
{ "blob_id": "80e395715d3ae216beb17e7caed1d8d03c5c56de", "index": 9943, "step-1": "<mask token>\n\n\ndef main():\n args, ipython_args = parser.parse_known_args()\n lines = ['from diofant import *', 'init_printing()',\n \"a, b, c, d, t, x, y, z = symbols('a:d t x:z')\",\n \"k, m, n = symbols('k m n', integer=True)\",\n \"f, g, h = symbols('f g h', cls=Function)\",\n 'init_printing(pretty_print=True, use_unicode=True)']\n try:\n import IPython\n import traitlets\n except ImportError:\n args.no_ipython = True\n if not args.no_ipython:\n config = traitlets.config.loader.Config()\n shell = config.InteractiveShell\n ast_transformers = shell.ast_transformers\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n shell.confirm_exit = False\n config.TerminalIPythonApp.display_banner = False\n config.TerminalInteractiveShell.autoformatter = None\n app = IPython.terminal.ipapp.TerminalIPythonApp.instance(config=config)\n app.initialize(ipython_args)\n shell = app.shell\n for l in lines:\n shell.run_cell(l, silent=True)\n if args.auto_symbols:\n shell.run_cell(\n 'from diofant.interactive.session import AutomaticSymbols')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.ast_transformers.append(AutomaticSymbols(ip.user_ns))')\n shell.run_cell('del ip')\n if args.unicode_identifiers:\n shell.run_cell(\n 'from diofant.interactive.session import unicode_identifiers')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.input_transformers_cleanup.append(unicode_identifiers)')\n shell.run_cell('del ip')\n app.start()\n else:\n ast_transformers = []\n source_transformers = []\n ns = {}\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n if args.auto_symbols:\n ast_transformers.append(AutomaticSymbols(ns))\n if args.unicode_identifiers:\n source_transformers.append(unicode_identifiers)\n\n\n class DiofantConsole(code.InteractiveConsole):\n \"\"\"An interactive console with readline support.\"\"\"\n\n def __init__(self, ast_transformers=[], source_transformers=[],\n **kwargs):\n super().__init__(**kwargs)\n readline.set_completer(rlcompleter.Completer(ns).complete)\n readline.parse_and_bind('tab: complete')\n history = os.path.expanduser('~/.python_history')\n readline.read_history_file(history)\n atexit.register(readline.write_history_file, history)\n self.ast_transformers = ast_transformers\n self.source_transformers = source_transformers\n\n def runsource(self, source, filename='<input>', symbol='single'):\n for t in self.source_transformers:\n source = '\\n'.join(t(source.splitlines()))\n try:\n tree = ast.parse(source)\n except SyntaxError:\n return True\n for t in self.ast_transformers:\n tree = t.visit(tree)\n ast.fix_missing_locations(tree)\n source = ast.unparse(tree)\n source = source.split('\\n')\n source = ';'.join(source)\n return super().runsource(source, filename=filename, symbol=\n symbol)\n c = DiofantConsole(ast_transformers=ast_transformers,\n source_transformers=source_transformers, locals=ns)\n for l in lines:\n c.push(l)\n c.interact('', '')\n\n\n<mask token>\n", "step-2": "<mask token>\nparser.add_argument('--no-wrap-division', help=\n \"Don't wrap integer divisions with Fraction\", action='store_true')\nparser.add_argument('-a', '--auto-symbols', help=\n \"Automatically create missing Symbol's\", action='store_true')\nparser.add_argument('--no-ipython', help=\"Don't use IPython\", action=\n 'store_true')\nparser.add_argument('--unicode-identifiers', help=\n 'Allow any unicode identifiers', action='store_true')\n\n\ndef main():\n args, ipython_args = parser.parse_known_args()\n lines = ['from diofant import *', 'init_printing()',\n \"a, b, c, d, t, x, y, z = symbols('a:d t x:z')\",\n \"k, m, n = symbols('k m n', integer=True)\",\n \"f, g, h = symbols('f g h', cls=Function)\",\n 'init_printing(pretty_print=True, use_unicode=True)']\n try:\n import IPython\n import traitlets\n except ImportError:\n args.no_ipython = True\n if not args.no_ipython:\n config = traitlets.config.loader.Config()\n shell = config.InteractiveShell\n ast_transformers = shell.ast_transformers\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n shell.confirm_exit = False\n config.TerminalIPythonApp.display_banner = False\n config.TerminalInteractiveShell.autoformatter = None\n app = IPython.terminal.ipapp.TerminalIPythonApp.instance(config=config)\n app.initialize(ipython_args)\n shell = app.shell\n for l in lines:\n shell.run_cell(l, silent=True)\n if args.auto_symbols:\n shell.run_cell(\n 'from diofant.interactive.session import AutomaticSymbols')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.ast_transformers.append(AutomaticSymbols(ip.user_ns))')\n shell.run_cell('del ip')\n if args.unicode_identifiers:\n shell.run_cell(\n 'from diofant.interactive.session import unicode_identifiers')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.input_transformers_cleanup.append(unicode_identifiers)')\n shell.run_cell('del ip')\n app.start()\n else:\n ast_transformers = []\n source_transformers = []\n ns = {}\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n if args.auto_symbols:\n ast_transformers.append(AutomaticSymbols(ns))\n if args.unicode_identifiers:\n source_transformers.append(unicode_identifiers)\n\n\n class DiofantConsole(code.InteractiveConsole):\n \"\"\"An interactive console with readline support.\"\"\"\n\n def __init__(self, ast_transformers=[], source_transformers=[],\n **kwargs):\n super().__init__(**kwargs)\n readline.set_completer(rlcompleter.Completer(ns).complete)\n readline.parse_and_bind('tab: complete')\n history = os.path.expanduser('~/.python_history')\n readline.read_history_file(history)\n atexit.register(readline.write_history_file, history)\n self.ast_transformers = ast_transformers\n self.source_transformers = source_transformers\n\n def runsource(self, source, filename='<input>', symbol='single'):\n for t in self.source_transformers:\n source = '\\n'.join(t(source.splitlines()))\n try:\n tree = ast.parse(source)\n except SyntaxError:\n return True\n for t in self.ast_transformers:\n tree = t.visit(tree)\n ast.fix_missing_locations(tree)\n source = ast.unparse(tree)\n source = source.split('\\n')\n source = ';'.join(source)\n return super().runsource(source, filename=filename, symbol=\n symbol)\n c = DiofantConsole(ast_transformers=ast_transformers,\n source_transformers=source_transformers, locals=ns)\n for l in lines:\n c.push(l)\n c.interact('', '')\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\n__all__ = ()\nparser = argparse.ArgumentParser(description=__doc__, prog='python -m diofant')\nparser.add_argument('--no-wrap-division', help=\n \"Don't wrap integer divisions with Fraction\", action='store_true')\nparser.add_argument('-a', '--auto-symbols', help=\n \"Automatically create missing Symbol's\", action='store_true')\nparser.add_argument('--no-ipython', help=\"Don't use IPython\", action=\n 'store_true')\nparser.add_argument('--unicode-identifiers', help=\n 'Allow any unicode identifiers', action='store_true')\n\n\ndef main():\n args, ipython_args = parser.parse_known_args()\n lines = ['from diofant import *', 'init_printing()',\n \"a, b, c, d, t, x, y, z = symbols('a:d t x:z')\",\n \"k, m, n = symbols('k m n', integer=True)\",\n \"f, g, h = symbols('f g h', cls=Function)\",\n 'init_printing(pretty_print=True, use_unicode=True)']\n try:\n import IPython\n import traitlets\n except ImportError:\n args.no_ipython = True\n if not args.no_ipython:\n config = traitlets.config.loader.Config()\n shell = config.InteractiveShell\n ast_transformers = shell.ast_transformers\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n shell.confirm_exit = False\n config.TerminalIPythonApp.display_banner = False\n config.TerminalInteractiveShell.autoformatter = None\n app = IPython.terminal.ipapp.TerminalIPythonApp.instance(config=config)\n app.initialize(ipython_args)\n shell = app.shell\n for l in lines:\n shell.run_cell(l, silent=True)\n if args.auto_symbols:\n shell.run_cell(\n 'from diofant.interactive.session import AutomaticSymbols')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.ast_transformers.append(AutomaticSymbols(ip.user_ns))')\n shell.run_cell('del ip')\n if args.unicode_identifiers:\n shell.run_cell(\n 'from diofant.interactive.session import unicode_identifiers')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.input_transformers_cleanup.append(unicode_identifiers)')\n shell.run_cell('del ip')\n app.start()\n else:\n ast_transformers = []\n source_transformers = []\n ns = {}\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n if args.auto_symbols:\n ast_transformers.append(AutomaticSymbols(ns))\n if args.unicode_identifiers:\n source_transformers.append(unicode_identifiers)\n\n\n class DiofantConsole(code.InteractiveConsole):\n \"\"\"An interactive console with readline support.\"\"\"\n\n def __init__(self, ast_transformers=[], source_transformers=[],\n **kwargs):\n super().__init__(**kwargs)\n readline.set_completer(rlcompleter.Completer(ns).complete)\n readline.parse_and_bind('tab: complete')\n history = os.path.expanduser('~/.python_history')\n readline.read_history_file(history)\n atexit.register(readline.write_history_file, history)\n self.ast_transformers = ast_transformers\n self.source_transformers = source_transformers\n\n def runsource(self, source, filename='<input>', symbol='single'):\n for t in self.source_transformers:\n source = '\\n'.join(t(source.splitlines()))\n try:\n tree = ast.parse(source)\n except SyntaxError:\n return True\n for t in self.ast_transformers:\n tree = t.visit(tree)\n ast.fix_missing_locations(tree)\n source = ast.unparse(tree)\n source = source.split('\\n')\n source = ';'.join(source)\n return super().runsource(source, filename=filename, symbol=\n symbol)\n c = DiofantConsole(ast_transformers=ast_transformers,\n source_transformers=source_transformers, locals=ns)\n for l in lines:\n c.push(l)\n c.interact('', '')\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nimport argparse\nimport ast\nimport atexit\nimport code\nimport os\nimport readline\nimport rlcompleter\nfrom diofant.interactive.session import AutomaticSymbols, IntegerDivisionWrapper, unicode_identifiers\n__all__ = ()\nparser = argparse.ArgumentParser(description=__doc__, prog='python -m diofant')\nparser.add_argument('--no-wrap-division', help=\n \"Don't wrap integer divisions with Fraction\", action='store_true')\nparser.add_argument('-a', '--auto-symbols', help=\n \"Automatically create missing Symbol's\", action='store_true')\nparser.add_argument('--no-ipython', help=\"Don't use IPython\", action=\n 'store_true')\nparser.add_argument('--unicode-identifiers', help=\n 'Allow any unicode identifiers', action='store_true')\n\n\ndef main():\n args, ipython_args = parser.parse_known_args()\n lines = ['from diofant import *', 'init_printing()',\n \"a, b, c, d, t, x, y, z = symbols('a:d t x:z')\",\n \"k, m, n = symbols('k m n', integer=True)\",\n \"f, g, h = symbols('f g h', cls=Function)\",\n 'init_printing(pretty_print=True, use_unicode=True)']\n try:\n import IPython\n import traitlets\n except ImportError:\n args.no_ipython = True\n if not args.no_ipython:\n config = traitlets.config.loader.Config()\n shell = config.InteractiveShell\n ast_transformers = shell.ast_transformers\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n shell.confirm_exit = False\n config.TerminalIPythonApp.display_banner = False\n config.TerminalInteractiveShell.autoformatter = None\n app = IPython.terminal.ipapp.TerminalIPythonApp.instance(config=config)\n app.initialize(ipython_args)\n shell = app.shell\n for l in lines:\n shell.run_cell(l, silent=True)\n if args.auto_symbols:\n shell.run_cell(\n 'from diofant.interactive.session import AutomaticSymbols')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.ast_transformers.append(AutomaticSymbols(ip.user_ns))')\n shell.run_cell('del ip')\n if args.unicode_identifiers:\n shell.run_cell(\n 'from diofant.interactive.session import unicode_identifiers')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell(\n 'ip.input_transformers_cleanup.append(unicode_identifiers)')\n shell.run_cell('del ip')\n app.start()\n else:\n ast_transformers = []\n source_transformers = []\n ns = {}\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n if args.auto_symbols:\n ast_transformers.append(AutomaticSymbols(ns))\n if args.unicode_identifiers:\n source_transformers.append(unicode_identifiers)\n\n\n class DiofantConsole(code.InteractiveConsole):\n \"\"\"An interactive console with readline support.\"\"\"\n\n def __init__(self, ast_transformers=[], source_transformers=[],\n **kwargs):\n super().__init__(**kwargs)\n readline.set_completer(rlcompleter.Completer(ns).complete)\n readline.parse_and_bind('tab: complete')\n history = os.path.expanduser('~/.python_history')\n readline.read_history_file(history)\n atexit.register(readline.write_history_file, history)\n self.ast_transformers = ast_transformers\n self.source_transformers = source_transformers\n\n def runsource(self, source, filename='<input>', symbol='single'):\n for t in self.source_transformers:\n source = '\\n'.join(t(source.splitlines()))\n try:\n tree = ast.parse(source)\n except SyntaxError:\n return True\n for t in self.ast_transformers:\n tree = t.visit(tree)\n ast.fix_missing_locations(tree)\n source = ast.unparse(tree)\n source = source.split('\\n')\n source = ';'.join(source)\n return super().runsource(source, filename=filename, symbol=\n symbol)\n c = DiofantConsole(ast_transformers=ast_transformers,\n source_transformers=source_transformers, locals=ns)\n for l in lines:\n c.push(l)\n c.interact('', '')\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "\"\"\"\nPython shell for Diofant.\n\nThis is just a normal Python shell (IPython shell if you have the\nIPython package installed), that adds default imports and run\nsome initialization code.\n\"\"\"\n\nimport argparse\nimport ast\nimport atexit\nimport code\nimport os\nimport readline\nimport rlcompleter\n\nfrom diofant.interactive.session import (AutomaticSymbols,\n IntegerDivisionWrapper,\n unicode_identifiers)\n\n\n__all__ = ()\n\n\nparser = argparse.ArgumentParser(description=__doc__,\n prog='python -m diofant')\nparser.add_argument('--no-wrap-division',\n help=\"Don't wrap integer divisions with Fraction\",\n action='store_true')\nparser.add_argument('-a', '--auto-symbols',\n help=\"Automatically create missing Symbol's\",\n action='store_true')\nparser.add_argument('--no-ipython', help=\"Don't use IPython\",\n action='store_true')\nparser.add_argument('--unicode-identifiers',\n help='Allow any unicode identifiers',\n action='store_true')\n\n\ndef main():\n args, ipython_args = parser.parse_known_args()\n\n lines = ['from diofant import *',\n 'init_printing()',\n \"a, b, c, d, t, x, y, z = symbols('a:d t x:z')\",\n \"k, m, n = symbols('k m n', integer=True)\",\n \"f, g, h = symbols('f g h', cls=Function)\",\n 'init_printing(pretty_print=True, use_unicode=True)']\n\n try:\n import IPython\n import traitlets\n except ImportError:\n args.no_ipython = True\n\n if not args.no_ipython:\n config = traitlets.config.loader.Config()\n shell = config.InteractiveShell\n ast_transformers = shell.ast_transformers\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n shell.confirm_exit = False\n config.TerminalIPythonApp.display_banner = False\n config.TerminalInteractiveShell.autoformatter = None\n\n app = IPython.terminal.ipapp.TerminalIPythonApp.instance(config=config)\n app.initialize(ipython_args)\n shell = app.shell\n for l in lines:\n shell.run_cell(l, silent=True)\n if args.auto_symbols:\n shell.run_cell('from diofant.interactive.session import AutomaticSymbols')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell('ip.ast_transformers.append(AutomaticSymbols(ip.user_ns))')\n shell.run_cell('del ip')\n if args.unicode_identifiers:\n shell.run_cell('from diofant.interactive.session import unicode_identifiers')\n shell.run_cell('ip = get_ipython()')\n shell.run_cell('ip.input_transformers_cleanup.append(unicode_identifiers)')\n shell.run_cell('del ip')\n app.start()\n else:\n ast_transformers = []\n source_transformers = []\n ns = {}\n\n if not args.no_wrap_division:\n ast_transformers.append(IntegerDivisionWrapper())\n if args.auto_symbols:\n ast_transformers.append(AutomaticSymbols(ns))\n if args.unicode_identifiers:\n source_transformers.append(unicode_identifiers)\n\n class DiofantConsole(code.InteractiveConsole):\n \"\"\"An interactive console with readline support.\"\"\"\n\n def __init__(self, ast_transformers=[],\n source_transformers=[], **kwargs):\n super().__init__(**kwargs)\n\n readline.set_completer(rlcompleter.Completer(ns).complete)\n readline.parse_and_bind('tab: complete')\n\n history = os.path.expanduser('~/.python_history')\n readline.read_history_file(history)\n atexit.register(readline.write_history_file, history)\n self.ast_transformers = ast_transformers\n self.source_transformers = source_transformers\n\n def runsource(self, source, filename='<input>', symbol='single'):\n for t in self.source_transformers:\n source = '\\n'.join(t(source.splitlines()))\n\n try:\n tree = ast.parse(source)\n except SyntaxError:\n return True\n\n for t in self.ast_transformers:\n tree = t.visit(tree)\n ast.fix_missing_locations(tree)\n\n source = ast.unparse(tree)\n source = source.split('\\n')\n source = ';'.join(source)\n return super().runsource(source, filename=filename, symbol=symbol)\n\n c = DiofantConsole(ast_transformers=ast_transformers,\n source_transformers=source_transformers, locals=ns)\n\n for l in lines:\n c.push(l)\n c.interact('', '')\n\n\nif __name__ == '__main__': # pragma: no branch\n main()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import numpy as np from flask import Flask,request,render_template import pickle from werkzeug.serving import run_simple app=Flask(__name__,template_folder='template') model=pickle.load(open("model.pkl",'rb')) @app.route('/') def home(): return render_template('index.html') @app.route('/predict',methods=['POST']) def predict(): arr=[int(x) for x in request.form.values()] arr2=[np.array(arr)] output=model.predict(arr2) # o2=round(output) return render_template('index.html',prediction_text=output) if __name__ == "__main__": run_simple('localhost',8001,app,use_reloader=False)
normal
{ "blob_id": "02b760b16cdcd42f8d8d7222b439da87fb8076a3", "index": 4959, "step-1": "<mask token>\n\n\n@app.route('/predict', methods=['POST'])\ndef predict():\n arr = [int(x) for x in request.form.values()]\n arr2 = [np.array(arr)]\n output = model.predict(arr2)\n return render_template('index.html', prediction_text=output)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\n@app.route('/')\ndef home():\n return render_template('index.html')\n\n\n@app.route('/predict', methods=['POST'])\ndef predict():\n arr = [int(x) for x in request.form.values()]\n arr2 = [np.array(arr)]\n output = model.predict(arr2)\n return render_template('index.html', prediction_text=output)\n\n\nif __name__ == '__main__':\n run_simple('localhost', 8001, app, use_reloader=False)\n", "step-3": "<mask token>\napp = Flask(__name__, template_folder='template')\nmodel = pickle.load(open('model.pkl', 'rb'))\n\n\n@app.route('/')\ndef home():\n return render_template('index.html')\n\n\n@app.route('/predict', methods=['POST'])\ndef predict():\n arr = [int(x) for x in request.form.values()]\n arr2 = [np.array(arr)]\n output = model.predict(arr2)\n return render_template('index.html', prediction_text=output)\n\n\nif __name__ == '__main__':\n run_simple('localhost', 8001, app, use_reloader=False)\n", "step-4": "import numpy as np\nfrom flask import Flask, request, render_template\nimport pickle\nfrom werkzeug.serving import run_simple\napp = Flask(__name__, template_folder='template')\nmodel = pickle.load(open('model.pkl', 'rb'))\n\n\n@app.route('/')\ndef home():\n return render_template('index.html')\n\n\n@app.route('/predict', methods=['POST'])\ndef predict():\n arr = [int(x) for x in request.form.values()]\n arr2 = [np.array(arr)]\n output = model.predict(arr2)\n return render_template('index.html', prediction_text=output)\n\n\nif __name__ == '__main__':\n run_simple('localhost', 8001, app, use_reloader=False)\n", "step-5": "import numpy as np\r\nfrom flask import Flask,request,render_template\r\nimport pickle\r\nfrom werkzeug.serving import run_simple\r\n\r\napp=Flask(__name__,template_folder='template')\r\nmodel=pickle.load(open(\"model.pkl\",'rb'))\r\n\r\n\r\n@app.route('/')\r\ndef home():\r\n return render_template('index.html')\r\n\r\n@app.route('/predict',methods=['POST'])\r\ndef predict():\r\n arr=[int(x) for x in request.form.values()]\r\n arr2=[np.array(arr)]\r\n output=model.predict(arr2)\r\n # o2=round(output)\r\n return render_template('index.html',prediction_text=output)\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\nif __name__ == \"__main__\":\r\n run_simple('localhost',8001,app,use_reloader=False)", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
import numpy as np import os import sys file_path = sys.argv[1] triplets = np.loadtxt(os.path.join(file_path, "kaggle_visible_evaluation_triplets.txt"), delimiter="\t", dtype="str") enum_users = np.ndenumerate(np.unique(triplets[:, 0])) print(enum_users) triplets[triplets[:, 0] == user_id[user_nr[0]], 0] = user_nr + 1 print(triplets)
normal
{ "blob_id": "f3d9e783491916e684cda659afa73ce5a6a5894a", "index": 4063, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(enum_users)\n<mask token>\nprint(triplets)\n", "step-3": "<mask token>\nfile_path = sys.argv[1]\ntriplets = np.loadtxt(os.path.join(file_path,\n 'kaggle_visible_evaluation_triplets.txt'), delimiter='\\t', dtype='str')\nenum_users = np.ndenumerate(np.unique(triplets[:, 0]))\nprint(enum_users)\ntriplets[triplets[:, 0] == user_id[user_nr[0]], 0] = user_nr + 1\nprint(triplets)\n", "step-4": "import numpy as np\nimport os\nimport sys\nfile_path = sys.argv[1]\ntriplets = np.loadtxt(os.path.join(file_path,\n 'kaggle_visible_evaluation_triplets.txt'), delimiter='\\t', dtype='str')\nenum_users = np.ndenumerate(np.unique(triplets[:, 0]))\nprint(enum_users)\ntriplets[triplets[:, 0] == user_id[user_nr[0]], 0] = user_nr + 1\nprint(triplets)\n", "step-5": "import numpy as np\n\nimport os\nimport sys\n\nfile_path = sys.argv[1]\n\ntriplets = np.loadtxt(os.path.join(file_path, \"kaggle_visible_evaluation_triplets.txt\"),\n delimiter=\"\\t\", dtype=\"str\")\n\nenum_users = np.ndenumerate(np.unique(triplets[:, 0]))\n\nprint(enum_users)\n\ntriplets[triplets[:, 0] == user_id[user_nr[0]], 0] = user_nr + 1\n\nprint(triplets)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
def maxProduct(self, A): size= len(A) if size==1: return A[0] Max=[A[0]] Min=[A[0]] for i in range(1,size): Max.append(max(max(Max[i-1]*A[i],Min[i-1]*A[i]),A[i])) Min.append(min(min(Max[i-1]*A[i],Min[i-1]*A[i]),A[i])) tmax=Max[0] for i in range(0,size): if Max[i]>tmax: tmax=Max[i] return tmax
normal
{ "blob_id": "1fafbc1e415b5089afcd2976d4f0dc2aa1c5a144", "index": 1077, "step-1": " def maxProduct(self, A):\n size= len(A)\n if size==1:\n return A[0]\n Max=[A[0]]\n Min=[A[0]]\n for i in range(1,size):\n Max.append(max(max(Max[i-1]*A[i],Min[i-1]*A[i]),A[i]))\n Min.append(min(min(Max[i-1]*A[i],Min[i-1]*A[i]),A[i]))\n tmax=Max[0]\n for i in range(0,size):\n if Max[i]>tmax:\n tmax=Max[i]\n return tmax\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Алексей Головлев, группа БСБО-07-19 def lucky(ticket): def sum_(number): number = str(number) while len(number) != 6: number = '0' + number x = list(map(int, number)) return sum(x[:3]) == sum(x[3:]) return 'Счастливый' if sum_(ticket) == sum_(lastTicket) else 'Несчастливый' lastTicket = 123456 print(lucky(100001)) lastTicket = 123321 print(lucky(100001))
normal
{ "blob_id": "85ac851e28dba3816f18fefb727001b8e396cc2b", "index": 5278, "step-1": "<mask token>\n", "step-2": "def lucky(ticket):\n\n def sum_(number):\n number = str(number)\n while len(number) != 6:\n number = '0' + number\n x = list(map(int, number))\n return sum(x[:3]) == sum(x[3:])\n return 'Счастливый' if sum_(ticket) == sum_(lastTicket) else 'Несчастливый'\n\n\n<mask token>\n", "step-3": "def lucky(ticket):\n\n def sum_(number):\n number = str(number)\n while len(number) != 6:\n number = '0' + number\n x = list(map(int, number))\n return sum(x[:3]) == sum(x[3:])\n return 'Счастливый' if sum_(ticket) == sum_(lastTicket) else 'Несчастливый'\n\n\n<mask token>\nprint(lucky(100001))\n<mask token>\nprint(lucky(100001))\n", "step-4": "def lucky(ticket):\n\n def sum_(number):\n number = str(number)\n while len(number) != 6:\n number = '0' + number\n x = list(map(int, number))\n return sum(x[:3]) == sum(x[3:])\n return 'Счастливый' if sum_(ticket) == sum_(lastTicket) else 'Несчастливый'\n\n\nlastTicket = 123456\nprint(lucky(100001))\nlastTicket = 123321\nprint(lucky(100001))\n", "step-5": "# Алексей Головлев, группа БСБО-07-19\n\ndef lucky(ticket):\n def sum_(number):\n number = str(number)\n while len(number) != 6:\n number = '0' + number\n x = list(map(int, number))\n return sum(x[:3]) == sum(x[3:])\n\n return 'Счастливый' if sum_(ticket) == sum_(lastTicket) else 'Несчастливый'\n\n\nlastTicket = 123456\nprint(lucky(100001))\n\nlastTicket = 123321\nprint(lucky(100001))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys def main(): # String to format output format_string = "%s %s %s %s %s %s %s %s %s\n" while True: # Read 14 lines at a time from stdin for wikipedia dataset edit = [sys.stdin.readline() for i in range(14)] # Break if we've reached the end of stdin if edit[13] == "": break # Parse data from revision line revision = edit[0].split(' ') article_id,rev_id,title,timestamp,username,user_id = 'a'+revision[1],'e'+revision[2],revision[3],revision[4],revision[5],'u'+revision[6].strip() # Ignore anonymous edits if user_id.startswith('uip'): continue # Parse article category category_line = edit[1].split(' ') if len(category_line) != 1: category = category_line[1].strip() else: category = "" # Parse whether edit is minor and number of words edited minor = edit[11].split(' ')[1].strip() word_count = edit[12].split(' ')[1].strip() # Create output line and write to stdout outline = format_string % (article_id,rev_id,user_id,username,title,timestamp,category,minor,word_count) sys.stdout.write(outline) if __name__ == '__main__': main()
normal
{ "blob_id": "f6b2169a4644f4f39bbdebd9bb9c7cc637b54f8b", "index": 9920, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n format_string = '%s %s %s %s %s %s %s %s %s\\n'\n while True:\n edit = [sys.stdin.readline() for i in range(14)]\n if edit[13] == '':\n break\n revision = edit[0].split(' ')\n article_id, rev_id, title, timestamp, username, user_id = ('a' +\n revision[1], 'e' + revision[2], revision[3], revision[4],\n revision[5], 'u' + revision[6].strip())\n if user_id.startswith('uip'):\n continue\n category_line = edit[1].split(' ')\n if len(category_line) != 1:\n category = category_line[1].strip()\n else:\n category = ''\n minor = edit[11].split(' ')[1].strip()\n word_count = edit[12].split(' ')[1].strip()\n outline = format_string % (article_id, rev_id, user_id, username,\n title, timestamp, category, minor, word_count)\n sys.stdout.write(outline)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n format_string = '%s %s %s %s %s %s %s %s %s\\n'\n while True:\n edit = [sys.stdin.readline() for i in range(14)]\n if edit[13] == '':\n break\n revision = edit[0].split(' ')\n article_id, rev_id, title, timestamp, username, user_id = ('a' +\n revision[1], 'e' + revision[2], revision[3], revision[4],\n revision[5], 'u' + revision[6].strip())\n if user_id.startswith('uip'):\n continue\n category_line = edit[1].split(' ')\n if len(category_line) != 1:\n category = category_line[1].strip()\n else:\n category = ''\n minor = edit[11].split(' ')[1].strip()\n word_count = edit[12].split(' ')[1].strip()\n outline = format_string % (article_id, rev_id, user_id, username,\n title, timestamp, category, minor, word_count)\n sys.stdout.write(outline)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import sys\n\n\ndef main():\n format_string = '%s %s %s %s %s %s %s %s %s\\n'\n while True:\n edit = [sys.stdin.readline() for i in range(14)]\n if edit[13] == '':\n break\n revision = edit[0].split(' ')\n article_id, rev_id, title, timestamp, username, user_id = ('a' +\n revision[1], 'e' + revision[2], revision[3], revision[4],\n revision[5], 'u' + revision[6].strip())\n if user_id.startswith('uip'):\n continue\n category_line = edit[1].split(' ')\n if len(category_line) != 1:\n category = category_line[1].strip()\n else:\n category = ''\n minor = edit[11].split(' ')[1].strip()\n word_count = edit[12].split(' ')[1].strip()\n outline = format_string % (article_id, rev_id, user_id, username,\n title, timestamp, category, minor, word_count)\n sys.stdout.write(outline)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import sys\n\ndef main():\n\t# String to format output\n\tformat_string = \"%s %s %s %s %s %s %s %s %s\\n\"\n\twhile True:\n\t\t# Read 14 lines at a time from stdin for wikipedia dataset\n\t\tedit = [sys.stdin.readline() for i in range(14)]\n\t\t# Break if we've reached the end of stdin\n\t\tif edit[13] == \"\":\n\t\t\tbreak\n\t\t# Parse data from revision line\n\t\trevision = edit[0].split(' ')\n\t\tarticle_id,rev_id,title,timestamp,username,user_id = 'a'+revision[1],'e'+revision[2],revision[3],revision[4],revision[5],'u'+revision[6].strip()\n\t\t# Ignore anonymous edits\n\t\tif user_id.startswith('uip'):\n\t\t\tcontinue\n\t\t# Parse article category\n\t\tcategory_line = edit[1].split(' ')\n\t\tif len(category_line) != 1:\n\t\t\tcategory = category_line[1].strip()\n\t\telse:\n\t\t\tcategory = \"\"\n\t\t# Parse whether edit is minor and number of words edited\n\t\tminor = edit[11].split(' ')[1].strip()\n\t\tword_count = edit[12].split(' ')[1].strip()\n\t\t# Create output line and write to stdout\n\t\toutline = format_string % (article_id,rev_id,user_id,username,title,timestamp,category,minor,word_count)\n\t\tsys.stdout.write(outline)\n\nif __name__ == '__main__':\n\tmain()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.db import models class TamLicense(models.Model): license = models.TextField("Inserisci qui il tuo codice licenza.")
normal
{ "blob_id": "1daecce86769e36a17fe2935f89b9266a0197cf0", "index": 3942, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass TamLicense(models.Model):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass TamLicense(models.Model):\n license = models.TextField('Inserisci qui il tuo codice licenza.')\n", "step-4": "from django.db import models\n\n\nclass TamLicense(models.Model):\n license = models.TextField('Inserisci qui il tuo codice licenza.')\n", "step-5": "from django.db import models\n\n\nclass TamLicense(models.Model):\n license = models.TextField(\"Inserisci qui il tuo codice licenza.\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
button6 = Button(tk,text=" ",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button6)) button6.grid(row=2, column=2,sticky = S+N+E+W) button7 = Button(tk,text=" ",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button7)) button7.grid(row=3, column=0,sticky = S+N+E+W) button8 = Button(tk,text=" ",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button8)) button8.grid(row=3, column=1,sticky = S+N+E+W) button9 = Button(tk,text=" ",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button9)) button9.grid(row=3, column=2,sticky = S+N+E+W) tk.mainloop()
normal
{ "blob_id": "e543c7f7f1b249e53b8ebf82641ec398abf557af", "index": 477, "step-1": "<mask token>\n", "step-2": "<mask token>\nbutton6.grid(row=2, column=2, sticky=S + N + E + W)\n<mask token>\nbutton7.grid(row=3, column=0, sticky=S + N + E + W)\n<mask token>\nbutton8.grid(row=3, column=1, sticky=S + N + E + W)\n<mask token>\nbutton9.grid(row=3, column=2, sticky=S + N + E + W)\ntk.mainloop()\n", "step-3": "button6 = Button(tk, text=' ', font='Times 26 bold', heigh=4, width=8,\n command=lambda : checker(button6))\nbutton6.grid(row=2, column=2, sticky=S + N + E + W)\nbutton7 = Button(tk, text=' ', font='Times 26 bold', heigh=4, width=8,\n command=lambda : checker(button7))\nbutton7.grid(row=3, column=0, sticky=S + N + E + W)\nbutton8 = Button(tk, text=' ', font='Times 26 bold', heigh=4, width=8,\n command=lambda : checker(button8))\nbutton8.grid(row=3, column=1, sticky=S + N + E + W)\nbutton9 = Button(tk, text=' ', font='Times 26 bold', heigh=4, width=8,\n command=lambda : checker(button9))\nbutton9.grid(row=3, column=2, sticky=S + N + E + W)\ntk.mainloop()\n", "step-4": "button6 = Button(tk,text=\" \",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button6))\nbutton6.grid(row=2, column=2,sticky = S+N+E+W)\nbutton7 = Button(tk,text=\" \",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button7))\nbutton7.grid(row=3, column=0,sticky = S+N+E+W)\nbutton8 = Button(tk,text=\" \",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button8))\nbutton8.grid(row=3, column=1,sticky = S+N+E+W)\nbutton9 = Button(tk,text=\" \",font=('Times 26 bold'), heigh = 4, width = 8, command=lambda:checker(button9))\nbutton9.grid(row=3, column=2,sticky = S+N+E+W)\ntk.mainloop()", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
G = 1000000000 M = 1000000 K = 1000
normal
{ "blob_id": "f765f54a89a98a5f61c70a37379860f170444c0a", "index": 4069, "step-1": "<mask token>\n", "step-2": "G = 1000000000\nM = 1000000\nK = 1000\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
no=int(input("enter no:")) rev=0 while no!=0: r=no%10 no=no//10 rev=rev*10+r print("reverse no is:",rev)
normal
{ "blob_id": "b2371f9c774c605a52ff1a4fae2dd44a856076aa", "index": 5522, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile no != 0:\n r = no % 10\n no = no // 10\n rev = rev * 10 + r\nprint('reverse no is:', rev)\n", "step-3": "no = int(input('enter no:'))\nrev = 0\nwhile no != 0:\n r = no % 10\n no = no // 10\n rev = rev * 10 + r\nprint('reverse no is:', rev)\n", "step-4": "no=int(input(\"enter no:\"))\nrev=0\nwhile no!=0:\n r=no%10\n no=no//10\n rev=rev*10+r\nprint(\"reverse no is:\",rev)\n ", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def minutes to hours(minutes) : hours = minutes/60 return hours print(minutes to hours(70))
normal
{ "blob_id": "a1b33d0a8a074bc7a2a3e2085b1ff01267e00d3b", "index": 8815, "step-1": "def minutes to hours(minutes) :\r\n hours = minutes/60\r\n return hours\r\n\r\nprint(minutes to hours(70))\r\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import random import datetime import os import time import json # l_target_path = "E:/code/PYTHON_TRAINING/Training/Apr2020/BillingSystem/bills/" while True: l_store_id = random.randint(1, 4) now = datetime.datetime.now() l_bill_id = now.strftime("%Y%m%d%H%M%S") # Generate Random Date start_date = datetime.date(2000, 1, 1) end_date = datetime.date(2020, 1, 1) time_between_dates = end_date - start_date days_between_dates = time_between_dates.days random_number_of_days = random.randrange(days_between_dates) l_date = start_date + datetime.timedelta(days=random_number_of_days) l_bill_details = {} for i in range(random.randint(1, 25)): l_prod_id = random.randint(1,25) l_qty = random.randint(1,20) l_bill_details[l_prod_id] = l_qty l_data = { "bill_id":l_bill_id ,"store_id":l_store_id ,"bill_date":l_date ,"bill_details":l_bill_details} print(l_data) #json.dumps(l_data) new_file = open(l_target_path + l_bill_id + ".json", "w") new_file.write(str(l_data)) new_file.close() time.sleep(3)
normal
{ "blob_id": "fad2ad89e4d0f04fad61e27048397a5702870ca9", "index": 6177, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile True:\n l_store_id = random.randint(1, 4)\n now = datetime.datetime.now()\n l_bill_id = now.strftime('%Y%m%d%H%M%S')\n start_date = datetime.date(2000, 1, 1)\n end_date = datetime.date(2020, 1, 1)\n time_between_dates = end_date - start_date\n days_between_dates = time_between_dates.days\n random_number_of_days = random.randrange(days_between_dates)\n l_date = start_date + datetime.timedelta(days=random_number_of_days)\n l_bill_details = {}\n for i in range(random.randint(1, 25)):\n l_prod_id = random.randint(1, 25)\n l_qty = random.randint(1, 20)\n l_bill_details[l_prod_id] = l_qty\n l_data = {'bill_id': l_bill_id, 'store_id': l_store_id, 'bill_date':\n l_date, 'bill_details': l_bill_details}\n print(l_data)\n new_file = open(l_target_path + l_bill_id + '.json', 'w')\n new_file.write(str(l_data))\n new_file.close()\n time.sleep(3)\n", "step-3": "<mask token>\nl_target_path = 'E:/code/PYTHON_TRAINING/Training/Apr2020/BillingSystem/bills/'\nwhile True:\n l_store_id = random.randint(1, 4)\n now = datetime.datetime.now()\n l_bill_id = now.strftime('%Y%m%d%H%M%S')\n start_date = datetime.date(2000, 1, 1)\n end_date = datetime.date(2020, 1, 1)\n time_between_dates = end_date - start_date\n days_between_dates = time_between_dates.days\n random_number_of_days = random.randrange(days_between_dates)\n l_date = start_date + datetime.timedelta(days=random_number_of_days)\n l_bill_details = {}\n for i in range(random.randint(1, 25)):\n l_prod_id = random.randint(1, 25)\n l_qty = random.randint(1, 20)\n l_bill_details[l_prod_id] = l_qty\n l_data = {'bill_id': l_bill_id, 'store_id': l_store_id, 'bill_date':\n l_date, 'bill_details': l_bill_details}\n print(l_data)\n new_file = open(l_target_path + l_bill_id + '.json', 'w')\n new_file.write(str(l_data))\n new_file.close()\n time.sleep(3)\n", "step-4": "import random\nimport datetime\nimport os\nimport time\nimport json\nl_target_path = 'E:/code/PYTHON_TRAINING/Training/Apr2020/BillingSystem/bills/'\nwhile True:\n l_store_id = random.randint(1, 4)\n now = datetime.datetime.now()\n l_bill_id = now.strftime('%Y%m%d%H%M%S')\n start_date = datetime.date(2000, 1, 1)\n end_date = datetime.date(2020, 1, 1)\n time_between_dates = end_date - start_date\n days_between_dates = time_between_dates.days\n random_number_of_days = random.randrange(days_between_dates)\n l_date = start_date + datetime.timedelta(days=random_number_of_days)\n l_bill_details = {}\n for i in range(random.randint(1, 25)):\n l_prod_id = random.randint(1, 25)\n l_qty = random.randint(1, 20)\n l_bill_details[l_prod_id] = l_qty\n l_data = {'bill_id': l_bill_id, 'store_id': l_store_id, 'bill_date':\n l_date, 'bill_details': l_bill_details}\n print(l_data)\n new_file = open(l_target_path + l_bill_id + '.json', 'w')\n new_file.write(str(l_data))\n new_file.close()\n time.sleep(3)\n", "step-5": "import random\nimport datetime\nimport os\nimport time\nimport json\n\n#\nl_target_path = \"E:/code/PYTHON_TRAINING/Training/Apr2020/BillingSystem/bills/\"\n\n\nwhile True:\n\n l_store_id = random.randint(1, 4)\n now = datetime.datetime.now()\n l_bill_id = now.strftime(\"%Y%m%d%H%M%S\")\n\n\n # Generate Random Date\n start_date = datetime.date(2000, 1, 1)\n end_date = datetime.date(2020, 1, 1)\n time_between_dates = end_date - start_date\n days_between_dates = time_between_dates.days\n random_number_of_days = random.randrange(days_between_dates)\n\n l_date = start_date + datetime.timedelta(days=random_number_of_days)\n\n l_bill_details = {}\n\n for i in range(random.randint(1, 25)):\n\n l_prod_id = random.randint(1,25)\n l_qty = random.randint(1,20)\n l_bill_details[l_prod_id] = l_qty\n\n l_data = { \"bill_id\":l_bill_id\n ,\"store_id\":l_store_id\n ,\"bill_date\":l_date\n ,\"bill_details\":l_bill_details}\n \n print(l_data) #json.dumps(l_data)\n\n new_file = open(l_target_path + l_bill_id + \".json\", \"w\")\n new_file.write(str(l_data))\n new_file.close()\n\n\n time.sleep(3)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.apps import AppConfig class GerenciaLedsConfig(AppConfig): name = 'gerencia_leds'
normal
{ "blob_id": "0754103c2d8cef0fd23b03a8f64ade8f049bce48", "index": 4890, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass GerenciaLedsConfig(AppConfig):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass GerenciaLedsConfig(AppConfig):\n name = 'gerencia_leds'\n", "step-4": "from django.apps import AppConfig\n\n\nclass GerenciaLedsConfig(AppConfig):\n name = 'gerencia_leds'\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.db import models from datetime import datetime class Message(models.Model): text = models.CharField(max_length=200) votes = models.IntegerField() date_added = models.DateTimeField(default=datetime.now) score = models.BigIntegerField() next_vote = models.IntegerField(default=3600) # 86400 seconds in a day def __unicode__(self): return self.text + ' : '+ str(self.votes) + ' : '+str(self.date_added) + ' : ' + str(self.score) + ' : '+str(self.next_vote) + '\n'
normal
{ "blob_id": "7159b447ed6fcb2005f63c7b7359970defbc9d43", "index": 1496, "step-1": "<mask token>\n\n\nclass Message(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Message(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __unicode__(self):\n return self.text + ' : ' + str(self.votes) + ' : ' + str(self.\n date_added) + ' : ' + str(self.score) + ' : ' + str(self.next_vote\n ) + '\\n'\n", "step-3": "<mask token>\n\n\nclass Message(models.Model):\n text = models.CharField(max_length=200)\n votes = models.IntegerField()\n date_added = models.DateTimeField(default=datetime.now)\n score = models.BigIntegerField()\n next_vote = models.IntegerField(default=3600)\n\n def __unicode__(self):\n return self.text + ' : ' + str(self.votes) + ' : ' + str(self.\n date_added) + ' : ' + str(self.score) + ' : ' + str(self.next_vote\n ) + '\\n'\n", "step-4": "from django.db import models\nfrom datetime import datetime\n\n\nclass Message(models.Model):\n text = models.CharField(max_length=200)\n votes = models.IntegerField()\n date_added = models.DateTimeField(default=datetime.now)\n score = models.BigIntegerField()\n next_vote = models.IntegerField(default=3600)\n\n def __unicode__(self):\n return self.text + ' : ' + str(self.votes) + ' : ' + str(self.\n date_added) + ' : ' + str(self.score) + ' : ' + str(self.next_vote\n ) + '\\n'\n", "step-5": "from django.db import models\nfrom datetime import datetime\n\nclass Message(models.Model):\n text = models.CharField(max_length=200)\n votes = models.IntegerField()\n date_added = models.DateTimeField(default=datetime.now)\n score = models.BigIntegerField()\n next_vote = models.IntegerField(default=3600) # 86400 seconds in a day\n\n def __unicode__(self):\n return self.text + ' : '+ str(self.votes) + ' : '+str(self.date_added) + ' : ' + str(self.score) + ' : '+str(self.next_vote) + '\\n'\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding: utf-8 -*- # Author:sen # Date:2020/4/2 14:15 class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None def find(root, val): if not root: return None if val < root.val: return find(root.left, val) elif val > root.val: return find(root.right, val) else: return root def find_min(root): if root: while root.left: root = root.left return root def find_max(root): if root: while root.right: root = root.right return root def insert(root, val): if not root: root = TreeNode(val) elif val < root.val: root.left = insert(root.left, val) elif val > root.val: root.right = insert(root.right, val) else: pass # val==root.val val已经在树中,什么都不做 return root def delete(root, val): if not root: return None elif val < root.val: root.left = delete(root.left, val) # 返回左子树的根 elif val > root.val: root.right = delete(root.right, val) else: # 执行删除操作 if root.left and root.right: # 两个孩子节点的情况 tmp = find_min(root.right) root.val = tmp.val root.right = delete(root.right, tmp.val) else: # 0个或1个 root = root.left if root.left else root.right return root def height(root): if root is None: return -1 else: return 1 + max(height(root.left), height(root.right)) if __name__ == '__main__': vals = [1, 2, 3, 4, 5, 6, 7, 8] root = None from DataStructure.tree import in_order for v in vals: root = insert(root, v) tree_in_order = in_order(root) assert vals == tree_in_order, "构建树出错" # vals.append(9) # root = insert(root, 9) # tree_in_order = in_order(root) # assert vals == tree_in_order, "插入出错" # # vals.remove(6) # root = delete(root, 6) # tree_in_order = in_order(root) # assert vals == tree_in_order, "删除出错" print(height(root))
normal
{ "blob_id": "9e525eccbf10a710d6f37c903370cc10f7d2c62b", "index": 8475, "step-1": "class TreeNode:\n <mask token>\n\n\n<mask token>\n", "step-2": "class TreeNode:\n\n def __init__(self, val):\n self.val = val\n self.left = None\n self.right = None\n\n\ndef find(root, val):\n if not root:\n return None\n if val < root.val:\n return find(root.left, val)\n elif val > root.val:\n return find(root.right, val)\n else:\n return root\n\n\ndef find_min(root):\n if root:\n while root.left:\n root = root.left\n return root\n\n\n<mask token>\n\n\ndef insert(root, val):\n if not root:\n root = TreeNode(val)\n elif val < root.val:\n root.left = insert(root.left, val)\n elif val > root.val:\n root.right = insert(root.right, val)\n else:\n pass\n return root\n\n\n<mask token>\n\n\ndef height(root):\n if root is None:\n return -1\n else:\n return 1 + max(height(root.left), height(root.right))\n\n\n<mask token>\n", "step-3": "class TreeNode:\n\n def __init__(self, val):\n self.val = val\n self.left = None\n self.right = None\n\n\ndef find(root, val):\n if not root:\n return None\n if val < root.val:\n return find(root.left, val)\n elif val > root.val:\n return find(root.right, val)\n else:\n return root\n\n\ndef find_min(root):\n if root:\n while root.left:\n root = root.left\n return root\n\n\ndef find_max(root):\n if root:\n while root.right:\n root = root.right\n return root\n\n\ndef insert(root, val):\n if not root:\n root = TreeNode(val)\n elif val < root.val:\n root.left = insert(root.left, val)\n elif val > root.val:\n root.right = insert(root.right, val)\n else:\n pass\n return root\n\n\n<mask token>\n\n\ndef height(root):\n if root is None:\n return -1\n else:\n return 1 + max(height(root.left), height(root.right))\n\n\n<mask token>\n", "step-4": "class TreeNode:\n\n def __init__(self, val):\n self.val = val\n self.left = None\n self.right = None\n\n\ndef find(root, val):\n if not root:\n return None\n if val < root.val:\n return find(root.left, val)\n elif val > root.val:\n return find(root.right, val)\n else:\n return root\n\n\ndef find_min(root):\n if root:\n while root.left:\n root = root.left\n return root\n\n\ndef find_max(root):\n if root:\n while root.right:\n root = root.right\n return root\n\n\ndef insert(root, val):\n if not root:\n root = TreeNode(val)\n elif val < root.val:\n root.left = insert(root.left, val)\n elif val > root.val:\n root.right = insert(root.right, val)\n else:\n pass\n return root\n\n\ndef delete(root, val):\n if not root:\n return None\n elif val < root.val:\n root.left = delete(root.left, val)\n elif val > root.val:\n root.right = delete(root.right, val)\n elif root.left and root.right:\n tmp = find_min(root.right)\n root.val = tmp.val\n root.right = delete(root.right, tmp.val)\n else:\n root = root.left if root.left else root.right\n return root\n\n\ndef height(root):\n if root is None:\n return -1\n else:\n return 1 + max(height(root.left), height(root.right))\n\n\nif __name__ == '__main__':\n vals = [1, 2, 3, 4, 5, 6, 7, 8]\n root = None\n from DataStructure.tree import in_order\n for v in vals:\n root = insert(root, v)\n tree_in_order = in_order(root)\n assert vals == tree_in_order, '构建树出错'\n print(height(root))\n", "step-5": "# -*- coding: utf-8 -*-\n# Author:sen\n# Date:2020/4/2 14:15\n\nclass TreeNode:\n def __init__(self, val):\n self.val = val \n self.left = None\n self.right = None\n\ndef find(root, val):\n if not root:\n return None\n if val < root.val:\n return find(root.left, val)\n elif val > root.val:\n return find(root.right, val)\n else:\n return root\n \n\ndef find_min(root):\n if root:\n while root.left:\n root = root.left\n return root\n \n\ndef find_max(root):\n if root:\n while root.right:\n root = root.right\n return root\n\ndef insert(root, val):\n if not root:\n root = TreeNode(val)\n elif val < root.val:\n root.left = insert(root.left, val)\n elif val > root.val:\n root.right = insert(root.right, val)\n else:\n pass # val==root.val val已经在树中,什么都不做\n return root\n\n\ndef delete(root, val):\n if not root:\n return None\n elif val < root.val:\n root.left = delete(root.left, val) # 返回左子树的根\n elif val > root.val:\n root.right = delete(root.right, val)\n else: # 执行删除操作\n if root.left and root.right: # 两个孩子节点的情况\n tmp = find_min(root.right)\n root.val = tmp.val\n root.right = delete(root.right, tmp.val)\n else: # 0个或1个\n root = root.left if root.left else root.right\n return root\n\ndef height(root):\n if root is None:\n return -1\n else:\n return 1 + max(height(root.left), height(root.right))\n\nif __name__ == '__main__':\n vals = [1, 2, 3, 4, 5, 6, 7, 8]\n root = None\n from DataStructure.tree import in_order\n for v in vals:\n root = insert(root, v)\n tree_in_order = in_order(root)\n assert vals == tree_in_order, \"构建树出错\"\n # vals.append(9)\n # root = insert(root, 9)\n # tree_in_order = in_order(root)\n # assert vals == tree_in_order, \"插入出错\"\n # \n # vals.remove(6)\n # root = delete(root, 6)\n # tree_in_order = in_order(root)\n # assert vals == tree_in_order, \"删除出错\"\n \n print(height(root))\n ", "step-ids": [ 1, 6, 7, 9, 10 ] }
[ 1, 6, 7, 9, 10 ]
''' A linear regression learning algorithm example using TensorFlow library. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf import argparse import numpy rng = numpy.random #"python tf_cnn_benchmarks.py --device=cpu --data_format=NHWC --num_warmup_batches=0 --model=lenet --batch_size=32 --num_intra_threads=19 --num_batches=3750" parser = argparse.ArgumentParser() parser.add_argument('--batch_size', help='batch_size', required=False, default=32) parser.add_argument('--data_size', help='data_size', required=False, default=1700) parser.add_argument('--num_intra_threads', help='num_intra_threads', required=False, default=19) parser.add_argument('--num_batches', help='num_batches', required=False, default=5000000) parser.add_argument('--device', help='device', required=False, default='gpu') args = vars(parser.parse_args()) batch_size = int(args['batch_size']) data_size = int(args['data_size']) num_intra_threads =int(args['num_intra_threads']) num_batches =int(args['num_batches']) device =args['device'] # Parameters learning_rate = 0.01 training_epochs = num_batches display_step = 50 # Training Data #train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) #train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3]) #n_samples = train_X.shape[0] n_samples=data_size train_X=rng.rand(1,n_samples) train_Y=rng.rand(1,n_samples) with tf.device('/'+device+':0'): # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Set model weights W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") # Construct a linear model pred = tf.add(tf.multiply(X, W), b) # Mean squared error cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) # Gradient descent # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() # gpu share #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2) # Launch the graph newConfig = tf.ConfigProto() newConfig.intra_op_parallelism_threads = num_intra_threads with tf.Session(config=newConfig) as sess: # with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y})
normal
{ "blob_id": "2e8d39d6d72672de8e4eac8295b90d68b1dff938", "index": 9007, "step-1": "<mask token>\n", "step-2": "<mask token>\nparser.add_argument('--batch_size', help='batch_size', required=False,\n default=32)\nparser.add_argument('--data_size', help='data_size', required=False,\n default=1700)\nparser.add_argument('--num_intra_threads', help='num_intra_threads',\n required=False, default=19)\nparser.add_argument('--num_batches', help='num_batches', required=False,\n default=5000000)\nparser.add_argument('--device', help='device', required=False, default='gpu')\n<mask token>\nwith tf.device('/' + device + ':0'):\n X = tf.placeholder('float')\n Y = tf.placeholder('float')\n W = tf.Variable(rng.randn(), name='weight')\n b = tf.Variable(rng.randn(), name='bias')\n pred = tf.add(tf.multiply(X, W), b)\n cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples)\n optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n init = tf.global_variables_initializer()\n<mask token>\nwith tf.Session(config=newConfig) as sess:\n sess.run(init)\n for epoch in range(training_epochs):\n for x, y in zip(train_X, train_Y):\n sess.run(optimizer, feed_dict={X: x, Y: y})\n", "step-3": "<mask token>\nrng = numpy.random\nparser = argparse.ArgumentParser()\nparser.add_argument('--batch_size', help='batch_size', required=False,\n default=32)\nparser.add_argument('--data_size', help='data_size', required=False,\n default=1700)\nparser.add_argument('--num_intra_threads', help='num_intra_threads',\n required=False, default=19)\nparser.add_argument('--num_batches', help='num_batches', required=False,\n default=5000000)\nparser.add_argument('--device', help='device', required=False, default='gpu')\nargs = vars(parser.parse_args())\nbatch_size = int(args['batch_size'])\ndata_size = int(args['data_size'])\nnum_intra_threads = int(args['num_intra_threads'])\nnum_batches = int(args['num_batches'])\ndevice = args['device']\nlearning_rate = 0.01\ntraining_epochs = num_batches\ndisplay_step = 50\nn_samples = data_size\ntrain_X = rng.rand(1, n_samples)\ntrain_Y = rng.rand(1, n_samples)\nwith tf.device('/' + device + ':0'):\n X = tf.placeholder('float')\n Y = tf.placeholder('float')\n W = tf.Variable(rng.randn(), name='weight')\n b = tf.Variable(rng.randn(), name='bias')\n pred = tf.add(tf.multiply(X, W), b)\n cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples)\n optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n init = tf.global_variables_initializer()\nnewConfig = tf.ConfigProto()\nnewConfig.intra_op_parallelism_threads = num_intra_threads\nwith tf.Session(config=newConfig) as sess:\n sess.run(init)\n for epoch in range(training_epochs):\n for x, y in zip(train_X, train_Y):\n sess.run(optimizer, feed_dict={X: x, Y: y})\n", "step-4": "<mask token>\nfrom __future__ import print_function\nimport tensorflow as tf\nimport argparse\nimport numpy\nrng = numpy.random\nparser = argparse.ArgumentParser()\nparser.add_argument('--batch_size', help='batch_size', required=False,\n default=32)\nparser.add_argument('--data_size', help='data_size', required=False,\n default=1700)\nparser.add_argument('--num_intra_threads', help='num_intra_threads',\n required=False, default=19)\nparser.add_argument('--num_batches', help='num_batches', required=False,\n default=5000000)\nparser.add_argument('--device', help='device', required=False, default='gpu')\nargs = vars(parser.parse_args())\nbatch_size = int(args['batch_size'])\ndata_size = int(args['data_size'])\nnum_intra_threads = int(args['num_intra_threads'])\nnum_batches = int(args['num_batches'])\ndevice = args['device']\nlearning_rate = 0.01\ntraining_epochs = num_batches\ndisplay_step = 50\nn_samples = data_size\ntrain_X = rng.rand(1, n_samples)\ntrain_Y = rng.rand(1, n_samples)\nwith tf.device('/' + device + ':0'):\n X = tf.placeholder('float')\n Y = tf.placeholder('float')\n W = tf.Variable(rng.randn(), name='weight')\n b = tf.Variable(rng.randn(), name='bias')\n pred = tf.add(tf.multiply(X, W), b)\n cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples)\n optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n init = tf.global_variables_initializer()\nnewConfig = tf.ConfigProto()\nnewConfig.intra_op_parallelism_threads = num_intra_threads\nwith tf.Session(config=newConfig) as sess:\n sess.run(init)\n for epoch in range(training_epochs):\n for x, y in zip(train_X, train_Y):\n sess.run(optimizer, feed_dict={X: x, Y: y})\n", "step-5": "'''\nA linear regression learning algorithm example using TensorFlow library.\n\nAuthor: Aymeric Damien\nProject: https://github.com/aymericdamien/TensorFlow-Examples/\n'''\n\nfrom __future__ import print_function\n\nimport tensorflow as tf\nimport argparse\n\nimport numpy\nrng = numpy.random\n\n#\"python tf_cnn_benchmarks.py --device=cpu --data_format=NHWC --num_warmup_batches=0 --model=lenet --batch_size=32 --num_intra_threads=19 --num_batches=3750\"\n\nparser = argparse.ArgumentParser()\nparser.add_argument('--batch_size', help='batch_size', required=False, default=32)\nparser.add_argument('--data_size', help='data_size', required=False, default=1700)\nparser.add_argument('--num_intra_threads', help='num_intra_threads', required=False, default=19)\nparser.add_argument('--num_batches', help='num_batches', required=False, default=5000000)\nparser.add_argument('--device', help='device', required=False, default='gpu')\n\nargs = vars(parser.parse_args())\n\nbatch_size = int(args['batch_size'])\ndata_size = int(args['data_size'])\nnum_intra_threads =int(args['num_intra_threads'])\nnum_batches =int(args['num_batches'])\ndevice =args['device']\n\n# Parameters\nlearning_rate = 0.01\ntraining_epochs = num_batches\ndisplay_step = 50\n\n# Training Data\n#train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) \n#train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3])\n#n_samples = train_X.shape[0]\n\nn_samples=data_size\ntrain_X=rng.rand(1,n_samples)\ntrain_Y=rng.rand(1,n_samples)\n\n\nwith tf.device('/'+device+':0'):\n # tf Graph Input\n X = tf.placeholder(\"float\")\n Y = tf.placeholder(\"float\")\n\n # Set model weights\n W = tf.Variable(rng.randn(), name=\"weight\")\n b = tf.Variable(rng.randn(), name=\"bias\")\n\n # Construct a linear model\n pred = tf.add(tf.multiply(X, W), b)\n\n # Mean squared error\n cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)\n # Gradient descent\n # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default\n optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n\n # Initializing the variables\n init = tf.global_variables_initializer()\n\n # gpu share\n#gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)\n\n# Launch the graph\nnewConfig = tf.ConfigProto()\nnewConfig.intra_op_parallelism_threads = num_intra_threads\nwith tf.Session(config=newConfig) as sess:\n# with tf.Session() as sess:\n sess.run(init)\n # Fit all training data\n for epoch in range(training_epochs):\n for (x, y) in zip(train_X, train_Y):\n sess.run(optimizer, feed_dict={X: x, Y: y})", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """The GIFT module provides basic functions for interfacing with some of the GIFT tools. In order to use the standalone MCR version of GIFT, you need to ensure that the following commands are executed at the beginning of your script:: from nipype.interfaces import gift matlab_cmd = '/path/to/run_groupica.sh /path/to/compiler_runtime/v901/ ' gift.GICACommand.set_mlab_paths(matlab_cmd=matlab_cmd,use_mcr=True) """ __docformat__ = 'restructuredtext' # Standard library imports import os # Local imports from ..base import (BaseInterface, traits, isdefined, InputMultiPath, BaseInterfaceInputSpec, Directory, Undefined) from ..matlab import MatlabCommand class GIFTCommandInputSpec(BaseInterfaceInputSpec): matlab_cmd = traits.Str(desc='matlab command to use') paths = InputMultiPath(Directory(), desc='Paths to add to matlabpath') mfile = traits.Bool(True, desc='Run m-code using m-file', usedefault=True) use_mcr = traits.Bool(desc='Run m-code using GIFT MCR') class GIFTCommandOutputSpec( BaseInterfaceInputSpec): matlab_output = traits.Str( ) class GIFTCommand(BaseInterface): """Extends `BaseInterface` class to implement GIFT specific interfaces. WARNING: Pseudo prototype class, meant to be subclassed """ input_spec = GIFTCommandInputSpec output_spec = GIFTCommandOutputSpec _matlab_cmd = None _paths = None _use_mcr = None def __init__(self, **inputs): super(GIFTCommand, self).__init__(**inputs) self.inputs.on_trait_change(self._matlab_cmd_update, ['matlab_cmd','mfile','paths','use_mcr']) self._find_mlab_cmd_defaults() self._check_mlab_inputs() self._matlab_cmd_update() @classmethod def set_mlab_paths(cls, matlab_cmd=None, paths=None, use_mcr=None): cls._matlab_cmd = matlab_cmd cls._paths = paths cls._use_mcr = use_mcr def _find_mlab_cmd_defaults(self): # check if the user has set environment variables to enforce # the standalone (MCR) version of GIFT if self._use_mcr: self._use_mcr = True def _matlab_cmd_update(self): # MatlabCommand has to be created here, # because matlab_cmb is not a proper input # and can be set only during init matlab_cmd_str = self.inputs.matlab_cmd if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr: if not matlab_cmd_str[-1] == " ": matlab_cmd_str = matlab_cmd_str + " " self.mlab = MatlabCommand(matlab_cmd=matlab_cmd_str, mfile=self.inputs.mfile, paths=self.inputs.paths) self.mlab.inputs.script_file = 'pyscript_%s.m' % self.__class__.__name__.split('.')[-1].lower() if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr: self.mlab.inputs.nodesktop = Undefined self.mlab.inputs.nosplash = Undefined self.mlab.inputs.single_comp_thread = Undefined self.mlab.inputs.uses_mcr = True self.mlab.inputs.mfile = True def _check_mlab_inputs(self): if not isdefined(self.inputs.matlab_cmd) and self._matlab_cmd: self.inputs.matlab_cmd = self._matlab_cmd if not isdefined(self.inputs.paths) and self._paths: self.inputs.paths = self._paths if not isdefined(self.inputs.use_mcr) and self._use_mcr: self.inputs.use_mcr = self._use_mcr def _run_interface(self, runtime): """Executes the GIFT function using MATLAB.""" self.mlab.inputs.script = self._make_matlab_command() results = self.mlab.run() runtime.returncode = results.runtime.returncode if self.mlab.inputs.uses_mcr: if 'Skipped' in results.runtime.stdout: self.raise_exception(runtime) runtime.stdout = results.runtime.stdout runtime.stderr = results.runtime.stderr runtime.merged = results.runtime.merged return runtime def _list_outputs(self): """Determine the expected outputs based on inputs.""" outputs = self._outputs().get() return outputs def _make_matlab_command(self): """Generates a mfile to build job structure Returns ------- mscript : string contents of a script called by matlab """ raise NotImplementedError
normal
{ "blob_id": "fef1cf75de8358807f29cd06d2338e087d6f2d23", "index": 9162, "step-1": "<mask token>\n\n\nclass GIFTCommand(BaseInterface):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, **inputs):\n super(GIFTCommand, self).__init__(**inputs)\n self.inputs.on_trait_change(self._matlab_cmd_update, ['matlab_cmd',\n 'mfile', 'paths', 'use_mcr'])\n self._find_mlab_cmd_defaults()\n self._check_mlab_inputs()\n self._matlab_cmd_update()\n\n @classmethod\n def set_mlab_paths(cls, matlab_cmd=None, paths=None, use_mcr=None):\n cls._matlab_cmd = matlab_cmd\n cls._paths = paths\n cls._use_mcr = use_mcr\n\n def _find_mlab_cmd_defaults(self):\n if self._use_mcr:\n self._use_mcr = True\n\n def _matlab_cmd_update(self):\n matlab_cmd_str = self.inputs.matlab_cmd\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n if not matlab_cmd_str[-1] == ' ':\n matlab_cmd_str = matlab_cmd_str + ' '\n self.mlab = MatlabCommand(matlab_cmd=matlab_cmd_str, mfile=self.\n inputs.mfile, paths=self.inputs.paths)\n self.mlab.inputs.script_file = ('pyscript_%s.m' % self.__class__.\n __name__.split('.')[-1].lower())\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n self.mlab.inputs.nodesktop = Undefined\n self.mlab.inputs.nosplash = Undefined\n self.mlab.inputs.single_comp_thread = Undefined\n self.mlab.inputs.uses_mcr = True\n self.mlab.inputs.mfile = True\n\n def _check_mlab_inputs(self):\n if not isdefined(self.inputs.matlab_cmd) and self._matlab_cmd:\n self.inputs.matlab_cmd = self._matlab_cmd\n if not isdefined(self.inputs.paths) and self._paths:\n self.inputs.paths = self._paths\n if not isdefined(self.inputs.use_mcr) and self._use_mcr:\n self.inputs.use_mcr = self._use_mcr\n\n def _run_interface(self, runtime):\n \"\"\"Executes the GIFT function using MATLAB.\"\"\"\n self.mlab.inputs.script = self._make_matlab_command()\n results = self.mlab.run()\n runtime.returncode = results.runtime.returncode\n if self.mlab.inputs.uses_mcr:\n if 'Skipped' in results.runtime.stdout:\n self.raise_exception(runtime)\n runtime.stdout = results.runtime.stdout\n runtime.stderr = results.runtime.stderr\n runtime.merged = results.runtime.merged\n return runtime\n\n def _list_outputs(self):\n \"\"\"Determine the expected outputs based on inputs.\"\"\"\n outputs = self._outputs().get()\n return outputs\n <mask token>\n", "step-2": "<mask token>\n\n\nclass GIFTCommand(BaseInterface):\n <mask token>\n input_spec = GIFTCommandInputSpec\n output_spec = GIFTCommandOutputSpec\n _matlab_cmd = None\n _paths = None\n _use_mcr = None\n\n def __init__(self, **inputs):\n super(GIFTCommand, self).__init__(**inputs)\n self.inputs.on_trait_change(self._matlab_cmd_update, ['matlab_cmd',\n 'mfile', 'paths', 'use_mcr'])\n self._find_mlab_cmd_defaults()\n self._check_mlab_inputs()\n self._matlab_cmd_update()\n\n @classmethod\n def set_mlab_paths(cls, matlab_cmd=None, paths=None, use_mcr=None):\n cls._matlab_cmd = matlab_cmd\n cls._paths = paths\n cls._use_mcr = use_mcr\n\n def _find_mlab_cmd_defaults(self):\n if self._use_mcr:\n self._use_mcr = True\n\n def _matlab_cmd_update(self):\n matlab_cmd_str = self.inputs.matlab_cmd\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n if not matlab_cmd_str[-1] == ' ':\n matlab_cmd_str = matlab_cmd_str + ' '\n self.mlab = MatlabCommand(matlab_cmd=matlab_cmd_str, mfile=self.\n inputs.mfile, paths=self.inputs.paths)\n self.mlab.inputs.script_file = ('pyscript_%s.m' % self.__class__.\n __name__.split('.')[-1].lower())\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n self.mlab.inputs.nodesktop = Undefined\n self.mlab.inputs.nosplash = Undefined\n self.mlab.inputs.single_comp_thread = Undefined\n self.mlab.inputs.uses_mcr = True\n self.mlab.inputs.mfile = True\n\n def _check_mlab_inputs(self):\n if not isdefined(self.inputs.matlab_cmd) and self._matlab_cmd:\n self.inputs.matlab_cmd = self._matlab_cmd\n if not isdefined(self.inputs.paths) and self._paths:\n self.inputs.paths = self._paths\n if not isdefined(self.inputs.use_mcr) and self._use_mcr:\n self.inputs.use_mcr = self._use_mcr\n\n def _run_interface(self, runtime):\n \"\"\"Executes the GIFT function using MATLAB.\"\"\"\n self.mlab.inputs.script = self._make_matlab_command()\n results = self.mlab.run()\n runtime.returncode = results.runtime.returncode\n if self.mlab.inputs.uses_mcr:\n if 'Skipped' in results.runtime.stdout:\n self.raise_exception(runtime)\n runtime.stdout = results.runtime.stdout\n runtime.stderr = results.runtime.stderr\n runtime.merged = results.runtime.merged\n return runtime\n\n def _list_outputs(self):\n \"\"\"Determine the expected outputs based on inputs.\"\"\"\n outputs = self._outputs().get()\n return outputs\n\n def _make_matlab_command(self):\n \"\"\"Generates a mfile to build job structure\n \n Returns\n -------\n mscript : string\n contents of a script called by matlab\n\n \"\"\"\n raise NotImplementedError\n", "step-3": "<mask token>\n\n\nclass GIFTCommandInputSpec(BaseInterfaceInputSpec):\n matlab_cmd = traits.Str(desc='matlab command to use')\n paths = InputMultiPath(Directory(), desc='Paths to add to matlabpath')\n mfile = traits.Bool(True, desc='Run m-code using m-file', usedefault=True)\n use_mcr = traits.Bool(desc='Run m-code using GIFT MCR')\n\n\nclass GIFTCommandOutputSpec(BaseInterfaceInputSpec):\n matlab_output = traits.Str()\n\n\nclass GIFTCommand(BaseInterface):\n \"\"\"Extends `BaseInterface` class to implement GIFT specific interfaces.\n\n WARNING: Pseudo prototype class, meant to be subclassed\n \"\"\"\n input_spec = GIFTCommandInputSpec\n output_spec = GIFTCommandOutputSpec\n _matlab_cmd = None\n _paths = None\n _use_mcr = None\n\n def __init__(self, **inputs):\n super(GIFTCommand, self).__init__(**inputs)\n self.inputs.on_trait_change(self._matlab_cmd_update, ['matlab_cmd',\n 'mfile', 'paths', 'use_mcr'])\n self._find_mlab_cmd_defaults()\n self._check_mlab_inputs()\n self._matlab_cmd_update()\n\n @classmethod\n def set_mlab_paths(cls, matlab_cmd=None, paths=None, use_mcr=None):\n cls._matlab_cmd = matlab_cmd\n cls._paths = paths\n cls._use_mcr = use_mcr\n\n def _find_mlab_cmd_defaults(self):\n if self._use_mcr:\n self._use_mcr = True\n\n def _matlab_cmd_update(self):\n matlab_cmd_str = self.inputs.matlab_cmd\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n if not matlab_cmd_str[-1] == ' ':\n matlab_cmd_str = matlab_cmd_str + ' '\n self.mlab = MatlabCommand(matlab_cmd=matlab_cmd_str, mfile=self.\n inputs.mfile, paths=self.inputs.paths)\n self.mlab.inputs.script_file = ('pyscript_%s.m' % self.__class__.\n __name__.split('.')[-1].lower())\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n self.mlab.inputs.nodesktop = Undefined\n self.mlab.inputs.nosplash = Undefined\n self.mlab.inputs.single_comp_thread = Undefined\n self.mlab.inputs.uses_mcr = True\n self.mlab.inputs.mfile = True\n\n def _check_mlab_inputs(self):\n if not isdefined(self.inputs.matlab_cmd) and self._matlab_cmd:\n self.inputs.matlab_cmd = self._matlab_cmd\n if not isdefined(self.inputs.paths) and self._paths:\n self.inputs.paths = self._paths\n if not isdefined(self.inputs.use_mcr) and self._use_mcr:\n self.inputs.use_mcr = self._use_mcr\n\n def _run_interface(self, runtime):\n \"\"\"Executes the GIFT function using MATLAB.\"\"\"\n self.mlab.inputs.script = self._make_matlab_command()\n results = self.mlab.run()\n runtime.returncode = results.runtime.returncode\n if self.mlab.inputs.uses_mcr:\n if 'Skipped' in results.runtime.stdout:\n self.raise_exception(runtime)\n runtime.stdout = results.runtime.stdout\n runtime.stderr = results.runtime.stderr\n runtime.merged = results.runtime.merged\n return runtime\n\n def _list_outputs(self):\n \"\"\"Determine the expected outputs based on inputs.\"\"\"\n outputs = self._outputs().get()\n return outputs\n\n def _make_matlab_command(self):\n \"\"\"Generates a mfile to build job structure\n \n Returns\n -------\n mscript : string\n contents of a script called by matlab\n\n \"\"\"\n raise NotImplementedError\n", "step-4": "<mask token>\n__docformat__ = 'restructuredtext'\n<mask token>\n\n\nclass GIFTCommandInputSpec(BaseInterfaceInputSpec):\n matlab_cmd = traits.Str(desc='matlab command to use')\n paths = InputMultiPath(Directory(), desc='Paths to add to matlabpath')\n mfile = traits.Bool(True, desc='Run m-code using m-file', usedefault=True)\n use_mcr = traits.Bool(desc='Run m-code using GIFT MCR')\n\n\nclass GIFTCommandOutputSpec(BaseInterfaceInputSpec):\n matlab_output = traits.Str()\n\n\nclass GIFTCommand(BaseInterface):\n \"\"\"Extends `BaseInterface` class to implement GIFT specific interfaces.\n\n WARNING: Pseudo prototype class, meant to be subclassed\n \"\"\"\n input_spec = GIFTCommandInputSpec\n output_spec = GIFTCommandOutputSpec\n _matlab_cmd = None\n _paths = None\n _use_mcr = None\n\n def __init__(self, **inputs):\n super(GIFTCommand, self).__init__(**inputs)\n self.inputs.on_trait_change(self._matlab_cmd_update, ['matlab_cmd',\n 'mfile', 'paths', 'use_mcr'])\n self._find_mlab_cmd_defaults()\n self._check_mlab_inputs()\n self._matlab_cmd_update()\n\n @classmethod\n def set_mlab_paths(cls, matlab_cmd=None, paths=None, use_mcr=None):\n cls._matlab_cmd = matlab_cmd\n cls._paths = paths\n cls._use_mcr = use_mcr\n\n def _find_mlab_cmd_defaults(self):\n if self._use_mcr:\n self._use_mcr = True\n\n def _matlab_cmd_update(self):\n matlab_cmd_str = self.inputs.matlab_cmd\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n if not matlab_cmd_str[-1] == ' ':\n matlab_cmd_str = matlab_cmd_str + ' '\n self.mlab = MatlabCommand(matlab_cmd=matlab_cmd_str, mfile=self.\n inputs.mfile, paths=self.inputs.paths)\n self.mlab.inputs.script_file = ('pyscript_%s.m' % self.__class__.\n __name__.split('.')[-1].lower())\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n self.mlab.inputs.nodesktop = Undefined\n self.mlab.inputs.nosplash = Undefined\n self.mlab.inputs.single_comp_thread = Undefined\n self.mlab.inputs.uses_mcr = True\n self.mlab.inputs.mfile = True\n\n def _check_mlab_inputs(self):\n if not isdefined(self.inputs.matlab_cmd) and self._matlab_cmd:\n self.inputs.matlab_cmd = self._matlab_cmd\n if not isdefined(self.inputs.paths) and self._paths:\n self.inputs.paths = self._paths\n if not isdefined(self.inputs.use_mcr) and self._use_mcr:\n self.inputs.use_mcr = self._use_mcr\n\n def _run_interface(self, runtime):\n \"\"\"Executes the GIFT function using MATLAB.\"\"\"\n self.mlab.inputs.script = self._make_matlab_command()\n results = self.mlab.run()\n runtime.returncode = results.runtime.returncode\n if self.mlab.inputs.uses_mcr:\n if 'Skipped' in results.runtime.stdout:\n self.raise_exception(runtime)\n runtime.stdout = results.runtime.stdout\n runtime.stderr = results.runtime.stderr\n runtime.merged = results.runtime.merged\n return runtime\n\n def _list_outputs(self):\n \"\"\"Determine the expected outputs based on inputs.\"\"\"\n outputs = self._outputs().get()\n return outputs\n\n def _make_matlab_command(self):\n \"\"\"Generates a mfile to build job structure\n \n Returns\n -------\n mscript : string\n contents of a script called by matlab\n\n \"\"\"\n raise NotImplementedError\n", "step-5": "# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-\n# vi: set ft=python sts=4 ts=4 sw=4 et:\n\"\"\"The GIFT module provides basic functions for interfacing with some of the GIFT tools.\n\nIn order to use the standalone MCR version of GIFT, you need to ensure that\nthe following commands are executed at the beginning of your script::\n\n from nipype.interfaces import gift \n matlab_cmd = '/path/to/run_groupica.sh /path/to/compiler_runtime/v901/ '\n gift.GICACommand.set_mlab_paths(matlab_cmd=matlab_cmd,use_mcr=True)\n\"\"\"\n\n__docformat__ = 'restructuredtext'\n\n# Standard library imports\nimport os\n\n# Local imports\nfrom ..base import (BaseInterface, traits, isdefined, InputMultiPath,\n BaseInterfaceInputSpec, Directory, Undefined)\nfrom ..matlab import MatlabCommand\n\nclass GIFTCommandInputSpec(BaseInterfaceInputSpec):\n matlab_cmd = traits.Str(desc='matlab command to use')\n paths = InputMultiPath(Directory(), desc='Paths to add to matlabpath')\n mfile = traits.Bool(True, desc='Run m-code using m-file', usedefault=True)\n use_mcr = traits.Bool(desc='Run m-code using GIFT MCR') \n\t\nclass GIFTCommandOutputSpec( BaseInterfaceInputSpec):\n matlab_output = traits.Str( )\t\n\nclass GIFTCommand(BaseInterface):\n \"\"\"Extends `BaseInterface` class to implement GIFT specific interfaces.\n\n WARNING: Pseudo prototype class, meant to be subclassed\n \"\"\"\n input_spec = GIFTCommandInputSpec\n output_spec = GIFTCommandOutputSpec\n \n _matlab_cmd = None\n _paths = None\n _use_mcr = None\n\n def __init__(self, **inputs):\n super(GIFTCommand, self).__init__(**inputs)\n self.inputs.on_trait_change(self._matlab_cmd_update, ['matlab_cmd','mfile','paths','use_mcr'])\n self._find_mlab_cmd_defaults()\n self._check_mlab_inputs()\n self._matlab_cmd_update()\n\n @classmethod\n def set_mlab_paths(cls, matlab_cmd=None, paths=None, use_mcr=None):\n cls._matlab_cmd = matlab_cmd\n cls._paths = paths\n cls._use_mcr = use_mcr\n\n def _find_mlab_cmd_defaults(self):\n # check if the user has set environment variables to enforce\n # the standalone (MCR) version of GIFT \n if self._use_mcr:\n self._use_mcr = True\n \n\n def _matlab_cmd_update(self):\n # MatlabCommand has to be created here,\n # because matlab_cmb is not a proper input\n # and can be set only during init\t\n matlab_cmd_str = self.inputs.matlab_cmd\t\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n if not matlab_cmd_str[-1] == \" \":\n matlab_cmd_str = matlab_cmd_str + \" \"\n self.mlab = MatlabCommand(matlab_cmd=matlab_cmd_str,\n mfile=self.inputs.mfile,\n paths=self.inputs.paths) \n self.mlab.inputs.script_file = 'pyscript_%s.m' % self.__class__.__name__.split('.')[-1].lower()\n if isdefined(self.inputs.use_mcr) and self.inputs.use_mcr:\n self.mlab.inputs.nodesktop = Undefined\n self.mlab.inputs.nosplash = Undefined\n self.mlab.inputs.single_comp_thread = Undefined\n self.mlab.inputs.uses_mcr = True\n self.mlab.inputs.mfile = True\n \n def _check_mlab_inputs(self):\n if not isdefined(self.inputs.matlab_cmd) and self._matlab_cmd:\n self.inputs.matlab_cmd = self._matlab_cmd\n if not isdefined(self.inputs.paths) and self._paths:\n self.inputs.paths = self._paths\n if not isdefined(self.inputs.use_mcr) and self._use_mcr:\n self.inputs.use_mcr = self._use_mcr\n\n def _run_interface(self, runtime):\n \"\"\"Executes the GIFT function using MATLAB.\"\"\"\n self.mlab.inputs.script = self._make_matlab_command() \t\n results = self.mlab.run()\n runtime.returncode = results.runtime.returncode\n if self.mlab.inputs.uses_mcr:\t\t\n if 'Skipped' in results.runtime.stdout:\n self.raise_exception(runtime)\n runtime.stdout = results.runtime.stdout\n runtime.stderr = results.runtime.stderr\n runtime.merged = results.runtime.merged\n return runtime\n\n def _list_outputs(self):\n \"\"\"Determine the expected outputs based on inputs.\"\"\"\n \n outputs = self._outputs().get()\n return outputs\n\n \n def _make_matlab_command(self):\n \"\"\"Generates a mfile to build job structure\n \n Returns\n -------\n mscript : string\n contents of a script called by matlab\n\n \"\"\"\n \n raise NotImplementedError\n\n", "step-ids": [ 8, 10, 15, 16, 18 ] }
[ 8, 10, 15, 16, 18 ]
import os import sys import glob import shutil import json import codecs from collections import OrderedDict def getRegionClass(image_path, data_id, imgName): region_class = ['nosmoke_background', 'nosmoke_face', 'nosmoke_suspect', 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard'] label_class = ['nosmoke_bg', 'nosmoke_face', 'nosmoke_susp', 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard'] select_class = None for class_id in range(len(region_class)): cur_class = region_class[class_id] cur_label_class = label_class[class_id] check_file_name = os.path.join(image_path, data_id, cur_class, imgName) if os.path.isfile(check_file_name): select_class = cur_label_class #print check_file_name break return select_class def add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir): if not os.path.exists(dst_json_dir): os.makedirs(dst_json_dir) smoke_hand_num, smoke_nohand_num, smoke_hard_num = 0, 0, 0 nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num = 0, 0, 0, 0 for json_file_name in glob.glob(org_json_dir + '/*.json'): json_file = open(json_file_name, 'r') base_file_id = os.path.basename(json_file_name)[:-5] print(base_file_id + '.json') json_lines = json_file.read().splitlines() dst_json_lines = [] new_json_file = codecs.open(dst_json_dir + '/' + base_file_id + '.json', "w", "utf-8") new_json_file.close() new_json_file = codecs.open(dst_json_dir + '/' + base_file_id + '.json', "a+", 'utf-8') for line in json_lines: if line[0] == '#': new_json_file.write(line + '\n') continue js = json.loads(line, object_pairs_hook=OrderedDict) #new_js_line = json.dumps(js) + "\n" #new_json_file.write(new_js_line) #continue imgName = js["image_key"] select_class = getRegionClass(done_root_dir, base_file_id, imgName) if select_class == None: new_json_file.write(line + '\n') # #print('Not Found: ', done_root_dir, base_file_id, imgName) continue #print select_class new_common_box = {} new_attrs = {} new_attrs['ignore'] = 'no' new_attrs['type'] = 'smoke_region' new_attrs['class'] = select_class new_common_box['attrs'] = new_attrs if select_class == 'smoke_hard': new_attrs['ignore'] = 'yes' # statistic if select_class == 'smoke_hand': smoke_hand_num += 1 elif select_class == 'smoke_nohand': smoke_nohand_num += 1 elif select_class == 'smoke_hard': smoke_hard_num += 1 elif select_class == 'nosmoke_bg': nosmoke_bg_num += 1 elif select_class == 'nosmoke_face': nosmoke_face_num += 1 elif select_class == 'nosmoke_susp': nosmoke_susp_num += 1 elif select_class == 'nosmoke_cover': nosmoke_cover_num += 1 else: print('Invalid smoke class.', select_class) # common box, like phone, hand if 'common_box' in js: js['common_box'].append(new_common_box) else: js['common_box'] = [new_common_box] new_js_line = json.dumps(js) + "\n" new_json_file.write(new_js_line) new_json_file.close() print('write ' + base_file_id + '.json') print('add_common_box_smoke_region done.') print('smoke_hand:%d, smoke_nohand:%d, smoke_hard:%d'%(smoke_hand_num, smoke_nohand_num, smoke_hard_num)) print('nosmoke_bg:%d, nosmoke_face:%d, nosmoke_susp:%d, nosmoke_cover:%d'%(nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num)) if __name__ == '__main__': if len(sys.argv) < 2: print('useage: add_common_box_smoke_region.py org_json_dir dst_json_dir done_root_dir') exit() org_json_dir = sys.argv[1] dst_json_dir = sys.argv[2] done_root_dir = sys.argv[3] add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir)
normal
{ "blob_id": "75833617996549167fa157ff78cc1a11f870784f", "index": 8639, "step-1": "<mask token>\n\n\ndef getRegionClass(image_path, data_id, imgName):\n region_class = ['nosmoke_background', 'nosmoke_face', 'nosmoke_suspect',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n label_class = ['nosmoke_bg', 'nosmoke_face', 'nosmoke_susp',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n select_class = None\n for class_id in range(len(region_class)):\n cur_class = region_class[class_id]\n cur_label_class = label_class[class_id]\n check_file_name = os.path.join(image_path, data_id, cur_class, imgName)\n if os.path.isfile(check_file_name):\n select_class = cur_label_class\n break\n return select_class\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef getRegionClass(image_path, data_id, imgName):\n region_class = ['nosmoke_background', 'nosmoke_face', 'nosmoke_suspect',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n label_class = ['nosmoke_bg', 'nosmoke_face', 'nosmoke_susp',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n select_class = None\n for class_id in range(len(region_class)):\n cur_class = region_class[class_id]\n cur_label_class = label_class[class_id]\n check_file_name = os.path.join(image_path, data_id, cur_class, imgName)\n if os.path.isfile(check_file_name):\n select_class = cur_label_class\n break\n return select_class\n\n\ndef add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir):\n if not os.path.exists(dst_json_dir):\n os.makedirs(dst_json_dir)\n smoke_hand_num, smoke_nohand_num, smoke_hard_num = 0, 0, 0\n (nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num\n ) = 0, 0, 0, 0\n for json_file_name in glob.glob(org_json_dir + '/*.json'):\n json_file = open(json_file_name, 'r')\n base_file_id = os.path.basename(json_file_name)[:-5]\n print(base_file_id + '.json')\n json_lines = json_file.read().splitlines()\n dst_json_lines = []\n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id +\n '.json', 'w', 'utf-8')\n new_json_file.close()\n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id +\n '.json', 'a+', 'utf-8')\n for line in json_lines:\n if line[0] == '#':\n new_json_file.write(line + '\\n')\n continue\n js = json.loads(line, object_pairs_hook=OrderedDict)\n imgName = js['image_key']\n select_class = getRegionClass(done_root_dir, base_file_id, imgName)\n if select_class == None:\n new_json_file.write(line + '\\n')\n continue\n new_common_box = {}\n new_attrs = {}\n new_attrs['ignore'] = 'no'\n new_attrs['type'] = 'smoke_region'\n new_attrs['class'] = select_class\n new_common_box['attrs'] = new_attrs\n if select_class == 'smoke_hard':\n new_attrs['ignore'] = 'yes'\n if select_class == 'smoke_hand':\n smoke_hand_num += 1\n elif select_class == 'smoke_nohand':\n smoke_nohand_num += 1\n elif select_class == 'smoke_hard':\n smoke_hard_num += 1\n elif select_class == 'nosmoke_bg':\n nosmoke_bg_num += 1\n elif select_class == 'nosmoke_face':\n nosmoke_face_num += 1\n elif select_class == 'nosmoke_susp':\n nosmoke_susp_num += 1\n elif select_class == 'nosmoke_cover':\n nosmoke_cover_num += 1\n else:\n print('Invalid smoke class.', select_class)\n if 'common_box' in js:\n js['common_box'].append(new_common_box)\n else:\n js['common_box'] = [new_common_box]\n new_js_line = json.dumps(js) + '\\n'\n new_json_file.write(new_js_line)\n new_json_file.close()\n print('write ' + base_file_id + '.json')\n print('add_common_box_smoke_region done.')\n print('smoke_hand:%d, smoke_nohand:%d, smoke_hard:%d' % (smoke_hand_num,\n smoke_nohand_num, smoke_hard_num))\n print(\n 'nosmoke_bg:%d, nosmoke_face:%d, nosmoke_susp:%d, nosmoke_cover:%d' %\n (nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num)\n )\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef getRegionClass(image_path, data_id, imgName):\n region_class = ['nosmoke_background', 'nosmoke_face', 'nosmoke_suspect',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n label_class = ['nosmoke_bg', 'nosmoke_face', 'nosmoke_susp',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n select_class = None\n for class_id in range(len(region_class)):\n cur_class = region_class[class_id]\n cur_label_class = label_class[class_id]\n check_file_name = os.path.join(image_path, data_id, cur_class, imgName)\n if os.path.isfile(check_file_name):\n select_class = cur_label_class\n break\n return select_class\n\n\ndef add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir):\n if not os.path.exists(dst_json_dir):\n os.makedirs(dst_json_dir)\n smoke_hand_num, smoke_nohand_num, smoke_hard_num = 0, 0, 0\n (nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num\n ) = 0, 0, 0, 0\n for json_file_name in glob.glob(org_json_dir + '/*.json'):\n json_file = open(json_file_name, 'r')\n base_file_id = os.path.basename(json_file_name)[:-5]\n print(base_file_id + '.json')\n json_lines = json_file.read().splitlines()\n dst_json_lines = []\n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id +\n '.json', 'w', 'utf-8')\n new_json_file.close()\n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id +\n '.json', 'a+', 'utf-8')\n for line in json_lines:\n if line[0] == '#':\n new_json_file.write(line + '\\n')\n continue\n js = json.loads(line, object_pairs_hook=OrderedDict)\n imgName = js['image_key']\n select_class = getRegionClass(done_root_dir, base_file_id, imgName)\n if select_class == None:\n new_json_file.write(line + '\\n')\n continue\n new_common_box = {}\n new_attrs = {}\n new_attrs['ignore'] = 'no'\n new_attrs['type'] = 'smoke_region'\n new_attrs['class'] = select_class\n new_common_box['attrs'] = new_attrs\n if select_class == 'smoke_hard':\n new_attrs['ignore'] = 'yes'\n if select_class == 'smoke_hand':\n smoke_hand_num += 1\n elif select_class == 'smoke_nohand':\n smoke_nohand_num += 1\n elif select_class == 'smoke_hard':\n smoke_hard_num += 1\n elif select_class == 'nosmoke_bg':\n nosmoke_bg_num += 1\n elif select_class == 'nosmoke_face':\n nosmoke_face_num += 1\n elif select_class == 'nosmoke_susp':\n nosmoke_susp_num += 1\n elif select_class == 'nosmoke_cover':\n nosmoke_cover_num += 1\n else:\n print('Invalid smoke class.', select_class)\n if 'common_box' in js:\n js['common_box'].append(new_common_box)\n else:\n js['common_box'] = [new_common_box]\n new_js_line = json.dumps(js) + '\\n'\n new_json_file.write(new_js_line)\n new_json_file.close()\n print('write ' + base_file_id + '.json')\n print('add_common_box_smoke_region done.')\n print('smoke_hand:%d, smoke_nohand:%d, smoke_hard:%d' % (smoke_hand_num,\n smoke_nohand_num, smoke_hard_num))\n print(\n 'nosmoke_bg:%d, nosmoke_face:%d, nosmoke_susp:%d, nosmoke_cover:%d' %\n (nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num)\n )\n\n\nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print(\n 'useage: add_common_box_smoke_region.py org_json_dir dst_json_dir done_root_dir'\n )\n exit()\n org_json_dir = sys.argv[1]\n dst_json_dir = sys.argv[2]\n done_root_dir = sys.argv[3]\n add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir)\n", "step-4": "import os\nimport sys\nimport glob\nimport shutil\nimport json\nimport codecs\nfrom collections import OrderedDict\n\n\ndef getRegionClass(image_path, data_id, imgName):\n region_class = ['nosmoke_background', 'nosmoke_face', 'nosmoke_suspect',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n label_class = ['nosmoke_bg', 'nosmoke_face', 'nosmoke_susp',\n 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n select_class = None\n for class_id in range(len(region_class)):\n cur_class = region_class[class_id]\n cur_label_class = label_class[class_id]\n check_file_name = os.path.join(image_path, data_id, cur_class, imgName)\n if os.path.isfile(check_file_name):\n select_class = cur_label_class\n break\n return select_class\n\n\ndef add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir):\n if not os.path.exists(dst_json_dir):\n os.makedirs(dst_json_dir)\n smoke_hand_num, smoke_nohand_num, smoke_hard_num = 0, 0, 0\n (nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num\n ) = 0, 0, 0, 0\n for json_file_name in glob.glob(org_json_dir + '/*.json'):\n json_file = open(json_file_name, 'r')\n base_file_id = os.path.basename(json_file_name)[:-5]\n print(base_file_id + '.json')\n json_lines = json_file.read().splitlines()\n dst_json_lines = []\n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id +\n '.json', 'w', 'utf-8')\n new_json_file.close()\n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id +\n '.json', 'a+', 'utf-8')\n for line in json_lines:\n if line[0] == '#':\n new_json_file.write(line + '\\n')\n continue\n js = json.loads(line, object_pairs_hook=OrderedDict)\n imgName = js['image_key']\n select_class = getRegionClass(done_root_dir, base_file_id, imgName)\n if select_class == None:\n new_json_file.write(line + '\\n')\n continue\n new_common_box = {}\n new_attrs = {}\n new_attrs['ignore'] = 'no'\n new_attrs['type'] = 'smoke_region'\n new_attrs['class'] = select_class\n new_common_box['attrs'] = new_attrs\n if select_class == 'smoke_hard':\n new_attrs['ignore'] = 'yes'\n if select_class == 'smoke_hand':\n smoke_hand_num += 1\n elif select_class == 'smoke_nohand':\n smoke_nohand_num += 1\n elif select_class == 'smoke_hard':\n smoke_hard_num += 1\n elif select_class == 'nosmoke_bg':\n nosmoke_bg_num += 1\n elif select_class == 'nosmoke_face':\n nosmoke_face_num += 1\n elif select_class == 'nosmoke_susp':\n nosmoke_susp_num += 1\n elif select_class == 'nosmoke_cover':\n nosmoke_cover_num += 1\n else:\n print('Invalid smoke class.', select_class)\n if 'common_box' in js:\n js['common_box'].append(new_common_box)\n else:\n js['common_box'] = [new_common_box]\n new_js_line = json.dumps(js) + '\\n'\n new_json_file.write(new_js_line)\n new_json_file.close()\n print('write ' + base_file_id + '.json')\n print('add_common_box_smoke_region done.')\n print('smoke_hand:%d, smoke_nohand:%d, smoke_hard:%d' % (smoke_hand_num,\n smoke_nohand_num, smoke_hard_num))\n print(\n 'nosmoke_bg:%d, nosmoke_face:%d, nosmoke_susp:%d, nosmoke_cover:%d' %\n (nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num)\n )\n\n\nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print(\n 'useage: add_common_box_smoke_region.py org_json_dir dst_json_dir done_root_dir'\n )\n exit()\n org_json_dir = sys.argv[1]\n dst_json_dir = sys.argv[2]\n done_root_dir = sys.argv[3]\n add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir)\n", "step-5": "import os\nimport sys\nimport glob\nimport shutil\nimport json\nimport codecs\nfrom collections import OrderedDict\n\ndef getRegionClass(image_path, data_id, imgName):\n region_class = ['nosmoke_background', 'nosmoke_face', 'nosmoke_suspect', 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n label_class = ['nosmoke_bg', 'nosmoke_face', 'nosmoke_susp', 'nosmoke_cover', 'smoke_hand', 'smoke_nohand', 'smoke_hard']\n select_class = None\n for class_id in range(len(region_class)):\n cur_class = region_class[class_id]\n cur_label_class = label_class[class_id]\n check_file_name = os.path.join(image_path, data_id, cur_class, imgName)\n if os.path.isfile(check_file_name):\n select_class = cur_label_class\n #print check_file_name\n break\n return select_class\n\ndef add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir):\n if not os.path.exists(dst_json_dir):\n os.makedirs(dst_json_dir)\n \n smoke_hand_num, smoke_nohand_num, smoke_hard_num = 0, 0, 0\n nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num = 0, 0, 0, 0\n for json_file_name in glob.glob(org_json_dir + '/*.json'):\n json_file = open(json_file_name, 'r')\n base_file_id = os.path.basename(json_file_name)[:-5]\n print(base_file_id + '.json')\n \n json_lines = json_file.read().splitlines()\n dst_json_lines = []\n \n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id + '.json', \"w\", \"utf-8\")\n new_json_file.close()\n new_json_file = codecs.open(dst_json_dir + '/' + base_file_id + '.json', \"a+\", 'utf-8')\n for line in json_lines:\n if line[0] == '#':\n new_json_file.write(line + '\\n')\n continue\n js = json.loads(line, object_pairs_hook=OrderedDict)\n \n #new_js_line = json.dumps(js) + \"\\n\"\n #new_json_file.write(new_js_line)\n #continue\n \n imgName = js[\"image_key\"]\n select_class = getRegionClass(done_root_dir, base_file_id, imgName)\n if select_class == None:\n new_json_file.write(line + '\\n') #\n #print('Not Found: ', done_root_dir, base_file_id, imgName)\n continue\n #print select_class\n new_common_box = {}\n new_attrs = {}\n new_attrs['ignore'] = 'no'\n new_attrs['type'] = 'smoke_region'\n new_attrs['class'] = select_class\n new_common_box['attrs'] = new_attrs\n if select_class == 'smoke_hard':\n new_attrs['ignore'] = 'yes'\n \n # statistic\n if select_class == 'smoke_hand':\n smoke_hand_num += 1\n elif select_class == 'smoke_nohand':\n smoke_nohand_num += 1\n elif select_class == 'smoke_hard':\n smoke_hard_num += 1\n elif select_class == 'nosmoke_bg':\n nosmoke_bg_num += 1\n elif select_class == 'nosmoke_face':\n nosmoke_face_num += 1\n elif select_class == 'nosmoke_susp':\n nosmoke_susp_num += 1\n elif select_class == 'nosmoke_cover':\n nosmoke_cover_num += 1\n else:\n print('Invalid smoke class.', select_class)\n \n # common box, like phone, hand\n if 'common_box' in js:\n js['common_box'].append(new_common_box)\n else:\n js['common_box'] = [new_common_box]\n new_js_line = json.dumps(js) + \"\\n\"\n new_json_file.write(new_js_line)\n new_json_file.close()\n print('write ' + base_file_id + '.json')\n print('add_common_box_smoke_region done.')\n print('smoke_hand:%d, smoke_nohand:%d, smoke_hard:%d'%(smoke_hand_num, smoke_nohand_num, smoke_hard_num))\n print('nosmoke_bg:%d, nosmoke_face:%d, nosmoke_susp:%d, nosmoke_cover:%d'%(nosmoke_bg_num, nosmoke_face_num, nosmoke_susp_num, nosmoke_cover_num))\n \nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print('useage: add_common_box_smoke_region.py org_json_dir dst_json_dir done_root_dir')\n exit()\n org_json_dir = sys.argv[1]\n dst_json_dir = sys.argv[2]\n done_root_dir = sys.argv[3]\n add_common_box_smoke_region(org_json_dir, dst_json_dir, done_root_dir)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
""" Soil and water decomposition rates """ import math from water_balance import WaterBalance from utilities import float_eq, float_lt, float_le, float_gt, float_ge, clip __author__ = "Martin De Kauwe" __version__ = "1.0 (25.02.2011)" __email__ = "mdekauwe@gmail.com" class DecompFactors(object): """ Calculate C and N litter production rates """ def __init__(self, control, params, state, fluxes, met_data): """ Parameters ---------- control : integers, structure model control flags params: floats, structure model parameters state: floats, structure model state fluxes : floats, structure model fluxes met_data : floats, dictionary meteorological forcing data """ self.params = params self.fluxes = fluxes self.control = control self.state = state self.met_data = met_data self.wb = WaterBalance(self.control, self.params, self.state, self.fluxes, self.met_data) def decay_rates(self, project_day): """ Model decay rates - temperature dependency (i.e. increase with temp) [See section A8 in Comins and McMurtrie 1993]. Parameters: ----------- project_day : int current simulation day (index) """ # temperature and water factors for decomposition tempact = self.soil_temp_factor(project_day) wtfac = self.wb.calculate_soil_water_fac(topsoil=True) # decay rate of surface structural pool self.params.decayrate[0] = (self.params.kdec1 * math.exp(-3. * self.params.ligshoot) * tempact * wtfac) # decay rate of surface metabolic pool self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac # decay rate of soil structural pool self.params.decayrate[2] = (self.params.kdec3 * math.exp(-3. * self.params.ligroot) * tempact * wtfac) # decay rate of soil metabolic pool self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac # decay rate of active pool self.params.decayrate[4] = (self.params.kdec5 * (1.0 - 0.75 * self.params.finesoil) * tempact * wtfac) # decay rate of slow pool self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac # decay rate of passive pool self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac def soil_temp_factor(self, project_day): """Soil-temperature activity factor (A9). Parameters: ----------- project_day : int current simulation day (index) Returns: -------- tfac : float soil temperature factor [degC] """ tsoil = self.met_data['tsoil'][project_day] if float_gt(tsoil, 0.0): tfac = (0.0326 + 0.00351 * tsoil**1.652 - (tsoil / 41.748)**7.19) if float_lt(tfac, 0.0): tfac = 0.0 else: # negative number cannot be raised to a fractional power # number would need to be complex tfac = 0.0 return tfac
normal
{ "blob_id": "74f3b4001a0520a25a314ff537719b679ba0fca4", "index": 2578, "step-1": "<mask token>\n\n\nclass DecompFactors(object):\n <mask token>\n\n def __init__(self, control, params, state, fluxes, met_data):\n \"\"\"\n Parameters\n ----------\n control : integers, structure\n model control flags\n params: floats, structure\n model parameters\n state: floats, structure\n model state\n fluxes : floats, structure\n model fluxes\n met_data : floats, dictionary\n meteorological forcing data\n\n \"\"\"\n self.params = params\n self.fluxes = fluxes\n self.control = control\n self.state = state\n self.met_data = met_data\n self.wb = WaterBalance(self.control, self.params, self.state, self.\n fluxes, self.met_data)\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass DecompFactors(object):\n \"\"\" Calculate C and N litter production rates \"\"\"\n\n def __init__(self, control, params, state, fluxes, met_data):\n \"\"\"\n Parameters\n ----------\n control : integers, structure\n model control flags\n params: floats, structure\n model parameters\n state: floats, structure\n model state\n fluxes : floats, structure\n model fluxes\n met_data : floats, dictionary\n meteorological forcing data\n\n \"\"\"\n self.params = params\n self.fluxes = fluxes\n self.control = control\n self.state = state\n self.met_data = met_data\n self.wb = WaterBalance(self.control, self.params, self.state, self.\n fluxes, self.met_data)\n\n def decay_rates(self, project_day):\n \"\"\" Model decay rates - temperature dependency (i.e. increase with temp)\n [See section A8 in Comins and McMurtrie 1993].\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n \"\"\"\n tempact = self.soil_temp_factor(project_day)\n wtfac = self.wb.calculate_soil_water_fac(topsoil=True)\n self.params.decayrate[0] = self.params.kdec1 * math.exp(-3.0 * self\n .params.ligshoot) * tempact * wtfac\n self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac\n self.params.decayrate[2] = self.params.kdec3 * math.exp(-3.0 * self\n .params.ligroot) * tempact * wtfac\n self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac\n self.params.decayrate[4] = self.params.kdec5 * (1.0 - 0.75 * self.\n params.finesoil) * tempact * wtfac\n self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac\n self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac\n\n def soil_temp_factor(self, project_day):\n \"\"\"Soil-temperature activity factor (A9).\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n Returns:\n --------\n tfac : float\n soil temperature factor [degC]\n\n \"\"\"\n tsoil = self.met_data['tsoil'][project_day]\n if float_gt(tsoil, 0.0):\n tfac = 0.0326 + 0.00351 * tsoil ** 1.652 - (tsoil / 41.748) ** 7.19\n if float_lt(tfac, 0.0):\n tfac = 0.0\n else:\n tfac = 0.0\n return tfac\n", "step-3": "<mask token>\n__author__ = 'Martin De Kauwe'\n__version__ = '1.0 (25.02.2011)'\n__email__ = 'mdekauwe@gmail.com'\n\n\nclass DecompFactors(object):\n \"\"\" Calculate C and N litter production rates \"\"\"\n\n def __init__(self, control, params, state, fluxes, met_data):\n \"\"\"\n Parameters\n ----------\n control : integers, structure\n model control flags\n params: floats, structure\n model parameters\n state: floats, structure\n model state\n fluxes : floats, structure\n model fluxes\n met_data : floats, dictionary\n meteorological forcing data\n\n \"\"\"\n self.params = params\n self.fluxes = fluxes\n self.control = control\n self.state = state\n self.met_data = met_data\n self.wb = WaterBalance(self.control, self.params, self.state, self.\n fluxes, self.met_data)\n\n def decay_rates(self, project_day):\n \"\"\" Model decay rates - temperature dependency (i.e. increase with temp)\n [See section A8 in Comins and McMurtrie 1993].\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n \"\"\"\n tempact = self.soil_temp_factor(project_day)\n wtfac = self.wb.calculate_soil_water_fac(topsoil=True)\n self.params.decayrate[0] = self.params.kdec1 * math.exp(-3.0 * self\n .params.ligshoot) * tempact * wtfac\n self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac\n self.params.decayrate[2] = self.params.kdec3 * math.exp(-3.0 * self\n .params.ligroot) * tempact * wtfac\n self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac\n self.params.decayrate[4] = self.params.kdec5 * (1.0 - 0.75 * self.\n params.finesoil) * tempact * wtfac\n self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac\n self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac\n\n def soil_temp_factor(self, project_day):\n \"\"\"Soil-temperature activity factor (A9).\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n Returns:\n --------\n tfac : float\n soil temperature factor [degC]\n\n \"\"\"\n tsoil = self.met_data['tsoil'][project_day]\n if float_gt(tsoil, 0.0):\n tfac = 0.0326 + 0.00351 * tsoil ** 1.652 - (tsoil / 41.748) ** 7.19\n if float_lt(tfac, 0.0):\n tfac = 0.0\n else:\n tfac = 0.0\n return tfac\n", "step-4": "<mask token>\nimport math\nfrom water_balance import WaterBalance\nfrom utilities import float_eq, float_lt, float_le, float_gt, float_ge, clip\n__author__ = 'Martin De Kauwe'\n__version__ = '1.0 (25.02.2011)'\n__email__ = 'mdekauwe@gmail.com'\n\n\nclass DecompFactors(object):\n \"\"\" Calculate C and N litter production rates \"\"\"\n\n def __init__(self, control, params, state, fluxes, met_data):\n \"\"\"\n Parameters\n ----------\n control : integers, structure\n model control flags\n params: floats, structure\n model parameters\n state: floats, structure\n model state\n fluxes : floats, structure\n model fluxes\n met_data : floats, dictionary\n meteorological forcing data\n\n \"\"\"\n self.params = params\n self.fluxes = fluxes\n self.control = control\n self.state = state\n self.met_data = met_data\n self.wb = WaterBalance(self.control, self.params, self.state, self.\n fluxes, self.met_data)\n\n def decay_rates(self, project_day):\n \"\"\" Model decay rates - temperature dependency (i.e. increase with temp)\n [See section A8 in Comins and McMurtrie 1993].\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n \"\"\"\n tempact = self.soil_temp_factor(project_day)\n wtfac = self.wb.calculate_soil_water_fac(topsoil=True)\n self.params.decayrate[0] = self.params.kdec1 * math.exp(-3.0 * self\n .params.ligshoot) * tempact * wtfac\n self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac\n self.params.decayrate[2] = self.params.kdec3 * math.exp(-3.0 * self\n .params.ligroot) * tempact * wtfac\n self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac\n self.params.decayrate[4] = self.params.kdec5 * (1.0 - 0.75 * self.\n params.finesoil) * tempact * wtfac\n self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac\n self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac\n\n def soil_temp_factor(self, project_day):\n \"\"\"Soil-temperature activity factor (A9).\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n Returns:\n --------\n tfac : float\n soil temperature factor [degC]\n\n \"\"\"\n tsoil = self.met_data['tsoil'][project_day]\n if float_gt(tsoil, 0.0):\n tfac = 0.0326 + 0.00351 * tsoil ** 1.652 - (tsoil / 41.748) ** 7.19\n if float_lt(tfac, 0.0):\n tfac = 0.0\n else:\n tfac = 0.0\n return tfac\n", "step-5": "\"\"\" Soil and water decomposition rates \"\"\"\n\nimport math\n\nfrom water_balance import WaterBalance\nfrom utilities import float_eq, float_lt, float_le, float_gt, float_ge, clip\n\n__author__ = \"Martin De Kauwe\"\n__version__ = \"1.0 (25.02.2011)\"\n__email__ = \"mdekauwe@gmail.com\"\n\n\nclass DecompFactors(object):\n \"\"\" Calculate C and N litter production rates \"\"\"\n def __init__(self, control, params, state, fluxes, met_data):\n \"\"\"\n Parameters\n ----------\n control : integers, structure\n model control flags\n params: floats, structure\n model parameters\n state: floats, structure\n model state\n fluxes : floats, structure\n model fluxes\n met_data : floats, dictionary\n meteorological forcing data\n\n \"\"\"\n self.params = params\n self.fluxes = fluxes\n self.control = control\n self.state = state\n self.met_data = met_data\n\n self.wb = WaterBalance(self.control, self.params, self.state,\n self.fluxes, self.met_data)\n\n def decay_rates(self, project_day):\n \"\"\" Model decay rates - temperature dependency (i.e. increase with temp)\n [See section A8 in Comins and McMurtrie 1993].\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n \"\"\"\n # temperature and water factors for decomposition\n tempact = self.soil_temp_factor(project_day)\n wtfac = self.wb.calculate_soil_water_fac(topsoil=True)\n\n # decay rate of surface structural pool\n self.params.decayrate[0] = (self.params.kdec1 *\n math.exp(-3. * self.params.ligshoot) *\n tempact * wtfac)\n\n # decay rate of surface metabolic pool\n self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac\n\n\n # decay rate of soil structural pool\n self.params.decayrate[2] = (self.params.kdec3 *\n math.exp(-3. * self.params.ligroot) *\n tempact * wtfac)\n\n # decay rate of soil metabolic pool\n self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac\n\n\n # decay rate of active pool\n self.params.decayrate[4] = (self.params.kdec5 *\n (1.0 - 0.75 * self.params.finesoil) *\n tempact * wtfac)\n\n # decay rate of slow pool\n self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac\n\n # decay rate of passive pool\n self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac\n\n def soil_temp_factor(self, project_day):\n \"\"\"Soil-temperature activity factor (A9).\n\n Parameters:\n -----------\n project_day : int\n current simulation day (index)\n\n Returns:\n --------\n tfac : float\n soil temperature factor [degC]\n\n \"\"\"\n tsoil = self.met_data['tsoil'][project_day]\n\n if float_gt(tsoil, 0.0):\n tfac = (0.0326 + 0.00351 * tsoil**1.652 - (tsoil / 41.748)**7.19)\n if float_lt(tfac, 0.0):\n tfac = 0.0\n else:\n # negative number cannot be raised to a fractional power\n # number would need to be complex\n tfac = 0.0\n\n return tfac\n", "step-ids": [ 2, 5, 6, 7, 8 ] }
[ 2, 5, 6, 7, 8 ]
from django.db import models from django.contrib import admin from django.utils import timezone class Libros(models.Model): ISBN = models.CharField(max_length=13,primary_key=True) Titulo = models.CharField(max_length=15) # Portada = models.ImageField(upload_to='imagen/') Autor = models.CharField(max_length=100) Editorial = models.CharField(max_length=100) Pais=models.CharField(max_length=100) anno= models.IntegerField() def __str__(self): return self.Titulo class Usuario(models.Model): DPI = models.CharField(max_length=20) NombreCompleto= models.CharField(max_length=100) def __str__(self): return self.DPI class Prestamo (models.Model): Fecha_Prestamo=models.DateTimeField(default=timezone.now) Fecha_Devolucion=models.DateField() Fecha_Devolucion_Real=models.DateField() Libro=models.ForeignKey(Libros,on_delete=models.CASCADE) Usuario=models.ForeignKey(Usuario,on_delete=models.CASCADE) class PrestamoInLine(admin.TabularInline): model=Prestamo extra=1 class LibroAdmin(admin.ModelAdmin): inlines = (PrestamoInLine,) class UsuarioAdmin(admin.ModelAdmin): inlines = (PrestamoInLine,)
normal
{ "blob_id": "86fdea2ae8e253aa4639bb3114de70c693536760", "index": 1046, "step-1": "<mask token>\n\n\nclass Prestamo(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass PrestamoInLine(admin.TabularInline):\n model = Prestamo\n extra = 1\n\n\nclass LibroAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n\n\nclass UsuarioAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n", "step-2": "<mask token>\n\n\nclass Prestamo(models.Model):\n Fecha_Prestamo = models.DateTimeField(default=timezone.now)\n Fecha_Devolucion = models.DateField()\n Fecha_Devolucion_Real = models.DateField()\n Libro = models.ForeignKey(Libros, on_delete=models.CASCADE)\n Usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE)\n\n\nclass PrestamoInLine(admin.TabularInline):\n model = Prestamo\n extra = 1\n\n\nclass LibroAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n\n\nclass UsuarioAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n", "step-3": "<mask token>\n\n\nclass Libros(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Usuario(models.Model):\n DPI = models.CharField(max_length=20)\n NombreCompleto = models.CharField(max_length=100)\n\n def __str__(self):\n return self.DPI\n\n\nclass Prestamo(models.Model):\n Fecha_Prestamo = models.DateTimeField(default=timezone.now)\n Fecha_Devolucion = models.DateField()\n Fecha_Devolucion_Real = models.DateField()\n Libro = models.ForeignKey(Libros, on_delete=models.CASCADE)\n Usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE)\n\n\nclass PrestamoInLine(admin.TabularInline):\n model = Prestamo\n extra = 1\n\n\nclass LibroAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n\n\nclass UsuarioAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n", "step-4": "<mask token>\n\n\nclass Libros(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.Titulo\n\n\nclass Usuario(models.Model):\n DPI = models.CharField(max_length=20)\n NombreCompleto = models.CharField(max_length=100)\n\n def __str__(self):\n return self.DPI\n\n\nclass Prestamo(models.Model):\n Fecha_Prestamo = models.DateTimeField(default=timezone.now)\n Fecha_Devolucion = models.DateField()\n Fecha_Devolucion_Real = models.DateField()\n Libro = models.ForeignKey(Libros, on_delete=models.CASCADE)\n Usuario = models.ForeignKey(Usuario, on_delete=models.CASCADE)\n\n\nclass PrestamoInLine(admin.TabularInline):\n model = Prestamo\n extra = 1\n\n\nclass LibroAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n\n\nclass UsuarioAdmin(admin.ModelAdmin):\n inlines = PrestamoInLine,\n", "step-5": "from django.db import models\nfrom django.contrib import admin\nfrom django.utils import timezone\n\nclass Libros(models.Model):\n ISBN = models.CharField(max_length=13,primary_key=True)\n Titulo = models.CharField(max_length=15)\n # Portada = models.ImageField(upload_to='imagen/')\n Autor = models.CharField(max_length=100)\n Editorial = models.CharField(max_length=100)\n Pais=models.CharField(max_length=100)\n anno= models.IntegerField()\n\n def __str__(self):\n return self.Titulo\n\nclass Usuario(models.Model):\n DPI = models.CharField(max_length=20)\n NombreCompleto= models.CharField(max_length=100)\n\n def __str__(self):\n return self.DPI\n\n\n\nclass Prestamo (models.Model):\n Fecha_Prestamo=models.DateTimeField(default=timezone.now)\n Fecha_Devolucion=models.DateField()\n Fecha_Devolucion_Real=models.DateField()\n Libro=models.ForeignKey(Libros,on_delete=models.CASCADE)\n Usuario=models.ForeignKey(Usuario,on_delete=models.CASCADE)\n\nclass PrestamoInLine(admin.TabularInline):\n model=Prestamo\n extra=1\n\nclass LibroAdmin(admin.ModelAdmin):\n inlines = (PrestamoInLine,)\n\nclass UsuarioAdmin(admin.ModelAdmin):\n inlines = (PrestamoInLine,)\n", "step-ids": [ 7, 8, 12, 13, 16 ] }
[ 7, 8, 12, 13, 16 ]
numbers = [3, 7, 5] maxNumber = 0 for number in numbers: if maxNumber < number: maxNumber = number print maxNumber
normal
{ "blob_id": "2d9d66ea8a95285744b797570bfbeaa17fdc922a", "index": 4036, "step-1": "numbers = [3, 7, 5]\nmaxNumber = 0\nfor number in numbers:\n if maxNumber < number:\n maxNumber = number\n\nprint maxNumber", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
print(input()in[str(i**i+i)for i in range(11)]) num = int(input()) suma = 0 x = 0 while(suma < num): x += 1 suma = x**x + x print(True if suma == num else False
normal
{ "blob_id": "20fe9b68e65f6f017897bfa8e99d0c21ba1617fb", "index": 1522, "step-1": "print(input()in[str(i**i+i)for i in range(11)])\n\n\n\nnum = int(input())\nsuma = 0\nx = 0\nwhile(suma < num):\n x += 1\n suma = x**x + x\nprint(True if suma == num else False\n\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import six from oslo_log import log from watcher._i18n import _ from watcher.decision_engine.strategy.strategies import base LOG = log.getLogger(__name__) @six.add_metaclass(abc.ABCMeta) class ParallelMigrationStrategy(base.BaseStrategy): VM = "vm" VOLUME = "volume" ACTIVE = "active" SHUTOFF = "shutoff" AVAILABLE = "available" IN_USE = "in-use" LIVE_MIGRATION = "live_migration" COLD_MIGRATION = "cold_migration" VOLUME_MIGRATION = "volume_migration" VOLUME_RETYPE = "volume_retype" VOLUME_UPDATE = "volume_update" STATUS = "status" DST_HOSTNAME = "dst_hostname" DST_TYPE = "dst_type" def __init__(self, config, osc=None): super(ParallelMigrationStrategy, self).__init__(config, osc) def pre_execute(self): pass def do_execute(self): params = self.input_parameters.params for key, value in params.iteritems(): for resource_id, dict in value.items(): resource_status = dict.get(self.STATUS) dst_hostname = dict.get(self.DST_HOSTNAME) dst_type = dict.get(self.DST_TYPE) if key == self.VM: if resource_status == self.ACTIVE: # do live migration self._live_migration(resource_id, dst_hostname) elif resource_status == self.SHUTOFF: # do cold migration # cold migration can not specify dest_hostname self._cold_migration(resource_id) else: raise Exception("Wrong status: %s." % resource_status) elif key == self.VOLUME: if resource_status == self.IN_USE: # do novavolume update self._volume_update(resource_id, dst_type) elif resource_status == self.AVAILABLE: # detached volume with no snapshots # do cinder migrate self._volume_retype(resource_id, dst_type) else: raise Exception("Wrong status: %s." % resource_status) else: raise Exception("Wrong key: %s." % key) def _live_migration(self, resource_id, dst_hostname): parameters = {self.DST_HOSTNAME: dst_hostname} self.solution.add_action( action_type=self.LIVE_MIGRATION, resource_id=resource_id, input_parameters=parameters) def _cold_migration(self, resource_id): self.solution.add_action( action_type=self.COLD_MIGRATION, resource_id=resource_id, input_parameters={}) def _volume_update(self, resource_id, dst_type): parameters = {self.DST_TYPE: dst_type} self.solution.add_action( action_type=self.VOLUME_UPDATE, resource_id=resource_id, input_parameters=parameters) def _volume_migrate(self, resource_id, dst_hostname): parameters = {self.DST_HOSTNAME: dst_hostname} self.solution.add_action( action_type=self.VOLUME_MIGRATION, resource_id=resource_id, input_parameters=parameters) def _volume_retype(self, resource_id, dst_type): parameters = {self.DST_TYPE: dst_type} self.solution.add_action( action_type=self.VOLUME_RETYPE, resource_id=resource_id, input_parameters=parameters) def post_execute(self): pass @classmethod def get_goal_name(cls): return "zone_migration" @classmethod def get_name(cls): return "parallel_migration" @classmethod def get_display_name(cls): return _("Parallel migration strategy") @classmethod def get_translatable_display_name(cls): return "Parallel migration strategy" @classmethod def get_schema(cls): return { "properties": { "params": { "description": "", "type": "object", "default": {"vm": {"instance_id1": {"status": "active", "dst_hostname": "vm_dest_hostname1"}, "instance_id2": {"status": "shutoff"}}, "volume": {"cinder_id1": {"status": "available", "dst_type": "volume_dst_type"}, "cinder_id2": {"status": "in-use", "dst_type": "volume_dst_type"}}} } } }
normal
{ "blob_id": "43e721ac45570e4f9ab9c1970abee3da6db40afa", "index": 156, "step-1": "<mask token>\n\n\n@six.add_metaclass(abc.ABCMeta)\nclass ParallelMigrationStrategy(base.BaseStrategy):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, config, osc=None):\n super(ParallelMigrationStrategy, self).__init__(config, osc)\n\n def pre_execute(self):\n pass\n <mask token>\n\n def _live_migration(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.LIVE_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _cold_migration(self, resource_id):\n self.solution.add_action(action_type=self.COLD_MIGRATION,\n resource_id=resource_id, input_parameters={})\n <mask token>\n\n def _volume_migrate(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.VOLUME_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _volume_retype(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(action_type=self.VOLUME_RETYPE,\n resource_id=resource_id, input_parameters=parameters)\n <mask token>\n\n @classmethod\n def get_goal_name(cls):\n return 'zone_migration'\n\n @classmethod\n def get_name(cls):\n return 'parallel_migration'\n <mask token>\n\n @classmethod\n def get_translatable_display_name(cls):\n return 'Parallel migration strategy'\n\n @classmethod\n def get_schema(cls):\n return {'properties': {'params': {'description': '', 'type':\n 'object', 'default': {'vm': {'instance_id1': {'status':\n 'active', 'dst_hostname': 'vm_dest_hostname1'}, 'instance_id2':\n {'status': 'shutoff'}}, 'volume': {'cinder_id1': {'status':\n 'available', 'dst_type': 'volume_dst_type'}, 'cinder_id2': {\n 'status': 'in-use', 'dst_type': 'volume_dst_type'}}}}}}\n", "step-2": "<mask token>\n\n\n@six.add_metaclass(abc.ABCMeta)\nclass ParallelMigrationStrategy(base.BaseStrategy):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, config, osc=None):\n super(ParallelMigrationStrategy, self).__init__(config, osc)\n\n def pre_execute(self):\n pass\n <mask token>\n\n def _live_migration(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.LIVE_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _cold_migration(self, resource_id):\n self.solution.add_action(action_type=self.COLD_MIGRATION,\n resource_id=resource_id, input_parameters={})\n <mask token>\n\n def _volume_migrate(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.VOLUME_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _volume_retype(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(action_type=self.VOLUME_RETYPE,\n resource_id=resource_id, input_parameters=parameters)\n\n def post_execute(self):\n pass\n\n @classmethod\n def get_goal_name(cls):\n return 'zone_migration'\n\n @classmethod\n def get_name(cls):\n return 'parallel_migration'\n\n @classmethod\n def get_display_name(cls):\n return _('Parallel migration strategy')\n\n @classmethod\n def get_translatable_display_name(cls):\n return 'Parallel migration strategy'\n\n @classmethod\n def get_schema(cls):\n return {'properties': {'params': {'description': '', 'type':\n 'object', 'default': {'vm': {'instance_id1': {'status':\n 'active', 'dst_hostname': 'vm_dest_hostname1'}, 'instance_id2':\n {'status': 'shutoff'}}, 'volume': {'cinder_id1': {'status':\n 'available', 'dst_type': 'volume_dst_type'}, 'cinder_id2': {\n 'status': 'in-use', 'dst_type': 'volume_dst_type'}}}}}}\n", "step-3": "<mask token>\n\n\n@six.add_metaclass(abc.ABCMeta)\nclass ParallelMigrationStrategy(base.BaseStrategy):\n VM = 'vm'\n VOLUME = 'volume'\n ACTIVE = 'active'\n SHUTOFF = 'shutoff'\n AVAILABLE = 'available'\n IN_USE = 'in-use'\n LIVE_MIGRATION = 'live_migration'\n COLD_MIGRATION = 'cold_migration'\n VOLUME_MIGRATION = 'volume_migration'\n VOLUME_RETYPE = 'volume_retype'\n VOLUME_UPDATE = 'volume_update'\n STATUS = 'status'\n DST_HOSTNAME = 'dst_hostname'\n DST_TYPE = 'dst_type'\n\n def __init__(self, config, osc=None):\n super(ParallelMigrationStrategy, self).__init__(config, osc)\n\n def pre_execute(self):\n pass\n\n def do_execute(self):\n params = self.input_parameters.params\n for key, value in params.iteritems():\n for resource_id, dict in value.items():\n resource_status = dict.get(self.STATUS)\n dst_hostname = dict.get(self.DST_HOSTNAME)\n dst_type = dict.get(self.DST_TYPE)\n if key == self.VM:\n if resource_status == self.ACTIVE:\n self._live_migration(resource_id, dst_hostname)\n elif resource_status == self.SHUTOFF:\n self._cold_migration(resource_id)\n else:\n raise Exception('Wrong status: %s.' % resource_status)\n elif key == self.VOLUME:\n if resource_status == self.IN_USE:\n self._volume_update(resource_id, dst_type)\n elif resource_status == self.AVAILABLE:\n self._volume_retype(resource_id, dst_type)\n else:\n raise Exception('Wrong status: %s.' % resource_status)\n else:\n raise Exception('Wrong key: %s.' % key)\n\n def _live_migration(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.LIVE_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _cold_migration(self, resource_id):\n self.solution.add_action(action_type=self.COLD_MIGRATION,\n resource_id=resource_id, input_parameters={})\n\n def _volume_update(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(action_type=self.VOLUME_UPDATE,\n resource_id=resource_id, input_parameters=parameters)\n\n def _volume_migrate(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.VOLUME_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _volume_retype(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(action_type=self.VOLUME_RETYPE,\n resource_id=resource_id, input_parameters=parameters)\n\n def post_execute(self):\n pass\n\n @classmethod\n def get_goal_name(cls):\n return 'zone_migration'\n\n @classmethod\n def get_name(cls):\n return 'parallel_migration'\n\n @classmethod\n def get_display_name(cls):\n return _('Parallel migration strategy')\n\n @classmethod\n def get_translatable_display_name(cls):\n return 'Parallel migration strategy'\n\n @classmethod\n def get_schema(cls):\n return {'properties': {'params': {'description': '', 'type':\n 'object', 'default': {'vm': {'instance_id1': {'status':\n 'active', 'dst_hostname': 'vm_dest_hostname1'}, 'instance_id2':\n {'status': 'shutoff'}}, 'volume': {'cinder_id1': {'status':\n 'available', 'dst_type': 'volume_dst_type'}, 'cinder_id2': {\n 'status': 'in-use', 'dst_type': 'volume_dst_type'}}}}}}\n", "step-4": "import abc\nimport six\nfrom oslo_log import log\nfrom watcher._i18n import _\nfrom watcher.decision_engine.strategy.strategies import base\nLOG = log.getLogger(__name__)\n\n\n@six.add_metaclass(abc.ABCMeta)\nclass ParallelMigrationStrategy(base.BaseStrategy):\n VM = 'vm'\n VOLUME = 'volume'\n ACTIVE = 'active'\n SHUTOFF = 'shutoff'\n AVAILABLE = 'available'\n IN_USE = 'in-use'\n LIVE_MIGRATION = 'live_migration'\n COLD_MIGRATION = 'cold_migration'\n VOLUME_MIGRATION = 'volume_migration'\n VOLUME_RETYPE = 'volume_retype'\n VOLUME_UPDATE = 'volume_update'\n STATUS = 'status'\n DST_HOSTNAME = 'dst_hostname'\n DST_TYPE = 'dst_type'\n\n def __init__(self, config, osc=None):\n super(ParallelMigrationStrategy, self).__init__(config, osc)\n\n def pre_execute(self):\n pass\n\n def do_execute(self):\n params = self.input_parameters.params\n for key, value in params.iteritems():\n for resource_id, dict in value.items():\n resource_status = dict.get(self.STATUS)\n dst_hostname = dict.get(self.DST_HOSTNAME)\n dst_type = dict.get(self.DST_TYPE)\n if key == self.VM:\n if resource_status == self.ACTIVE:\n self._live_migration(resource_id, dst_hostname)\n elif resource_status == self.SHUTOFF:\n self._cold_migration(resource_id)\n else:\n raise Exception('Wrong status: %s.' % resource_status)\n elif key == self.VOLUME:\n if resource_status == self.IN_USE:\n self._volume_update(resource_id, dst_type)\n elif resource_status == self.AVAILABLE:\n self._volume_retype(resource_id, dst_type)\n else:\n raise Exception('Wrong status: %s.' % resource_status)\n else:\n raise Exception('Wrong key: %s.' % key)\n\n def _live_migration(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.LIVE_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _cold_migration(self, resource_id):\n self.solution.add_action(action_type=self.COLD_MIGRATION,\n resource_id=resource_id, input_parameters={})\n\n def _volume_update(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(action_type=self.VOLUME_UPDATE,\n resource_id=resource_id, input_parameters=parameters)\n\n def _volume_migrate(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(action_type=self.VOLUME_MIGRATION,\n resource_id=resource_id, input_parameters=parameters)\n\n def _volume_retype(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(action_type=self.VOLUME_RETYPE,\n resource_id=resource_id, input_parameters=parameters)\n\n def post_execute(self):\n pass\n\n @classmethod\n def get_goal_name(cls):\n return 'zone_migration'\n\n @classmethod\n def get_name(cls):\n return 'parallel_migration'\n\n @classmethod\n def get_display_name(cls):\n return _('Parallel migration strategy')\n\n @classmethod\n def get_translatable_display_name(cls):\n return 'Parallel migration strategy'\n\n @classmethod\n def get_schema(cls):\n return {'properties': {'params': {'description': '', 'type':\n 'object', 'default': {'vm': {'instance_id1': {'status':\n 'active', 'dst_hostname': 'vm_dest_hostname1'}, 'instance_id2':\n {'status': 'shutoff'}}, 'volume': {'cinder_id1': {'status':\n 'available', 'dst_type': 'volume_dst_type'}, 'cinder_id2': {\n 'status': 'in-use', 'dst_type': 'volume_dst_type'}}}}}}\n", "step-5": "#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\nimport abc\n\nimport six\n\nfrom oslo_log import log\n\nfrom watcher._i18n import _\nfrom watcher.decision_engine.strategy.strategies import base\n\nLOG = log.getLogger(__name__)\n\n\n@six.add_metaclass(abc.ABCMeta)\nclass ParallelMigrationStrategy(base.BaseStrategy):\n\n VM = \"vm\"\n VOLUME = \"volume\"\n ACTIVE = \"active\"\n SHUTOFF = \"shutoff\"\n AVAILABLE = \"available\"\n IN_USE = \"in-use\"\n LIVE_MIGRATION = \"live_migration\"\n COLD_MIGRATION = \"cold_migration\"\n VOLUME_MIGRATION = \"volume_migration\"\n VOLUME_RETYPE = \"volume_retype\"\n VOLUME_UPDATE = \"volume_update\"\n STATUS = \"status\"\n DST_HOSTNAME = \"dst_hostname\"\n DST_TYPE = \"dst_type\"\n\n def __init__(self, config, osc=None):\n super(ParallelMigrationStrategy, self).__init__(config, osc)\n\n def pre_execute(self):\n pass\n\n def do_execute(self):\n params = self.input_parameters.params\n for key, value in params.iteritems():\n for resource_id, dict in value.items():\n resource_status = dict.get(self.STATUS)\n dst_hostname = dict.get(self.DST_HOSTNAME)\n dst_type = dict.get(self.DST_TYPE)\n if key == self.VM:\n if resource_status == self.ACTIVE:\n # do live migration\n self._live_migration(resource_id, dst_hostname)\n elif resource_status == self.SHUTOFF:\n # do cold migration\n # cold migration can not specify dest_hostname\n self._cold_migration(resource_id)\n else:\n raise Exception(\"Wrong status: %s.\" % resource_status)\n elif key == self.VOLUME:\n if resource_status == self.IN_USE:\n # do novavolume update\n self._volume_update(resource_id, dst_type)\n elif resource_status == self.AVAILABLE:\n # detached volume with no snapshots\n # do cinder migrate\n self._volume_retype(resource_id, dst_type)\n else:\n raise Exception(\"Wrong status: %s.\" % resource_status)\n else:\n raise Exception(\"Wrong key: %s.\" % key)\n\n def _live_migration(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(\n action_type=self.LIVE_MIGRATION,\n resource_id=resource_id,\n input_parameters=parameters)\n\n def _cold_migration(self, resource_id):\n self.solution.add_action(\n action_type=self.COLD_MIGRATION,\n resource_id=resource_id,\n input_parameters={})\n\n def _volume_update(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(\n action_type=self.VOLUME_UPDATE,\n resource_id=resource_id,\n input_parameters=parameters)\n\n def _volume_migrate(self, resource_id, dst_hostname):\n parameters = {self.DST_HOSTNAME: dst_hostname}\n self.solution.add_action(\n action_type=self.VOLUME_MIGRATION,\n resource_id=resource_id,\n input_parameters=parameters)\n\n def _volume_retype(self, resource_id, dst_type):\n parameters = {self.DST_TYPE: dst_type}\n self.solution.add_action(\n action_type=self.VOLUME_RETYPE,\n resource_id=resource_id,\n input_parameters=parameters)\n\n def post_execute(self):\n pass\n\n @classmethod\n def get_goal_name(cls):\n return \"zone_migration\"\n\n @classmethod\n def get_name(cls):\n return \"parallel_migration\"\n\n @classmethod\n def get_display_name(cls):\n return _(\"Parallel migration strategy\")\n\n @classmethod\n def get_translatable_display_name(cls):\n return \"Parallel migration strategy\"\n\n @classmethod\n def get_schema(cls):\n return {\n \"properties\": {\n \"params\": {\n \"description\": \"\",\n \"type\": \"object\",\n \"default\":\n {\"vm\":\n {\"instance_id1\":\n {\"status\": \"active\",\n \"dst_hostname\": \"vm_dest_hostname1\"},\n \"instance_id2\":\n {\"status\": \"shutoff\"}},\n \"volume\":\n {\"cinder_id1\":\n {\"status\": \"available\",\n \"dst_type\": \"volume_dst_type\"},\n \"cinder_id2\":\n {\"status\": \"in-use\",\n \"dst_type\": \"volume_dst_type\"}}}\n }\n }\n }\n", "step-ids": [ 11, 13, 16, 18, 19 ] }
[ 11, 13, 16, 18, 19 ]
#!/usr/bin/env python import serial from action import Action import math comm = serial.Serial("/dev/ttyACM3", 115200, timeout=1) #comm = None robot = Action(comm) from flask import Flask from flask import send_from_directory import os static_dir = os.path.join(os.getcwd(), "ControlApp") print "serving from " + static_dir app = Flask(__name__) app.debug = False @app.route('/') def root(): return send_from_directory(static_dir, "control.html") @app.route("/stop") def do_stop(): robot.stop() return "ok" @app.route("/forward") def do_forward(): robot.move(0, 1) return "ok" @app.route("/backward") def do_backward(): robot.move(0, -1) return "ok" @app.route("/left") def do_left(): robot.move(math.pi/2.0, 1) return "ok" @app.route("/right") def do_right(): robot.move(math.pi*3.0/2.0, 1) return "ok" @app.route("/turncw") def do_turncw(): robot.turn(0.5) return "ok" @app.route("/turnacw") def do_turnacw(): robot.turn(-0.5) return "ok" @app.route("/kick") def do_kick(): robot.kick() return "ok" @app.route("/catch") def do_catch(): robot.catch() return "ok" if __name__ == "__main__": app.debug = True app.run(port=5001)
normal
{ "blob_id": "54a6405e3447d488aa4fca88159ccaac2506df2c", "index": 5995, "step-1": "#!/usr/bin/env python\n\nimport serial\nfrom action import Action\nimport math\n\ncomm = serial.Serial(\"/dev/ttyACM3\", 115200, timeout=1)\n#comm = None\nrobot = Action(comm)\n\nfrom flask import Flask\nfrom flask import send_from_directory\nimport os\n\nstatic_dir = os.path.join(os.getcwd(), \"ControlApp\")\nprint \"serving from \" + static_dir\n\napp = Flask(__name__)\napp.debug = False\n\n\n@app.route('/')\ndef root():\n return send_from_directory(static_dir, \"control.html\")\n\n@app.route(\"/stop\")\ndef do_stop():\n robot.stop()\n return \"ok\"\n \n@app.route(\"/forward\")\ndef do_forward():\n robot.move(0, 1)\n return \"ok\"\n \n@app.route(\"/backward\")\ndef do_backward():\n robot.move(0, -1)\n return \"ok\"\n\n@app.route(\"/left\")\ndef do_left():\n robot.move(math.pi/2.0, 1)\n return \"ok\"\n\n@app.route(\"/right\")\ndef do_right():\n robot.move(math.pi*3.0/2.0, 1)\n return \"ok\"\n\n@app.route(\"/turncw\")\ndef do_turncw():\n robot.turn(0.5)\n return \"ok\"\n\n@app.route(\"/turnacw\")\ndef do_turnacw():\n robot.turn(-0.5)\n return \"ok\"\n\n@app.route(\"/kick\")\ndef do_kick():\n robot.kick()\n return \"ok\"\n\n@app.route(\"/catch\")\ndef do_catch():\n robot.catch()\n return \"ok\" \n \nif __name__ == \"__main__\":\n app.debug = True\n app.run(port=5001)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from selenium.webdriver.common.by import By class BasePageLocators: LOGIN_LINK = (By.CSS_SELECTOR, "#login_link") BASKET_LINK = (By.CSS_SELECTOR, '[class="btn btn-default"]:nth-child(1)') USER_ICON = (By.CSS_SELECTOR, ".icon-user") class LoginPageLocators: LOG_IN_FORM = (By.CSS_SELECTOR, "#login_form") REGISTER_FORM = (By.CSS_SELECTOR, "#register_form") REGISTRATION_EMAIL = (By.CSS_SELECTOR, '#id_registration-email') REGISTRATION_PASSWORD = (By.CSS_SELECTOR, '#id_registration-password1') REGISTRATION_PASSWORD_CONFIRM = (By.CSS_SELECTOR, '#id_registration-password2') REGISTRATION_SUBMIT_BUTTON = (By.CSS_SELECTOR, '[name="registration_submit"]') class BasketPageLocators: BASKET_STATUS = (By.CSS_SELECTOR, '#content_inner') NAME_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR, '#messages .alert:nth-child(1) > .alertinner strong') PRICE_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR, '#messages .alert:nth-child(3) > .alertinner strong') class ProductPageLocators: ADD_IN_BASKET = (By.CSS_SELECTOR, '.btn-add-to-basket') SHIPMENT_PRICE = (By.CSS_SELECTOR, '.product_main .price_color') SHIPMENT_NAME = (By.CSS_SELECTOR, '.product_main h1')
normal
{ "blob_id": "5d3b9005b8924da36a5885201339aa41082034cd", "index": 8692, "step-1": "<mask token>\n\n\nclass BasketPageLocators:\n BASKET_STATUS = By.CSS_SELECTOR, '#content_inner'\n NAME_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(1) > .alertinner strong')\n PRICE_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(3) > .alertinner strong')\n\n\nclass ProductPageLocators:\n ADD_IN_BASKET = By.CSS_SELECTOR, '.btn-add-to-basket'\n SHIPMENT_PRICE = By.CSS_SELECTOR, '.product_main .price_color'\n SHIPMENT_NAME = By.CSS_SELECTOR, '.product_main h1'\n", "step-2": "<mask token>\n\n\nclass LoginPageLocators:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass BasketPageLocators:\n BASKET_STATUS = By.CSS_SELECTOR, '#content_inner'\n NAME_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(1) > .alertinner strong')\n PRICE_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(3) > .alertinner strong')\n\n\nclass ProductPageLocators:\n ADD_IN_BASKET = By.CSS_SELECTOR, '.btn-add-to-basket'\n SHIPMENT_PRICE = By.CSS_SELECTOR, '.product_main .price_color'\n SHIPMENT_NAME = By.CSS_SELECTOR, '.product_main h1'\n", "step-3": "<mask token>\n\n\nclass LoginPageLocators:\n LOG_IN_FORM = By.CSS_SELECTOR, '#login_form'\n REGISTER_FORM = By.CSS_SELECTOR, '#register_form'\n REGISTRATION_EMAIL = By.CSS_SELECTOR, '#id_registration-email'\n REGISTRATION_PASSWORD = By.CSS_SELECTOR, '#id_registration-password1'\n REGISTRATION_PASSWORD_CONFIRM = (By.CSS_SELECTOR,\n '#id_registration-password2')\n REGISTRATION_SUBMIT_BUTTON = (By.CSS_SELECTOR,\n '[name=\"registration_submit\"]')\n\n\nclass BasketPageLocators:\n BASKET_STATUS = By.CSS_SELECTOR, '#content_inner'\n NAME_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(1) > .alertinner strong')\n PRICE_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(3) > .alertinner strong')\n\n\nclass ProductPageLocators:\n ADD_IN_BASKET = By.CSS_SELECTOR, '.btn-add-to-basket'\n SHIPMENT_PRICE = By.CSS_SELECTOR, '.product_main .price_color'\n SHIPMENT_NAME = By.CSS_SELECTOR, '.product_main h1'\n", "step-4": "<mask token>\n\n\nclass BasePageLocators:\n LOGIN_LINK = By.CSS_SELECTOR, '#login_link'\n BASKET_LINK = By.CSS_SELECTOR, '[class=\"btn btn-default\"]:nth-child(1)'\n USER_ICON = By.CSS_SELECTOR, '.icon-user'\n\n\nclass LoginPageLocators:\n LOG_IN_FORM = By.CSS_SELECTOR, '#login_form'\n REGISTER_FORM = By.CSS_SELECTOR, '#register_form'\n REGISTRATION_EMAIL = By.CSS_SELECTOR, '#id_registration-email'\n REGISTRATION_PASSWORD = By.CSS_SELECTOR, '#id_registration-password1'\n REGISTRATION_PASSWORD_CONFIRM = (By.CSS_SELECTOR,\n '#id_registration-password2')\n REGISTRATION_SUBMIT_BUTTON = (By.CSS_SELECTOR,\n '[name=\"registration_submit\"]')\n\n\nclass BasketPageLocators:\n BASKET_STATUS = By.CSS_SELECTOR, '#content_inner'\n NAME_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(1) > .alertinner strong')\n PRICE_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR,\n '#messages .alert:nth-child(3) > .alertinner strong')\n\n\nclass ProductPageLocators:\n ADD_IN_BASKET = By.CSS_SELECTOR, '.btn-add-to-basket'\n SHIPMENT_PRICE = By.CSS_SELECTOR, '.product_main .price_color'\n SHIPMENT_NAME = By.CSS_SELECTOR, '.product_main h1'\n", "step-5": "from selenium.webdriver.common.by import By\n\n\nclass BasePageLocators:\n LOGIN_LINK = (By.CSS_SELECTOR, \"#login_link\")\n BASKET_LINK = (By.CSS_SELECTOR, '[class=\"btn btn-default\"]:nth-child(1)')\n USER_ICON = (By.CSS_SELECTOR, \".icon-user\")\n\n\nclass LoginPageLocators:\n LOG_IN_FORM = (By.CSS_SELECTOR, \"#login_form\")\n REGISTER_FORM = (By.CSS_SELECTOR, \"#register_form\")\n REGISTRATION_EMAIL = (By.CSS_SELECTOR, '#id_registration-email')\n REGISTRATION_PASSWORD = (By.CSS_SELECTOR, '#id_registration-password1')\n REGISTRATION_PASSWORD_CONFIRM = (By.CSS_SELECTOR, '#id_registration-password2')\n REGISTRATION_SUBMIT_BUTTON = (By.CSS_SELECTOR, '[name=\"registration_submit\"]')\n\n\nclass BasketPageLocators:\n BASKET_STATUS = (By.CSS_SELECTOR, '#content_inner')\n NAME_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR, '#messages .alert:nth-child(1) > .alertinner strong')\n PRICE_OF_ADDED_SHIPMENT = (By.CSS_SELECTOR, '#messages .alert:nth-child(3) > .alertinner strong')\n\n\nclass ProductPageLocators:\n ADD_IN_BASKET = (By.CSS_SELECTOR, '.btn-add-to-basket')\n SHIPMENT_PRICE = (By.CSS_SELECTOR, '.product_main .price_color')\n SHIPMENT_NAME = (By.CSS_SELECTOR, '.product_main h1')\n\n", "step-ids": [ 4, 5, 6, 8, 10 ] }
[ 4, 5, 6, 8, 10 ]
def unique(lisst): setlisst = set(lisst) return len(setlisst) print(unique({4, 5, 1, 1, 3}))
normal
{ "blob_id": "42d26ef51bb4dafc8a0201a828652e166a3905e4", "index": 7339, "step-1": "<mask token>\n", "step-2": "def unique(lisst):\n setlisst = set(lisst)\n return len(setlisst)\n\n\n<mask token>\n", "step-3": "def unique(lisst):\n setlisst = set(lisst)\n return len(setlisst)\n\n\nprint(unique({4, 5, 1, 1, 3}))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-29 03:38 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('django_otp', '0001_initial'), ] operations = [ migrations.AddField( model_name='otpsecrets', name='issuer_name', field=models.CharField(blank=True, db_index=True, max_length=40), ), ]
normal
{ "blob_id": "d45ca839a24093266c48e5f97164b160190b154d", "index": 2133, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('django_otp', '0001_initial')]\n operations = [migrations.AddField(model_name='otpsecrets', name=\n 'issuer_name', field=models.CharField(blank=True, db_index=True,\n max_length=40))]\n", "step-4": "from __future__ import unicode_literals\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('django_otp', '0001_initial')]\n operations = [migrations.AddField(model_name='otpsecrets', name=\n 'issuer_name', field=models.CharField(blank=True, db_index=True,\n max_length=40))]\n", "step-5": "# -*- coding: utf-8 -*-\n# Generated by Django 1.10.4 on 2016-12-29 03:38\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('django_otp', '0001_initial'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='otpsecrets',\n name='issuer_name',\n field=models.CharField(blank=True, db_index=True, max_length=40),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import matplotlib.pyplot as plt import cv2 # 0 img = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE) # IMREAD_COLOR = 1 # IMREAD_UNCHANGED = -1 cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() # cv2.imwrite('watchgray,png', img) plt.imshow(img, cmap='gray', interpolation='bicubic') plt.show()
normal
{ "blob_id": "34ccaaf5eb47afd556588cd94cddbddaee1f0b53", "index": 2851, "step-1": "<mask token>\n", "step-2": "<mask token>\ncv2.imshow('image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\nplt.imshow(img, cmap='gray', interpolation='bicubic')\nplt.show()\n", "step-3": "<mask token>\nimg = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)\ncv2.imshow('image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\nplt.imshow(img, cmap='gray', interpolation='bicubic')\nplt.show()\n", "step-4": "import matplotlib.pyplot as plt\nimport cv2\nimg = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)\ncv2.imshow('image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\nplt.imshow(img, cmap='gray', interpolation='bicubic')\nplt.show()\n", "step-5": "import matplotlib.pyplot as plt\nimport cv2\n# 0\nimg = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)\n# IMREAD_COLOR = 1\n# IMREAD_UNCHANGED = -1\ncv2.imshow('image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n# cv2.imwrite('watchgray,png', img)\n\nplt.imshow(img, cmap='gray', interpolation='bicubic')\nplt.show()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/local/autopkg/python """ JamfExtensionAttributeUploader processor for uploading extension attributes to Jamf Pro using AutoPkg by G Pugh """ import os import sys from time import sleep from xml.sax.saxutils import escape from autopkglib import ProcessorError # pylint: disable=import-error # to use a base module in AutoPkg we need to add this path to the sys.path. # this violates flake8 E402 (PEP8 imports) but is unavoidable, so the following # imports require noqa comments for E402 sys.path.insert(0, os.path.dirname(__file__)) from JamfUploaderLib.JamfUploaderBase import JamfUploaderBase # noqa: E402 __all__ = ["JamfExtensionAttributeUploader"] class JamfExtensionAttributeUploader(JamfUploaderBase): description = ( "A processor for AutoPkg that will upload an Extension Attribute item to a " "Jamf Cloud or on-prem server." ) input_variables = { "JSS_URL": { "required": True, "description": "URL to a Jamf Pro server that the API user has write access " "to, optionally set as a key in the com.github.autopkg " "preference file.", }, "API_USERNAME": { "required": True, "description": "Username of account with appropriate access to " "jss, optionally set as a key in the com.github.autopkg " "preference file.", }, "API_PASSWORD": { "required": True, "description": "Password of api user, optionally set as a key in " "the com.github.autopkg preference file.", }, "ea_name": { "required": False, "description": "Extension Attribute name", "default": "", }, "ea_script_path": { "required": False, "description": "Full path to the script to be uploaded", }, "replace_ea": { "required": False, "description": "Overwrite an existing category if True.", "default": False, }, "ea_inventory_display": { "required": False, "description": "Inventory Display value for the EA.", "default": "Extension Attributes", }, "ea_data_type": { "required": False, "description": "Data type for the EA. One of String, Integer or Date.", "default": "String", }, "sleep": { "required": False, "description": "Pause after running this processor for specified seconds.", "default": "0", }, } output_variables = { "jamfextensionattributeuploader_summary_result": { "description": "Description of interesting results.", }, } def upload_ea( self, jamf_url, ea_name, ea_data_type, ea_inventory_display, script_path, obj_id=None, enc_creds="", token="", ): """Update extension attribute metadata.""" # import script from file and replace any keys in the script if os.path.exists(script_path): with open(script_path, "r") as file: script_contents = file.read() else: raise ProcessorError("Script does not exist!") # substitute user-assignable keys script_contents = self.substitute_assignable_keys(script_contents) # XML-escape the script script_contents_escaped = escape(script_contents) # build the object ea_data = ( "<computer_extension_attribute>" + "<name>{}</name>".format(ea_name) + "<enabled>true</enabled>" + "<description/>" + "<data_type>{}</data_type>".format(ea_data_type) + "<input_type>" + " <type>script</type>" + " <platform>Mac</platform>" + " <script>{}</script>".format(script_contents_escaped) + "</input_type>" + "<inventory_display>{}</inventory_display>".format(ea_inventory_display) + "<recon_display>Extension Attributes</recon_display>" + "</computer_extension_attribute>" ) self.output( "Extension Attribute data:", verbose_level=2, ) self.output( ea_data, verbose_level=2, ) self.output("Uploading Extension Attribute..") # write the template to temp file template_xml = self.write_temp_file(ea_data) # if we find an object ID we put, if not, we post object_type = "extension_attribute" url = "{}/{}/id/{}".format(jamf_url, self.api_endpoints(object_type), obj_id) count = 0 while True: count += 1 self.output( "Extension Attribute upload attempt {}".format(count), verbose_level=2, ) request = "PUT" if obj_id else "POST" r = self.curl( request=request, url=url, enc_creds=enc_creds, token=token, data=template_xml, ) # check HTTP response if self.status_check(r, "Extension Attribute", ea_name, request) == "break": break if count > 5: self.output( "ERROR: Extension Attribute upload did not succeed after 5 attempts" ) self.output("\nHTTP POST Response Code: {}".format(r.status_code)) raise ProcessorError("ERROR: Extension Attribute upload failed ") if int(self.sleep) > 30: sleep(int(self.sleep)) else: sleep(30) def main(self): """Do the main thing here""" self.jamf_url = self.env.get("JSS_URL") self.jamf_user = self.env.get("API_USERNAME") self.jamf_password = self.env.get("API_PASSWORD") self.ea_script_path = self.env.get("ea_script_path") self.ea_name = self.env.get("ea_name") self.replace = self.env.get("replace_ea") self.ea_data_type = self.env.get("ea_data_type") self.ea_inventory_display = self.env.get("ea_inventory_display") self.sleep = self.env.get("sleep") # handle setting replace in overrides if not self.replace or self.replace == "False": self.replace = False # clear any pre-existing summary result if "jamfextensionattributeuploader_summary_result" in self.env: del self.env["jamfextensionattributeuploader_summary_result"] ea_uploaded = False # handle files with a relative path if not self.ea_script_path.startswith("/"): found_template = self.get_path_to_file(self.ea_script_path) if found_template: self.ea_script_path = found_template else: raise ProcessorError(f"ERROR: EA file {self.ea_script_path} not found") # now start the process of uploading the object self.output(f"Checking for existing '{self.ea_name}' on {self.jamf_url}") # obtain the relevant credentials token, send_creds, _ = self.handle_classic_auth( self.jamf_url, self.jamf_user, self.jamf_password ) # check for existing - requires obj_name obj_type = "extension_attribute" obj_name = self.ea_name obj_id = self.get_api_obj_id_from_name( self.jamf_url, obj_name, obj_type, enc_creds=send_creds, token=token, ) if obj_id: self.output( "Extension Attribute '{}' already exists: ID {}".format( self.ea_name, obj_id ) ) if self.replace: self.output( "Replacing existing Extension Attribute as 'replace_ea' is set to {}".format( self.replace ), verbose_level=1, ) else: self.output( "Not replacing existing Extension Attribute. Use replace_ea='True' to enforce.", verbose_level=1, ) return # upload the EA self.upload_ea( self.jamf_url, self.ea_name, self.ea_data_type, self.ea_inventory_display, self.ea_script_path, obj_id=obj_id, enc_creds=send_creds, token=token, ) ea_uploaded = True # output the summary self.env["extension_attribute"] = self.ea_name self.env["ea_uploaded"] = ea_uploaded if ea_uploaded: self.env["jamfextensionattributeuploader_summary_result"] = { "summary_text": ( "The following extension attributes were created or " "updated in Jamf Pro:" ), "report_fields": ["name", "path"], "data": {"name": self.ea_name, "path": self.ea_script_path}, } if __name__ == "__main__": PROCESSOR = JamfExtensionAttributeUploader() PROCESSOR.execute_shell()
normal
{ "blob_id": "31f91e67d0adde0a984a6d162ea5607f06e9208e", "index": 9876, "step-1": "<mask token>\n\n\nclass JamfExtensionAttributeUploader(JamfUploaderBase):\n description = (\n 'A processor for AutoPkg that will upload an Extension Attribute item to a Jamf Cloud or on-prem server.'\n )\n input_variables = {'JSS_URL': {'required': True, 'description':\n 'URL to a Jamf Pro server that the API user has write access to, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_USERNAME': {'required': True, 'description':\n 'Username of account with appropriate access to jss, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_PASSWORD': {'required': True, 'description':\n 'Password of api user, optionally set as a key in the com.github.autopkg preference file.'\n }, 'ea_name': {'required': False, 'description':\n 'Extension Attribute name', 'default': ''}, 'ea_script_path': {\n 'required': False, 'description':\n 'Full path to the script to be uploaded'}, 'replace_ea': {\n 'required': False, 'description':\n 'Overwrite an existing category if True.', 'default': False},\n 'ea_inventory_display': {'required': False, 'description':\n 'Inventory Display value for the EA.', 'default':\n 'Extension Attributes'}, 'ea_data_type': {'required': False,\n 'description':\n 'Data type for the EA. One of String, Integer or Date.', 'default':\n 'String'}, 'sleep': {'required': False, 'description':\n 'Pause after running this processor for specified seconds.',\n 'default': '0'}}\n output_variables = {'jamfextensionattributeuploader_summary_result': {\n 'description': 'Description of interesting results.'}}\n\n def upload_ea(self, jamf_url, ea_name, ea_data_type,\n ea_inventory_display, script_path, obj_id=None, enc_creds='', token=''\n ):\n \"\"\"Update extension attribute metadata.\"\"\"\n if os.path.exists(script_path):\n with open(script_path, 'r') as file:\n script_contents = file.read()\n else:\n raise ProcessorError('Script does not exist!')\n script_contents = self.substitute_assignable_keys(script_contents)\n script_contents_escaped = escape(script_contents)\n ea_data = ('<computer_extension_attribute>' + '<name>{}</name>'.\n format(ea_name) + '<enabled>true</enabled>' + '<description/>' +\n '<data_type>{}</data_type>'.format(ea_data_type) +\n '<input_type>' + ' <type>script</type>' +\n ' <platform>Mac</platform>' + ' <script>{}</script>'.format(\n script_contents_escaped) + '</input_type>' +\n '<inventory_display>{}</inventory_display>'.format(\n ea_inventory_display) +\n '<recon_display>Extension Attributes</recon_display>' +\n '</computer_extension_attribute>')\n self.output('Extension Attribute data:', verbose_level=2)\n self.output(ea_data, verbose_level=2)\n self.output('Uploading Extension Attribute..')\n template_xml = self.write_temp_file(ea_data)\n object_type = 'extension_attribute'\n url = '{}/{}/id/{}'.format(jamf_url, self.api_endpoints(object_type\n ), obj_id)\n count = 0\n while True:\n count += 1\n self.output('Extension Attribute upload attempt {}'.format(\n count), verbose_level=2)\n request = 'PUT' if obj_id else 'POST'\n r = self.curl(request=request, url=url, enc_creds=enc_creds,\n token=token, data=template_xml)\n if self.status_check(r, 'Extension Attribute', ea_name, request\n ) == 'break':\n break\n if count > 5:\n self.output(\n 'ERROR: Extension Attribute upload did not succeed after 5 attempts'\n )\n self.output('\\nHTTP POST Response Code: {}'.format(r.\n status_code))\n raise ProcessorError(\n 'ERROR: Extension Attribute upload failed ')\n if int(self.sleep) > 30:\n sleep(int(self.sleep))\n else:\n sleep(30)\n\n def main(self):\n \"\"\"Do the main thing here\"\"\"\n self.jamf_url = self.env.get('JSS_URL')\n self.jamf_user = self.env.get('API_USERNAME')\n self.jamf_password = self.env.get('API_PASSWORD')\n self.ea_script_path = self.env.get('ea_script_path')\n self.ea_name = self.env.get('ea_name')\n self.replace = self.env.get('replace_ea')\n self.ea_data_type = self.env.get('ea_data_type')\n self.ea_inventory_display = self.env.get('ea_inventory_display')\n self.sleep = self.env.get('sleep')\n if not self.replace or self.replace == 'False':\n self.replace = False\n if 'jamfextensionattributeuploader_summary_result' in self.env:\n del self.env['jamfextensionattributeuploader_summary_result']\n ea_uploaded = False\n if not self.ea_script_path.startswith('/'):\n found_template = self.get_path_to_file(self.ea_script_path)\n if found_template:\n self.ea_script_path = found_template\n else:\n raise ProcessorError(\n f'ERROR: EA file {self.ea_script_path} not found')\n self.output(\n f\"Checking for existing '{self.ea_name}' on {self.jamf_url}\")\n token, send_creds, _ = self.handle_classic_auth(self.jamf_url, self\n .jamf_user, self.jamf_password)\n obj_type = 'extension_attribute'\n obj_name = self.ea_name\n obj_id = self.get_api_obj_id_from_name(self.jamf_url, obj_name,\n obj_type, enc_creds=send_creds, token=token)\n if obj_id:\n self.output(\"Extension Attribute '{}' already exists: ID {}\".\n format(self.ea_name, obj_id))\n if self.replace:\n self.output(\n \"Replacing existing Extension Attribute as 'replace_ea' is set to {}\"\n .format(self.replace), verbose_level=1)\n else:\n self.output(\n \"Not replacing existing Extension Attribute. Use replace_ea='True' to enforce.\"\n , verbose_level=1)\n return\n self.upload_ea(self.jamf_url, self.ea_name, self.ea_data_type, self\n .ea_inventory_display, self.ea_script_path, obj_id=obj_id,\n enc_creds=send_creds, token=token)\n ea_uploaded = True\n self.env['extension_attribute'] = self.ea_name\n self.env['ea_uploaded'] = ea_uploaded\n if ea_uploaded:\n self.env['jamfextensionattributeuploader_summary_result'] = {\n 'summary_text':\n 'The following extension attributes were created or updated in Jamf Pro:'\n , 'report_fields': ['name', 'path'], 'data': {'name': self.\n ea_name, 'path': self.ea_script_path}}\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.insert(0, os.path.dirname(__file__))\n<mask token>\n\n\nclass JamfExtensionAttributeUploader(JamfUploaderBase):\n description = (\n 'A processor for AutoPkg that will upload an Extension Attribute item to a Jamf Cloud or on-prem server.'\n )\n input_variables = {'JSS_URL': {'required': True, 'description':\n 'URL to a Jamf Pro server that the API user has write access to, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_USERNAME': {'required': True, 'description':\n 'Username of account with appropriate access to jss, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_PASSWORD': {'required': True, 'description':\n 'Password of api user, optionally set as a key in the com.github.autopkg preference file.'\n }, 'ea_name': {'required': False, 'description':\n 'Extension Attribute name', 'default': ''}, 'ea_script_path': {\n 'required': False, 'description':\n 'Full path to the script to be uploaded'}, 'replace_ea': {\n 'required': False, 'description':\n 'Overwrite an existing category if True.', 'default': False},\n 'ea_inventory_display': {'required': False, 'description':\n 'Inventory Display value for the EA.', 'default':\n 'Extension Attributes'}, 'ea_data_type': {'required': False,\n 'description':\n 'Data type for the EA. One of String, Integer or Date.', 'default':\n 'String'}, 'sleep': {'required': False, 'description':\n 'Pause after running this processor for specified seconds.',\n 'default': '0'}}\n output_variables = {'jamfextensionattributeuploader_summary_result': {\n 'description': 'Description of interesting results.'}}\n\n def upload_ea(self, jamf_url, ea_name, ea_data_type,\n ea_inventory_display, script_path, obj_id=None, enc_creds='', token=''\n ):\n \"\"\"Update extension attribute metadata.\"\"\"\n if os.path.exists(script_path):\n with open(script_path, 'r') as file:\n script_contents = file.read()\n else:\n raise ProcessorError('Script does not exist!')\n script_contents = self.substitute_assignable_keys(script_contents)\n script_contents_escaped = escape(script_contents)\n ea_data = ('<computer_extension_attribute>' + '<name>{}</name>'.\n format(ea_name) + '<enabled>true</enabled>' + '<description/>' +\n '<data_type>{}</data_type>'.format(ea_data_type) +\n '<input_type>' + ' <type>script</type>' +\n ' <platform>Mac</platform>' + ' <script>{}</script>'.format(\n script_contents_escaped) + '</input_type>' +\n '<inventory_display>{}</inventory_display>'.format(\n ea_inventory_display) +\n '<recon_display>Extension Attributes</recon_display>' +\n '</computer_extension_attribute>')\n self.output('Extension Attribute data:', verbose_level=2)\n self.output(ea_data, verbose_level=2)\n self.output('Uploading Extension Attribute..')\n template_xml = self.write_temp_file(ea_data)\n object_type = 'extension_attribute'\n url = '{}/{}/id/{}'.format(jamf_url, self.api_endpoints(object_type\n ), obj_id)\n count = 0\n while True:\n count += 1\n self.output('Extension Attribute upload attempt {}'.format(\n count), verbose_level=2)\n request = 'PUT' if obj_id else 'POST'\n r = self.curl(request=request, url=url, enc_creds=enc_creds,\n token=token, data=template_xml)\n if self.status_check(r, 'Extension Attribute', ea_name, request\n ) == 'break':\n break\n if count > 5:\n self.output(\n 'ERROR: Extension Attribute upload did not succeed after 5 attempts'\n )\n self.output('\\nHTTP POST Response Code: {}'.format(r.\n status_code))\n raise ProcessorError(\n 'ERROR: Extension Attribute upload failed ')\n if int(self.sleep) > 30:\n sleep(int(self.sleep))\n else:\n sleep(30)\n\n def main(self):\n \"\"\"Do the main thing here\"\"\"\n self.jamf_url = self.env.get('JSS_URL')\n self.jamf_user = self.env.get('API_USERNAME')\n self.jamf_password = self.env.get('API_PASSWORD')\n self.ea_script_path = self.env.get('ea_script_path')\n self.ea_name = self.env.get('ea_name')\n self.replace = self.env.get('replace_ea')\n self.ea_data_type = self.env.get('ea_data_type')\n self.ea_inventory_display = self.env.get('ea_inventory_display')\n self.sleep = self.env.get('sleep')\n if not self.replace or self.replace == 'False':\n self.replace = False\n if 'jamfextensionattributeuploader_summary_result' in self.env:\n del self.env['jamfextensionattributeuploader_summary_result']\n ea_uploaded = False\n if not self.ea_script_path.startswith('/'):\n found_template = self.get_path_to_file(self.ea_script_path)\n if found_template:\n self.ea_script_path = found_template\n else:\n raise ProcessorError(\n f'ERROR: EA file {self.ea_script_path} not found')\n self.output(\n f\"Checking for existing '{self.ea_name}' on {self.jamf_url}\")\n token, send_creds, _ = self.handle_classic_auth(self.jamf_url, self\n .jamf_user, self.jamf_password)\n obj_type = 'extension_attribute'\n obj_name = self.ea_name\n obj_id = self.get_api_obj_id_from_name(self.jamf_url, obj_name,\n obj_type, enc_creds=send_creds, token=token)\n if obj_id:\n self.output(\"Extension Attribute '{}' already exists: ID {}\".\n format(self.ea_name, obj_id))\n if self.replace:\n self.output(\n \"Replacing existing Extension Attribute as 'replace_ea' is set to {}\"\n .format(self.replace), verbose_level=1)\n else:\n self.output(\n \"Not replacing existing Extension Attribute. Use replace_ea='True' to enforce.\"\n , verbose_level=1)\n return\n self.upload_ea(self.jamf_url, self.ea_name, self.ea_data_type, self\n .ea_inventory_display, self.ea_script_path, obj_id=obj_id,\n enc_creds=send_creds, token=token)\n ea_uploaded = True\n self.env['extension_attribute'] = self.ea_name\n self.env['ea_uploaded'] = ea_uploaded\n if ea_uploaded:\n self.env['jamfextensionattributeuploader_summary_result'] = {\n 'summary_text':\n 'The following extension attributes were created or updated in Jamf Pro:'\n , 'report_fields': ['name', 'path'], 'data': {'name': self.\n ea_name, 'path': self.ea_script_path}}\n\n\nif __name__ == '__main__':\n PROCESSOR = JamfExtensionAttributeUploader()\n PROCESSOR.execute_shell()\n", "step-3": "<mask token>\nsys.path.insert(0, os.path.dirname(__file__))\n<mask token>\n__all__ = ['JamfExtensionAttributeUploader']\n\n\nclass JamfExtensionAttributeUploader(JamfUploaderBase):\n description = (\n 'A processor for AutoPkg that will upload an Extension Attribute item to a Jamf Cloud or on-prem server.'\n )\n input_variables = {'JSS_URL': {'required': True, 'description':\n 'URL to a Jamf Pro server that the API user has write access to, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_USERNAME': {'required': True, 'description':\n 'Username of account with appropriate access to jss, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_PASSWORD': {'required': True, 'description':\n 'Password of api user, optionally set as a key in the com.github.autopkg preference file.'\n }, 'ea_name': {'required': False, 'description':\n 'Extension Attribute name', 'default': ''}, 'ea_script_path': {\n 'required': False, 'description':\n 'Full path to the script to be uploaded'}, 'replace_ea': {\n 'required': False, 'description':\n 'Overwrite an existing category if True.', 'default': False},\n 'ea_inventory_display': {'required': False, 'description':\n 'Inventory Display value for the EA.', 'default':\n 'Extension Attributes'}, 'ea_data_type': {'required': False,\n 'description':\n 'Data type for the EA. One of String, Integer or Date.', 'default':\n 'String'}, 'sleep': {'required': False, 'description':\n 'Pause after running this processor for specified seconds.',\n 'default': '0'}}\n output_variables = {'jamfextensionattributeuploader_summary_result': {\n 'description': 'Description of interesting results.'}}\n\n def upload_ea(self, jamf_url, ea_name, ea_data_type,\n ea_inventory_display, script_path, obj_id=None, enc_creds='', token=''\n ):\n \"\"\"Update extension attribute metadata.\"\"\"\n if os.path.exists(script_path):\n with open(script_path, 'r') as file:\n script_contents = file.read()\n else:\n raise ProcessorError('Script does not exist!')\n script_contents = self.substitute_assignable_keys(script_contents)\n script_contents_escaped = escape(script_contents)\n ea_data = ('<computer_extension_attribute>' + '<name>{}</name>'.\n format(ea_name) + '<enabled>true</enabled>' + '<description/>' +\n '<data_type>{}</data_type>'.format(ea_data_type) +\n '<input_type>' + ' <type>script</type>' +\n ' <platform>Mac</platform>' + ' <script>{}</script>'.format(\n script_contents_escaped) + '</input_type>' +\n '<inventory_display>{}</inventory_display>'.format(\n ea_inventory_display) +\n '<recon_display>Extension Attributes</recon_display>' +\n '</computer_extension_attribute>')\n self.output('Extension Attribute data:', verbose_level=2)\n self.output(ea_data, verbose_level=2)\n self.output('Uploading Extension Attribute..')\n template_xml = self.write_temp_file(ea_data)\n object_type = 'extension_attribute'\n url = '{}/{}/id/{}'.format(jamf_url, self.api_endpoints(object_type\n ), obj_id)\n count = 0\n while True:\n count += 1\n self.output('Extension Attribute upload attempt {}'.format(\n count), verbose_level=2)\n request = 'PUT' if obj_id else 'POST'\n r = self.curl(request=request, url=url, enc_creds=enc_creds,\n token=token, data=template_xml)\n if self.status_check(r, 'Extension Attribute', ea_name, request\n ) == 'break':\n break\n if count > 5:\n self.output(\n 'ERROR: Extension Attribute upload did not succeed after 5 attempts'\n )\n self.output('\\nHTTP POST Response Code: {}'.format(r.\n status_code))\n raise ProcessorError(\n 'ERROR: Extension Attribute upload failed ')\n if int(self.sleep) > 30:\n sleep(int(self.sleep))\n else:\n sleep(30)\n\n def main(self):\n \"\"\"Do the main thing here\"\"\"\n self.jamf_url = self.env.get('JSS_URL')\n self.jamf_user = self.env.get('API_USERNAME')\n self.jamf_password = self.env.get('API_PASSWORD')\n self.ea_script_path = self.env.get('ea_script_path')\n self.ea_name = self.env.get('ea_name')\n self.replace = self.env.get('replace_ea')\n self.ea_data_type = self.env.get('ea_data_type')\n self.ea_inventory_display = self.env.get('ea_inventory_display')\n self.sleep = self.env.get('sleep')\n if not self.replace or self.replace == 'False':\n self.replace = False\n if 'jamfextensionattributeuploader_summary_result' in self.env:\n del self.env['jamfextensionattributeuploader_summary_result']\n ea_uploaded = False\n if not self.ea_script_path.startswith('/'):\n found_template = self.get_path_to_file(self.ea_script_path)\n if found_template:\n self.ea_script_path = found_template\n else:\n raise ProcessorError(\n f'ERROR: EA file {self.ea_script_path} not found')\n self.output(\n f\"Checking for existing '{self.ea_name}' on {self.jamf_url}\")\n token, send_creds, _ = self.handle_classic_auth(self.jamf_url, self\n .jamf_user, self.jamf_password)\n obj_type = 'extension_attribute'\n obj_name = self.ea_name\n obj_id = self.get_api_obj_id_from_name(self.jamf_url, obj_name,\n obj_type, enc_creds=send_creds, token=token)\n if obj_id:\n self.output(\"Extension Attribute '{}' already exists: ID {}\".\n format(self.ea_name, obj_id))\n if self.replace:\n self.output(\n \"Replacing existing Extension Attribute as 'replace_ea' is set to {}\"\n .format(self.replace), verbose_level=1)\n else:\n self.output(\n \"Not replacing existing Extension Attribute. Use replace_ea='True' to enforce.\"\n , verbose_level=1)\n return\n self.upload_ea(self.jamf_url, self.ea_name, self.ea_data_type, self\n .ea_inventory_display, self.ea_script_path, obj_id=obj_id,\n enc_creds=send_creds, token=token)\n ea_uploaded = True\n self.env['extension_attribute'] = self.ea_name\n self.env['ea_uploaded'] = ea_uploaded\n if ea_uploaded:\n self.env['jamfextensionattributeuploader_summary_result'] = {\n 'summary_text':\n 'The following extension attributes were created or updated in Jamf Pro:'\n , 'report_fields': ['name', 'path'], 'data': {'name': self.\n ea_name, 'path': self.ea_script_path}}\n\n\nif __name__ == '__main__':\n PROCESSOR = JamfExtensionAttributeUploader()\n PROCESSOR.execute_shell()\n", "step-4": "<mask token>\nimport os\nimport sys\nfrom time import sleep\nfrom xml.sax.saxutils import escape\nfrom autopkglib import ProcessorError\nsys.path.insert(0, os.path.dirname(__file__))\nfrom JamfUploaderLib.JamfUploaderBase import JamfUploaderBase\n__all__ = ['JamfExtensionAttributeUploader']\n\n\nclass JamfExtensionAttributeUploader(JamfUploaderBase):\n description = (\n 'A processor for AutoPkg that will upload an Extension Attribute item to a Jamf Cloud or on-prem server.'\n )\n input_variables = {'JSS_URL': {'required': True, 'description':\n 'URL to a Jamf Pro server that the API user has write access to, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_USERNAME': {'required': True, 'description':\n 'Username of account with appropriate access to jss, optionally set as a key in the com.github.autopkg preference file.'\n }, 'API_PASSWORD': {'required': True, 'description':\n 'Password of api user, optionally set as a key in the com.github.autopkg preference file.'\n }, 'ea_name': {'required': False, 'description':\n 'Extension Attribute name', 'default': ''}, 'ea_script_path': {\n 'required': False, 'description':\n 'Full path to the script to be uploaded'}, 'replace_ea': {\n 'required': False, 'description':\n 'Overwrite an existing category if True.', 'default': False},\n 'ea_inventory_display': {'required': False, 'description':\n 'Inventory Display value for the EA.', 'default':\n 'Extension Attributes'}, 'ea_data_type': {'required': False,\n 'description':\n 'Data type for the EA. One of String, Integer or Date.', 'default':\n 'String'}, 'sleep': {'required': False, 'description':\n 'Pause after running this processor for specified seconds.',\n 'default': '0'}}\n output_variables = {'jamfextensionattributeuploader_summary_result': {\n 'description': 'Description of interesting results.'}}\n\n def upload_ea(self, jamf_url, ea_name, ea_data_type,\n ea_inventory_display, script_path, obj_id=None, enc_creds='', token=''\n ):\n \"\"\"Update extension attribute metadata.\"\"\"\n if os.path.exists(script_path):\n with open(script_path, 'r') as file:\n script_contents = file.read()\n else:\n raise ProcessorError('Script does not exist!')\n script_contents = self.substitute_assignable_keys(script_contents)\n script_contents_escaped = escape(script_contents)\n ea_data = ('<computer_extension_attribute>' + '<name>{}</name>'.\n format(ea_name) + '<enabled>true</enabled>' + '<description/>' +\n '<data_type>{}</data_type>'.format(ea_data_type) +\n '<input_type>' + ' <type>script</type>' +\n ' <platform>Mac</platform>' + ' <script>{}</script>'.format(\n script_contents_escaped) + '</input_type>' +\n '<inventory_display>{}</inventory_display>'.format(\n ea_inventory_display) +\n '<recon_display>Extension Attributes</recon_display>' +\n '</computer_extension_attribute>')\n self.output('Extension Attribute data:', verbose_level=2)\n self.output(ea_data, verbose_level=2)\n self.output('Uploading Extension Attribute..')\n template_xml = self.write_temp_file(ea_data)\n object_type = 'extension_attribute'\n url = '{}/{}/id/{}'.format(jamf_url, self.api_endpoints(object_type\n ), obj_id)\n count = 0\n while True:\n count += 1\n self.output('Extension Attribute upload attempt {}'.format(\n count), verbose_level=2)\n request = 'PUT' if obj_id else 'POST'\n r = self.curl(request=request, url=url, enc_creds=enc_creds,\n token=token, data=template_xml)\n if self.status_check(r, 'Extension Attribute', ea_name, request\n ) == 'break':\n break\n if count > 5:\n self.output(\n 'ERROR: Extension Attribute upload did not succeed after 5 attempts'\n )\n self.output('\\nHTTP POST Response Code: {}'.format(r.\n status_code))\n raise ProcessorError(\n 'ERROR: Extension Attribute upload failed ')\n if int(self.sleep) > 30:\n sleep(int(self.sleep))\n else:\n sleep(30)\n\n def main(self):\n \"\"\"Do the main thing here\"\"\"\n self.jamf_url = self.env.get('JSS_URL')\n self.jamf_user = self.env.get('API_USERNAME')\n self.jamf_password = self.env.get('API_PASSWORD')\n self.ea_script_path = self.env.get('ea_script_path')\n self.ea_name = self.env.get('ea_name')\n self.replace = self.env.get('replace_ea')\n self.ea_data_type = self.env.get('ea_data_type')\n self.ea_inventory_display = self.env.get('ea_inventory_display')\n self.sleep = self.env.get('sleep')\n if not self.replace or self.replace == 'False':\n self.replace = False\n if 'jamfextensionattributeuploader_summary_result' in self.env:\n del self.env['jamfextensionattributeuploader_summary_result']\n ea_uploaded = False\n if not self.ea_script_path.startswith('/'):\n found_template = self.get_path_to_file(self.ea_script_path)\n if found_template:\n self.ea_script_path = found_template\n else:\n raise ProcessorError(\n f'ERROR: EA file {self.ea_script_path} not found')\n self.output(\n f\"Checking for existing '{self.ea_name}' on {self.jamf_url}\")\n token, send_creds, _ = self.handle_classic_auth(self.jamf_url, self\n .jamf_user, self.jamf_password)\n obj_type = 'extension_attribute'\n obj_name = self.ea_name\n obj_id = self.get_api_obj_id_from_name(self.jamf_url, obj_name,\n obj_type, enc_creds=send_creds, token=token)\n if obj_id:\n self.output(\"Extension Attribute '{}' already exists: ID {}\".\n format(self.ea_name, obj_id))\n if self.replace:\n self.output(\n \"Replacing existing Extension Attribute as 'replace_ea' is set to {}\"\n .format(self.replace), verbose_level=1)\n else:\n self.output(\n \"Not replacing existing Extension Attribute. Use replace_ea='True' to enforce.\"\n , verbose_level=1)\n return\n self.upload_ea(self.jamf_url, self.ea_name, self.ea_data_type, self\n .ea_inventory_display, self.ea_script_path, obj_id=obj_id,\n enc_creds=send_creds, token=token)\n ea_uploaded = True\n self.env['extension_attribute'] = self.ea_name\n self.env['ea_uploaded'] = ea_uploaded\n if ea_uploaded:\n self.env['jamfextensionattributeuploader_summary_result'] = {\n 'summary_text':\n 'The following extension attributes were created or updated in Jamf Pro:'\n , 'report_fields': ['name', 'path'], 'data': {'name': self.\n ea_name, 'path': self.ea_script_path}}\n\n\nif __name__ == '__main__':\n PROCESSOR = JamfExtensionAttributeUploader()\n PROCESSOR.execute_shell()\n", "step-5": "#!/usr/local/autopkg/python\n\n\"\"\"\nJamfExtensionAttributeUploader processor for uploading extension attributes\nto Jamf Pro using AutoPkg\n by G Pugh\n\"\"\"\n\nimport os\nimport sys\nfrom time import sleep\nfrom xml.sax.saxutils import escape\nfrom autopkglib import ProcessorError # pylint: disable=import-error\n\n# to use a base module in AutoPkg we need to add this path to the sys.path.\n# this violates flake8 E402 (PEP8 imports) but is unavoidable, so the following\n# imports require noqa comments for E402\nsys.path.insert(0, os.path.dirname(__file__))\n\nfrom JamfUploaderLib.JamfUploaderBase import JamfUploaderBase # noqa: E402\n\n__all__ = [\"JamfExtensionAttributeUploader\"]\n\n\nclass JamfExtensionAttributeUploader(JamfUploaderBase):\n description = (\n \"A processor for AutoPkg that will upload an Extension Attribute item to a \"\n \"Jamf Cloud or on-prem server.\"\n )\n input_variables = {\n \"JSS_URL\": {\n \"required\": True,\n \"description\": \"URL to a Jamf Pro server that the API user has write access \"\n \"to, optionally set as a key in the com.github.autopkg \"\n \"preference file.\",\n },\n \"API_USERNAME\": {\n \"required\": True,\n \"description\": \"Username of account with appropriate access to \"\n \"jss, optionally set as a key in the com.github.autopkg \"\n \"preference file.\",\n },\n \"API_PASSWORD\": {\n \"required\": True,\n \"description\": \"Password of api user, optionally set as a key in \"\n \"the com.github.autopkg preference file.\",\n },\n \"ea_name\": {\n \"required\": False,\n \"description\": \"Extension Attribute name\",\n \"default\": \"\",\n },\n \"ea_script_path\": {\n \"required\": False,\n \"description\": \"Full path to the script to be uploaded\",\n },\n \"replace_ea\": {\n \"required\": False,\n \"description\": \"Overwrite an existing category if True.\",\n \"default\": False,\n },\n \"ea_inventory_display\": {\n \"required\": False,\n \"description\": \"Inventory Display value for the EA.\",\n \"default\": \"Extension Attributes\",\n },\n \"ea_data_type\": {\n \"required\": False,\n \"description\": \"Data type for the EA. One of String, Integer or Date.\",\n \"default\": \"String\",\n },\n \"sleep\": {\n \"required\": False,\n \"description\": \"Pause after running this processor for specified seconds.\",\n \"default\": \"0\",\n },\n }\n\n output_variables = {\n \"jamfextensionattributeuploader_summary_result\": {\n \"description\": \"Description of interesting results.\",\n },\n }\n\n def upload_ea(\n self,\n jamf_url,\n ea_name,\n ea_data_type,\n ea_inventory_display,\n script_path,\n obj_id=None,\n enc_creds=\"\",\n token=\"\",\n ):\n \"\"\"Update extension attribute metadata.\"\"\"\n # import script from file and replace any keys in the script\n if os.path.exists(script_path):\n with open(script_path, \"r\") as file:\n script_contents = file.read()\n else:\n raise ProcessorError(\"Script does not exist!\")\n\n # substitute user-assignable keys\n script_contents = self.substitute_assignable_keys(script_contents)\n\n # XML-escape the script\n script_contents_escaped = escape(script_contents)\n\n # build the object\n ea_data = (\n \"<computer_extension_attribute>\"\n + \"<name>{}</name>\".format(ea_name)\n + \"<enabled>true</enabled>\"\n + \"<description/>\"\n + \"<data_type>{}</data_type>\".format(ea_data_type)\n + \"<input_type>\"\n + \" <type>script</type>\"\n + \" <platform>Mac</platform>\"\n + \" <script>{}</script>\".format(script_contents_escaped)\n + \"</input_type>\"\n + \"<inventory_display>{}</inventory_display>\".format(ea_inventory_display)\n + \"<recon_display>Extension Attributes</recon_display>\"\n + \"</computer_extension_attribute>\"\n )\n self.output(\n \"Extension Attribute data:\",\n verbose_level=2,\n )\n self.output(\n ea_data,\n verbose_level=2,\n )\n\n self.output(\"Uploading Extension Attribute..\")\n # write the template to temp file\n template_xml = self.write_temp_file(ea_data)\n\n # if we find an object ID we put, if not, we post\n object_type = \"extension_attribute\"\n url = \"{}/{}/id/{}\".format(jamf_url, self.api_endpoints(object_type), obj_id)\n\n count = 0\n while True:\n count += 1\n self.output(\n \"Extension Attribute upload attempt {}\".format(count),\n verbose_level=2,\n )\n request = \"PUT\" if obj_id else \"POST\"\n r = self.curl(\n request=request,\n url=url,\n enc_creds=enc_creds,\n token=token,\n data=template_xml,\n )\n\n # check HTTP response\n if self.status_check(r, \"Extension Attribute\", ea_name, request) == \"break\":\n break\n if count > 5:\n self.output(\n \"ERROR: Extension Attribute upload did not succeed after 5 attempts\"\n )\n self.output(\"\\nHTTP POST Response Code: {}\".format(r.status_code))\n raise ProcessorError(\"ERROR: Extension Attribute upload failed \")\n if int(self.sleep) > 30:\n sleep(int(self.sleep))\n else:\n sleep(30)\n\n def main(self):\n \"\"\"Do the main thing here\"\"\"\n self.jamf_url = self.env.get(\"JSS_URL\")\n self.jamf_user = self.env.get(\"API_USERNAME\")\n self.jamf_password = self.env.get(\"API_PASSWORD\")\n self.ea_script_path = self.env.get(\"ea_script_path\")\n self.ea_name = self.env.get(\"ea_name\")\n self.replace = self.env.get(\"replace_ea\")\n self.ea_data_type = self.env.get(\"ea_data_type\")\n self.ea_inventory_display = self.env.get(\"ea_inventory_display\")\n self.sleep = self.env.get(\"sleep\")\n # handle setting replace in overrides\n if not self.replace or self.replace == \"False\":\n self.replace = False\n\n # clear any pre-existing summary result\n if \"jamfextensionattributeuploader_summary_result\" in self.env:\n del self.env[\"jamfextensionattributeuploader_summary_result\"]\n ea_uploaded = False\n\n # handle files with a relative path\n if not self.ea_script_path.startswith(\"/\"):\n found_template = self.get_path_to_file(self.ea_script_path)\n if found_template:\n self.ea_script_path = found_template\n else:\n raise ProcessorError(f\"ERROR: EA file {self.ea_script_path} not found\")\n\n # now start the process of uploading the object\n self.output(f\"Checking for existing '{self.ea_name}' on {self.jamf_url}\")\n\n # obtain the relevant credentials\n token, send_creds, _ = self.handle_classic_auth(\n self.jamf_url, self.jamf_user, self.jamf_password\n )\n\n # check for existing - requires obj_name\n obj_type = \"extension_attribute\"\n obj_name = self.ea_name\n obj_id = self.get_api_obj_id_from_name(\n self.jamf_url,\n obj_name,\n obj_type,\n enc_creds=send_creds,\n token=token,\n )\n\n if obj_id:\n self.output(\n \"Extension Attribute '{}' already exists: ID {}\".format(\n self.ea_name, obj_id\n )\n )\n if self.replace:\n self.output(\n \"Replacing existing Extension Attribute as 'replace_ea' is set to {}\".format(\n self.replace\n ),\n verbose_level=1,\n )\n else:\n self.output(\n \"Not replacing existing Extension Attribute. Use replace_ea='True' to enforce.\",\n verbose_level=1,\n )\n return\n\n # upload the EA\n self.upload_ea(\n self.jamf_url,\n self.ea_name,\n self.ea_data_type,\n self.ea_inventory_display,\n self.ea_script_path,\n obj_id=obj_id,\n enc_creds=send_creds,\n token=token,\n )\n ea_uploaded = True\n\n # output the summary\n self.env[\"extension_attribute\"] = self.ea_name\n self.env[\"ea_uploaded\"] = ea_uploaded\n if ea_uploaded:\n self.env[\"jamfextensionattributeuploader_summary_result\"] = {\n \"summary_text\": (\n \"The following extension attributes were created or \"\n \"updated in Jamf Pro:\"\n ),\n \"report_fields\": [\"name\", \"path\"],\n \"data\": {\"name\": self.ea_name, \"path\": self.ea_script_path},\n }\n\n\nif __name__ == \"__main__\":\n PROCESSOR = JamfExtensionAttributeUploader()\n PROCESSOR.execute_shell()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# Generated by Django 2.2.6 on 2019-10-10 07:02 import datetime from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='cronjob', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('titel', models.CharField(max_length=255)), ('adresse', models.URLField(max_length=255)), ('authentifizierung_checked', models.BooleanField(default=False)), ('benutzername', models.CharField(max_length=255)), ('passwort', models.CharField(max_length=255)), ('ausführen', models.DateTimeField(default=datetime.datetime(2019, 10, 10, 9, 2, 22, 105756))), ('benachrichtigung_fehlschlag', models.BooleanField(default=False)), ('benachrichtigung_erfolg', models.BooleanField(default=False)), ('benachrichtigung_deaktivierung', models.BooleanField(default=False)), ('antwort_speichern', models.BooleanField(default=False)), ], ), ]
normal
{ "blob_id": "af523777e32c44112bd37a4b9dcbc0941f7e8236", "index": 4242, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='cronjob', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('titel', models.CharField(max_length=\n 255)), ('adresse', models.URLField(max_length=255)), (\n 'authentifizierung_checked', models.BooleanField(default=False)), (\n 'benutzername', models.CharField(max_length=255)), ('passwort',\n models.CharField(max_length=255)), ('ausführen', models.\n DateTimeField(default=datetime.datetime(2019, 10, 10, 9, 2, 22, \n 105756))), ('benachrichtigung_fehlschlag', models.BooleanField(\n default=False)), ('benachrichtigung_erfolg', models.BooleanField(\n default=False)), ('benachrichtigung_deaktivierung', models.\n BooleanField(default=False)), ('antwort_speichern', models.\n BooleanField(default=False))])]\n", "step-4": "import datetime\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = []\n operations = [migrations.CreateModel(name='cronjob', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('titel', models.CharField(max_length=\n 255)), ('adresse', models.URLField(max_length=255)), (\n 'authentifizierung_checked', models.BooleanField(default=False)), (\n 'benutzername', models.CharField(max_length=255)), ('passwort',\n models.CharField(max_length=255)), ('ausführen', models.\n DateTimeField(default=datetime.datetime(2019, 10, 10, 9, 2, 22, \n 105756))), ('benachrichtigung_fehlschlag', models.BooleanField(\n default=False)), ('benachrichtigung_erfolg', models.BooleanField(\n default=False)), ('benachrichtigung_deaktivierung', models.\n BooleanField(default=False)), ('antwort_speichern', models.\n BooleanField(default=False))])]\n", "step-5": "# Generated by Django 2.2.6 on 2019-10-10 07:02\n\nimport datetime\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='cronjob',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('titel', models.CharField(max_length=255)),\n ('adresse', models.URLField(max_length=255)),\n ('authentifizierung_checked', models.BooleanField(default=False)),\n ('benutzername', models.CharField(max_length=255)),\n ('passwort', models.CharField(max_length=255)),\n ('ausführen', models.DateTimeField(default=datetime.datetime(2019, 10, 10, 9, 2, 22, 105756))),\n ('benachrichtigung_fehlschlag', models.BooleanField(default=False)),\n ('benachrichtigung_erfolg', models.BooleanField(default=False)),\n ('benachrichtigung_deaktivierung', models.BooleanField(default=False)),\n ('antwort_speichern', models.BooleanField(default=False)),\n ],\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys from io import BytesIO import telegram from flask import Flask, request, send_file from fsm import TocMachine API_TOKEN = '375541027:AAFvLkySNkMSGgOl7PtsPIsJgnxophQpllQ' WEBHOOK_URL = 'https://a140f4ad.ngrok.io/show-fsm' app = Flask(__name__) bot = telegram.Bot(token=API_TOKEN) machine = TocMachine( states=[ 'user', 'state3', 'state4', 'state5', 'state6', 'state7', 'state8', 'state9', 'state10', 'state11', 'state12', 'state13', 'state14', 'state15' ], transitions=[ { 'trigger': 'advance', 'source': 'user', 'dest': 'state3', 'conditions': 'is_going_from_state0_to_state3' }, { 'trigger': 'advance', 'source': 'state3', 'dest': 'state4', 'conditions': 'is_going_from_state3_to_state4' }, { 'trigger': 'advance', 'source': 'state4', 'dest': 'state5', 'conditions': 'is_going_from_state4_to_state5' }, { 'trigger': 'advance', 'source': 'state5', 'dest': 'state6', 'conditions': 'is_going_from_state5_to_state6' }, { 'trigger': 'advance', 'source': 'state5', 'dest': 'state7', 'conditions': 'is_going_from_state5_to_state7' }, { 'trigger': 'advance', 'source': 'state4', 'dest': 'state8', 'conditions': 'is_going_from_state4_to_state8' }, { 'trigger': 'advance', 'source': 'state8', 'dest': 'state9', 'conditions': 'is_going_from_state8_to_state9' }, { 'trigger': 'advance', 'source': 'state6', 'dest': 'state8', 'conditions': 'is_going_from_state6_to_state8' }, { 'trigger': 'advance', 'source': 'state7', 'dest': 'state8', 'conditions': 'is_going_from_state7_to_state8' }, { 'trigger': 'advance', 'source': 'state9', 'dest': 'state5', 'conditions': 'is_going_from_state9_to_state5' }, { 'trigger': 'advance', 'source': 'state9', 'dest': 'state10', 'conditions': 'is_going_from_state9_to_state10' }, { 'trigger': 'advance', 'source': 'state6', 'dest': 'state10', 'conditions': 'is_going_from_state6_to_state10' }, { 'trigger': 'advance', 'source': 'state7', 'dest': 'state10', 'conditions': 'is_going_from_state7_to_state10' }, { 'trigger': 'advance', 'source': 'state8', 'dest': 'state11', 'conditions': 'is_going_from_state8_to_state11' }, { 'trigger': 'advance', 'source': 'state11', 'dest': 'state10', 'conditions': 'is_going_from_state11_to_state10' }, { 'trigger': 'advance', 'source': 'state11', 'dest': 'state5', 'conditions': 'is_going_from_state11_to_state5' }, { 'trigger': 'advance', 'source': 'state8', 'dest': 'state12', 'conditions': 'is_going_from_state8_to_state12' }, { 'trigger': 'advance', 'source': 'state12', 'dest': 'state10', 'conditions': 'is_going_from_state12_to_state10' }, { 'trigger': 'advance', 'source': 'state12', 'dest': 'state5', 'conditions': 'is_going_from_state12_to_state5' }, { 'trigger': 'advance', 'source': 'state8', 'dest': 'state13', 'conditions': 'is_going_from_state8_to_state13' }, { 'trigger': 'advance', 'source': 'state13', 'dest': 'state10', 'conditions': 'is_going_from_state13_to_state10' }, { 'trigger': 'advance', 'source': 'state13', 'dest': 'state5', 'conditions': 'is_going_from_state13_to_state5' }, { 'trigger': 'advance', 'source': 'state8', 'dest': 'state14', 'conditions': 'is_going_from_state8_to_state14' }, { 'trigger': 'advance', 'source': 'state14', 'dest': 'state10', 'conditions': 'is_going_from_state14_to_state10' }, { 'trigger': 'advance', 'source': 'state14', 'dest': 'state5', 'conditions': 'is_going_from_state14_to_state5' }, { 'trigger': 'advance', 'source': 'state8', 'dest': 'state15', 'conditions': 'is_going_from_state8_to_state15' }, { 'trigger': 'advance', 'source': 'state15', 'dest': 'state10', 'conditions': 'is_going_from_state15_to_state10' }, { 'trigger': 'advance', 'source': 'state15', 'dest': 'state5', 'conditions': 'is_going_from_state15_to_state5' }, { 'trigger': 'go_back', 'source': [ 'state10' ], 'dest': 'user' } ], initial='user', auto_transitions=False, show_conditions=True, ) def _set_webhook(): status = bot.set_webhook(WEBHOOK_URL) if not status: print('Webhook setup failed') sys.exit(1) else: print('Your webhook URL has been set to "{}"'.format(WEBHOOK_URL)) @app.route('/hook', methods=['POST']) def webhook_handler(): update = telegram.Update.de_json(request.get_json(force=True), bot) machine.advance(update) return 'ok' @app.route('/show-fsm', methods=['GET']) def show_fsm(): byte_io = BytesIO() machine.graph.draw(byte_io, prog='dot', format='png') byte_io.seek(0) return send_file(byte_io, attachment_filename='fsm.png', mimetype='image/png') if __name__ == "__main__": _set_webhook() app.run()
normal
{ "blob_id": "984efa858e782777472d84aab85471616a05b0e0", "index": 2886, "step-1": "<mask token>\n\n\ndef _set_webhook():\n status = bot.set_webhook(WEBHOOK_URL)\n if not status:\n print('Webhook setup failed')\n sys.exit(1)\n else:\n print('Your webhook URL has been set to \"{}\"'.format(WEBHOOK_URL))\n\n\n@app.route('/hook', methods=['POST'])\ndef webhook_handler():\n update = telegram.Update.de_json(request.get_json(force=True), bot)\n machine.advance(update)\n return 'ok'\n\n\n@app.route('/show-fsm', methods=['GET'])\ndef show_fsm():\n byte_io = BytesIO()\n machine.graph.draw(byte_io, prog='dot', format='png')\n byte_io.seek(0)\n return send_file(byte_io, attachment_filename='fsm.png', mimetype=\n 'image/png')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef _set_webhook():\n status = bot.set_webhook(WEBHOOK_URL)\n if not status:\n print('Webhook setup failed')\n sys.exit(1)\n else:\n print('Your webhook URL has been set to \"{}\"'.format(WEBHOOK_URL))\n\n\n@app.route('/hook', methods=['POST'])\ndef webhook_handler():\n update = telegram.Update.de_json(request.get_json(force=True), bot)\n machine.advance(update)\n return 'ok'\n\n\n@app.route('/show-fsm', methods=['GET'])\ndef show_fsm():\n byte_io = BytesIO()\n machine.graph.draw(byte_io, prog='dot', format='png')\n byte_io.seek(0)\n return send_file(byte_io, attachment_filename='fsm.png', mimetype=\n 'image/png')\n\n\nif __name__ == '__main__':\n _set_webhook()\n app.run()\n", "step-3": "<mask token>\nAPI_TOKEN = '375541027:AAFvLkySNkMSGgOl7PtsPIsJgnxophQpllQ'\nWEBHOOK_URL = 'https://a140f4ad.ngrok.io/show-fsm'\napp = Flask(__name__)\nbot = telegram.Bot(token=API_TOKEN)\nmachine = TocMachine(states=['user', 'state3', 'state4', 'state5', 'state6',\n 'state7', 'state8', 'state9', 'state10', 'state11', 'state12',\n 'state13', 'state14', 'state15'], transitions=[{'trigger': 'advance',\n 'source': 'user', 'dest': 'state3', 'conditions':\n 'is_going_from_state0_to_state3'}, {'trigger': 'advance', 'source':\n 'state3', 'dest': 'state4', 'conditions':\n 'is_going_from_state3_to_state4'}, {'trigger': 'advance', 'source':\n 'state4', 'dest': 'state5', 'conditions':\n 'is_going_from_state4_to_state5'}, {'trigger': 'advance', 'source':\n 'state5', 'dest': 'state6', 'conditions':\n 'is_going_from_state5_to_state6'}, {'trigger': 'advance', 'source':\n 'state5', 'dest': 'state7', 'conditions':\n 'is_going_from_state5_to_state7'}, {'trigger': 'advance', 'source':\n 'state4', 'dest': 'state8', 'conditions':\n 'is_going_from_state4_to_state8'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state9', 'conditions':\n 'is_going_from_state8_to_state9'}, {'trigger': 'advance', 'source':\n 'state6', 'dest': 'state8', 'conditions':\n 'is_going_from_state6_to_state8'}, {'trigger': 'advance', 'source':\n 'state7', 'dest': 'state8', 'conditions':\n 'is_going_from_state7_to_state8'}, {'trigger': 'advance', 'source':\n 'state9', 'dest': 'state5', 'conditions':\n 'is_going_from_state9_to_state5'}, {'trigger': 'advance', 'source':\n 'state9', 'dest': 'state10', 'conditions':\n 'is_going_from_state9_to_state10'}, {'trigger': 'advance', 'source':\n 'state6', 'dest': 'state10', 'conditions':\n 'is_going_from_state6_to_state10'}, {'trigger': 'advance', 'source':\n 'state7', 'dest': 'state10', 'conditions':\n 'is_going_from_state7_to_state10'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state11', 'conditions':\n 'is_going_from_state8_to_state11'}, {'trigger': 'advance', 'source':\n 'state11', 'dest': 'state10', 'conditions':\n 'is_going_from_state11_to_state10'}, {'trigger': 'advance', 'source':\n 'state11', 'dest': 'state5', 'conditions':\n 'is_going_from_state11_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state12', 'conditions':\n 'is_going_from_state8_to_state12'}, {'trigger': 'advance', 'source':\n 'state12', 'dest': 'state10', 'conditions':\n 'is_going_from_state12_to_state10'}, {'trigger': 'advance', 'source':\n 'state12', 'dest': 'state5', 'conditions':\n 'is_going_from_state12_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state13', 'conditions':\n 'is_going_from_state8_to_state13'}, {'trigger': 'advance', 'source':\n 'state13', 'dest': 'state10', 'conditions':\n 'is_going_from_state13_to_state10'}, {'trigger': 'advance', 'source':\n 'state13', 'dest': 'state5', 'conditions':\n 'is_going_from_state13_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state14', 'conditions':\n 'is_going_from_state8_to_state14'}, {'trigger': 'advance', 'source':\n 'state14', 'dest': 'state10', 'conditions':\n 'is_going_from_state14_to_state10'}, {'trigger': 'advance', 'source':\n 'state14', 'dest': 'state5', 'conditions':\n 'is_going_from_state14_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state15', 'conditions':\n 'is_going_from_state8_to_state15'}, {'trigger': 'advance', 'source':\n 'state15', 'dest': 'state10', 'conditions':\n 'is_going_from_state15_to_state10'}, {'trigger': 'advance', 'source':\n 'state15', 'dest': 'state5', 'conditions':\n 'is_going_from_state15_to_state5'}, {'trigger': 'go_back', 'source': [\n 'state10'], 'dest': 'user'}], initial='user', auto_transitions=False,\n show_conditions=True)\n\n\ndef _set_webhook():\n status = bot.set_webhook(WEBHOOK_URL)\n if not status:\n print('Webhook setup failed')\n sys.exit(1)\n else:\n print('Your webhook URL has been set to \"{}\"'.format(WEBHOOK_URL))\n\n\n@app.route('/hook', methods=['POST'])\ndef webhook_handler():\n update = telegram.Update.de_json(request.get_json(force=True), bot)\n machine.advance(update)\n return 'ok'\n\n\n@app.route('/show-fsm', methods=['GET'])\ndef show_fsm():\n byte_io = BytesIO()\n machine.graph.draw(byte_io, prog='dot', format='png')\n byte_io.seek(0)\n return send_file(byte_io, attachment_filename='fsm.png', mimetype=\n 'image/png')\n\n\nif __name__ == '__main__':\n _set_webhook()\n app.run()\n", "step-4": "import sys\nfrom io import BytesIO\nimport telegram\nfrom flask import Flask, request, send_file\nfrom fsm import TocMachine\nAPI_TOKEN = '375541027:AAFvLkySNkMSGgOl7PtsPIsJgnxophQpllQ'\nWEBHOOK_URL = 'https://a140f4ad.ngrok.io/show-fsm'\napp = Flask(__name__)\nbot = telegram.Bot(token=API_TOKEN)\nmachine = TocMachine(states=['user', 'state3', 'state4', 'state5', 'state6',\n 'state7', 'state8', 'state9', 'state10', 'state11', 'state12',\n 'state13', 'state14', 'state15'], transitions=[{'trigger': 'advance',\n 'source': 'user', 'dest': 'state3', 'conditions':\n 'is_going_from_state0_to_state3'}, {'trigger': 'advance', 'source':\n 'state3', 'dest': 'state4', 'conditions':\n 'is_going_from_state3_to_state4'}, {'trigger': 'advance', 'source':\n 'state4', 'dest': 'state5', 'conditions':\n 'is_going_from_state4_to_state5'}, {'trigger': 'advance', 'source':\n 'state5', 'dest': 'state6', 'conditions':\n 'is_going_from_state5_to_state6'}, {'trigger': 'advance', 'source':\n 'state5', 'dest': 'state7', 'conditions':\n 'is_going_from_state5_to_state7'}, {'trigger': 'advance', 'source':\n 'state4', 'dest': 'state8', 'conditions':\n 'is_going_from_state4_to_state8'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state9', 'conditions':\n 'is_going_from_state8_to_state9'}, {'trigger': 'advance', 'source':\n 'state6', 'dest': 'state8', 'conditions':\n 'is_going_from_state6_to_state8'}, {'trigger': 'advance', 'source':\n 'state7', 'dest': 'state8', 'conditions':\n 'is_going_from_state7_to_state8'}, {'trigger': 'advance', 'source':\n 'state9', 'dest': 'state5', 'conditions':\n 'is_going_from_state9_to_state5'}, {'trigger': 'advance', 'source':\n 'state9', 'dest': 'state10', 'conditions':\n 'is_going_from_state9_to_state10'}, {'trigger': 'advance', 'source':\n 'state6', 'dest': 'state10', 'conditions':\n 'is_going_from_state6_to_state10'}, {'trigger': 'advance', 'source':\n 'state7', 'dest': 'state10', 'conditions':\n 'is_going_from_state7_to_state10'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state11', 'conditions':\n 'is_going_from_state8_to_state11'}, {'trigger': 'advance', 'source':\n 'state11', 'dest': 'state10', 'conditions':\n 'is_going_from_state11_to_state10'}, {'trigger': 'advance', 'source':\n 'state11', 'dest': 'state5', 'conditions':\n 'is_going_from_state11_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state12', 'conditions':\n 'is_going_from_state8_to_state12'}, {'trigger': 'advance', 'source':\n 'state12', 'dest': 'state10', 'conditions':\n 'is_going_from_state12_to_state10'}, {'trigger': 'advance', 'source':\n 'state12', 'dest': 'state5', 'conditions':\n 'is_going_from_state12_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state13', 'conditions':\n 'is_going_from_state8_to_state13'}, {'trigger': 'advance', 'source':\n 'state13', 'dest': 'state10', 'conditions':\n 'is_going_from_state13_to_state10'}, {'trigger': 'advance', 'source':\n 'state13', 'dest': 'state5', 'conditions':\n 'is_going_from_state13_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state14', 'conditions':\n 'is_going_from_state8_to_state14'}, {'trigger': 'advance', 'source':\n 'state14', 'dest': 'state10', 'conditions':\n 'is_going_from_state14_to_state10'}, {'trigger': 'advance', 'source':\n 'state14', 'dest': 'state5', 'conditions':\n 'is_going_from_state14_to_state5'}, {'trigger': 'advance', 'source':\n 'state8', 'dest': 'state15', 'conditions':\n 'is_going_from_state8_to_state15'}, {'trigger': 'advance', 'source':\n 'state15', 'dest': 'state10', 'conditions':\n 'is_going_from_state15_to_state10'}, {'trigger': 'advance', 'source':\n 'state15', 'dest': 'state5', 'conditions':\n 'is_going_from_state15_to_state5'}, {'trigger': 'go_back', 'source': [\n 'state10'], 'dest': 'user'}], initial='user', auto_transitions=False,\n show_conditions=True)\n\n\ndef _set_webhook():\n status = bot.set_webhook(WEBHOOK_URL)\n if not status:\n print('Webhook setup failed')\n sys.exit(1)\n else:\n print('Your webhook URL has been set to \"{}\"'.format(WEBHOOK_URL))\n\n\n@app.route('/hook', methods=['POST'])\ndef webhook_handler():\n update = telegram.Update.de_json(request.get_json(force=True), bot)\n machine.advance(update)\n return 'ok'\n\n\n@app.route('/show-fsm', methods=['GET'])\ndef show_fsm():\n byte_io = BytesIO()\n machine.graph.draw(byte_io, prog='dot', format='png')\n byte_io.seek(0)\n return send_file(byte_io, attachment_filename='fsm.png', mimetype=\n 'image/png')\n\n\nif __name__ == '__main__':\n _set_webhook()\n app.run()\n", "step-5": "import sys\nfrom io import BytesIO\n\nimport telegram\nfrom flask import Flask, request, send_file\n\nfrom fsm import TocMachine\n\n\nAPI_TOKEN = '375541027:AAFvLkySNkMSGgOl7PtsPIsJgnxophQpllQ'\nWEBHOOK_URL = 'https://a140f4ad.ngrok.io/show-fsm'\n\napp = Flask(__name__)\nbot = telegram.Bot(token=API_TOKEN)\nmachine = TocMachine(\n states=[\n 'user',\n 'state3',\n 'state4',\n 'state5',\n 'state6',\n 'state7',\n 'state8',\n 'state9',\n 'state10',\n 'state11',\n 'state12',\n 'state13',\n 'state14',\n 'state15'\n ],\n transitions=[\n {\n 'trigger': 'advance',\n 'source': 'user',\n 'dest': 'state3',\n 'conditions': 'is_going_from_state0_to_state3'\n },\n {\n 'trigger': 'advance',\n 'source': 'state3',\n 'dest': 'state4',\n 'conditions': 'is_going_from_state3_to_state4'\n },\n {\n 'trigger': 'advance',\n 'source': 'state4',\n 'dest': 'state5',\n 'conditions': 'is_going_from_state4_to_state5'\n },\n {\n 'trigger': 'advance',\n 'source': 'state5',\n 'dest': 'state6',\n 'conditions': 'is_going_from_state5_to_state6'\n },\n {\n 'trigger': 'advance',\n 'source': 'state5',\n 'dest': 'state7',\n 'conditions': 'is_going_from_state5_to_state7'\n },\n {\n 'trigger': 'advance',\n 'source': 'state4',\n 'dest': 'state8',\n 'conditions': 'is_going_from_state4_to_state8'\n },\n {\n 'trigger': 'advance',\n 'source': 'state8',\n 'dest': 'state9',\n 'conditions': 'is_going_from_state8_to_state9'\n },\n {\n 'trigger': 'advance',\n 'source': 'state6',\n 'dest': 'state8',\n 'conditions': 'is_going_from_state6_to_state8'\n },\n {\n 'trigger': 'advance',\n 'source': 'state7',\n 'dest': 'state8',\n 'conditions': 'is_going_from_state7_to_state8'\n },\n {\n 'trigger': 'advance',\n 'source': 'state9',\n 'dest': 'state5',\n 'conditions': 'is_going_from_state9_to_state5'\n },\n {\n 'trigger': 'advance',\n 'source': 'state9',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state9_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state6',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state6_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state7',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state7_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state8',\n 'dest': 'state11',\n 'conditions': 'is_going_from_state8_to_state11'\n },\n {\n 'trigger': 'advance',\n 'source': 'state11',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state11_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state11',\n 'dest': 'state5',\n 'conditions': 'is_going_from_state11_to_state5'\n },\n {\n 'trigger': 'advance',\n 'source': 'state8',\n 'dest': 'state12',\n 'conditions': 'is_going_from_state8_to_state12'\n },\n {\n 'trigger': 'advance',\n 'source': 'state12',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state12_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state12',\n 'dest': 'state5',\n 'conditions': 'is_going_from_state12_to_state5'\n },\n {\n 'trigger': 'advance',\n 'source': 'state8',\n 'dest': 'state13',\n 'conditions': 'is_going_from_state8_to_state13'\n },\n {\n 'trigger': 'advance',\n 'source': 'state13',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state13_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state13',\n 'dest': 'state5',\n 'conditions': 'is_going_from_state13_to_state5'\n },\n {\n 'trigger': 'advance',\n 'source': 'state8',\n 'dest': 'state14',\n 'conditions': 'is_going_from_state8_to_state14'\n },\n {\n 'trigger': 'advance',\n 'source': 'state14',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state14_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state14',\n 'dest': 'state5',\n 'conditions': 'is_going_from_state14_to_state5'\n },\n {\n 'trigger': 'advance',\n 'source': 'state8',\n 'dest': 'state15',\n 'conditions': 'is_going_from_state8_to_state15'\n },\n {\n 'trigger': 'advance',\n 'source': 'state15',\n 'dest': 'state10',\n 'conditions': 'is_going_from_state15_to_state10'\n },\n {\n 'trigger': 'advance',\n 'source': 'state15',\n 'dest': 'state5',\n 'conditions': 'is_going_from_state15_to_state5'\n },\n {\n 'trigger': 'go_back',\n 'source': [\n 'state10'\n ],\n 'dest': 'user'\n }\n ],\n initial='user',\n auto_transitions=False,\n show_conditions=True,\n)\n\n\ndef _set_webhook():\n status = bot.set_webhook(WEBHOOK_URL)\n if not status:\n print('Webhook setup failed')\n sys.exit(1)\n else:\n print('Your webhook URL has been set to \"{}\"'.format(WEBHOOK_URL))\n\n\n@app.route('/hook', methods=['POST'])\ndef webhook_handler():\n update = telegram.Update.de_json(request.get_json(force=True), bot)\n machine.advance(update)\n return 'ok'\n\n\n@app.route('/show-fsm', methods=['GET'])\ndef show_fsm():\n byte_io = BytesIO()\n machine.graph.draw(byte_io, prog='dot', format='png')\n byte_io.seek(0)\n return send_file(byte_io, attachment_filename='fsm.png', mimetype='image/png')\n\n\nif __name__ == \"__main__\":\n _set_webhook()\n app.run()\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from django.test import TestCase, Client from accounts.models import Account from .data import account from rest_framework import status class TestAccountRequests(TestCase): def setUp(self): self.client = Client() self.superuser = Account.objects.create_superuser(**account) def test_register_admin(self): response = self.client.post(f'/account/register/', data=account, content_type='application/json') self.assertTrue(status.HTTP_200_OK, response.status_code) def test_login(self): data = { 'email': 'office@theoscoding.com', 'password': 'Pwd1q2w3e', } Account.objects.create(**data) response = self.client.post(f'/account/login/', data=data, content_type='application/json') self.assertTrue(status.HTTP_200_OK, response.status_code)
normal
{ "blob_id": "3d43bf0d0ca1df06b3647a33f88cee067eeff9f4", "index": 2605, "step-1": "<mask token>\n\n\nclass TestAccountRequests(TestCase):\n\n def setUp(self):\n self.client = Client()\n self.superuser = Account.objects.create_superuser(**account)\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass TestAccountRequests(TestCase):\n\n def setUp(self):\n self.client = Client()\n self.superuser = Account.objects.create_superuser(**account)\n\n def test_register_admin(self):\n response = self.client.post(f'/account/register/', data=account,\n content_type='application/json')\n self.assertTrue(status.HTTP_200_OK, response.status_code)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass TestAccountRequests(TestCase):\n\n def setUp(self):\n self.client = Client()\n self.superuser = Account.objects.create_superuser(**account)\n\n def test_register_admin(self):\n response = self.client.post(f'/account/register/', data=account,\n content_type='application/json')\n self.assertTrue(status.HTTP_200_OK, response.status_code)\n\n def test_login(self):\n data = {'email': 'office@theoscoding.com', 'password': 'Pwd1q2w3e'}\n Account.objects.create(**data)\n response = self.client.post(f'/account/login/', data=data,\n content_type='application/json')\n self.assertTrue(status.HTTP_200_OK, response.status_code)\n", "step-4": "from django.test import TestCase, Client\nfrom accounts.models import Account\nfrom .data import account\nfrom rest_framework import status\n\n\nclass TestAccountRequests(TestCase):\n\n def setUp(self):\n self.client = Client()\n self.superuser = Account.objects.create_superuser(**account)\n\n def test_register_admin(self):\n response = self.client.post(f'/account/register/', data=account,\n content_type='application/json')\n self.assertTrue(status.HTTP_200_OK, response.status_code)\n\n def test_login(self):\n data = {'email': 'office@theoscoding.com', 'password': 'Pwd1q2w3e'}\n Account.objects.create(**data)\n response = self.client.post(f'/account/login/', data=data,\n content_type='application/json')\n self.assertTrue(status.HTTP_200_OK, response.status_code)\n", "step-5": "from django.test import TestCase, Client\n\nfrom accounts.models import Account\nfrom .data import account\nfrom rest_framework import status\n\n\nclass TestAccountRequests(TestCase):\n def setUp(self):\n self.client = Client()\n self.superuser = Account.objects.create_superuser(**account)\n\n def test_register_admin(self):\n response = self.client.post(f'/account/register/', data=account,\n content_type='application/json')\n\n self.assertTrue(status.HTTP_200_OK, response.status_code)\n\n def test_login(self):\n data = {\n 'email': 'office@theoscoding.com',\n 'password': 'Pwd1q2w3e',\n }\n Account.objects.create(**data)\n response = self.client.post(f'/account/login/', data=data,\n content_type='application/json')\n\n self.assertTrue(status.HTTP_200_OK, response.status_code)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from django.db import models from django.conf import settings from django.utils.translation import ugettext_lazy as _ from model_utils.models import TimeStampedModel user = settings.AUTH_USER_MODEL commment_lenght = settings.COMMENT_LENGTH # Entity Comment class Comment(TimeStampedModel): """ Text comment posted by users """ # User - Foreign key user = models.ForeignKey(user, blank=False, null=False, related_name='comment_user') # Parent comment (optional) - i.e. a comment of a comment starting_comment = models.ForeignKey('Comment', blank=True, null=True, related_name='parent_comment') # Text content of a comment content = models.TextField(_('comment text'), max_length=commment_lenght, blank=False, null=False) class Meta: verbose_name = _('comment') verbose_name_plural = _('comments') def __unicode__(self): return self.content def get_content(self): "Returns the text content for the comment" return self.content def get_user_id(self): "Returns the id of the user who posted the comment" return self.comment_user.pk def get_date(self): "Returns the timestamp associated to the comment" return self.created def get_parent_comment_id(self): "Returns the id of the parent comment" return self.parent_comment.pk def set_parent_comment(parent_comment): self.starting_comment = parent_comment # Entity Cigarette class Cigarette(models.Model): """ Cigarette smoked by a user """ # User - Foreign key user = models.ForeignKey(user, blank=False, null=False, related_name='user_cigarettes') # Date and time associated to the cigarette cigarette_date = models.DateField(_('cigarette date'), auto_now_add=True) cigarette_time = models.TimeField(_('cigarette time'), auto_now_add=True) class Meta: verbose_name = _('cigarette') verbose_name_plural = _('cigarettes') def __unicode__(self): return u'%s' % ( self.pk) def get_cigarette_user_id(self): "Returns the user id who smoked the cigarette" return self.cigarette_user.pk def get_date(self): "Returns the date associated to the cigarette" return self.cigarette_date def get_time(self): "Returns the time associated to the cigarette" return self.cigarette_time
normal
{ "blob_id": "68ea462f56ba029a7c977d9c8b94e6f913336fb7", "index": 4680, "step-1": "<mask token>\n\n\nclass Cigarette(models.Model):\n <mask token>\n user = models.ForeignKey(user, blank=False, null=False, related_name=\n 'user_cigarettes')\n cigarette_date = models.DateField(_('cigarette date'), auto_now_add=True)\n cigarette_time = models.TimeField(_('cigarette time'), auto_now_add=True)\n\n\n class Meta:\n verbose_name = _('cigarette')\n verbose_name_plural = _('cigarettes')\n\n def __unicode__(self):\n return u'%s' % self.pk\n\n def get_cigarette_user_id(self):\n \"\"\"Returns the user id who smoked the cigarette\"\"\"\n return self.cigarette_user.pk\n\n def get_date(self):\n \"\"\"Returns the date associated to the cigarette\"\"\"\n return self.cigarette_date\n\n def get_time(self):\n \"\"\"Returns the time associated to the cigarette\"\"\"\n return self.cigarette_time\n", "step-2": "<mask token>\n\n\nclass Comment(TimeStampedModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n verbose_name = _('comment')\n verbose_name_plural = _('comments')\n\n def __unicode__(self):\n return self.content\n <mask token>\n\n def get_user_id(self):\n \"\"\"Returns the id of the user who posted the comment\"\"\"\n return self.comment_user.pk\n <mask token>\n\n def get_parent_comment_id(self):\n \"\"\"Returns the id of the parent comment\"\"\"\n return self.parent_comment.pk\n\n def set_parent_comment(parent_comment):\n self.starting_comment = parent_comment\n\n\nclass Cigarette(models.Model):\n \"\"\"\n Cigarette smoked by a user\n \"\"\"\n user = models.ForeignKey(user, blank=False, null=False, related_name=\n 'user_cigarettes')\n cigarette_date = models.DateField(_('cigarette date'), auto_now_add=True)\n cigarette_time = models.TimeField(_('cigarette time'), auto_now_add=True)\n\n\n class Meta:\n verbose_name = _('cigarette')\n verbose_name_plural = _('cigarettes')\n\n def __unicode__(self):\n return u'%s' % self.pk\n\n def get_cigarette_user_id(self):\n \"\"\"Returns the user id who smoked the cigarette\"\"\"\n return self.cigarette_user.pk\n\n def get_date(self):\n \"\"\"Returns the date associated to the cigarette\"\"\"\n return self.cigarette_date\n\n def get_time(self):\n \"\"\"Returns the time associated to the cigarette\"\"\"\n return self.cigarette_time\n", "step-3": "<mask token>\n\n\nclass Comment(TimeStampedModel):\n \"\"\"\n Text comment posted by users\n \"\"\"\n user = models.ForeignKey(user, blank=False, null=False, related_name=\n 'comment_user')\n starting_comment = models.ForeignKey('Comment', blank=True, null=True,\n related_name='parent_comment')\n content = models.TextField(_('comment text'), max_length=\n commment_lenght, blank=False, null=False)\n\n\n class Meta:\n verbose_name = _('comment')\n verbose_name_plural = _('comments')\n\n def __unicode__(self):\n return self.content\n\n def get_content(self):\n \"\"\"Returns the text content for the comment\"\"\"\n return self.content\n\n def get_user_id(self):\n \"\"\"Returns the id of the user who posted the comment\"\"\"\n return self.comment_user.pk\n\n def get_date(self):\n \"\"\"Returns the timestamp associated to the comment\"\"\"\n return self.created\n\n def get_parent_comment_id(self):\n \"\"\"Returns the id of the parent comment\"\"\"\n return self.parent_comment.pk\n\n def set_parent_comment(parent_comment):\n self.starting_comment = parent_comment\n\n\nclass Cigarette(models.Model):\n \"\"\"\n Cigarette smoked by a user\n \"\"\"\n user = models.ForeignKey(user, blank=False, null=False, related_name=\n 'user_cigarettes')\n cigarette_date = models.DateField(_('cigarette date'), auto_now_add=True)\n cigarette_time = models.TimeField(_('cigarette time'), auto_now_add=True)\n\n\n class Meta:\n verbose_name = _('cigarette')\n verbose_name_plural = _('cigarettes')\n\n def __unicode__(self):\n return u'%s' % self.pk\n\n def get_cigarette_user_id(self):\n \"\"\"Returns the user id who smoked the cigarette\"\"\"\n return self.cigarette_user.pk\n\n def get_date(self):\n \"\"\"Returns the date associated to the cigarette\"\"\"\n return self.cigarette_date\n\n def get_time(self):\n \"\"\"Returns the time associated to the cigarette\"\"\"\n return self.cigarette_time\n", "step-4": "<mask token>\nuser = settings.AUTH_USER_MODEL\ncommment_lenght = settings.COMMENT_LENGTH\n\n\nclass Comment(TimeStampedModel):\n \"\"\"\n Text comment posted by users\n \"\"\"\n user = models.ForeignKey(user, blank=False, null=False, related_name=\n 'comment_user')\n starting_comment = models.ForeignKey('Comment', blank=True, null=True,\n related_name='parent_comment')\n content = models.TextField(_('comment text'), max_length=\n commment_lenght, blank=False, null=False)\n\n\n class Meta:\n verbose_name = _('comment')\n verbose_name_plural = _('comments')\n\n def __unicode__(self):\n return self.content\n\n def get_content(self):\n \"\"\"Returns the text content for the comment\"\"\"\n return self.content\n\n def get_user_id(self):\n \"\"\"Returns the id of the user who posted the comment\"\"\"\n return self.comment_user.pk\n\n def get_date(self):\n \"\"\"Returns the timestamp associated to the comment\"\"\"\n return self.created\n\n def get_parent_comment_id(self):\n \"\"\"Returns the id of the parent comment\"\"\"\n return self.parent_comment.pk\n\n def set_parent_comment(parent_comment):\n self.starting_comment = parent_comment\n\n\nclass Cigarette(models.Model):\n \"\"\"\n Cigarette smoked by a user\n \"\"\"\n user = models.ForeignKey(user, blank=False, null=False, related_name=\n 'user_cigarettes')\n cigarette_date = models.DateField(_('cigarette date'), auto_now_add=True)\n cigarette_time = models.TimeField(_('cigarette time'), auto_now_add=True)\n\n\n class Meta:\n verbose_name = _('cigarette')\n verbose_name_plural = _('cigarettes')\n\n def __unicode__(self):\n return u'%s' % self.pk\n\n def get_cigarette_user_id(self):\n \"\"\"Returns the user id who smoked the cigarette\"\"\"\n return self.cigarette_user.pk\n\n def get_date(self):\n \"\"\"Returns the date associated to the cigarette\"\"\"\n return self.cigarette_date\n\n def get_time(self):\n \"\"\"Returns the time associated to the cigarette\"\"\"\n return self.cigarette_time\n", "step-5": "from django.db import models\nfrom django.conf import settings\nfrom django.utils.translation import ugettext_lazy as _\nfrom model_utils.models import TimeStampedModel\n\nuser = settings.AUTH_USER_MODEL\ncommment_lenght = settings.COMMENT_LENGTH\n\n\n# Entity Comment\nclass Comment(TimeStampedModel):\n \"\"\"\n Text comment posted by users\n \"\"\"\n\n # User - Foreign key\n user = models.ForeignKey(user, blank=False, null=False, related_name='comment_user')\n # Parent comment (optional) - i.e. a comment of a comment\n starting_comment = models.ForeignKey('Comment', blank=True, null=True, related_name='parent_comment')\n # Text content of a comment\n content = models.TextField(_('comment text'), max_length=commment_lenght, blank=False, null=False)\n\n class Meta:\n verbose_name = _('comment')\n verbose_name_plural = _('comments')\n\n def __unicode__(self):\n return self.content\n\n def get_content(self):\n \"Returns the text content for the comment\"\n return self.content\n\n def get_user_id(self):\n \"Returns the id of the user who posted the comment\"\n return self.comment_user.pk\n\n def get_date(self):\n \"Returns the timestamp associated to the comment\"\n return self.created\n\n def get_parent_comment_id(self):\n \"Returns the id of the parent comment\"\n return self.parent_comment.pk\n\n\n def set_parent_comment(parent_comment):\n self.starting_comment = parent_comment\n\n\n# Entity Cigarette\nclass Cigarette(models.Model):\n \"\"\"\n Cigarette smoked by a user\n \"\"\"\n\n # User - Foreign key\n user = models.ForeignKey(user, blank=False, null=False, related_name='user_cigarettes')\n # Date and time associated to the cigarette\n cigarette_date = models.DateField(_('cigarette date'), auto_now_add=True)\n cigarette_time = models.TimeField(_('cigarette time'), auto_now_add=True)\n\n class Meta:\n verbose_name = _('cigarette')\n verbose_name_plural = _('cigarettes')\n\n def __unicode__(self):\n return u'%s' % ( self.pk)\n\n\n def get_cigarette_user_id(self):\n \"Returns the user id who smoked the cigarette\"\n return self.cigarette_user.pk\n\n def get_date(self):\n \"Returns the date associated to the cigarette\"\n return self.cigarette_date\n\n def get_time(self):\n \"Returns the time associated to the cigarette\"\n return self.cigarette_time\n\n\n", "step-ids": [ 6, 12, 16, 17, 19 ] }
[ 6, 12, 16, 17, 19 ]
# 15650번 수열 2번째 n, m = list(map(int, input().split())) arr = [i for i in range(1,n+1)] check = [] def seq(ctn, array, l): if sorted(check) in array: return # if ctn == m: # # l+=1 # # print('ctn :',ctn,' check :',sorted(check)) # array.append(sorted(check)) # for k in range(m): # print(check[k], end = ' ') # print() # return for i in range(n): l += 1 check.append(arr[i]) seq(ctn+1, array, l) check.pop() print('l :',l,' i :',i) seq(0,[], 1)
normal
{ "blob_id": "dc5d56d65417dd8061a018a2f07132b03e2d616e", "index": 5127, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef seq(ctn, array, l):\n if sorted(check) in array:\n return\n for i in range(n):\n l += 1\n check.append(arr[i])\n seq(ctn + 1, array, l)\n check.pop()\n print('l :', l, ' i :', i)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef seq(ctn, array, l):\n if sorted(check) in array:\n return\n for i in range(n):\n l += 1\n check.append(arr[i])\n seq(ctn + 1, array, l)\n check.pop()\n print('l :', l, ' i :', i)\n\n\nseq(0, [], 1)\n", "step-4": "n, m = list(map(int, input().split()))\narr = [i for i in range(1, n + 1)]\ncheck = []\n\n\ndef seq(ctn, array, l):\n if sorted(check) in array:\n return\n for i in range(n):\n l += 1\n check.append(arr[i])\n seq(ctn + 1, array, l)\n check.pop()\n print('l :', l, ' i :', i)\n\n\nseq(0, [], 1)\n", "step-5": "# 15650번 수열 2번째\n\nn, m = list(map(int, input().split()))\n\narr = [i for i in range(1,n+1)]\ncheck = []\n\ndef seq(ctn, array, l):\n if sorted(check) in array:\n return\n # if ctn == m:\n # # l+=1\n # # print('ctn :',ctn,' check :',sorted(check))\n # array.append(sorted(check))\n # for k in range(m):\n # print(check[k], end = ' ')\n # print()\n # return\n\n for i in range(n):\n l += 1\n check.append(arr[i])\n seq(ctn+1, array, l)\n check.pop()\n print('l :',l,' i :',i)\n\n\nseq(0,[], 1)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import logging from blogofile.cache import bf github = bf.config.controllers.github from github2.client import Github github_api = Github() config = { "name": "Github", "description": "Makes a nice github project listing for the sidebar", "priority": 95.0, } def get_list(user): """ Each item in the list has: name, url, description, forks, watchers, homepage, open_issues """ return [g for g in github_api.repos.list(user) if not g.fork] def run(): github.logger = logging.getLogger(config['name']) github.repo_list = get_list(github.user) github.full_repo_list = github_api.repos.list(github.user)
normal
{ "blob_id": "ee2cf6c472fa955ba3718bf3a3f60b66811b4907", "index": 4705, "step-1": "<mask token>\n\n\ndef get_list(user):\n \"\"\"\n Each item in the list has:\n name, url, description, forks, watchers, homepage, open_issues\n\n \"\"\"\n return [g for g in github_api.repos.list(user) if not g.fork]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_list(user):\n \"\"\"\n Each item in the list has:\n name, url, description, forks, watchers, homepage, open_issues\n\n \"\"\"\n return [g for g in github_api.repos.list(user) if not g.fork]\n\n\ndef run():\n github.logger = logging.getLogger(config['name'])\n github.repo_list = get_list(github.user)\n github.full_repo_list = github_api.repos.list(github.user)\n", "step-3": "<mask token>\ngithub = bf.config.controllers.github\n<mask token>\ngithub_api = Github()\nconfig = {'name': 'Github', 'description':\n 'Makes a nice github project listing for the sidebar', 'priority': 95.0}\n\n\ndef get_list(user):\n \"\"\"\n Each item in the list has:\n name, url, description, forks, watchers, homepage, open_issues\n\n \"\"\"\n return [g for g in github_api.repos.list(user) if not g.fork]\n\n\ndef run():\n github.logger = logging.getLogger(config['name'])\n github.repo_list = get_list(github.user)\n github.full_repo_list = github_api.repos.list(github.user)\n", "step-4": "import logging\nfrom blogofile.cache import bf\ngithub = bf.config.controllers.github\nfrom github2.client import Github\ngithub_api = Github()\nconfig = {'name': 'Github', 'description':\n 'Makes a nice github project listing for the sidebar', 'priority': 95.0}\n\n\ndef get_list(user):\n \"\"\"\n Each item in the list has:\n name, url, description, forks, watchers, homepage, open_issues\n\n \"\"\"\n return [g for g in github_api.repos.list(user) if not g.fork]\n\n\ndef run():\n github.logger = logging.getLogger(config['name'])\n github.repo_list = get_list(github.user)\n github.full_repo_list = github_api.repos.list(github.user)\n", "step-5": "import logging\n\nfrom blogofile.cache import bf\ngithub = bf.config.controllers.github\n\nfrom github2.client import Github\ngithub_api = Github()\n\nconfig = {\n \"name\": \"Github\",\n \"description\": \"Makes a nice github project listing for the sidebar\",\n \"priority\": 95.0,\n }\n\ndef get_list(user):\n \"\"\"\n Each item in the list has:\n name, url, description, forks, watchers, homepage, open_issues\n\n \"\"\"\n return [g for g in github_api.repos.list(user) if not g.fork]\n\n\ndef run():\n github.logger = logging.getLogger(config['name'])\n github.repo_list = get_list(github.user)\n github.full_repo_list = github_api.repos.list(github.user)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import sys try: myfile = open("mydata.txt",encoding ="utf-8") except FileNotFoundError as ex: print("file is not found") print(ex.args) else: print("file :",myfile.read()) myfile.close() finally : print("finished working")
normal
{ "blob_id": "8bf75bf3b16296c36c34e8c4c50149259d792af7", "index": 4319, "step-1": "<mask token>\n", "step-2": "<mask token>\ntry:\n myfile = open('mydata.txt', encoding='utf-8')\nexcept FileNotFoundError as ex:\n print('file is not found')\n print(ex.args)\nelse:\n print('file :', myfile.read())\n myfile.close()\nfinally:\n print('finished working')\n", "step-3": "import sys\ntry:\n myfile = open('mydata.txt', encoding='utf-8')\nexcept FileNotFoundError as ex:\n print('file is not found')\n print(ex.args)\nelse:\n print('file :', myfile.read())\n myfile.close()\nfinally:\n print('finished working')\n", "step-4": "import sys\n\ntry:\n myfile = open(\"mydata.txt\",encoding =\"utf-8\")\n\nexcept FileNotFoundError as ex:\n print(\"file is not found\")\n print(ex.args)\nelse:\n print(\"file :\",myfile.read())\n myfile.close()\nfinally :\n\n print(\"finished working\")\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import unittest from LempelZivWelchDecoder import LempelZivWelchDecoder class TestLempelZivWelchDecoder(unittest.TestCase): def test_decode(self): test_value = ['t', 256, 257, 'e', 's', 260, 't', '1'] run_length_decoder = LempelZivWelchDecoder() self.assertRaises(ValueError, lambda: run_length_decoder.decode()) # assert if method raises error when there is no input self.assertTrue(run_length_decoder.input is None) # assert if input is none when it's not set run_length_decoder.input = test_value self.assertEqual(run_length_decoder.input, test_value) # assert that input is initialized with proper value self.assertEqual(run_length_decoder.decode(), "ttttttessst1") # assert that result is correct if __name__ == '__main__': unittest.main()
normal
{ "blob_id": "8126af930ec75e2818455d959f00285bdc08c044", "index": 1899, "step-1": "<mask token>\n\n\nclass TestLempelZivWelchDecoder(unittest.TestCase):\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestLempelZivWelchDecoder(unittest.TestCase):\n\n def test_decode(self):\n test_value = ['t', 256, 257, 'e', 's', 260, 't', '1']\n run_length_decoder = LempelZivWelchDecoder()\n self.assertRaises(ValueError, lambda : run_length_decoder.decode())\n self.assertTrue(run_length_decoder.input is None)\n run_length_decoder.input = test_value\n self.assertEqual(run_length_decoder.input, test_value)\n self.assertEqual(run_length_decoder.decode(), 'ttttttessst1')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestLempelZivWelchDecoder(unittest.TestCase):\n\n def test_decode(self):\n test_value = ['t', 256, 257, 'e', 's', 260, 't', '1']\n run_length_decoder = LempelZivWelchDecoder()\n self.assertRaises(ValueError, lambda : run_length_decoder.decode())\n self.assertTrue(run_length_decoder.input is None)\n run_length_decoder.input = test_value\n self.assertEqual(run_length_decoder.input, test_value)\n self.assertEqual(run_length_decoder.decode(), 'ttttttessst1')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-4": "import unittest\nfrom LempelZivWelchDecoder import LempelZivWelchDecoder\n\n\nclass TestLempelZivWelchDecoder(unittest.TestCase):\n\n def test_decode(self):\n test_value = ['t', 256, 257, 'e', 's', 260, 't', '1']\n run_length_decoder = LempelZivWelchDecoder()\n self.assertRaises(ValueError, lambda : run_length_decoder.decode())\n self.assertTrue(run_length_decoder.input is None)\n run_length_decoder.input = test_value\n self.assertEqual(run_length_decoder.input, test_value)\n self.assertEqual(run_length_decoder.decode(), 'ttttttessst1')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "import unittest\n\nfrom LempelZivWelchDecoder import LempelZivWelchDecoder\n\n\nclass TestLempelZivWelchDecoder(unittest.TestCase):\n def test_decode(self):\n test_value = ['t', 256, 257, 'e', 's', 260, 't', '1']\n run_length_decoder = LempelZivWelchDecoder()\n\n self.assertRaises(ValueError,\n lambda: run_length_decoder.decode()) # assert if method raises error when there is no input\n self.assertTrue(run_length_decoder.input is None) # assert if input is none when it's not set\n\n run_length_decoder.input = test_value\n self.assertEqual(run_length_decoder.input, test_value) # assert that input is initialized with proper value\n self.assertEqual(run_length_decoder.decode(),\n \"ttttttessst1\") # assert that result is correct\n\nif __name__ == '__main__':\n unittest.main()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import ast import datetime import json from base64 import b64encode import requests IMGUR_BASE = "https://api.imgur.com" class Task: """ A class used to represent a job ... Attributes ---------- queue : list the list of all urls pending : list the name of all pending urls complete : list the name of all completed urls failed : list the name of all failed urls url_map : dict a dictionary that maps provided urls with imgur urls created: date created finished: date finished status: the job status credentials: the access token and other useful objects """ def __init__(self): """ Create the object :rtype: object """ self.queue = list() self.pending = [] self.complete = [] self.failed = [] self.url_map = {} self.created = datetime.datetime.now().isoformat() self.finished = None self.status = "pending" self.credentials = None def initialize(self, urls, cred): """ Initialize the object with parameters urls and cred :param urls : list > the list of urls :param cred : dict > the client credentials :rtype: object """ for i in urls: self.enqueue(i) self.pending.append(i) clean = str(cred).replace('b\"', '').replace('\"', '').replace("'", '"') self.credentials = ast.literal_eval(clean) def export(self): """ :rtype: dict """ return { "created": self.created, "finished": self.finished, "status": self.status, "uploaded": { "pending": self.pending, "complete": self.complete, "failed": self.failed } } def executeAll(self, _set_task_progress): """ Sequentially upload images and update job progress :rtype: object """ _set_task_progress(self) self.status = 'in-progress' _set_task_progress(self) while self.size() != 0: val = self.dequeue() if self.executeOne(val): self.pending.remove(val) self.complete.append(self.url_map[val]) _set_task_progress(self) else: self.pending.remove(val) self.failed.append(val) _set_task_progress(self) self.status = 'complete' self.finished = datetime.datetime.now().isoformat() _set_task_progress(self) def executeOne(self, val): """ Upload a unique image :rtype: object """ v,url = self.upload_image(path=None, url=val, title=None, description=None, album=None) if v: self.url_map.update({val: url}) return True else: self.url_map.update({val: url}) return False def enqueue(self, data): """ Adding elements to queue :rtype: object """ # Checking to avoid duplicate entry (not mandatory) if data not in self.queue: self.queue.insert(0, data) return True return False def dequeue(self): """ Adding elements to queue :rtype: object """ if len(self.queue) > 0: return self.queue.pop() return ("Queue Empty!") def size(self): """ Getting the size of the queue :rtype: object """ return len(self.queue) def upload_image(self, path=None, url=None, title=None, description=None, album=None): """ Upload image to the imgur server and returns the new url :rtype: object """ if bool(path) == bool(url): raise LookupError("Either path or url must be given.") if path: with open(path, 'rb') as image_file: binary_data = image_file.read() image = b64encode(binary_data) else: image = url payload = {'album_id': "58tq5Nw", 'image': image, 'title': title, 'description': description} token = ast.literal_eval(str(self.credentials))["access_token"] authentication = {'Authorization': 'Bearer {0}'.format(token)} verify = True resp = requests.post(IMGUR_BASE + "/3/image", payload, headers=authentication, verify=verify) if 'error' in json.loads(resp.content)["data"]: return False, json.loads(resp.content)["data"]["error"] else: return True, json.loads(resp.content)["data"]["link"]
normal
{ "blob_id": "63ee99012089dcb0e5b41860c95e13fff52c6731", "index": 1546, "step-1": "<mask token>\n\n\nclass Task:\n <mask token>\n\n def __init__(self):\n \"\"\"\n Create the object\n :rtype: object\n \"\"\"\n self.queue = list()\n self.pending = []\n self.complete = []\n self.failed = []\n self.url_map = {}\n self.created = datetime.datetime.now().isoformat()\n self.finished = None\n self.status = 'pending'\n self.credentials = None\n\n def initialize(self, urls, cred):\n \"\"\"\n Initialize the object with parameters urls and cred\n :param urls : list > the list of urls\n :param cred : dict > the client credentials\n :rtype: object\n \"\"\"\n for i in urls:\n self.enqueue(i)\n self.pending.append(i)\n clean = str(cred).replace('b\"', '').replace('\"', '').replace(\"'\", '\"')\n self.credentials = ast.literal_eval(clean)\n\n def export(self):\n \"\"\"\n\n :rtype: dict\n \"\"\"\n return {'created': self.created, 'finished': self.finished,\n 'status': self.status, 'uploaded': {'pending': self.pending,\n 'complete': self.complete, 'failed': self.failed}}\n\n def executeAll(self, _set_task_progress):\n \"\"\"\n Sequentially upload images and update job progress\n :rtype: object\n \"\"\"\n _set_task_progress(self)\n self.status = 'in-progress'\n _set_task_progress(self)\n while self.size() != 0:\n val = self.dequeue()\n if self.executeOne(val):\n self.pending.remove(val)\n self.complete.append(self.url_map[val])\n _set_task_progress(self)\n else:\n self.pending.remove(val)\n self.failed.append(val)\n _set_task_progress(self)\n self.status = 'complete'\n self.finished = datetime.datetime.now().isoformat()\n _set_task_progress(self)\n <mask token>\n\n def enqueue(self, data):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if data not in self.queue:\n self.queue.insert(0, data)\n return True\n return False\n\n def dequeue(self):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if len(self.queue) > 0:\n return self.queue.pop()\n return 'Queue Empty!'\n <mask token>\n\n def upload_image(self, path=None, url=None, title=None, description=\n None, album=None):\n \"\"\"\n Upload image to the imgur server and returns the new url\n :rtype: object\n \"\"\"\n if bool(path) == bool(url):\n raise LookupError('Either path or url must be given.')\n if path:\n with open(path, 'rb') as image_file:\n binary_data = image_file.read()\n image = b64encode(binary_data)\n else:\n image = url\n payload = {'album_id': '58tq5Nw', 'image': image, 'title': title,\n 'description': description}\n token = ast.literal_eval(str(self.credentials))['access_token']\n authentication = {'Authorization': 'Bearer {0}'.format(token)}\n verify = True\n resp = requests.post(IMGUR_BASE + '/3/image', payload, headers=\n authentication, verify=verify)\n if 'error' in json.loads(resp.content)['data']:\n return False, json.loads(resp.content)['data']['error']\n else:\n return True, json.loads(resp.content)['data']['link']\n", "step-2": "<mask token>\n\n\nclass Task:\n <mask token>\n\n def __init__(self):\n \"\"\"\n Create the object\n :rtype: object\n \"\"\"\n self.queue = list()\n self.pending = []\n self.complete = []\n self.failed = []\n self.url_map = {}\n self.created = datetime.datetime.now().isoformat()\n self.finished = None\n self.status = 'pending'\n self.credentials = None\n\n def initialize(self, urls, cred):\n \"\"\"\n Initialize the object with parameters urls and cred\n :param urls : list > the list of urls\n :param cred : dict > the client credentials\n :rtype: object\n \"\"\"\n for i in urls:\n self.enqueue(i)\n self.pending.append(i)\n clean = str(cred).replace('b\"', '').replace('\"', '').replace(\"'\", '\"')\n self.credentials = ast.literal_eval(clean)\n\n def export(self):\n \"\"\"\n\n :rtype: dict\n \"\"\"\n return {'created': self.created, 'finished': self.finished,\n 'status': self.status, 'uploaded': {'pending': self.pending,\n 'complete': self.complete, 'failed': self.failed}}\n\n def executeAll(self, _set_task_progress):\n \"\"\"\n Sequentially upload images and update job progress\n :rtype: object\n \"\"\"\n _set_task_progress(self)\n self.status = 'in-progress'\n _set_task_progress(self)\n while self.size() != 0:\n val = self.dequeue()\n if self.executeOne(val):\n self.pending.remove(val)\n self.complete.append(self.url_map[val])\n _set_task_progress(self)\n else:\n self.pending.remove(val)\n self.failed.append(val)\n _set_task_progress(self)\n self.status = 'complete'\n self.finished = datetime.datetime.now().isoformat()\n _set_task_progress(self)\n\n def executeOne(self, val):\n \"\"\"\n Upload a unique image\n :rtype: object\n \"\"\"\n v, url = self.upload_image(path=None, url=val, title=None,\n description=None, album=None)\n if v:\n self.url_map.update({val: url})\n return True\n else:\n self.url_map.update({val: url})\n return False\n\n def enqueue(self, data):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if data not in self.queue:\n self.queue.insert(0, data)\n return True\n return False\n\n def dequeue(self):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if len(self.queue) > 0:\n return self.queue.pop()\n return 'Queue Empty!'\n <mask token>\n\n def upload_image(self, path=None, url=None, title=None, description=\n None, album=None):\n \"\"\"\n Upload image to the imgur server and returns the new url\n :rtype: object\n \"\"\"\n if bool(path) == bool(url):\n raise LookupError('Either path or url must be given.')\n if path:\n with open(path, 'rb') as image_file:\n binary_data = image_file.read()\n image = b64encode(binary_data)\n else:\n image = url\n payload = {'album_id': '58tq5Nw', 'image': image, 'title': title,\n 'description': description}\n token = ast.literal_eval(str(self.credentials))['access_token']\n authentication = {'Authorization': 'Bearer {0}'.format(token)}\n verify = True\n resp = requests.post(IMGUR_BASE + '/3/image', payload, headers=\n authentication, verify=verify)\n if 'error' in json.loads(resp.content)['data']:\n return False, json.loads(resp.content)['data']['error']\n else:\n return True, json.loads(resp.content)['data']['link']\n", "step-3": "<mask token>\nIMGUR_BASE = 'https://api.imgur.com'\n\n\nclass Task:\n \"\"\"\n A class used to represent a job\n ...\n\n Attributes\n ----------\n queue : list\n the list of all urls\n pending : list\n the name of all pending urls\n complete : list\n the name of all completed urls\n failed : list\n the name of all failed urls\n url_map : dict\n a dictionary that maps provided urls with imgur urls\n created:\n date created\n finished:\n date finished\n status:\n the job status\n credentials:\n the access token and other useful objects\n\n \"\"\"\n\n def __init__(self):\n \"\"\"\n Create the object\n :rtype: object\n \"\"\"\n self.queue = list()\n self.pending = []\n self.complete = []\n self.failed = []\n self.url_map = {}\n self.created = datetime.datetime.now().isoformat()\n self.finished = None\n self.status = 'pending'\n self.credentials = None\n\n def initialize(self, urls, cred):\n \"\"\"\n Initialize the object with parameters urls and cred\n :param urls : list > the list of urls\n :param cred : dict > the client credentials\n :rtype: object\n \"\"\"\n for i in urls:\n self.enqueue(i)\n self.pending.append(i)\n clean = str(cred).replace('b\"', '').replace('\"', '').replace(\"'\", '\"')\n self.credentials = ast.literal_eval(clean)\n\n def export(self):\n \"\"\"\n\n :rtype: dict\n \"\"\"\n return {'created': self.created, 'finished': self.finished,\n 'status': self.status, 'uploaded': {'pending': self.pending,\n 'complete': self.complete, 'failed': self.failed}}\n\n def executeAll(self, _set_task_progress):\n \"\"\"\n Sequentially upload images and update job progress\n :rtype: object\n \"\"\"\n _set_task_progress(self)\n self.status = 'in-progress'\n _set_task_progress(self)\n while self.size() != 0:\n val = self.dequeue()\n if self.executeOne(val):\n self.pending.remove(val)\n self.complete.append(self.url_map[val])\n _set_task_progress(self)\n else:\n self.pending.remove(val)\n self.failed.append(val)\n _set_task_progress(self)\n self.status = 'complete'\n self.finished = datetime.datetime.now().isoformat()\n _set_task_progress(self)\n\n def executeOne(self, val):\n \"\"\"\n Upload a unique image\n :rtype: object\n \"\"\"\n v, url = self.upload_image(path=None, url=val, title=None,\n description=None, album=None)\n if v:\n self.url_map.update({val: url})\n return True\n else:\n self.url_map.update({val: url})\n return False\n\n def enqueue(self, data):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if data not in self.queue:\n self.queue.insert(0, data)\n return True\n return False\n\n def dequeue(self):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if len(self.queue) > 0:\n return self.queue.pop()\n return 'Queue Empty!'\n\n def size(self):\n \"\"\"\n Getting the size of the queue\n :rtype: object\n \"\"\"\n return len(self.queue)\n\n def upload_image(self, path=None, url=None, title=None, description=\n None, album=None):\n \"\"\"\n Upload image to the imgur server and returns the new url\n :rtype: object\n \"\"\"\n if bool(path) == bool(url):\n raise LookupError('Either path or url must be given.')\n if path:\n with open(path, 'rb') as image_file:\n binary_data = image_file.read()\n image = b64encode(binary_data)\n else:\n image = url\n payload = {'album_id': '58tq5Nw', 'image': image, 'title': title,\n 'description': description}\n token = ast.literal_eval(str(self.credentials))['access_token']\n authentication = {'Authorization': 'Bearer {0}'.format(token)}\n verify = True\n resp = requests.post(IMGUR_BASE + '/3/image', payload, headers=\n authentication, verify=verify)\n if 'error' in json.loads(resp.content)['data']:\n return False, json.loads(resp.content)['data']['error']\n else:\n return True, json.loads(resp.content)['data']['link']\n", "step-4": "import ast\nimport datetime\nimport json\nfrom base64 import b64encode\nimport requests\nIMGUR_BASE = 'https://api.imgur.com'\n\n\nclass Task:\n \"\"\"\n A class used to represent a job\n ...\n\n Attributes\n ----------\n queue : list\n the list of all urls\n pending : list\n the name of all pending urls\n complete : list\n the name of all completed urls\n failed : list\n the name of all failed urls\n url_map : dict\n a dictionary that maps provided urls with imgur urls\n created:\n date created\n finished:\n date finished\n status:\n the job status\n credentials:\n the access token and other useful objects\n\n \"\"\"\n\n def __init__(self):\n \"\"\"\n Create the object\n :rtype: object\n \"\"\"\n self.queue = list()\n self.pending = []\n self.complete = []\n self.failed = []\n self.url_map = {}\n self.created = datetime.datetime.now().isoformat()\n self.finished = None\n self.status = 'pending'\n self.credentials = None\n\n def initialize(self, urls, cred):\n \"\"\"\n Initialize the object with parameters urls and cred\n :param urls : list > the list of urls\n :param cred : dict > the client credentials\n :rtype: object\n \"\"\"\n for i in urls:\n self.enqueue(i)\n self.pending.append(i)\n clean = str(cred).replace('b\"', '').replace('\"', '').replace(\"'\", '\"')\n self.credentials = ast.literal_eval(clean)\n\n def export(self):\n \"\"\"\n\n :rtype: dict\n \"\"\"\n return {'created': self.created, 'finished': self.finished,\n 'status': self.status, 'uploaded': {'pending': self.pending,\n 'complete': self.complete, 'failed': self.failed}}\n\n def executeAll(self, _set_task_progress):\n \"\"\"\n Sequentially upload images and update job progress\n :rtype: object\n \"\"\"\n _set_task_progress(self)\n self.status = 'in-progress'\n _set_task_progress(self)\n while self.size() != 0:\n val = self.dequeue()\n if self.executeOne(val):\n self.pending.remove(val)\n self.complete.append(self.url_map[val])\n _set_task_progress(self)\n else:\n self.pending.remove(val)\n self.failed.append(val)\n _set_task_progress(self)\n self.status = 'complete'\n self.finished = datetime.datetime.now().isoformat()\n _set_task_progress(self)\n\n def executeOne(self, val):\n \"\"\"\n Upload a unique image\n :rtype: object\n \"\"\"\n v, url = self.upload_image(path=None, url=val, title=None,\n description=None, album=None)\n if v:\n self.url_map.update({val: url})\n return True\n else:\n self.url_map.update({val: url})\n return False\n\n def enqueue(self, data):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if data not in self.queue:\n self.queue.insert(0, data)\n return True\n return False\n\n def dequeue(self):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if len(self.queue) > 0:\n return self.queue.pop()\n return 'Queue Empty!'\n\n def size(self):\n \"\"\"\n Getting the size of the queue\n :rtype: object\n \"\"\"\n return len(self.queue)\n\n def upload_image(self, path=None, url=None, title=None, description=\n None, album=None):\n \"\"\"\n Upload image to the imgur server and returns the new url\n :rtype: object\n \"\"\"\n if bool(path) == bool(url):\n raise LookupError('Either path or url must be given.')\n if path:\n with open(path, 'rb') as image_file:\n binary_data = image_file.read()\n image = b64encode(binary_data)\n else:\n image = url\n payload = {'album_id': '58tq5Nw', 'image': image, 'title': title,\n 'description': description}\n token = ast.literal_eval(str(self.credentials))['access_token']\n authentication = {'Authorization': 'Bearer {0}'.format(token)}\n verify = True\n resp = requests.post(IMGUR_BASE + '/3/image', payload, headers=\n authentication, verify=verify)\n if 'error' in json.loads(resp.content)['data']:\n return False, json.loads(resp.content)['data']['error']\n else:\n return True, json.loads(resp.content)['data']['link']\n", "step-5": "import ast\nimport datetime\nimport json\nfrom base64 import b64encode\nimport requests\n\nIMGUR_BASE = \"https://api.imgur.com\"\n\n\nclass Task:\n \"\"\"\n A class used to represent a job\n ...\n\n Attributes\n ----------\n queue : list\n the list of all urls\n pending : list\n the name of all pending urls\n complete : list\n the name of all completed urls\n failed : list\n the name of all failed urls\n url_map : dict\n a dictionary that maps provided urls with imgur urls\n created:\n date created\n finished:\n date finished\n status:\n the job status\n credentials:\n the access token and other useful objects\n\n \"\"\"\n def __init__(self):\n \"\"\"\n Create the object\n :rtype: object\n \"\"\"\n self.queue = list()\n self.pending = []\n self.complete = []\n self.failed = []\n self.url_map = {}\n self.created = datetime.datetime.now().isoformat()\n self.finished = None\n self.status = \"pending\"\n self.credentials = None\n\n def initialize(self, urls, cred):\n \"\"\"\n Initialize the object with parameters urls and cred\n :param urls : list > the list of urls\n :param cred : dict > the client credentials\n :rtype: object\n \"\"\"\n for i in urls:\n self.enqueue(i)\n self.pending.append(i)\n clean = str(cred).replace('b\\\"', '').replace('\\\"', '').replace(\"'\", '\"')\n self.credentials = ast.literal_eval(clean)\n\n def export(self):\n \"\"\"\n\n :rtype: dict\n \"\"\"\n return {\n \"created\": self.created,\n \"finished\": self.finished,\n \"status\": self.status,\n \"uploaded\": {\n \"pending\": self.pending,\n \"complete\": self.complete,\n \"failed\": self.failed\n }\n }\n\n def executeAll(self, _set_task_progress):\n \"\"\"\n Sequentially upload images and update job progress\n :rtype: object\n \"\"\"\n _set_task_progress(self)\n self.status = 'in-progress'\n _set_task_progress(self)\n while self.size() != 0:\n val = self.dequeue()\n if self.executeOne(val):\n self.pending.remove(val)\n self.complete.append(self.url_map[val])\n _set_task_progress(self)\n else:\n self.pending.remove(val)\n self.failed.append(val)\n _set_task_progress(self)\n self.status = 'complete'\n self.finished = datetime.datetime.now().isoformat()\n _set_task_progress(self)\n\n def executeOne(self, val):\n \"\"\"\n Upload a unique image\n :rtype: object\n \"\"\"\n v,url = self.upload_image(path=None, url=val, title=None, description=None, album=None)\n if v:\n self.url_map.update({val: url})\n return True\n else:\n self.url_map.update({val: url})\n return False\n\n\n def enqueue(self, data):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n # Checking to avoid duplicate entry (not mandatory)\n if data not in self.queue:\n self.queue.insert(0, data)\n return True\n return False\n\n\n def dequeue(self):\n \"\"\"\n Adding elements to queue\n :rtype: object\n \"\"\"\n if len(self.queue) > 0:\n return self.queue.pop()\n return (\"Queue Empty!\")\n\n\n def size(self):\n \"\"\"\n Getting the size of the queue\n :rtype: object\n \"\"\"\n return len(self.queue)\n\n def upload_image(self, path=None, url=None, title=None, description=None,\n album=None):\n \"\"\"\n Upload image to the imgur server and returns the new url\n :rtype: object\n \"\"\"\n if bool(path) == bool(url):\n raise LookupError(\"Either path or url must be given.\")\n if path:\n with open(path, 'rb') as image_file:\n binary_data = image_file.read()\n image = b64encode(binary_data)\n else:\n image = url\n payload = {'album_id': \"58tq5Nw\", 'image': image,\n 'title': title, 'description': description}\n\n token = ast.literal_eval(str(self.credentials))[\"access_token\"]\n\n authentication = {'Authorization': 'Bearer {0}'.format(token)}\n verify = True\n resp = requests.post(IMGUR_BASE + \"/3/image\", payload, headers=authentication, verify=verify)\n if 'error' in json.loads(resp.content)[\"data\"]:\n return False, json.loads(resp.content)[\"data\"][\"error\"]\n else:\n return True, json.loads(resp.content)[\"data\"][\"link\"]\n\n\n", "step-ids": [ 8, 9, 12, 13, 14 ] }
[ 8, 9, 12, 13, 14 ]
# Copyright 2019 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing class for AWS's Redshift Cluster Subnet Group.""" from absl import flags from perfkitbenchmarker import resource from perfkitbenchmarker import vm_util FLAGS = flags.FLAGS class RedshiftClusterSubnetGroup(resource.BaseResource): """Cluster Subnet Group associated with a Redshift cluster launched in a vpc. A cluster subnet group allows you to specify a set of subnets in your VPC. Attributes: name: A string name of the cluster subnet group. subnet_id: A string name of the subnet id associated with the group. """ def __init__(self, cmd_prefix): super(RedshiftClusterSubnetGroup, self).__init__(user_managed=False) self.cmd_prefix = cmd_prefix self.name = 'pkb-' + FLAGS.run_uri self.subnet_id = '' def _Create(self): cmd = self.cmd_prefix + [ 'redshift', 'create-cluster-subnet-group', '--cluster-subnet-group-name', self.name, '--description', 'Cluster Subnet Group for run uri {}'.format( FLAGS.run_uri), '--subnet-ids', self.subnet_id ] vm_util.IssueCommand(cmd) def _Delete(self): """Delete a redshift cluster subnet group.""" cmd = self.cmd_prefix + [ 'redshift', 'delete-cluster-subnet-group', '--cluster-subnet-group-name', self.name ] vm_util.IssueCommand(cmd, raise_on_failure=False)
normal
{ "blob_id": "9cebce7f97a1848885883692cd0f494cce6bae7f", "index": 5263, "step-1": "<mask token>\n\n\nclass RedshiftClusterSubnetGroup(resource.BaseResource):\n <mask token>\n\n def __init__(self, cmd_prefix):\n super(RedshiftClusterSubnetGroup, self).__init__(user_managed=False)\n self.cmd_prefix = cmd_prefix\n self.name = 'pkb-' + FLAGS.run_uri\n self.subnet_id = ''\n\n def _Create(self):\n cmd = self.cmd_prefix + ['redshift', 'create-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name, '--description',\n 'Cluster Subnet Group for run uri {}'.format(FLAGS.run_uri),\n '--subnet-ids', self.subnet_id]\n vm_util.IssueCommand(cmd)\n\n def _Delete(self):\n \"\"\"Delete a redshift cluster subnet group.\"\"\"\n cmd = self.cmd_prefix + ['redshift', 'delete-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name]\n vm_util.IssueCommand(cmd, raise_on_failure=False)\n", "step-2": "<mask token>\n\n\nclass RedshiftClusterSubnetGroup(resource.BaseResource):\n \"\"\"Cluster Subnet Group associated with a Redshift cluster launched in a vpc.\n\n A cluster subnet group allows you to specify a set of subnets in your VPC.\n\n\n Attributes:\n name: A string name of the cluster subnet group.\n subnet_id: A string name of the subnet id associated with the group.\n \"\"\"\n\n def __init__(self, cmd_prefix):\n super(RedshiftClusterSubnetGroup, self).__init__(user_managed=False)\n self.cmd_prefix = cmd_prefix\n self.name = 'pkb-' + FLAGS.run_uri\n self.subnet_id = ''\n\n def _Create(self):\n cmd = self.cmd_prefix + ['redshift', 'create-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name, '--description',\n 'Cluster Subnet Group for run uri {}'.format(FLAGS.run_uri),\n '--subnet-ids', self.subnet_id]\n vm_util.IssueCommand(cmd)\n\n def _Delete(self):\n \"\"\"Delete a redshift cluster subnet group.\"\"\"\n cmd = self.cmd_prefix + ['redshift', 'delete-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name]\n vm_util.IssueCommand(cmd, raise_on_failure=False)\n", "step-3": "<mask token>\nFLAGS = flags.FLAGS\n\n\nclass RedshiftClusterSubnetGroup(resource.BaseResource):\n \"\"\"Cluster Subnet Group associated with a Redshift cluster launched in a vpc.\n\n A cluster subnet group allows you to specify a set of subnets in your VPC.\n\n\n Attributes:\n name: A string name of the cluster subnet group.\n subnet_id: A string name of the subnet id associated with the group.\n \"\"\"\n\n def __init__(self, cmd_prefix):\n super(RedshiftClusterSubnetGroup, self).__init__(user_managed=False)\n self.cmd_prefix = cmd_prefix\n self.name = 'pkb-' + FLAGS.run_uri\n self.subnet_id = ''\n\n def _Create(self):\n cmd = self.cmd_prefix + ['redshift', 'create-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name, '--description',\n 'Cluster Subnet Group for run uri {}'.format(FLAGS.run_uri),\n '--subnet-ids', self.subnet_id]\n vm_util.IssueCommand(cmd)\n\n def _Delete(self):\n \"\"\"Delete a redshift cluster subnet group.\"\"\"\n cmd = self.cmd_prefix + ['redshift', 'delete-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name]\n vm_util.IssueCommand(cmd, raise_on_failure=False)\n", "step-4": "<mask token>\nfrom absl import flags\nfrom perfkitbenchmarker import resource\nfrom perfkitbenchmarker import vm_util\nFLAGS = flags.FLAGS\n\n\nclass RedshiftClusterSubnetGroup(resource.BaseResource):\n \"\"\"Cluster Subnet Group associated with a Redshift cluster launched in a vpc.\n\n A cluster subnet group allows you to specify a set of subnets in your VPC.\n\n\n Attributes:\n name: A string name of the cluster subnet group.\n subnet_id: A string name of the subnet id associated with the group.\n \"\"\"\n\n def __init__(self, cmd_prefix):\n super(RedshiftClusterSubnetGroup, self).__init__(user_managed=False)\n self.cmd_prefix = cmd_prefix\n self.name = 'pkb-' + FLAGS.run_uri\n self.subnet_id = ''\n\n def _Create(self):\n cmd = self.cmd_prefix + ['redshift', 'create-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name, '--description',\n 'Cluster Subnet Group for run uri {}'.format(FLAGS.run_uri),\n '--subnet-ids', self.subnet_id]\n vm_util.IssueCommand(cmd)\n\n def _Delete(self):\n \"\"\"Delete a redshift cluster subnet group.\"\"\"\n cmd = self.cmd_prefix + ['redshift', 'delete-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name]\n vm_util.IssueCommand(cmd, raise_on_failure=False)\n", "step-5": "# Copyright 2019 PerfKitBenchmarker Authors. All rights reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\"Module containing class for AWS's Redshift Cluster Subnet Group.\"\"\"\n\nfrom absl import flags\nfrom perfkitbenchmarker import resource\nfrom perfkitbenchmarker import vm_util\n\nFLAGS = flags.FLAGS\n\n\nclass RedshiftClusterSubnetGroup(resource.BaseResource):\n \"\"\"Cluster Subnet Group associated with a Redshift cluster launched in a vpc.\n\n A cluster subnet group allows you to specify a set of subnets in your VPC.\n\n\n Attributes:\n name: A string name of the cluster subnet group.\n subnet_id: A string name of the subnet id associated with the group.\n \"\"\"\n\n def __init__(self, cmd_prefix):\n super(RedshiftClusterSubnetGroup, self).__init__(user_managed=False)\n self.cmd_prefix = cmd_prefix\n self.name = 'pkb-' + FLAGS.run_uri\n self.subnet_id = ''\n\n def _Create(self):\n cmd = self.cmd_prefix + [\n 'redshift', 'create-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name, '--description',\n 'Cluster Subnet Group for run uri {}'.format(\n FLAGS.run_uri), '--subnet-ids', self.subnet_id\n ]\n vm_util.IssueCommand(cmd)\n\n def _Delete(self):\n \"\"\"Delete a redshift cluster subnet group.\"\"\"\n cmd = self.cmd_prefix + [\n 'redshift', 'delete-cluster-subnet-group',\n '--cluster-subnet-group-name', self.name\n ]\n vm_util.IssueCommand(cmd, raise_on_failure=False)\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# coding=utf-8 # Copyright 2016 Mystopia. from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) from django.db.models.signals import m2m_changed, post_save from django.dispatch import receiver from dicpick.models import Task, TaskType # The signal handlers below ensure that certain changes to TaskType are reflected onto all the tasks of that type. # Note that the signal handlers run in the same transaction as the event that triggered the signal. @receiver(post_save, sender=TaskType) def create_task_instances(sender, instance, **kwargs): """Ensure that there is a task instance for each date in the range specified by the task type. Necessary to support date range changes. """ task_type = instance existing_dates = set([task.date for task in task_type.tasks.all()]) required_dates = set(task_type.date_range()) missing_dates = required_dates - existing_dates superfluous_dates = existing_dates - required_dates Task.objects.filter(task_type=task_type, date__in=superfluous_dates).delete() for missing_date in missing_dates: task = Task(task_type=task_type, date=missing_date, num_people=task_type.num_people, score=task_type.score) task.save() Task.objects.filter(task_type=task_type).update(num_people=task_type.num_people, score=task_type.score) @receiver(m2m_changed, sender=TaskType.tags.through) def tags_updated(sender, instance, action, **kwargs): """If tags were added to or removed from a TaskType, add/remove them from all tasks of that type.""" task_type = instance pk_set = kwargs.pop('pk_set') if action == 'post_add': for task in task_type.tasks.all(): task.tags.add(*pk_set) elif action == 'post_remove': for task in task_type.tasks.all(): task.tags.remove(*pk_set)
normal
{ "blob_id": "065a566b3e520c14f20d0d7d668ec58404d6e11b", "index": 494, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\n@receiver(post_save, sender=TaskType)\ndef create_task_instances(sender, instance, **kwargs):\n \"\"\"Ensure that there is a task instance for each date in the range specified by the task type.\n\n Necessary to support date range changes.\n \"\"\"\n task_type = instance\n existing_dates = set([task.date for task in task_type.tasks.all()])\n required_dates = set(task_type.date_range())\n missing_dates = required_dates - existing_dates\n superfluous_dates = existing_dates - required_dates\n Task.objects.filter(task_type=task_type, date__in=superfluous_dates\n ).delete()\n for missing_date in missing_dates:\n task = Task(task_type=task_type, date=missing_date, num_people=\n task_type.num_people, score=task_type.score)\n task.save()\n Task.objects.filter(task_type=task_type).update(num_people=task_type.\n num_people, score=task_type.score)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\n@receiver(post_save, sender=TaskType)\ndef create_task_instances(sender, instance, **kwargs):\n \"\"\"Ensure that there is a task instance for each date in the range specified by the task type.\n\n Necessary to support date range changes.\n \"\"\"\n task_type = instance\n existing_dates = set([task.date for task in task_type.tasks.all()])\n required_dates = set(task_type.date_range())\n missing_dates = required_dates - existing_dates\n superfluous_dates = existing_dates - required_dates\n Task.objects.filter(task_type=task_type, date__in=superfluous_dates\n ).delete()\n for missing_date in missing_dates:\n task = Task(task_type=task_type, date=missing_date, num_people=\n task_type.num_people, score=task_type.score)\n task.save()\n Task.objects.filter(task_type=task_type).update(num_people=task_type.\n num_people, score=task_type.score)\n\n\n@receiver(m2m_changed, sender=TaskType.tags.through)\ndef tags_updated(sender, instance, action, **kwargs):\n \"\"\"If tags were added to or removed from a TaskType, add/remove them from all tasks of that type.\"\"\"\n task_type = instance\n pk_set = kwargs.pop('pk_set')\n if action == 'post_add':\n for task in task_type.tasks.all():\n task.tags.add(*pk_set)\n elif action == 'post_remove':\n for task in task_type.tasks.all():\n task.tags.remove(*pk_set)\n", "step-4": "from __future__ import absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement\nfrom django.db.models.signals import m2m_changed, post_save\nfrom django.dispatch import receiver\nfrom dicpick.models import Task, TaskType\n\n\n@receiver(post_save, sender=TaskType)\ndef create_task_instances(sender, instance, **kwargs):\n \"\"\"Ensure that there is a task instance for each date in the range specified by the task type.\n\n Necessary to support date range changes.\n \"\"\"\n task_type = instance\n existing_dates = set([task.date for task in task_type.tasks.all()])\n required_dates = set(task_type.date_range())\n missing_dates = required_dates - existing_dates\n superfluous_dates = existing_dates - required_dates\n Task.objects.filter(task_type=task_type, date__in=superfluous_dates\n ).delete()\n for missing_date in missing_dates:\n task = Task(task_type=task_type, date=missing_date, num_people=\n task_type.num_people, score=task_type.score)\n task.save()\n Task.objects.filter(task_type=task_type).update(num_people=task_type.\n num_people, score=task_type.score)\n\n\n@receiver(m2m_changed, sender=TaskType.tags.through)\ndef tags_updated(sender, instance, action, **kwargs):\n \"\"\"If tags were added to or removed from a TaskType, add/remove them from all tasks of that type.\"\"\"\n task_type = instance\n pk_set = kwargs.pop('pk_set')\n if action == 'post_add':\n for task in task_type.tasks.all():\n task.tags.add(*pk_set)\n elif action == 'post_remove':\n for task in task_type.tasks.all():\n task.tags.remove(*pk_set)\n", "step-5": "# coding=utf-8\n# Copyright 2016 Mystopia.\n\nfrom __future__ import (absolute_import, division, generators, nested_scopes,\n print_function, unicode_literals, with_statement)\n\nfrom django.db.models.signals import m2m_changed, post_save\nfrom django.dispatch import receiver\n\nfrom dicpick.models import Task, TaskType\n\n\n# The signal handlers below ensure that certain changes to TaskType are reflected onto all the tasks of that type.\n# Note that the signal handlers run in the same transaction as the event that triggered the signal.\n\n@receiver(post_save, sender=TaskType)\ndef create_task_instances(sender, instance, **kwargs):\n \"\"\"Ensure that there is a task instance for each date in the range specified by the task type.\n\n Necessary to support date range changes.\n \"\"\"\n task_type = instance\n existing_dates = set([task.date for task in task_type.tasks.all()])\n required_dates = set(task_type.date_range())\n missing_dates = required_dates - existing_dates\n superfluous_dates = existing_dates - required_dates\n Task.objects.filter(task_type=task_type, date__in=superfluous_dates).delete()\n for missing_date in missing_dates:\n task = Task(task_type=task_type, date=missing_date, num_people=task_type.num_people, score=task_type.score)\n task.save()\n\n Task.objects.filter(task_type=task_type).update(num_people=task_type.num_people, score=task_type.score)\n\n\n@receiver(m2m_changed, sender=TaskType.tags.through)\ndef tags_updated(sender, instance, action, **kwargs):\n \"\"\"If tags were added to or removed from a TaskType, add/remove them from all tasks of that type.\"\"\"\n task_type = instance\n pk_set = kwargs.pop('pk_set')\n if action == 'post_add':\n for task in task_type.tasks.all():\n task.tags.add(*pk_set)\n elif action == 'post_remove':\n for task in task_type.tasks.all():\n task.tags.remove(*pk_set)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# write dictionary objects to be stored in a binary file import pickle #dictionary objects to be stored in a binary file emp1 = {"Empno" : 1201, "Name" : "Anushree", "Age" : 25, "Salary" : 47000} emp2 = {"Empno" : 1211, "Name" : "Zoya", "Age" : 30, "Salary" : 48000} emp3 = {"Empno" : 1251, "Name" : "Simarjeet", "Age" : 27, "Salary" : 49000} emp4 = {"Empno" : 1266, "Name" : "Alex", "Age" : 29, "Salary" : 50000} empObj = open('Emp.dat',"wb") #write onto the file pickle.dump(emp1,empObj) pickle.dump(emp2,empObj) pickle.dump(emp3,empObj) pickle.dump(emp4,empObj) print("Successfully written four dictionaries") empObj.close()
normal
{ "blob_id": "23937ae531cc95069a1319f8c77a459ba7645363", "index": 4331, "step-1": "<mask token>\n", "step-2": "<mask token>\npickle.dump(emp1, empObj)\npickle.dump(emp2, empObj)\npickle.dump(emp3, empObj)\npickle.dump(emp4, empObj)\nprint('Successfully written four dictionaries')\nempObj.close()\n", "step-3": "<mask token>\nemp1 = {'Empno': 1201, 'Name': 'Anushree', 'Age': 25, 'Salary': 47000}\nemp2 = {'Empno': 1211, 'Name': 'Zoya', 'Age': 30, 'Salary': 48000}\nemp3 = {'Empno': 1251, 'Name': 'Simarjeet', 'Age': 27, 'Salary': 49000}\nemp4 = {'Empno': 1266, 'Name': 'Alex', 'Age': 29, 'Salary': 50000}\nempObj = open('Emp.dat', 'wb')\npickle.dump(emp1, empObj)\npickle.dump(emp2, empObj)\npickle.dump(emp3, empObj)\npickle.dump(emp4, empObj)\nprint('Successfully written four dictionaries')\nempObj.close()\n", "step-4": "import pickle\nemp1 = {'Empno': 1201, 'Name': 'Anushree', 'Age': 25, 'Salary': 47000}\nemp2 = {'Empno': 1211, 'Name': 'Zoya', 'Age': 30, 'Salary': 48000}\nemp3 = {'Empno': 1251, 'Name': 'Simarjeet', 'Age': 27, 'Salary': 49000}\nemp4 = {'Empno': 1266, 'Name': 'Alex', 'Age': 29, 'Salary': 50000}\nempObj = open('Emp.dat', 'wb')\npickle.dump(emp1, empObj)\npickle.dump(emp2, empObj)\npickle.dump(emp3, empObj)\npickle.dump(emp4, empObj)\nprint('Successfully written four dictionaries')\nempObj.close()\n", "step-5": "# write dictionary objects to be stored in a binary file\n\n\nimport pickle\n#dictionary objects to be stored in a binary file\nemp1 = {\"Empno\" : 1201, \"Name\" : \"Anushree\", \"Age\" : 25, \"Salary\" : 47000}\nemp2 = {\"Empno\" : 1211, \"Name\" : \"Zoya\", \"Age\" : 30, \"Salary\" : 48000}\nemp3 = {\"Empno\" : 1251, \"Name\" : \"Simarjeet\", \"Age\" : 27, \"Salary\" : 49000}\nemp4 = {\"Empno\" : 1266, \"Name\" : \"Alex\", \"Age\" : 29, \"Salary\" : 50000}\n\nempObj = open('Emp.dat',\"wb\")\n\n#write onto the file\n\npickle.dump(emp1,empObj)\npickle.dump(emp2,empObj)\npickle.dump(emp3,empObj)\npickle.dump(emp4,empObj)\n\nprint(\"Successfully written four dictionaries\")\nempObj.close()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- # @Time : 2020/3/4 10:34 # @Author : YYLin # @Email : 854280599@qq.com # @File : Skip_GAN.py from Dataload import load_anime_old, save_images, load_CelebA from Srresnet_Model import Generator_srresnet, Discriminator_srresnet import tensorflow as tf import numpy as np import sys class Skip_GAN(object): def __init__(self, sess, epoch, batch_size, dataset_name, result_dir, z_dim, y_dim, checkpoint_dir, num_resblock, Cycle_lr, Class_weight, Resnet_weight): self.sess = sess self.dataset_name = dataset_name self.result_dir = result_dir self.epoch = epoch self.batch_size = batch_size self.z_dim = z_dim self.y_dim = y_dim self.checkpoint_dir = checkpoint_dir self.num_resblock = num_resblock self.Cycle_lr = Cycle_lr self.Class_weight = Class_weight # La is used to increase the weight of image authenticity self.la = 10 self.learningRateD = 2e-4 self.learningRateG = 2e-4 # self.Resnet_weight = Resnet_weight # 加载不同的数据集 if self.dataset_name == 'anime': print('loading anime .............') self.height = 96 self.width = 96 self.c_dim = 3 self.data_X, self.data_Y = load_anime_old() print('self.data_X:', self.data_X.shape, 'self.data_y:', self.data_Y.shape) elif self.dataset_name == 'celebA': print('loading celebA ...............') self.height = 96 self.width = 96 self.c_dim = 3 self.data_X, self.data_Y = load_CelebA() print('self.data_X:', self.data_X.shape, 'self.data_y:', self.data_Y.shape) else: print('Sorry there is no option for ', self.dataset_name) sys.exit() def build_model(self): # some placeholder in our model self.y = tf.placeholder(tf.float32, [None, self.y_dim], name='y') self.img = tf.placeholder(tf.float32, [self.batch_size, self.height, self.width, 3], name='img') self.z = tf.placeholder(tf.float32, [None, self.z_dim]) self.G_sample = Generator_srresnet(self.z, self.y, self.num_resblock, self.Resnet_weight) print('The return of Generator:', self.G_sample) # 识别器对真实图像进行判断 D_real, C_real = Discriminator_srresnet(self.img, dataset=self.dataset_name) print('The return of Discriminator:', D_real, C_real) # 识别器对生成图像进行判断 D_fake, C_fake = Discriminator_srresnet(self.G_sample, dataset=self.dataset_name, reuse=True) print('The return of Discriminator:', D_fake, C_fake) # 判断图像的类别 self.C_real_loss = tf.reduce_mean( tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=C_real, labels=self.y), axis=1)) self.C_fake_loss = tf.reduce_mean( tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=C_fake, labels=self.y), axis=1)) # D_Loss 希望真实图像被判断为1 希望生成图像被判断为0 D_real_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.ones_like(D_real))) D_fake_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.zeros_like(D_fake))) '''注意 la也即是我是用动态学习率的时候要关注的参数 但是我的目标是使得类别损失变得更加的大 而不是真伪的损失''' D_loss = D_real_loss + D_fake_loss self.DC_loss = (self.la * D_loss + self.C_real_loss) # 对生成模型的损失也在关注该模型 G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.ones_like(D_fake))) self.GC_loss = (self.la * G_loss + self.C_fake_loss) print('Calualtion the loss of Optimizer') self.theta_D = [v for v in tf.global_variables() if 'd_net' in v.name] self.theta_G = [v for v in tf.global_variables() if 'g_net' in v.name] with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): self.d_updates = tf.train.AdamOptimizer(self.learningRateD, beta1=0.5, beta2=0.9).minimize(self.DC_loss, var_list=self.theta_D) self.g_updates = tf.train.AdamOptimizer(self.learningRateG, beta1=0.5, beta2=0.9).minimize(self.GC_loss, var_list=self.theta_G) self.sampler = Generator_srresnet(self.y, self.z, self.num_resblock, self.Resnet_weight, reuse=True, train=False) def train(self): print('begin training ...........') tf.global_variables_initializer().run() # sample_num 用于控制存储图像 sample_num = 64 tot_num_samples = min(sample_num, self.batch_size) manifold_h = int(np.floor(np.sqrt(tot_num_samples))) manifold_w = int(np.floor(np.sqrt(tot_num_samples))) # 定义随机噪音以及标签 2019/09/29 self.sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim)).astype(np.float32) self.sample_y = self.data_Y[0:self.batch_size] counter = 0 # shuffle the dataset 2019/9/29 batch_offset = 0 data_index = np.arange(self.data_X.shape[0]) np.random.shuffle(data_index) self.data_X = self.data_X[data_index, :, :, :] self.data_Y = self.data_Y[data_index] # 这种方式会有使得小于batch_size个数据用不上 for epoch in range(self.epoch): if batch_offset + self.batch_size > len(self.data_X): batch_offset = 0 # shuffle dataset data_index = np.arange(self.data_X.shape[0]) np.random.shuffle(data_index) self.data_X = self.data_X[data_index, :, :, :] self.data_Y = self.data_Y[data_index] else: # 首先是得到输入的数据 batch_images = self.data_X[batch_offset:batch_offset + self.batch_size] batch_codes = self.data_Y[batch_offset:batch_offset + self.batch_size] batch_z = np.random.uniform(-1, 1, [self.batch_size, self.z_dim]).astype(np.float32) # 然后更新识别器 for i_d_loss in range(3): _, d_loss = self.sess.run([self.d_updates, self.DC_loss], feed_dict={self.img: batch_images, self.y: batch_codes, self.z: batch_z}) for i_g_loss in range(1): # 最后更新生成器模型 _, g_loss, _ = self.sess.run([self.g_updates, self.GC_loss, self.G_sample], feed_dict={self.y: batch_codes, self.img: batch_images, self.z: batch_z}) batch_offset = batch_offset + self.batch_size # display the loss every 10 steps if (counter % 10) == 0: print('Epoch: %2d counter: %5d d_loss: %.8f, g_loss: %.8f' % (epoch, counter, d_loss, g_loss)) # save image every 500 steps if counter % 500 == 0: samples = self.sess.run(self.sampler, feed_dict={self.z: self.sample, self.y: self.sample_y}) save_images(samples[:manifold_h * manifold_w, :, :, :], [manifold_h, manifold_w], self.result_dir + '/{}.png'.format(str(counter).zfill(7))) # save the model every 1000 steps if counter % 1000 == 0: saver = tf.train.Saver(max_to_keep=5) saver.save(self.sess, self.checkpoint_dir + '/{}'.format(str(counter).zfill(7))) if (counter % 100) == 0: if self.Cycle_lr: self.learningRateD = self.learningRateD * 0.99 if self.learningRateD < 0.0001: self.learningRateD = 2e-4 if (counter % 500) == 0: if self.Class_weight: if self.la > 25: self.la = 25 else: self.la = self.la * 1.5 counter += 1
normal
{ "blob_id": "d3b00a8d410248aedb1c43354e89ccc298b56a3c", "index": 7693, "step-1": "<mask token>\n\n\nclass Skip_GAN(object):\n\n def __init__(self, sess, epoch, batch_size, dataset_name, result_dir,\n z_dim, y_dim, checkpoint_dir, num_resblock, Cycle_lr, Class_weight,\n Resnet_weight):\n self.sess = sess\n self.dataset_name = dataset_name\n self.result_dir = result_dir\n self.epoch = epoch\n self.batch_size = batch_size\n self.z_dim = z_dim\n self.y_dim = y_dim\n self.checkpoint_dir = checkpoint_dir\n self.num_resblock = num_resblock\n self.Cycle_lr = Cycle_lr\n self.Class_weight = Class_weight\n self.la = 10\n self.learningRateD = 0.0002\n self.learningRateG = 0.0002\n self.Resnet_weight = Resnet_weight\n if self.dataset_name == 'anime':\n print('loading anime .............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_anime_old()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n elif self.dataset_name == 'celebA':\n print('loading celebA ...............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_CelebA()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n else:\n print('Sorry there is no option for ', self.dataset_name)\n sys.exit()\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Skip_GAN(object):\n\n def __init__(self, sess, epoch, batch_size, dataset_name, result_dir,\n z_dim, y_dim, checkpoint_dir, num_resblock, Cycle_lr, Class_weight,\n Resnet_weight):\n self.sess = sess\n self.dataset_name = dataset_name\n self.result_dir = result_dir\n self.epoch = epoch\n self.batch_size = batch_size\n self.z_dim = z_dim\n self.y_dim = y_dim\n self.checkpoint_dir = checkpoint_dir\n self.num_resblock = num_resblock\n self.Cycle_lr = Cycle_lr\n self.Class_weight = Class_weight\n self.la = 10\n self.learningRateD = 0.0002\n self.learningRateG = 0.0002\n self.Resnet_weight = Resnet_weight\n if self.dataset_name == 'anime':\n print('loading anime .............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_anime_old()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n elif self.dataset_name == 'celebA':\n print('loading celebA ...............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_CelebA()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n else:\n print('Sorry there is no option for ', self.dataset_name)\n sys.exit()\n <mask token>\n\n def train(self):\n print('begin training ...........')\n tf.global_variables_initializer().run()\n sample_num = 64\n tot_num_samples = min(sample_num, self.batch_size)\n manifold_h = int(np.floor(np.sqrt(tot_num_samples)))\n manifold_w = int(np.floor(np.sqrt(tot_num_samples)))\n self.sample = np.random.uniform(-1, 1, size=(self.batch_size, self.\n z_dim)).astype(np.float32)\n self.sample_y = self.data_Y[0:self.batch_size]\n counter = 0\n batch_offset = 0\n data_index = np.arange(self.data_X.shape[0])\n np.random.shuffle(data_index)\n self.data_X = self.data_X[data_index, :, :, :]\n self.data_Y = self.data_Y[data_index]\n for epoch in range(self.epoch):\n if batch_offset + self.batch_size > len(self.data_X):\n batch_offset = 0\n data_index = np.arange(self.data_X.shape[0])\n np.random.shuffle(data_index)\n self.data_X = self.data_X[data_index, :, :, :]\n self.data_Y = self.data_Y[data_index]\n else:\n batch_images = self.data_X[batch_offset:batch_offset + self\n .batch_size]\n batch_codes = self.data_Y[batch_offset:batch_offset + self.\n batch_size]\n batch_z = np.random.uniform(-1, 1, [self.batch_size, self.\n z_dim]).astype(np.float32)\n for i_d_loss in range(3):\n _, d_loss = self.sess.run([self.d_updates, self.DC_loss\n ], feed_dict={self.img: batch_images, self.y:\n batch_codes, self.z: batch_z})\n for i_g_loss in range(1):\n _, g_loss, _ = self.sess.run([self.g_updates, self.\n GC_loss, self.G_sample], feed_dict={self.y:\n batch_codes, self.img: batch_images, self.z: batch_z})\n batch_offset = batch_offset + self.batch_size\n if counter % 10 == 0:\n print(\n 'Epoch: %2d counter: %5d d_loss: %.8f, g_loss: %.8f' %\n (epoch, counter, d_loss, g_loss))\n if counter % 500 == 0:\n samples = self.sess.run(self.sampler, feed_dict={self.z:\n self.sample, self.y: self.sample_y})\n save_images(samples[:manifold_h * manifold_w, :, :, :],\n [manifold_h, manifold_w], self.result_dir +\n '/{}.png'.format(str(counter).zfill(7)))\n if counter % 1000 == 0:\n saver = tf.train.Saver(max_to_keep=5)\n saver.save(self.sess, self.checkpoint_dir + '/{}'.\n format(str(counter).zfill(7)))\n if counter % 100 == 0:\n if self.Cycle_lr:\n self.learningRateD = self.learningRateD * 0.99\n if self.learningRateD < 0.0001:\n self.learningRateD = 0.0002\n if counter % 500 == 0:\n if self.Class_weight:\n if self.la > 25:\n self.la = 25\n else:\n self.la = self.la * 1.5\n counter += 1\n", "step-3": "<mask token>\n\n\nclass Skip_GAN(object):\n\n def __init__(self, sess, epoch, batch_size, dataset_name, result_dir,\n z_dim, y_dim, checkpoint_dir, num_resblock, Cycle_lr, Class_weight,\n Resnet_weight):\n self.sess = sess\n self.dataset_name = dataset_name\n self.result_dir = result_dir\n self.epoch = epoch\n self.batch_size = batch_size\n self.z_dim = z_dim\n self.y_dim = y_dim\n self.checkpoint_dir = checkpoint_dir\n self.num_resblock = num_resblock\n self.Cycle_lr = Cycle_lr\n self.Class_weight = Class_weight\n self.la = 10\n self.learningRateD = 0.0002\n self.learningRateG = 0.0002\n self.Resnet_weight = Resnet_weight\n if self.dataset_name == 'anime':\n print('loading anime .............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_anime_old()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n elif self.dataset_name == 'celebA':\n print('loading celebA ...............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_CelebA()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n else:\n print('Sorry there is no option for ', self.dataset_name)\n sys.exit()\n\n def build_model(self):\n self.y = tf.placeholder(tf.float32, [None, self.y_dim], name='y')\n self.img = tf.placeholder(tf.float32, [self.batch_size, self.height,\n self.width, 3], name='img')\n self.z = tf.placeholder(tf.float32, [None, self.z_dim])\n self.G_sample = Generator_srresnet(self.z, self.y, self.\n num_resblock, self.Resnet_weight)\n print('The return of Generator:', self.G_sample)\n D_real, C_real = Discriminator_srresnet(self.img, dataset=self.\n dataset_name)\n print('The return of Discriminator:', D_real, C_real)\n D_fake, C_fake = Discriminator_srresnet(self.G_sample, dataset=self\n .dataset_name, reuse=True)\n print('The return of Discriminator:', D_fake, C_fake)\n self.C_real_loss = tf.reduce_mean(tf.reduce_sum(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=C_real, labels=self.y),\n axis=1))\n self.C_fake_loss = tf.reduce_mean(tf.reduce_sum(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=C_fake, labels=self.y),\n axis=1))\n D_real_loss = tf.reduce_mean(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.\n ones_like(D_real)))\n D_fake_loss = tf.reduce_mean(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.\n zeros_like(D_fake)))\n \"\"\"注意 la也即是我是用动态学习率的时候要关注的参数 \n 但是我的目标是使得类别损失变得更加的大 而不是真伪的损失\"\"\"\n D_loss = D_real_loss + D_fake_loss\n self.DC_loss = self.la * D_loss + self.C_real_loss\n G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(\n logits=D_fake, labels=tf.ones_like(D_fake)))\n self.GC_loss = self.la * G_loss + self.C_fake_loss\n print('Calualtion the loss of Optimizer')\n self.theta_D = [v for v in tf.global_variables() if 'd_net' in v.name]\n self.theta_G = [v for v in tf.global_variables() if 'g_net' in v.name]\n with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)\n ):\n self.d_updates = tf.train.AdamOptimizer(self.learningRateD,\n beta1=0.5, beta2=0.9).minimize(self.DC_loss, var_list=self.\n theta_D)\n self.g_updates = tf.train.AdamOptimizer(self.learningRateG,\n beta1=0.5, beta2=0.9).minimize(self.GC_loss, var_list=self.\n theta_G)\n self.sampler = Generator_srresnet(self.y, self.z, self.num_resblock,\n self.Resnet_weight, reuse=True, train=False)\n\n def train(self):\n print('begin training ...........')\n tf.global_variables_initializer().run()\n sample_num = 64\n tot_num_samples = min(sample_num, self.batch_size)\n manifold_h = int(np.floor(np.sqrt(tot_num_samples)))\n manifold_w = int(np.floor(np.sqrt(tot_num_samples)))\n self.sample = np.random.uniform(-1, 1, size=(self.batch_size, self.\n z_dim)).astype(np.float32)\n self.sample_y = self.data_Y[0:self.batch_size]\n counter = 0\n batch_offset = 0\n data_index = np.arange(self.data_X.shape[0])\n np.random.shuffle(data_index)\n self.data_X = self.data_X[data_index, :, :, :]\n self.data_Y = self.data_Y[data_index]\n for epoch in range(self.epoch):\n if batch_offset + self.batch_size > len(self.data_X):\n batch_offset = 0\n data_index = np.arange(self.data_X.shape[0])\n np.random.shuffle(data_index)\n self.data_X = self.data_X[data_index, :, :, :]\n self.data_Y = self.data_Y[data_index]\n else:\n batch_images = self.data_X[batch_offset:batch_offset + self\n .batch_size]\n batch_codes = self.data_Y[batch_offset:batch_offset + self.\n batch_size]\n batch_z = np.random.uniform(-1, 1, [self.batch_size, self.\n z_dim]).astype(np.float32)\n for i_d_loss in range(3):\n _, d_loss = self.sess.run([self.d_updates, self.DC_loss\n ], feed_dict={self.img: batch_images, self.y:\n batch_codes, self.z: batch_z})\n for i_g_loss in range(1):\n _, g_loss, _ = self.sess.run([self.g_updates, self.\n GC_loss, self.G_sample], feed_dict={self.y:\n batch_codes, self.img: batch_images, self.z: batch_z})\n batch_offset = batch_offset + self.batch_size\n if counter % 10 == 0:\n print(\n 'Epoch: %2d counter: %5d d_loss: %.8f, g_loss: %.8f' %\n (epoch, counter, d_loss, g_loss))\n if counter % 500 == 0:\n samples = self.sess.run(self.sampler, feed_dict={self.z:\n self.sample, self.y: self.sample_y})\n save_images(samples[:manifold_h * manifold_w, :, :, :],\n [manifold_h, manifold_w], self.result_dir +\n '/{}.png'.format(str(counter).zfill(7)))\n if counter % 1000 == 0:\n saver = tf.train.Saver(max_to_keep=5)\n saver.save(self.sess, self.checkpoint_dir + '/{}'.\n format(str(counter).zfill(7)))\n if counter % 100 == 0:\n if self.Cycle_lr:\n self.learningRateD = self.learningRateD * 0.99\n if self.learningRateD < 0.0001:\n self.learningRateD = 0.0002\n if counter % 500 == 0:\n if self.Class_weight:\n if self.la > 25:\n self.la = 25\n else:\n self.la = self.la * 1.5\n counter += 1\n", "step-4": "from Dataload import load_anime_old, save_images, load_CelebA\nfrom Srresnet_Model import Generator_srresnet, Discriminator_srresnet\nimport tensorflow as tf\nimport numpy as np\nimport sys\n\n\nclass Skip_GAN(object):\n\n def __init__(self, sess, epoch, batch_size, dataset_name, result_dir,\n z_dim, y_dim, checkpoint_dir, num_resblock, Cycle_lr, Class_weight,\n Resnet_weight):\n self.sess = sess\n self.dataset_name = dataset_name\n self.result_dir = result_dir\n self.epoch = epoch\n self.batch_size = batch_size\n self.z_dim = z_dim\n self.y_dim = y_dim\n self.checkpoint_dir = checkpoint_dir\n self.num_resblock = num_resblock\n self.Cycle_lr = Cycle_lr\n self.Class_weight = Class_weight\n self.la = 10\n self.learningRateD = 0.0002\n self.learningRateG = 0.0002\n self.Resnet_weight = Resnet_weight\n if self.dataset_name == 'anime':\n print('loading anime .............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_anime_old()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n elif self.dataset_name == 'celebA':\n print('loading celebA ...............')\n self.height = 96\n self.width = 96\n self.c_dim = 3\n self.data_X, self.data_Y = load_CelebA()\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.\n data_Y.shape)\n else:\n print('Sorry there is no option for ', self.dataset_name)\n sys.exit()\n\n def build_model(self):\n self.y = tf.placeholder(tf.float32, [None, self.y_dim], name='y')\n self.img = tf.placeholder(tf.float32, [self.batch_size, self.height,\n self.width, 3], name='img')\n self.z = tf.placeholder(tf.float32, [None, self.z_dim])\n self.G_sample = Generator_srresnet(self.z, self.y, self.\n num_resblock, self.Resnet_weight)\n print('The return of Generator:', self.G_sample)\n D_real, C_real = Discriminator_srresnet(self.img, dataset=self.\n dataset_name)\n print('The return of Discriminator:', D_real, C_real)\n D_fake, C_fake = Discriminator_srresnet(self.G_sample, dataset=self\n .dataset_name, reuse=True)\n print('The return of Discriminator:', D_fake, C_fake)\n self.C_real_loss = tf.reduce_mean(tf.reduce_sum(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=C_real, labels=self.y),\n axis=1))\n self.C_fake_loss = tf.reduce_mean(tf.reduce_sum(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=C_fake, labels=self.y),\n axis=1))\n D_real_loss = tf.reduce_mean(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.\n ones_like(D_real)))\n D_fake_loss = tf.reduce_mean(tf.nn.\n sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.\n zeros_like(D_fake)))\n \"\"\"注意 la也即是我是用动态学习率的时候要关注的参数 \n 但是我的目标是使得类别损失变得更加的大 而不是真伪的损失\"\"\"\n D_loss = D_real_loss + D_fake_loss\n self.DC_loss = self.la * D_loss + self.C_real_loss\n G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(\n logits=D_fake, labels=tf.ones_like(D_fake)))\n self.GC_loss = self.la * G_loss + self.C_fake_loss\n print('Calualtion the loss of Optimizer')\n self.theta_D = [v for v in tf.global_variables() if 'd_net' in v.name]\n self.theta_G = [v for v in tf.global_variables() if 'g_net' in v.name]\n with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)\n ):\n self.d_updates = tf.train.AdamOptimizer(self.learningRateD,\n beta1=0.5, beta2=0.9).minimize(self.DC_loss, var_list=self.\n theta_D)\n self.g_updates = tf.train.AdamOptimizer(self.learningRateG,\n beta1=0.5, beta2=0.9).minimize(self.GC_loss, var_list=self.\n theta_G)\n self.sampler = Generator_srresnet(self.y, self.z, self.num_resblock,\n self.Resnet_weight, reuse=True, train=False)\n\n def train(self):\n print('begin training ...........')\n tf.global_variables_initializer().run()\n sample_num = 64\n tot_num_samples = min(sample_num, self.batch_size)\n manifold_h = int(np.floor(np.sqrt(tot_num_samples)))\n manifold_w = int(np.floor(np.sqrt(tot_num_samples)))\n self.sample = np.random.uniform(-1, 1, size=(self.batch_size, self.\n z_dim)).astype(np.float32)\n self.sample_y = self.data_Y[0:self.batch_size]\n counter = 0\n batch_offset = 0\n data_index = np.arange(self.data_X.shape[0])\n np.random.shuffle(data_index)\n self.data_X = self.data_X[data_index, :, :, :]\n self.data_Y = self.data_Y[data_index]\n for epoch in range(self.epoch):\n if batch_offset + self.batch_size > len(self.data_X):\n batch_offset = 0\n data_index = np.arange(self.data_X.shape[0])\n np.random.shuffle(data_index)\n self.data_X = self.data_X[data_index, :, :, :]\n self.data_Y = self.data_Y[data_index]\n else:\n batch_images = self.data_X[batch_offset:batch_offset + self\n .batch_size]\n batch_codes = self.data_Y[batch_offset:batch_offset + self.\n batch_size]\n batch_z = np.random.uniform(-1, 1, [self.batch_size, self.\n z_dim]).astype(np.float32)\n for i_d_loss in range(3):\n _, d_loss = self.sess.run([self.d_updates, self.DC_loss\n ], feed_dict={self.img: batch_images, self.y:\n batch_codes, self.z: batch_z})\n for i_g_loss in range(1):\n _, g_loss, _ = self.sess.run([self.g_updates, self.\n GC_loss, self.G_sample], feed_dict={self.y:\n batch_codes, self.img: batch_images, self.z: batch_z})\n batch_offset = batch_offset + self.batch_size\n if counter % 10 == 0:\n print(\n 'Epoch: %2d counter: %5d d_loss: %.8f, g_loss: %.8f' %\n (epoch, counter, d_loss, g_loss))\n if counter % 500 == 0:\n samples = self.sess.run(self.sampler, feed_dict={self.z:\n self.sample, self.y: self.sample_y})\n save_images(samples[:manifold_h * manifold_w, :, :, :],\n [manifold_h, manifold_w], self.result_dir +\n '/{}.png'.format(str(counter).zfill(7)))\n if counter % 1000 == 0:\n saver = tf.train.Saver(max_to_keep=5)\n saver.save(self.sess, self.checkpoint_dir + '/{}'.\n format(str(counter).zfill(7)))\n if counter % 100 == 0:\n if self.Cycle_lr:\n self.learningRateD = self.learningRateD * 0.99\n if self.learningRateD < 0.0001:\n self.learningRateD = 0.0002\n if counter % 500 == 0:\n if self.Class_weight:\n if self.la > 25:\n self.la = 25\n else:\n self.la = self.la * 1.5\n counter += 1\n", "step-5": "# -*- coding: utf-8 -*-\r\n# @Time : 2020/3/4 10:34\r\n# @Author : YYLin\r\n# @Email : 854280599@qq.com\r\n# @File : Skip_GAN.py\r\nfrom Dataload import load_anime_old, save_images, load_CelebA\r\nfrom Srresnet_Model import Generator_srresnet, Discriminator_srresnet\r\nimport tensorflow as tf\r\nimport numpy as np\r\nimport sys\r\n\r\n\r\nclass Skip_GAN(object):\r\n def __init__(self, sess, epoch, batch_size, dataset_name, result_dir, z_dim, y_dim, checkpoint_dir, num_resblock,\r\n Cycle_lr, Class_weight, Resnet_weight):\r\n self.sess = sess\r\n self.dataset_name = dataset_name\r\n self.result_dir = result_dir\r\n self.epoch = epoch\r\n self.batch_size = batch_size\r\n self.z_dim = z_dim\r\n self.y_dim = y_dim\r\n self.checkpoint_dir = checkpoint_dir\r\n self.num_resblock = num_resblock\r\n self.Cycle_lr = Cycle_lr\r\n self.Class_weight = Class_weight\r\n\r\n # La is used to increase the weight of image authenticity\r\n self.la = 10\r\n self.learningRateD = 2e-4\r\n self.learningRateG = 2e-4\r\n\r\n #\r\n self.Resnet_weight = Resnet_weight\r\n\r\n # 加载不同的数据集\r\n if self.dataset_name == 'anime':\r\n print('loading anime .............')\r\n self.height = 96\r\n self.width = 96\r\n self.c_dim = 3\r\n\r\n self.data_X, self.data_Y = load_anime_old()\r\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.data_Y.shape)\r\n\r\n elif self.dataset_name == 'celebA':\r\n print('loading celebA ...............')\r\n self.height = 96\r\n self.width = 96\r\n self.c_dim = 3\r\n\r\n self.data_X, self.data_Y = load_CelebA()\r\n print('self.data_X:', self.data_X.shape, 'self.data_y:', self.data_Y.shape)\r\n else:\r\n print('Sorry there is no option for ', self.dataset_name)\r\n sys.exit()\r\n\r\n def build_model(self):\r\n # some placeholder in our model\r\n self.y = tf.placeholder(tf.float32, [None, self.y_dim], name='y')\r\n self.img = tf.placeholder(tf.float32, [self.batch_size, self.height, self.width, 3], name='img')\r\n self.z = tf.placeholder(tf.float32, [None, self.z_dim])\r\n\r\n self.G_sample = Generator_srresnet(self.z, self.y, self.num_resblock, self.Resnet_weight)\r\n print('The return of Generator:', self.G_sample)\r\n\r\n # 识别器对真实图像进行判断\r\n D_real, C_real = Discriminator_srresnet(self.img, dataset=self.dataset_name)\r\n print('The return of Discriminator:', D_real, C_real)\r\n\r\n # 识别器对生成图像进行判断\r\n D_fake, C_fake = Discriminator_srresnet(self.G_sample, dataset=self.dataset_name, reuse=True)\r\n print('The return of Discriminator:', D_fake, C_fake)\r\n\r\n # 判断图像的类别\r\n self.C_real_loss = tf.reduce_mean(\r\n tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=C_real, labels=self.y), axis=1))\r\n self.C_fake_loss = tf.reduce_mean(\r\n tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=C_fake, labels=self.y), axis=1))\r\n\r\n # D_Loss 希望真实图像被判断为1 希望生成图像被判断为0\r\n D_real_loss = tf.reduce_mean(\r\n tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.ones_like(D_real)))\r\n D_fake_loss = tf.reduce_mean(\r\n tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.zeros_like(D_fake)))\r\n\r\n '''注意 la也即是我是用动态学习率的时候要关注的参数 \r\n 但是我的目标是使得类别损失变得更加的大 而不是真伪的损失'''\r\n D_loss = D_real_loss + D_fake_loss\r\n self.DC_loss = (self.la * D_loss + self.C_real_loss)\r\n\r\n # 对生成模型的损失也在关注该模型\r\n G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.ones_like(D_fake)))\r\n self.GC_loss = (self.la * G_loss + self.C_fake_loss)\r\n\r\n print('Calualtion the loss of Optimizer')\r\n self.theta_D = [v for v in tf.global_variables() if 'd_net' in v.name]\r\n self.theta_G = [v for v in tf.global_variables() if 'g_net' in v.name]\r\n\r\n with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):\r\n self.d_updates = tf.train.AdamOptimizer(self.learningRateD, beta1=0.5, beta2=0.9).minimize(self.DC_loss,\r\n var_list=self.theta_D)\r\n self.g_updates = tf.train.AdamOptimizer(self.learningRateG, beta1=0.5, beta2=0.9).minimize(self.GC_loss,\r\n var_list=self.theta_G)\r\n self.sampler = Generator_srresnet(self.y, self.z, self.num_resblock, self.Resnet_weight, reuse=True, train=False)\r\n\r\n def train(self):\r\n print('begin training ...........')\r\n tf.global_variables_initializer().run()\r\n\r\n # sample_num 用于控制存储图像\r\n sample_num = 64\r\n tot_num_samples = min(sample_num, self.batch_size)\r\n manifold_h = int(np.floor(np.sqrt(tot_num_samples)))\r\n manifold_w = int(np.floor(np.sqrt(tot_num_samples)))\r\n\r\n # 定义随机噪音以及标签 2019/09/29\r\n self.sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim)).astype(np.float32)\r\n self.sample_y = self.data_Y[0:self.batch_size]\r\n\r\n counter = 0\r\n\r\n # shuffle the dataset 2019/9/29\r\n batch_offset = 0\r\n data_index = np.arange(self.data_X.shape[0])\r\n np.random.shuffle(data_index)\r\n self.data_X = self.data_X[data_index, :, :, :]\r\n self.data_Y = self.data_Y[data_index]\r\n\r\n # 这种方式会有使得小于batch_size个数据用不上\r\n for epoch in range(self.epoch):\r\n if batch_offset + self.batch_size > len(self.data_X):\r\n batch_offset = 0\r\n # shuffle dataset\r\n data_index = np.arange(self.data_X.shape[0])\r\n np.random.shuffle(data_index)\r\n self.data_X = self.data_X[data_index, :, :, :]\r\n self.data_Y = self.data_Y[data_index]\r\n else:\r\n # 首先是得到输入的数据\r\n batch_images = self.data_X[batch_offset:batch_offset + self.batch_size]\r\n batch_codes = self.data_Y[batch_offset:batch_offset + self.batch_size]\r\n\r\n batch_z = np.random.uniform(-1, 1, [self.batch_size, self.z_dim]).astype(np.float32)\r\n\r\n # 然后更新识别器\r\n for i_d_loss in range(3):\r\n _, d_loss = self.sess.run([self.d_updates, self.DC_loss], feed_dict={self.img: batch_images,\r\n self.y: batch_codes,\r\n self.z: batch_z})\r\n for i_g_loss in range(1):\r\n # 最后更新生成器模型\r\n _, g_loss, _ = self.sess.run([self.g_updates, self.GC_loss, self.G_sample],\r\n feed_dict={self.y: batch_codes, self.img: batch_images, self.z: batch_z})\r\n\r\n batch_offset = batch_offset + self.batch_size\r\n\r\n # display the loss every 10 steps\r\n if (counter % 10) == 0:\r\n print('Epoch: %2d counter: %5d d_loss: %.8f, g_loss: %.8f' % (epoch, counter, d_loss, g_loss))\r\n\r\n # save image every 500 steps\r\n if counter % 500 == 0:\r\n samples = self.sess.run(self.sampler,\r\n feed_dict={self.z: self.sample, self.y: self.sample_y})\r\n\r\n save_images(samples[:manifold_h * manifold_w, :, :, :], [manifold_h, manifold_w],\r\n self.result_dir + '/{}.png'.format(str(counter).zfill(7)))\r\n\r\n # save the model every 1000 steps\r\n if counter % 1000 == 0:\r\n saver = tf.train.Saver(max_to_keep=5)\r\n saver.save(self.sess, self.checkpoint_dir + '/{}'.format(str(counter).zfill(7)))\r\n\r\n if (counter % 100) == 0:\r\n if self.Cycle_lr:\r\n self.learningRateD = self.learningRateD * 0.99\r\n if self.learningRateD < 0.0001:\r\n self.learningRateD = 2e-4\r\n\r\n if (counter % 500) == 0:\r\n if self.Class_weight:\r\n if self.la > 25:\r\n self.la = 25\r\n else:\r\n self.la = self.la * 1.5\r\n\r\n counter += 1\r\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
#!/usr/bin/env python import os import tempfile import shutil import math import sys import subprocess from irank.config import IrankOptionParser, IrankApp from irank import db as irank_db STATUS = 0 def main(): p = IrankOptionParser('%prog -d DEST playlist_name [playlist_name ...]') p.add_option('-d', '--dest', help='export destination', default=None) p.add_option('-l', '--limit', type="int", help='per-playlist filesize limit', default=None) p.add_option('--no-checksum', dest='checksum', action="store_false", default=True) p.add_option('-i', '--interactive', action='store_true', help='Interactively resolve errors') p.add_option('--rsync-opt', dest='rsync_opts', action='append', default=[], help='Add rsync option (can be used multiple times)') opts, args = p.parse_args() assert opts.dest, p.get_usage() assert len(args) > 0, p.get_usage() app = IrankApp(opts) music_base = os.path.expanduser(opts.music) irank_base = os.path.expanduser(opts.irank) export_base = os.path.expanduser(opts.dest) export_music = export_base # Used to be __music, but android 4+ doesn't like sub-folders songs = {} all_songs = set() # we use hard-links, so the export_temp must be on the same device as our music! # export_temp = tempfile.mkdtemp(prefix='irank-export-') export_temp = os.path.join(irank_base, "__export_temp") if os.path.exists(export_temp): shutil.rmtree(export_temp) else: os.makedirs(export_temp) shutil.copy( os.path.join(irank_base, "irank.sqlite"), os.path.join(export_temp, "irank.sqlite") ) try: for playlist in args: playlist_songs = set(app.songs_for(playlist, relative=True)) songs[playlist] = playlist_songs all_songs.update(playlist_songs) write_m3u(export_temp, playlist, sorted(playlist_songs)) print "Generated playlist %s: %s files" % (playlist, len(playlist_songs)) print "linking into %r ..." % (export_temp,) total_size = link_all_files(all_songs, export_temp=export_temp, music_base=music_base, limit=opts.limit) print "Syncing %s files (%0.2fgb)" % (len(all_songs),total_size / (math.pow(1000, 3))) extra_sync_opts = [] syncing = True while syncing: try: sync(export_temp, export_music, additional_opts=opts.rsync_opts + extra_sync_opts, checksum=opts.checksum) break except (subprocess.CalledProcessError, OSError) as e: if not opts.interactive: raise print >> sys.stderr, "Error syncing: %s\n" % (e,) while True: print >> sys.stderr, "Press Ctrl-C to abort, <return> to restart, 'k' to retry (skipping existing files) and 's' to skip to next step" result = raw_input().strip().lower() if result == 'k': extra_sync_opts = ['--ignore-existing'] break elif result == '': extra_sync_opts = [] break elif result == 's': syncing = False break else: print >> sys.stderr, "Eh?" finally: shutil.rmtree(export_temp) def link_all_files(all_songs, export_temp, music_base, limit=None): total_size = 0 def file_size(path): try: return os.stat(path).st_size except OSError: print >> sys.stderr, "couldn't get file size of file: %s" % (path,) return None for file in all_songs: #if not os.path.isdir(os.path.dirname( src_file = os.path.join(music_base, file) src_file_size = file_size(src_file) if src_file_size is None: continue if limit and (total_size + src_file_size) > limit: return total_size else: total_size += src_file_size link_dest = os.path.join(export_temp, file) link_dest_dir = os.path.dirname(link_dest) if not os.path.isdir(link_dest_dir): os.makedirs(link_dest_dir) os.link(src_file, link_dest) return total_size def sync(src, dest, additional_opts=[], checksum=True): cmd = [ 'rsync', #'-n', '--progress', '--modify-window=5', '-r', #'-v', '--delete-before'] if checksum: cmd.append('-c') cmd = cmd + additional_opts + [src + os.path.sep, dest] print "running: %r" % (cmd,) subprocess.check_call(cmd, stdin=subprocess.PIPE) def write_m3u(dest, name, files): global STATUS encoding = sys.getfilesystemencoding() with open(os.path.join(dest, name + '.m3u'), 'w') as output: for name in files: try: print >> output, name.encode(encoding) except (UnicodeEncodeError, UnicodeDecodeError) as err: print "FAILED to write song: %r" % (name,) STATUS = 1 if __name__ == '__main__': main() sys.exit(STATUS)
normal
{ "blob_id": "df64d769ffba8cddac34282a526122e3c941249d", "index": 245, "step-1": "#!/usr/bin/env python\nimport os\nimport tempfile\nimport shutil\nimport math\nimport sys\nimport subprocess\n\nfrom irank.config import IrankOptionParser, IrankApp\nfrom irank import db as irank_db\nSTATUS = 0\n\ndef main():\n\tp = IrankOptionParser('%prog -d DEST playlist_name [playlist_name ...]')\n\tp.add_option('-d', '--dest', help='export destination', default=None)\n\tp.add_option('-l', '--limit', type=\"int\", help='per-playlist filesize limit', default=None)\n\tp.add_option('--no-checksum', dest='checksum', action=\"store_false\", default=True)\n\tp.add_option('-i', '--interactive', action='store_true', help='Interactively resolve errors')\n\tp.add_option('--rsync-opt', dest='rsync_opts', action='append', default=[], help='Add rsync option (can be used multiple times)')\n\topts, args = p.parse_args()\n\tassert opts.dest, p.get_usage()\n\tassert len(args) > 0, p.get_usage()\n\tapp = IrankApp(opts)\n\n\tmusic_base = os.path.expanduser(opts.music)\n\tirank_base = os.path.expanduser(opts.irank)\n\texport_base = os.path.expanduser(opts.dest)\n\texport_music = export_base # Used to be __music, but android 4+ doesn't like sub-folders\n\tsongs = {}\n\tall_songs = set()\n\n\t# we use hard-links, so the export_temp must be on the same device as our music!\n\t# export_temp = tempfile.mkdtemp(prefix='irank-export-')\n\texport_temp = os.path.join(irank_base, \"__export_temp\")\n\tif os.path.exists(export_temp):\n\t\tshutil.rmtree(export_temp)\n\telse:\n\t\tos.makedirs(export_temp)\n\t\n\tshutil.copy(\n\t\tos.path.join(irank_base, \"irank.sqlite\"),\n\t\tos.path.join(export_temp, \"irank.sqlite\")\n\t)\n\n\ttry:\n\t\tfor playlist in args:\n\t\t\tplaylist_songs = set(app.songs_for(playlist, relative=True))\n\t\t\tsongs[playlist] = playlist_songs\n\t\t\tall_songs.update(playlist_songs)\n\t\t\twrite_m3u(export_temp, playlist, sorted(playlist_songs))\n\t\t\tprint \"Generated playlist %s: %s files\" % (playlist, len(playlist_songs))\n\n\t\tprint \"linking into %r ...\" % (export_temp,)\n\t\ttotal_size = link_all_files(all_songs, export_temp=export_temp, music_base=music_base, limit=opts.limit)\n\n\t\tprint \"Syncing %s files (%0.2fgb)\" % (len(all_songs),total_size / (math.pow(1000, 3)))\n\t\textra_sync_opts = []\n\t\tsyncing = True\n\t\twhile syncing:\n\t\t\ttry:\n\t\t\t\tsync(export_temp, export_music, additional_opts=opts.rsync_opts + extra_sync_opts, checksum=opts.checksum)\n\t\t\t\tbreak\n\t\t\texcept (subprocess.CalledProcessError, OSError) as e:\n\t\t\t\tif not opts.interactive:\n\t\t\t\t\traise\n\t\t\t\tprint >> sys.stderr, \"Error syncing: %s\\n\" % (e,)\n\t\t\t\twhile True:\n\t\t\t\t\tprint >> sys.stderr, \"Press Ctrl-C to abort, <return> to restart, 'k' to retry (skipping existing files) and 's' to skip to next step\"\n\t\t\t\t\tresult = raw_input().strip().lower()\n\t\t\t\t\tif result == 'k':\n\t\t\t\t\t\textra_sync_opts = ['--ignore-existing']\n\t\t\t\t\t\tbreak\n\t\t\t\t\telif result == '':\n\t\t\t\t\t\textra_sync_opts = []\n\t\t\t\t\t\tbreak\n\t\t\t\t\telif result == 's':\n\t\t\t\t\t\tsyncing = False\n\t\t\t\t\t\tbreak\n\t\t\t\t\telse:\n\t\t\t\t\t\tprint >> sys.stderr, \"Eh?\"\n\tfinally:\n\t\tshutil.rmtree(export_temp)\n\ndef link_all_files(all_songs, export_temp, music_base, limit=None):\n\ttotal_size = 0\n\tdef file_size(path):\n\t\ttry:\n\t\t\treturn os.stat(path).st_size\n\t\texcept OSError:\n\t\t\tprint >> sys.stderr, \"couldn't get file size of file: %s\" % (path,)\n\t\treturn None\n\n\tfor file in all_songs:\n\t\t#if not os.path.isdir(os.path.dirname(\n\t\tsrc_file = os.path.join(music_base, file)\n\t\tsrc_file_size = file_size(src_file)\n\t\tif src_file_size is None:\n\t\t\tcontinue\n\t\tif limit and (total_size + src_file_size) > limit:\n\t\t\treturn total_size\n\t\telse:\n\t\t\ttotal_size += src_file_size\n\n\t\tlink_dest = os.path.join(export_temp, file)\n\t\tlink_dest_dir = os.path.dirname(link_dest)\n\t\tif not os.path.isdir(link_dest_dir):\n\t\t\tos.makedirs(link_dest_dir)\n\t\tos.link(src_file, link_dest)\n\treturn total_size\n\ndef sync(src, dest, additional_opts=[], checksum=True):\n\tcmd = [\n\t\t'rsync',\n\t\t#'-n',\n\t\t'--progress',\n\t\t'--modify-window=5',\n\t\t'-r',\n\t\t#'-v',\n\t\t'--delete-before']\n\tif checksum:\n\t\tcmd.append('-c')\n\tcmd = cmd + additional_opts + [src + os.path.sep, dest]\n\tprint \"running: %r\" % (cmd,)\n\tsubprocess.check_call(cmd, stdin=subprocess.PIPE)\n\ndef write_m3u(dest, name, files):\n\tglobal STATUS\n\tencoding = sys.getfilesystemencoding()\n\twith open(os.path.join(dest, name + '.m3u'), 'w') as output:\n\t\tfor name in files:\n\t\t\ttry:\n\t\t\t\tprint >> output, name.encode(encoding)\n\t\t\texcept (UnicodeEncodeError, UnicodeDecodeError) as err:\n\t\t\t\tprint \"FAILED to write song: %r\" % (name,)\n\t\t\t\tSTATUS = 1\n\nif __name__ == '__main__':\n\tmain()\n\tsys.exit(STATUS)\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import src.engine.functions.root_analyzer.main as main from src.engine.functions.function import Function class GetRootData(Function): def __init__(self, data_display): self.data_display = data_display def call(self, args): image_folder_path = args[0] output_path = args[1] self.data_display.clear() data = main.generate_data(image_folder_path, self.data_display.data_tracker) error_message = self.data_display.display_data(data) return ""
normal
{ "blob_id": "e8ea307352805bf0b5129e2ad7f7b68c44e78fc9", "index": 9118, "step-1": "<mask token>\n\n\nclass GetRootData(Function):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass GetRootData(Function):\n\n def __init__(self, data_display):\n self.data_display = data_display\n <mask token>\n", "step-3": "<mask token>\n\n\nclass GetRootData(Function):\n\n def __init__(self, data_display):\n self.data_display = data_display\n\n def call(self, args):\n image_folder_path = args[0]\n output_path = args[1]\n self.data_display.clear()\n data = main.generate_data(image_folder_path, self.data_display.\n data_tracker)\n error_message = self.data_display.display_data(data)\n return ''\n", "step-4": "import src.engine.functions.root_analyzer.main as main\nfrom src.engine.functions.function import Function\n\n\nclass GetRootData(Function):\n\n def __init__(self, data_display):\n self.data_display = data_display\n\n def call(self, args):\n image_folder_path = args[0]\n output_path = args[1]\n self.data_display.clear()\n data = main.generate_data(image_folder_path, self.data_display.\n data_tracker)\n error_message = self.data_display.display_data(data)\n return ''\n", "step-5": "import src.engine.functions.root_analyzer.main as main\nfrom src.engine.functions.function import Function\n\nclass GetRootData(Function):\n\n def __init__(self, data_display):\n self.data_display = data_display\n\n def call(self, args):\n image_folder_path = args[0]\n output_path = args[1]\n self.data_display.clear()\n data = main.generate_data(image_folder_path, self.data_display.data_tracker)\n error_message = self.data_display.display_data(data)\n return \"\"\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding: GB18030 -*- import inspect import os,sys import subprocess from lib.common.utils import * from lib.common.loger import loger from lib.common import checker from lib.common.logreader import LogReader import shutil from lib.common.XmlHandler import * from lib.common.Dict import * class baseModule(object): def __init__(self): self.sys = Shell_System() self.path =None #模块bin 路径 self.bin_path = None #模块配置路径 self.conf_path = None #模块字典路径 self.dict_path = None #log路径 self.log_path = None #用于存储被分配得到的端口 self.port=[] #用于表示本模块需要设置的端口数目 self.port_num = 0 #用于表示模块名 self.type=None #是否进行conf 备份flag self.conf_bak_flag = False #是否进行dict备份 self.dict_back_flag = False #以下变量根据需要在各个module中初始化 #notice 日志名称 self.ntlogname = None #WF日志名称 self.wflogname = None self.nt_logreader = None self.wf_logreader = None def add_relation(self,module): """ @note: 参数传递的是已经生成的其他module的实例 具体关联关系的建立 """ self.module_rel_set.append(module) loger.info("Topology is %s ----> %s",self.type,getattr(module,"type")) return 0 def build_relation(self): """ @note: 如果有下游模块必须实现改方法 建本模块和下游模块关系 """ pass def get_port(self): """ @note: 返回本模块申请的端口list """ return self.port def set_listen_port(self): """ @note:各模块实现设置对用的conf """ pass def start(self): """ @note: 启动模块 注意可通过端口或进程是否存在判断是否启动成功 checker.check_process_exist(processpath) checker.check_port_exist(port) """ pass def stop(self): """ @note:停止运行 默认通过self.bin_path实现 """ if self.bin_path <> None and os.path.exists(self.bin_path): kill_process(self.bin_path) loger.debug("kill process %s"%(self.bin_path)) else: loger.warning("module [%s] has not bin_path!"%(self.type)) def bak_or_revert_env(self): """ @note:根据bakflag 进行bak 操作 默认进行两项bak conf dict 如果path.robotbak不存在,则将path备份 - 如果path.dtsbak存在,则用path.robotbak覆盖path """ #清理log目录 if self.log_path is not None: cmd = "rm -rf " + self.log_path loger.debug(cmd) self.sys.shell(cmd) # 重命名core rename_cores(self.path) #备份恢复conf if self.conf_bak_flag: bak_or_revert(self.conf_path) #备份恢复dict if self.dict_back_flag: bak_or_revert(self.dict_path) return 0 def __conf_op(self, optype, confid, k, v=None): """ @note: 封装 获取,删除、设置3种conf操作方法 optype为操作类型 0:设置、1:获取、2:删除 对外接口由 set_conf、get_conf、delete_conf """ if self.path is None: raise AssertionError("get modulepath error[%s]"%(self.path)) path, seg = getconfitem(self.path, self.type, confid) if path is None: raise AssertionError("set conf error[%s][%s][%s][%s]"%(self.type, confid, k , v)) conf = UbConfigParser(path, seg) if optype == 0: conf.set(k , v) return if optype == 1: return conf.get(k) if optype == 2: conf.delete(k) return def set_conf(self, confid, k, v): """ @note:设置conf confid为conf.xml中注册id """ return self.__conf_op(0, confid, str(k), str(v)) def get_conf(self, confid, k): return self.__conf_op(1, confid, str(k)) def delete_conf(self, confid, k): return self.__conf_op(2, confid, str(k)) def set_dict(self, dictid, *line_item): """ @note:设置字典数据 将数据设置进不同的列中 """ path, seg = getdictitem(self.type, dictid) real_path = os.path.join(self.path, path) dicth = DictHandler(real_path, seg) dicth.set_dict(line_item) def clear_dict(self, dictid): """ @note:清理字典 """ path, seg = getdictitem(self.type, dictid) real_path = os.path.join(self.path, path) dicth = DictHandler(self, real_path, seg) dicth.clear_dict() #以下接口为测试接口 def check_notice_log_has(self, regex): """ @note:检查 notice log中是否包含某项 regex为匹配正则表达式 return: 包含返回True、否则为False """ if self.nt_logreader == None: nt_log_path = os.path.join(self.log_path, self.ntlogname) self.nt_logreader = LogReader(nt_log_path) return checker.check_log_contain(self.nt_logreader,regex) def check_wf_log_has(self, regex): """ 检查wf日志包含某项 regex为匹配正则表达式 return: 包含返回True、否则为False """ if self.wf_logreader == None: wf_log_path = os.path.join(self.log_path, self.wflogname) self.wf_logreader = LogReader(wf_log_path) return checker.check_log_contain(self.wf_logreader, regex) def check_fatal(self): """ @note:检查结果中是否包含fatal return: 包含fatal 返回 True, 否则返回false """ regex="^FATAL.*" return self.check_wf_log_has(regex) def set_req(self, reqresjs=None, *agrs): """ @note:设置请求 注意不是字典设置 """ pass def set_res(): """ @note:设置返回 """ pass def common_check(self): """ 通用commoncheck接口 该接口无传入参数 一般用作fatal、core等检查 """ #将log打印出 if self.nt_logreader == None: nt_log_path = os.path.join(self.log_path, self.ntlogname) self.nt_logreader = LogReader(nt_log_path) if self.wf_logreader == None: wf_log_path = os.path.join(self.log_path, self.wflogname) self.wf_logreader = LogReader(wf_log_path) loger.diagnose("Module[%s] wf logs:\n%s"%(self.type, self.wf_logreader.read_fatal_and_last_lines(10))) loger.diagnose("Module[%s] notice logs:\n%s"%(self.type, self.nt_logreader.read_last_lines(10))) #检查core log_cores(self.path) #检查FATAL if self.check_fatal(): raise AssertionError("There FATAL in module[%s]"%(self.type)) def check(self, checkjs=None): """ @note:check接口 """ pass def reqdata(self): ''' @note: 将各个模块的req形成json赋值给内部变量 ''' pass def get_used_port(self): """ @note:获得该模块所在机器的空闲端口号 """ used_port_list = self.sys.shell("netstat -na 2>/dev/null|grep \":\"|awk -F \"[ :]\" '{print $17}'",output = "true")[1].splitlines() return used_port_list def test_system(): "单元测试" npatSys = Shell_System() npatSys.shell("echo '12345' > a.txt") npatSys.shell("rm b.txt") npatSys.shell("cat a.txt b.txt", output = True) npatSys.shell("ttt") npatSys.shell("ttt", output = True) used_port_list = npatSys.shell("netstat -na 2>/dev/null|grep \":\"|awk -F \"[ :]\" '{print $17}'",output = "true")[1].splitlines() print used_port_list if __name__ == '__main__': mm = baseModule() print type(mm.sys)
normal
{ "blob_id": "a74d27d9e31872100b4f22512abe9de7d9277de7", "index": 2970, "step-1": "# -*- coding: GB18030 -*-\nimport inspect\nimport os,sys\nimport subprocess\nfrom lib.common.utils import *\nfrom lib.common.loger import loger\nfrom lib.common import checker\nfrom lib.common.logreader import LogReader\nimport shutil\nfrom lib.common.XmlHandler import *\nfrom lib.common.Dict import *\n\nclass baseModule(object):\n def __init__(self):\n self.sys = Shell_System()\n self.path =None\n #模块bin 路径\n self.bin_path = None\n #模块配置路径\n self.conf_path = None\n #模块字典路径\n self.dict_path = None\n #log路径\n self.log_path = None\n #用于存储被分配得到的端口\n self.port=[]\n #用于表示本模块需要设置的端口数目\n self.port_num = 0\n #用于表示模块名\n self.type=None\n #是否进行conf 备份flag\n self.conf_bak_flag = False\n #是否进行dict备份\n self.dict_back_flag = False\n #以下变量根据需要在各个module中初始化\n #notice 日志名称\n self.ntlogname = None\n #WF日志名称\n self.wflogname = None\n self.nt_logreader = None\n self.wf_logreader = None\n \n def add_relation(self,module):\n \"\"\"\n @note: 参数传递的是已经生成的其他module的实例\n 具体关联关系的建立\n \"\"\"\n self.module_rel_set.append(module)\n loger.info(\"Topology is %s ----> %s\",self.type,getattr(module,\"type\"))\n return 0\n\n def build_relation(self):\n \"\"\"\n @note: 如果有下游模块必须实现改方法\n 建本模块和下游模块关系\n \"\"\"\n pass\n \n def get_port(self):\n \"\"\"\n @note: 返回本模块申请的端口list\n \"\"\"\n return self.port\n\n def set_listen_port(self):\n \"\"\"\n @note:各模块实现设置对用的conf\n \"\"\"\n pass\n\n def start(self):\n \"\"\"\n @note: 启动模块\n 注意可通过端口或进程是否存在判断是否启动成功\n checker.check_process_exist(processpath)\n checker.check_port_exist(port)\n \"\"\"\n pass\n\n def stop(self):\n \"\"\"\n @note:停止运行\n 默认通过self.bin_path实现\n \"\"\"\n if self.bin_path <> None and os.path.exists(self.bin_path):\n kill_process(self.bin_path)\n loger.debug(\"kill process %s\"%(self.bin_path))\n else:\n loger.warning(\"module [%s] has not bin_path!\"%(self.type))\n\n def bak_or_revert_env(self):\n \"\"\"\n @note:根据bakflag 进行bak 操作\n 默认进行两项bak conf dict\n 如果path.robotbak不存在,则将path备份\n - 如果path.dtsbak存在,则用path.robotbak覆盖path\n \"\"\"\n #清理log目录\n if self.log_path is not None:\n cmd = \"rm -rf \" + self.log_path\n loger.debug(cmd)\n self.sys.shell(cmd)\n # 重命名core\n rename_cores(self.path)\n #备份恢复conf\n if self.conf_bak_flag:\n bak_or_revert(self.conf_path)\n #备份恢复dict\n if self.dict_back_flag:\n bak_or_revert(self.dict_path)\n return 0\n \n def __conf_op(self, optype, confid, k, v=None):\n \"\"\"\n @note: 封装 获取,删除、设置3种conf操作方法\n optype为操作类型 0:设置、1:获取、2:删除\n 对外接口由 set_conf、get_conf、delete_conf\n \"\"\"\n if self.path is None:\n raise AssertionError(\"get modulepath error[%s]\"%(self.path))\n path, seg = getconfitem(self.path, self.type, confid)\n if path is None:\n raise AssertionError(\"set conf error[%s][%s][%s][%s]\"%(self.type, confid, k , v))\n conf = UbConfigParser(path, seg)\n if optype == 0:\n conf.set(k , v)\n return \n if optype == 1:\n return conf.get(k)\n if optype == 2:\n conf.delete(k)\n return\n \n def set_conf(self, confid, k, v):\n \"\"\"\n @note:设置conf\n confid为conf.xml中注册id\n \"\"\"\n return self.__conf_op(0, confid, str(k), str(v)) \n\n def get_conf(self, confid, k):\n return self.__conf_op(1, confid, str(k))\n\n def delete_conf(self, confid, k):\n return self.__conf_op(2, confid, str(k))\n \n def set_dict(self, dictid, *line_item):\n \"\"\"\n @note:设置字典数据 将数据设置进不同的列中\n \"\"\"\n path, seg = getdictitem(self.type, dictid) \n real_path = os.path.join(self.path, path)\n dicth = DictHandler(real_path, seg)\n dicth.set_dict(line_item)\n\n def clear_dict(self, dictid):\n \"\"\"\n @note:清理字典\n \"\"\"\n path, seg = getdictitem(self.type, dictid) \n real_path = os.path.join(self.path, path)\n dicth = DictHandler(self, real_path, seg)\n dicth.clear_dict()\n\n #以下接口为测试接口\n def check_notice_log_has(self, regex):\n \"\"\"\n @note:检查 notice log中是否包含某项\n regex为匹配正则表达式\n return: 包含返回True、否则为False \n \"\"\"\n if self.nt_logreader == None:\n nt_log_path = os.path.join(self.log_path, self.ntlogname)\n self.nt_logreader = LogReader(nt_log_path)\n return checker.check_log_contain(self.nt_logreader,regex)\n \n def check_wf_log_has(self, regex):\n \"\"\"\n 检查wf日志包含某项\n regex为匹配正则表达式\n return: 包含返回True、否则为False \n \"\"\"\n if self.wf_logreader == None:\n wf_log_path = os.path.join(self.log_path, self.wflogname)\n self.wf_logreader = LogReader(wf_log_path)\n return checker.check_log_contain(self.wf_logreader, regex)\n \n def check_fatal(self):\n \"\"\"\n @note:检查结果中是否包含fatal\n return: 包含fatal 返回 True, 否则返回false\n \"\"\"\n regex=\"^FATAL.*\"\n return self.check_wf_log_has(regex)\n\n \n def set_req(self, reqresjs=None, *agrs):\n \"\"\"\n @note:设置请求\n 注意不是字典设置\n \"\"\"\n pass\n\n def set_res():\n \"\"\"\n @note:设置返回\n \"\"\"\n pass\n\n def common_check(self):\n \"\"\"\n 通用commoncheck接口\n 该接口无传入参数\n 一般用作fatal、core等检查\n \"\"\"\n #将log打印出\n if self.nt_logreader == None:\n nt_log_path = os.path.join(self.log_path, self.ntlogname)\n self.nt_logreader = LogReader(nt_log_path)\n if self.wf_logreader == None:\n wf_log_path = os.path.join(self.log_path, self.wflogname)\n self.wf_logreader = LogReader(wf_log_path)\n loger.diagnose(\"Module[%s] wf logs:\\n%s\"%(self.type, self.wf_logreader.read_fatal_and_last_lines(10)))\n loger.diagnose(\"Module[%s] notice logs:\\n%s\"%(self.type, self.nt_logreader.read_last_lines(10)))\n #检查core\n log_cores(self.path)\n #检查FATAL\n if self.check_fatal():\n raise AssertionError(\"There FATAL in module[%s]\"%(self.type))\n \n def check(self, checkjs=None):\n \"\"\"\n @note:check接口\n \"\"\"\n pass\n \n def reqdata(self):\n '''\n @note: 将各个模块的req形成json赋值给内部变量\n '''\n pass\n\n def get_used_port(self):\n \"\"\"\n @note:获得该模块所在机器的空闲端口号 \n \"\"\"\n used_port_list = self.sys.shell(\"netstat -na 2>/dev/null|grep \\\":\\\"|awk -F \\\"[ :]\\\" '{print $17}'\",output = \"true\")[1].splitlines()\n return used_port_list\n\ndef test_system():\n \"单元测试\"\n npatSys = Shell_System()\n npatSys.shell(\"echo '12345' > a.txt\")\n npatSys.shell(\"rm b.txt\")\n npatSys.shell(\"cat a.txt b.txt\", output = True)\n npatSys.shell(\"ttt\")\n npatSys.shell(\"ttt\", output = True)\n used_port_list = npatSys.shell(\"netstat -na 2>/dev/null|grep \\\":\\\"|awk -F \\\"[ :]\\\" '{print $17}'\",output = \"true\")[1].splitlines()\n print used_port_list\n\nif __name__ == '__main__':\n mm = baseModule()\n print type(mm.sys)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import pytesseract from PIL import Image import tensorflow as tf from keras.models import load_model from tensorflow import Graph import os import json import cv2 import numpy as np global class_graph def classify(img, c_model): #global class_graph """ classifies images in a given folder using the 'model'""" #img = load_img(im_path,target_size=(input_height, input_width)) #img = img_to_array(img) im_size = 128 # resize img = cv2.resize(img, (im_size,im_size)) img = img.astype("float") / 255.0 img = np.expand_dims(img, axis=0) with class_graph.as_default(): predictions = c_model.predict(img)[0] return predictions if __name__ == '__main__': im_name = "data/demo/images(1).jpg" # load model model_path = "data/credit-card.model" class_model = load_model(model_path) class_graph=tf.get_default_graph() crop_img = cv2.imread(im_name) predictions = classify(crop_img, class_model) print(predictions)
normal
{ "blob_id": "c7d51f6448400af5630bdc0c29493320af88288e", "index": 7424, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef classify(img, c_model):\n \"\"\" classifies images in a given folder using the 'model'\"\"\"\n im_size = 128\n img = cv2.resize(img, (im_size, im_size))\n img = img.astype('float') / 255.0\n img = np.expand_dims(img, axis=0)\n with class_graph.as_default():\n predictions = c_model.predict(img)[0]\n return predictions\n\n\n<mask token>\n", "step-3": "<mask token>\nglobal class_graph\n\n\ndef classify(img, c_model):\n \"\"\" classifies images in a given folder using the 'model'\"\"\"\n im_size = 128\n img = cv2.resize(img, (im_size, im_size))\n img = img.astype('float') / 255.0\n img = np.expand_dims(img, axis=0)\n with class_graph.as_default():\n predictions = c_model.predict(img)[0]\n return predictions\n\n\nif __name__ == '__main__':\n im_name = 'data/demo/images(1).jpg'\n model_path = 'data/credit-card.model'\n class_model = load_model(model_path)\n class_graph = tf.get_default_graph()\n crop_img = cv2.imread(im_name)\n predictions = classify(crop_img, class_model)\n print(predictions)\n", "step-4": "import pytesseract\nfrom PIL import Image\nimport tensorflow as tf\nfrom keras.models import load_model\nfrom tensorflow import Graph\nimport os\nimport json\nimport cv2\nimport numpy as np\nglobal class_graph\n\n\ndef classify(img, c_model):\n \"\"\" classifies images in a given folder using the 'model'\"\"\"\n im_size = 128\n img = cv2.resize(img, (im_size, im_size))\n img = img.astype('float') / 255.0\n img = np.expand_dims(img, axis=0)\n with class_graph.as_default():\n predictions = c_model.predict(img)[0]\n return predictions\n\n\nif __name__ == '__main__':\n im_name = 'data/demo/images(1).jpg'\n model_path = 'data/credit-card.model'\n class_model = load_model(model_path)\n class_graph = tf.get_default_graph()\n crop_img = cv2.imread(im_name)\n predictions = classify(crop_img, class_model)\n print(predictions)\n", "step-5": "import pytesseract\nfrom PIL import Image\nimport tensorflow as tf\n\nfrom keras.models import load_model\nfrom tensorflow import Graph\n\nimport os\nimport json\nimport cv2\nimport numpy as np\n\nglobal class_graph\n\n\n\n\ndef classify(img, c_model):\n #global class_graph\n \"\"\" classifies images in a given folder using the 'model'\"\"\"\n\n #img = load_img(im_path,target_size=(input_height, input_width))\n #img = img_to_array(img)\n im_size = 128\n # resize \n\n img = cv2.resize(img, (im_size,im_size))\n\n img = img.astype(\"float\") / 255.0\n img = np.expand_dims(img, axis=0)\n with class_graph.as_default():\n predictions = c_model.predict(img)[0]\n\n return predictions\n\nif __name__ == '__main__':\n im_name = \"data/demo/images(1).jpg\"\n # load model\n model_path = \"data/credit-card.model\"\n class_model = load_model(model_path)\n\n class_graph=tf.get_default_graph()\n\n\n crop_img = cv2.imread(im_name)\n\n predictions = classify(crop_img, class_model)\n print(predictions)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sublime import sublime_plugin class PromptSurrounderCommand(sublime_plugin.WindowCommand): def run(self): self.window.show_input_panel("Surround by:", "", self.on_done, None, None) def on_done(self, tag): try: if self.window.active_view(): self.window.active_view().run_command("surround_by", {"tag": tag}) except ValueError: print('hi') class SurroundByCommand(sublime_plugin.TextCommand): def run(self, edit, tag): for region in self.view.sel(): text = self.view.substr(region) self.view.replace(edit,region,"<"+tag+">"+text+"</"+tag.split()[0]+">")
normal
{ "blob_id": "bcc4276ea240247519cabbf5fc5646a9147ee3be", "index": 545, "step-1": "<mask token>\n\n\nclass SurroundByCommand(sublime_plugin.TextCommand):\n\n def run(self, edit, tag):\n for region in self.view.sel():\n text = self.view.substr(region)\n self.view.replace(edit, region, '<' + tag + '>' + text + '</' +\n tag.split()[0] + '>')\n", "step-2": "<mask token>\n\n\nclass PromptSurrounderCommand(sublime_plugin.WindowCommand):\n <mask token>\n <mask token>\n\n\nclass SurroundByCommand(sublime_plugin.TextCommand):\n\n def run(self, edit, tag):\n for region in self.view.sel():\n text = self.view.substr(region)\n self.view.replace(edit, region, '<' + tag + '>' + text + '</' +\n tag.split()[0] + '>')\n", "step-3": "<mask token>\n\n\nclass PromptSurrounderCommand(sublime_plugin.WindowCommand):\n\n def run(self):\n self.window.show_input_panel('Surround by:', '', self.on_done, None,\n None)\n\n def on_done(self, tag):\n try:\n if self.window.active_view():\n self.window.active_view().run_command('surround_by', {'tag':\n tag})\n except ValueError:\n print('hi')\n\n\nclass SurroundByCommand(sublime_plugin.TextCommand):\n\n def run(self, edit, tag):\n for region in self.view.sel():\n text = self.view.substr(region)\n self.view.replace(edit, region, '<' + tag + '>' + text + '</' +\n tag.split()[0] + '>')\n", "step-4": "import sublime\nimport sublime_plugin\n\n\nclass PromptSurrounderCommand(sublime_plugin.WindowCommand):\n\n def run(self):\n self.window.show_input_panel('Surround by:', '', self.on_done, None,\n None)\n\n def on_done(self, tag):\n try:\n if self.window.active_view():\n self.window.active_view().run_command('surround_by', {'tag':\n tag})\n except ValueError:\n print('hi')\n\n\nclass SurroundByCommand(sublime_plugin.TextCommand):\n\n def run(self, edit, tag):\n for region in self.view.sel():\n text = self.view.substr(region)\n self.view.replace(edit, region, '<' + tag + '>' + text + '</' +\n tag.split()[0] + '>')\n", "step-5": "import sublime\nimport sublime_plugin\n\nclass PromptSurrounderCommand(sublime_plugin.WindowCommand):\n def run(self):\n self.window.show_input_panel(\"Surround by:\", \"\", self.on_done, None, None)\n\n def on_done(self, tag):\n try:\n if self.window.active_view():\n self.window.active_view().run_command(\"surround_by\", {\"tag\": tag})\n except ValueError:\n print('hi')\n\n\nclass SurroundByCommand(sublime_plugin.TextCommand):\n\tdef run(self, edit, tag):\n\t\tfor region in self.view.sel():\n\t\t\ttext = self.view.substr(region)\n\t\t\tself.view.replace(edit,region,\"<\"+tag+\">\"+text+\"</\"+tag.split()[0]+\">\")\n\n", "step-ids": [ 2, 3, 5, 6, 7 ] }
[ 2, 3, 5, 6, 7 ]
# %matplotlib inline import tensorflow as tf #import tensorflow.keras as K import numpy as np import math import matplotlib matplotlib.use('GTKAgg') import matplotlib.pyplot as plt # from keras import backend as K from keras.models import Sequential, load_model # from K.models import Sequential, load_model from keras.layers import InputLayer, Input, Dense, Dropout from keras.callbacks import TensorBoard from keras.optimizers import Adam from keras.backend import clear_session ## pip install h5py scikit-optimize ## once you have that installed, you can run the following code. import skopt from skopt import gp_minimize, forest_minimize from skopt.space import Real, Categorical, Integer matplotlib.use('GTKAgg') from skopt.plots import plot_convergence matplotlib.use('GTKAgg') from skopt.plots import plot_objective, plot_evaluations matplotlib.use('GTKAgg') import csv from timeit import default_timer as timer #from skopt.plots import plot_histogram, plot_objective_2D from skopt.utils import use_named_args from sklearn.metrics import roc_auc_score ## Computer Area Under the Curve from datetime import datetime ## time the Optimization time ## Load Datset train_samples = np.loadtxt("data/train_samples.txt", delimiter=' ', comments='# ', encoding=None) train_labels = np.loadtxt("data/train_labels.txt", delimiter=' ', comments='# ', encoding=None) valid_samples = np.loadtxt("data/valid_samples.txt", delimiter=' ', comments='# ', encoding=None) valid_labels = np.loadtxt("data/valid_labels.txt", delimiter=' ', comments='# ', encoding=None) ## To set up this search space, I first need to define the search space dimension, what parameters are we gonna explore. ## for each of the parameters, we define a dimension explicitly ## ## The learning rate is any real number between 0.000001 and 0.1. But the seraching is done not in bounds. ## 'log-uniform' specifies how the trasformation(updates) of these values is learning_rate_dim = Real(low=1e-6, high=1e-2, prior='log-uniform', name='learning_rate') ## The number of alyers on the other hand is explored in bounds, increments are done using integers dense_layers_dim = Integer(low=1, high=5, name='dense_layers') ## We'll also different number of nodes in a layer nodes_dim = Integer(low=5, high=512, name='nodes') ## Finally we have a Categorical dimension, this needs to be specified explicitly, because scikit-learn ## isn't gonna generate some randomly for you activation_dim = Categorical(categories=['relu', 'sigmoid'], name='activation') ## Combine all the parameters into a list, so that we can pass it to a function dimensions = [learning_rate_dim, dense_layers_dim, nodes_dim, activation_dim] ## To kick off, it's helpful to start the serach using a set of hyperparameters that we ## intuitively know performes well ## These default parameters aren't horrible, but they don't perform great either default_parameters = [1e-5, 1, 16, 'relu'] ## To log the performance of the model def log_dir_name(learning_rate, dense_layers, nodes, activation): """ Creates a directory named after the set of hyperparameters that was recently selected. A helper function to log the results of training every constructed model. """ # the dir-name for the TensorBoard log-dir s = "./2_logs/lr_{0:.0e}_layers{1}_nodes{2}_{3}/" log_dir = s.format(learning_rate, dense_layers, nodes, activation) return log_dir ## This funcion is copied from my previous solution on Grid SearchCV def create_model(learning_rate, dense_layers, nodes, activation, dropout_rate=0.1): """ A helper function for the classifier to help construct a model after each run. learing_rate: Learning-rate for the optimizer. dense_layer: Number of dense layers for the sequentail model nodes: Number of nodes in each inner dense layer. activation: Activation function for all layers. Additionally, we can improve on this function by adding a separate activation for the output layer. """ model = Sequential() global train_samples ## Input-shape must be a tuple without the batch size. input_shape = (1,) + train_samples.shape model.add(InputLayer(input_shape=(len(train_samples[0]),))) ## Needful only in case of convolutional layers. # model.add(Reshape(img_shape_full)) for i in range(dense_layers): ## Name each layer, because Keras should give them unique names. name = 'layer_dense_{0}'.format(i+1) ## Add these fully-connected layers to the model. model.add(Dense(nodes, activation=activation, name=name)) model.add(Dropout(dropout_rate)) ## Last output layer with softmax-activation. ## Used heavily for classification. model.add(Dense(1, activation='sigmoid')) optimizer = Adam(lr=learning_rate) ## Compile the model model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy']) return model ## Before we start training any model, let's first save the path where we'll store the best-performing model. best_model_path = '19_best_model.keras' ## A global variable to keep track of the best obtained accuracy. best_auc = 0.0 @use_named_args(dimensions=dimensions) def fitness(learning_rate, dense_layers, nodes, activation): """ """ # Print the selected hyperparameters. print('learning rate: {0:.1f}'.format(learning_rate)) print('num_dense_layers:', dense_layers) print('num_nodes:', nodes) print('activation:', activation) print("") ## Create the neural network with these hyperparameters. model = create_model(learning_rate, dense_layers, nodes, activation) ## Create log files for the model. ## Not important for now! # callback_log = TensorBoard( # log_dir=log_dir, # histogram_freq=0, # batch_size=32, # write_graph=True, # write_grads=False, # write_images=False) ## Use Keras to train the model. history = model.fit(x=train_samples, y=train_labels, epochs=10, batch_size=int(4010/4)) #callbacks=[callback_log]) ## Get the classification accuracy on the validation set after the last training epoch. # accuracy = history.history['val_acc'][-1] predictions = model.predict(valid_samples) auc = roc_auc_score(valid_labels, predictions) ## Print the calssification accuracy. print('') print("AUC = : {0:.2%}".format(auc)) print('') ## Save the model if it improves on the best-found performance. ## We use the global keyword so we update the variable outside of this function. global best_auc if auc > best_auc: ## Save the new model to harddisk. model.save(best_model_path) ## Update the classification accuracy. best_auc = auc ## Delete the Keras model with these heyper parameters from memory. ## Also clear the session. del model # tf.keras.clear_session() clear_session() return -auc ## Now we run our fitness function with the default hyperparameters that we set earlier. ## That's the reason for the @ annotation fitness(x=default_parameters) search_result = gp_minimize(func=fitness, dimensions=dimensions, acq_func='EI', # Expected Improvement. n_calls=40, x0=default_parameters) ## Report Result of the optimizer. print("Best serach results:") print(search_result.x) print(search_result.space) print("Lowest fitness value:") print(search_result.fun) zipped = sorted(zip(search_result.func_vals, search_result.x_iters)) print(zipped) ## Write sorted results to csv file for exporting of = open('output_bayesian_optimization.csv', 'w') header="Fit Value; Learning Rate; Dense Layers; Num. Neurons; Activation\n" of.write(header) for i in zipped: row = "{0}; {1}; {2}; {3}; {4};\n".format(i[0], i[1][0], i[1][1], i[1][2], i[1][3]) of.write(row) of.close() ## Plot results of optimizer dim_names = ['learning_rate', 'dense_layers', 'nodes', 'activation'] plot_objective(search_result, dimensions=dim_names) plot_evaluations(search_result)
normal
{ "blob_id": "db9068e54607e9df48328435ef07f15b4c25a6db", "index": 7412, "step-1": "<mask token>\n\n\ndef log_dir_name(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\tCreates a directory named after the set of hyperparameters that was recently selected. A helper function\n\tto log the results of training every constructed model.\n\t\"\"\"\n s = './2_logs/lr_{0:.0e}_layers{1}_nodes{2}_{3}/'\n log_dir = s.format(learning_rate, dense_layers, nodes, activation)\n return log_dir\n\n\ndef create_model(learning_rate, dense_layers, nodes, activation,\n dropout_rate=0.1):\n \"\"\"\n\tA helper function for the classifier to help construct a model after each run.\n\n\tlearing_rate:\tLearning-rate for the optimizer.\n\tdense_layer: \tNumber of dense layers for the sequentail model\n\tnodes:\t\t\tNumber of nodes in each inner dense layer.\n\tactivation:\t\tActivation function for all layers.\n\tAdditionally, we can improve on this function by adding a separate activation for\n\tthe output layer.\n\t\"\"\"\n model = Sequential()\n global train_samples\n input_shape = (1,) + train_samples.shape\n model.add(InputLayer(input_shape=(len(train_samples[0]),)))\n for i in range(dense_layers):\n name = 'layer_dense_{0}'.format(i + 1)\n model.add(Dense(nodes, activation=activation, name=name))\n model.add(Dropout(dropout_rate))\n model.add(Dense(1, activation='sigmoid'))\n optimizer = Adam(lr=learning_rate)\n model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=\n ['accuracy'])\n return model\n\n\n<mask token>\n\n\n@use_named_args(dimensions=dimensions)\ndef fitness(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\t\"\"\"\n print('learning rate: {0:.1f}'.format(learning_rate))\n print('num_dense_layers:', dense_layers)\n print('num_nodes:', nodes)\n print('activation:', activation)\n print('')\n model = create_model(learning_rate, dense_layers, nodes, activation)\n history = model.fit(x=train_samples, y=train_labels, epochs=10,\n batch_size=int(4010 / 4))\n predictions = model.predict(valid_samples)\n auc = roc_auc_score(valid_labels, predictions)\n print('')\n print('AUC = : {0:.2%}'.format(auc))\n print('')\n global best_auc\n if auc > best_auc:\n model.save(best_model_path)\n best_auc = auc\n del model\n clear_session()\n return -auc\n\n\n<mask token>\n", "step-2": "<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\n\n\ndef log_dir_name(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\tCreates a directory named after the set of hyperparameters that was recently selected. A helper function\n\tto log the results of training every constructed model.\n\t\"\"\"\n s = './2_logs/lr_{0:.0e}_layers{1}_nodes{2}_{3}/'\n log_dir = s.format(learning_rate, dense_layers, nodes, activation)\n return log_dir\n\n\ndef create_model(learning_rate, dense_layers, nodes, activation,\n dropout_rate=0.1):\n \"\"\"\n\tA helper function for the classifier to help construct a model after each run.\n\n\tlearing_rate:\tLearning-rate for the optimizer.\n\tdense_layer: \tNumber of dense layers for the sequentail model\n\tnodes:\t\t\tNumber of nodes in each inner dense layer.\n\tactivation:\t\tActivation function for all layers.\n\tAdditionally, we can improve on this function by adding a separate activation for\n\tthe output layer.\n\t\"\"\"\n model = Sequential()\n global train_samples\n input_shape = (1,) + train_samples.shape\n model.add(InputLayer(input_shape=(len(train_samples[0]),)))\n for i in range(dense_layers):\n name = 'layer_dense_{0}'.format(i + 1)\n model.add(Dense(nodes, activation=activation, name=name))\n model.add(Dropout(dropout_rate))\n model.add(Dense(1, activation='sigmoid'))\n optimizer = Adam(lr=learning_rate)\n model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=\n ['accuracy'])\n return model\n\n\n<mask token>\n\n\n@use_named_args(dimensions=dimensions)\ndef fitness(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\t\"\"\"\n print('learning rate: {0:.1f}'.format(learning_rate))\n print('num_dense_layers:', dense_layers)\n print('num_nodes:', nodes)\n print('activation:', activation)\n print('')\n model = create_model(learning_rate, dense_layers, nodes, activation)\n history = model.fit(x=train_samples, y=train_labels, epochs=10,\n batch_size=int(4010 / 4))\n predictions = model.predict(valid_samples)\n auc = roc_auc_score(valid_labels, predictions)\n print('')\n print('AUC = : {0:.2%}'.format(auc))\n print('')\n global best_auc\n if auc > best_auc:\n model.save(best_model_path)\n best_auc = auc\n del model\n clear_session()\n return -auc\n\n\nfitness(x=default_parameters)\n<mask token>\nprint('Best serach results:')\nprint(search_result.x)\nprint(search_result.space)\nprint('Lowest fitness value:')\nprint(search_result.fun)\n<mask token>\nprint(zipped)\n<mask token>\nof.write(header)\nfor i in zipped:\n row = '{0}; {1}; {2}; {3}; {4};\\n'.format(i[0], i[1][0], i[1][1], i[1][\n 2], i[1][3])\n of.write(row)\nof.close()\n<mask token>\nplot_objective(search_result, dimensions=dim_names)\nplot_evaluations(search_result)\n", "step-3": "<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\nmatplotlib.use('GTKAgg')\n<mask token>\ntrain_samples = np.loadtxt('data/train_samples.txt', delimiter=' ',\n comments='# ', encoding=None)\ntrain_labels = np.loadtxt('data/train_labels.txt', delimiter=' ', comments=\n '# ', encoding=None)\nvalid_samples = np.loadtxt('data/valid_samples.txt', delimiter=' ',\n comments='# ', encoding=None)\nvalid_labels = np.loadtxt('data/valid_labels.txt', delimiter=' ', comments=\n '# ', encoding=None)\nlearning_rate_dim = Real(low=1e-06, high=0.01, prior='log-uniform', name=\n 'learning_rate')\ndense_layers_dim = Integer(low=1, high=5, name='dense_layers')\nnodes_dim = Integer(low=5, high=512, name='nodes')\nactivation_dim = Categorical(categories=['relu', 'sigmoid'], name='activation')\ndimensions = [learning_rate_dim, dense_layers_dim, nodes_dim, activation_dim]\ndefault_parameters = [1e-05, 1, 16, 'relu']\n\n\ndef log_dir_name(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\tCreates a directory named after the set of hyperparameters that was recently selected. A helper function\n\tto log the results of training every constructed model.\n\t\"\"\"\n s = './2_logs/lr_{0:.0e}_layers{1}_nodes{2}_{3}/'\n log_dir = s.format(learning_rate, dense_layers, nodes, activation)\n return log_dir\n\n\ndef create_model(learning_rate, dense_layers, nodes, activation,\n dropout_rate=0.1):\n \"\"\"\n\tA helper function for the classifier to help construct a model after each run.\n\n\tlearing_rate:\tLearning-rate for the optimizer.\n\tdense_layer: \tNumber of dense layers for the sequentail model\n\tnodes:\t\t\tNumber of nodes in each inner dense layer.\n\tactivation:\t\tActivation function for all layers.\n\tAdditionally, we can improve on this function by adding a separate activation for\n\tthe output layer.\n\t\"\"\"\n model = Sequential()\n global train_samples\n input_shape = (1,) + train_samples.shape\n model.add(InputLayer(input_shape=(len(train_samples[0]),)))\n for i in range(dense_layers):\n name = 'layer_dense_{0}'.format(i + 1)\n model.add(Dense(nodes, activation=activation, name=name))\n model.add(Dropout(dropout_rate))\n model.add(Dense(1, activation='sigmoid'))\n optimizer = Adam(lr=learning_rate)\n model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=\n ['accuracy'])\n return model\n\n\nbest_model_path = '19_best_model.keras'\nbest_auc = 0.0\n\n\n@use_named_args(dimensions=dimensions)\ndef fitness(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\t\"\"\"\n print('learning rate: {0:.1f}'.format(learning_rate))\n print('num_dense_layers:', dense_layers)\n print('num_nodes:', nodes)\n print('activation:', activation)\n print('')\n model = create_model(learning_rate, dense_layers, nodes, activation)\n history = model.fit(x=train_samples, y=train_labels, epochs=10,\n batch_size=int(4010 / 4))\n predictions = model.predict(valid_samples)\n auc = roc_auc_score(valid_labels, predictions)\n print('')\n print('AUC = : {0:.2%}'.format(auc))\n print('')\n global best_auc\n if auc > best_auc:\n model.save(best_model_path)\n best_auc = auc\n del model\n clear_session()\n return -auc\n\n\nfitness(x=default_parameters)\nsearch_result = gp_minimize(func=fitness, dimensions=dimensions, acq_func=\n 'EI', n_calls=40, x0=default_parameters)\nprint('Best serach results:')\nprint(search_result.x)\nprint(search_result.space)\nprint('Lowest fitness value:')\nprint(search_result.fun)\nzipped = sorted(zip(search_result.func_vals, search_result.x_iters))\nprint(zipped)\nof = open('output_bayesian_optimization.csv', 'w')\nheader = 'Fit Value; Learning Rate; Dense Layers; Num. Neurons; Activation\\n'\nof.write(header)\nfor i in zipped:\n row = '{0}; {1}; {2}; {3}; {4};\\n'.format(i[0], i[1][0], i[1][1], i[1][\n 2], i[1][3])\n of.write(row)\nof.close()\ndim_names = ['learning_rate', 'dense_layers', 'nodes', 'activation']\nplot_objective(search_result, dimensions=dim_names)\nplot_evaluations(search_result)\n", "step-4": "import tensorflow as tf\nimport numpy as np\nimport math\nimport matplotlib\nmatplotlib.use('GTKAgg')\nimport matplotlib.pyplot as plt\nfrom keras.models import Sequential, load_model\nfrom keras.layers import InputLayer, Input, Dense, Dropout\nfrom keras.callbacks import TensorBoard\nfrom keras.optimizers import Adam\nfrom keras.backend import clear_session\nimport skopt\nfrom skopt import gp_minimize, forest_minimize\nfrom skopt.space import Real, Categorical, Integer\nmatplotlib.use('GTKAgg')\nfrom skopt.plots import plot_convergence\nmatplotlib.use('GTKAgg')\nfrom skopt.plots import plot_objective, plot_evaluations\nmatplotlib.use('GTKAgg')\nimport csv\nfrom timeit import default_timer as timer\nfrom skopt.utils import use_named_args\nfrom sklearn.metrics import roc_auc_score\nfrom datetime import datetime\ntrain_samples = np.loadtxt('data/train_samples.txt', delimiter=' ',\n comments='# ', encoding=None)\ntrain_labels = np.loadtxt('data/train_labels.txt', delimiter=' ', comments=\n '# ', encoding=None)\nvalid_samples = np.loadtxt('data/valid_samples.txt', delimiter=' ',\n comments='# ', encoding=None)\nvalid_labels = np.loadtxt('data/valid_labels.txt', delimiter=' ', comments=\n '# ', encoding=None)\nlearning_rate_dim = Real(low=1e-06, high=0.01, prior='log-uniform', name=\n 'learning_rate')\ndense_layers_dim = Integer(low=1, high=5, name='dense_layers')\nnodes_dim = Integer(low=5, high=512, name='nodes')\nactivation_dim = Categorical(categories=['relu', 'sigmoid'], name='activation')\ndimensions = [learning_rate_dim, dense_layers_dim, nodes_dim, activation_dim]\ndefault_parameters = [1e-05, 1, 16, 'relu']\n\n\ndef log_dir_name(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\tCreates a directory named after the set of hyperparameters that was recently selected. A helper function\n\tto log the results of training every constructed model.\n\t\"\"\"\n s = './2_logs/lr_{0:.0e}_layers{1}_nodes{2}_{3}/'\n log_dir = s.format(learning_rate, dense_layers, nodes, activation)\n return log_dir\n\n\ndef create_model(learning_rate, dense_layers, nodes, activation,\n dropout_rate=0.1):\n \"\"\"\n\tA helper function for the classifier to help construct a model after each run.\n\n\tlearing_rate:\tLearning-rate for the optimizer.\n\tdense_layer: \tNumber of dense layers for the sequentail model\n\tnodes:\t\t\tNumber of nodes in each inner dense layer.\n\tactivation:\t\tActivation function for all layers.\n\tAdditionally, we can improve on this function by adding a separate activation for\n\tthe output layer.\n\t\"\"\"\n model = Sequential()\n global train_samples\n input_shape = (1,) + train_samples.shape\n model.add(InputLayer(input_shape=(len(train_samples[0]),)))\n for i in range(dense_layers):\n name = 'layer_dense_{0}'.format(i + 1)\n model.add(Dense(nodes, activation=activation, name=name))\n model.add(Dropout(dropout_rate))\n model.add(Dense(1, activation='sigmoid'))\n optimizer = Adam(lr=learning_rate)\n model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=\n ['accuracy'])\n return model\n\n\nbest_model_path = '19_best_model.keras'\nbest_auc = 0.0\n\n\n@use_named_args(dimensions=dimensions)\ndef fitness(learning_rate, dense_layers, nodes, activation):\n \"\"\"\n\t\"\"\"\n print('learning rate: {0:.1f}'.format(learning_rate))\n print('num_dense_layers:', dense_layers)\n print('num_nodes:', nodes)\n print('activation:', activation)\n print('')\n model = create_model(learning_rate, dense_layers, nodes, activation)\n history = model.fit(x=train_samples, y=train_labels, epochs=10,\n batch_size=int(4010 / 4))\n predictions = model.predict(valid_samples)\n auc = roc_auc_score(valid_labels, predictions)\n print('')\n print('AUC = : {0:.2%}'.format(auc))\n print('')\n global best_auc\n if auc > best_auc:\n model.save(best_model_path)\n best_auc = auc\n del model\n clear_session()\n return -auc\n\n\nfitness(x=default_parameters)\nsearch_result = gp_minimize(func=fitness, dimensions=dimensions, acq_func=\n 'EI', n_calls=40, x0=default_parameters)\nprint('Best serach results:')\nprint(search_result.x)\nprint(search_result.space)\nprint('Lowest fitness value:')\nprint(search_result.fun)\nzipped = sorted(zip(search_result.func_vals, search_result.x_iters))\nprint(zipped)\nof = open('output_bayesian_optimization.csv', 'w')\nheader = 'Fit Value; Learning Rate; Dense Layers; Num. Neurons; Activation\\n'\nof.write(header)\nfor i in zipped:\n row = '{0}; {1}; {2}; {3}; {4};\\n'.format(i[0], i[1][0], i[1][1], i[1][\n 2], i[1][3])\n of.write(row)\nof.close()\ndim_names = ['learning_rate', 'dense_layers', 'nodes', 'activation']\nplot_objective(search_result, dimensions=dim_names)\nplot_evaluations(search_result)\n", "step-5": "# %matplotlib inline\nimport tensorflow as tf\n#import tensorflow.keras as K\nimport numpy as np\nimport math\nimport matplotlib\nmatplotlib.use('GTKAgg')\nimport matplotlib.pyplot as plt\n\n# from keras import backend as K\nfrom keras.models import Sequential, load_model\n# from K.models import Sequential, load_model\nfrom keras.layers import InputLayer, Input, Dense, Dropout\nfrom keras.callbacks import TensorBoard\nfrom keras.optimizers import Adam\nfrom keras.backend import clear_session\n## pip install h5py scikit-optimize\n## once you have that installed, you can run the following code.\nimport skopt\nfrom skopt import gp_minimize, forest_minimize\nfrom skopt.space import Real, Categorical, Integer\nmatplotlib.use('GTKAgg')\nfrom skopt.plots import plot_convergence\nmatplotlib.use('GTKAgg')\nfrom skopt.plots import plot_objective, plot_evaluations\nmatplotlib.use('GTKAgg')\nimport csv\nfrom timeit import default_timer as timer\n\n#from skopt.plots import plot_histogram, plot_objective_2D\nfrom skopt.utils import use_named_args\nfrom sklearn.metrics import roc_auc_score ## Computer Area Under the Curve\nfrom datetime import datetime ## time the Optimization time\n\n## Load Datset\ntrain_samples = np.loadtxt(\"data/train_samples.txt\", delimiter=' ', comments='# ', encoding=None)\ntrain_labels = np.loadtxt(\"data/train_labels.txt\", delimiter=' ', comments='# ', encoding=None)\nvalid_samples = np.loadtxt(\"data/valid_samples.txt\", delimiter=' ', comments='# ', encoding=None)\nvalid_labels = np.loadtxt(\"data/valid_labels.txt\", delimiter=' ', comments='# ', encoding=None)\n\n## To set up this search space, I first need to define the search space dimension, what parameters are we gonna explore.\n## for each of the parameters, we define a dimension explicitly\n##\n## The learning rate is any real number between 0.000001 and 0.1. But the seraching is done not in bounds.\n## 'log-uniform' specifies how the trasformation(updates) of these values is \nlearning_rate_dim = Real(low=1e-6, high=1e-2, prior='log-uniform', name='learning_rate')\n## The number of alyers on the other hand is explored in bounds, increments are done using integers\ndense_layers_dim = Integer(low=1, high=5, name='dense_layers')\n## We'll also different number of nodes in a layer\nnodes_dim = Integer(low=5, high=512, name='nodes')\n## Finally we have a Categorical dimension, this needs to be specified explicitly, because scikit-learn\n## isn't gonna generate some randomly for you\nactivation_dim = Categorical(categories=['relu', 'sigmoid'], name='activation')\n## Combine all the parameters into a list, so that we can pass it to a function\ndimensions = [learning_rate_dim,\n\t\t\tdense_layers_dim,\n\t\t\tnodes_dim,\n\t\t\tactivation_dim]\n\n\n## To kick off, it's helpful to start the serach using a set of hyperparameters that we\n## intuitively know performes well\n## These default parameters aren't horrible, but they don't perform great either\ndefault_parameters = [1e-5, 1, 16, 'relu']\n\n\n## To log the performance of the model\ndef log_dir_name(learning_rate, dense_layers, nodes, activation):\n\t\"\"\"\n\tCreates a directory named after the set of hyperparameters that was recently selected. A helper function\n\tto log the results of training every constructed model.\n\t\"\"\"\t\n\t# the dir-name for the TensorBoard log-dir\n\ts = \"./2_logs/lr_{0:.0e}_layers{1}_nodes{2}_{3}/\"\n\tlog_dir = s.format(learning_rate, dense_layers, nodes, activation)\n\n\treturn log_dir\n\n\n## This funcion is copied from my previous solution on Grid SearchCV\ndef create_model(learning_rate, dense_layers, nodes, activation, dropout_rate=0.1):\n\t\"\"\"\n\tA helper function for the classifier to help construct a model after each run.\n\n\tlearing_rate:\tLearning-rate for the optimizer.\n\tdense_layer: \tNumber of dense layers for the sequentail model\n\tnodes:\t\t\tNumber of nodes in each inner dense layer.\n\tactivation:\t\tActivation function for all layers.\n\tAdditionally, we can improve on this function by adding a separate activation for\n\tthe output layer.\n\t\"\"\"\n\tmodel = Sequential()\n\tglobal train_samples\n\t## Input-shape must be a tuple without the batch size.\n\tinput_shape = (1,) + train_samples.shape\n\tmodel.add(InputLayer(input_shape=(len(train_samples[0]),)))\n\t## Needful only in case of convolutional layers.\n\t# model.add(Reshape(img_shape_full))\n\tfor i in range(dense_layers):\n\t\t## Name each layer, because Keras should give them unique names.\n\t\tname = 'layer_dense_{0}'.format(i+1)\n\t\t## Add these fully-connected layers to the model.\n\t\tmodel.add(Dense(nodes, activation=activation, name=name))\n\t\tmodel.add(Dropout(dropout_rate))\n\n\t## Last output layer with softmax-activation.\n\t## Used heavily for classification.\n\tmodel.add(Dense(1, activation='sigmoid'))\n\n\toptimizer = Adam(lr=learning_rate)\n\t## Compile the model\n\tmodel.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])\n\n\treturn model\n\n \n## Before we start training any model, let's first save the path where we'll store the best-performing model.\nbest_model_path = '19_best_model.keras'\n## A global variable to keep track of the best obtained accuracy.\nbest_auc = 0.0\n\n@use_named_args(dimensions=dimensions)\ndef fitness(learning_rate, dense_layers, nodes, activation):\n\t\"\"\"\n\t\"\"\"\n\t# Print the selected hyperparameters.\n\tprint('learning rate: {0:.1f}'.format(learning_rate))\n\tprint('num_dense_layers:', dense_layers)\n\tprint('num_nodes:', nodes)\n\tprint('activation:', activation)\n\tprint(\"\")\n\t## Create the neural network with these hyperparameters.\n\tmodel = create_model(learning_rate, dense_layers, nodes, activation)\n\t## Create log files for the model.\n\t## Not important for now!\n\t# callback_log = TensorBoard(\n\t# \tlog_dir=log_dir,\n\t# \thistogram_freq=0,\n\t# \tbatch_size=32,\n\t# \twrite_graph=True,\n\t# \twrite_grads=False,\n\t# \twrite_images=False)\n\t## Use Keras to train the model.\n\thistory = model.fit(x=train_samples,\n\t\ty=train_labels,\n\t\tepochs=10,\n\t\tbatch_size=int(4010/4))\n\t\t#callbacks=[callback_log])\n\t## Get the classification accuracy on the validation set after the last training epoch.\n\t# accuracy = history.history['val_acc'][-1]\n\tpredictions = model.predict(valid_samples)\n\tauc = roc_auc_score(valid_labels, predictions)\n\t## Print the calssification accuracy.\n\tprint('')\n\tprint(\"AUC = : {0:.2%}\".format(auc))\n\tprint('')\n\n\t## Save the model if it improves on the best-found performance.\n\t## We use the global keyword so we update the variable outside of this function.\n\tglobal best_auc\n\tif auc > best_auc:\n\t\t## Save the new model to harddisk.\n\t\tmodel.save(best_model_path)\n\t\t## Update the classification accuracy.\n\t\tbest_auc = auc\n\n\t## Delete the Keras model with these heyper parameters from memory.\n\n\t## Also clear the session.\n\tdel model\n# tf.keras.clear_session()\n\tclear_session()\n\n\treturn -auc\n\n## Now we run our fitness function with the default hyperparameters that we set earlier.\n## That's the reason for the @ annotation \nfitness(x=default_parameters)\n\nsearch_result = gp_minimize(func=fitness,\n\tdimensions=dimensions,\n\tacq_func='EI', # Expected Improvement.\n\tn_calls=40,\n\tx0=default_parameters)\n\n## Report Result of the optimizer.\nprint(\"Best serach results:\")\nprint(search_result.x)\nprint(search_result.space)\nprint(\"Lowest fitness value:\")\nprint(search_result.fun)\nzipped = sorted(zip(search_result.func_vals, search_result.x_iters))\nprint(zipped)\n\n## Write sorted results to csv file for exporting\nof = open('output_bayesian_optimization.csv', 'w')\nheader=\"Fit Value; Learning Rate; Dense Layers; Num. Neurons; Activation\\n\"\nof.write(header)\nfor i in zipped:\n row = \"{0}; {1}; {2}; {3}; {4};\\n\".format(i[0], i[1][0], i[1][1], i[1][2], i[1][3])\n of.write(row)\nof.close()\n\n## Plot results of optimizer\ndim_names = ['learning_rate', 'dense_layers', 'nodes', 'activation']\nplot_objective(search_result, dimensions=dim_names)\nplot_evaluations(search_result)\n\n\n\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
array_length = int(input()) source = [int(x) for x in input().split()] def find_neighbors(): previous_zero_index = -1 count = 0 result = [] for index, value in enumerate(source): count += 1 if value == 0: if index == 0: previous_zero_index = 0 count = 0 result.append(0) continue if previous_zero_index == -1: result[0: index] = reversed(result[0:index]) previous_zero_index = index count = 0 result.append(0) continue result.append(0) diff = (index - previous_zero_index) // 2 result[index - diff: index] = reversed(result[previous_zero_index + 1: previous_zero_index + 1 + diff]) previous_zero_index = index count = 0 continue result.append(count) for i in result: print(i, end=" ") find_neighbors()
normal
{ "blob_id": "6d362b87b595fc59df31d1f0bb561dc83633a2ac", "index": 9216, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef find_neighbors():\n previous_zero_index = -1\n count = 0\n result = []\n for index, value in enumerate(source):\n count += 1\n if value == 0:\n if index == 0:\n previous_zero_index = 0\n count = 0\n result.append(0)\n continue\n if previous_zero_index == -1:\n result[0:index] = reversed(result[0:index])\n previous_zero_index = index\n count = 0\n result.append(0)\n continue\n result.append(0)\n diff = (index - previous_zero_index) // 2\n result[index - diff:index] = reversed(result[\n previous_zero_index + 1:previous_zero_index + 1 + diff])\n previous_zero_index = index\n count = 0\n continue\n result.append(count)\n for i in result:\n print(i, end=' ')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef find_neighbors():\n previous_zero_index = -1\n count = 0\n result = []\n for index, value in enumerate(source):\n count += 1\n if value == 0:\n if index == 0:\n previous_zero_index = 0\n count = 0\n result.append(0)\n continue\n if previous_zero_index == -1:\n result[0:index] = reversed(result[0:index])\n previous_zero_index = index\n count = 0\n result.append(0)\n continue\n result.append(0)\n diff = (index - previous_zero_index) // 2\n result[index - diff:index] = reversed(result[\n previous_zero_index + 1:previous_zero_index + 1 + diff])\n previous_zero_index = index\n count = 0\n continue\n result.append(count)\n for i in result:\n print(i, end=' ')\n\n\nfind_neighbors()\n", "step-4": "array_length = int(input())\nsource = [int(x) for x in input().split()]\n\n\ndef find_neighbors():\n previous_zero_index = -1\n count = 0\n result = []\n for index, value in enumerate(source):\n count += 1\n if value == 0:\n if index == 0:\n previous_zero_index = 0\n count = 0\n result.append(0)\n continue\n if previous_zero_index == -1:\n result[0:index] = reversed(result[0:index])\n previous_zero_index = index\n count = 0\n result.append(0)\n continue\n result.append(0)\n diff = (index - previous_zero_index) // 2\n result[index - diff:index] = reversed(result[\n previous_zero_index + 1:previous_zero_index + 1 + diff])\n previous_zero_index = index\n count = 0\n continue\n result.append(count)\n for i in result:\n print(i, end=' ')\n\n\nfind_neighbors()\n", "step-5": "array_length = int(input())\nsource = [int(x) for x in input().split()]\n\ndef find_neighbors():\n previous_zero_index = -1\n count = 0\n result = []\n for index, value in enumerate(source):\n count += 1\n\n if value == 0:\n if index == 0:\n previous_zero_index = 0\n count = 0\n result.append(0)\n continue\n\n if previous_zero_index == -1:\n result[0: index] = reversed(result[0:index])\n previous_zero_index = index\n count = 0\n result.append(0)\n continue\n\n result.append(0)\n diff = (index - previous_zero_index) // 2\n result[index - diff: index] = reversed(result[previous_zero_index + 1: previous_zero_index + 1 + diff])\n\n previous_zero_index = index\n count = 0\n continue\n\n result.append(count)\n for i in result:\n print(i, end=\" \")\n\nfind_neighbors()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.shortcuts import render import datetime from django.http import* from django.core.files.storage import FileSystemStorage import uuid import os import cv2 import numpy as np from pathlib import Path def index(request): print(request.session); today=datetime.datetime.now() return render(request,'index.html',{ "today":today.strftime("%d-%m=%Y")}) def isFileOpen(request): stack=request.session['stack'] if stack>0 and request.session.get('name')!=None and request.session.get('email')!=None: return true else: return false def getState(request): if(isFileOpen): fileName=request.session['stack'][0] email=request.session['email'] name=request.session['name'] return JsonResponse({'state':'open','name':name,'email':email,'fileName':fileName}) else: return JsonResponse({'state':none,'name':'',email:'','fileName':''}) def openFile(request): if request.method=='POST' and request.FILES['fileName']: imageFile=request.FILES['fileName'] fs=FileSystemStorage() imageFileName=fs.save(imageFile.name,imageFile) stack=[] redostack=[] imgpath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%imageFileName)) img=cv2.imread(imgpath) (h, w) = img.shape[:2] r = 500 / float(h) dim = (int(w * r),500) stdimg=cv2.resize(img,dim,interpolation=cv2.INTER_AREA) stdimgPath=str(Path(imgpath).with_suffix(''))+str(uuid.uuid4())[-3:]+'.png' print(stdimgPath) cv2.imwrite(stdimgPath,stdimg) stdFileName=stdimgPath.split('/')[-1]; stack.append(stdFileName) request.session['stack']=stack print(img.shape) request.session['size']=() request.session['redo']=True request.session['oriImg']=imageFileName request.session['borderSize']=0; request.session['email']=request.POST['email'] request.session['name']=request.POST.get('name') request.session['redostack']=redostack return JsonResponse({'fileName':imageFileName}) def getImage(request): if request.method=="GET" and request.session.has_key('stack'): stack=request.session['stack'] if len(stack)>0: fileToServer=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])) return FileResponse(open(fileToServer,'rb')) return HttpResponse('') def showOrignal(request): if request.method=="GET" and request.session.has_key('oriImg'): stack=request.session['stack'] for file in stack: fileDelete=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%file)) os.remove(fileDelete); request.session.pop('stack') stack=[] stack.insert(0,request.session['oriImg']) request.session['stack']=stack return JsonResponse({'response':'orignal'}) else: return HttpResponse('') def closeFile(request): if request.method=="GET" and request.session.has_key('stack'): stack=request.session['stack'] for file in stack: fileDelete=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%file)) os.remove(fileDelete); request.session.pop('stack') request.session.pop('email') request.session.pop('name') return JsonResponse({'response':'closed'}) else: return HttpResponse(''); def undo(request): if request.method=="GET" and request.session.has_key('stack') and len(request.session['stack'])>1: stack=request.session['stack'] fileDelete=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack.pop(0))) os.remove(fileDelete); request.session['stack']=stack; return JsonResponse({"response":"undid"}) else: return HttpResponse('') def redo(request): if request.method=="GET" and request.session.has_key('redostack') and len(request.session['redostack'])>0: redoStack=request.session['redostack'] request.session['redo']=False; value=redoStack.pop() if(value=='grayscale'): toGrayscale(request) if(value=='cool'): cool(request) if(value=='scaleIt'): scaleit(request) if(value=='setBorder'): setBorder(request); request.session['redostack']=redoStack; return JsonResponse({'response':'redo'}) def toGrayscale(request): if request.method=="GET" and request.session.has_key('stack'): stack=request.session['stack'] redostack=request.session['redostack'] if len(stack)>0: fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); grayscalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...... grayImage=cv2.imread(fileAbsPath) grayImage=cv2.cvtColor(grayImage,cv2.COLOR_BGR2GRAY) cv2.imwrite(grayscalefilepath,grayImage) gfilename=grayscalefilepath.split('/')[-1]; stack.insert(0,gfilename) if request.session['redo']: redostack.insert(0,'grayscale') request.session['redo']=True request.session['stack']=stack request.session['redostack']=redostack return JsonResponse({'response':'convertedToGrayscale'}) else: return HttpResponse() def scaleit(request): if request.method=="POST" and request.session.has_key('stack'): newX=int(request.POST['newX']) newY=int(request.POST['newY']) request.session['size']=(newX,newY) stack=request.session['stack'] redostack=request.session['redostack'] fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); scalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding... oriimg=cv2.imread(fileAbsPath) newimg=cv2.resize(oriimg,(newX,newY),interpolation=cv2.INTER_AREA) request.session['size']=newimg.shape; cv2.imwrite(scalefilepath,newimg); scalefilename=scalefilepath.split('/')[-1] stack.insert(0,scalefilename) redostack.insert(0,'scaleIt') request.session['redostack']=redostack request.session['stack']=stack; return JsonResponse({'response':'scaled'}) if request.method=="GET" and request.session.has_key('size'): newX=request.session['size'][0] newY=request.session['size'][1] stack=request.session['stack'] redostack=request.session['redostack'] fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); scalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding... oriimg=cv2.imread(fileAbsPath) newimg=cv2.resize(oriimg,(int(newX),int(newY))) request.session['size']=newimg.shape; cv2.imwrite(scalefilepath,newimg); scalefilename=scalefilepath.split('/')[-1] stack.insert(0,scalefilename) redostack.insert(0,'scaleit') request.session['redostack']=redostack request.session['stack']=stack; return JsonResponse({'response':'scaled'}) else: return HttpResponse('') def cropIt(request): if request.method=="POST" and request.session.has_key('stack'): x=int(request.POST['X']); y=int(request.POST['Y']); h=int(request.POST['h']) w=int(request.POST['w']) stack=request.session['stack'] redostack=request.session['redostack'] fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); cropfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding... oriimg=cv2.imread(fileAbsPath) crop_img = oriimg[y:h, x:w] cv2.imwrite(cropfilepath,crop_img); cropfilename=cropfilepath.split('/')[-1] stack.insert(0,cropfilename) request.session['redostack']=redostack; request.session['stack']=stack; return JsonResponse({'response':'croped'}) else: return HttpResponse('') def setBorder(request): if request.method=="POST" and request.session.has_key('stack'): bordersize=int(request.POST['size']); stack=request.session['stack'] redostack=request.session['redostack'] request.session['borderSize']=bordersize fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); borderfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding... oriimg=cv2.imread(fileAbsPath) row,col=oriimg.shape[:2] bottom=oriimg[row-2:row,0:col] mean=cv2.mean(bottom)[0] border=cv2.copyMakeBorder(oriimg, top=bordersize, bottom=bordersize, left=bordersize, right=bordersize, borderType= cv2.BORDER_CONSTANT, value=[mean,mean,mean]) cv2.imwrite(borderfilepath,border); borderfilename=borderfilepath.split('/')[-1] stack.insert(0,borderfilename) if request.session['redo']: redostack.insert(0,'setBorder') request.session['redo']=True request.session['redostack']=redostack request.session['stack']=stack; return JsonResponse({'response':'croped'}) if request.method=="GET" and request.session.has_key('borderSize'): bordersize=request.session['borderSize']; stack=request.session['stack'] fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); borderfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding... oriimg=cv2.imread(fileAbsPath) row,col=oriimg.shape[:2] bottom=oriimg[row-2:row,0:col] mean=cv2.mean(bottom)[0] border=cv2.copyMakeBorder(oriimg, top=bordersize, bottom=bordersize, left=bordersize, right=bordersize, borderType= cv2.BORDER_CONSTANT, value=[mean,mean,mean]) cv2.imwrite(borderfilepath,border); borderfilename=borderfilepath.split('/')[-1] stack.insert(0,borderfilename) request.session['stack']=stack; return JsonResponse({'response':'croped'}) else: return HttpResponse('') def cool(request): if request.method=="GET" and request.session.has_key('stack'): stack=request.session['stack'] redostack=request.session['redostack'] if len(stack)>0: fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); grayscalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...... grayImage=cv2.imread(fileAbsPath) grayImage=cv2.applyColorMap(grayImage,cv2.COLORMAP_PARULA) cv2.imwrite(grayscalefilepath,grayImage) gfilename=grayscalefilepath.split('/')[-1]; stack.insert(0,gfilename) if request.session['redo']: redostack.insert(0,'cool') request.session['redo']=True request.session['stack']=stack request.session['redostack']=redostack return JsonResponse({'response':'convertedToGrayscale'}) else: return HttpResponse() def addWatermark(request): if request.method=="POST" and request.session.has_key('stack'): text=request.POST['t'] print(text); stack=request.session['stack'] redostack=request.session['redostack'] request.session['text']=text fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); textimgPath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding... oriimg=cv2.imread(fileAbsPath) overlay=oriimg.copy() output=oriimg.copy() cv2.putText(overlay,text.format(0.5),(10,30),cv2. cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3) cv2.addWeighted(overlay,0.5,output,1-0.5,0,output) cv2.imwrite(textimgPath,output); textimgName=textimgPath.split('/')[-1] stack.insert(0,textimgName) if request.session['redo']: redostack.insert(0,'addWatermark') request.session['redo']=True request.session['redostack']=redostack request.session['stack']=stack; return JsonResponse({'response':'croped'}) if request.method=="GET" and request.session.has_key('borderSize'): bordersize=request.session['borderSize']; stack=request.session['stack'] fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); borderfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding... oriimg=cv2.imread(fileAbsPath) row,col=oriimg.shape[:2] bottom=oriimg[row-2:row,0:col] def rotateRight(request): if request.method=="GET" and request.session.has_key('stack'): stack=request.session['stack'] redostack=request.session['redostack'] if len(stack)>0: fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])); rotatefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...... rotateImage=cv2.imread(fileAbsPath) (h,w)=rotateImage.shape[:2] center=(w/2,h/2) angle90=90 scale=1.0 M=cv2.getRotationMatrix2D(center,angle90,scale) rotated180=cv2.warpAffine(rotateImage,M,(h,w)) cv2.imwrite(rotatefilepath,rotated180) gfilename=rotatefilepath.split('/')[-1]; stack.insert(0,gfilename) if request.session['redo']: redostack.insert(0,'rotateRight') request.session['redo']=True request.session['stack']=stack request.session['redostack']=redostack return JsonResponse({'response':'rotated'}) else: return HttpResponse() def overlay(request): if request.method=="POST" and request.session.has_key('stack'): stack=request.session['stack'] if len(stack)>0: imageFile=request.FILES['fileName'] fs=FileSystemStorage() imageFileName=fs.save(imageFile.name,imageFile) imgpath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%imageFileName)) img=cv2.imread(imgpath) oriimgpath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0])) oriimg=cv2.imread(oriimgpath) h,w=oriimg.shape[:2] print(h,w); tsa='large_white_square.png'; transImgPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%tsa)) tsa=cv2.imread(transImgPath); tsa=cv2.resize(tsa,(w,h)) h,w=tsa.shape[:2] print(h,w) x_offset=y_offset=50 tsa[y_offset:y_offset+img.shape[0], x_offset:x_offset+img.shape[1]] = img h,w=tsa.shape[:2] print(h,w) dst=cv2.addWeighted(oriimg,0.7,tsa,0.3,0); uui=str(uuid.uuid4()) print(uui) print(uui[-3:]) overlayfilepath=str(Path(oriimgpath).with_suffix(''))+uui[-3:]+'.png' #here dirty coding...... cv2.imwrite(overlayfilepath,dst); overlayfilename=overlayfilepath.split('/')[-1] stack.insert(0,overlayfilename) print(stack[0]); if request.session['redo']: #redostack.insert(0,'overlayed') request.session['redo']=True request.session['stack']=stack #request.session['redostack']=redostack return JsonResponse({'response':'rotated'}) else: return HttpResponse()
normal
{ "blob_id": "3378ce72ae67d09258554048138b7f9023000922", "index": 6619, "step-1": "<mask token>\n\n\ndef index(request):\n print(request.session)\n today = datetime.datetime.now()\n return render(request, 'index.html', {'today': today.strftime('%d-%m=%Y')})\n\n\ndef isFileOpen(request):\n stack = request.session['stack']\n if stack > 0 and request.session.get('name'\n ) != None and request.session.get('email') != None:\n return true\n else:\n return false\n\n\n<mask token>\n\n\ndef openFile(request):\n if request.method == 'POST' and request.FILES['fileName']:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n stack = []\n redostack = []\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n h, w = img.shape[:2]\n r = 500 / float(h)\n dim = int(w * r), 500\n stdimg = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)\n stdimgPath = str(Path(imgpath).with_suffix('')) + str(uuid.uuid4())[-3:\n ] + '.png'\n print(stdimgPath)\n cv2.imwrite(stdimgPath, stdimg)\n stdFileName = stdimgPath.split('/')[-1]\n stack.append(stdFileName)\n request.session['stack'] = stack\n print(img.shape)\n request.session['size'] = ()\n request.session['redo'] = True\n request.session['oriImg'] = imageFileName\n request.session['borderSize'] = 0\n request.session['email'] = request.POST['email']\n request.session['name'] = request.POST.get('name')\n request.session['redostack'] = redostack\n return JsonResponse({'fileName': imageFileName})\n\n\ndef getImage(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n fileToServer = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n return FileResponse(open(fileToServer, 'rb'))\n return HttpResponse('')\n\n\n<mask token>\n\n\ndef closeFile(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n for file in stack:\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % file))\n os.remove(fileDelete)\n request.session.pop('stack')\n request.session.pop('email')\n request.session.pop('name')\n return JsonResponse({'response': 'closed'})\n else:\n return HttpResponse('')\n\n\ndef undo(request):\n if request.method == 'GET' and request.session.has_key('stack') and len(\n request.session['stack']) > 1:\n stack = request.session['stack']\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % stack.pop(0)))\n os.remove(fileDelete)\n request.session['stack'] = stack\n return JsonResponse({'response': 'undid'})\n else:\n return HttpResponse('')\n\n\ndef redo(request):\n if request.method == 'GET' and request.session.has_key('redostack'\n ) and len(request.session['redostack']) > 0:\n redoStack = request.session['redostack']\n request.session['redo'] = False\n value = redoStack.pop()\n if value == 'grayscale':\n toGrayscale(request)\n if value == 'cool':\n cool(request)\n if value == 'scaleIt':\n scaleit(request)\n if value == 'setBorder':\n setBorder(request)\n request.session['redostack'] = redoStack\n return JsonResponse({'response': 'redo'})\n\n\ndef toGrayscale(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n grayscalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid\n .uuid4()) + '.png'\n grayImage = cv2.imread(fileAbsPath)\n grayImage = cv2.cvtColor(grayImage, cv2.COLOR_BGR2GRAY)\n cv2.imwrite(grayscalefilepath, grayImage)\n gfilename = grayscalefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'grayscale')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\ndef scaleit(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n newX = int(request.POST['newX'])\n newY = int(request.POST['newY'])\n request.session['size'] = newX, newY\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (newX, newY), interpolation=cv2.INTER_AREA)\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleIt')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n if request.method == 'GET' and request.session.has_key('size'):\n newX = request.session['size'][0]\n newY = request.session['size'][1]\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (int(newX), int(newY)))\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleit')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n else:\n return HttpResponse('')\n\n\ndef cropIt(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n x = int(request.POST['X'])\n y = int(request.POST['Y'])\n h = int(request.POST['h'])\n w = int(request.POST['w'])\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n cropfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n crop_img = oriimg[y:h, x:w]\n cv2.imwrite(cropfilepath, crop_img)\n cropfilename = cropfilepath.split('/')[-1]\n stack.insert(0, cropfilename)\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n else:\n return HttpResponse('')\n\n\n<mask token>\n\n\ndef rotateRight(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n rotatefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n rotateImage = cv2.imread(fileAbsPath)\n h, w = rotateImage.shape[:2]\n center = w / 2, h / 2\n angle90 = 90\n scale = 1.0\n M = cv2.getRotationMatrix2D(center, angle90, scale)\n rotated180 = cv2.warpAffine(rotateImage, M, (h, w))\n cv2.imwrite(rotatefilepath, rotated180)\n gfilename = rotatefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'rotateRight')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n\n\ndef overlay(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n oriimgpath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n oriimg = cv2.imread(oriimgpath)\n h, w = oriimg.shape[:2]\n print(h, w)\n tsa = 'large_white_square.png'\n transImgPath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % tsa))\n tsa = cv2.imread(transImgPath)\n tsa = cv2.resize(tsa, (w, h))\n h, w = tsa.shape[:2]\n print(h, w)\n x_offset = y_offset = 50\n tsa[y_offset:y_offset + img.shape[0], x_offset:x_offset + img.\n shape[1]] = img\n h, w = tsa.shape[:2]\n print(h, w)\n dst = cv2.addWeighted(oriimg, 0.7, tsa, 0.3, 0)\n uui = str(uuid.uuid4())\n print(uui)\n print(uui[-3:])\n overlayfilepath = str(Path(oriimgpath).with_suffix('')) + uui[-3:\n ] + '.png'\n cv2.imwrite(overlayfilepath, dst)\n overlayfilename = overlayfilepath.split('/')[-1]\n stack.insert(0, overlayfilename)\n print(stack[0])\n if request.session['redo']:\n request.session['redo'] = True\n request.session['stack'] = stack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n", "step-2": "<mask token>\n\n\ndef index(request):\n print(request.session)\n today = datetime.datetime.now()\n return render(request, 'index.html', {'today': today.strftime('%d-%m=%Y')})\n\n\ndef isFileOpen(request):\n stack = request.session['stack']\n if stack > 0 and request.session.get('name'\n ) != None and request.session.get('email') != None:\n return true\n else:\n return false\n\n\n<mask token>\n\n\ndef openFile(request):\n if request.method == 'POST' and request.FILES['fileName']:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n stack = []\n redostack = []\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n h, w = img.shape[:2]\n r = 500 / float(h)\n dim = int(w * r), 500\n stdimg = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)\n stdimgPath = str(Path(imgpath).with_suffix('')) + str(uuid.uuid4())[-3:\n ] + '.png'\n print(stdimgPath)\n cv2.imwrite(stdimgPath, stdimg)\n stdFileName = stdimgPath.split('/')[-1]\n stack.append(stdFileName)\n request.session['stack'] = stack\n print(img.shape)\n request.session['size'] = ()\n request.session['redo'] = True\n request.session['oriImg'] = imageFileName\n request.session['borderSize'] = 0\n request.session['email'] = request.POST['email']\n request.session['name'] = request.POST.get('name')\n request.session['redostack'] = redostack\n return JsonResponse({'fileName': imageFileName})\n\n\ndef getImage(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n fileToServer = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n return FileResponse(open(fileToServer, 'rb'))\n return HttpResponse('')\n\n\ndef showOrignal(request):\n if request.method == 'GET' and request.session.has_key('oriImg'):\n stack = request.session['stack']\n for file in stack:\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % file))\n os.remove(fileDelete)\n request.session.pop('stack')\n stack = []\n stack.insert(0, request.session['oriImg'])\n request.session['stack'] = stack\n return JsonResponse({'response': 'orignal'})\n else:\n return HttpResponse('')\n\n\ndef closeFile(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n for file in stack:\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % file))\n os.remove(fileDelete)\n request.session.pop('stack')\n request.session.pop('email')\n request.session.pop('name')\n return JsonResponse({'response': 'closed'})\n else:\n return HttpResponse('')\n\n\ndef undo(request):\n if request.method == 'GET' and request.session.has_key('stack') and len(\n request.session['stack']) > 1:\n stack = request.session['stack']\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % stack.pop(0)))\n os.remove(fileDelete)\n request.session['stack'] = stack\n return JsonResponse({'response': 'undid'})\n else:\n return HttpResponse('')\n\n\ndef redo(request):\n if request.method == 'GET' and request.session.has_key('redostack'\n ) and len(request.session['redostack']) > 0:\n redoStack = request.session['redostack']\n request.session['redo'] = False\n value = redoStack.pop()\n if value == 'grayscale':\n toGrayscale(request)\n if value == 'cool':\n cool(request)\n if value == 'scaleIt':\n scaleit(request)\n if value == 'setBorder':\n setBorder(request)\n request.session['redostack'] = redoStack\n return JsonResponse({'response': 'redo'})\n\n\ndef toGrayscale(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n grayscalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid\n .uuid4()) + '.png'\n grayImage = cv2.imread(fileAbsPath)\n grayImage = cv2.cvtColor(grayImage, cv2.COLOR_BGR2GRAY)\n cv2.imwrite(grayscalefilepath, grayImage)\n gfilename = grayscalefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'grayscale')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\ndef scaleit(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n newX = int(request.POST['newX'])\n newY = int(request.POST['newY'])\n request.session['size'] = newX, newY\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (newX, newY), interpolation=cv2.INTER_AREA)\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleIt')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n if request.method == 'GET' and request.session.has_key('size'):\n newX = request.session['size'][0]\n newY = request.session['size'][1]\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (int(newX), int(newY)))\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleit')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n else:\n return HttpResponse('')\n\n\ndef cropIt(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n x = int(request.POST['X'])\n y = int(request.POST['Y'])\n h = int(request.POST['h'])\n w = int(request.POST['w'])\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n cropfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n crop_img = oriimg[y:h, x:w]\n cv2.imwrite(cropfilepath, crop_img)\n cropfilename = cropfilepath.split('/')[-1]\n stack.insert(0, cropfilename)\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n else:\n return HttpResponse('')\n\n\n<mask token>\n\n\ndef cool(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n grayscalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid\n .uuid4()) + '.png'\n grayImage = cv2.imread(fileAbsPath)\n grayImage = cv2.applyColorMap(grayImage, cv2.COLORMAP_PARULA)\n cv2.imwrite(grayscalefilepath, grayImage)\n gfilename = grayscalefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'cool')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\n<mask token>\n\n\ndef rotateRight(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n rotatefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n rotateImage = cv2.imread(fileAbsPath)\n h, w = rotateImage.shape[:2]\n center = w / 2, h / 2\n angle90 = 90\n scale = 1.0\n M = cv2.getRotationMatrix2D(center, angle90, scale)\n rotated180 = cv2.warpAffine(rotateImage, M, (h, w))\n cv2.imwrite(rotatefilepath, rotated180)\n gfilename = rotatefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'rotateRight')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n\n\ndef overlay(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n oriimgpath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n oriimg = cv2.imread(oriimgpath)\n h, w = oriimg.shape[:2]\n print(h, w)\n tsa = 'large_white_square.png'\n transImgPath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % tsa))\n tsa = cv2.imread(transImgPath)\n tsa = cv2.resize(tsa, (w, h))\n h, w = tsa.shape[:2]\n print(h, w)\n x_offset = y_offset = 50\n tsa[y_offset:y_offset + img.shape[0], x_offset:x_offset + img.\n shape[1]] = img\n h, w = tsa.shape[:2]\n print(h, w)\n dst = cv2.addWeighted(oriimg, 0.7, tsa, 0.3, 0)\n uui = str(uuid.uuid4())\n print(uui)\n print(uui[-3:])\n overlayfilepath = str(Path(oriimgpath).with_suffix('')) + uui[-3:\n ] + '.png'\n cv2.imwrite(overlayfilepath, dst)\n overlayfilename = overlayfilepath.split('/')[-1]\n stack.insert(0, overlayfilename)\n print(stack[0])\n if request.session['redo']:\n request.session['redo'] = True\n request.session['stack'] = stack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n", "step-3": "<mask token>\n\n\ndef index(request):\n print(request.session)\n today = datetime.datetime.now()\n return render(request, 'index.html', {'today': today.strftime('%d-%m=%Y')})\n\n\ndef isFileOpen(request):\n stack = request.session['stack']\n if stack > 0 and request.session.get('name'\n ) != None and request.session.get('email') != None:\n return true\n else:\n return false\n\n\n<mask token>\n\n\ndef openFile(request):\n if request.method == 'POST' and request.FILES['fileName']:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n stack = []\n redostack = []\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n h, w = img.shape[:2]\n r = 500 / float(h)\n dim = int(w * r), 500\n stdimg = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)\n stdimgPath = str(Path(imgpath).with_suffix('')) + str(uuid.uuid4())[-3:\n ] + '.png'\n print(stdimgPath)\n cv2.imwrite(stdimgPath, stdimg)\n stdFileName = stdimgPath.split('/')[-1]\n stack.append(stdFileName)\n request.session['stack'] = stack\n print(img.shape)\n request.session['size'] = ()\n request.session['redo'] = True\n request.session['oriImg'] = imageFileName\n request.session['borderSize'] = 0\n request.session['email'] = request.POST['email']\n request.session['name'] = request.POST.get('name')\n request.session['redostack'] = redostack\n return JsonResponse({'fileName': imageFileName})\n\n\ndef getImage(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n fileToServer = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n return FileResponse(open(fileToServer, 'rb'))\n return HttpResponse('')\n\n\ndef showOrignal(request):\n if request.method == 'GET' and request.session.has_key('oriImg'):\n stack = request.session['stack']\n for file in stack:\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % file))\n os.remove(fileDelete)\n request.session.pop('stack')\n stack = []\n stack.insert(0, request.session['oriImg'])\n request.session['stack'] = stack\n return JsonResponse({'response': 'orignal'})\n else:\n return HttpResponse('')\n\n\ndef closeFile(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n for file in stack:\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % file))\n os.remove(fileDelete)\n request.session.pop('stack')\n request.session.pop('email')\n request.session.pop('name')\n return JsonResponse({'response': 'closed'})\n else:\n return HttpResponse('')\n\n\ndef undo(request):\n if request.method == 'GET' and request.session.has_key('stack') and len(\n request.session['stack']) > 1:\n stack = request.session['stack']\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % stack.pop(0)))\n os.remove(fileDelete)\n request.session['stack'] = stack\n return JsonResponse({'response': 'undid'})\n else:\n return HttpResponse('')\n\n\ndef redo(request):\n if request.method == 'GET' and request.session.has_key('redostack'\n ) and len(request.session['redostack']) > 0:\n redoStack = request.session['redostack']\n request.session['redo'] = False\n value = redoStack.pop()\n if value == 'grayscale':\n toGrayscale(request)\n if value == 'cool':\n cool(request)\n if value == 'scaleIt':\n scaleit(request)\n if value == 'setBorder':\n setBorder(request)\n request.session['redostack'] = redoStack\n return JsonResponse({'response': 'redo'})\n\n\ndef toGrayscale(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n grayscalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid\n .uuid4()) + '.png'\n grayImage = cv2.imread(fileAbsPath)\n grayImage = cv2.cvtColor(grayImage, cv2.COLOR_BGR2GRAY)\n cv2.imwrite(grayscalefilepath, grayImage)\n gfilename = grayscalefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'grayscale')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\ndef scaleit(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n newX = int(request.POST['newX'])\n newY = int(request.POST['newY'])\n request.session['size'] = newX, newY\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (newX, newY), interpolation=cv2.INTER_AREA)\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleIt')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n if request.method == 'GET' and request.session.has_key('size'):\n newX = request.session['size'][0]\n newY = request.session['size'][1]\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (int(newX), int(newY)))\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleit')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n else:\n return HttpResponse('')\n\n\ndef cropIt(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n x = int(request.POST['X'])\n y = int(request.POST['Y'])\n h = int(request.POST['h'])\n w = int(request.POST['w'])\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n cropfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n crop_img = oriimg[y:h, x:w]\n cv2.imwrite(cropfilepath, crop_img)\n cropfilename = cropfilepath.split('/')[-1]\n stack.insert(0, cropfilename)\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n else:\n return HttpResponse('')\n\n\ndef setBorder(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n bordersize = int(request.POST['size'])\n stack = request.session['stack']\n redostack = request.session['redostack']\n request.session['borderSize'] = bordersize\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n borderfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n row, col = oriimg.shape[:2]\n bottom = oriimg[row - 2:row, 0:col]\n mean = cv2.mean(bottom)[0]\n border = cv2.copyMakeBorder(oriimg, top=bordersize, bottom=\n bordersize, left=bordersize, right=bordersize, borderType=cv2.\n BORDER_CONSTANT, value=[mean, mean, mean])\n cv2.imwrite(borderfilepath, border)\n borderfilename = borderfilepath.split('/')[-1]\n stack.insert(0, borderfilename)\n if request.session['redo']:\n redostack.insert(0, 'setBorder')\n request.session['redo'] = True\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n if request.method == 'GET' and request.session.has_key('borderSize'):\n bordersize = request.session['borderSize']\n stack = request.session['stack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n borderfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n row, col = oriimg.shape[:2]\n bottom = oriimg[row - 2:row, 0:col]\n mean = cv2.mean(bottom)[0]\n border = cv2.copyMakeBorder(oriimg, top=bordersize, bottom=\n bordersize, left=bordersize, right=bordersize, borderType=cv2.\n BORDER_CONSTANT, value=[mean, mean, mean])\n cv2.imwrite(borderfilepath, border)\n borderfilename = borderfilepath.split('/')[-1]\n stack.insert(0, borderfilename)\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n else:\n return HttpResponse('')\n\n\ndef cool(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n grayscalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid\n .uuid4()) + '.png'\n grayImage = cv2.imread(fileAbsPath)\n grayImage = cv2.applyColorMap(grayImage, cv2.COLORMAP_PARULA)\n cv2.imwrite(grayscalefilepath, grayImage)\n gfilename = grayscalefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'cool')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\n<mask token>\n\n\ndef rotateRight(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n rotatefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n rotateImage = cv2.imread(fileAbsPath)\n h, w = rotateImage.shape[:2]\n center = w / 2, h / 2\n angle90 = 90\n scale = 1.0\n M = cv2.getRotationMatrix2D(center, angle90, scale)\n rotated180 = cv2.warpAffine(rotateImage, M, (h, w))\n cv2.imwrite(rotatefilepath, rotated180)\n gfilename = rotatefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'rotateRight')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n\n\ndef overlay(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n oriimgpath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n oriimg = cv2.imread(oriimgpath)\n h, w = oriimg.shape[:2]\n print(h, w)\n tsa = 'large_white_square.png'\n transImgPath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % tsa))\n tsa = cv2.imread(transImgPath)\n tsa = cv2.resize(tsa, (w, h))\n h, w = tsa.shape[:2]\n print(h, w)\n x_offset = y_offset = 50\n tsa[y_offset:y_offset + img.shape[0], x_offset:x_offset + img.\n shape[1]] = img\n h, w = tsa.shape[:2]\n print(h, w)\n dst = cv2.addWeighted(oriimg, 0.7, tsa, 0.3, 0)\n uui = str(uuid.uuid4())\n print(uui)\n print(uui[-3:])\n overlayfilepath = str(Path(oriimgpath).with_suffix('')) + uui[-3:\n ] + '.png'\n cv2.imwrite(overlayfilepath, dst)\n overlayfilename = overlayfilepath.split('/')[-1]\n stack.insert(0, overlayfilename)\n print(stack[0])\n if request.session['redo']:\n request.session['redo'] = True\n request.session['stack'] = stack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n", "step-4": "<mask token>\n\n\ndef index(request):\n print(request.session)\n today = datetime.datetime.now()\n return render(request, 'index.html', {'today': today.strftime('%d-%m=%Y')})\n\n\ndef isFileOpen(request):\n stack = request.session['stack']\n if stack > 0 and request.session.get('name'\n ) != None and request.session.get('email') != None:\n return true\n else:\n return false\n\n\ndef getState(request):\n if isFileOpen:\n fileName = request.session['stack'][0]\n email = request.session['email']\n name = request.session['name']\n return JsonResponse({'state': 'open', 'name': name, 'email': email,\n 'fileName': fileName})\n else:\n return JsonResponse({'state': none, 'name': '', email: '',\n 'fileName': ''})\n\n\ndef openFile(request):\n if request.method == 'POST' and request.FILES['fileName']:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n stack = []\n redostack = []\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n h, w = img.shape[:2]\n r = 500 / float(h)\n dim = int(w * r), 500\n stdimg = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)\n stdimgPath = str(Path(imgpath).with_suffix('')) + str(uuid.uuid4())[-3:\n ] + '.png'\n print(stdimgPath)\n cv2.imwrite(stdimgPath, stdimg)\n stdFileName = stdimgPath.split('/')[-1]\n stack.append(stdFileName)\n request.session['stack'] = stack\n print(img.shape)\n request.session['size'] = ()\n request.session['redo'] = True\n request.session['oriImg'] = imageFileName\n request.session['borderSize'] = 0\n request.session['email'] = request.POST['email']\n request.session['name'] = request.POST.get('name')\n request.session['redostack'] = redostack\n return JsonResponse({'fileName': imageFileName})\n\n\ndef getImage(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n fileToServer = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n return FileResponse(open(fileToServer, 'rb'))\n return HttpResponse('')\n\n\ndef showOrignal(request):\n if request.method == 'GET' and request.session.has_key('oriImg'):\n stack = request.session['stack']\n for file in stack:\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % file))\n os.remove(fileDelete)\n request.session.pop('stack')\n stack = []\n stack.insert(0, request.session['oriImg'])\n request.session['stack'] = stack\n return JsonResponse({'response': 'orignal'})\n else:\n return HttpResponse('')\n\n\ndef closeFile(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n for file in stack:\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % file))\n os.remove(fileDelete)\n request.session.pop('stack')\n request.session.pop('email')\n request.session.pop('name')\n return JsonResponse({'response': 'closed'})\n else:\n return HttpResponse('')\n\n\ndef undo(request):\n if request.method == 'GET' and request.session.has_key('stack') and len(\n request.session['stack']) > 1:\n stack = request.session['stack']\n fileDelete = os.path.abspath(os.path.join(os.path.dirname(__file__),\n '..', 'filestore/%s' % stack.pop(0)))\n os.remove(fileDelete)\n request.session['stack'] = stack\n return JsonResponse({'response': 'undid'})\n else:\n return HttpResponse('')\n\n\ndef redo(request):\n if request.method == 'GET' and request.session.has_key('redostack'\n ) and len(request.session['redostack']) > 0:\n redoStack = request.session['redostack']\n request.session['redo'] = False\n value = redoStack.pop()\n if value == 'grayscale':\n toGrayscale(request)\n if value == 'cool':\n cool(request)\n if value == 'scaleIt':\n scaleit(request)\n if value == 'setBorder':\n setBorder(request)\n request.session['redostack'] = redoStack\n return JsonResponse({'response': 'redo'})\n\n\ndef toGrayscale(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n grayscalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid\n .uuid4()) + '.png'\n grayImage = cv2.imread(fileAbsPath)\n grayImage = cv2.cvtColor(grayImage, cv2.COLOR_BGR2GRAY)\n cv2.imwrite(grayscalefilepath, grayImage)\n gfilename = grayscalefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'grayscale')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\ndef scaleit(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n newX = int(request.POST['newX'])\n newY = int(request.POST['newY'])\n request.session['size'] = newX, newY\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (newX, newY), interpolation=cv2.INTER_AREA)\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleIt')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n if request.method == 'GET' and request.session.has_key('size'):\n newX = request.session['size'][0]\n newY = request.session['size'][1]\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n scalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n newimg = cv2.resize(oriimg, (int(newX), int(newY)))\n request.session['size'] = newimg.shape\n cv2.imwrite(scalefilepath, newimg)\n scalefilename = scalefilepath.split('/')[-1]\n stack.insert(0, scalefilename)\n redostack.insert(0, 'scaleit')\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'scaled'})\n else:\n return HttpResponse('')\n\n\ndef cropIt(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n x = int(request.POST['X'])\n y = int(request.POST['Y'])\n h = int(request.POST['h'])\n w = int(request.POST['w'])\n stack = request.session['stack']\n redostack = request.session['redostack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n cropfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n crop_img = oriimg[y:h, x:w]\n cv2.imwrite(cropfilepath, crop_img)\n cropfilename = cropfilepath.split('/')[-1]\n stack.insert(0, cropfilename)\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n else:\n return HttpResponse('')\n\n\ndef setBorder(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n bordersize = int(request.POST['size'])\n stack = request.session['stack']\n redostack = request.session['redostack']\n request.session['borderSize'] = bordersize\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n borderfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n row, col = oriimg.shape[:2]\n bottom = oriimg[row - 2:row, 0:col]\n mean = cv2.mean(bottom)[0]\n border = cv2.copyMakeBorder(oriimg, top=bordersize, bottom=\n bordersize, left=bordersize, right=bordersize, borderType=cv2.\n BORDER_CONSTANT, value=[mean, mean, mean])\n cv2.imwrite(borderfilepath, border)\n borderfilename = borderfilepath.split('/')[-1]\n stack.insert(0, borderfilename)\n if request.session['redo']:\n redostack.insert(0, 'setBorder')\n request.session['redo'] = True\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n if request.method == 'GET' and request.session.has_key('borderSize'):\n bordersize = request.session['borderSize']\n stack = request.session['stack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n borderfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n row, col = oriimg.shape[:2]\n bottom = oriimg[row - 2:row, 0:col]\n mean = cv2.mean(bottom)[0]\n border = cv2.copyMakeBorder(oriimg, top=bordersize, bottom=\n bordersize, left=bordersize, right=bordersize, borderType=cv2.\n BORDER_CONSTANT, value=[mean, mean, mean])\n cv2.imwrite(borderfilepath, border)\n borderfilename = borderfilepath.split('/')[-1]\n stack.insert(0, borderfilename)\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n else:\n return HttpResponse('')\n\n\ndef cool(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n grayscalefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid\n .uuid4()) + '.png'\n grayImage = cv2.imread(fileAbsPath)\n grayImage = cv2.applyColorMap(grayImage, cv2.COLORMAP_PARULA)\n cv2.imwrite(grayscalefilepath, grayImage)\n gfilename = grayscalefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'cool')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\ndef addWatermark(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n text = request.POST['t']\n print(text)\n stack = request.session['stack']\n redostack = request.session['redostack']\n request.session['text'] = text\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n textimgPath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.uuid4()\n ) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n overlay = oriimg.copy()\n output = oriimg.copy()\n cv2.putText(overlay, text.format(0.5), (10, 30), cv2.cv2.\n FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3)\n cv2.addWeighted(overlay, 0.5, output, 1 - 0.5, 0, output)\n cv2.imwrite(textimgPath, output)\n textimgName = textimgPath.split('/')[-1]\n stack.insert(0, textimgName)\n if request.session['redo']:\n redostack.insert(0, 'addWatermark')\n request.session['redo'] = True\n request.session['redostack'] = redostack\n request.session['stack'] = stack\n return JsonResponse({'response': 'croped'})\n if request.method == 'GET' and request.session.has_key('borderSize'):\n bordersize = request.session['borderSize']\n stack = request.session['stack']\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n borderfilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n oriimg = cv2.imread(fileAbsPath)\n row, col = oriimg.shape[:2]\n bottom = oriimg[row - 2:row, 0:col]\n\n\ndef rotateRight(request):\n if request.method == 'GET' and request.session.has_key('stack'):\n stack = request.session['stack']\n redostack = request.session['redostack']\n if len(stack) > 0:\n fileAbsPath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % stack[0]))\n rotatefilepath = str(Path(fileAbsPath).with_suffix('')) + str(uuid.\n uuid4()) + '.png'\n rotateImage = cv2.imread(fileAbsPath)\n h, w = rotateImage.shape[:2]\n center = w / 2, h / 2\n angle90 = 90\n scale = 1.0\n M = cv2.getRotationMatrix2D(center, angle90, scale)\n rotated180 = cv2.warpAffine(rotateImage, M, (h, w))\n cv2.imwrite(rotatefilepath, rotated180)\n gfilename = rotatefilepath.split('/')[-1]\n stack.insert(0, gfilename)\n if request.session['redo']:\n redostack.insert(0, 'rotateRight')\n request.session['redo'] = True\n request.session['stack'] = stack\n request.session['redostack'] = redostack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n\n\ndef overlay(request):\n if request.method == 'POST' and request.session.has_key('stack'):\n stack = request.session['stack']\n if len(stack) > 0:\n imageFile = request.FILES['fileName']\n fs = FileSystemStorage()\n imageFileName = fs.save(imageFile.name, imageFile)\n imgpath = os.path.abspath(os.path.join(os.path.dirname(__file__\n ), '..', 'filestore/%s' % imageFileName))\n img = cv2.imread(imgpath)\n oriimgpath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % stack[0]))\n oriimg = cv2.imread(oriimgpath)\n h, w = oriimg.shape[:2]\n print(h, w)\n tsa = 'large_white_square.png'\n transImgPath = os.path.abspath(os.path.join(os.path.dirname(\n __file__), '..', 'filestore/%s' % tsa))\n tsa = cv2.imread(transImgPath)\n tsa = cv2.resize(tsa, (w, h))\n h, w = tsa.shape[:2]\n print(h, w)\n x_offset = y_offset = 50\n tsa[y_offset:y_offset + img.shape[0], x_offset:x_offset + img.\n shape[1]] = img\n h, w = tsa.shape[:2]\n print(h, w)\n dst = cv2.addWeighted(oriimg, 0.7, tsa, 0.3, 0)\n uui = str(uuid.uuid4())\n print(uui)\n print(uui[-3:])\n overlayfilepath = str(Path(oriimgpath).with_suffix('')) + uui[-3:\n ] + '.png'\n cv2.imwrite(overlayfilepath, dst)\n overlayfilename = overlayfilepath.split('/')[-1]\n stack.insert(0, overlayfilename)\n print(stack[0])\n if request.session['redo']:\n request.session['redo'] = True\n request.session['stack'] = stack\n return JsonResponse({'response': 'rotated'})\n else:\n return HttpResponse()\n", "step-5": "from django.shortcuts import render\nimport datetime\nfrom django.http import*\nfrom django.core.files.storage import FileSystemStorage\nimport uuid \nimport os\nimport cv2\nimport numpy as np\nfrom pathlib import Path\n\ndef index(request):\n print(request.session);\n today=datetime.datetime.now()\n return render(request,'index.html',{\n \"today\":today.strftime(\"%d-%m=%Y\")})\n\ndef isFileOpen(request):\n stack=request.session['stack']\n if stack>0 and request.session.get('name')!=None and request.session.get('email')!=None:\n return true\n \n else:\n return false\n \n\t\n\ndef getState(request):\n if(isFileOpen):\n fileName=request.session['stack'][0]\n email=request.session['email']\n name=request.session['name']\n return JsonResponse({'state':'open','name':name,'email':email,'fileName':fileName})\n \n else:\n return JsonResponse({'state':none,'name':'',email:'','fileName':''})\t\n \n \n\ndef openFile(request):\n if request.method=='POST' and request.FILES['fileName']:\n imageFile=request.FILES['fileName']\n fs=FileSystemStorage()\n imageFileName=fs.save(imageFile.name,imageFile)\n stack=[]\n redostack=[]\n \n imgpath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%imageFileName))\n img=cv2.imread(imgpath)\n (h, w) = img.shape[:2]\n r = 500 / float(h)\n dim = (int(w * r),500)\n \n stdimg=cv2.resize(img,dim,interpolation=cv2.INTER_AREA)\n stdimgPath=str(Path(imgpath).with_suffix(''))+str(uuid.uuid4())[-3:]+'.png' \n print(stdimgPath)\n cv2.imwrite(stdimgPath,stdimg)\n stdFileName=stdimgPath.split('/')[-1];\n\n stack.append(stdFileName)\n request.session['stack']=stack\n print(img.shape)\n request.session['size']=()\n request.session['redo']=True\n request.session['oriImg']=imageFileName\n request.session['borderSize']=0;\n request.session['email']=request.POST['email']\n request.session['name']=request.POST.get('name')\n request.session['redostack']=redostack\n \t\n return JsonResponse({'fileName':imageFileName})\n\ndef getImage(request):\n if request.method==\"GET\" and request.session.has_key('stack'):\n stack=request.session['stack']\n if len(stack)>0:\n fileToServer=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]))\n \n return FileResponse(open(fileToServer,'rb'))\n return HttpResponse('')\n\n\ndef showOrignal(request):\n if request.method==\"GET\" and request.session.has_key('oriImg'):\n stack=request.session['stack']\n for file in stack:\n fileDelete=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%file))\n os.remove(fileDelete);\n request.session.pop('stack')\n stack=[]\n stack.insert(0,request.session['oriImg'])\n request.session['stack']=stack\n return JsonResponse({'response':'orignal'})\n else:\n return HttpResponse('')\n \n \n\n\ndef closeFile(request):\n if request.method==\"GET\" and request.session.has_key('stack'):\n stack=request.session['stack']\n for file in stack:\n fileDelete=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%file))\n os.remove(fileDelete);\n request.session.pop('stack')\n request.session.pop('email')\n request.session.pop('name')\n return JsonResponse({'response':'closed'})\n else:\n return HttpResponse('');\n\ndef undo(request):\n if request.method==\"GET\" and request.session.has_key('stack') and len(request.session['stack'])>1:\n stack=request.session['stack']\n fileDelete=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack.pop(0)))\n os.remove(fileDelete);\n request.session['stack']=stack;\n return JsonResponse({\"response\":\"undid\"})\n else:\n return HttpResponse('')\n\ndef redo(request):\n if request.method==\"GET\" and request.session.has_key('redostack') and len(request.session['redostack'])>0:\n redoStack=request.session['redostack']\n request.session['redo']=False;\n value=redoStack.pop()\n if(value=='grayscale'):\n toGrayscale(request)\n if(value=='cool'):\n cool(request)\n if(value=='scaleIt'):\n scaleit(request)\n if(value=='setBorder'):\n setBorder(request); \n request.session['redostack']=redoStack;\n return JsonResponse({'response':'redo'})\n\n\ndef toGrayscale(request):\n if request.method==\"GET\" and request.session.has_key('stack'):\n stack=request.session['stack']\n redostack=request.session['redostack']\n if len(stack)>0:\n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n grayscalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding......\n grayImage=cv2.imread(fileAbsPath)\n grayImage=cv2.cvtColor(grayImage,cv2.COLOR_BGR2GRAY)\n cv2.imwrite(grayscalefilepath,grayImage)\n gfilename=grayscalefilepath.split('/')[-1];\n stack.insert(0,gfilename)\n if request.session['redo']:\n redostack.insert(0,'grayscale')\n request.session['redo']=True\n request.session['stack']=stack\n request.session['redostack']=redostack\n return JsonResponse({'response':'convertedToGrayscale'}) \n else:\n return HttpResponse()\n\ndef scaleit(request):\n if request.method==\"POST\" and request.session.has_key('stack'):\n newX=int(request.POST['newX'])\n newY=int(request.POST['newY'])\n \n request.session['size']=(newX,newY)\n stack=request.session['stack']\n redostack=request.session['redostack']\n \n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n scalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...\n \n oriimg=cv2.imread(fileAbsPath)\n newimg=cv2.resize(oriimg,(newX,newY),interpolation=cv2.INTER_AREA)\n request.session['size']=newimg.shape;\n cv2.imwrite(scalefilepath,newimg);\n \n scalefilename=scalefilepath.split('/')[-1]\n stack.insert(0,scalefilename)\n redostack.insert(0,'scaleIt')\n request.session['redostack']=redostack\n request.session['stack']=stack;\n return JsonResponse({'response':'scaled'})\n if request.method==\"GET\" and request.session.has_key('size'):\n newX=request.session['size'][0]\n newY=request.session['size'][1]\n \n \n stack=request.session['stack']\n redostack=request.session['redostack']\n \n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n scalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...\n \n oriimg=cv2.imread(fileAbsPath)\n newimg=cv2.resize(oriimg,(int(newX),int(newY)))\n request.session['size']=newimg.shape;\n cv2.imwrite(scalefilepath,newimg);\n \n scalefilename=scalefilepath.split('/')[-1]\n stack.insert(0,scalefilename)\n redostack.insert(0,'scaleit')\n request.session['redostack']=redostack\n request.session['stack']=stack;\n return JsonResponse({'response':'scaled'})\n else:\n return HttpResponse('')\n \n\ndef cropIt(request):\n if request.method==\"POST\" and request.session.has_key('stack'):\n x=int(request.POST['X']);\n y=int(request.POST['Y']);\n h=int(request.POST['h'])\n w=int(request.POST['w'])\n stack=request.session['stack']\n redostack=request.session['redostack']\n \n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n cropfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...\n\n oriimg=cv2.imread(fileAbsPath)\n\n \n crop_img = oriimg[y:h, x:w]\n cv2.imwrite(cropfilepath,crop_img);\n cropfilename=cropfilepath.split('/')[-1]\n stack.insert(0,cropfilename)\n \n request.session['redostack']=redostack;\n request.session['stack']=stack;\n\n return JsonResponse({'response':'croped'})\n else:\n return HttpResponse('') \n \ndef setBorder(request):\n if request.method==\"POST\" and request.session.has_key('stack'):\n bordersize=int(request.POST['size']);\n stack=request.session['stack']\n redostack=request.session['redostack']\n request.session['borderSize']=bordersize\n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n borderfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...\n\n oriimg=cv2.imread(fileAbsPath)\n\n row,col=oriimg.shape[:2]\n bottom=oriimg[row-2:row,0:col]\n mean=cv2.mean(bottom)[0]\n border=cv2.copyMakeBorder(oriimg, top=bordersize, bottom=bordersize, left=bordersize, right=bordersize, borderType= cv2.BORDER_CONSTANT, value=[mean,mean,mean]) \n \n cv2.imwrite(borderfilepath,border);\n borderfilename=borderfilepath.split('/')[-1]\n stack.insert(0,borderfilename)\n if request.session['redo']:\n redostack.insert(0,'setBorder')\n request.session['redo']=True\n request.session['redostack']=redostack\n request.session['stack']=stack;\n return JsonResponse({'response':'croped'})\n if request.method==\"GET\" and request.session.has_key('borderSize'):\n bordersize=request.session['borderSize'];\n stack=request.session['stack']\n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n borderfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...\n oriimg=cv2.imread(fileAbsPath)\n row,col=oriimg.shape[:2]\n bottom=oriimg[row-2:row,0:col]\n mean=cv2.mean(bottom)[0]\n border=cv2.copyMakeBorder(oriimg, top=bordersize, bottom=bordersize, left=bordersize, right=bordersize, borderType= cv2.BORDER_CONSTANT, value=[mean,mean,mean])\n cv2.imwrite(borderfilepath,border);\n borderfilename=borderfilepath.split('/')[-1]\n stack.insert(0,borderfilename)\n request.session['stack']=stack;\n return JsonResponse({'response':'croped'})\n\n else:\n return HttpResponse('')\n\n\ndef cool(request):\n if request.method==\"GET\" and request.session.has_key('stack'):\n stack=request.session['stack']\n redostack=request.session['redostack']\n if len(stack)>0:\n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n grayscalefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding......\n grayImage=cv2.imread(fileAbsPath)\n grayImage=cv2.applyColorMap(grayImage,cv2.COLORMAP_PARULA)\n cv2.imwrite(grayscalefilepath,grayImage)\n gfilename=grayscalefilepath.split('/')[-1];\n stack.insert(0,gfilename)\n if request.session['redo']:\n redostack.insert(0,'cool')\n request.session['redo']=True\n request.session['stack']=stack\n request.session['redostack']=redostack\n return JsonResponse({'response':'convertedToGrayscale'})\n else:\n return HttpResponse()\n\n\n\n\n\n\n\ndef addWatermark(request):\n if request.method==\"POST\" and request.session.has_key('stack'):\n text=request.POST['t']\n print(text);\n stack=request.session['stack']\n redostack=request.session['redostack']\n request.session['text']=text\n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n textimgPath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...\n\n oriimg=cv2.imread(fileAbsPath)\n\n overlay=oriimg.copy()\n output=oriimg.copy()\n cv2.putText(overlay,text.format(0.5),(10,30),cv2. cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3)\n \n\n cv2.addWeighted(overlay,0.5,output,1-0.5,0,output)\n \n cv2.imwrite(textimgPath,output);\n textimgName=textimgPath.split('/')[-1]\n stack.insert(0,textimgName)\n if request.session['redo']:\n redostack.insert(0,'addWatermark')\n request.session['redo']=True\n request.session['redostack']=redostack\n request.session['stack']=stack;\n return JsonResponse({'response':'croped'})\n if request.method==\"GET\" and request.session.has_key('borderSize'):\n bordersize=request.session['borderSize'];\n stack=request.session['stack']\n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n borderfilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding...\n oriimg=cv2.imread(fileAbsPath)\n row,col=oriimg.shape[:2]\n bottom=oriimg[row-2:row,0:col]\n\ndef rotateRight(request):\n if request.method==\"GET\" and request.session.has_key('stack'):\n stack=request.session['stack']\n redostack=request.session['redostack']\n if len(stack)>0:\n fileAbsPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]));\n rotatefilepath=str(Path(fileAbsPath).with_suffix(''))+str(uuid.uuid4())+'.png' #here dirty coding......\n rotateImage=cv2.imread(fileAbsPath)\n (h,w)=rotateImage.shape[:2]\n center=(w/2,h/2)\n angle90=90\n scale=1.0\n M=cv2.getRotationMatrix2D(center,angle90,scale)\n rotated180=cv2.warpAffine(rotateImage,M,(h,w))\n\n cv2.imwrite(rotatefilepath,rotated180)\n gfilename=rotatefilepath.split('/')[-1];\n stack.insert(0,gfilename)\n if request.session['redo']:\n redostack.insert(0,'rotateRight')\n request.session['redo']=True\n request.session['stack']=stack\n request.session['redostack']=redostack\n return JsonResponse({'response':'rotated'})\n else:\n return HttpResponse()\n\ndef overlay(request):\n if request.method==\"POST\" and request.session.has_key('stack'):\n stack=request.session['stack']\n if len(stack)>0:\n imageFile=request.FILES['fileName']\n fs=FileSystemStorage()\n imageFileName=fs.save(imageFile.name,imageFile)\n imgpath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%imageFileName))\n img=cv2.imread(imgpath)\n oriimgpath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%stack[0]))\n oriimg=cv2.imread(oriimgpath)\n h,w=oriimg.shape[:2]\n print(h,w);\n\n tsa='large_white_square.png'; \n transImgPath=os.path.abspath(os.path.join(os.path.dirname(__file__),'..','filestore/%s'%tsa))\n tsa=cv2.imread(transImgPath);\n tsa=cv2.resize(tsa,(w,h))\n h,w=tsa.shape[:2]\n print(h,w)\n x_offset=y_offset=50\n tsa[y_offset:y_offset+img.shape[0], x_offset:x_offset+img.shape[1]] = img\n h,w=tsa.shape[:2]\n print(h,w)\n\n \n dst=cv2.addWeighted(oriimg,0.7,tsa,0.3,0);\n uui=str(uuid.uuid4())\n print(uui)\n print(uui[-3:])\n overlayfilepath=str(Path(oriimgpath).with_suffix(''))+uui[-3:]+'.png' #here dirty coding......\n cv2.imwrite(overlayfilepath,dst);\n overlayfilename=overlayfilepath.split('/')[-1]\n stack.insert(0,overlayfilename) \n print(stack[0]);\n if request.session['redo']:\n #redostack.insert(0,'overlayed')\n request.session['redo']=True\n request.session['stack']=stack\n #request.session['redostack']=redostack\n return JsonResponse({'response':'rotated'})\n else:\n return HttpResponse()\n\n \n\n", "step-ids": [ 12, 14, 15, 17, 19 ] }
[ 12, 14, 15, 17, 19 ]
from setuptools import setup, find_packages setup(name='qn', version='0.2.2', description='Handy functions I use everyday.', url='https://github.com/frlender/qn', author='Qiaonan Duan', author_email='geonann@gmail.com', license='MIT', packages=find_packages(), # install_requires=[ # 'matplotlib', # 'seaborn', # 'numpy', # 'scipy', # 'pandas', # 'PyYAML', # 'matplotlib-venn', # 'scikit-learn' # ], zip_safe=False)
normal
{ "blob_id": "3b307ae7f8b8b25c93eb2dc54b2603b1291b6232", "index": 1789, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='qn', version='0.2.2', description=\n 'Handy functions I use everyday.', url='https://github.com/frlender/qn',\n author='Qiaonan Duan', author_email='geonann@gmail.com', license='MIT',\n packages=find_packages(), zip_safe=False)\n", "step-3": "from setuptools import setup, find_packages\nsetup(name='qn', version='0.2.2', description=\n 'Handy functions I use everyday.', url='https://github.com/frlender/qn',\n author='Qiaonan Duan', author_email='geonann@gmail.com', license='MIT',\n packages=find_packages(), zip_safe=False)\n", "step-4": "from setuptools import setup, find_packages\n\nsetup(name='qn',\n version='0.2.2',\n description='Handy functions I use everyday.',\n url='https://github.com/frlender/qn',\n author='Qiaonan Duan',\n author_email='geonann@gmail.com',\n license='MIT',\n packages=find_packages(),\n # install_requires=[\n # 'matplotlib',\n # 'seaborn',\n # 'numpy',\n # 'scipy',\n # 'pandas',\n # 'PyYAML',\n # 'matplotlib-venn',\n # 'scikit-learn'\n # ],\n zip_safe=False)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-15 18:46 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('aposta', '0003_aposta_nome'), ] operations = [ migrations.CreateModel( name='Aposta2', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('aposta_identificacao', models.CharField(max_length=200)), ('valor', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Concurso2', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('concurso_edicao', models.CharField(max_length=20)), ('pub_data', models.DateTimeField(verbose_name='data de publicacao')), ], ), migrations.AlterField( model_name='aposta', name='dataAposta', field=models.DateField(), ), migrations.AddField( model_name='aposta2', name='Concurso2_identificao', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='aposta.Concurso2'), ), ]
normal
{ "blob_id": "a917dd6171a78142fefa8c8bfad0110729fc1bb0", "index": 3190, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('aposta', '0003_aposta_nome')]\n operations = [migrations.CreateModel(name='Aposta2', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('aposta_identificacao', models.\n CharField(max_length=200)), ('valor', models.IntegerField(default=0\n ))]), migrations.CreateModel(name='Concurso2', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('concurso_edicao', models.CharField(\n max_length=20)), ('pub_data', models.DateTimeField(verbose_name=\n 'data de publicacao'))]), migrations.AlterField(model_name='aposta',\n name='dataAposta', field=models.DateField()), migrations.AddField(\n model_name='aposta2', name='Concurso2_identificao', field=models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'aposta.Concurso2'))]\n", "step-4": "from __future__ import unicode_literals\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n dependencies = [('aposta', '0003_aposta_nome')]\n operations = [migrations.CreateModel(name='Aposta2', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('aposta_identificacao', models.\n CharField(max_length=200)), ('valor', models.IntegerField(default=0\n ))]), migrations.CreateModel(name='Concurso2', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('concurso_edicao', models.CharField(\n max_length=20)), ('pub_data', models.DateTimeField(verbose_name=\n 'data de publicacao'))]), migrations.AlterField(model_name='aposta',\n name='dataAposta', field=models.DateField()), migrations.AddField(\n model_name='aposta2', name='Concurso2_identificao', field=models.\n ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'aposta.Concurso2'))]\n", "step-5": "# -*- coding: utf-8 -*-\n# Generated by Django 1.10.6 on 2017-04-15 18:46\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('aposta', '0003_aposta_nome'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='Aposta2',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('aposta_identificacao', models.CharField(max_length=200)),\n ('valor', models.IntegerField(default=0)),\n ],\n ),\n migrations.CreateModel(\n name='Concurso2',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('concurso_edicao', models.CharField(max_length=20)),\n ('pub_data', models.DateTimeField(verbose_name='data de publicacao')),\n ],\n ),\n migrations.AlterField(\n model_name='aposta',\n name='dataAposta',\n field=models.DateField(),\n ),\n migrations.AddField(\n model_name='aposta2',\n name='Concurso2_identificao',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='aposta.Concurso2'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
''' Factory for creating and running ssimulations against optimization tools Author: Matthew Barber <mfmbarber@gmail.com> ''' from .strategy_annealer import StrategyAnnealer from .strategy_deap import StrategyDeap class CalulateStrategyWith: @staticmethod def Annealing(car, include_initial_tyre=False, iterations=100000): ''' Use simulated annealing to determine the best strategy Args: car (Car): An initial car to test with include_initial_tyre (bool): Include the initial tyre in moves iterations (int): Iteration limit Returns: Car ''' sim = StrategyAnnealer(car) sim.setIncludeInitialTyreInMove(include_initial_tyre) sim.steps = iterations state, e = sim.anneal() return state @staticmethod def geneticAlgorithm(car, include_initial_tyre=False, generations=1000): ''' Use genetic evolution to determine the best strategy Args: car (Car): An initial car to test with include_initial_tyre (bool): Include the initial tyre in moves generations (int): Evolution generation limit Returns: Car ''' return StrategyDeap(car, include_initial_tyre, generations).run()
normal
{ "blob_id": "1cab38721e6b96a9877bd67cbddaa4d6b4e53d1b", "index": 8175, "step-1": "<mask token>\n\n\nclass CalulateStrategyWith:\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass CalulateStrategyWith:\n <mask token>\n\n @staticmethod\n def geneticAlgorithm(car, include_initial_tyre=False, generations=1000):\n \"\"\"\n Use genetic evolution to determine the best strategy\n\n Args:\n car (Car): An initial car to test with\n include_initial_tyre (bool): Include the initial tyre in moves\n generations (int): Evolution generation limit\n\n Returns:\n Car\n \"\"\"\n return StrategyDeap(car, include_initial_tyre, generations).run()\n", "step-3": "<mask token>\n\n\nclass CalulateStrategyWith:\n\n @staticmethod\n def Annealing(car, include_initial_tyre=False, iterations=100000):\n \"\"\"\n Use simulated annealing to determine the best strategy\n\n Args:\n car (Car): An initial car to test with\n include_initial_tyre (bool): Include the initial tyre in moves\n iterations (int): Iteration limit\n\n Returns:\n Car\n \"\"\"\n sim = StrategyAnnealer(car)\n sim.setIncludeInitialTyreInMove(include_initial_tyre)\n sim.steps = iterations\n state, e = sim.anneal()\n return state\n\n @staticmethod\n def geneticAlgorithm(car, include_initial_tyre=False, generations=1000):\n \"\"\"\n Use genetic evolution to determine the best strategy\n\n Args:\n car (Car): An initial car to test with\n include_initial_tyre (bool): Include the initial tyre in moves\n generations (int): Evolution generation limit\n\n Returns:\n Car\n \"\"\"\n return StrategyDeap(car, include_initial_tyre, generations).run()\n", "step-4": "<mask token>\nfrom .strategy_annealer import StrategyAnnealer\nfrom .strategy_deap import StrategyDeap\n\n\nclass CalulateStrategyWith:\n\n @staticmethod\n def Annealing(car, include_initial_tyre=False, iterations=100000):\n \"\"\"\n Use simulated annealing to determine the best strategy\n\n Args:\n car (Car): An initial car to test with\n include_initial_tyre (bool): Include the initial tyre in moves\n iterations (int): Iteration limit\n\n Returns:\n Car\n \"\"\"\n sim = StrategyAnnealer(car)\n sim.setIncludeInitialTyreInMove(include_initial_tyre)\n sim.steps = iterations\n state, e = sim.anneal()\n return state\n\n @staticmethod\n def geneticAlgorithm(car, include_initial_tyre=False, generations=1000):\n \"\"\"\n Use genetic evolution to determine the best strategy\n\n Args:\n car (Car): An initial car to test with\n include_initial_tyre (bool): Include the initial tyre in moves\n generations (int): Evolution generation limit\n\n Returns:\n Car\n \"\"\"\n return StrategyDeap(car, include_initial_tyre, generations).run()\n", "step-5": "'''\n Factory for creating and running ssimulations against optimization tools\n\n Author:\n Matthew Barber <mfmbarber@gmail.com>\n'''\nfrom .strategy_annealer import StrategyAnnealer\nfrom .strategy_deap import StrategyDeap\n\n\nclass CalulateStrategyWith:\n @staticmethod\n def Annealing(car, include_initial_tyre=False, iterations=100000):\n '''\n Use simulated annealing to determine the best strategy\n\n Args:\n car (Car): An initial car to test with\n include_initial_tyre (bool): Include the initial tyre in moves\n iterations (int): Iteration limit\n\n Returns:\n Car\n '''\n sim = StrategyAnnealer(car)\n sim.setIncludeInitialTyreInMove(include_initial_tyre)\n sim.steps = iterations\n state, e = sim.anneal()\n return state\n\n @staticmethod\n def geneticAlgorithm(car, include_initial_tyre=False, generations=1000):\n '''\n Use genetic evolution to determine the best strategy\n\n Args:\n car (Car): An initial car to test with\n include_initial_tyre (bool): Include the initial tyre in moves\n generations (int): Evolution generation limit\n\n Returns:\n Car\n '''\n return StrategyDeap(car, include_initial_tyre, generations).run()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding: utf-8 -*- u"""Hellweg execution template. :copyright: Copyright (c) 2017 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkcollections from pykern import pkio from pykern.pkdebug import pkdc, pkdp from rslinac import solver from sirepo import simulation_db from sirepo.template import template_common, hellweg_dump_reader import math import numpy as np import os.path import py.path import re HELLWEG_DUMP_FILE = 'all-data.bin' HELLWEG_SUMMARY_FILE = 'output.txt' HELLWEG_INI_FILE = 'defaults.ini' HELLWEG_INPUT_FILE = 'input.txt' #: Simulation type SIM_TYPE = 'hellweg' WANT_BROWSER_FRAME_CACHE = True # lattice element is required so make it very short and wide drift _DEFAULT_DRIFT_ELEMENT = 'DRIFT 1e-16 1e+16 2' + "\n" _HELLWEG_PARSED_FILE = 'PARSED.TXT' _REPORT_STYLE_FIELDS = ['colorMap', 'notes'] _SCHEMA = simulation_db.get_schema(SIM_TYPE) def background_percent_complete(report, run_dir, is_running): if is_running: return { 'percentComplete': 0, 'frameCount': 0, } dump_file = _dump_file(run_dir) if os.path.exists(dump_file): beam_header = hellweg_dump_reader.beam_header(dump_file) last_update_time = int(os.path.getmtime(dump_file)) frame_count = beam_header.NPoints return { 'lastUpdateTime': last_update_time, 'percentComplete': 100, 'frameCount': frame_count, 'summaryData': _summary_text(run_dir), } return { 'percentComplete': 100, 'frameCount': 0, 'error': _parse_error_message(run_dir) } def extract_beam_histrogram(report, run_dir, frame): beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame) points = hellweg_dump_reader.get_points(beam_info, report.reportType) hist, edges = np.histogram(points, template_common.histogram_bins(report.histogramBins)) return { 'title': _report_title(report.reportType, 'BeamHistogramReportType', beam_info), 'x_range': [edges[0], edges[-1]], 'y_label': 'Number of Particles', 'x_label': hellweg_dump_reader.get_label(report.reportType), 'points': hist.T.tolist(), } def extract_beam_report(report, run_dir, frame): data = simulation_db.read_json(run_dir.join(template_common.INPUT_BASE_NAME)) model = data.models.beamAnimation model.update(report) beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame) x, y = report.reportType.split('-') values = [ hellweg_dump_reader.get_points(beam_info, x), hellweg_dump_reader.get_points(beam_info, y), ] model['x'] = x model['y'] = y return template_common.heatmap(values, model, { 'x_label': hellweg_dump_reader.get_label(x), 'y_label': hellweg_dump_reader.get_label(y), 'title': _report_title(report.reportType, 'BeamReportType', beam_info), 'z_label': 'Number of Particles', 'summaryData': _summary_text(run_dir), }) def extract_parameter_report(report, run_dir): s = solver.BeamSolver( os.path.join(str(run_dir), HELLWEG_INI_FILE), os.path.join(str(run_dir), HELLWEG_INPUT_FILE)) s.load_bin(os.path.join(str(run_dir), HELLWEG_DUMP_FILE)) y1_var, y2_var = report.reportType.split('-') x_field = 'z' x = s.get_structure_parameters(_parameter_index(x_field)) y1 = s.get_structure_parameters(_parameter_index(y1_var)) y1_extent = [np.min(y1), np.max(y1)] y2 = s.get_structure_parameters(_parameter_index(y2_var)) y2_extent = [np.min(y2), np.max(y2)] return { 'title': _enum_text('ParameterReportType', report.reportType), 'x_range': [x[0], x[-1]], 'y_label': hellweg_dump_reader.get_parameter_label(y1_var), 'x_label': hellweg_dump_reader.get_parameter_label(x_field), 'x_points': x, 'points': [ y1, y2, ], 'y_range': [min(y1_extent[0], y2_extent[0]), max(y1_extent[1], y2_extent[1])], 'y1_title': hellweg_dump_reader.get_parameter_title(y1_var), 'y2_title': hellweg_dump_reader.get_parameter_title(y2_var), } def extract_particle_report(report, run_dir): x_field = 'z0' particle_info = hellweg_dump_reader.particle_info(_dump_file(run_dir), report.reportType, int(report.renderCount)) x = particle_info['z_values'] return { 'title': _enum_text('ParticleReportType', report.reportType), 'x_range': [np.min(x), np.max(x)], 'y_label': hellweg_dump_reader.get_label(report.reportType), 'x_label': hellweg_dump_reader.get_label(x_field), 'x_points': x, 'points': particle_info['y_values'], 'y_range': particle_info['y_range'], } def fixup_old_data(data): for m in ('beamAnimation', 'beamHistogramAnimation', 'parameterAnimation', 'particleAnimation'): if m not in data.models: data.models[m] = pkcollections.Dict({}) template_common.update_model_defaults(data.models[m], m, _SCHEMA) if 'solenoidFile' not in data['models']['solenoid']: data['models']['solenoid']['solenoidFile'] = '' if 'beamDefinition' not in data['models']['beam']: beam = data['models']['beam'] beam['beamDefinition'] = 'transverse_longitude' beam['cstCompress'] = '0' beam['transversalFile2d'] = '' beam['transversalFile4d'] = '' beam['longitudinalFile1d'] = '' beam['longitudinalFile2d'] = '' beam['cstFile'] = '' template_common.organize_example(data) def get_animation_name(data): return 'animation' def get_application_data(data): if data['method'] == 'compute_particle_ranges': return template_common.compute_field_range(data, _compute_range_across_files) assert False, 'unknown application data method: {}'.format(data['method']) def lib_files(data, source_lib): return template_common.filename_to_path(_simulation_files(data), source_lib) def get_simulation_frame(run_dir, data, model_data): frame_index = int(data['frameIndex']) if data['modelName'] == 'beamAnimation': args = template_common.parse_animation_args( data, { '1': ['reportType', 'histogramBins', 'startTime'], '': ['reportType', 'histogramBins', 'plotRangeType', 'horizontalSize', 'horizontalOffset', 'verticalSize', 'verticalOffset', 'isRunning', 'startTime'], }, ) return extract_beam_report(args, run_dir, frame_index) elif data['modelName'] == 'beamHistogramAnimation': args = template_common.parse_animation_args( data, {'': ['reportType', 'histogramBins', 'startTime']}, ) return extract_beam_histrogram(args, run_dir, frame_index) elif data['modelName'] == 'particleAnimation': args = template_common.parse_animation_args( data, {'': ['reportType', 'renderCount', 'startTime']}, ) return extract_particle_report(args, run_dir) elif data['modelName'] == 'parameterAnimation': args = template_common.parse_animation_args( data, {'': ['reportType', 'startTime']}, ) return extract_parameter_report(args, run_dir) raise RuntimeError('unknown animation model: {}'.format(data['modelName'])) def models_related_to_report(data): """What models are required for this data['report'] Args: data (dict): simulation Returns: list: Named models, model fields or values (dict, list) that affect report """ r = data['report'] if r == 'animation': return [] res = template_common.report_fields(data, r, _REPORT_STYLE_FIELDS) + [ 'beam', 'ellipticalDistribution', 'energyPhaseDistribution', 'solenoid', 'sphericalDistribution', 'twissDistribution', ] for f in template_common.lib_files(data): res.append(f.mtime()) return res def python_source_for_model(data, model): return ''' from rslinac import solver {} with open('input.txt', 'w') as f: f.write(input_file) with open('defaults.ini', 'w') as f: f.write(ini_file) s = solver.BeamSolver('defaults.ini', 'input.txt') s.solve() s.save_output('output.txt') '''.format(_generate_parameters_file(data, is_parallel=len(data.models.beamline))) def remove_last_frame(run_dir): pass def validate_delete_file(data, filename, file_type): """Returns True if the filename is in use by the simulation data.""" return filename in _simulation_files(data) def write_parameters(data, run_dir, is_parallel): """Write the parameters file Args: data (dict): input run_dir (py.path): where to write is_parallel (bool): run in background? """ pkio.write_text( run_dir.join(template_common.PARAMETERS_PYTHON_FILE), _generate_parameters_file( data, run_dir, is_parallel, ), ) def _compute_range_across_files(run_dir, data): res = {} for v in _SCHEMA.enum.BeamReportType: x, y = v[0].split('-') res[x] = [] res[y] = [] dump_file = _dump_file(run_dir) if not os.path.exists(dump_file): return res beam_header = hellweg_dump_reader.beam_header(dump_file) for frame in xrange(beam_header.NPoints): beam_info = hellweg_dump_reader.beam_info(dump_file, frame) for field in res: values = hellweg_dump_reader.get_points(beam_info, field) if not len(values): pass elif len(res[field]): res[field][0] = min(min(values), res[field][0]) res[field][1] = max(max(values), res[field][1]) else: res[field] = [min(values), max(values)] return res def _dump_file(run_dir): return os.path.join(str(run_dir), HELLWEG_DUMP_FILE) def _enum_text(enum_name, v): enum_values = _SCHEMA['enum'][enum_name] for e in enum_values: if e[0] == v: return e[1] raise RuntimeError('invalid enum value: {}, {}'.format(enum_values, v)) def _generate_beam(models): # BEAM SPH2D 0.564 -15 5 NORM2D 0.30 0.0000001 90 180 beam_def = models.beam.beamDefinition if beam_def == 'transverse_longitude': return 'BEAM {} {}'.format(_generate_transverse_dist(models), _generate_longitude_dist(models)) if beam_def == 'cst_pit': return 'BEAM CST_PIT {} {}'.format( template_common.lib_file_name('beam', 'cstFile', models.beam.cstFile), 'COMPRESS' if models.beam.cstCompress else '', ) if beam_def == 'cst_pid': return 'BEAM CST_PID {} {}'.format( template_common.lib_file_name('beam', 'cstFile', models.beam.cstFile), _generate_energy_phase_distribution(models.energyPhaseDistribution), ) raise RuntimeError('invalid beam def: {}'.format(beam_def)) def _generate_cell_params(el): #TODO(pjm): add an option field to select auto-calculate if el.attenuation == 0 and el.aperture == 0: return '{} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.acceleratingInvariant) return '{} {} {} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.acceleratingInvariant, el.attenuation, el.aperture) def _generate_charge(models): if models.beam.spaceCharge == 'none': return '' return 'SPCHARGE {} {}'.format(models.beam.spaceCharge.upper(), models.beam.spaceChargeCore) def _generate_current(models): return 'CURRENT {} {}'.format(models.beam.current, models.beam.numberOfParticles) def _generate_energy_phase_distribution(dist): return '{} {} {}'.format( dist.meanPhase, dist.phaseLength, dist.phaseDeviation if dist.distributionType == 'gaussian' else '', ) def _generate_lattice(models): res = '' for el in models.beamline: if el.type == 'powerElement': res += 'POWER {} {} {}'.format(el.inputPower, el.frequency, el.phaseShift) elif el.type == 'cellElement': res += 'CELL {}'.format(_generate_cell_params(el)) has_cell_or_drift = True elif el.type == 'cellsElement': res += 'CELLS {} {}'.format(el.repeat, _generate_cell_params(el)) has_cell_or_drift = True elif el.type == 'driftElement': res += 'DRIFT {} {} {}'.format(el.length, el.radius, el.meshPoints) has_cell_or_drift = True elif el.type == 'saveElement': #TODO(pjm): implement this pass else: raise RuntimeError('unknown element type: {}'.format(el.type)) res += "\n" return res def _generate_longitude_dist(models): dist_type = models.beam.longitudinalDistribution if dist_type == 'norm2d': dist = models.energyPhaseDistribution if dist.distributionType == 'uniform': return 'NORM2D {} {} {} {}'.format( dist.meanEnergy, dist.energySpread, dist.meanPhase, dist.phaseLength) if dist.distributionType == 'gaussian': return 'NORM2D {} {} {} {} {} {}'.format( dist.meanEnergy, dist.energySpread, dist.energyDeviation, dist.meanPhase, dist.phaseLength, dist.phaseDeviation) raise RuntimeError('unknown longitudinal distribution type: {}'.format(models.longitudinalDistribution.distributionType)) if dist_type == 'file1d': return 'FILE1D {} {}'.format( template_common.lib_file_name('beam', 'longitudinalFile1d', models.beam.longitudinalFile1d), _generate_energy_phase_distribution(models.energyPhaseDistribution), ) if dist_type == 'file2d': return 'FILE2D {}'.format(template_common.lib_file_name('beam', 'transversalFile2d', beam.transversalFile2d)) raise RuntimeError('unknown longitudinal distribution: {}'.format(models.beam.longitudinalDistribution)) def _generate_options(models): if models.simulationSettings.allowBackwardWaves == '1': return 'OPTIONS REVERSE' return '' def _generate_parameters_file(data, run_dir=None, is_parallel=False): template_common.validate_models(data, _SCHEMA) v = template_common.flatten_data(data['models'], {}) v['optionsCommand'] = _generate_options(data['models']) v['solenoidCommand'] = _generate_solenoid(data['models']) v['beamCommand'] = _generate_beam(data['models']) v['currentCommand'] = _generate_current(data['models']) v['chargeCommand'] = _generate_charge(data['models']) if is_parallel: v['latticeCommands'] = _generate_lattice(data['models']) else: v['latticeCommands'] = _DEFAULT_DRIFT_ELEMENT return template_common.render_jinja(SIM_TYPE, v) def _generate_solenoid(models): solenoid = models.solenoid if solenoid.sourceDefinition == 'none': return '' if solenoid.sourceDefinition == 'values': #TODO(pjm): latest version also has solenoid.fringeRegion return 'SOLENOID {} {} {}'.format( solenoid.fieldStrength, solenoid.length, solenoid.z0) if solenoid.sourceDefinition == 'file': return 'SOLENOID {}'.format( template_common.lib_file_name('solenoid', 'solenoidFile', solenoid.solenoidFile)) raise RuntimeError('unknown solenoidDefinition: {}'.format(solenoid.sourceDefinition)) def _generate_transverse_dist(models): dist_type = models.beam.transversalDistribution if dist_type == 'twiss4d': dist = models.twissDistribution return 'TWISS4D {} {} {} {} {} {}'.format( dist.horizontalAlpha, dist.horizontalBeta, dist.horizontalEmittance, dist.verticalAlpha, dist.verticalBeta, dist.verticalEmittance) if dist_type == 'sph2d': dist = models.sphericalDistribution if dist.curvature == 'flat': dist.curvatureFactor = 0 return 'SPH2D {} {} {}'.format(dist.radialLimit, dist.curvatureFactor, dist.thermalEmittance) if dist_type == 'ell2d': dist = models.ellipticalDistribution return 'ELL2D {} {} {} {}'.format(dist.aX, dist.bY, dist.rotationAngle, dist.rmsDeviationFactor) beam = models.beam if dist_type == 'file2d': return 'FILE2D {}'.format(template_common.lib_file_name('beam', 'transversalFile2d', beam.transversalFile2d)) if dist_type == 'file4d': return 'FILE4D {}'.format(template_common.lib_file_name('beam', 'transversalFile4d', beam.transversalFile4d)) raise RuntimeError('unknown transverse distribution: {}'.format(dist_type)) def _parameter_index(name): return hellweg_dump_reader.parameter_index(name) def _parse_error_message(run_dir): path = os.path.join(str(run_dir), _HELLWEG_PARSED_FILE) if not os.path.exists(path): return 'No elements generated' text = pkio.read_text(str(path)) for line in text.split("\n"): match = re.search('^ERROR:\s(.*)$', line) if match: return match.group(1) return 'No output generated' def _report_title(report_type, enum_name, beam_info): return '{}, z={:.4f} cm'.format( _enum_text(enum_name, report_type), 100 * hellweg_dump_reader.get_parameter(beam_info, 'z')) def _simulation_files(data): res = [] solenoid = data.models.solenoid if solenoid.sourceDefinition == 'file' and solenoid.solenoidFile: res.append(template_common.lib_file_name('solenoid', 'solenoidFile', solenoid.solenoidFile)) beam = data.models.beam if beam.beamDefinition == 'cst_pit' or beam.beamDefinition == 'cst_pid': res.append(template_common.lib_file_name('beam', 'cstFile', beam.cstFile)) if beam.beamDefinition == 'transverse_longitude': if beam.transversalDistribution == 'file2d': res.append(template_common.lib_file_name('beam', 'transversalFile2d', beam.transversalFile2d)) elif beam.transversalDistribution == 'file4d': res.append(template_common.lib_file_name('beam', 'transversalFile4d', beam.transversalFile4d)) if beam.longitudinalDistribution == 'file1d': res.append(template_common.lib_file_name('beam', 'longitudinalFile1d', beam.longitudinalFile1d)) if beam.longitudinalDistribution == 'file2d': res.append(template_common.lib_file_name('beam', 'longitudinalFile2d', beam.longitudinalFile2d)) return res def _summary_text(run_dir): return pkio.read_text(os.path.join(str(run_dir), HELLWEG_SUMMARY_FILE))
normal
{ "blob_id": "9e6fd6620b4ec6a574d7948fb0d14b0a2ad0d24e", "index": 5240, "step-1": "<mask token>\n\n\ndef background_percent_complete(report, run_dir, is_running):\n if is_running:\n return {'percentComplete': 0, 'frameCount': 0}\n dump_file = _dump_file(run_dir)\n if os.path.exists(dump_file):\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n last_update_time = int(os.path.getmtime(dump_file))\n frame_count = beam_header.NPoints\n return {'lastUpdateTime': last_update_time, 'percentComplete': 100,\n 'frameCount': frame_count, 'summaryData': _summary_text(run_dir)}\n return {'percentComplete': 100, 'frameCount': 0, 'error':\n _parse_error_message(run_dir)}\n\n\ndef extract_beam_histrogram(report, run_dir, frame):\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n points = hellweg_dump_reader.get_points(beam_info, report.reportType)\n hist, edges = np.histogram(points, template_common.histogram_bins(\n report.histogramBins))\n return {'title': _report_title(report.reportType,\n 'BeamHistogramReportType', beam_info), 'x_range': [edges[0], edges[\n -1]], 'y_label': 'Number of Particles', 'x_label':\n hellweg_dump_reader.get_label(report.reportType), 'points': hist.T.\n tolist()}\n\n\ndef extract_beam_report(report, run_dir, frame):\n data = simulation_db.read_json(run_dir.join(template_common.\n INPUT_BASE_NAME))\n model = data.models.beamAnimation\n model.update(report)\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n x, y = report.reportType.split('-')\n values = [hellweg_dump_reader.get_points(beam_info, x),\n hellweg_dump_reader.get_points(beam_info, y)]\n model['x'] = x\n model['y'] = y\n return template_common.heatmap(values, model, {'x_label':\n hellweg_dump_reader.get_label(x), 'y_label': hellweg_dump_reader.\n get_label(y), 'title': _report_title(report.reportType,\n 'BeamReportType', beam_info), 'z_label': 'Number of Particles',\n 'summaryData': _summary_text(run_dir)})\n\n\ndef extract_parameter_report(report, run_dir):\n s = solver.BeamSolver(os.path.join(str(run_dir), HELLWEG_INI_FILE), os.\n path.join(str(run_dir), HELLWEG_INPUT_FILE))\n s.load_bin(os.path.join(str(run_dir), HELLWEG_DUMP_FILE))\n y1_var, y2_var = report.reportType.split('-')\n x_field = 'z'\n x = s.get_structure_parameters(_parameter_index(x_field))\n y1 = s.get_structure_parameters(_parameter_index(y1_var))\n y1_extent = [np.min(y1), np.max(y1)]\n y2 = s.get_structure_parameters(_parameter_index(y2_var))\n y2_extent = [np.min(y2), np.max(y2)]\n return {'title': _enum_text('ParameterReportType', report.reportType),\n 'x_range': [x[0], x[-1]], 'y_label': hellweg_dump_reader.\n get_parameter_label(y1_var), 'x_label': hellweg_dump_reader.\n get_parameter_label(x_field), 'x_points': x, 'points': [y1, y2],\n 'y_range': [min(y1_extent[0], y2_extent[0]), max(y1_extent[1],\n y2_extent[1])], 'y1_title': hellweg_dump_reader.get_parameter_title\n (y1_var), 'y2_title': hellweg_dump_reader.get_parameter_title(y2_var)}\n\n\ndef extract_particle_report(report, run_dir):\n x_field = 'z0'\n particle_info = hellweg_dump_reader.particle_info(_dump_file(run_dir),\n report.reportType, int(report.renderCount))\n x = particle_info['z_values']\n return {'title': _enum_text('ParticleReportType', report.reportType),\n 'x_range': [np.min(x), np.max(x)], 'y_label': hellweg_dump_reader.\n get_label(report.reportType), 'x_label': hellweg_dump_reader.\n get_label(x_field), 'x_points': x, 'points': particle_info[\n 'y_values'], 'y_range': particle_info['y_range']}\n\n\ndef fixup_old_data(data):\n for m in ('beamAnimation', 'beamHistogramAnimation',\n 'parameterAnimation', 'particleAnimation'):\n if m not in data.models:\n data.models[m] = pkcollections.Dict({})\n template_common.update_model_defaults(data.models[m], m, _SCHEMA)\n if 'solenoidFile' not in data['models']['solenoid']:\n data['models']['solenoid']['solenoidFile'] = ''\n if 'beamDefinition' not in data['models']['beam']:\n beam = data['models']['beam']\n beam['beamDefinition'] = 'transverse_longitude'\n beam['cstCompress'] = '0'\n beam['transversalFile2d'] = ''\n beam['transversalFile4d'] = ''\n beam['longitudinalFile1d'] = ''\n beam['longitudinalFile2d'] = ''\n beam['cstFile'] = ''\n template_common.organize_example(data)\n\n\n<mask token>\n\n\ndef get_simulation_frame(run_dir, data, model_data):\n frame_index = int(data['frameIndex'])\n if data['modelName'] == 'beamAnimation':\n args = template_common.parse_animation_args(data, {'1': [\n 'reportType', 'histogramBins', 'startTime'], '': ['reportType',\n 'histogramBins', 'plotRangeType', 'horizontalSize',\n 'horizontalOffset', 'verticalSize', 'verticalOffset',\n 'isRunning', 'startTime']})\n return extract_beam_report(args, run_dir, frame_index)\n elif data['modelName'] == 'beamHistogramAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'histogramBins', 'startTime']})\n return extract_beam_histrogram(args, run_dir, frame_index)\n elif data['modelName'] == 'particleAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'renderCount', 'startTime']})\n return extract_particle_report(args, run_dir)\n elif data['modelName'] == 'parameterAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'startTime']})\n return extract_parameter_report(args, run_dir)\n raise RuntimeError('unknown animation model: {}'.format(data['modelName']))\n\n\n<mask token>\n\n\ndef remove_last_frame(run_dir):\n pass\n\n\ndef validate_delete_file(data, filename, file_type):\n \"\"\"Returns True if the filename is in use by the simulation data.\"\"\"\n return filename in _simulation_files(data)\n\n\ndef write_parameters(data, run_dir, is_parallel):\n \"\"\"Write the parameters file\n\n Args:\n data (dict): input\n run_dir (py.path): where to write\n is_parallel (bool): run in background?\n \"\"\"\n pkio.write_text(run_dir.join(template_common.PARAMETERS_PYTHON_FILE),\n _generate_parameters_file(data, run_dir, is_parallel))\n\n\ndef _compute_range_across_files(run_dir, data):\n res = {}\n for v in _SCHEMA.enum.BeamReportType:\n x, y = v[0].split('-')\n res[x] = []\n res[y] = []\n dump_file = _dump_file(run_dir)\n if not os.path.exists(dump_file):\n return res\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n for frame in xrange(beam_header.NPoints):\n beam_info = hellweg_dump_reader.beam_info(dump_file, frame)\n for field in res:\n values = hellweg_dump_reader.get_points(beam_info, field)\n if not len(values):\n pass\n elif len(res[field]):\n res[field][0] = min(min(values), res[field][0])\n res[field][1] = max(max(values), res[field][1])\n else:\n res[field] = [min(values), max(values)]\n return res\n\n\ndef _dump_file(run_dir):\n return os.path.join(str(run_dir), HELLWEG_DUMP_FILE)\n\n\ndef _enum_text(enum_name, v):\n enum_values = _SCHEMA['enum'][enum_name]\n for e in enum_values:\n if e[0] == v:\n return e[1]\n raise RuntimeError('invalid enum value: {}, {}'.format(enum_values, v))\n\n\n<mask token>\n\n\ndef _generate_cell_params(el):\n if el.attenuation == 0 and el.aperture == 0:\n return '{} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant)\n return '{} {} {} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant, el.attenuation, el.aperture)\n\n\ndef _generate_charge(models):\n if models.beam.spaceCharge == 'none':\n return ''\n return 'SPCHARGE {} {}'.format(models.beam.spaceCharge.upper(), models.\n beam.spaceChargeCore)\n\n\n<mask token>\n\n\ndef _generate_energy_phase_distribution(dist):\n return '{} {} {}'.format(dist.meanPhase, dist.phaseLength, dist.\n phaseDeviation if dist.distributionType == 'gaussian' else '')\n\n\ndef _generate_lattice(models):\n res = ''\n for el in models.beamline:\n if el.type == 'powerElement':\n res += 'POWER {} {} {}'.format(el.inputPower, el.frequency, el.\n phaseShift)\n elif el.type == 'cellElement':\n res += 'CELL {}'.format(_generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'cellsElement':\n res += 'CELLS {} {}'.format(el.repeat, _generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'driftElement':\n res += 'DRIFT {} {} {}'.format(el.length, el.radius, el.meshPoints)\n has_cell_or_drift = True\n elif el.type == 'saveElement':\n pass\n else:\n raise RuntimeError('unknown element type: {}'.format(el.type))\n res += '\\n'\n return res\n\n\n<mask token>\n\n\ndef _generate_options(models):\n if models.simulationSettings.allowBackwardWaves == '1':\n return 'OPTIONS REVERSE'\n return ''\n\n\n<mask token>\n\n\ndef _generate_transverse_dist(models):\n dist_type = models.beam.transversalDistribution\n if dist_type == 'twiss4d':\n dist = models.twissDistribution\n return 'TWISS4D {} {} {} {} {} {}'.format(dist.horizontalAlpha,\n dist.horizontalBeta, dist.horizontalEmittance, dist.\n verticalAlpha, dist.verticalBeta, dist.verticalEmittance)\n if dist_type == 'sph2d':\n dist = models.sphericalDistribution\n if dist.curvature == 'flat':\n dist.curvatureFactor = 0\n return 'SPH2D {} {} {}'.format(dist.radialLimit, dist.\n curvatureFactor, dist.thermalEmittance)\n if dist_type == 'ell2d':\n dist = models.ellipticalDistribution\n return 'ELL2D {} {} {} {}'.format(dist.aX, dist.bY, dist.\n rotationAngle, dist.rmsDeviationFactor)\n beam = models.beam\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n if dist_type == 'file4d':\n return 'FILE4D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile4d', beam.transversalFile4d))\n raise RuntimeError('unknown transverse distribution: {}'.format(dist_type))\n\n\ndef _parameter_index(name):\n return hellweg_dump_reader.parameter_index(name)\n\n\n<mask token>\n\n\ndef _report_title(report_type, enum_name, beam_info):\n return '{}, z={:.4f} cm'.format(_enum_text(enum_name, report_type), 100 *\n hellweg_dump_reader.get_parameter(beam_info, 'z'))\n\n\n<mask token>\n\n\ndef _summary_text(run_dir):\n return pkio.read_text(os.path.join(str(run_dir), HELLWEG_SUMMARY_FILE))\n", "step-2": "<mask token>\n\n\ndef background_percent_complete(report, run_dir, is_running):\n if is_running:\n return {'percentComplete': 0, 'frameCount': 0}\n dump_file = _dump_file(run_dir)\n if os.path.exists(dump_file):\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n last_update_time = int(os.path.getmtime(dump_file))\n frame_count = beam_header.NPoints\n return {'lastUpdateTime': last_update_time, 'percentComplete': 100,\n 'frameCount': frame_count, 'summaryData': _summary_text(run_dir)}\n return {'percentComplete': 100, 'frameCount': 0, 'error':\n _parse_error_message(run_dir)}\n\n\ndef extract_beam_histrogram(report, run_dir, frame):\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n points = hellweg_dump_reader.get_points(beam_info, report.reportType)\n hist, edges = np.histogram(points, template_common.histogram_bins(\n report.histogramBins))\n return {'title': _report_title(report.reportType,\n 'BeamHistogramReportType', beam_info), 'x_range': [edges[0], edges[\n -1]], 'y_label': 'Number of Particles', 'x_label':\n hellweg_dump_reader.get_label(report.reportType), 'points': hist.T.\n tolist()}\n\n\ndef extract_beam_report(report, run_dir, frame):\n data = simulation_db.read_json(run_dir.join(template_common.\n INPUT_BASE_NAME))\n model = data.models.beamAnimation\n model.update(report)\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n x, y = report.reportType.split('-')\n values = [hellweg_dump_reader.get_points(beam_info, x),\n hellweg_dump_reader.get_points(beam_info, y)]\n model['x'] = x\n model['y'] = y\n return template_common.heatmap(values, model, {'x_label':\n hellweg_dump_reader.get_label(x), 'y_label': hellweg_dump_reader.\n get_label(y), 'title': _report_title(report.reportType,\n 'BeamReportType', beam_info), 'z_label': 'Number of Particles',\n 'summaryData': _summary_text(run_dir)})\n\n\ndef extract_parameter_report(report, run_dir):\n s = solver.BeamSolver(os.path.join(str(run_dir), HELLWEG_INI_FILE), os.\n path.join(str(run_dir), HELLWEG_INPUT_FILE))\n s.load_bin(os.path.join(str(run_dir), HELLWEG_DUMP_FILE))\n y1_var, y2_var = report.reportType.split('-')\n x_field = 'z'\n x = s.get_structure_parameters(_parameter_index(x_field))\n y1 = s.get_structure_parameters(_parameter_index(y1_var))\n y1_extent = [np.min(y1), np.max(y1)]\n y2 = s.get_structure_parameters(_parameter_index(y2_var))\n y2_extent = [np.min(y2), np.max(y2)]\n return {'title': _enum_text('ParameterReportType', report.reportType),\n 'x_range': [x[0], x[-1]], 'y_label': hellweg_dump_reader.\n get_parameter_label(y1_var), 'x_label': hellweg_dump_reader.\n get_parameter_label(x_field), 'x_points': x, 'points': [y1, y2],\n 'y_range': [min(y1_extent[0], y2_extent[0]), max(y1_extent[1],\n y2_extent[1])], 'y1_title': hellweg_dump_reader.get_parameter_title\n (y1_var), 'y2_title': hellweg_dump_reader.get_parameter_title(y2_var)}\n\n\ndef extract_particle_report(report, run_dir):\n x_field = 'z0'\n particle_info = hellweg_dump_reader.particle_info(_dump_file(run_dir),\n report.reportType, int(report.renderCount))\n x = particle_info['z_values']\n return {'title': _enum_text('ParticleReportType', report.reportType),\n 'x_range': [np.min(x), np.max(x)], 'y_label': hellweg_dump_reader.\n get_label(report.reportType), 'x_label': hellweg_dump_reader.\n get_label(x_field), 'x_points': x, 'points': particle_info[\n 'y_values'], 'y_range': particle_info['y_range']}\n\n\ndef fixup_old_data(data):\n for m in ('beamAnimation', 'beamHistogramAnimation',\n 'parameterAnimation', 'particleAnimation'):\n if m not in data.models:\n data.models[m] = pkcollections.Dict({})\n template_common.update_model_defaults(data.models[m], m, _SCHEMA)\n if 'solenoidFile' not in data['models']['solenoid']:\n data['models']['solenoid']['solenoidFile'] = ''\n if 'beamDefinition' not in data['models']['beam']:\n beam = data['models']['beam']\n beam['beamDefinition'] = 'transverse_longitude'\n beam['cstCompress'] = '0'\n beam['transversalFile2d'] = ''\n beam['transversalFile4d'] = ''\n beam['longitudinalFile1d'] = ''\n beam['longitudinalFile2d'] = ''\n beam['cstFile'] = ''\n template_common.organize_example(data)\n\n\n<mask token>\n\n\ndef get_application_data(data):\n if data['method'] == 'compute_particle_ranges':\n return template_common.compute_field_range(data,\n _compute_range_across_files)\n assert False, 'unknown application data method: {}'.format(data['method'])\n\n\n<mask token>\n\n\ndef get_simulation_frame(run_dir, data, model_data):\n frame_index = int(data['frameIndex'])\n if data['modelName'] == 'beamAnimation':\n args = template_common.parse_animation_args(data, {'1': [\n 'reportType', 'histogramBins', 'startTime'], '': ['reportType',\n 'histogramBins', 'plotRangeType', 'horizontalSize',\n 'horizontalOffset', 'verticalSize', 'verticalOffset',\n 'isRunning', 'startTime']})\n return extract_beam_report(args, run_dir, frame_index)\n elif data['modelName'] == 'beamHistogramAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'histogramBins', 'startTime']})\n return extract_beam_histrogram(args, run_dir, frame_index)\n elif data['modelName'] == 'particleAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'renderCount', 'startTime']})\n return extract_particle_report(args, run_dir)\n elif data['modelName'] == 'parameterAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'startTime']})\n return extract_parameter_report(args, run_dir)\n raise RuntimeError('unknown animation model: {}'.format(data['modelName']))\n\n\n<mask token>\n\n\ndef remove_last_frame(run_dir):\n pass\n\n\ndef validate_delete_file(data, filename, file_type):\n \"\"\"Returns True if the filename is in use by the simulation data.\"\"\"\n return filename in _simulation_files(data)\n\n\ndef write_parameters(data, run_dir, is_parallel):\n \"\"\"Write the parameters file\n\n Args:\n data (dict): input\n run_dir (py.path): where to write\n is_parallel (bool): run in background?\n \"\"\"\n pkio.write_text(run_dir.join(template_common.PARAMETERS_PYTHON_FILE),\n _generate_parameters_file(data, run_dir, is_parallel))\n\n\ndef _compute_range_across_files(run_dir, data):\n res = {}\n for v in _SCHEMA.enum.BeamReportType:\n x, y = v[0].split('-')\n res[x] = []\n res[y] = []\n dump_file = _dump_file(run_dir)\n if not os.path.exists(dump_file):\n return res\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n for frame in xrange(beam_header.NPoints):\n beam_info = hellweg_dump_reader.beam_info(dump_file, frame)\n for field in res:\n values = hellweg_dump_reader.get_points(beam_info, field)\n if not len(values):\n pass\n elif len(res[field]):\n res[field][0] = min(min(values), res[field][0])\n res[field][1] = max(max(values), res[field][1])\n else:\n res[field] = [min(values), max(values)]\n return res\n\n\ndef _dump_file(run_dir):\n return os.path.join(str(run_dir), HELLWEG_DUMP_FILE)\n\n\ndef _enum_text(enum_name, v):\n enum_values = _SCHEMA['enum'][enum_name]\n for e in enum_values:\n if e[0] == v:\n return e[1]\n raise RuntimeError('invalid enum value: {}, {}'.format(enum_values, v))\n\n\ndef _generate_beam(models):\n beam_def = models.beam.beamDefinition\n if beam_def == 'transverse_longitude':\n return 'BEAM {} {}'.format(_generate_transverse_dist(models),\n _generate_longitude_dist(models))\n if beam_def == 'cst_pit':\n return 'BEAM CST_PIT {} {}'.format(template_common.lib_file_name(\n 'beam', 'cstFile', models.beam.cstFile), 'COMPRESS' if models.\n beam.cstCompress else '')\n if beam_def == 'cst_pid':\n return 'BEAM CST_PID {} {}'.format(template_common.lib_file_name(\n 'beam', 'cstFile', models.beam.cstFile),\n _generate_energy_phase_distribution(models.energyPhaseDistribution)\n )\n raise RuntimeError('invalid beam def: {}'.format(beam_def))\n\n\ndef _generate_cell_params(el):\n if el.attenuation == 0 and el.aperture == 0:\n return '{} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant)\n return '{} {} {} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant, el.attenuation, el.aperture)\n\n\ndef _generate_charge(models):\n if models.beam.spaceCharge == 'none':\n return ''\n return 'SPCHARGE {} {}'.format(models.beam.spaceCharge.upper(), models.\n beam.spaceChargeCore)\n\n\n<mask token>\n\n\ndef _generate_energy_phase_distribution(dist):\n return '{} {} {}'.format(dist.meanPhase, dist.phaseLength, dist.\n phaseDeviation if dist.distributionType == 'gaussian' else '')\n\n\ndef _generate_lattice(models):\n res = ''\n for el in models.beamline:\n if el.type == 'powerElement':\n res += 'POWER {} {} {}'.format(el.inputPower, el.frequency, el.\n phaseShift)\n elif el.type == 'cellElement':\n res += 'CELL {}'.format(_generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'cellsElement':\n res += 'CELLS {} {}'.format(el.repeat, _generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'driftElement':\n res += 'DRIFT {} {} {}'.format(el.length, el.radius, el.meshPoints)\n has_cell_or_drift = True\n elif el.type == 'saveElement':\n pass\n else:\n raise RuntimeError('unknown element type: {}'.format(el.type))\n res += '\\n'\n return res\n\n\ndef _generate_longitude_dist(models):\n dist_type = models.beam.longitudinalDistribution\n if dist_type == 'norm2d':\n dist = models.energyPhaseDistribution\n if dist.distributionType == 'uniform':\n return 'NORM2D {} {} {} {}'.format(dist.meanEnergy, dist.\n energySpread, dist.meanPhase, dist.phaseLength)\n if dist.distributionType == 'gaussian':\n return 'NORM2D {} {} {} {} {} {}'.format(dist.meanEnergy, dist.\n energySpread, dist.energyDeviation, dist.meanPhase, dist.\n phaseLength, dist.phaseDeviation)\n raise RuntimeError('unknown longitudinal distribution type: {}'.\n format(models.longitudinalDistribution.distributionType))\n if dist_type == 'file1d':\n return 'FILE1D {} {}'.format(template_common.lib_file_name('beam',\n 'longitudinalFile1d', models.beam.longitudinalFile1d),\n _generate_energy_phase_distribution(models.energyPhaseDistribution)\n )\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n raise RuntimeError('unknown longitudinal distribution: {}'.format(\n models.beam.longitudinalDistribution))\n\n\ndef _generate_options(models):\n if models.simulationSettings.allowBackwardWaves == '1':\n return 'OPTIONS REVERSE'\n return ''\n\n\n<mask token>\n\n\ndef _generate_transverse_dist(models):\n dist_type = models.beam.transversalDistribution\n if dist_type == 'twiss4d':\n dist = models.twissDistribution\n return 'TWISS4D {} {} {} {} {} {}'.format(dist.horizontalAlpha,\n dist.horizontalBeta, dist.horizontalEmittance, dist.\n verticalAlpha, dist.verticalBeta, dist.verticalEmittance)\n if dist_type == 'sph2d':\n dist = models.sphericalDistribution\n if dist.curvature == 'flat':\n dist.curvatureFactor = 0\n return 'SPH2D {} {} {}'.format(dist.radialLimit, dist.\n curvatureFactor, dist.thermalEmittance)\n if dist_type == 'ell2d':\n dist = models.ellipticalDistribution\n return 'ELL2D {} {} {} {}'.format(dist.aX, dist.bY, dist.\n rotationAngle, dist.rmsDeviationFactor)\n beam = models.beam\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n if dist_type == 'file4d':\n return 'FILE4D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile4d', beam.transversalFile4d))\n raise RuntimeError('unknown transverse distribution: {}'.format(dist_type))\n\n\ndef _parameter_index(name):\n return hellweg_dump_reader.parameter_index(name)\n\n\n<mask token>\n\n\ndef _report_title(report_type, enum_name, beam_info):\n return '{}, z={:.4f} cm'.format(_enum_text(enum_name, report_type), 100 *\n hellweg_dump_reader.get_parameter(beam_info, 'z'))\n\n\ndef _simulation_files(data):\n res = []\n solenoid = data.models.solenoid\n if solenoid.sourceDefinition == 'file' and solenoid.solenoidFile:\n res.append(template_common.lib_file_name('solenoid', 'solenoidFile',\n solenoid.solenoidFile))\n beam = data.models.beam\n if beam.beamDefinition == 'cst_pit' or beam.beamDefinition == 'cst_pid':\n res.append(template_common.lib_file_name('beam', 'cstFile', beam.\n cstFile))\n if beam.beamDefinition == 'transverse_longitude':\n if beam.transversalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n elif beam.transversalDistribution == 'file4d':\n res.append(template_common.lib_file_name('beam',\n 'transversalFile4d', beam.transversalFile4d))\n if beam.longitudinalDistribution == 'file1d':\n res.append(template_common.lib_file_name('beam',\n 'longitudinalFile1d', beam.longitudinalFile1d))\n if beam.longitudinalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam',\n 'longitudinalFile2d', beam.longitudinalFile2d))\n return res\n\n\ndef _summary_text(run_dir):\n return pkio.read_text(os.path.join(str(run_dir), HELLWEG_SUMMARY_FILE))\n", "step-3": "<mask token>\n\n\ndef background_percent_complete(report, run_dir, is_running):\n if is_running:\n return {'percentComplete': 0, 'frameCount': 0}\n dump_file = _dump_file(run_dir)\n if os.path.exists(dump_file):\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n last_update_time = int(os.path.getmtime(dump_file))\n frame_count = beam_header.NPoints\n return {'lastUpdateTime': last_update_time, 'percentComplete': 100,\n 'frameCount': frame_count, 'summaryData': _summary_text(run_dir)}\n return {'percentComplete': 100, 'frameCount': 0, 'error':\n _parse_error_message(run_dir)}\n\n\ndef extract_beam_histrogram(report, run_dir, frame):\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n points = hellweg_dump_reader.get_points(beam_info, report.reportType)\n hist, edges = np.histogram(points, template_common.histogram_bins(\n report.histogramBins))\n return {'title': _report_title(report.reportType,\n 'BeamHistogramReportType', beam_info), 'x_range': [edges[0], edges[\n -1]], 'y_label': 'Number of Particles', 'x_label':\n hellweg_dump_reader.get_label(report.reportType), 'points': hist.T.\n tolist()}\n\n\ndef extract_beam_report(report, run_dir, frame):\n data = simulation_db.read_json(run_dir.join(template_common.\n INPUT_BASE_NAME))\n model = data.models.beamAnimation\n model.update(report)\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n x, y = report.reportType.split('-')\n values = [hellweg_dump_reader.get_points(beam_info, x),\n hellweg_dump_reader.get_points(beam_info, y)]\n model['x'] = x\n model['y'] = y\n return template_common.heatmap(values, model, {'x_label':\n hellweg_dump_reader.get_label(x), 'y_label': hellweg_dump_reader.\n get_label(y), 'title': _report_title(report.reportType,\n 'BeamReportType', beam_info), 'z_label': 'Number of Particles',\n 'summaryData': _summary_text(run_dir)})\n\n\ndef extract_parameter_report(report, run_dir):\n s = solver.BeamSolver(os.path.join(str(run_dir), HELLWEG_INI_FILE), os.\n path.join(str(run_dir), HELLWEG_INPUT_FILE))\n s.load_bin(os.path.join(str(run_dir), HELLWEG_DUMP_FILE))\n y1_var, y2_var = report.reportType.split('-')\n x_field = 'z'\n x = s.get_structure_parameters(_parameter_index(x_field))\n y1 = s.get_structure_parameters(_parameter_index(y1_var))\n y1_extent = [np.min(y1), np.max(y1)]\n y2 = s.get_structure_parameters(_parameter_index(y2_var))\n y2_extent = [np.min(y2), np.max(y2)]\n return {'title': _enum_text('ParameterReportType', report.reportType),\n 'x_range': [x[0], x[-1]], 'y_label': hellweg_dump_reader.\n get_parameter_label(y1_var), 'x_label': hellweg_dump_reader.\n get_parameter_label(x_field), 'x_points': x, 'points': [y1, y2],\n 'y_range': [min(y1_extent[0], y2_extent[0]), max(y1_extent[1],\n y2_extent[1])], 'y1_title': hellweg_dump_reader.get_parameter_title\n (y1_var), 'y2_title': hellweg_dump_reader.get_parameter_title(y2_var)}\n\n\ndef extract_particle_report(report, run_dir):\n x_field = 'z0'\n particle_info = hellweg_dump_reader.particle_info(_dump_file(run_dir),\n report.reportType, int(report.renderCount))\n x = particle_info['z_values']\n return {'title': _enum_text('ParticleReportType', report.reportType),\n 'x_range': [np.min(x), np.max(x)], 'y_label': hellweg_dump_reader.\n get_label(report.reportType), 'x_label': hellweg_dump_reader.\n get_label(x_field), 'x_points': x, 'points': particle_info[\n 'y_values'], 'y_range': particle_info['y_range']}\n\n\ndef fixup_old_data(data):\n for m in ('beamAnimation', 'beamHistogramAnimation',\n 'parameterAnimation', 'particleAnimation'):\n if m not in data.models:\n data.models[m] = pkcollections.Dict({})\n template_common.update_model_defaults(data.models[m], m, _SCHEMA)\n if 'solenoidFile' not in data['models']['solenoid']:\n data['models']['solenoid']['solenoidFile'] = ''\n if 'beamDefinition' not in data['models']['beam']:\n beam = data['models']['beam']\n beam['beamDefinition'] = 'transverse_longitude'\n beam['cstCompress'] = '0'\n beam['transversalFile2d'] = ''\n beam['transversalFile4d'] = ''\n beam['longitudinalFile1d'] = ''\n beam['longitudinalFile2d'] = ''\n beam['cstFile'] = ''\n template_common.organize_example(data)\n\n\ndef get_animation_name(data):\n return 'animation'\n\n\ndef get_application_data(data):\n if data['method'] == 'compute_particle_ranges':\n return template_common.compute_field_range(data,\n _compute_range_across_files)\n assert False, 'unknown application data method: {}'.format(data['method'])\n\n\n<mask token>\n\n\ndef get_simulation_frame(run_dir, data, model_data):\n frame_index = int(data['frameIndex'])\n if data['modelName'] == 'beamAnimation':\n args = template_common.parse_animation_args(data, {'1': [\n 'reportType', 'histogramBins', 'startTime'], '': ['reportType',\n 'histogramBins', 'plotRangeType', 'horizontalSize',\n 'horizontalOffset', 'verticalSize', 'verticalOffset',\n 'isRunning', 'startTime']})\n return extract_beam_report(args, run_dir, frame_index)\n elif data['modelName'] == 'beamHistogramAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'histogramBins', 'startTime']})\n return extract_beam_histrogram(args, run_dir, frame_index)\n elif data['modelName'] == 'particleAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'renderCount', 'startTime']})\n return extract_particle_report(args, run_dir)\n elif data['modelName'] == 'parameterAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'startTime']})\n return extract_parameter_report(args, run_dir)\n raise RuntimeError('unknown animation model: {}'.format(data['modelName']))\n\n\ndef models_related_to_report(data):\n \"\"\"What models are required for this data['report']\n\n Args:\n data (dict): simulation\n Returns:\n list: Named models, model fields or values (dict, list) that affect report\n \"\"\"\n r = data['report']\n if r == 'animation':\n return []\n res = template_common.report_fields(data, r, _REPORT_STYLE_FIELDS) + [\n 'beam', 'ellipticalDistribution', 'energyPhaseDistribution',\n 'solenoid', 'sphericalDistribution', 'twissDistribution']\n for f in template_common.lib_files(data):\n res.append(f.mtime())\n return res\n\n\ndef python_source_for_model(data, model):\n return (\n \"\"\"\nfrom rslinac import solver\n\n{}\n\nwith open('input.txt', 'w') as f:\n f.write(input_file)\n\nwith open('defaults.ini', 'w') as f:\n f.write(ini_file)\n\ns = solver.BeamSolver('defaults.ini', 'input.txt')\ns.solve()\ns.save_output('output.txt')\n \"\"\"\n .format(_generate_parameters_file(data, is_parallel=len(data.models\n .beamline))))\n\n\ndef remove_last_frame(run_dir):\n pass\n\n\ndef validate_delete_file(data, filename, file_type):\n \"\"\"Returns True if the filename is in use by the simulation data.\"\"\"\n return filename in _simulation_files(data)\n\n\ndef write_parameters(data, run_dir, is_parallel):\n \"\"\"Write the parameters file\n\n Args:\n data (dict): input\n run_dir (py.path): where to write\n is_parallel (bool): run in background?\n \"\"\"\n pkio.write_text(run_dir.join(template_common.PARAMETERS_PYTHON_FILE),\n _generate_parameters_file(data, run_dir, is_parallel))\n\n\ndef _compute_range_across_files(run_dir, data):\n res = {}\n for v in _SCHEMA.enum.BeamReportType:\n x, y = v[0].split('-')\n res[x] = []\n res[y] = []\n dump_file = _dump_file(run_dir)\n if not os.path.exists(dump_file):\n return res\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n for frame in xrange(beam_header.NPoints):\n beam_info = hellweg_dump_reader.beam_info(dump_file, frame)\n for field in res:\n values = hellweg_dump_reader.get_points(beam_info, field)\n if not len(values):\n pass\n elif len(res[field]):\n res[field][0] = min(min(values), res[field][0])\n res[field][1] = max(max(values), res[field][1])\n else:\n res[field] = [min(values), max(values)]\n return res\n\n\ndef _dump_file(run_dir):\n return os.path.join(str(run_dir), HELLWEG_DUMP_FILE)\n\n\ndef _enum_text(enum_name, v):\n enum_values = _SCHEMA['enum'][enum_name]\n for e in enum_values:\n if e[0] == v:\n return e[1]\n raise RuntimeError('invalid enum value: {}, {}'.format(enum_values, v))\n\n\ndef _generate_beam(models):\n beam_def = models.beam.beamDefinition\n if beam_def == 'transverse_longitude':\n return 'BEAM {} {}'.format(_generate_transverse_dist(models),\n _generate_longitude_dist(models))\n if beam_def == 'cst_pit':\n return 'BEAM CST_PIT {} {}'.format(template_common.lib_file_name(\n 'beam', 'cstFile', models.beam.cstFile), 'COMPRESS' if models.\n beam.cstCompress else '')\n if beam_def == 'cst_pid':\n return 'BEAM CST_PID {} {}'.format(template_common.lib_file_name(\n 'beam', 'cstFile', models.beam.cstFile),\n _generate_energy_phase_distribution(models.energyPhaseDistribution)\n )\n raise RuntimeError('invalid beam def: {}'.format(beam_def))\n\n\ndef _generate_cell_params(el):\n if el.attenuation == 0 and el.aperture == 0:\n return '{} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant)\n return '{} {} {} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant, el.attenuation, el.aperture)\n\n\ndef _generate_charge(models):\n if models.beam.spaceCharge == 'none':\n return ''\n return 'SPCHARGE {} {}'.format(models.beam.spaceCharge.upper(), models.\n beam.spaceChargeCore)\n\n\ndef _generate_current(models):\n return 'CURRENT {} {}'.format(models.beam.current, models.beam.\n numberOfParticles)\n\n\ndef _generate_energy_phase_distribution(dist):\n return '{} {} {}'.format(dist.meanPhase, dist.phaseLength, dist.\n phaseDeviation if dist.distributionType == 'gaussian' else '')\n\n\ndef _generate_lattice(models):\n res = ''\n for el in models.beamline:\n if el.type == 'powerElement':\n res += 'POWER {} {} {}'.format(el.inputPower, el.frequency, el.\n phaseShift)\n elif el.type == 'cellElement':\n res += 'CELL {}'.format(_generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'cellsElement':\n res += 'CELLS {} {}'.format(el.repeat, _generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'driftElement':\n res += 'DRIFT {} {} {}'.format(el.length, el.radius, el.meshPoints)\n has_cell_or_drift = True\n elif el.type == 'saveElement':\n pass\n else:\n raise RuntimeError('unknown element type: {}'.format(el.type))\n res += '\\n'\n return res\n\n\ndef _generate_longitude_dist(models):\n dist_type = models.beam.longitudinalDistribution\n if dist_type == 'norm2d':\n dist = models.energyPhaseDistribution\n if dist.distributionType == 'uniform':\n return 'NORM2D {} {} {} {}'.format(dist.meanEnergy, dist.\n energySpread, dist.meanPhase, dist.phaseLength)\n if dist.distributionType == 'gaussian':\n return 'NORM2D {} {} {} {} {} {}'.format(dist.meanEnergy, dist.\n energySpread, dist.energyDeviation, dist.meanPhase, dist.\n phaseLength, dist.phaseDeviation)\n raise RuntimeError('unknown longitudinal distribution type: {}'.\n format(models.longitudinalDistribution.distributionType))\n if dist_type == 'file1d':\n return 'FILE1D {} {}'.format(template_common.lib_file_name('beam',\n 'longitudinalFile1d', models.beam.longitudinalFile1d),\n _generate_energy_phase_distribution(models.energyPhaseDistribution)\n )\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n raise RuntimeError('unknown longitudinal distribution: {}'.format(\n models.beam.longitudinalDistribution))\n\n\ndef _generate_options(models):\n if models.simulationSettings.allowBackwardWaves == '1':\n return 'OPTIONS REVERSE'\n return ''\n\n\ndef _generate_parameters_file(data, run_dir=None, is_parallel=False):\n template_common.validate_models(data, _SCHEMA)\n v = template_common.flatten_data(data['models'], {})\n v['optionsCommand'] = _generate_options(data['models'])\n v['solenoidCommand'] = _generate_solenoid(data['models'])\n v['beamCommand'] = _generate_beam(data['models'])\n v['currentCommand'] = _generate_current(data['models'])\n v['chargeCommand'] = _generate_charge(data['models'])\n if is_parallel:\n v['latticeCommands'] = _generate_lattice(data['models'])\n else:\n v['latticeCommands'] = _DEFAULT_DRIFT_ELEMENT\n return template_common.render_jinja(SIM_TYPE, v)\n\n\ndef _generate_solenoid(models):\n solenoid = models.solenoid\n if solenoid.sourceDefinition == 'none':\n return ''\n if solenoid.sourceDefinition == 'values':\n return 'SOLENOID {} {} {}'.format(solenoid.fieldStrength, solenoid.\n length, solenoid.z0)\n if solenoid.sourceDefinition == 'file':\n return 'SOLENOID {}'.format(template_common.lib_file_name(\n 'solenoid', 'solenoidFile', solenoid.solenoidFile))\n raise RuntimeError('unknown solenoidDefinition: {}'.format(solenoid.\n sourceDefinition))\n\n\ndef _generate_transverse_dist(models):\n dist_type = models.beam.transversalDistribution\n if dist_type == 'twiss4d':\n dist = models.twissDistribution\n return 'TWISS4D {} {} {} {} {} {}'.format(dist.horizontalAlpha,\n dist.horizontalBeta, dist.horizontalEmittance, dist.\n verticalAlpha, dist.verticalBeta, dist.verticalEmittance)\n if dist_type == 'sph2d':\n dist = models.sphericalDistribution\n if dist.curvature == 'flat':\n dist.curvatureFactor = 0\n return 'SPH2D {} {} {}'.format(dist.radialLimit, dist.\n curvatureFactor, dist.thermalEmittance)\n if dist_type == 'ell2d':\n dist = models.ellipticalDistribution\n return 'ELL2D {} {} {} {}'.format(dist.aX, dist.bY, dist.\n rotationAngle, dist.rmsDeviationFactor)\n beam = models.beam\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n if dist_type == 'file4d':\n return 'FILE4D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile4d', beam.transversalFile4d))\n raise RuntimeError('unknown transverse distribution: {}'.format(dist_type))\n\n\ndef _parameter_index(name):\n return hellweg_dump_reader.parameter_index(name)\n\n\n<mask token>\n\n\ndef _report_title(report_type, enum_name, beam_info):\n return '{}, z={:.4f} cm'.format(_enum_text(enum_name, report_type), 100 *\n hellweg_dump_reader.get_parameter(beam_info, 'z'))\n\n\ndef _simulation_files(data):\n res = []\n solenoid = data.models.solenoid\n if solenoid.sourceDefinition == 'file' and solenoid.solenoidFile:\n res.append(template_common.lib_file_name('solenoid', 'solenoidFile',\n solenoid.solenoidFile))\n beam = data.models.beam\n if beam.beamDefinition == 'cst_pit' or beam.beamDefinition == 'cst_pid':\n res.append(template_common.lib_file_name('beam', 'cstFile', beam.\n cstFile))\n if beam.beamDefinition == 'transverse_longitude':\n if beam.transversalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n elif beam.transversalDistribution == 'file4d':\n res.append(template_common.lib_file_name('beam',\n 'transversalFile4d', beam.transversalFile4d))\n if beam.longitudinalDistribution == 'file1d':\n res.append(template_common.lib_file_name('beam',\n 'longitudinalFile1d', beam.longitudinalFile1d))\n if beam.longitudinalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam',\n 'longitudinalFile2d', beam.longitudinalFile2d))\n return res\n\n\ndef _summary_text(run_dir):\n return pkio.read_text(os.path.join(str(run_dir), HELLWEG_SUMMARY_FILE))\n", "step-4": "<mask token>\nfrom __future__ import absolute_import, division, print_function\nfrom pykern import pkcollections\nfrom pykern import pkio\nfrom pykern.pkdebug import pkdc, pkdp\nfrom rslinac import solver\nfrom sirepo import simulation_db\nfrom sirepo.template import template_common, hellweg_dump_reader\nimport math\nimport numpy as np\nimport os.path\nimport py.path\nimport re\nHELLWEG_DUMP_FILE = 'all-data.bin'\nHELLWEG_SUMMARY_FILE = 'output.txt'\nHELLWEG_INI_FILE = 'defaults.ini'\nHELLWEG_INPUT_FILE = 'input.txt'\nSIM_TYPE = 'hellweg'\nWANT_BROWSER_FRAME_CACHE = True\n_DEFAULT_DRIFT_ELEMENT = 'DRIFT 1e-16 1e+16 2' + '\\n'\n_HELLWEG_PARSED_FILE = 'PARSED.TXT'\n_REPORT_STYLE_FIELDS = ['colorMap', 'notes']\n_SCHEMA = simulation_db.get_schema(SIM_TYPE)\n\n\ndef background_percent_complete(report, run_dir, is_running):\n if is_running:\n return {'percentComplete': 0, 'frameCount': 0}\n dump_file = _dump_file(run_dir)\n if os.path.exists(dump_file):\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n last_update_time = int(os.path.getmtime(dump_file))\n frame_count = beam_header.NPoints\n return {'lastUpdateTime': last_update_time, 'percentComplete': 100,\n 'frameCount': frame_count, 'summaryData': _summary_text(run_dir)}\n return {'percentComplete': 100, 'frameCount': 0, 'error':\n _parse_error_message(run_dir)}\n\n\ndef extract_beam_histrogram(report, run_dir, frame):\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n points = hellweg_dump_reader.get_points(beam_info, report.reportType)\n hist, edges = np.histogram(points, template_common.histogram_bins(\n report.histogramBins))\n return {'title': _report_title(report.reportType,\n 'BeamHistogramReportType', beam_info), 'x_range': [edges[0], edges[\n -1]], 'y_label': 'Number of Particles', 'x_label':\n hellweg_dump_reader.get_label(report.reportType), 'points': hist.T.\n tolist()}\n\n\ndef extract_beam_report(report, run_dir, frame):\n data = simulation_db.read_json(run_dir.join(template_common.\n INPUT_BASE_NAME))\n model = data.models.beamAnimation\n model.update(report)\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n x, y = report.reportType.split('-')\n values = [hellweg_dump_reader.get_points(beam_info, x),\n hellweg_dump_reader.get_points(beam_info, y)]\n model['x'] = x\n model['y'] = y\n return template_common.heatmap(values, model, {'x_label':\n hellweg_dump_reader.get_label(x), 'y_label': hellweg_dump_reader.\n get_label(y), 'title': _report_title(report.reportType,\n 'BeamReportType', beam_info), 'z_label': 'Number of Particles',\n 'summaryData': _summary_text(run_dir)})\n\n\ndef extract_parameter_report(report, run_dir):\n s = solver.BeamSolver(os.path.join(str(run_dir), HELLWEG_INI_FILE), os.\n path.join(str(run_dir), HELLWEG_INPUT_FILE))\n s.load_bin(os.path.join(str(run_dir), HELLWEG_DUMP_FILE))\n y1_var, y2_var = report.reportType.split('-')\n x_field = 'z'\n x = s.get_structure_parameters(_parameter_index(x_field))\n y1 = s.get_structure_parameters(_parameter_index(y1_var))\n y1_extent = [np.min(y1), np.max(y1)]\n y2 = s.get_structure_parameters(_parameter_index(y2_var))\n y2_extent = [np.min(y2), np.max(y2)]\n return {'title': _enum_text('ParameterReportType', report.reportType),\n 'x_range': [x[0], x[-1]], 'y_label': hellweg_dump_reader.\n get_parameter_label(y1_var), 'x_label': hellweg_dump_reader.\n get_parameter_label(x_field), 'x_points': x, 'points': [y1, y2],\n 'y_range': [min(y1_extent[0], y2_extent[0]), max(y1_extent[1],\n y2_extent[1])], 'y1_title': hellweg_dump_reader.get_parameter_title\n (y1_var), 'y2_title': hellweg_dump_reader.get_parameter_title(y2_var)}\n\n\ndef extract_particle_report(report, run_dir):\n x_field = 'z0'\n particle_info = hellweg_dump_reader.particle_info(_dump_file(run_dir),\n report.reportType, int(report.renderCount))\n x = particle_info['z_values']\n return {'title': _enum_text('ParticleReportType', report.reportType),\n 'x_range': [np.min(x), np.max(x)], 'y_label': hellweg_dump_reader.\n get_label(report.reportType), 'x_label': hellweg_dump_reader.\n get_label(x_field), 'x_points': x, 'points': particle_info[\n 'y_values'], 'y_range': particle_info['y_range']}\n\n\ndef fixup_old_data(data):\n for m in ('beamAnimation', 'beamHistogramAnimation',\n 'parameterAnimation', 'particleAnimation'):\n if m not in data.models:\n data.models[m] = pkcollections.Dict({})\n template_common.update_model_defaults(data.models[m], m, _SCHEMA)\n if 'solenoidFile' not in data['models']['solenoid']:\n data['models']['solenoid']['solenoidFile'] = ''\n if 'beamDefinition' not in data['models']['beam']:\n beam = data['models']['beam']\n beam['beamDefinition'] = 'transverse_longitude'\n beam['cstCompress'] = '0'\n beam['transversalFile2d'] = ''\n beam['transversalFile4d'] = ''\n beam['longitudinalFile1d'] = ''\n beam['longitudinalFile2d'] = ''\n beam['cstFile'] = ''\n template_common.organize_example(data)\n\n\ndef get_animation_name(data):\n return 'animation'\n\n\ndef get_application_data(data):\n if data['method'] == 'compute_particle_ranges':\n return template_common.compute_field_range(data,\n _compute_range_across_files)\n assert False, 'unknown application data method: {}'.format(data['method'])\n\n\ndef lib_files(data, source_lib):\n return template_common.filename_to_path(_simulation_files(data), source_lib\n )\n\n\ndef get_simulation_frame(run_dir, data, model_data):\n frame_index = int(data['frameIndex'])\n if data['modelName'] == 'beamAnimation':\n args = template_common.parse_animation_args(data, {'1': [\n 'reportType', 'histogramBins', 'startTime'], '': ['reportType',\n 'histogramBins', 'plotRangeType', 'horizontalSize',\n 'horizontalOffset', 'verticalSize', 'verticalOffset',\n 'isRunning', 'startTime']})\n return extract_beam_report(args, run_dir, frame_index)\n elif data['modelName'] == 'beamHistogramAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'histogramBins', 'startTime']})\n return extract_beam_histrogram(args, run_dir, frame_index)\n elif data['modelName'] == 'particleAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'renderCount', 'startTime']})\n return extract_particle_report(args, run_dir)\n elif data['modelName'] == 'parameterAnimation':\n args = template_common.parse_animation_args(data, {'': [\n 'reportType', 'startTime']})\n return extract_parameter_report(args, run_dir)\n raise RuntimeError('unknown animation model: {}'.format(data['modelName']))\n\n\ndef models_related_to_report(data):\n \"\"\"What models are required for this data['report']\n\n Args:\n data (dict): simulation\n Returns:\n list: Named models, model fields or values (dict, list) that affect report\n \"\"\"\n r = data['report']\n if r == 'animation':\n return []\n res = template_common.report_fields(data, r, _REPORT_STYLE_FIELDS) + [\n 'beam', 'ellipticalDistribution', 'energyPhaseDistribution',\n 'solenoid', 'sphericalDistribution', 'twissDistribution']\n for f in template_common.lib_files(data):\n res.append(f.mtime())\n return res\n\n\ndef python_source_for_model(data, model):\n return (\n \"\"\"\nfrom rslinac import solver\n\n{}\n\nwith open('input.txt', 'w') as f:\n f.write(input_file)\n\nwith open('defaults.ini', 'w') as f:\n f.write(ini_file)\n\ns = solver.BeamSolver('defaults.ini', 'input.txt')\ns.solve()\ns.save_output('output.txt')\n \"\"\"\n .format(_generate_parameters_file(data, is_parallel=len(data.models\n .beamline))))\n\n\ndef remove_last_frame(run_dir):\n pass\n\n\ndef validate_delete_file(data, filename, file_type):\n \"\"\"Returns True if the filename is in use by the simulation data.\"\"\"\n return filename in _simulation_files(data)\n\n\ndef write_parameters(data, run_dir, is_parallel):\n \"\"\"Write the parameters file\n\n Args:\n data (dict): input\n run_dir (py.path): where to write\n is_parallel (bool): run in background?\n \"\"\"\n pkio.write_text(run_dir.join(template_common.PARAMETERS_PYTHON_FILE),\n _generate_parameters_file(data, run_dir, is_parallel))\n\n\ndef _compute_range_across_files(run_dir, data):\n res = {}\n for v in _SCHEMA.enum.BeamReportType:\n x, y = v[0].split('-')\n res[x] = []\n res[y] = []\n dump_file = _dump_file(run_dir)\n if not os.path.exists(dump_file):\n return res\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n for frame in xrange(beam_header.NPoints):\n beam_info = hellweg_dump_reader.beam_info(dump_file, frame)\n for field in res:\n values = hellweg_dump_reader.get_points(beam_info, field)\n if not len(values):\n pass\n elif len(res[field]):\n res[field][0] = min(min(values), res[field][0])\n res[field][1] = max(max(values), res[field][1])\n else:\n res[field] = [min(values), max(values)]\n return res\n\n\ndef _dump_file(run_dir):\n return os.path.join(str(run_dir), HELLWEG_DUMP_FILE)\n\n\ndef _enum_text(enum_name, v):\n enum_values = _SCHEMA['enum'][enum_name]\n for e in enum_values:\n if e[0] == v:\n return e[1]\n raise RuntimeError('invalid enum value: {}, {}'.format(enum_values, v))\n\n\ndef _generate_beam(models):\n beam_def = models.beam.beamDefinition\n if beam_def == 'transverse_longitude':\n return 'BEAM {} {}'.format(_generate_transverse_dist(models),\n _generate_longitude_dist(models))\n if beam_def == 'cst_pit':\n return 'BEAM CST_PIT {} {}'.format(template_common.lib_file_name(\n 'beam', 'cstFile', models.beam.cstFile), 'COMPRESS' if models.\n beam.cstCompress else '')\n if beam_def == 'cst_pid':\n return 'BEAM CST_PID {} {}'.format(template_common.lib_file_name(\n 'beam', 'cstFile', models.beam.cstFile),\n _generate_energy_phase_distribution(models.energyPhaseDistribution)\n )\n raise RuntimeError('invalid beam def: {}'.format(beam_def))\n\n\ndef _generate_cell_params(el):\n if el.attenuation == 0 and el.aperture == 0:\n return '{} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant)\n return '{} {} {} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.\n acceleratingInvariant, el.attenuation, el.aperture)\n\n\ndef _generate_charge(models):\n if models.beam.spaceCharge == 'none':\n return ''\n return 'SPCHARGE {} {}'.format(models.beam.spaceCharge.upper(), models.\n beam.spaceChargeCore)\n\n\ndef _generate_current(models):\n return 'CURRENT {} {}'.format(models.beam.current, models.beam.\n numberOfParticles)\n\n\ndef _generate_energy_phase_distribution(dist):\n return '{} {} {}'.format(dist.meanPhase, dist.phaseLength, dist.\n phaseDeviation if dist.distributionType == 'gaussian' else '')\n\n\ndef _generate_lattice(models):\n res = ''\n for el in models.beamline:\n if el.type == 'powerElement':\n res += 'POWER {} {} {}'.format(el.inputPower, el.frequency, el.\n phaseShift)\n elif el.type == 'cellElement':\n res += 'CELL {}'.format(_generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'cellsElement':\n res += 'CELLS {} {}'.format(el.repeat, _generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'driftElement':\n res += 'DRIFT {} {} {}'.format(el.length, el.radius, el.meshPoints)\n has_cell_or_drift = True\n elif el.type == 'saveElement':\n pass\n else:\n raise RuntimeError('unknown element type: {}'.format(el.type))\n res += '\\n'\n return res\n\n\ndef _generate_longitude_dist(models):\n dist_type = models.beam.longitudinalDistribution\n if dist_type == 'norm2d':\n dist = models.energyPhaseDistribution\n if dist.distributionType == 'uniform':\n return 'NORM2D {} {} {} {}'.format(dist.meanEnergy, dist.\n energySpread, dist.meanPhase, dist.phaseLength)\n if dist.distributionType == 'gaussian':\n return 'NORM2D {} {} {} {} {} {}'.format(dist.meanEnergy, dist.\n energySpread, dist.energyDeviation, dist.meanPhase, dist.\n phaseLength, dist.phaseDeviation)\n raise RuntimeError('unknown longitudinal distribution type: {}'.\n format(models.longitudinalDistribution.distributionType))\n if dist_type == 'file1d':\n return 'FILE1D {} {}'.format(template_common.lib_file_name('beam',\n 'longitudinalFile1d', models.beam.longitudinalFile1d),\n _generate_energy_phase_distribution(models.energyPhaseDistribution)\n )\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n raise RuntimeError('unknown longitudinal distribution: {}'.format(\n models.beam.longitudinalDistribution))\n\n\ndef _generate_options(models):\n if models.simulationSettings.allowBackwardWaves == '1':\n return 'OPTIONS REVERSE'\n return ''\n\n\ndef _generate_parameters_file(data, run_dir=None, is_parallel=False):\n template_common.validate_models(data, _SCHEMA)\n v = template_common.flatten_data(data['models'], {})\n v['optionsCommand'] = _generate_options(data['models'])\n v['solenoidCommand'] = _generate_solenoid(data['models'])\n v['beamCommand'] = _generate_beam(data['models'])\n v['currentCommand'] = _generate_current(data['models'])\n v['chargeCommand'] = _generate_charge(data['models'])\n if is_parallel:\n v['latticeCommands'] = _generate_lattice(data['models'])\n else:\n v['latticeCommands'] = _DEFAULT_DRIFT_ELEMENT\n return template_common.render_jinja(SIM_TYPE, v)\n\n\ndef _generate_solenoid(models):\n solenoid = models.solenoid\n if solenoid.sourceDefinition == 'none':\n return ''\n if solenoid.sourceDefinition == 'values':\n return 'SOLENOID {} {} {}'.format(solenoid.fieldStrength, solenoid.\n length, solenoid.z0)\n if solenoid.sourceDefinition == 'file':\n return 'SOLENOID {}'.format(template_common.lib_file_name(\n 'solenoid', 'solenoidFile', solenoid.solenoidFile))\n raise RuntimeError('unknown solenoidDefinition: {}'.format(solenoid.\n sourceDefinition))\n\n\ndef _generate_transverse_dist(models):\n dist_type = models.beam.transversalDistribution\n if dist_type == 'twiss4d':\n dist = models.twissDistribution\n return 'TWISS4D {} {} {} {} {} {}'.format(dist.horizontalAlpha,\n dist.horizontalBeta, dist.horizontalEmittance, dist.\n verticalAlpha, dist.verticalBeta, dist.verticalEmittance)\n if dist_type == 'sph2d':\n dist = models.sphericalDistribution\n if dist.curvature == 'flat':\n dist.curvatureFactor = 0\n return 'SPH2D {} {} {}'.format(dist.radialLimit, dist.\n curvatureFactor, dist.thermalEmittance)\n if dist_type == 'ell2d':\n dist = models.ellipticalDistribution\n return 'ELL2D {} {} {} {}'.format(dist.aX, dist.bY, dist.\n rotationAngle, dist.rmsDeviationFactor)\n beam = models.beam\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n if dist_type == 'file4d':\n return 'FILE4D {}'.format(template_common.lib_file_name('beam',\n 'transversalFile4d', beam.transversalFile4d))\n raise RuntimeError('unknown transverse distribution: {}'.format(dist_type))\n\n\ndef _parameter_index(name):\n return hellweg_dump_reader.parameter_index(name)\n\n\ndef _parse_error_message(run_dir):\n path = os.path.join(str(run_dir), _HELLWEG_PARSED_FILE)\n if not os.path.exists(path):\n return 'No elements generated'\n text = pkio.read_text(str(path))\n for line in text.split('\\n'):\n match = re.search('^ERROR:\\\\s(.*)$', line)\n if match:\n return match.group(1)\n return 'No output generated'\n\n\ndef _report_title(report_type, enum_name, beam_info):\n return '{}, z={:.4f} cm'.format(_enum_text(enum_name, report_type), 100 *\n hellweg_dump_reader.get_parameter(beam_info, 'z'))\n\n\ndef _simulation_files(data):\n res = []\n solenoid = data.models.solenoid\n if solenoid.sourceDefinition == 'file' and solenoid.solenoidFile:\n res.append(template_common.lib_file_name('solenoid', 'solenoidFile',\n solenoid.solenoidFile))\n beam = data.models.beam\n if beam.beamDefinition == 'cst_pit' or beam.beamDefinition == 'cst_pid':\n res.append(template_common.lib_file_name('beam', 'cstFile', beam.\n cstFile))\n if beam.beamDefinition == 'transverse_longitude':\n if beam.transversalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam',\n 'transversalFile2d', beam.transversalFile2d))\n elif beam.transversalDistribution == 'file4d':\n res.append(template_common.lib_file_name('beam',\n 'transversalFile4d', beam.transversalFile4d))\n if beam.longitudinalDistribution == 'file1d':\n res.append(template_common.lib_file_name('beam',\n 'longitudinalFile1d', beam.longitudinalFile1d))\n if beam.longitudinalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam',\n 'longitudinalFile2d', beam.longitudinalFile2d))\n return res\n\n\ndef _summary_text(run_dir):\n return pkio.read_text(os.path.join(str(run_dir), HELLWEG_SUMMARY_FILE))\n", "step-5": "# -*- coding: utf-8 -*-\nu\"\"\"Hellweg execution template.\n\n:copyright: Copyright (c) 2017 RadiaSoft LLC. All Rights Reserved.\n:license: http://www.apache.org/licenses/LICENSE-2.0.html\n\"\"\"\n\nfrom __future__ import absolute_import, division, print_function\nfrom pykern import pkcollections\nfrom pykern import pkio\nfrom pykern.pkdebug import pkdc, pkdp\nfrom rslinac import solver\nfrom sirepo import simulation_db\nfrom sirepo.template import template_common, hellweg_dump_reader\nimport math\nimport numpy as np\nimport os.path\nimport py.path\nimport re\n\nHELLWEG_DUMP_FILE = 'all-data.bin'\n\nHELLWEG_SUMMARY_FILE = 'output.txt'\n\nHELLWEG_INI_FILE = 'defaults.ini'\n\nHELLWEG_INPUT_FILE = 'input.txt'\n\n#: Simulation type\nSIM_TYPE = 'hellweg'\n\nWANT_BROWSER_FRAME_CACHE = True\n\n# lattice element is required so make it very short and wide drift\n_DEFAULT_DRIFT_ELEMENT = 'DRIFT 1e-16 1e+16 2' + \"\\n\"\n\n_HELLWEG_PARSED_FILE = 'PARSED.TXT'\n\n_REPORT_STYLE_FIELDS = ['colorMap', 'notes']\n\n_SCHEMA = simulation_db.get_schema(SIM_TYPE)\n\ndef background_percent_complete(report, run_dir, is_running):\n if is_running:\n return {\n 'percentComplete': 0,\n 'frameCount': 0,\n }\n dump_file = _dump_file(run_dir)\n if os.path.exists(dump_file):\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n last_update_time = int(os.path.getmtime(dump_file))\n frame_count = beam_header.NPoints\n return {\n 'lastUpdateTime': last_update_time,\n 'percentComplete': 100,\n 'frameCount': frame_count,\n 'summaryData': _summary_text(run_dir),\n }\n return {\n 'percentComplete': 100,\n 'frameCount': 0,\n 'error': _parse_error_message(run_dir)\n }\n\n\ndef extract_beam_histrogram(report, run_dir, frame):\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n points = hellweg_dump_reader.get_points(beam_info, report.reportType)\n hist, edges = np.histogram(points, template_common.histogram_bins(report.histogramBins))\n return {\n 'title': _report_title(report.reportType, 'BeamHistogramReportType', beam_info),\n 'x_range': [edges[0], edges[-1]],\n 'y_label': 'Number of Particles',\n 'x_label': hellweg_dump_reader.get_label(report.reportType),\n 'points': hist.T.tolist(),\n }\n\n\ndef extract_beam_report(report, run_dir, frame):\n data = simulation_db.read_json(run_dir.join(template_common.INPUT_BASE_NAME))\n model = data.models.beamAnimation\n model.update(report)\n beam_info = hellweg_dump_reader.beam_info(_dump_file(run_dir), frame)\n x, y = report.reportType.split('-')\n values = [\n hellweg_dump_reader.get_points(beam_info, x),\n hellweg_dump_reader.get_points(beam_info, y),\n ]\n model['x'] = x\n model['y'] = y\n return template_common.heatmap(values, model, {\n 'x_label': hellweg_dump_reader.get_label(x),\n 'y_label': hellweg_dump_reader.get_label(y),\n 'title': _report_title(report.reportType, 'BeamReportType', beam_info),\n 'z_label': 'Number of Particles',\n 'summaryData': _summary_text(run_dir),\n })\n\n\ndef extract_parameter_report(report, run_dir):\n s = solver.BeamSolver(\n os.path.join(str(run_dir), HELLWEG_INI_FILE),\n os.path.join(str(run_dir), HELLWEG_INPUT_FILE))\n s.load_bin(os.path.join(str(run_dir), HELLWEG_DUMP_FILE))\n y1_var, y2_var = report.reportType.split('-')\n x_field = 'z'\n x = s.get_structure_parameters(_parameter_index(x_field))\n y1 = s.get_structure_parameters(_parameter_index(y1_var))\n y1_extent = [np.min(y1), np.max(y1)]\n y2 = s.get_structure_parameters(_parameter_index(y2_var))\n y2_extent = [np.min(y2), np.max(y2)]\n return {\n 'title': _enum_text('ParameterReportType', report.reportType),\n 'x_range': [x[0], x[-1]],\n 'y_label': hellweg_dump_reader.get_parameter_label(y1_var),\n 'x_label': hellweg_dump_reader.get_parameter_label(x_field),\n 'x_points': x,\n 'points': [\n y1,\n y2,\n ],\n 'y_range': [min(y1_extent[0], y2_extent[0]), max(y1_extent[1], y2_extent[1])],\n 'y1_title': hellweg_dump_reader.get_parameter_title(y1_var),\n 'y2_title': hellweg_dump_reader.get_parameter_title(y2_var),\n }\n\n\ndef extract_particle_report(report, run_dir):\n x_field = 'z0'\n particle_info = hellweg_dump_reader.particle_info(_dump_file(run_dir), report.reportType, int(report.renderCount))\n x = particle_info['z_values']\n return {\n 'title': _enum_text('ParticleReportType', report.reportType),\n 'x_range': [np.min(x), np.max(x)],\n 'y_label': hellweg_dump_reader.get_label(report.reportType),\n 'x_label': hellweg_dump_reader.get_label(x_field),\n 'x_points': x,\n 'points': particle_info['y_values'],\n 'y_range': particle_info['y_range'],\n }\n\n\ndef fixup_old_data(data):\n for m in ('beamAnimation', 'beamHistogramAnimation', 'parameterAnimation', 'particleAnimation'):\n if m not in data.models:\n data.models[m] = pkcollections.Dict({})\n template_common.update_model_defaults(data.models[m], m, _SCHEMA)\n if 'solenoidFile' not in data['models']['solenoid']:\n data['models']['solenoid']['solenoidFile'] = ''\n if 'beamDefinition' not in data['models']['beam']:\n beam = data['models']['beam']\n beam['beamDefinition'] = 'transverse_longitude'\n beam['cstCompress'] = '0'\n beam['transversalFile2d'] = ''\n beam['transversalFile4d'] = ''\n beam['longitudinalFile1d'] = ''\n beam['longitudinalFile2d'] = ''\n beam['cstFile'] = ''\n template_common.organize_example(data)\n\n\ndef get_animation_name(data):\n return 'animation'\n\n\ndef get_application_data(data):\n if data['method'] == 'compute_particle_ranges':\n return template_common.compute_field_range(data, _compute_range_across_files)\n assert False, 'unknown application data method: {}'.format(data['method'])\n\n\ndef lib_files(data, source_lib):\n return template_common.filename_to_path(_simulation_files(data), source_lib)\n\n\ndef get_simulation_frame(run_dir, data, model_data):\n frame_index = int(data['frameIndex'])\n if data['modelName'] == 'beamAnimation':\n args = template_common.parse_animation_args(\n data,\n {\n '1': ['reportType', 'histogramBins', 'startTime'],\n '': ['reportType', 'histogramBins', 'plotRangeType', 'horizontalSize', 'horizontalOffset', 'verticalSize', 'verticalOffset', 'isRunning', 'startTime'],\n },\n )\n return extract_beam_report(args, run_dir, frame_index)\n elif data['modelName'] == 'beamHistogramAnimation':\n args = template_common.parse_animation_args(\n data,\n {'': ['reportType', 'histogramBins', 'startTime']},\n )\n return extract_beam_histrogram(args, run_dir, frame_index)\n elif data['modelName'] == 'particleAnimation':\n args = template_common.parse_animation_args(\n data,\n {'': ['reportType', 'renderCount', 'startTime']},\n )\n return extract_particle_report(args, run_dir)\n elif data['modelName'] == 'parameterAnimation':\n args = template_common.parse_animation_args(\n data,\n {'': ['reportType', 'startTime']},\n )\n return extract_parameter_report(args, run_dir)\n raise RuntimeError('unknown animation model: {}'.format(data['modelName']))\n\n\ndef models_related_to_report(data):\n \"\"\"What models are required for this data['report']\n\n Args:\n data (dict): simulation\n Returns:\n list: Named models, model fields or values (dict, list) that affect report\n \"\"\"\n r = data['report']\n if r == 'animation':\n return []\n res = template_common.report_fields(data, r, _REPORT_STYLE_FIELDS) + [\n 'beam',\n 'ellipticalDistribution',\n 'energyPhaseDistribution',\n 'solenoid',\n 'sphericalDistribution',\n 'twissDistribution',\n ]\n for f in template_common.lib_files(data):\n res.append(f.mtime())\n return res\n\n\ndef python_source_for_model(data, model):\n return '''\nfrom rslinac import solver\n\n{}\n\nwith open('input.txt', 'w') as f:\n f.write(input_file)\n\nwith open('defaults.ini', 'w') as f:\n f.write(ini_file)\n\ns = solver.BeamSolver('defaults.ini', 'input.txt')\ns.solve()\ns.save_output('output.txt')\n '''.format(_generate_parameters_file(data, is_parallel=len(data.models.beamline)))\n\n\ndef remove_last_frame(run_dir):\n pass\n\n\ndef validate_delete_file(data, filename, file_type):\n \"\"\"Returns True if the filename is in use by the simulation data.\"\"\"\n return filename in _simulation_files(data)\n\n\ndef write_parameters(data, run_dir, is_parallel):\n \"\"\"Write the parameters file\n\n Args:\n data (dict): input\n run_dir (py.path): where to write\n is_parallel (bool): run in background?\n \"\"\"\n pkio.write_text(\n run_dir.join(template_common.PARAMETERS_PYTHON_FILE),\n _generate_parameters_file(\n data,\n run_dir,\n is_parallel,\n ),\n )\n\n\ndef _compute_range_across_files(run_dir, data):\n res = {}\n for v in _SCHEMA.enum.BeamReportType:\n x, y = v[0].split('-')\n res[x] = []\n res[y] = []\n dump_file = _dump_file(run_dir)\n if not os.path.exists(dump_file):\n return res\n beam_header = hellweg_dump_reader.beam_header(dump_file)\n for frame in xrange(beam_header.NPoints):\n beam_info = hellweg_dump_reader.beam_info(dump_file, frame)\n for field in res:\n values = hellweg_dump_reader.get_points(beam_info, field)\n if not len(values):\n pass\n elif len(res[field]):\n res[field][0] = min(min(values), res[field][0])\n res[field][1] = max(max(values), res[field][1])\n else:\n res[field] = [min(values), max(values)]\n return res\n\n\ndef _dump_file(run_dir):\n return os.path.join(str(run_dir), HELLWEG_DUMP_FILE)\n\n\ndef _enum_text(enum_name, v):\n enum_values = _SCHEMA['enum'][enum_name]\n for e in enum_values:\n if e[0] == v:\n return e[1]\n raise RuntimeError('invalid enum value: {}, {}'.format(enum_values, v))\n\n\ndef _generate_beam(models):\n # BEAM SPH2D 0.564 -15 5 NORM2D 0.30 0.0000001 90 180\n beam_def = models.beam.beamDefinition\n if beam_def == 'transverse_longitude':\n return 'BEAM {} {}'.format(_generate_transverse_dist(models), _generate_longitude_dist(models))\n if beam_def == 'cst_pit':\n return 'BEAM CST_PIT {} {}'.format(\n template_common.lib_file_name('beam', 'cstFile', models.beam.cstFile),\n 'COMPRESS' if models.beam.cstCompress else '',\n )\n if beam_def == 'cst_pid':\n return 'BEAM CST_PID {} {}'.format(\n template_common.lib_file_name('beam', 'cstFile', models.beam.cstFile),\n _generate_energy_phase_distribution(models.energyPhaseDistribution),\n )\n raise RuntimeError('invalid beam def: {}'.format(beam_def))\n\n\ndef _generate_cell_params(el):\n #TODO(pjm): add an option field to select auto-calculate\n if el.attenuation == 0 and el.aperture == 0:\n return '{} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.acceleratingInvariant)\n return '{} {} {} {} {}'.format(el.phaseAdvance, el.phaseVelocity, el.acceleratingInvariant, el.attenuation, el.aperture)\n\n\ndef _generate_charge(models):\n if models.beam.spaceCharge == 'none':\n return ''\n return 'SPCHARGE {} {}'.format(models.beam.spaceCharge.upper(), models.beam.spaceChargeCore)\n\n\ndef _generate_current(models):\n return 'CURRENT {} {}'.format(models.beam.current, models.beam.numberOfParticles)\n\n\ndef _generate_energy_phase_distribution(dist):\n return '{} {} {}'.format(\n dist.meanPhase,\n dist.phaseLength,\n dist.phaseDeviation if dist.distributionType == 'gaussian' else '',\n )\n\n\ndef _generate_lattice(models):\n res = ''\n for el in models.beamline:\n if el.type == 'powerElement':\n res += 'POWER {} {} {}'.format(el.inputPower, el.frequency, el.phaseShift)\n elif el.type == 'cellElement':\n res += 'CELL {}'.format(_generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'cellsElement':\n res += 'CELLS {} {}'.format(el.repeat, _generate_cell_params(el))\n has_cell_or_drift = True\n elif el.type == 'driftElement':\n res += 'DRIFT {} {} {}'.format(el.length, el.radius, el.meshPoints)\n has_cell_or_drift = True\n elif el.type == 'saveElement':\n #TODO(pjm): implement this\n pass\n else:\n raise RuntimeError('unknown element type: {}'.format(el.type))\n res += \"\\n\"\n return res\n\n\ndef _generate_longitude_dist(models):\n dist_type = models.beam.longitudinalDistribution\n if dist_type == 'norm2d':\n dist = models.energyPhaseDistribution\n if dist.distributionType == 'uniform':\n return 'NORM2D {} {} {} {}'.format(\n dist.meanEnergy, dist.energySpread, dist.meanPhase, dist.phaseLength)\n if dist.distributionType == 'gaussian':\n return 'NORM2D {} {} {} {} {} {}'.format(\n dist.meanEnergy, dist.energySpread, dist.energyDeviation, dist.meanPhase, dist.phaseLength, dist.phaseDeviation)\n raise RuntimeError('unknown longitudinal distribution type: {}'.format(models.longitudinalDistribution.distributionType))\n if dist_type == 'file1d':\n return 'FILE1D {} {}'.format(\n template_common.lib_file_name('beam', 'longitudinalFile1d', models.beam.longitudinalFile1d),\n _generate_energy_phase_distribution(models.energyPhaseDistribution),\n )\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam', 'transversalFile2d', beam.transversalFile2d))\n\n raise RuntimeError('unknown longitudinal distribution: {}'.format(models.beam.longitudinalDistribution))\n\n\ndef _generate_options(models):\n if models.simulationSettings.allowBackwardWaves == '1':\n return 'OPTIONS REVERSE'\n return ''\n\n\ndef _generate_parameters_file(data, run_dir=None, is_parallel=False):\n template_common.validate_models(data, _SCHEMA)\n v = template_common.flatten_data(data['models'], {})\n v['optionsCommand'] = _generate_options(data['models'])\n v['solenoidCommand'] = _generate_solenoid(data['models'])\n v['beamCommand'] = _generate_beam(data['models'])\n v['currentCommand'] = _generate_current(data['models'])\n v['chargeCommand'] = _generate_charge(data['models'])\n if is_parallel:\n v['latticeCommands'] = _generate_lattice(data['models'])\n else:\n v['latticeCommands'] = _DEFAULT_DRIFT_ELEMENT\n return template_common.render_jinja(SIM_TYPE, v)\n\n\ndef _generate_solenoid(models):\n solenoid = models.solenoid\n if solenoid.sourceDefinition == 'none':\n return ''\n if solenoid.sourceDefinition == 'values':\n #TODO(pjm): latest version also has solenoid.fringeRegion\n return 'SOLENOID {} {} {}'.format(\n solenoid.fieldStrength, solenoid.length, solenoid.z0)\n if solenoid.sourceDefinition == 'file':\n return 'SOLENOID {}'.format(\n template_common.lib_file_name('solenoid', 'solenoidFile', solenoid.solenoidFile))\n raise RuntimeError('unknown solenoidDefinition: {}'.format(solenoid.sourceDefinition))\n\n\ndef _generate_transverse_dist(models):\n dist_type = models.beam.transversalDistribution\n if dist_type == 'twiss4d':\n dist = models.twissDistribution\n return 'TWISS4D {} {} {} {} {} {}'.format(\n dist.horizontalAlpha, dist.horizontalBeta, dist.horizontalEmittance,\n dist.verticalAlpha, dist.verticalBeta, dist.verticalEmittance)\n if dist_type == 'sph2d':\n dist = models.sphericalDistribution\n if dist.curvature == 'flat':\n dist.curvatureFactor = 0\n return 'SPH2D {} {} {}'.format(dist.radialLimit, dist.curvatureFactor, dist.thermalEmittance)\n if dist_type == 'ell2d':\n dist = models.ellipticalDistribution\n return 'ELL2D {} {} {} {}'.format(dist.aX, dist.bY, dist.rotationAngle, dist.rmsDeviationFactor)\n beam = models.beam\n if dist_type == 'file2d':\n return 'FILE2D {}'.format(template_common.lib_file_name('beam', 'transversalFile2d', beam.transversalFile2d))\n if dist_type == 'file4d':\n return 'FILE4D {}'.format(template_common.lib_file_name('beam', 'transversalFile4d', beam.transversalFile4d))\n raise RuntimeError('unknown transverse distribution: {}'.format(dist_type))\n\n\ndef _parameter_index(name):\n return hellweg_dump_reader.parameter_index(name)\n\n\ndef _parse_error_message(run_dir):\n path = os.path.join(str(run_dir), _HELLWEG_PARSED_FILE)\n if not os.path.exists(path):\n return 'No elements generated'\n text = pkio.read_text(str(path))\n for line in text.split(\"\\n\"):\n match = re.search('^ERROR:\\s(.*)$', line)\n if match:\n return match.group(1)\n return 'No output generated'\n\n\ndef _report_title(report_type, enum_name, beam_info):\n return '{}, z={:.4f} cm'.format(\n _enum_text(enum_name, report_type),\n 100 * hellweg_dump_reader.get_parameter(beam_info, 'z'))\n\n\ndef _simulation_files(data):\n res = []\n solenoid = data.models.solenoid\n if solenoid.sourceDefinition == 'file' and solenoid.solenoidFile:\n res.append(template_common.lib_file_name('solenoid', 'solenoidFile', solenoid.solenoidFile))\n beam = data.models.beam\n if beam.beamDefinition == 'cst_pit' or beam.beamDefinition == 'cst_pid':\n res.append(template_common.lib_file_name('beam', 'cstFile', beam.cstFile))\n if beam.beamDefinition == 'transverse_longitude':\n if beam.transversalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam', 'transversalFile2d', beam.transversalFile2d))\n elif beam.transversalDistribution == 'file4d':\n res.append(template_common.lib_file_name('beam', 'transversalFile4d', beam.transversalFile4d))\n if beam.longitudinalDistribution == 'file1d':\n res.append(template_common.lib_file_name('beam', 'longitudinalFile1d', beam.longitudinalFile1d))\n if beam.longitudinalDistribution == 'file2d':\n res.append(template_common.lib_file_name('beam', 'longitudinalFile2d', beam.longitudinalFile2d))\n return res\n\n\ndef _summary_text(run_dir):\n return pkio.read_text(os.path.join(str(run_dir), HELLWEG_SUMMARY_FILE))\n", "step-ids": [ 22, 26, 32, 36, 37 ] }
[ 22, 26, 32, 36, 37 ]
# Copyright 2016 Tesora, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. charset = {"big5": ["big5_chinese_ci", "big5_bin"], "dec8": ["dec8_swedish_ci", "dec8_bin"], "cp850": ["cp850_general_ci", "cp850_bin"], "hp8": ["hp8_english_ci", "hp8_bin"], "koi8r": ["koi8r_general_ci", "koi8r_bin"], "latin1": ["latin1_swedish_ci", "latin1_german1_ci", "latin1_danish_ci", "latin1_german2_ci", "latin1_bin", "latin1_general_ci", "latin1_general_cs", "latin1_spanish_ci"], "latin2": ["latin2_general_ci", "latin2_czech_cs", "latin2_hungarian_ci", "latin2_croatian_ci", "latin2_bin"], "swe7": ["swe7_swedish_ci", "swe7_bin"], "ascii": ["ascii_general_ci", "ascii_bin"], "ujis": ["ujis_japanese_ci", "ujis_bin"], "sjis": ["sjis_japanese_ci", "sjis_bin"], "hebrew": ["hebrew_general_ci", "hebrew_bin"], "tis620": ["tis620_thai_ci", "tis620_bin"], "euckr": ["euckr_korean_ci", "euckr_bin"], "koi8u": ["koi8u_general_ci", "koi8u_bin"], "gb2312": ["gb2312_chinese_ci", "gb2312_bin"], "greek": ["greek_general_ci", "greek_bin"], "cp1250": ["cp1250_general_ci", "cp1250_czech_cs", "cp1250_croatian_ci", "cp1250_bin", "cp1250_polish_ci"], "gbk": ["gbk_chinese_ci", "gbk_bin"], "latin5": ["latin5_turkish_ci", "latin5_bin"], "armscii8": ["armscii8_general_ci", "armscii8_bin"], "utf8": ["utf8_general_ci", "utf8_bin", "utf8_unicode_ci", "utf8_icelandic_ci", "utf8_latvian_ci", "utf8_romanian_ci", "utf8_slovenian_ci", "utf8_polish_ci", "utf8_estonian_ci", "utf8_spanish_ci", "utf8_swedish_ci", "utf8_turkish_ci", "utf8_czech_ci", "utf8_danish_ci", "utf8_lithuanian_ci", "utf8_slovak_ci", "utf8_spanish2_ci", "utf8_roman_ci", "utf8_persian_ci", "utf8_esperanto_ci", "utf8_hungarian_ci", "utf8_sinhala_ci", "utf8_german2_ci", "utf8_croatian_ci", "utf8_unicode_520_ci", "utf8_vietnamese_ci", "utf8_general_mysql500_ci" ], "utf8mb4": ["utf8mb4_0900_ai_ci"], "utf8mb3": ["utf8mb3_general_ci"], "ucs2": ["ucs2_general_ci", "ucs2_bin", "ucs2_unicode_ci", "ucs2_icelandic_ci", "ucs2_latvian_ci", "ucs2_romanian_ci", "ucs2_slovenian_ci", "ucs2_polish_ci", "ucs2_estonian_ci", "ucs2_spanish_ci", "ucs2_swedish_ci", "ucs2_turkish_ci", "ucs2_czech_ci", "ucs2_danish_ci", "ucs2_lithuanian_ci", "ucs2_slovak_ci", "ucs2_spanish2_ci", "ucs2_roman_ci", "ucs2_persian_ci", "ucs2_esperanto_ci", "ucs2_hungarian_ci", "ucs2_sinhala_ci", "ucs2_german2_ci", "ucs2_croatian_ci", "ucs2_unicode_520_ci", "ucs2_vietnamese_ci", "ucs2_general_mysql500_ci" ], "cp866": ["cp866_general_ci", "cp866_bin"], "keybcs2": ["keybcs2_general_ci", "keybcs2_bin"], "macce": ["macce_general_ci", "macce_bin"], "macroman": ["macroman_general_ci", "macroman_bin"], "cp852": ["cp852_general_ci", "cp852_bin"], "latin7": ["latin7_general_ci", "latin7_estonian_cs", "latin7_general_cs", "latin7_bin"], "utf8mb4": ["utf8mb4_general_ci", "utf8mb4_bin", "utf8mb4_unicode_ci", "utf8mb4_icelandic_ci", "utf8mb4_latvian_ci", "utf8mb4_romanian_ci", "utf8mb4_slovenian_ci", "utf8mb4_polish_ci", "utf8mb4_estonian_ci", "utf8mb4_spanish_ci", "utf8mb4_swedish_ci", "utf8mb4_turkish_ci", "utf8mb4_czech_ci", "utf8mb4_danish_ci", "utf8mb4_lithuanian_ci", "utf8mb4_slovak_ci", "utf8mb4_spanish2_ci", "utf8mb4_roman_ci", "utf8mb4_persian_ci", "utf8mb4_esperanto_ci", "utf8mb4_hungarian_ci", "utf8mb4_sinhala_ci", "utf8mb4_german2_ci", "utf8mb4_croatian_ci", "utf8mb4_unicode_520_ci", "utf8mb4_vietnamese_ci"], "cp1251": ["cp1251_general_ci", "cp1251_bulgarian_ci", "cp1251_ukrainian_ci", "cp1251_bin", "cp1251_general_cs"], "utf16": ["utf16_general_ci", "utf16_bin", "utf16_unicode_ci", "utf16_icelandic_ci", "utf16_latvian_ci", "utf16_romanian_ci", "utf16_slovenian_ci", "utf16_polish_ci", "utf16_estonian_ci", "utf16_spanish_ci", "utf16_swedish_ci", "utf16_turkish_ci", "utf16_czech_ci", "utf16_danish_ci", "utf16_lithuanian_ci", "utf16_slovak_ci", "utf16_spanish2_ci", "utf16_roman_ci", "utf16_persian_ci", "utf16_esperanto_ci", "utf16_hungarian_ci", "utf16_sinhala_ci", "utf16_german2_ci", "utf16_croatian_ci", "utf16_unicode_520_ci", "utf16_vietnamese_ci"], "utf16le": ["utf16le_general_ci", "utf16le_bin"], "cp1256": ["cp1256_general_ci", "cp1256_bin"], "cp1257": ["cp1257_general_ci", "cp1257_lithuanian_ci", "cp1257_bin"], "utf32": ["utf32_general_ci", "utf32_bin", "utf32_unicode_ci", "utf32_icelandic_ci", "utf32_latvian_ci", "utf32_romanian_ci", "utf32_slovenian_ci", "utf32_polish_ci", "utf32_estonian_ci", "utf32_spanish_ci", "utf32_swedish_ci", "utf32_turkish_ci", "utf32_czech_ci", "utf32_danish_ci", "utf32_lithuanian_ci", "utf32_slovak_ci", "utf32_spanish2_ci", "utf32_roman_ci", "utf32_persian_ci", "utf32_esperanto_ci", "utf32_hungarian_ci", "utf32_sinhala_ci", "utf32_german2_ci", "utf32_croatian_ci", "utf32_unicode_520_ci", "utf32_vietnamese_ci"], "binary": ["binary"], "geostd8": ["geostd8_general_ci", "geostd8_bin"], "cp932": ["cp932_japanese_ci", "cp932_bin"], "eucjpms": ["eucjpms_japanese_ci", "eucjpms_bin"], "gb18030": ["gb18030_chinese_ci", "gb18030_bin", "gb18030_unicode_520_ci"]} collation = {"big5_chinese_ci": "big5", "big5_bin": "big5", "dec8_swedish_ci": "dec8", "dec8_bin": "dec8", "cp850_general_ci": "cp850", "cp850_bin": "cp850", "hp8_english_ci": "hp8", "hp8_bin": "hp8", "koi8r_general_ci": "koi8r", "koi8r_bin": "koi8r", "latin1_german1_ci": "latin1", "latin1_swedish_ci": "latin1", "latin1_danish_ci": "latin1", "latin1_german2_ci": "latin1", "latin1_bin": "latin1", "latin1_general_ci": "latin1", "latin1_general_cs": "latin1", "latin1_spanish_ci": "latin1", "latin2_czech_cs": "latin2", "latin2_general_ci": "latin2", "latin2_hungarian_ci": "latin2", "latin2_croatian_ci": "latin2", "latin2_bin": "latin2", "swe7_swedish_ci": "swe7", "swe7_bin": "swe7", "ascii_general_ci": "ascii", "ascii_bin": "ascii", "ujis_japanese_ci": "ujis", "ujis_bin": "ujis", "sjis_japanese_ci": "sjis", "sjis_bin": "sjis", "hebrew_general_ci": "hebrew", "hebrew_bin": "hebrew", "tis620_thai_ci": "tis620", "tis620_bin": "tis620", "euckr_korean_ci": "euckr", "euckr_bin": "euckr", "koi8u_general_ci": "koi8u", "koi8u_bin": "koi8u", "gb2312_chinese_ci": "gb2312", "gb2312_bin": "gb2312", "greek_general_ci": "greek", "greek_bin": "greek", "cp1250_general_ci": "cp1250", "cp1250_czech_cs": "cp1250", "cp1250_croatian_ci": "cp1250", "cp1250_bin": "cp1250", "cp1250_polish_ci": "cp1250", "gbk_chinese_ci": "gbk", "gbk_bin": "gbk", "latin5_turkish_ci": "latin5", "latin5_bin": "latin5", "armscii8_general_ci": "armscii8", "armscii8_bin": "armscii8", "utf8_general_ci": "utf8", "utf8mb3_general_ci": "utf8mb3", "utf8_bin": "utf8", "utf8_unicode_ci": "utf8", "utf8_icelandic_ci": "utf8", "utf8_latvian_ci": "utf8", "utf8_romanian_ci": "utf8", "utf8_slovenian_ci": "utf8", "utf8_polish_ci": "utf8", "utf8_estonian_ci": "utf8", "utf8_spanish_ci": "utf8", "utf8_swedish_ci": "utf8", "utf8_turkish_ci": "utf8", "utf8_czech_ci": "utf8", "utf8_danish_ci": "utf8", "utf8_lithuanian_ci": "utf8", "utf8_slovak_ci": "utf8", "utf8_spanish2_ci": "utf8", "utf8_roman_ci": "utf8", "utf8_persian_ci": "utf8", "utf8_esperanto_ci": "utf8", "utf8_hungarian_ci": "utf8", "utf8_sinhala_ci": "utf8", "utf8_german2_ci": "utf8", "utf8_croatian_ci": "utf8", "utf8_unicode_520_ci": "utf8", "utf8_vietnamese_ci": "utf8", "utf8_general_mysql500_ci": "utf8", "utf8mb4_0900_ai_ci": "utf8mb4", "ucs2_general_ci": "ucs2", "ucs2_bin": "ucs2", "ucs2_unicode_ci": "ucs2", "ucs2_icelandic_ci": "ucs2", "ucs2_latvian_ci": "ucs2", "ucs2_romanian_ci": "ucs2", "ucs2_slovenian_ci": "ucs2", "ucs2_polish_ci": "ucs2", "ucs2_estonian_ci": "ucs2", "ucs2_spanish_ci": "ucs2", "ucs2_swedish_ci": "ucs2", "ucs2_turkish_ci": "ucs2", "ucs2_czech_ci": "ucs2", "ucs2_danish_ci": "ucs2", "ucs2_lithuanian_ci": "ucs2", "ucs2_slovak_ci": "ucs2", "ucs2_spanish2_ci": "ucs2", "ucs2_roman_ci": "ucs2", "ucs2_persian_ci": "ucs2", "ucs2_esperanto_ci": "ucs2", "ucs2_hungarian_ci": "ucs2", "ucs2_sinhala_ci": "ucs2", "ucs2_german2_ci": "ucs2", "ucs2_croatian_ci": "ucs2", "ucs2_unicode_520_ci": "ucs2", "ucs2_vietnamese_ci": "ucs2", "ucs2_general_mysql500_ci": "ucs2", "cp866_general_ci": "cp866", "cp866_bin": "cp866", "keybcs2_general_ci": "keybcs2", "keybcs2_bin": "keybcs2", "macce_general_ci": "macce", "macce_bin": "macce", "macroman_general_ci": "macroman", "macroman_bin": "macroman", "cp852_general_ci": "cp852", "cp852_bin": "cp852", "latin7_estonian_cs": "latin7", "latin7_general_ci": "latin7", "latin7_general_cs": "latin7", "latin7_bin": "latin7", "utf8mb4_general_ci": "utf8mb4", "utf8mb4_bin": "utf8mb4", "utf8mb4_unicode_ci": "utf8mb4", "utf8mb4_icelandic_ci": "utf8mb4", "utf8mb4_latvian_ci": "utf8mb4", "utf8mb4_romanian_ci": "utf8mb4", "utf8mb4_slovenian_ci": "utf8mb4", "utf8mb4_polish_ci": "utf8mb4", "utf8mb4_estonian_ci": "utf8mb4", "utf8mb4_spanish_ci": "utf8mb4", "utf8mb4_swedish_ci": "utf8mb4", "utf8mb4_turkish_ci": "utf8mb4", "utf8mb4_czech_ci": "utf8mb4", "utf8mb4_danish_ci": "utf8mb4", "utf8mb4_lithuanian_ci": "utf8mb4", "utf8mb4_slovak_ci": "utf8mb4", "utf8mb4_spanish2_ci": "utf8mb4", "utf8mb4_roman_ci": "utf8mb4", "utf8mb4_persian_ci": "utf8mb4", "utf8mb4_esperanto_ci": "utf8mb4", "utf8mb4_hungarian_ci": "utf8mb4", "utf8mb4_sinhala_ci": "utf8mb4", "utf8mb4_german2_ci": "utf8mb4", "utf8mb4_croatian_ci": "utf8mb4", "utf8mb4_unicode_520_ci": "utf8mb4", "utf8mb4_vietnamese_ci": "utf8mb4", "cp1251_bulgarian_ci": "cp1251", "cp1251_ukrainian_ci": "cp1251", "cp1251_bin": "cp1251", "cp1251_general_ci": "cp1251", "cp1251_general_cs": "cp1251", "utf16_general_ci": "utf16", "utf16_bin": "utf16", "utf16_unicode_ci": "utf16", "utf16_icelandic_ci": "utf16", "utf16_latvian_ci": "utf16", "utf16_romanian_ci": "utf16", "utf16_slovenian_ci": "utf16", "utf16_polish_ci": "utf16", "utf16_estonian_ci": "utf16", "utf16_spanish_ci": "utf16", "utf16_swedish_ci": "utf16", "utf16_turkish_ci": "utf16", "utf16_czech_ci": "utf16", "utf16_danish_ci": "utf16", "utf16_lithuanian_ci": "utf16", "utf16_slovak_ci": "utf16", "utf16_spanish2_ci": "utf16", "utf16_roman_ci": "utf16", "utf16_persian_ci": "utf16", "utf16_esperanto_ci": "utf16", "utf16_hungarian_ci": "utf16", "utf16_sinhala_ci": "utf16", "utf16_german2_ci": "utf16", "utf16_croatian_ci": "utf16", "utf16_unicode_520_ci": "utf16", "utf16_vietnamese_ci": "utf16", "utf16le_general_ci": "utf16le", "utf16le_bin": "utf16le", "cp1256_general_ci": "cp1256", "cp1256_bin": "cp1256", "cp1257_lithuanian_ci": "cp1257", "cp1257_bin": "cp1257", "cp1257_general_ci": "cp1257", "utf32_general_ci": "utf32", "utf32_bin": "utf32", "utf32_unicode_ci": "utf32", "utf32_icelandic_ci": "utf32", "utf32_latvian_ci": "utf32", "utf32_romanian_ci": "utf32", "utf32_slovenian_ci": "utf32", "utf32_polish_ci": "utf32", "utf32_estonian_ci": "utf32", "utf32_spanish_ci": "utf32", "utf32_swedish_ci": "utf32", "utf32_turkish_ci": "utf32", "utf32_czech_ci": "utf32", "utf32_danish_ci": "utf32", "utf32_lithuanian_ci": "utf32", "utf32_slovak_ci": "utf32", "utf32_spanish2_ci": "utf32", "utf32_roman_ci": "utf32", "utf32_persian_ci": "utf32", "utf32_esperanto_ci": "utf32", "utf32_hungarian_ci": "utf32", "utf32_sinhala_ci": "utf32", "utf32_german2_ci": "utf32", "utf32_croatian_ci": "utf32", "utf32_unicode_520_ci": "utf32", "utf32_vietnamese_ci": "utf32", "binary": "binary", "geostd8_general_ci": "geostd8", "geostd8_bin": "geostd8", "cp932_japanese_ci": "cp932", "cp932_bin": "cp932", "eucjpms_japanese_ci": "eucjpms", "eucjpms_bin": "eucjpms", "gb18030_chinese_ci": "gb18030", "gb18030_bin": "gb18030", "gb18030_unicode_520_ci": "gb18030"}
normal
{ "blob_id": "5e29c6d1034f6612b0081037f8dc679b49f1dbef", "index": 2855, "step-1": "<mask token>\n", "step-2": "charset = {'big5': ['big5_chinese_ci', 'big5_bin'], 'dec8': [\n 'dec8_swedish_ci', 'dec8_bin'], 'cp850': ['cp850_general_ci',\n 'cp850_bin'], 'hp8': ['hp8_english_ci', 'hp8_bin'], 'koi8r': [\n 'koi8r_general_ci', 'koi8r_bin'], 'latin1': ['latin1_swedish_ci',\n 'latin1_german1_ci', 'latin1_danish_ci', 'latin1_german2_ci',\n 'latin1_bin', 'latin1_general_ci', 'latin1_general_cs',\n 'latin1_spanish_ci'], 'latin2': ['latin2_general_ci', 'latin2_czech_cs',\n 'latin2_hungarian_ci', 'latin2_croatian_ci', 'latin2_bin'], 'swe7': [\n 'swe7_swedish_ci', 'swe7_bin'], 'ascii': ['ascii_general_ci',\n 'ascii_bin'], 'ujis': ['ujis_japanese_ci', 'ujis_bin'], 'sjis': [\n 'sjis_japanese_ci', 'sjis_bin'], 'hebrew': ['hebrew_general_ci',\n 'hebrew_bin'], 'tis620': ['tis620_thai_ci', 'tis620_bin'], 'euckr': [\n 'euckr_korean_ci', 'euckr_bin'], 'koi8u': ['koi8u_general_ci',\n 'koi8u_bin'], 'gb2312': ['gb2312_chinese_ci', 'gb2312_bin'], 'greek': [\n 'greek_general_ci', 'greek_bin'], 'cp1250': ['cp1250_general_ci',\n 'cp1250_czech_cs', 'cp1250_croatian_ci', 'cp1250_bin',\n 'cp1250_polish_ci'], 'gbk': ['gbk_chinese_ci', 'gbk_bin'], 'latin5': [\n 'latin5_turkish_ci', 'latin5_bin'], 'armscii8': ['armscii8_general_ci',\n 'armscii8_bin'], 'utf8': ['utf8_general_ci', 'utf8_bin',\n 'utf8_unicode_ci', 'utf8_icelandic_ci', 'utf8_latvian_ci',\n 'utf8_romanian_ci', 'utf8_slovenian_ci', 'utf8_polish_ci',\n 'utf8_estonian_ci', 'utf8_spanish_ci', 'utf8_swedish_ci',\n 'utf8_turkish_ci', 'utf8_czech_ci', 'utf8_danish_ci',\n 'utf8_lithuanian_ci', 'utf8_slovak_ci', 'utf8_spanish2_ci',\n 'utf8_roman_ci', 'utf8_persian_ci', 'utf8_esperanto_ci',\n 'utf8_hungarian_ci', 'utf8_sinhala_ci', 'utf8_german2_ci',\n 'utf8_croatian_ci', 'utf8_unicode_520_ci', 'utf8_vietnamese_ci',\n 'utf8_general_mysql500_ci'], 'utf8mb4': ['utf8mb4_0900_ai_ci'],\n 'utf8mb3': ['utf8mb3_general_ci'], 'ucs2': ['ucs2_general_ci',\n 'ucs2_bin', 'ucs2_unicode_ci', 'ucs2_icelandic_ci', 'ucs2_latvian_ci',\n 'ucs2_romanian_ci', 'ucs2_slovenian_ci', 'ucs2_polish_ci',\n 'ucs2_estonian_ci', 'ucs2_spanish_ci', 'ucs2_swedish_ci',\n 'ucs2_turkish_ci', 'ucs2_czech_ci', 'ucs2_danish_ci',\n 'ucs2_lithuanian_ci', 'ucs2_slovak_ci', 'ucs2_spanish2_ci',\n 'ucs2_roman_ci', 'ucs2_persian_ci', 'ucs2_esperanto_ci',\n 'ucs2_hungarian_ci', 'ucs2_sinhala_ci', 'ucs2_german2_ci',\n 'ucs2_croatian_ci', 'ucs2_unicode_520_ci', 'ucs2_vietnamese_ci',\n 'ucs2_general_mysql500_ci'], 'cp866': ['cp866_general_ci', 'cp866_bin'],\n 'keybcs2': ['keybcs2_general_ci', 'keybcs2_bin'], 'macce': [\n 'macce_general_ci', 'macce_bin'], 'macroman': ['macroman_general_ci',\n 'macroman_bin'], 'cp852': ['cp852_general_ci', 'cp852_bin'], 'latin7':\n ['latin7_general_ci', 'latin7_estonian_cs', 'latin7_general_cs',\n 'latin7_bin'], 'utf8mb4': ['utf8mb4_general_ci', 'utf8mb4_bin',\n 'utf8mb4_unicode_ci', 'utf8mb4_icelandic_ci', 'utf8mb4_latvian_ci',\n 'utf8mb4_romanian_ci', 'utf8mb4_slovenian_ci', 'utf8mb4_polish_ci',\n 'utf8mb4_estonian_ci', 'utf8mb4_spanish_ci', 'utf8mb4_swedish_ci',\n 'utf8mb4_turkish_ci', 'utf8mb4_czech_ci', 'utf8mb4_danish_ci',\n 'utf8mb4_lithuanian_ci', 'utf8mb4_slovak_ci', 'utf8mb4_spanish2_ci',\n 'utf8mb4_roman_ci', 'utf8mb4_persian_ci', 'utf8mb4_esperanto_ci',\n 'utf8mb4_hungarian_ci', 'utf8mb4_sinhala_ci', 'utf8mb4_german2_ci',\n 'utf8mb4_croatian_ci', 'utf8mb4_unicode_520_ci',\n 'utf8mb4_vietnamese_ci'], 'cp1251': ['cp1251_general_ci',\n 'cp1251_bulgarian_ci', 'cp1251_ukrainian_ci', 'cp1251_bin',\n 'cp1251_general_cs'], 'utf16': ['utf16_general_ci', 'utf16_bin',\n 'utf16_unicode_ci', 'utf16_icelandic_ci', 'utf16_latvian_ci',\n 'utf16_romanian_ci', 'utf16_slovenian_ci', 'utf16_polish_ci',\n 'utf16_estonian_ci', 'utf16_spanish_ci', 'utf16_swedish_ci',\n 'utf16_turkish_ci', 'utf16_czech_ci', 'utf16_danish_ci',\n 'utf16_lithuanian_ci', 'utf16_slovak_ci', 'utf16_spanish2_ci',\n 'utf16_roman_ci', 'utf16_persian_ci', 'utf16_esperanto_ci',\n 'utf16_hungarian_ci', 'utf16_sinhala_ci', 'utf16_german2_ci',\n 'utf16_croatian_ci', 'utf16_unicode_520_ci', 'utf16_vietnamese_ci'],\n 'utf16le': ['utf16le_general_ci', 'utf16le_bin'], 'cp1256': [\n 'cp1256_general_ci', 'cp1256_bin'], 'cp1257': ['cp1257_general_ci',\n 'cp1257_lithuanian_ci', 'cp1257_bin'], 'utf32': ['utf32_general_ci',\n 'utf32_bin', 'utf32_unicode_ci', 'utf32_icelandic_ci',\n 'utf32_latvian_ci', 'utf32_romanian_ci', 'utf32_slovenian_ci',\n 'utf32_polish_ci', 'utf32_estonian_ci', 'utf32_spanish_ci',\n 'utf32_swedish_ci', 'utf32_turkish_ci', 'utf32_czech_ci',\n 'utf32_danish_ci', 'utf32_lithuanian_ci', 'utf32_slovak_ci',\n 'utf32_spanish2_ci', 'utf32_roman_ci', 'utf32_persian_ci',\n 'utf32_esperanto_ci', 'utf32_hungarian_ci', 'utf32_sinhala_ci',\n 'utf32_german2_ci', 'utf32_croatian_ci', 'utf32_unicode_520_ci',\n 'utf32_vietnamese_ci'], 'binary': ['binary'], 'geostd8': [\n 'geostd8_general_ci', 'geostd8_bin'], 'cp932': ['cp932_japanese_ci',\n 'cp932_bin'], 'eucjpms': ['eucjpms_japanese_ci', 'eucjpms_bin'],\n 'gb18030': ['gb18030_chinese_ci', 'gb18030_bin', 'gb18030_unicode_520_ci']}\ncollation = {'big5_chinese_ci': 'big5', 'big5_bin': 'big5',\n 'dec8_swedish_ci': 'dec8', 'dec8_bin': 'dec8', 'cp850_general_ci':\n 'cp850', 'cp850_bin': 'cp850', 'hp8_english_ci': 'hp8', 'hp8_bin':\n 'hp8', 'koi8r_general_ci': 'koi8r', 'koi8r_bin': 'koi8r',\n 'latin1_german1_ci': 'latin1', 'latin1_swedish_ci': 'latin1',\n 'latin1_danish_ci': 'latin1', 'latin1_german2_ci': 'latin1',\n 'latin1_bin': 'latin1', 'latin1_general_ci': 'latin1',\n 'latin1_general_cs': 'latin1', 'latin1_spanish_ci': 'latin1',\n 'latin2_czech_cs': 'latin2', 'latin2_general_ci': 'latin2',\n 'latin2_hungarian_ci': 'latin2', 'latin2_croatian_ci': 'latin2',\n 'latin2_bin': 'latin2', 'swe7_swedish_ci': 'swe7', 'swe7_bin': 'swe7',\n 'ascii_general_ci': 'ascii', 'ascii_bin': 'ascii', 'ujis_japanese_ci':\n 'ujis', 'ujis_bin': 'ujis', 'sjis_japanese_ci': 'sjis', 'sjis_bin':\n 'sjis', 'hebrew_general_ci': 'hebrew', 'hebrew_bin': 'hebrew',\n 'tis620_thai_ci': 'tis620', 'tis620_bin': 'tis620', 'euckr_korean_ci':\n 'euckr', 'euckr_bin': 'euckr', 'koi8u_general_ci': 'koi8u', 'koi8u_bin':\n 'koi8u', 'gb2312_chinese_ci': 'gb2312', 'gb2312_bin': 'gb2312',\n 'greek_general_ci': 'greek', 'greek_bin': 'greek', 'cp1250_general_ci':\n 'cp1250', 'cp1250_czech_cs': 'cp1250', 'cp1250_croatian_ci': 'cp1250',\n 'cp1250_bin': 'cp1250', 'cp1250_polish_ci': 'cp1250', 'gbk_chinese_ci':\n 'gbk', 'gbk_bin': 'gbk', 'latin5_turkish_ci': 'latin5', 'latin5_bin':\n 'latin5', 'armscii8_general_ci': 'armscii8', 'armscii8_bin': 'armscii8',\n 'utf8_general_ci': 'utf8', 'utf8mb3_general_ci': 'utf8mb3', 'utf8_bin':\n 'utf8', 'utf8_unicode_ci': 'utf8', 'utf8_icelandic_ci': 'utf8',\n 'utf8_latvian_ci': 'utf8', 'utf8_romanian_ci': 'utf8',\n 'utf8_slovenian_ci': 'utf8', 'utf8_polish_ci': 'utf8',\n 'utf8_estonian_ci': 'utf8', 'utf8_spanish_ci': 'utf8',\n 'utf8_swedish_ci': 'utf8', 'utf8_turkish_ci': 'utf8', 'utf8_czech_ci':\n 'utf8', 'utf8_danish_ci': 'utf8', 'utf8_lithuanian_ci': 'utf8',\n 'utf8_slovak_ci': 'utf8', 'utf8_spanish2_ci': 'utf8', 'utf8_roman_ci':\n 'utf8', 'utf8_persian_ci': 'utf8', 'utf8_esperanto_ci': 'utf8',\n 'utf8_hungarian_ci': 'utf8', 'utf8_sinhala_ci': 'utf8',\n 'utf8_german2_ci': 'utf8', 'utf8_croatian_ci': 'utf8',\n 'utf8_unicode_520_ci': 'utf8', 'utf8_vietnamese_ci': 'utf8',\n 'utf8_general_mysql500_ci': 'utf8', 'utf8mb4_0900_ai_ci': 'utf8mb4',\n 'ucs2_general_ci': 'ucs2', 'ucs2_bin': 'ucs2', 'ucs2_unicode_ci':\n 'ucs2', 'ucs2_icelandic_ci': 'ucs2', 'ucs2_latvian_ci': 'ucs2',\n 'ucs2_romanian_ci': 'ucs2', 'ucs2_slovenian_ci': 'ucs2',\n 'ucs2_polish_ci': 'ucs2', 'ucs2_estonian_ci': 'ucs2', 'ucs2_spanish_ci':\n 'ucs2', 'ucs2_swedish_ci': 'ucs2', 'ucs2_turkish_ci': 'ucs2',\n 'ucs2_czech_ci': 'ucs2', 'ucs2_danish_ci': 'ucs2', 'ucs2_lithuanian_ci':\n 'ucs2', 'ucs2_slovak_ci': 'ucs2', 'ucs2_spanish2_ci': 'ucs2',\n 'ucs2_roman_ci': 'ucs2', 'ucs2_persian_ci': 'ucs2', 'ucs2_esperanto_ci':\n 'ucs2', 'ucs2_hungarian_ci': 'ucs2', 'ucs2_sinhala_ci': 'ucs2',\n 'ucs2_german2_ci': 'ucs2', 'ucs2_croatian_ci': 'ucs2',\n 'ucs2_unicode_520_ci': 'ucs2', 'ucs2_vietnamese_ci': 'ucs2',\n 'ucs2_general_mysql500_ci': 'ucs2', 'cp866_general_ci': 'cp866',\n 'cp866_bin': 'cp866', 'keybcs2_general_ci': 'keybcs2', 'keybcs2_bin':\n 'keybcs2', 'macce_general_ci': 'macce', 'macce_bin': 'macce',\n 'macroman_general_ci': 'macroman', 'macroman_bin': 'macroman',\n 'cp852_general_ci': 'cp852', 'cp852_bin': 'cp852', 'latin7_estonian_cs':\n 'latin7', 'latin7_general_ci': 'latin7', 'latin7_general_cs': 'latin7',\n 'latin7_bin': 'latin7', 'utf8mb4_general_ci': 'utf8mb4', 'utf8mb4_bin':\n 'utf8mb4', 'utf8mb4_unicode_ci': 'utf8mb4', 'utf8mb4_icelandic_ci':\n 'utf8mb4', 'utf8mb4_latvian_ci': 'utf8mb4', 'utf8mb4_romanian_ci':\n 'utf8mb4', 'utf8mb4_slovenian_ci': 'utf8mb4', 'utf8mb4_polish_ci':\n 'utf8mb4', 'utf8mb4_estonian_ci': 'utf8mb4', 'utf8mb4_spanish_ci':\n 'utf8mb4', 'utf8mb4_swedish_ci': 'utf8mb4', 'utf8mb4_turkish_ci':\n 'utf8mb4', 'utf8mb4_czech_ci': 'utf8mb4', 'utf8mb4_danish_ci':\n 'utf8mb4', 'utf8mb4_lithuanian_ci': 'utf8mb4', 'utf8mb4_slovak_ci':\n 'utf8mb4', 'utf8mb4_spanish2_ci': 'utf8mb4', 'utf8mb4_roman_ci':\n 'utf8mb4', 'utf8mb4_persian_ci': 'utf8mb4', 'utf8mb4_esperanto_ci':\n 'utf8mb4', 'utf8mb4_hungarian_ci': 'utf8mb4', 'utf8mb4_sinhala_ci':\n 'utf8mb4', 'utf8mb4_german2_ci': 'utf8mb4', 'utf8mb4_croatian_ci':\n 'utf8mb4', 'utf8mb4_unicode_520_ci': 'utf8mb4', 'utf8mb4_vietnamese_ci':\n 'utf8mb4', 'cp1251_bulgarian_ci': 'cp1251', 'cp1251_ukrainian_ci':\n 'cp1251', 'cp1251_bin': 'cp1251', 'cp1251_general_ci': 'cp1251',\n 'cp1251_general_cs': 'cp1251', 'utf16_general_ci': 'utf16', 'utf16_bin':\n 'utf16', 'utf16_unicode_ci': 'utf16', 'utf16_icelandic_ci': 'utf16',\n 'utf16_latvian_ci': 'utf16', 'utf16_romanian_ci': 'utf16',\n 'utf16_slovenian_ci': 'utf16', 'utf16_polish_ci': 'utf16',\n 'utf16_estonian_ci': 'utf16', 'utf16_spanish_ci': 'utf16',\n 'utf16_swedish_ci': 'utf16', 'utf16_turkish_ci': 'utf16',\n 'utf16_czech_ci': 'utf16', 'utf16_danish_ci': 'utf16',\n 'utf16_lithuanian_ci': 'utf16', 'utf16_slovak_ci': 'utf16',\n 'utf16_spanish2_ci': 'utf16', 'utf16_roman_ci': 'utf16',\n 'utf16_persian_ci': 'utf16', 'utf16_esperanto_ci': 'utf16',\n 'utf16_hungarian_ci': 'utf16', 'utf16_sinhala_ci': 'utf16',\n 'utf16_german2_ci': 'utf16', 'utf16_croatian_ci': 'utf16',\n 'utf16_unicode_520_ci': 'utf16', 'utf16_vietnamese_ci': 'utf16',\n 'utf16le_general_ci': 'utf16le', 'utf16le_bin': 'utf16le',\n 'cp1256_general_ci': 'cp1256', 'cp1256_bin': 'cp1256',\n 'cp1257_lithuanian_ci': 'cp1257', 'cp1257_bin': 'cp1257',\n 'cp1257_general_ci': 'cp1257', 'utf32_general_ci': 'utf32', 'utf32_bin':\n 'utf32', 'utf32_unicode_ci': 'utf32', 'utf32_icelandic_ci': 'utf32',\n 'utf32_latvian_ci': 'utf32', 'utf32_romanian_ci': 'utf32',\n 'utf32_slovenian_ci': 'utf32', 'utf32_polish_ci': 'utf32',\n 'utf32_estonian_ci': 'utf32', 'utf32_spanish_ci': 'utf32',\n 'utf32_swedish_ci': 'utf32', 'utf32_turkish_ci': 'utf32',\n 'utf32_czech_ci': 'utf32', 'utf32_danish_ci': 'utf32',\n 'utf32_lithuanian_ci': 'utf32', 'utf32_slovak_ci': 'utf32',\n 'utf32_spanish2_ci': 'utf32', 'utf32_roman_ci': 'utf32',\n 'utf32_persian_ci': 'utf32', 'utf32_esperanto_ci': 'utf32',\n 'utf32_hungarian_ci': 'utf32', 'utf32_sinhala_ci': 'utf32',\n 'utf32_german2_ci': 'utf32', 'utf32_croatian_ci': 'utf32',\n 'utf32_unicode_520_ci': 'utf32', 'utf32_vietnamese_ci': 'utf32',\n 'binary': 'binary', 'geostd8_general_ci': 'geostd8', 'geostd8_bin':\n 'geostd8', 'cp932_japanese_ci': 'cp932', 'cp932_bin': 'cp932',\n 'eucjpms_japanese_ci': 'eucjpms', 'eucjpms_bin': 'eucjpms',\n 'gb18030_chinese_ci': 'gb18030', 'gb18030_bin': 'gb18030',\n 'gb18030_unicode_520_ci': 'gb18030'}\n", "step-3": "# Copyright 2016 Tesora, Inc.\n# All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\n\ncharset = {\"big5\": [\"big5_chinese_ci\", \"big5_bin\"],\n \"dec8\": [\"dec8_swedish_ci\", \"dec8_bin\"],\n \"cp850\": [\"cp850_general_ci\", \"cp850_bin\"],\n \"hp8\": [\"hp8_english_ci\", \"hp8_bin\"],\n \"koi8r\": [\"koi8r_general_ci\", \"koi8r_bin\"],\n \"latin1\": [\"latin1_swedish_ci\",\n \"latin1_german1_ci\",\n \"latin1_danish_ci\",\n \"latin1_german2_ci\",\n \"latin1_bin\",\n \"latin1_general_ci\",\n \"latin1_general_cs\",\n \"latin1_spanish_ci\"],\n \"latin2\": [\"latin2_general_ci\",\n \"latin2_czech_cs\",\n \"latin2_hungarian_ci\",\n \"latin2_croatian_ci\",\n \"latin2_bin\"],\n \"swe7\": [\"swe7_swedish_ci\", \"swe7_bin\"],\n \"ascii\": [\"ascii_general_ci\", \"ascii_bin\"],\n \"ujis\": [\"ujis_japanese_ci\", \"ujis_bin\"],\n \"sjis\": [\"sjis_japanese_ci\", \"sjis_bin\"],\n \"hebrew\": [\"hebrew_general_ci\", \"hebrew_bin\"],\n \"tis620\": [\"tis620_thai_ci\", \"tis620_bin\"],\n \"euckr\": [\"euckr_korean_ci\", \"euckr_bin\"],\n \"koi8u\": [\"koi8u_general_ci\", \"koi8u_bin\"],\n \"gb2312\": [\"gb2312_chinese_ci\", \"gb2312_bin\"],\n \"greek\": [\"greek_general_ci\", \"greek_bin\"],\n \"cp1250\": [\"cp1250_general_ci\",\n \"cp1250_czech_cs\",\n \"cp1250_croatian_ci\",\n \"cp1250_bin\",\n \"cp1250_polish_ci\"],\n \"gbk\": [\"gbk_chinese_ci\", \"gbk_bin\"],\n \"latin5\": [\"latin5_turkish_ci\", \"latin5_bin\"],\n \"armscii8\": [\"armscii8_general_ci\", \"armscii8_bin\"],\n \"utf8\": [\"utf8_general_ci\",\n \"utf8_bin\",\n \"utf8_unicode_ci\",\n \"utf8_icelandic_ci\",\n \"utf8_latvian_ci\",\n \"utf8_romanian_ci\",\n \"utf8_slovenian_ci\",\n \"utf8_polish_ci\",\n \"utf8_estonian_ci\",\n \"utf8_spanish_ci\",\n \"utf8_swedish_ci\",\n \"utf8_turkish_ci\",\n \"utf8_czech_ci\",\n \"utf8_danish_ci\",\n \"utf8_lithuanian_ci\",\n \"utf8_slovak_ci\",\n \"utf8_spanish2_ci\",\n \"utf8_roman_ci\",\n \"utf8_persian_ci\",\n \"utf8_esperanto_ci\",\n \"utf8_hungarian_ci\",\n \"utf8_sinhala_ci\",\n \"utf8_german2_ci\",\n \"utf8_croatian_ci\",\n \"utf8_unicode_520_ci\",\n \"utf8_vietnamese_ci\",\n \"utf8_general_mysql500_ci\"\n ],\n \"utf8mb4\": [\"utf8mb4_0900_ai_ci\"],\n \"utf8mb3\": [\"utf8mb3_general_ci\"],\n \"ucs2\": [\"ucs2_general_ci\",\n \"ucs2_bin\",\n \"ucs2_unicode_ci\",\n \"ucs2_icelandic_ci\",\n \"ucs2_latvian_ci\",\n \"ucs2_romanian_ci\",\n \"ucs2_slovenian_ci\",\n \"ucs2_polish_ci\",\n \"ucs2_estonian_ci\",\n \"ucs2_spanish_ci\",\n \"ucs2_swedish_ci\",\n \"ucs2_turkish_ci\",\n \"ucs2_czech_ci\",\n \"ucs2_danish_ci\",\n \"ucs2_lithuanian_ci\",\n \"ucs2_slovak_ci\",\n \"ucs2_spanish2_ci\",\n \"ucs2_roman_ci\",\n \"ucs2_persian_ci\",\n \"ucs2_esperanto_ci\",\n \"ucs2_hungarian_ci\",\n \"ucs2_sinhala_ci\",\n \"ucs2_german2_ci\",\n \"ucs2_croatian_ci\",\n \"ucs2_unicode_520_ci\",\n \"ucs2_vietnamese_ci\",\n \"ucs2_general_mysql500_ci\"\n ],\n \"cp866\": [\"cp866_general_ci\", \"cp866_bin\"],\n \"keybcs2\": [\"keybcs2_general_ci\", \"keybcs2_bin\"],\n \"macce\": [\"macce_general_ci\", \"macce_bin\"],\n \"macroman\": [\"macroman_general_ci\", \"macroman_bin\"],\n \"cp852\": [\"cp852_general_ci\", \"cp852_bin\"],\n \"latin7\": [\"latin7_general_ci\",\n \"latin7_estonian_cs\",\n \"latin7_general_cs\",\n \"latin7_bin\"],\n \"utf8mb4\": [\"utf8mb4_general_ci\",\n \"utf8mb4_bin\",\n \"utf8mb4_unicode_ci\",\n \"utf8mb4_icelandic_ci\",\n \"utf8mb4_latvian_ci\",\n \"utf8mb4_romanian_ci\",\n \"utf8mb4_slovenian_ci\",\n \"utf8mb4_polish_ci\",\n \"utf8mb4_estonian_ci\",\n \"utf8mb4_spanish_ci\",\n \"utf8mb4_swedish_ci\",\n \"utf8mb4_turkish_ci\",\n \"utf8mb4_czech_ci\",\n \"utf8mb4_danish_ci\",\n \"utf8mb4_lithuanian_ci\",\n \"utf8mb4_slovak_ci\",\n \"utf8mb4_spanish2_ci\",\n \"utf8mb4_roman_ci\",\n \"utf8mb4_persian_ci\",\n \"utf8mb4_esperanto_ci\",\n \"utf8mb4_hungarian_ci\",\n \"utf8mb4_sinhala_ci\",\n \"utf8mb4_german2_ci\",\n \"utf8mb4_croatian_ci\",\n \"utf8mb4_unicode_520_ci\",\n \"utf8mb4_vietnamese_ci\"],\n \"cp1251\": [\"cp1251_general_ci\",\n \"cp1251_bulgarian_ci\",\n \"cp1251_ukrainian_ci\",\n \"cp1251_bin\",\n \"cp1251_general_cs\"],\n \"utf16\": [\"utf16_general_ci\",\n \"utf16_bin\",\n \"utf16_unicode_ci\",\n \"utf16_icelandic_ci\",\n \"utf16_latvian_ci\",\n \"utf16_romanian_ci\",\n \"utf16_slovenian_ci\",\n \"utf16_polish_ci\",\n \"utf16_estonian_ci\",\n \"utf16_spanish_ci\",\n \"utf16_swedish_ci\",\n \"utf16_turkish_ci\",\n \"utf16_czech_ci\",\n \"utf16_danish_ci\",\n \"utf16_lithuanian_ci\",\n \"utf16_slovak_ci\",\n \"utf16_spanish2_ci\",\n \"utf16_roman_ci\",\n \"utf16_persian_ci\",\n \"utf16_esperanto_ci\",\n \"utf16_hungarian_ci\",\n \"utf16_sinhala_ci\",\n \"utf16_german2_ci\",\n \"utf16_croatian_ci\",\n \"utf16_unicode_520_ci\",\n \"utf16_vietnamese_ci\"],\n \"utf16le\": [\"utf16le_general_ci\",\n \"utf16le_bin\"],\n \"cp1256\": [\"cp1256_general_ci\", \"cp1256_bin\"],\n \"cp1257\": [\"cp1257_general_ci\",\n \"cp1257_lithuanian_ci\",\n \"cp1257_bin\"],\n \"utf32\": [\"utf32_general_ci\",\n \"utf32_bin\",\n \"utf32_unicode_ci\",\n \"utf32_icelandic_ci\",\n \"utf32_latvian_ci\",\n \"utf32_romanian_ci\",\n \"utf32_slovenian_ci\",\n \"utf32_polish_ci\",\n \"utf32_estonian_ci\",\n \"utf32_spanish_ci\",\n \"utf32_swedish_ci\",\n \"utf32_turkish_ci\",\n \"utf32_czech_ci\",\n \"utf32_danish_ci\",\n \"utf32_lithuanian_ci\",\n \"utf32_slovak_ci\",\n \"utf32_spanish2_ci\",\n \"utf32_roman_ci\",\n \"utf32_persian_ci\",\n \"utf32_esperanto_ci\",\n \"utf32_hungarian_ci\",\n \"utf32_sinhala_ci\",\n \"utf32_german2_ci\",\n \"utf32_croatian_ci\",\n \"utf32_unicode_520_ci\",\n \"utf32_vietnamese_ci\"],\n \"binary\": [\"binary\"],\n \"geostd8\": [\"geostd8_general_ci\", \"geostd8_bin\"],\n \"cp932\": [\"cp932_japanese_ci\", \"cp932_bin\"],\n \"eucjpms\": [\"eucjpms_japanese_ci\", \"eucjpms_bin\"],\n \"gb18030\": [\"gb18030_chinese_ci\",\n \"gb18030_bin\",\n \"gb18030_unicode_520_ci\"]}\n\ncollation = {\"big5_chinese_ci\": \"big5\",\n \"big5_bin\": \"big5\",\n \"dec8_swedish_ci\": \"dec8\",\n \"dec8_bin\": \"dec8\",\n \"cp850_general_ci\": \"cp850\",\n \"cp850_bin\": \"cp850\",\n \"hp8_english_ci\": \"hp8\",\n \"hp8_bin\": \"hp8\",\n \"koi8r_general_ci\": \"koi8r\",\n \"koi8r_bin\": \"koi8r\",\n \"latin1_german1_ci\": \"latin1\",\n \"latin1_swedish_ci\": \"latin1\",\n \"latin1_danish_ci\": \"latin1\",\n \"latin1_german2_ci\": \"latin1\",\n \"latin1_bin\": \"latin1\",\n \"latin1_general_ci\": \"latin1\",\n \"latin1_general_cs\": \"latin1\",\n \"latin1_spanish_ci\": \"latin1\",\n \"latin2_czech_cs\": \"latin2\",\n \"latin2_general_ci\": \"latin2\",\n \"latin2_hungarian_ci\": \"latin2\",\n \"latin2_croatian_ci\": \"latin2\",\n \"latin2_bin\": \"latin2\",\n \"swe7_swedish_ci\": \"swe7\",\n \"swe7_bin\": \"swe7\",\n \"ascii_general_ci\": \"ascii\",\n \"ascii_bin\": \"ascii\",\n \"ujis_japanese_ci\": \"ujis\",\n \"ujis_bin\": \"ujis\",\n \"sjis_japanese_ci\": \"sjis\",\n \"sjis_bin\": \"sjis\",\n \"hebrew_general_ci\": \"hebrew\",\n \"hebrew_bin\": \"hebrew\",\n \"tis620_thai_ci\": \"tis620\",\n \"tis620_bin\": \"tis620\",\n \"euckr_korean_ci\": \"euckr\",\n \"euckr_bin\": \"euckr\",\n \"koi8u_general_ci\": \"koi8u\",\n \"koi8u_bin\": \"koi8u\",\n \"gb2312_chinese_ci\": \"gb2312\",\n \"gb2312_bin\": \"gb2312\",\n \"greek_general_ci\": \"greek\",\n \"greek_bin\": \"greek\",\n \"cp1250_general_ci\": \"cp1250\",\n \"cp1250_czech_cs\": \"cp1250\",\n \"cp1250_croatian_ci\": \"cp1250\",\n \"cp1250_bin\": \"cp1250\",\n \"cp1250_polish_ci\": \"cp1250\",\n \"gbk_chinese_ci\": \"gbk\",\n \"gbk_bin\": \"gbk\",\n \"latin5_turkish_ci\": \"latin5\",\n \"latin5_bin\": \"latin5\",\n \"armscii8_general_ci\": \"armscii8\",\n \"armscii8_bin\": \"armscii8\",\n \"utf8_general_ci\": \"utf8\",\n \"utf8mb3_general_ci\": \"utf8mb3\",\n \"utf8_bin\": \"utf8\",\n \"utf8_unicode_ci\": \"utf8\",\n \"utf8_icelandic_ci\": \"utf8\",\n \"utf8_latvian_ci\": \"utf8\",\n \"utf8_romanian_ci\": \"utf8\",\n \"utf8_slovenian_ci\": \"utf8\",\n \"utf8_polish_ci\": \"utf8\",\n \"utf8_estonian_ci\": \"utf8\",\n \"utf8_spanish_ci\": \"utf8\",\n \"utf8_swedish_ci\": \"utf8\",\n \"utf8_turkish_ci\": \"utf8\",\n \"utf8_czech_ci\": \"utf8\",\n \"utf8_danish_ci\": \"utf8\",\n \"utf8_lithuanian_ci\": \"utf8\",\n \"utf8_slovak_ci\": \"utf8\",\n \"utf8_spanish2_ci\": \"utf8\",\n \"utf8_roman_ci\": \"utf8\",\n \"utf8_persian_ci\": \"utf8\",\n \"utf8_esperanto_ci\": \"utf8\",\n \"utf8_hungarian_ci\": \"utf8\",\n \"utf8_sinhala_ci\": \"utf8\",\n \"utf8_german2_ci\": \"utf8\",\n \"utf8_croatian_ci\": \"utf8\",\n \"utf8_unicode_520_ci\": \"utf8\",\n \"utf8_vietnamese_ci\": \"utf8\",\n \"utf8_general_mysql500_ci\": \"utf8\",\n \"utf8mb4_0900_ai_ci\": \"utf8mb4\",\n \"ucs2_general_ci\": \"ucs2\",\n \"ucs2_bin\": \"ucs2\",\n \"ucs2_unicode_ci\": \"ucs2\",\n \"ucs2_icelandic_ci\": \"ucs2\",\n \"ucs2_latvian_ci\": \"ucs2\",\n \"ucs2_romanian_ci\": \"ucs2\",\n \"ucs2_slovenian_ci\": \"ucs2\",\n \"ucs2_polish_ci\": \"ucs2\",\n \"ucs2_estonian_ci\": \"ucs2\",\n \"ucs2_spanish_ci\": \"ucs2\",\n \"ucs2_swedish_ci\": \"ucs2\",\n \"ucs2_turkish_ci\": \"ucs2\",\n \"ucs2_czech_ci\": \"ucs2\",\n \"ucs2_danish_ci\": \"ucs2\",\n \"ucs2_lithuanian_ci\": \"ucs2\",\n \"ucs2_slovak_ci\": \"ucs2\",\n \"ucs2_spanish2_ci\": \"ucs2\",\n \"ucs2_roman_ci\": \"ucs2\",\n \"ucs2_persian_ci\": \"ucs2\",\n \"ucs2_esperanto_ci\": \"ucs2\",\n \"ucs2_hungarian_ci\": \"ucs2\",\n \"ucs2_sinhala_ci\": \"ucs2\",\n \"ucs2_german2_ci\": \"ucs2\",\n \"ucs2_croatian_ci\": \"ucs2\",\n \"ucs2_unicode_520_ci\": \"ucs2\",\n \"ucs2_vietnamese_ci\": \"ucs2\",\n \"ucs2_general_mysql500_ci\": \"ucs2\",\n \"cp866_general_ci\": \"cp866\",\n \"cp866_bin\": \"cp866\",\n \"keybcs2_general_ci\": \"keybcs2\",\n \"keybcs2_bin\": \"keybcs2\",\n \"macce_general_ci\": \"macce\",\n \"macce_bin\": \"macce\",\n \"macroman_general_ci\": \"macroman\",\n \"macroman_bin\": \"macroman\",\n \"cp852_general_ci\": \"cp852\",\n \"cp852_bin\": \"cp852\",\n \"latin7_estonian_cs\": \"latin7\",\n \"latin7_general_ci\": \"latin7\",\n \"latin7_general_cs\": \"latin7\",\n \"latin7_bin\": \"latin7\",\n \"utf8mb4_general_ci\": \"utf8mb4\",\n \"utf8mb4_bin\": \"utf8mb4\",\n \"utf8mb4_unicode_ci\": \"utf8mb4\",\n \"utf8mb4_icelandic_ci\": \"utf8mb4\",\n \"utf8mb4_latvian_ci\": \"utf8mb4\",\n \"utf8mb4_romanian_ci\": \"utf8mb4\",\n \"utf8mb4_slovenian_ci\": \"utf8mb4\",\n \"utf8mb4_polish_ci\": \"utf8mb4\",\n \"utf8mb4_estonian_ci\": \"utf8mb4\",\n \"utf8mb4_spanish_ci\": \"utf8mb4\",\n \"utf8mb4_swedish_ci\": \"utf8mb4\",\n \"utf8mb4_turkish_ci\": \"utf8mb4\",\n \"utf8mb4_czech_ci\": \"utf8mb4\",\n \"utf8mb4_danish_ci\": \"utf8mb4\",\n \"utf8mb4_lithuanian_ci\": \"utf8mb4\",\n \"utf8mb4_slovak_ci\": \"utf8mb4\",\n \"utf8mb4_spanish2_ci\": \"utf8mb4\",\n \"utf8mb4_roman_ci\": \"utf8mb4\",\n \"utf8mb4_persian_ci\": \"utf8mb4\",\n \"utf8mb4_esperanto_ci\": \"utf8mb4\",\n \"utf8mb4_hungarian_ci\": \"utf8mb4\",\n \"utf8mb4_sinhala_ci\": \"utf8mb4\",\n \"utf8mb4_german2_ci\": \"utf8mb4\",\n \"utf8mb4_croatian_ci\": \"utf8mb4\",\n \"utf8mb4_unicode_520_ci\": \"utf8mb4\",\n \"utf8mb4_vietnamese_ci\": \"utf8mb4\",\n \"cp1251_bulgarian_ci\": \"cp1251\",\n \"cp1251_ukrainian_ci\": \"cp1251\",\n \"cp1251_bin\": \"cp1251\",\n \"cp1251_general_ci\": \"cp1251\",\n \"cp1251_general_cs\": \"cp1251\",\n \"utf16_general_ci\": \"utf16\",\n \"utf16_bin\": \"utf16\",\n \"utf16_unicode_ci\": \"utf16\",\n \"utf16_icelandic_ci\": \"utf16\",\n \"utf16_latvian_ci\": \"utf16\",\n \"utf16_romanian_ci\": \"utf16\",\n \"utf16_slovenian_ci\": \"utf16\",\n \"utf16_polish_ci\": \"utf16\",\n \"utf16_estonian_ci\": \"utf16\",\n \"utf16_spanish_ci\": \"utf16\",\n \"utf16_swedish_ci\": \"utf16\",\n \"utf16_turkish_ci\": \"utf16\",\n \"utf16_czech_ci\": \"utf16\",\n \"utf16_danish_ci\": \"utf16\",\n \"utf16_lithuanian_ci\": \"utf16\",\n \"utf16_slovak_ci\": \"utf16\",\n \"utf16_spanish2_ci\": \"utf16\",\n \"utf16_roman_ci\": \"utf16\",\n \"utf16_persian_ci\": \"utf16\",\n \"utf16_esperanto_ci\": \"utf16\",\n \"utf16_hungarian_ci\": \"utf16\",\n \"utf16_sinhala_ci\": \"utf16\",\n \"utf16_german2_ci\": \"utf16\",\n \"utf16_croatian_ci\": \"utf16\",\n \"utf16_unicode_520_ci\": \"utf16\",\n \"utf16_vietnamese_ci\": \"utf16\",\n \"utf16le_general_ci\": \"utf16le\",\n \"utf16le_bin\": \"utf16le\",\n \"cp1256_general_ci\": \"cp1256\",\n \"cp1256_bin\": \"cp1256\",\n \"cp1257_lithuanian_ci\": \"cp1257\",\n \"cp1257_bin\": \"cp1257\",\n \"cp1257_general_ci\": \"cp1257\",\n \"utf32_general_ci\": \"utf32\",\n \"utf32_bin\": \"utf32\",\n \"utf32_unicode_ci\": \"utf32\",\n \"utf32_icelandic_ci\": \"utf32\",\n \"utf32_latvian_ci\": \"utf32\",\n \"utf32_romanian_ci\": \"utf32\",\n \"utf32_slovenian_ci\": \"utf32\",\n \"utf32_polish_ci\": \"utf32\",\n \"utf32_estonian_ci\": \"utf32\",\n \"utf32_spanish_ci\": \"utf32\",\n \"utf32_swedish_ci\": \"utf32\",\n \"utf32_turkish_ci\": \"utf32\",\n \"utf32_czech_ci\": \"utf32\",\n \"utf32_danish_ci\": \"utf32\",\n \"utf32_lithuanian_ci\": \"utf32\",\n \"utf32_slovak_ci\": \"utf32\",\n \"utf32_spanish2_ci\": \"utf32\",\n \"utf32_roman_ci\": \"utf32\",\n \"utf32_persian_ci\": \"utf32\",\n \"utf32_esperanto_ci\": \"utf32\",\n \"utf32_hungarian_ci\": \"utf32\",\n \"utf32_sinhala_ci\": \"utf32\",\n \"utf32_german2_ci\": \"utf32\",\n \"utf32_croatian_ci\": \"utf32\",\n \"utf32_unicode_520_ci\": \"utf32\",\n \"utf32_vietnamese_ci\": \"utf32\",\n \"binary\": \"binary\",\n \"geostd8_general_ci\": \"geostd8\",\n \"geostd8_bin\": \"geostd8\",\n \"cp932_japanese_ci\": \"cp932\",\n \"cp932_bin\": \"cp932\",\n \"eucjpms_japanese_ci\": \"eucjpms\",\n \"eucjpms_bin\": \"eucjpms\",\n \"gb18030_chinese_ci\": \"gb18030\",\n \"gb18030_bin\": \"gb18030\",\n \"gb18030_unicode_520_ci\": \"gb18030\"}\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# Parsing the raw.csv generated by running lis2dh_cluster.py g = 9.806 def twos_complement(lsb, msb): signBit = (msb & 0b10000000) >> 7 msb &= 0x7F # Strip off sign bit if signBit: x = (msb << 8) + lsb x ^= 0x7FFF x = -1 - x else: x = (msb << 8) + lsb x = x>>6 # Remove left justification of data return x offset = 'not_set' with open('raw.csv', 'r') as infile: with open('parsed.csv', 'a') as outfile: # Read the first line (the column headers) headers = infile.readline().strip('\n\r') headers = headers.split(';') newheaders = [] for header in headers: if header == 't': newheaders += ['t'] else: newheaders += [header+'x', header+'y', header+'z'] newheaders = ','.join(newheaders) outfile.write(newheaders + '\n') # Read and parse all sequential lines line_in = infile.readline().strip('\n\r') while line_in: line_out = '' data = line_in.split(';') timestamp = eval(data[0]) if offset == 'not_set': offset = timestamp line_out += str(timestamp - offset) for accel in data[1:]: array = eval(accel) # Quick and dirty way of converting string to array line_out += ',' line_out += str(twos_complement(array[0], array[1])) line_out += ',' line_out += str(twos_complement(array[2], array[3])) line_out += ',' line_out += str(twos_complement(array[4], array[5])) line_out += '\n' outfile.write(line_out) try: line_in = infile.readline().strip('\n\r') except: pass
normal
{ "blob_id": "a1b579494d20e8b8a26f7636ebd444252d2aa250", "index": 4824, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef twos_complement(lsb, msb):\n signBit = (msb & 128) >> 7\n msb &= 127\n if signBit:\n x = (msb << 8) + lsb\n x ^= 32767\n x = -1 - x\n else:\n x = (msb << 8) + lsb\n x = x >> 6\n return x\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef twos_complement(lsb, msb):\n signBit = (msb & 128) >> 7\n msb &= 127\n if signBit:\n x = (msb << 8) + lsb\n x ^= 32767\n x = -1 - x\n else:\n x = (msb << 8) + lsb\n x = x >> 6\n return x\n\n\n<mask token>\nwith open('raw.csv', 'r') as infile:\n with open('parsed.csv', 'a') as outfile:\n headers = infile.readline().strip('\\n\\r')\n headers = headers.split(';')\n newheaders = []\n for header in headers:\n if header == 't':\n newheaders += ['t']\n else:\n newheaders += [header + 'x', header + 'y', header + 'z']\n newheaders = ','.join(newheaders)\n outfile.write(newheaders + '\\n')\n line_in = infile.readline().strip('\\n\\r')\n while line_in:\n line_out = ''\n data = line_in.split(';')\n timestamp = eval(data[0])\n if offset == 'not_set':\n offset = timestamp\n line_out += str(timestamp - offset)\n for accel in data[1:]:\n array = eval(accel)\n line_out += ','\n line_out += str(twos_complement(array[0], array[1]))\n line_out += ','\n line_out += str(twos_complement(array[2], array[3]))\n line_out += ','\n line_out += str(twos_complement(array[4], array[5]))\n line_out += '\\n'\n outfile.write(line_out)\n try:\n line_in = infile.readline().strip('\\n\\r')\n except:\n pass\n", "step-4": "g = 9.806\n\n\ndef twos_complement(lsb, msb):\n signBit = (msb & 128) >> 7\n msb &= 127\n if signBit:\n x = (msb << 8) + lsb\n x ^= 32767\n x = -1 - x\n else:\n x = (msb << 8) + lsb\n x = x >> 6\n return x\n\n\noffset = 'not_set'\nwith open('raw.csv', 'r') as infile:\n with open('parsed.csv', 'a') as outfile:\n headers = infile.readline().strip('\\n\\r')\n headers = headers.split(';')\n newheaders = []\n for header in headers:\n if header == 't':\n newheaders += ['t']\n else:\n newheaders += [header + 'x', header + 'y', header + 'z']\n newheaders = ','.join(newheaders)\n outfile.write(newheaders + '\\n')\n line_in = infile.readline().strip('\\n\\r')\n while line_in:\n line_out = ''\n data = line_in.split(';')\n timestamp = eval(data[0])\n if offset == 'not_set':\n offset = timestamp\n line_out += str(timestamp - offset)\n for accel in data[1:]:\n array = eval(accel)\n line_out += ','\n line_out += str(twos_complement(array[0], array[1]))\n line_out += ','\n line_out += str(twos_complement(array[2], array[3]))\n line_out += ','\n line_out += str(twos_complement(array[4], array[5]))\n line_out += '\\n'\n outfile.write(line_out)\n try:\n line_in = infile.readline().strip('\\n\\r')\n except:\n pass\n", "step-5": "# Parsing the raw.csv generated by running lis2dh_cluster.py\ng = 9.806\n\ndef twos_complement(lsb, msb):\n signBit = (msb & 0b10000000) >> 7\n msb &= 0x7F # Strip off sign bit\n if signBit:\n x = (msb << 8) + lsb\n x ^= 0x7FFF\n x = -1 - x\n else:\n x = (msb << 8) + lsb\n x = x>>6 # Remove left justification of data\n return x\n\n\noffset = 'not_set'\nwith open('raw.csv', 'r') as infile:\n with open('parsed.csv', 'a') as outfile:\n \n # Read the first line (the column headers)\n headers = infile.readline().strip('\\n\\r')\n headers = headers.split(';')\n newheaders = []\n for header in headers:\n if header == 't': newheaders += ['t']\n else: newheaders += [header+'x', header+'y', header+'z']\n newheaders = ','.join(newheaders)\n outfile.write(newheaders + '\\n')\n \n # Read and parse all sequential lines\n line_in = infile.readline().strip('\\n\\r')\n while line_in:\n line_out = ''\n data = line_in.split(';')\n timestamp = eval(data[0])\n if offset == 'not_set':\n offset = timestamp\n line_out += str(timestamp - offset)\n for accel in data[1:]:\n array = eval(accel) # Quick and dirty way of converting string to array\n line_out += ','\n line_out += str(twos_complement(array[0], array[1]))\n line_out += ','\n line_out += str(twos_complement(array[2], array[3]))\n line_out += ','\n line_out += str(twos_complement(array[4], array[5]))\n line_out += '\\n'\n outfile.write(line_out)\n try:\n line_in = infile.readline().strip('\\n\\r')\n except:\n pass", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4, 5], [1, 2, 3, 4, 5], 'go-', label='line 1', linewidth=2) plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 16, 25], 'rs--', label='line 2', linewidth=4) plt.axis([0, 6, 0, 26]) plt.legend(loc="upper right") plt.show()
normal
{ "blob_id": "7eeba06e78bd1e7139b1706574c4d040465d4566", "index": 4178, "step-1": "<mask token>\n", "step-2": "<mask token>\nplt.plot([1, 2, 3, 4, 5], [1, 2, 3, 4, 5], 'go-', label='line 1', linewidth=2)\nplt.plot([1, 2, 3, 4, 5], [1, 4, 9, 16, 25], 'rs--', label='line 2',\n linewidth=4)\nplt.axis([0, 6, 0, 26])\nplt.legend(loc='upper right')\nplt.show()\n", "step-3": "import matplotlib.pyplot as plt\nplt.plot([1, 2, 3, 4, 5], [1, 2, 3, 4, 5], 'go-', label='line 1', linewidth=2)\nplt.plot([1, 2, 3, 4, 5], [1, 4, 9, 16, 25], 'rs--', label='line 2',\n linewidth=4)\nplt.axis([0, 6, 0, 26])\nplt.legend(loc='upper right')\nplt.show()\n", "step-4": "import matplotlib.pyplot as plt\n\nplt.plot([1, 2, 3, 4, 5], [1, 2, 3, 4, 5],\n 'go-', label='line 1', linewidth=2)\n\nplt.plot([1, 2, 3, 4, 5], [1, 4, 9, 16, 25],\n 'rs--', label='line 2', linewidth=4)\n\nplt.axis([0, 6, 0, 26])\nplt.legend(loc=\"upper right\")\nplt.show()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
class Solution: def sumSubarrayMins(self, A: List[int]) ->int: stack = [] prev = [None] * len(A) for i in range(len(A)): while stack and A[stack[-1]] >= A[i]: stack.pop() prev[i] = stack[-1] if stack else -1 stack.append(i) stack = [] nex = [None] * len(A) for i in range(len(A) - 1, -1, -1): while stack and A[stack[-1]] > A[i]: stack.pop() nex[i] = stack[-1] if stack else len(A) stack.append(i) return sum((i - prev[i]) * (nex[i] - i) * A[i] for i in range(len(A)) ) % (10 ** 9 + 7)
normal
{ "blob_id": "97029ac9f05037bf9304dacf86c35f5534d887c4", "index": 8303, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def sumSubarrayMins(self, A: List[int]) ->int:\n stack = []\n prev = [None] * len(A)\n for i in range(len(A)):\n while stack and A[stack[-1]] >= A[i]:\n stack.pop()\n prev[i] = stack[-1] if stack else -1\n stack.append(i)\n stack = []\n nex = [None] * len(A)\n for i in range(len(A) - 1, -1, -1):\n while stack and A[stack[-1]] > A[i]:\n stack.pop()\n nex[i] = stack[-1] if stack else len(A)\n stack.append(i)\n return sum((i - prev[i]) * (nex[i] - i) * A[i] for i in range(len(A))\n ) % (10 ** 9 + 7)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import torch def DiceLoss(pred,target,smooth=2): # print("pred shape: ",pred.shape) # print("target shape: ",target.shape) index = (2*torch.sum(pred*target)+smooth)/(torch.sum(pred)+torch.sum(target)+smooth) #if torch.sum(target).item() == 0: #print("instersection: ",torch.sum(pred*target).item()) # print("pred: ",torch.sum(pred).item()) # print("target: ",torch.sum(target).item()) #print("Index: ", index.item()) return 1-index
normal
{ "blob_id": "0aa0fcbb0ec1272bea93574a9287de9f526539c8", "index": 3119, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef DiceLoss(pred, target, smooth=2):\n index = (2 * torch.sum(pred * target) + smooth) / (torch.sum(pred) +\n torch.sum(target) + smooth)\n return 1 - index\n", "step-3": "import torch\n\n\ndef DiceLoss(pred, target, smooth=2):\n index = (2 * torch.sum(pred * target) + smooth) / (torch.sum(pred) +\n torch.sum(target) + smooth)\n return 1 - index\n", "step-4": "import torch\ndef DiceLoss(pred,target,smooth=2):\n # print(\"pred shape: \",pred.shape)\n # print(\"target shape: \",target.shape)\n index = (2*torch.sum(pred*target)+smooth)/(torch.sum(pred)+torch.sum(target)+smooth)\n #if torch.sum(target).item() == 0:\n #print(\"instersection: \",torch.sum(pred*target).item())\n # print(\"pred: \",torch.sum(pred).item())\n # print(\"target: \",torch.sum(target).item())\n #print(\"Index: \", index.item())\n return 1-index", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from functools import partial import torch from torch import nn from src.backbone.layers.conv_block import ConvBNAct, MBConvConfig, MBConvSE, mobilenet_v2_init from src.backbone.mobilenet_v2 import MobileNetV2 from src.backbone.utils import load_from_zoo class MobileNetV3(MobileNetV2): def __init__(self, residual_config, last_channel=1280, dropout=0.2, stochastic_depth=0.0, block=MBConvSE, act_layer=nn.Hardswish, norm_layer=nn.BatchNorm2d): super(MobileNetV3, self).__init__(residual_config, dropout, stochastic_depth, block, act_layer, norm_layer) in_ch = self.layer_infos[-1].in_ch out_ch = in_ch * self.layer_infos[-1].expand_ratio self.features[-1] = ConvBNAct(in_ch, out_ch, kernel_size=1, stride=1, norm_layer=self.norm_layer, act=self.act) self.classifier = nn.Sequential( nn.Linear(out_ch, last_channel), act_layer(inplace=True), ) self.out_channels = last_channel def forward(self, x): return self.dropout(self.classifier(torch.flatten(self.avg_pool(self.features(x)), 1))) def get_mobilenet_v3(model_name:str, pretrained=True, **kwargs) -> nn.Module: """Get mobilenet_v3 large model The changes from mobilenet_v3: - change input channel to 16 and last stage structure to avoid redundancy - change activation to nn.relu, nn.Hardsigmoid, nn.Hardswish to reduce computational cost - apply se unit (larger hidden_dim than efficientnet) """ mbconfig = partial(MBConvConfig, depth_mult=1.0, width_mult=1.0, norm_layer=nn.BatchNorm2d, se_act2=partial(nn.Hardsigmoid, inplace=True), se_reduction_ratio=4, se_reduce_mode='adjust') if model_name == 'mobilenet_v3_large': residual_config = [ # expand k s in out layers act mbconfig(1, 3, 1, 16, 16, 1, act=nn.ReLU, use_se=False), mbconfig(4, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=False), mbconfig(3, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=False), mbconfig(3, 5, 2, 24, 40, 1, act=nn.ReLU, use_se=True), mbconfig(3, 5, 1, 40, 40, 2, act=nn.ReLU, use_se=True), mbconfig(6, 3, 2, 40, 80, 1, act=nn.Hardswish, use_se=False), mbconfig(2.5, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False), mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False), mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False), mbconfig(6, 3, 1, 80, 112, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 3, 1, 112, 112, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 2, 112, 160, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True), ] last_channel = 1280 elif model_name == 'mobilenet_v3_small': residual_config = [ # expand k s in out layers act mbconfig(1, 3, 2, 16, 16, 1, act=nn.ReLU, use_se=True), mbconfig(4.5, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=False), mbconfig(3.5, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=False), mbconfig(4, 5, 2, 24, 40, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=True), mbconfig(3, 5, 1, 40, 48, 1, act=nn.Hardswish, use_se=True), mbconfig(3, 5, 1, 48, 48, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 2, 48, 96, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=True), mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=True), ] last_channel = 1024 model = MobileNetV3(residual_config, last_channel=last_channel, block=MBConvSE, act_layer=nn.Hardswish, norm_layer=nn.BatchNorm2d) mobilenet_v2_init(model) if pretrained: load_from_zoo(model, model_name) return model
normal
{ "blob_id": "4a5185fac7d6c09daa76b5d0d5aee863028a6bce", "index": 5328, "step-1": "<mask token>\n\n\nclass MobileNetV3(MobileNetV2):\n <mask token>\n\n def forward(self, x):\n return self.dropout(self.classifier(torch.flatten(self.avg_pool(\n self.features(x)), 1)))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass MobileNetV3(MobileNetV2):\n\n def __init__(self, residual_config, last_channel=1280, dropout=0.2,\n stochastic_depth=0.0, block=MBConvSE, act_layer=nn.Hardswish,\n norm_layer=nn.BatchNorm2d):\n super(MobileNetV3, self).__init__(residual_config, dropout,\n stochastic_depth, block, act_layer, norm_layer)\n in_ch = self.layer_infos[-1].in_ch\n out_ch = in_ch * self.layer_infos[-1].expand_ratio\n self.features[-1] = ConvBNAct(in_ch, out_ch, kernel_size=1, stride=\n 1, norm_layer=self.norm_layer, act=self.act)\n self.classifier = nn.Sequential(nn.Linear(out_ch, last_channel),\n act_layer(inplace=True))\n self.out_channels = last_channel\n\n def forward(self, x):\n return self.dropout(self.classifier(torch.flatten(self.avg_pool(\n self.features(x)), 1)))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass MobileNetV3(MobileNetV2):\n\n def __init__(self, residual_config, last_channel=1280, dropout=0.2,\n stochastic_depth=0.0, block=MBConvSE, act_layer=nn.Hardswish,\n norm_layer=nn.BatchNorm2d):\n super(MobileNetV3, self).__init__(residual_config, dropout,\n stochastic_depth, block, act_layer, norm_layer)\n in_ch = self.layer_infos[-1].in_ch\n out_ch = in_ch * self.layer_infos[-1].expand_ratio\n self.features[-1] = ConvBNAct(in_ch, out_ch, kernel_size=1, stride=\n 1, norm_layer=self.norm_layer, act=self.act)\n self.classifier = nn.Sequential(nn.Linear(out_ch, last_channel),\n act_layer(inplace=True))\n self.out_channels = last_channel\n\n def forward(self, x):\n return self.dropout(self.classifier(torch.flatten(self.avg_pool(\n self.features(x)), 1)))\n\n\ndef get_mobilenet_v3(model_name: str, pretrained=True, **kwargs) ->nn.Module:\n \"\"\"Get mobilenet_v3 large model\n\n The changes from mobilenet_v3:\n - change input channel to 16 and last stage structure to avoid redundancy\n - change activation to nn.relu, nn.Hardsigmoid, nn.Hardswish to reduce computational cost\n - apply se unit (larger hidden_dim than efficientnet)\n \"\"\"\n mbconfig = partial(MBConvConfig, depth_mult=1.0, width_mult=1.0,\n norm_layer=nn.BatchNorm2d, se_act2=partial(nn.Hardsigmoid, inplace=\n True), se_reduction_ratio=4, se_reduce_mode='adjust')\n if model_name == 'mobilenet_v3_large':\n residual_config = [mbconfig(1, 3, 1, 16, 16, 1, act=nn.ReLU, use_se\n =False), mbconfig(4, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=False\n ), mbconfig(3, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=False),\n mbconfig(3, 5, 2, 24, 40, 1, act=nn.ReLU, use_se=True),\n mbconfig(3, 5, 1, 40, 40, 2, act=nn.ReLU, use_se=True),\n mbconfig(6, 3, 2, 40, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.5, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(6, 3, 1, 80, 112, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 3, 1, 112, 112, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 2, 112, 160, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True)]\n last_channel = 1280\n elif model_name == 'mobilenet_v3_small':\n residual_config = [mbconfig(1, 3, 2, 16, 16, 1, act=nn.ReLU, use_se\n =True), mbconfig(4.5, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=\n False), mbconfig(3.5, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=\n False), mbconfig(4, 5, 2, 24, 40, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=\n True), mbconfig(3, 5, 1, 40, 48, 1, act=nn.Hardswish, use_se=\n True), mbconfig(3, 5, 1, 48, 48, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 2, 48, 96, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=True)]\n last_channel = 1024\n model = MobileNetV3(residual_config, last_channel=last_channel, block=\n MBConvSE, act_layer=nn.Hardswish, norm_layer=nn.BatchNorm2d)\n mobilenet_v2_init(model)\n if pretrained:\n load_from_zoo(model, model_name)\n return model\n", "step-4": "from functools import partial\nimport torch\nfrom torch import nn\nfrom src.backbone.layers.conv_block import ConvBNAct, MBConvConfig, MBConvSE, mobilenet_v2_init\nfrom src.backbone.mobilenet_v2 import MobileNetV2\nfrom src.backbone.utils import load_from_zoo\n\n\nclass MobileNetV3(MobileNetV2):\n\n def __init__(self, residual_config, last_channel=1280, dropout=0.2,\n stochastic_depth=0.0, block=MBConvSE, act_layer=nn.Hardswish,\n norm_layer=nn.BatchNorm2d):\n super(MobileNetV3, self).__init__(residual_config, dropout,\n stochastic_depth, block, act_layer, norm_layer)\n in_ch = self.layer_infos[-1].in_ch\n out_ch = in_ch * self.layer_infos[-1].expand_ratio\n self.features[-1] = ConvBNAct(in_ch, out_ch, kernel_size=1, stride=\n 1, norm_layer=self.norm_layer, act=self.act)\n self.classifier = nn.Sequential(nn.Linear(out_ch, last_channel),\n act_layer(inplace=True))\n self.out_channels = last_channel\n\n def forward(self, x):\n return self.dropout(self.classifier(torch.flatten(self.avg_pool(\n self.features(x)), 1)))\n\n\ndef get_mobilenet_v3(model_name: str, pretrained=True, **kwargs) ->nn.Module:\n \"\"\"Get mobilenet_v3 large model\n\n The changes from mobilenet_v3:\n - change input channel to 16 and last stage structure to avoid redundancy\n - change activation to nn.relu, nn.Hardsigmoid, nn.Hardswish to reduce computational cost\n - apply se unit (larger hidden_dim than efficientnet)\n \"\"\"\n mbconfig = partial(MBConvConfig, depth_mult=1.0, width_mult=1.0,\n norm_layer=nn.BatchNorm2d, se_act2=partial(nn.Hardsigmoid, inplace=\n True), se_reduction_ratio=4, se_reduce_mode='adjust')\n if model_name == 'mobilenet_v3_large':\n residual_config = [mbconfig(1, 3, 1, 16, 16, 1, act=nn.ReLU, use_se\n =False), mbconfig(4, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=False\n ), mbconfig(3, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=False),\n mbconfig(3, 5, 2, 24, 40, 1, act=nn.ReLU, use_se=True),\n mbconfig(3, 5, 1, 40, 40, 2, act=nn.ReLU, use_se=True),\n mbconfig(6, 3, 2, 40, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.5, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(6, 3, 1, 80, 112, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 3, 1, 112, 112, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 2, 112, 160, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True)]\n last_channel = 1280\n elif model_name == 'mobilenet_v3_small':\n residual_config = [mbconfig(1, 3, 2, 16, 16, 1, act=nn.ReLU, use_se\n =True), mbconfig(4.5, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=\n False), mbconfig(3.5, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=\n False), mbconfig(4, 5, 2, 24, 40, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=\n True), mbconfig(3, 5, 1, 40, 48, 1, act=nn.Hardswish, use_se=\n True), mbconfig(3, 5, 1, 48, 48, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 2, 48, 96, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=\n True), mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=True)]\n last_channel = 1024\n model = MobileNetV3(residual_config, last_channel=last_channel, block=\n MBConvSE, act_layer=nn.Hardswish, norm_layer=nn.BatchNorm2d)\n mobilenet_v2_init(model)\n if pretrained:\n load_from_zoo(model, model_name)\n return model\n", "step-5": "from functools import partial\n\nimport torch\nfrom torch import nn\n\nfrom src.backbone.layers.conv_block import ConvBNAct, MBConvConfig, MBConvSE, mobilenet_v2_init\nfrom src.backbone.mobilenet_v2 import MobileNetV2\nfrom src.backbone.utils import load_from_zoo\n\n\nclass MobileNetV3(MobileNetV2):\n def __init__(self, residual_config, last_channel=1280, dropout=0.2, stochastic_depth=0.0,\n block=MBConvSE, act_layer=nn.Hardswish, norm_layer=nn.BatchNorm2d):\n super(MobileNetV3, self).__init__(residual_config, dropout, stochastic_depth, block, act_layer, norm_layer)\n in_ch = self.layer_infos[-1].in_ch\n out_ch = in_ch * self.layer_infos[-1].expand_ratio\n self.features[-1] = ConvBNAct(in_ch, out_ch, kernel_size=1, stride=1, norm_layer=self.norm_layer, act=self.act)\n self.classifier = nn.Sequential(\n nn.Linear(out_ch, last_channel),\n act_layer(inplace=True),\n )\n self.out_channels = last_channel\n\n def forward(self, x):\n return self.dropout(self.classifier(torch.flatten(self.avg_pool(self.features(x)), 1)))\n\n\ndef get_mobilenet_v3(model_name:str, pretrained=True, **kwargs) -> nn.Module:\n \"\"\"Get mobilenet_v3 large model\n\n The changes from mobilenet_v3:\n - change input channel to 16 and last stage structure to avoid redundancy\n - change activation to nn.relu, nn.Hardsigmoid, nn.Hardswish to reduce computational cost\n - apply se unit (larger hidden_dim than efficientnet)\n \"\"\"\n\n mbconfig = partial(MBConvConfig, depth_mult=1.0, width_mult=1.0, norm_layer=nn.BatchNorm2d,\n se_act2=partial(nn.Hardsigmoid, inplace=True), se_reduction_ratio=4, se_reduce_mode='adjust')\n\n if model_name == 'mobilenet_v3_large':\n residual_config = [\n # expand k s in out layers act\n mbconfig(1, 3, 1, 16, 16, 1, act=nn.ReLU, use_se=False),\n mbconfig(4, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=False),\n mbconfig(3, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=False),\n mbconfig(3, 5, 2, 24, 40, 1, act=nn.ReLU, use_se=True),\n mbconfig(3, 5, 1, 40, 40, 2, act=nn.ReLU, use_se=True),\n mbconfig(6, 3, 2, 40, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.5, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(2.3, 3, 1, 80, 80, 1, act=nn.Hardswish, use_se=False),\n mbconfig(6, 3, 1, 80, 112, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 3, 1, 112, 112, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 2, 112, 160, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 160, 160, 1, act=nn.Hardswish, use_se=True),\n ]\n last_channel = 1280\n elif model_name == 'mobilenet_v3_small':\n residual_config = [\n # expand k s in out layers act\n mbconfig(1, 3, 2, 16, 16, 1, act=nn.ReLU, use_se=True),\n mbconfig(4.5, 3, 2, 16, 24, 1, act=nn.ReLU, use_se=False),\n mbconfig(3.5, 3, 1, 24, 24, 1, act=nn.ReLU, use_se=False),\n mbconfig(4, 5, 2, 24, 40, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 40, 40, 1, act=nn.Hardswish, use_se=True),\n mbconfig(3, 5, 1, 40, 48, 1, act=nn.Hardswish, use_se=True),\n mbconfig(3, 5, 1, 48, 48, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 2, 48, 96, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=True),\n mbconfig(6, 5, 1, 96, 96, 1, act=nn.Hardswish, use_se=True),\n ]\n last_channel = 1024\n\n model = MobileNetV3(residual_config, last_channel=last_channel, block=MBConvSE, act_layer=nn.Hardswish, norm_layer=nn.BatchNorm2d)\n\n mobilenet_v2_init(model)\n\n if pretrained:\n load_from_zoo(model, model_name)\n\n return model", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import os import io import yaml from collections import OrderedDict from rich.console import Console from malwarebazaar.platform import get_config_path, get_config_dir class Config(OrderedDict): instance = None def __init__(self): ec = Console(stderr=True, style="bold red") Config.ensure_path(ec) config_file = get_config_path() if not os.path.exists(config_file) or os.path.getsize(config_file) == 0: ec.print("Config does not exist, please run the init command.") exit(-1) with io.open(config_file, "r") as handle: config_data = yaml.load(handle.read(), Loader=yaml.Loader) super().__init__(**config_data) @staticmethod def get_instance(): if not Config.instance: return Config() return Config.instance @staticmethod def ensure_path(ec: Console = Console(stderr=True, style="bold red")): config_dir = get_config_dir() if not os.path.exists(config_dir): os.mkdir(config_dir) if not os.path.isdir(config_dir): ec.print(f"{config_dir} should be a dir, but is a file.") exit(-1) @staticmethod def init_config(key: str): Config.ensure_path() with io.open(get_config_path(), "w") as handle: bytes = handle.write(yaml.dump( { "api_key": key, "csv_columns": { "md5": "md5_hash", "sha1": "sha1_hash", "sha256": "sha256_hash", "imphash": "imphash", "signature": "signature", "tags": "tags" } }, Dumper=yaml.Dumper )) if bytes <= 0: raise IOError(f"Writing to config file failed.") return True
normal
{ "blob_id": "5a9e0b220d2c94aea7e3d67338771cf48c3aec8f", "index": 6439, "step-1": "<mask token>\n\n\nclass Config(OrderedDict):\n <mask token>\n\n def __init__(self):\n ec = Console(stderr=True, style='bold red')\n Config.ensure_path(ec)\n config_file = get_config_path()\n if not os.path.exists(config_file) or os.path.getsize(config_file\n ) == 0:\n ec.print('Config does not exist, please run the init command.')\n exit(-1)\n with io.open(config_file, 'r') as handle:\n config_data = yaml.load(handle.read(), Loader=yaml.Loader)\n super().__init__(**config_data)\n\n @staticmethod\n def get_instance():\n if not Config.instance:\n return Config()\n return Config.instance\n\n @staticmethod\n def ensure_path(ec: Console=Console(stderr=True, style='bold red')):\n config_dir = get_config_dir()\n if not os.path.exists(config_dir):\n os.mkdir(config_dir)\n if not os.path.isdir(config_dir):\n ec.print(f'{config_dir} should be a dir, but is a file.')\n exit(-1)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Config(OrderedDict):\n <mask token>\n\n def __init__(self):\n ec = Console(stderr=True, style='bold red')\n Config.ensure_path(ec)\n config_file = get_config_path()\n if not os.path.exists(config_file) or os.path.getsize(config_file\n ) == 0:\n ec.print('Config does not exist, please run the init command.')\n exit(-1)\n with io.open(config_file, 'r') as handle:\n config_data = yaml.load(handle.read(), Loader=yaml.Loader)\n super().__init__(**config_data)\n\n @staticmethod\n def get_instance():\n if not Config.instance:\n return Config()\n return Config.instance\n\n @staticmethod\n def ensure_path(ec: Console=Console(stderr=True, style='bold red')):\n config_dir = get_config_dir()\n if not os.path.exists(config_dir):\n os.mkdir(config_dir)\n if not os.path.isdir(config_dir):\n ec.print(f'{config_dir} should be a dir, but is a file.')\n exit(-1)\n\n @staticmethod\n def init_config(key: str):\n Config.ensure_path()\n with io.open(get_config_path(), 'w') as handle:\n bytes = handle.write(yaml.dump({'api_key': key, 'csv_columns':\n {'md5': 'md5_hash', 'sha1': 'sha1_hash', 'sha256':\n 'sha256_hash', 'imphash': 'imphash', 'signature':\n 'signature', 'tags': 'tags'}}, Dumper=yaml.Dumper))\n if bytes <= 0:\n raise IOError(f'Writing to config file failed.')\n return True\n", "step-3": "<mask token>\n\n\nclass Config(OrderedDict):\n instance = None\n\n def __init__(self):\n ec = Console(stderr=True, style='bold red')\n Config.ensure_path(ec)\n config_file = get_config_path()\n if not os.path.exists(config_file) or os.path.getsize(config_file\n ) == 0:\n ec.print('Config does not exist, please run the init command.')\n exit(-1)\n with io.open(config_file, 'r') as handle:\n config_data = yaml.load(handle.read(), Loader=yaml.Loader)\n super().__init__(**config_data)\n\n @staticmethod\n def get_instance():\n if not Config.instance:\n return Config()\n return Config.instance\n\n @staticmethod\n def ensure_path(ec: Console=Console(stderr=True, style='bold red')):\n config_dir = get_config_dir()\n if not os.path.exists(config_dir):\n os.mkdir(config_dir)\n if not os.path.isdir(config_dir):\n ec.print(f'{config_dir} should be a dir, but is a file.')\n exit(-1)\n\n @staticmethod\n def init_config(key: str):\n Config.ensure_path()\n with io.open(get_config_path(), 'w') as handle:\n bytes = handle.write(yaml.dump({'api_key': key, 'csv_columns':\n {'md5': 'md5_hash', 'sha1': 'sha1_hash', 'sha256':\n 'sha256_hash', 'imphash': 'imphash', 'signature':\n 'signature', 'tags': 'tags'}}, Dumper=yaml.Dumper))\n if bytes <= 0:\n raise IOError(f'Writing to config file failed.')\n return True\n", "step-4": "import os\nimport io\nimport yaml\nfrom collections import OrderedDict\nfrom rich.console import Console\nfrom malwarebazaar.platform import get_config_path, get_config_dir\n\n\nclass Config(OrderedDict):\n instance = None\n\n def __init__(self):\n ec = Console(stderr=True, style='bold red')\n Config.ensure_path(ec)\n config_file = get_config_path()\n if not os.path.exists(config_file) or os.path.getsize(config_file\n ) == 0:\n ec.print('Config does not exist, please run the init command.')\n exit(-1)\n with io.open(config_file, 'r') as handle:\n config_data = yaml.load(handle.read(), Loader=yaml.Loader)\n super().__init__(**config_data)\n\n @staticmethod\n def get_instance():\n if not Config.instance:\n return Config()\n return Config.instance\n\n @staticmethod\n def ensure_path(ec: Console=Console(stderr=True, style='bold red')):\n config_dir = get_config_dir()\n if not os.path.exists(config_dir):\n os.mkdir(config_dir)\n if not os.path.isdir(config_dir):\n ec.print(f'{config_dir} should be a dir, but is a file.')\n exit(-1)\n\n @staticmethod\n def init_config(key: str):\n Config.ensure_path()\n with io.open(get_config_path(), 'w') as handle:\n bytes = handle.write(yaml.dump({'api_key': key, 'csv_columns':\n {'md5': 'md5_hash', 'sha1': 'sha1_hash', 'sha256':\n 'sha256_hash', 'imphash': 'imphash', 'signature':\n 'signature', 'tags': 'tags'}}, Dumper=yaml.Dumper))\n if bytes <= 0:\n raise IOError(f'Writing to config file failed.')\n return True\n", "step-5": "import os\nimport io\nimport yaml\nfrom collections import OrderedDict\n\nfrom rich.console import Console\n\nfrom malwarebazaar.platform import get_config_path, get_config_dir\n\n\nclass Config(OrderedDict):\n instance = None\n\n def __init__(self):\n ec = Console(stderr=True, style=\"bold red\")\n Config.ensure_path(ec)\n config_file = get_config_path()\n if not os.path.exists(config_file) or os.path.getsize(config_file) == 0:\n ec.print(\"Config does not exist, please run the init command.\")\n exit(-1)\n\n with io.open(config_file, \"r\") as handle:\n config_data = yaml.load(handle.read(), Loader=yaml.Loader)\n\n super().__init__(**config_data)\n\n @staticmethod\n def get_instance():\n if not Config.instance:\n return Config()\n return Config.instance\n\n @staticmethod\n def ensure_path(ec: Console = Console(stderr=True, style=\"bold red\")):\n config_dir = get_config_dir()\n\n if not os.path.exists(config_dir):\n os.mkdir(config_dir)\n\n if not os.path.isdir(config_dir):\n ec.print(f\"{config_dir} should be a dir, but is a file.\")\n exit(-1)\n\n @staticmethod\n def init_config(key: str):\n Config.ensure_path()\n with io.open(get_config_path(), \"w\") as handle:\n bytes = handle.write(yaml.dump(\n {\n \"api_key\": key,\n \"csv_columns\": {\n \"md5\": \"md5_hash\",\n \"sha1\": \"sha1_hash\",\n \"sha256\": \"sha256_hash\",\n \"imphash\": \"imphash\",\n \"signature\": \"signature\",\n \"tags\": \"tags\"\n }\n },\n Dumper=yaml.Dumper\n ))\n\n if bytes <= 0:\n raise IOError(f\"Writing to config file failed.\")\n return True\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# @Time : 2019/12/12 15:54 # @Author : Libuda # @FileName: 远程服务器文件监控.py # @Software: PyCharm import itchat @itchat.msg_register(itchat.content.TEXT) def text_reply(msg): return msg.text itchat.auto_login() itchat.run()
normal
{ "blob_id": "2b87b8571664989e78790bd9df23eee9cbd44035", "index": 1363, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\n@itchat.msg_register(itchat.content.TEXT)\ndef text_reply(msg):\n return msg.text\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\n@itchat.msg_register(itchat.content.TEXT)\ndef text_reply(msg):\n return msg.text\n\n\nitchat.auto_login()\nitchat.run()\n", "step-4": "import itchat\n\n\n@itchat.msg_register(itchat.content.TEXT)\ndef text_reply(msg):\n return msg.text\n\n\nitchat.auto_login()\nitchat.run()\n", "step-5": "# @Time : 2019/12/12 15:54\n# @Author : Libuda\n# @FileName: 远程服务器文件监控.py\n# @Software: PyCharm\nimport itchat\n\n\n@itchat.msg_register(itchat.content.TEXT)\ndef text_reply(msg):\n return msg.text\n\n\nitchat.auto_login()\nitchat.run()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys import os import random if sys.version_info[0] < 3: from StringIO import StringIO else: from io import StringIO def file_len(file): initial = file.tell() file.seek(0, os.SEEK_END) size = file.tell() file.seek(initial) return size def run(): rand_seed = None stderr_filename = None stdout_filename = None if len(sys.argv) >= 4: rand_seed = int(sys.argv[3]) if len(sys.argv) >= 3: stderr_filename = sys.argv[2] if len(sys.argv) >= 2: stdout_filename = sys.argv[1] stdout_file = None stderr_file = None if stdout_filename: stdout_file = open(stdout_filename, 'r') else: stdout_file = StringIO() if stderr_filename: stderr_file = open(stderr_filename, 'r') else: stderr_file = StringIO() if not rand_seed: sys.stdout.write(stdout_file.read()) sys.stderr.write(stderr_file.read()) else: random.seed(rand_seed) stdout_len = file_len(stdout_file) stdout_eof = False stderr_eof = False while not stdout_eof or not stderr_eof: if not stdout_eof: r = random.randrange(stdout_len / 4) data = stdout_file.read(r) if len(data) < r: stdout_eof = True sys.stdout.write(data) if not stderr_eof: r = random.randrange(stdout_len / 4) data = stderr_file.read(r) if len(data) < r: stderr_eof = True sys.stderr.write(data) if __name__ == '__main__': run()
normal
{ "blob_id": "b7db0d2f4bbbc2c7763b9d2e6bede74979b65161", "index": 4283, "step-1": "<mask token>\n\n\ndef run():\n rand_seed = None\n stderr_filename = None\n stdout_filename = None\n if len(sys.argv) >= 4:\n rand_seed = int(sys.argv[3])\n if len(sys.argv) >= 3:\n stderr_filename = sys.argv[2]\n if len(sys.argv) >= 2:\n stdout_filename = sys.argv[1]\n stdout_file = None\n stderr_file = None\n if stdout_filename:\n stdout_file = open(stdout_filename, 'r')\n else:\n stdout_file = StringIO()\n if stderr_filename:\n stderr_file = open(stderr_filename, 'r')\n else:\n stderr_file = StringIO()\n if not rand_seed:\n sys.stdout.write(stdout_file.read())\n sys.stderr.write(stderr_file.read())\n else:\n random.seed(rand_seed)\n stdout_len = file_len(stdout_file)\n stdout_eof = False\n stderr_eof = False\n while not stdout_eof or not stderr_eof:\n if not stdout_eof:\n r = random.randrange(stdout_len / 4)\n data = stdout_file.read(r)\n if len(data) < r:\n stdout_eof = True\n sys.stdout.write(data)\n if not stderr_eof:\n r = random.randrange(stdout_len / 4)\n data = stderr_file.read(r)\n if len(data) < r:\n stderr_eof = True\n sys.stderr.write(data)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef file_len(file):\n initial = file.tell()\n file.seek(0, os.SEEK_END)\n size = file.tell()\n file.seek(initial)\n return size\n\n\ndef run():\n rand_seed = None\n stderr_filename = None\n stdout_filename = None\n if len(sys.argv) >= 4:\n rand_seed = int(sys.argv[3])\n if len(sys.argv) >= 3:\n stderr_filename = sys.argv[2]\n if len(sys.argv) >= 2:\n stdout_filename = sys.argv[1]\n stdout_file = None\n stderr_file = None\n if stdout_filename:\n stdout_file = open(stdout_filename, 'r')\n else:\n stdout_file = StringIO()\n if stderr_filename:\n stderr_file = open(stderr_filename, 'r')\n else:\n stderr_file = StringIO()\n if not rand_seed:\n sys.stdout.write(stdout_file.read())\n sys.stderr.write(stderr_file.read())\n else:\n random.seed(rand_seed)\n stdout_len = file_len(stdout_file)\n stdout_eof = False\n stderr_eof = False\n while not stdout_eof or not stderr_eof:\n if not stdout_eof:\n r = random.randrange(stdout_len / 4)\n data = stdout_file.read(r)\n if len(data) < r:\n stdout_eof = True\n sys.stdout.write(data)\n if not stderr_eof:\n r = random.randrange(stdout_len / 4)\n data = stderr_file.read(r)\n if len(data) < r:\n stderr_eof = True\n sys.stderr.write(data)\n\n\n<mask token>\n", "step-3": "<mask token>\nif sys.version_info[0] < 3:\n from StringIO import StringIO\nelse:\n from io import StringIO\n\n\ndef file_len(file):\n initial = file.tell()\n file.seek(0, os.SEEK_END)\n size = file.tell()\n file.seek(initial)\n return size\n\n\ndef run():\n rand_seed = None\n stderr_filename = None\n stdout_filename = None\n if len(sys.argv) >= 4:\n rand_seed = int(sys.argv[3])\n if len(sys.argv) >= 3:\n stderr_filename = sys.argv[2]\n if len(sys.argv) >= 2:\n stdout_filename = sys.argv[1]\n stdout_file = None\n stderr_file = None\n if stdout_filename:\n stdout_file = open(stdout_filename, 'r')\n else:\n stdout_file = StringIO()\n if stderr_filename:\n stderr_file = open(stderr_filename, 'r')\n else:\n stderr_file = StringIO()\n if not rand_seed:\n sys.stdout.write(stdout_file.read())\n sys.stderr.write(stderr_file.read())\n else:\n random.seed(rand_seed)\n stdout_len = file_len(stdout_file)\n stdout_eof = False\n stderr_eof = False\n while not stdout_eof or not stderr_eof:\n if not stdout_eof:\n r = random.randrange(stdout_len / 4)\n data = stdout_file.read(r)\n if len(data) < r:\n stdout_eof = True\n sys.stdout.write(data)\n if not stderr_eof:\n r = random.randrange(stdout_len / 4)\n data = stderr_file.read(r)\n if len(data) < r:\n stderr_eof = True\n sys.stderr.write(data)\n\n\nif __name__ == '__main__':\n run()\n", "step-4": "import sys\nimport os\nimport random\nif sys.version_info[0] < 3:\n from StringIO import StringIO\nelse:\n from io import StringIO\n\n\ndef file_len(file):\n initial = file.tell()\n file.seek(0, os.SEEK_END)\n size = file.tell()\n file.seek(initial)\n return size\n\n\ndef run():\n rand_seed = None\n stderr_filename = None\n stdout_filename = None\n if len(sys.argv) >= 4:\n rand_seed = int(sys.argv[3])\n if len(sys.argv) >= 3:\n stderr_filename = sys.argv[2]\n if len(sys.argv) >= 2:\n stdout_filename = sys.argv[1]\n stdout_file = None\n stderr_file = None\n if stdout_filename:\n stdout_file = open(stdout_filename, 'r')\n else:\n stdout_file = StringIO()\n if stderr_filename:\n stderr_file = open(stderr_filename, 'r')\n else:\n stderr_file = StringIO()\n if not rand_seed:\n sys.stdout.write(stdout_file.read())\n sys.stderr.write(stderr_file.read())\n else:\n random.seed(rand_seed)\n stdout_len = file_len(stdout_file)\n stdout_eof = False\n stderr_eof = False\n while not stdout_eof or not stderr_eof:\n if not stdout_eof:\n r = random.randrange(stdout_len / 4)\n data = stdout_file.read(r)\n if len(data) < r:\n stdout_eof = True\n sys.stdout.write(data)\n if not stderr_eof:\n r = random.randrange(stdout_len / 4)\n data = stderr_file.read(r)\n if len(data) < r:\n stderr_eof = True\n sys.stderr.write(data)\n\n\nif __name__ == '__main__':\n run()\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
#!/usr/bin/python3 """ Requests username and tasks from JSON Placeholder based on userid (which is sys.argv[1]) """ import json import requests import sys if __name__ == "__main__": url = "https://jsonplaceholder.typicode.com" if len(sys.argv) > 1: user_id = sys.argv[1] name = requests.get("{}/users/{}".format( url, user_id)).json().get("name") r = requests.get("{}/todos?userId={}".format( url, user_id)).json() tasks_completed = [] for task in r: if task.get("completed") is True: tasks_completed.append(task) print("Employee {} is done with tasks({:d}/{:d}):".format( name, len(tasks_completed), len(r))) if len(tasks_completed) > 0: for task in tasks_completed: print("\t {}".format(task.get("title")))
normal
{ "blob_id": "e1a2b33a1ec7aca21a157895d8c7c5b5f29ff49c", "index": 5047, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n url = 'https://jsonplaceholder.typicode.com'\n if len(sys.argv) > 1:\n user_id = sys.argv[1]\n name = requests.get('{}/users/{}'.format(url, user_id)).json().get(\n 'name')\n r = requests.get('{}/todos?userId={}'.format(url, user_id)).json()\n tasks_completed = []\n for task in r:\n if task.get('completed') is True:\n tasks_completed.append(task)\n print('Employee {} is done with tasks({:d}/{:d}):'.format(name, len\n (tasks_completed), len(r)))\n if len(tasks_completed) > 0:\n for task in tasks_completed:\n print('\\t {}'.format(task.get('title')))\n", "step-3": "<mask token>\nimport json\nimport requests\nimport sys\nif __name__ == '__main__':\n url = 'https://jsonplaceholder.typicode.com'\n if len(sys.argv) > 1:\n user_id = sys.argv[1]\n name = requests.get('{}/users/{}'.format(url, user_id)).json().get(\n 'name')\n r = requests.get('{}/todos?userId={}'.format(url, user_id)).json()\n tasks_completed = []\n for task in r:\n if task.get('completed') is True:\n tasks_completed.append(task)\n print('Employee {} is done with tasks({:d}/{:d}):'.format(name, len\n (tasks_completed), len(r)))\n if len(tasks_completed) > 0:\n for task in tasks_completed:\n print('\\t {}'.format(task.get('title')))\n", "step-4": "#!/usr/bin/python3\n\"\"\"\nRequests username and tasks from JSON Placeholder\nbased on userid (which is sys.argv[1])\n\"\"\"\nimport json\nimport requests\nimport sys\n\n\nif __name__ == \"__main__\":\n url = \"https://jsonplaceholder.typicode.com\"\n if len(sys.argv) > 1:\n user_id = sys.argv[1]\n name = requests.get(\"{}/users/{}\".format(\n url, user_id)).json().get(\"name\")\n r = requests.get(\"{}/todos?userId={}\".format(\n url, user_id)).json()\n tasks_completed = []\n for task in r:\n if task.get(\"completed\") is True:\n tasks_completed.append(task)\n print(\"Employee {} is done with tasks({:d}/{:d}):\".format(\n name, len(tasks_completed), len(r)))\n if len(tasks_completed) > 0:\n for task in tasks_completed:\n print(\"\\t {}\".format(task.get(\"title\")))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from foods.fruits import * orange.eat() apple.eat()
normal
{ "blob_id": "ad84a5bfcf82dff1f4a7e8f08f3c4243ad24de52", "index": 7318, "step-1": "<mask token>\n", "step-2": "<mask token>\norange.eat()\napple.eat()\n", "step-3": "from foods.fruits import *\norange.eat()\napple.eat()\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from typing import List import scrapy from cssselect import Selector class RwidSpider(scrapy.Spider): name = 'rwid' allowed_domains = ['0.0.0.0'] # REQUEST LOGIN DARI URLS start_urls = ['http://0.0.0.0:9999/'] # LOGIN DISINI def parse(self, response): # apa bedanya yield & return # yield {"title": response.css("title::text").get()} # cek di inspect element perlu login tidak? data = { "username": "user", "password": "user12345" } # cek di FormRequest butuhnya apa aja return scrapy.FormRequest( url="http://0.0.0.0:9999/login", formdata=data, callback=self.after_login # untuk mengektraksi data ) def after_login(self, response): """ Ada 2 Task disini : 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail) 2. Ambil semua link next -> akan balik ke self.after_login :param response: :return: """ # get detail product detail_products: List[Selector] = response.css(".card .card-title a") for detail in detail_products: href = detail.attrib.get("href") # untuk mendapatkan urls yield response.follow(href, callback=self.parse_detail) # masukkan urls ini ke antrian scrapy yield {"title": response.css("title::text").get()} def parse_detail(self, response): yield {"title": response.css("title::text").get()}
normal
{ "blob_id": "2185d332f7cd4cbf17d6b72a19297d156c2182a1", "index": 2233, "step-1": "<mask token>\n\n\nclass RwidSpider(scrapy.Spider):\n <mask token>\n <mask token>\n <mask token>\n\n def parse(self, response):\n data = {'username': 'user', 'password': 'user12345'}\n return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata\n =data, callback=self.after_login)\n <mask token>\n\n def parse_detail(self, response):\n yield {'title': response.css('title::text').get()}\n", "step-2": "<mask token>\n\n\nclass RwidSpider(scrapy.Spider):\n <mask token>\n <mask token>\n <mask token>\n\n def parse(self, response):\n data = {'username': 'user', 'password': 'user12345'}\n return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata\n =data, callback=self.after_login)\n\n def after_login(self, response):\n \"\"\"\n Ada 2 Task disini :\n 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail)\n 2. Ambil semua link next -> akan balik ke self.after_login\n\n :param response:\n :return:\n \"\"\"\n detail_products: List[Selector] = response.css('.card .card-title a')\n for detail in detail_products:\n href = detail.attrib.get('href')\n yield response.follow(href, callback=self.parse_detail)\n yield {'title': response.css('title::text').get()}\n\n def parse_detail(self, response):\n yield {'title': response.css('title::text').get()}\n", "step-3": "<mask token>\n\n\nclass RwidSpider(scrapy.Spider):\n name = 'rwid'\n allowed_domains = ['0.0.0.0']\n start_urls = ['http://0.0.0.0:9999/']\n\n def parse(self, response):\n data = {'username': 'user', 'password': 'user12345'}\n return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata\n =data, callback=self.after_login)\n\n def after_login(self, response):\n \"\"\"\n Ada 2 Task disini :\n 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail)\n 2. Ambil semua link next -> akan balik ke self.after_login\n\n :param response:\n :return:\n \"\"\"\n detail_products: List[Selector] = response.css('.card .card-title a')\n for detail in detail_products:\n href = detail.attrib.get('href')\n yield response.follow(href, callback=self.parse_detail)\n yield {'title': response.css('title::text').get()}\n\n def parse_detail(self, response):\n yield {'title': response.css('title::text').get()}\n", "step-4": "from typing import List\nimport scrapy\nfrom cssselect import Selector\n\n\nclass RwidSpider(scrapy.Spider):\n name = 'rwid'\n allowed_domains = ['0.0.0.0']\n start_urls = ['http://0.0.0.0:9999/']\n\n def parse(self, response):\n data = {'username': 'user', 'password': 'user12345'}\n return scrapy.FormRequest(url='http://0.0.0.0:9999/login', formdata\n =data, callback=self.after_login)\n\n def after_login(self, response):\n \"\"\"\n Ada 2 Task disini :\n 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail)\n 2. Ambil semua link next -> akan balik ke self.after_login\n\n :param response:\n :return:\n \"\"\"\n detail_products: List[Selector] = response.css('.card .card-title a')\n for detail in detail_products:\n href = detail.attrib.get('href')\n yield response.follow(href, callback=self.parse_detail)\n yield {'title': response.css('title::text').get()}\n\n def parse_detail(self, response):\n yield {'title': response.css('title::text').get()}\n", "step-5": "from typing import List\n\nimport scrapy\nfrom cssselect import Selector\n\nclass RwidSpider(scrapy.Spider):\n name = 'rwid'\n allowed_domains = ['0.0.0.0']\n\n # REQUEST LOGIN DARI URLS\n start_urls = ['http://0.0.0.0:9999/']\n\n # LOGIN DISINI\n def parse(self, response):\n # apa bedanya yield & return\n # yield {\"title\": response.css(\"title::text\").get()}\n\n # cek di inspect element perlu login tidak?\n\n data = {\n \"username\": \"user\",\n \"password\": \"user12345\"\n }\n\n # cek di FormRequest butuhnya apa aja\n return scrapy.FormRequest(\n url=\"http://0.0.0.0:9999/login\",\n formdata=data,\n callback=self.after_login # untuk mengektraksi data\n )\n\n def after_login(self, response):\n \"\"\"\n Ada 2 Task disini :\n 1. Ambil semua data barang yang ada dihalaman hasil -> akan menuju detail (parsing detail)\n 2. Ambil semua link next -> akan balik ke self.after_login\n\n :param response:\n :return:\n \"\"\"\n\n # get detail product\n detail_products: List[Selector] = response.css(\".card .card-title a\")\n for detail in detail_products:\n href = detail.attrib.get(\"href\") # untuk mendapatkan urls\n yield response.follow(href, callback=self.parse_detail) # masukkan urls ini ke antrian scrapy\n\n yield {\"title\": response.css(\"title::text\").get()}\n\n def parse_detail(self, response):\n yield {\"title\": response.css(\"title::text\").get()}\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import sys prop = float(sys.argv[1]) def kind(n): s = str(n) l = len(s) i = 0 j = i + 1 decr, bouncy, incr = False, False, False while j < l: a = int(s[i]) b = int(s[j]) if s[i] > s[j]: decr = True elif s[i] < s[j]: incr = True i += 1 j += 1 if decr and incr: return True return False def calc(prop): currentProp = 0 i = 100 countBouncy = 0 while currentProp < prop: if kind(i): countBouncy += 1 currentProp = (countBouncy * 100) / i if currentProp >= prop: return i i += 1 return "Proportion was not reached." calc(prop)
normal
{ "blob_id": "0de27101675eb8328d9a2831ed468a969b03e7d3", "index": 5741, "step-1": "<mask token>\n\n\ndef kind(n):\n s = str(n)\n l = len(s)\n i = 0\n j = i + 1\n decr, bouncy, incr = False, False, False\n while j < l:\n a = int(s[i])\n b = int(s[j])\n if s[i] > s[j]:\n decr = True\n elif s[i] < s[j]:\n incr = True\n i += 1\n j += 1\n if decr and incr:\n return True\n return False\n\n\ndef calc(prop):\n currentProp = 0\n i = 100\n countBouncy = 0\n while currentProp < prop:\n if kind(i):\n countBouncy += 1\n currentProp = countBouncy * 100 / i\n if currentProp >= prop:\n return i\n i += 1\n return 'Proportion was not reached.'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef kind(n):\n s = str(n)\n l = len(s)\n i = 0\n j = i + 1\n decr, bouncy, incr = False, False, False\n while j < l:\n a = int(s[i])\n b = int(s[j])\n if s[i] > s[j]:\n decr = True\n elif s[i] < s[j]:\n incr = True\n i += 1\n j += 1\n if decr and incr:\n return True\n return False\n\n\ndef calc(prop):\n currentProp = 0\n i = 100\n countBouncy = 0\n while currentProp < prop:\n if kind(i):\n countBouncy += 1\n currentProp = countBouncy * 100 / i\n if currentProp >= prop:\n return i\n i += 1\n return 'Proportion was not reached.'\n\n\ncalc(prop)\n", "step-3": "<mask token>\nprop = float(sys.argv[1])\n\n\ndef kind(n):\n s = str(n)\n l = len(s)\n i = 0\n j = i + 1\n decr, bouncy, incr = False, False, False\n while j < l:\n a = int(s[i])\n b = int(s[j])\n if s[i] > s[j]:\n decr = True\n elif s[i] < s[j]:\n incr = True\n i += 1\n j += 1\n if decr and incr:\n return True\n return False\n\n\ndef calc(prop):\n currentProp = 0\n i = 100\n countBouncy = 0\n while currentProp < prop:\n if kind(i):\n countBouncy += 1\n currentProp = countBouncy * 100 / i\n if currentProp >= prop:\n return i\n i += 1\n return 'Proportion was not reached.'\n\n\ncalc(prop)\n", "step-4": "import sys\nprop = float(sys.argv[1])\n\n\ndef kind(n):\n s = str(n)\n l = len(s)\n i = 0\n j = i + 1\n decr, bouncy, incr = False, False, False\n while j < l:\n a = int(s[i])\n b = int(s[j])\n if s[i] > s[j]:\n decr = True\n elif s[i] < s[j]:\n incr = True\n i += 1\n j += 1\n if decr and incr:\n return True\n return False\n\n\ndef calc(prop):\n currentProp = 0\n i = 100\n countBouncy = 0\n while currentProp < prop:\n if kind(i):\n countBouncy += 1\n currentProp = countBouncy * 100 / i\n if currentProp >= prop:\n return i\n i += 1\n return 'Proportion was not reached.'\n\n\ncalc(prop)\n", "step-5": "import sys\n\nprop = float(sys.argv[1])\n\ndef kind(n):\n s = str(n)\n l = len(s)\n i = 0\n j = i + 1\n decr, bouncy, incr = False, False, False\n while j < l:\n a = int(s[i])\n b = int(s[j])\n if s[i] > s[j]:\n decr = True\n elif s[i] < s[j]:\n incr = True\n i += 1\n j += 1\n if decr and incr:\n return True\n return False\n\ndef calc(prop):\n currentProp = 0\n i = 100\n countBouncy = 0\n while currentProp < prop:\n if kind(i):\n countBouncy += 1\n currentProp = (countBouncy * 100) / i\n if currentProp >= prop:\n return i\n i += 1\n return \"Proportion was not reached.\"\n\ncalc(prop)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# coding: utf-8 import logging from flask import request from flask.ext.admin import expose from cores.actions import action from cores.adminweb import BaseHandler from dao.bannerdao import banner from extends import csrf from libs.flask_login import login_required from utils.function_data_flow import flow_tools from utils.helpers import utf8 from utils.numbering import numbers __author__ = 'bin wen' _log = logging.getLogger("ADMIN") _handler_log = logging.getLogger("HANDLER") class BannerHandler(BaseHandler): """ 轮播焦点图列表 """ column_list = ("banner_code", "name", "banner_type", "target", "image", 'validity', "updated_time", "remark") column_labels = { "banner_code": u"编号", "name": u"名称", "banner_type": u"类型", "target": u"跳转目标", "image": u"图片", "validity": u"状态", "updated_time": u"变更时间", "remark": u"备注" } column_widget_args = { "image": {'class': "hidden-480"}, "remark": {'class': "hidden-480"} } tabs_list = ( {"query_type": -1, "name": u"全部"}, {"query_type": 1, "name": u"有效的"}, {"query_type": 0, "name": u"已作废"} ) @expose('/') @expose('/banner/list.html') @login_required def list_view(self): page = request.args.get('page', 0, type=int) name = request.args.get('name', "") query_type = request.args.get('query_type', -1, type=int) query_kwargs = dict(name=name, query_type=query_type) def pager_url(p): if p is None: p = 0 return self._get_url('.list_view', p, **query_kwargs) count = banner.get_total_count(**query_kwargs) results = [] num_pages = 0 if count > 0: num_pages = self.gen_total_pages(count) if num_pages - 1 < page: page -= 1 offset_value = page * self.page_size results = banner.query_list( query_type=query_type, name=name, limit=self.page_size, offset=offset_value ) actions, actions_confirmation = self.get_actions_list() return_url = self.gen_return_url(".list_view", page=page, **query_kwargs) return self.render( template="banner/list.html", actions=actions, actions_confirmation=actions_confirmation, count=count, page=page, num_pages=num_pages, pager_url=pager_url, data=results, query_kwargs=query_kwargs, return_url=return_url, column_list=self.column_list, column_labels=self.column_labels, column_widget_args=self.column_widget_args, tabs_list=self.tabs_list, banner_types=flow_tools.gen_banner_type() ) @expose('/banner/action.html', methods=('POST',)) @login_required def action_view(self): return_url = request.form.get("return_url", "") return self.handle_action(return_view=return_url) @action('disable', u"注销(下架)所选", u"你确定要注销(下架)所选的记录?") def action_disable(self, ids): try: result = banner.set_validity(ids, validity=0) _handler_log.info(u"[BannerListHandler] batch disable, id:{}, operator: {}".format( utf8(ids), self.current_operator) ) return result except Exception as e: _log.exception(u"[BannerListHandler] batch disable error") @action('activate', u"激活(上架)选择", u"你确定要激活所选的记录?") def action_activate(self, ids): try: result = banner.set_validity(ids, validity=1) _handler_log.info(u"[BannerListHandler] batch disable, id:{}, operator: {}".format( utf8(ids), self.current_operator) ) return result except Exception as e: _log.exception(u"[BannerListHandler] batch disable error") @action('delete', u"删除所选", u"你确定要删除所选的记录?") def action_delete(self, ids): try: result = banner.delete(ids) _handler_log.info(u"[BannerListHandler] batch delete, id:{}, operator: {}".format( utf8(ids), self.current_operator) ) return result except Exception as e: _log.exception(u"[BannerListHandler] batch delete error") @expose('/banner/create.html', methods=('GET', 'POST')) @login_required def create_view(self): if request.method == "GET": select_content_list = flow_tools.gen_bind_products() result = { "select_content_list": select_content_list, "banner_types": flow_tools.gen_banner_type() } return self.render(template="banner/create.html", data=result) else: req_data = self.gen_arguments name = req_data.get("name") banner_type = int(req_data.get("banner_type", 0)) url_target = req_data.get("url_target", "") # 外部url select_target = req_data.get("select_target", "") # 下拉内容 remark = req_data.get("remark", "") picture_url_list = req_data.getlist("picture_url") # 图片url if not picture_url_list: return self.make_write(result_code=4002) if banner_type == 2: target = url_target else: target = select_target result = banner.save( banner_code=numbers.gen_banner_code(), name=name, banner_type=banner_type, target=target, image_url=picture_url_list[0], remark=remark ) return self.make_write(result_code=0, result_data=self.reverse_url(".list_view")) @expose('/banner/edit.html', methods=('GET', 'POST')) @login_required def edit_view(self): if request.method == "GET": _id = request.args.get("id", "") return_url = request.args.get("return_url", "") result = banner.get_detail(_id) banner_type = result.banner_type select_content_list = [] if banner_type == 0: select_content_list = flow_tools.gen_bind_products() elif banner_type == 1: select_content_list = flow_tools.gen_bind_tweets() elif banner_type == 3: select_content_list = flow_tools.gen_bind_groups() result["banner_types"] = flow_tools.gen_banner_type() result["select_content_list"] = select_content_list return self.render( template="banner/edit.html", data=result, return_url=return_url ) else: req_data = self.gen_arguments return_url = req_data.get("return_url", "") _id = req_data.get("id") name = req_data.get("name") banner_type = int(req_data.get("banner_type", 0)) url_target = req_data.get("url_target", "") # 外部url select_target = req_data.get("select_target", "") # 下拉内容 remark = req_data.get("remark", "") picture_url_list = req_data.getlist("picture_url") # 图片url if not picture_url_list: return self.make_write(result_code=4002) if banner_type == 2: target = url_target else: target = select_target result = banner.update( _id=_id, name=name, banner_type=banner_type, target=target, image_url=picture_url_list[0], remark=remark ) return self.make_write(result_code=0, result_data=self.decode_return_url(return_url)) @expose('/banner/delete.html', methods=('POST',)) @login_required def delete_view(self): req_data = self.gen_arguments return_url = req_data.get("return_url", "") _id = req_data.get("id") result = banner.delete([_id]) _handler_log.exception(u"[AdminDeleteHandler] admin_id:{}, operator: {}".format( utf8(_id), self.current_operator)) return self.make_write(result_code=0, result_data=self.decode_return_url(return_url)) @expose('/banner/detail.html', methods=('GET',)) @login_required def detail_view(self): pass @csrf.exempt @expose('/banner/ajax/check.html', methods=('POST',)) def check_view(self): pass
normal
{ "blob_id": "d80cb5ea57faa0f9e3a8dd5d40c9852c2f7f83e4", "index": 4586, "step-1": "<mask token>\n\n\nclass BannerHandler(BaseHandler):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @expose('/banner/action.html', methods=('POST',))\n @login_required\n def action_view(self):\n return_url = request.form.get('return_url', '')\n return self.handle_action(return_view=return_url)\n\n @action('disable', u'注销(下架)所选', u'你确定要注销(下架)所选的记录?')\n def action_disable(self, ids):\n try:\n result = banner.set_validity(ids, validity=0)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n\n @action('activate', u'激活(上架)选择', u'你确定要激活所选的记录?')\n def action_activate(self, ids):\n try:\n result = banner.set_validity(ids, validity=1)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n <mask token>\n <mask token>\n\n @expose('/banner/edit.html', methods=('GET', 'POST'))\n @login_required\n def edit_view(self):\n if request.method == 'GET':\n _id = request.args.get('id', '')\n return_url = request.args.get('return_url', '')\n result = banner.get_detail(_id)\n banner_type = result.banner_type\n select_content_list = []\n if banner_type == 0:\n select_content_list = flow_tools.gen_bind_products()\n elif banner_type == 1:\n select_content_list = flow_tools.gen_bind_tweets()\n elif banner_type == 3:\n select_content_list = flow_tools.gen_bind_groups()\n result['banner_types'] = flow_tools.gen_banner_type()\n result['select_content_list'] = select_content_list\n return self.render(template='banner/edit.html', data=result,\n return_url=return_url)\n else:\n req_data = self.gen_arguments\n return_url = req_data.get('return_url', '')\n _id = req_data.get('id')\n name = req_data.get('name')\n banner_type = int(req_data.get('banner_type', 0))\n url_target = req_data.get('url_target', '')\n select_target = req_data.get('select_target', '')\n remark = req_data.get('remark', '')\n picture_url_list = req_data.getlist('picture_url')\n if not picture_url_list:\n return self.make_write(result_code=4002)\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.update(_id=_id, name=name, banner_type=\n banner_type, target=target, image_url=picture_url_list[0],\n remark=remark)\n return self.make_write(result_code=0, result_data=self.\n decode_return_url(return_url))\n <mask token>\n\n @expose('/banner/detail.html', methods=('GET',))\n @login_required\n def detail_view(self):\n pass\n <mask token>\n", "step-2": "<mask token>\n\n\nclass BannerHandler(BaseHandler):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @expose('/banner/action.html', methods=('POST',))\n @login_required\n def action_view(self):\n return_url = request.form.get('return_url', '')\n return self.handle_action(return_view=return_url)\n\n @action('disable', u'注销(下架)所选', u'你确定要注销(下架)所选的记录?')\n def action_disable(self, ids):\n try:\n result = banner.set_validity(ids, validity=0)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n\n @action('activate', u'激活(上架)选择', u'你确定要激活所选的记录?')\n def action_activate(self, ids):\n try:\n result = banner.set_validity(ids, validity=1)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n\n @action('delete', u'删除所选', u'你确定要删除所选的记录?')\n def action_delete(self, ids):\n try:\n result = banner.delete(ids)\n _handler_log.info(\n u'[BannerListHandler] batch delete, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch delete error')\n\n @expose('/banner/create.html', methods=('GET', 'POST'))\n @login_required\n def create_view(self):\n if request.method == 'GET':\n select_content_list = flow_tools.gen_bind_products()\n result = {'select_content_list': select_content_list,\n 'banner_types': flow_tools.gen_banner_type()}\n return self.render(template='banner/create.html', data=result)\n else:\n req_data = self.gen_arguments\n name = req_data.get('name')\n banner_type = int(req_data.get('banner_type', 0))\n url_target = req_data.get('url_target', '')\n select_target = req_data.get('select_target', '')\n remark = req_data.get('remark', '')\n picture_url_list = req_data.getlist('picture_url')\n if not picture_url_list:\n return self.make_write(result_code=4002)\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.save(banner_code=numbers.gen_banner_code(),\n name=name, banner_type=banner_type, target=target,\n image_url=picture_url_list[0], remark=remark)\n return self.make_write(result_code=0, result_data=self.\n reverse_url('.list_view'))\n\n @expose('/banner/edit.html', methods=('GET', 'POST'))\n @login_required\n def edit_view(self):\n if request.method == 'GET':\n _id = request.args.get('id', '')\n return_url = request.args.get('return_url', '')\n result = banner.get_detail(_id)\n banner_type = result.banner_type\n select_content_list = []\n if banner_type == 0:\n select_content_list = flow_tools.gen_bind_products()\n elif banner_type == 1:\n select_content_list = flow_tools.gen_bind_tweets()\n elif banner_type == 3:\n select_content_list = flow_tools.gen_bind_groups()\n result['banner_types'] = flow_tools.gen_banner_type()\n result['select_content_list'] = select_content_list\n return self.render(template='banner/edit.html', data=result,\n return_url=return_url)\n else:\n req_data = self.gen_arguments\n return_url = req_data.get('return_url', '')\n _id = req_data.get('id')\n name = req_data.get('name')\n banner_type = int(req_data.get('banner_type', 0))\n url_target = req_data.get('url_target', '')\n select_target = req_data.get('select_target', '')\n remark = req_data.get('remark', '')\n picture_url_list = req_data.getlist('picture_url')\n if not picture_url_list:\n return self.make_write(result_code=4002)\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.update(_id=_id, name=name, banner_type=\n banner_type, target=target, image_url=picture_url_list[0],\n remark=remark)\n return self.make_write(result_code=0, result_data=self.\n decode_return_url(return_url))\n <mask token>\n\n @expose('/banner/detail.html', methods=('GET',))\n @login_required\n def detail_view(self):\n pass\n <mask token>\n", "step-3": "<mask token>\n\n\nclass BannerHandler(BaseHandler):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @expose('/banner/action.html', methods=('POST',))\n @login_required\n def action_view(self):\n return_url = request.form.get('return_url', '')\n return self.handle_action(return_view=return_url)\n\n @action('disable', u'注销(下架)所选', u'你确定要注销(下架)所选的记录?')\n def action_disable(self, ids):\n try:\n result = banner.set_validity(ids, validity=0)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n\n @action('activate', u'激活(上架)选择', u'你确定要激活所选的记录?')\n def action_activate(self, ids):\n try:\n result = banner.set_validity(ids, validity=1)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n\n @action('delete', u'删除所选', u'你确定要删除所选的记录?')\n def action_delete(self, ids):\n try:\n result = banner.delete(ids)\n _handler_log.info(\n u'[BannerListHandler] batch delete, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch delete error')\n\n @expose('/banner/create.html', methods=('GET', 'POST'))\n @login_required\n def create_view(self):\n if request.method == 'GET':\n select_content_list = flow_tools.gen_bind_products()\n result = {'select_content_list': select_content_list,\n 'banner_types': flow_tools.gen_banner_type()}\n return self.render(template='banner/create.html', data=result)\n else:\n req_data = self.gen_arguments\n name = req_data.get('name')\n banner_type = int(req_data.get('banner_type', 0))\n url_target = req_data.get('url_target', '')\n select_target = req_data.get('select_target', '')\n remark = req_data.get('remark', '')\n picture_url_list = req_data.getlist('picture_url')\n if not picture_url_list:\n return self.make_write(result_code=4002)\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.save(banner_code=numbers.gen_banner_code(),\n name=name, banner_type=banner_type, target=target,\n image_url=picture_url_list[0], remark=remark)\n return self.make_write(result_code=0, result_data=self.\n reverse_url('.list_view'))\n\n @expose('/banner/edit.html', methods=('GET', 'POST'))\n @login_required\n def edit_view(self):\n if request.method == 'GET':\n _id = request.args.get('id', '')\n return_url = request.args.get('return_url', '')\n result = banner.get_detail(_id)\n banner_type = result.banner_type\n select_content_list = []\n if banner_type == 0:\n select_content_list = flow_tools.gen_bind_products()\n elif banner_type == 1:\n select_content_list = flow_tools.gen_bind_tweets()\n elif banner_type == 3:\n select_content_list = flow_tools.gen_bind_groups()\n result['banner_types'] = flow_tools.gen_banner_type()\n result['select_content_list'] = select_content_list\n return self.render(template='banner/edit.html', data=result,\n return_url=return_url)\n else:\n req_data = self.gen_arguments\n return_url = req_data.get('return_url', '')\n _id = req_data.get('id')\n name = req_data.get('name')\n banner_type = int(req_data.get('banner_type', 0))\n url_target = req_data.get('url_target', '')\n select_target = req_data.get('select_target', '')\n remark = req_data.get('remark', '')\n picture_url_list = req_data.getlist('picture_url')\n if not picture_url_list:\n return self.make_write(result_code=4002)\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.update(_id=_id, name=name, banner_type=\n banner_type, target=target, image_url=picture_url_list[0],\n remark=remark)\n return self.make_write(result_code=0, result_data=self.\n decode_return_url(return_url))\n\n @expose('/banner/delete.html', methods=('POST',))\n @login_required\n def delete_view(self):\n req_data = self.gen_arguments\n return_url = req_data.get('return_url', '')\n _id = req_data.get('id')\n result = banner.delete([_id])\n _handler_log.exception(\n u'[AdminDeleteHandler] admin_id:{}, operator: {}'.format(utf8(\n _id), self.current_operator))\n return self.make_write(result_code=0, result_data=self.\n decode_return_url(return_url))\n\n @expose('/banner/detail.html', methods=('GET',))\n @login_required\n def detail_view(self):\n pass\n <mask token>\n", "step-4": "<mask token>\n\n\nclass BannerHandler(BaseHandler):\n \"\"\"\n 轮播焦点图列表\n \"\"\"\n column_list = ('banner_code', 'name', 'banner_type', 'target', 'image',\n 'validity', 'updated_time', 'remark')\n column_labels = {'banner_code': u'编号', 'name': u'名称', 'banner_type':\n u'类型', 'target': u'跳转目标', 'image': u'图片', 'validity': u'状态',\n 'updated_time': u'变更时间', 'remark': u'备注'}\n column_widget_args = {'image': {'class': 'hidden-480'}, 'remark': {\n 'class': 'hidden-480'}}\n tabs_list = {'query_type': -1, 'name': u'全部'}, {'query_type': 1, 'name':\n u'有效的'}, {'query_type': 0, 'name': u'已作废'}\n\n @expose('/')\n @expose('/banner/list.html')\n @login_required\n def list_view(self):\n page = request.args.get('page', 0, type=int)\n name = request.args.get('name', '')\n query_type = request.args.get('query_type', -1, type=int)\n query_kwargs = dict(name=name, query_type=query_type)\n\n def pager_url(p):\n if p is None:\n p = 0\n return self._get_url('.list_view', p, **query_kwargs)\n count = banner.get_total_count(**query_kwargs)\n results = []\n num_pages = 0\n if count > 0:\n num_pages = self.gen_total_pages(count)\n if num_pages - 1 < page:\n page -= 1\n offset_value = page * self.page_size\n results = banner.query_list(query_type=query_type, name=name,\n limit=self.page_size, offset=offset_value)\n actions, actions_confirmation = self.get_actions_list()\n return_url = self.gen_return_url('.list_view', page=page, **\n query_kwargs)\n return self.render(template='banner/list.html', actions=actions,\n actions_confirmation=actions_confirmation, count=count, page=\n page, num_pages=num_pages, pager_url=pager_url, data=results,\n query_kwargs=query_kwargs, return_url=return_url, column_list=\n self.column_list, column_labels=self.column_labels,\n column_widget_args=self.column_widget_args, tabs_list=self.\n tabs_list, banner_types=flow_tools.gen_banner_type())\n\n @expose('/banner/action.html', methods=('POST',))\n @login_required\n def action_view(self):\n return_url = request.form.get('return_url', '')\n return self.handle_action(return_view=return_url)\n\n @action('disable', u'注销(下架)所选', u'你确定要注销(下架)所选的记录?')\n def action_disable(self, ids):\n try:\n result = banner.set_validity(ids, validity=0)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n\n @action('activate', u'激活(上架)选择', u'你确定要激活所选的记录?')\n def action_activate(self, ids):\n try:\n result = banner.set_validity(ids, validity=1)\n _handler_log.info(\n u'[BannerListHandler] batch disable, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch disable error')\n\n @action('delete', u'删除所选', u'你确定要删除所选的记录?')\n def action_delete(self, ids):\n try:\n result = banner.delete(ids)\n _handler_log.info(\n u'[BannerListHandler] batch delete, id:{}, operator: {}'.\n format(utf8(ids), self.current_operator))\n return result\n except Exception as e:\n _log.exception(u'[BannerListHandler] batch delete error')\n\n @expose('/banner/create.html', methods=('GET', 'POST'))\n @login_required\n def create_view(self):\n if request.method == 'GET':\n select_content_list = flow_tools.gen_bind_products()\n result = {'select_content_list': select_content_list,\n 'banner_types': flow_tools.gen_banner_type()}\n return self.render(template='banner/create.html', data=result)\n else:\n req_data = self.gen_arguments\n name = req_data.get('name')\n banner_type = int(req_data.get('banner_type', 0))\n url_target = req_data.get('url_target', '')\n select_target = req_data.get('select_target', '')\n remark = req_data.get('remark', '')\n picture_url_list = req_data.getlist('picture_url')\n if not picture_url_list:\n return self.make_write(result_code=4002)\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.save(banner_code=numbers.gen_banner_code(),\n name=name, banner_type=banner_type, target=target,\n image_url=picture_url_list[0], remark=remark)\n return self.make_write(result_code=0, result_data=self.\n reverse_url('.list_view'))\n\n @expose('/banner/edit.html', methods=('GET', 'POST'))\n @login_required\n def edit_view(self):\n if request.method == 'GET':\n _id = request.args.get('id', '')\n return_url = request.args.get('return_url', '')\n result = banner.get_detail(_id)\n banner_type = result.banner_type\n select_content_list = []\n if banner_type == 0:\n select_content_list = flow_tools.gen_bind_products()\n elif banner_type == 1:\n select_content_list = flow_tools.gen_bind_tweets()\n elif banner_type == 3:\n select_content_list = flow_tools.gen_bind_groups()\n result['banner_types'] = flow_tools.gen_banner_type()\n result['select_content_list'] = select_content_list\n return self.render(template='banner/edit.html', data=result,\n return_url=return_url)\n else:\n req_data = self.gen_arguments\n return_url = req_data.get('return_url', '')\n _id = req_data.get('id')\n name = req_data.get('name')\n banner_type = int(req_data.get('banner_type', 0))\n url_target = req_data.get('url_target', '')\n select_target = req_data.get('select_target', '')\n remark = req_data.get('remark', '')\n picture_url_list = req_data.getlist('picture_url')\n if not picture_url_list:\n return self.make_write(result_code=4002)\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.update(_id=_id, name=name, banner_type=\n banner_type, target=target, image_url=picture_url_list[0],\n remark=remark)\n return self.make_write(result_code=0, result_data=self.\n decode_return_url(return_url))\n\n @expose('/banner/delete.html', methods=('POST',))\n @login_required\n def delete_view(self):\n req_data = self.gen_arguments\n return_url = req_data.get('return_url', '')\n _id = req_data.get('id')\n result = banner.delete([_id])\n _handler_log.exception(\n u'[AdminDeleteHandler] admin_id:{}, operator: {}'.format(utf8(\n _id), self.current_operator))\n return self.make_write(result_code=0, result_data=self.\n decode_return_url(return_url))\n\n @expose('/banner/detail.html', methods=('GET',))\n @login_required\n def detail_view(self):\n pass\n\n @csrf.exempt\n @expose('/banner/ajax/check.html', methods=('POST',))\n def check_view(self):\n pass\n", "step-5": "# coding: utf-8\nimport logging\n\nfrom flask import request\nfrom flask.ext.admin import expose\n\nfrom cores.actions import action\nfrom cores.adminweb import BaseHandler\nfrom dao.bannerdao import banner\nfrom extends import csrf\nfrom libs.flask_login import login_required\nfrom utils.function_data_flow import flow_tools\nfrom utils.helpers import utf8\nfrom utils.numbering import numbers\n\n__author__ = 'bin wen'\n\n_log = logging.getLogger(\"ADMIN\")\n_handler_log = logging.getLogger(\"HANDLER\")\n\n\nclass BannerHandler(BaseHandler):\n \"\"\"\n 轮播焦点图列表\n \"\"\"\n column_list = (\"banner_code\", \"name\", \"banner_type\", \"target\", \"image\", 'validity',\n \"updated_time\", \"remark\")\n\n column_labels = {\n \"banner_code\": u\"编号\",\n \"name\": u\"名称\",\n \"banner_type\": u\"类型\",\n \"target\": u\"跳转目标\",\n \"image\": u\"图片\",\n \"validity\": u\"状态\",\n \"updated_time\": u\"变更时间\",\n \"remark\": u\"备注\"\n }\n column_widget_args = {\n \"image\": {'class': \"hidden-480\"},\n \"remark\": {'class': \"hidden-480\"}\n }\n tabs_list = (\n {\"query_type\": -1, \"name\": u\"全部\"},\n {\"query_type\": 1, \"name\": u\"有效的\"},\n {\"query_type\": 0, \"name\": u\"已作废\"}\n )\n\n @expose('/')\n @expose('/banner/list.html')\n @login_required\n def list_view(self):\n page = request.args.get('page', 0, type=int)\n name = request.args.get('name', \"\")\n query_type = request.args.get('query_type', -1, type=int)\n\n query_kwargs = dict(name=name, query_type=query_type)\n\n def pager_url(p):\n if p is None:\n p = 0\n\n return self._get_url('.list_view', p, **query_kwargs)\n\n count = banner.get_total_count(**query_kwargs)\n\n results = []\n num_pages = 0\n\n if count > 0:\n num_pages = self.gen_total_pages(count)\n if num_pages - 1 < page:\n page -= 1\n\n offset_value = page * self.page_size\n results = banner.query_list(\n query_type=query_type,\n name=name,\n limit=self.page_size,\n offset=offset_value\n )\n\n actions, actions_confirmation = self.get_actions_list()\n return_url = self.gen_return_url(\".list_view\", page=page, **query_kwargs)\n\n return self.render(\n template=\"banner/list.html\",\n actions=actions,\n actions_confirmation=actions_confirmation,\n count=count,\n page=page,\n num_pages=num_pages,\n pager_url=pager_url,\n data=results,\n query_kwargs=query_kwargs,\n return_url=return_url,\n column_list=self.column_list,\n column_labels=self.column_labels,\n column_widget_args=self.column_widget_args,\n tabs_list=self.tabs_list,\n banner_types=flow_tools.gen_banner_type()\n )\n\n @expose('/banner/action.html', methods=('POST',))\n @login_required\n def action_view(self):\n return_url = request.form.get(\"return_url\", \"\")\n return self.handle_action(return_view=return_url)\n\n @action('disable', u\"注销(下架)所选\", u\"你确定要注销(下架)所选的记录?\")\n def action_disable(self, ids):\n try:\n result = banner.set_validity(ids, validity=0)\n _handler_log.info(u\"[BannerListHandler] batch disable, id:{}, operator: {}\".format(\n utf8(ids), self.current_operator)\n )\n return result\n except Exception as e:\n _log.exception(u\"[BannerListHandler] batch disable error\")\n\n @action('activate', u\"激活(上架)选择\", u\"你确定要激活所选的记录?\")\n def action_activate(self, ids):\n try:\n result = banner.set_validity(ids, validity=1)\n _handler_log.info(u\"[BannerListHandler] batch disable, id:{}, operator: {}\".format(\n utf8(ids), self.current_operator)\n )\n return result\n except Exception as e:\n _log.exception(u\"[BannerListHandler] batch disable error\")\n\n @action('delete', u\"删除所选\", u\"你确定要删除所选的记录?\")\n def action_delete(self, ids):\n try:\n result = banner.delete(ids)\n _handler_log.info(u\"[BannerListHandler] batch delete, id:{}, operator: {}\".format(\n utf8(ids), self.current_operator)\n )\n return result\n except Exception as e:\n _log.exception(u\"[BannerListHandler] batch delete error\")\n\n @expose('/banner/create.html', methods=('GET', 'POST'))\n @login_required\n def create_view(self):\n if request.method == \"GET\":\n select_content_list = flow_tools.gen_bind_products()\n result = {\n \"select_content_list\": select_content_list,\n \"banner_types\": flow_tools.gen_banner_type()\n }\n return self.render(template=\"banner/create.html\", data=result)\n else:\n req_data = self.gen_arguments\n name = req_data.get(\"name\")\n banner_type = int(req_data.get(\"banner_type\", 0))\n url_target = req_data.get(\"url_target\", \"\") # 外部url\n select_target = req_data.get(\"select_target\", \"\") # 下拉内容\n remark = req_data.get(\"remark\", \"\")\n picture_url_list = req_data.getlist(\"picture_url\") # 图片url\n if not picture_url_list:\n return self.make_write(result_code=4002)\n\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n result = banner.save(\n banner_code=numbers.gen_banner_code(),\n name=name,\n banner_type=banner_type,\n target=target,\n image_url=picture_url_list[0],\n remark=remark\n )\n\n return self.make_write(result_code=0, result_data=self.reverse_url(\".list_view\"))\n\n @expose('/banner/edit.html', methods=('GET', 'POST'))\n @login_required\n def edit_view(self):\n if request.method == \"GET\":\n _id = request.args.get(\"id\", \"\")\n return_url = request.args.get(\"return_url\", \"\")\n result = banner.get_detail(_id)\n banner_type = result.banner_type\n select_content_list = []\n if banner_type == 0:\n select_content_list = flow_tools.gen_bind_products()\n elif banner_type == 1:\n select_content_list = flow_tools.gen_bind_tweets()\n elif banner_type == 3:\n select_content_list = flow_tools.gen_bind_groups()\n\n result[\"banner_types\"] = flow_tools.gen_banner_type()\n result[\"select_content_list\"] = select_content_list\n\n return self.render(\n template=\"banner/edit.html\",\n data=result,\n return_url=return_url\n )\n else:\n req_data = self.gen_arguments\n return_url = req_data.get(\"return_url\", \"\")\n\n _id = req_data.get(\"id\")\n name = req_data.get(\"name\")\n banner_type = int(req_data.get(\"banner_type\", 0))\n url_target = req_data.get(\"url_target\", \"\") # 外部url\n select_target = req_data.get(\"select_target\", \"\") # 下拉内容\n remark = req_data.get(\"remark\", \"\")\n picture_url_list = req_data.getlist(\"picture_url\") # 图片url\n if not picture_url_list:\n return self.make_write(result_code=4002)\n\n if banner_type == 2:\n target = url_target\n else:\n target = select_target\n\n result = banner.update(\n _id=_id,\n name=name,\n banner_type=banner_type,\n target=target,\n image_url=picture_url_list[0],\n remark=remark\n )\n\n return self.make_write(result_code=0, result_data=self.decode_return_url(return_url))\n\n @expose('/banner/delete.html', methods=('POST',))\n @login_required\n def delete_view(self):\n req_data = self.gen_arguments\n return_url = req_data.get(\"return_url\", \"\")\n _id = req_data.get(\"id\")\n result = banner.delete([_id])\n\n _handler_log.exception(u\"[AdminDeleteHandler] admin_id:{}, operator: {}\".format(\n utf8(_id), self.current_operator))\n\n return self.make_write(result_code=0, result_data=self.decode_return_url(return_url))\n\n @expose('/banner/detail.html', methods=('GET',))\n @login_required\n def detail_view(self):\n pass\n\n @csrf.exempt\n @expose('/banner/ajax/check.html', methods=('POST',))\n def check_view(self):\n pass\n\n", "step-ids": [ 6, 8, 9, 13, 16 ] }
[ 6, 8, 9, 13, 16 ]
''' Created on Dec 18, 2011 @author: ppa ''' import unittest from ultrafinance.pyTaLib.indicator import Sma class testPyTaLib(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def testSma(self): sma = Sma(period = 3) expectedAvgs = [1, 1.5, 2, 3, 4] for index, number in enumerate(range(1, 6) ): self.assertEqual(expectedAvgs[index], sma(number))
normal
{ "blob_id": "fcd2bd91dff3193c661d71ade8039765f8498fd4", "index": 8317, "step-1": "<mask token>\n\n\nclass testPyTaLib(unittest.TestCase):\n\n def setUp(self):\n pass\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass testPyTaLib(unittest.TestCase):\n\n def setUp(self):\n pass\n <mask token>\n\n def testSma(self):\n sma = Sma(period=3)\n expectedAvgs = [1, 1.5, 2, 3, 4]\n for index, number in enumerate(range(1, 6)):\n self.assertEqual(expectedAvgs[index], sma(number))\n", "step-3": "<mask token>\n\n\nclass testPyTaLib(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def tearDown(self):\n pass\n\n def testSma(self):\n sma = Sma(period=3)\n expectedAvgs = [1, 1.5, 2, 3, 4]\n for index, number in enumerate(range(1, 6)):\n self.assertEqual(expectedAvgs[index], sma(number))\n", "step-4": "<mask token>\nimport unittest\nfrom ultrafinance.pyTaLib.indicator import Sma\n\n\nclass testPyTaLib(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def tearDown(self):\n pass\n\n def testSma(self):\n sma = Sma(period=3)\n expectedAvgs = [1, 1.5, 2, 3, 4]\n for index, number in enumerate(range(1, 6)):\n self.assertEqual(expectedAvgs[index], sma(number))\n", "step-5": "'''\nCreated on Dec 18, 2011\n\n@author: ppa\n'''\nimport unittest\nfrom ultrafinance.pyTaLib.indicator import Sma\n\nclass testPyTaLib(unittest.TestCase):\n def setUp(self):\n pass\n\n def tearDown(self):\n pass\n\n def testSma(self):\n sma = Sma(period = 3)\n expectedAvgs = [1, 1.5, 2, 3, 4]\n for index, number in enumerate(range(1, 6) ):\n self.assertEqual(expectedAvgs[index], sma(number))\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# -*- coding:utf-8 -*- ''' @author:oldwai ''' # email: frankandrew@163.com def multipliers(): return lab1(x) def lab1(x): list1 = [] for i in range(4): sum = x*i list1.append(sum) return list1 #print ([m(2) for m in multipliers()]) def func1(x): list2 = [] for m in multipliers(): list2.append(m(x)) return list2 print(func1(3))
normal
{ "blob_id": "807e19f09f4a46b6c39457b8916714e2c54c3e8d", "index": 5802, "step-1": "<mask token>\n\n\ndef lab1(x):\n list1 = []\n for i in range(4):\n sum = x * i\n list1.append(sum)\n return list1\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef lab1(x):\n list1 = []\n for i in range(4):\n sum = x * i\n list1.append(sum)\n return list1\n\n\ndef func1(x):\n list2 = []\n for m in multipliers():\n list2.append(m(x))\n return list2\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef multipliers():\n return lab1(x)\n\n\ndef lab1(x):\n list1 = []\n for i in range(4):\n sum = x * i\n list1.append(sum)\n return list1\n\n\ndef func1(x):\n list2 = []\n for m in multipliers():\n list2.append(m(x))\n return list2\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef multipliers():\n return lab1(x)\n\n\ndef lab1(x):\n list1 = []\n for i in range(4):\n sum = x * i\n list1.append(sum)\n return list1\n\n\ndef func1(x):\n list2 = []\n for m in multipliers():\n list2.append(m(x))\n return list2\n\n\nprint(func1(3))\n", "step-5": "# -*- coding:utf-8 -*-\r\n'''\r\n@author:oldwai\r\n'''\r\n# email: frankandrew@163.com\r\n\r\n\r\ndef multipliers():\r\n return lab1(x)\r\n\r\n\r\ndef lab1(x):\r\n list1 = []\r\n for i in range(4):\r\n sum = x*i\r\n list1.append(sum)\r\n return list1\r\n\r\n#print ([m(2) for m in multipliers()])\r\ndef func1(x):\r\n list2 = []\r\n for m in multipliers():\r\n list2.append(m(x))\r\n return list2\r\n\r\nprint(func1(3))", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/python # -*- coding:utf-8 -*- ################################################################ # 服务器程序 ################################################################ import json import time import traceback from flask import Flask, abort, render_template, redirect, send_from_directory, request, make_response from flask.ext.bootstrap import Bootstrap from tools.http_tools import WeiboHandler from tools.db_operation.db_tools import save_user_log_info, get_user_log_info, batch_put_info, CONTENT_INFO, SCRAP_INFO, put_info, get_info, put_scrap_info, get_scraped_weibo_info from tools.__init__ import debug_flag from tools.scrap_tools import scrap_user from multiprocessing import Process global log_handler global search_user_list log_handler = {} search_user_list = {} process_list = [] server = Flask(__name__) bootstrap = Bootstrap(server) def read_wh(username): if log_handler.get(username) is None: log_handler[username] = WeiboHandler(username, '', 'flask_server/static/png/') return log_handler[username] def read_cookie(): username = request.cookies.get('username') if username is None: user_list = [] else: user_list = [{'username': username}] return user_list @server.route('/') def index(): user_list = read_cookie() return render_template('index.html', user_list=user_list) @server.route('/signup') def sign_up(): return redirect('http://weibo.com/signup/signup.php') @server.route('/login', methods=['POST']) def log_in(): username = request.form['id'] wh = read_wh(username) wh.passwd = request.form['passwd'] vercode = request.form['vercode'] log_flag = request.form['logflag'] if log_flag == '1': resp = make_response(json.dumps({'stat': '200', 'furl': request.form['ip']})) resp.set_cookie('username', username) return resp # log_handler.prelog_data = get_user_log_info(username) data2, replace_url = wh.do_log_req(vercode) if int(data2['retcode'][0]) == 0: wh.final_log_req(replace_url) resp = make_response(json.dumps({'stat': '200', 'furl': request.form['ip']})) resp.set_cookie('username', username) return resp print 'Log in failed ... retcode:', data2['retcode'][0], ', reason:', data2['reason'][0].decode('gbk') no = wh.get_vercode() return json.dumps({'stat': '502', 'reason': data2['reason'][0].decode('gbk'), 'vercode_no': no}) @server.route('/check_log', methods=['POST']) def check_log(): username = request.form['id'] wh = read_wh(username) wh.check_log_status(wh.open_weibo_page()) if wh.log_flag: return json.dumps({'stat': '200'}) prelog = wh.prelog() # save_user_log_info(username, prelog) try: if prelog['showpin'] == 1: no = wh.get_vercode() return json.dumps({'stat': '502', 'vercode_no': no}) return json.dumps({'stat': '501'}) except Exception, e: return json.dumps({'stat': '501'}) @server.route('/logout') def log_out(): resp = make_response(redirect('/')) resp.set_cookie('username', '', expires=0) return resp @server.route('/static/<path:path>') def send_static_file(path): return send_from_directory('static', path) @server.route('/search_user/<word>') def search_user(word): username = request.cookies.get('username') wh = read_wh(username) if username is None: return {'stat': '404'} search_user_list[username] = wh.get_user_list(word) if debug_flag: print search_user_list return json.dumps({'stat': '200', 'result': search_user_list[username]}) @server.route('/scrap/<user_no>') def to_scrap(user_no): username = request.cookies.get('username') if username is None: return render_template('index.html') user = search_user_list[username][int(user_no)] last_record = get_info(SCRAP_INFO, cond=' 1=1 order by id desc limit 1') scrap_id = 0 if len(last_record) == 0 else (int(last_record[0]['id']) + 1) put_scrap_info(scrap_id, username, user['user_id'], '开始爬取%s的所有微博内容...' % user['title']) sp = Process(target=scrap_process, name='%s_%s_%s' % (username, user['user_id'], scrap_id), args=(username, user, scrap_id)) sp.start() process_list.append(sp) return redirect('/scrap_listen?d=%s' % scrap_id) @server.route('/scrap_listen', methods=['GET']) def scrap_listen(): scrap_id = request.args.get('d') if debug_flag: print scrap_id user_list = read_cookie() return render_template('scrap_listen.html', scrap_id=scrap_id, user_list=user_list) @server.route('/read_scrap/<scrap_id>/<last_message_id>') def read_scrap(scrap_id, last_message_id): data = get_info(SCRAP_INFO, cond=' scrap_id=%s and id > %s ' % (scrap_id, last_message_id)) return json.dumps(data) def scrap_process(username, user, scrap_id): try: wh = read_wh(username) data_list = scrap_user(wh, user, scrap_id, 0) batch_put_info(CONTENT_INFO, data_list) put_scrap_info(scrap_id, username, user['user_id'], '爬取完毕!共爬取%s%s条微博.保存至数据库....' % (user['title'], len(data_list)), 1) except Exception, e: traceback.print_exc() put_scrap_info(scrap_id, username, user['user_id'], '出现异常,数据未保存,请重新爬取数据!', -1) @server.route('/search') def search_scrap_result(): user_list = read_cookie() return render_template('/search.html', user_list=user_list) @server.route('/search_scraped_weibo/<username>', methods=['GET']) def search_scraped_weibo(username): print 'here' keyword = request.args.get('keyword') print 'there' if keyword is None: weibo_list = get_scraped_weibo_info(username) else: weibo_list = get_scraped_weibo_info(username, keyword) return json.dumps({'stat': '200', 'result': weibo_list})
normal
{ "blob_id": "2c89f12d633da8da4d500dca910662d351b0958f", "index": 4509, "step-1": "#!/usr/bin/python\n# -*- coding:utf-8 -*-\n################################################################\n# 服务器程序\n################################################################\nimport json\nimport time\nimport traceback\nfrom flask import Flask, abort, render_template, redirect, send_from_directory, request, make_response\nfrom flask.ext.bootstrap import Bootstrap\nfrom tools.http_tools import WeiboHandler\nfrom tools.db_operation.db_tools import save_user_log_info, get_user_log_info, batch_put_info, CONTENT_INFO, SCRAP_INFO, put_info, get_info, put_scrap_info, get_scraped_weibo_info\nfrom tools.__init__ import debug_flag\nfrom tools.scrap_tools import scrap_user\nfrom multiprocessing import Process\nglobal log_handler\nglobal search_user_list\nlog_handler = {}\nsearch_user_list = {}\nprocess_list = []\n\n\nserver = Flask(__name__)\nbootstrap = Bootstrap(server)\n\n\ndef read_wh(username):\n if log_handler.get(username) is None:\n log_handler[username] = WeiboHandler(username, '', 'flask_server/static/png/')\n return log_handler[username]\n\n\ndef read_cookie():\n username = request.cookies.get('username')\n if username is None:\n user_list = []\n else:\n user_list = [{'username': username}]\n return user_list\n\n\n@server.route('/')\ndef index():\n user_list = read_cookie()\n return render_template('index.html', user_list=user_list)\n\n\n@server.route('/signup')\ndef sign_up():\n return redirect('http://weibo.com/signup/signup.php')\n\n\n@server.route('/login', methods=['POST'])\ndef log_in():\n username = request.form['id']\n wh = read_wh(username)\n wh.passwd = request.form['passwd']\n vercode = request.form['vercode']\n log_flag = request.form['logflag']\n if log_flag == '1':\n resp = make_response(json.dumps({'stat': '200', 'furl': request.form['ip']}))\n resp.set_cookie('username', username)\n return resp\n # log_handler.prelog_data = get_user_log_info(username)\n data2, replace_url = wh.do_log_req(vercode)\n if int(data2['retcode'][0]) == 0:\n wh.final_log_req(replace_url)\n resp = make_response(json.dumps({'stat': '200', 'furl': request.form['ip']}))\n resp.set_cookie('username', username)\n return resp\n print 'Log in failed ... retcode:', data2['retcode'][0], ', reason:', data2['reason'][0].decode('gbk')\n no = wh.get_vercode()\n return json.dumps({'stat': '502', 'reason': data2['reason'][0].decode('gbk'), 'vercode_no': no})\n\n\n@server.route('/check_log', methods=['POST'])\ndef check_log():\n username = request.form['id']\n wh = read_wh(username)\n wh.check_log_status(wh.open_weibo_page())\n if wh.log_flag:\n return json.dumps({'stat': '200'})\n prelog = wh.prelog()\n # save_user_log_info(username, prelog)\n try:\n if prelog['showpin'] == 1:\n no = wh.get_vercode()\n return json.dumps({'stat': '502', 'vercode_no': no})\n return json.dumps({'stat': '501'})\n except Exception, e:\n return json.dumps({'stat': '501'})\n\n\n@server.route('/logout')\ndef log_out():\n resp = make_response(redirect('/'))\n resp.set_cookie('username', '', expires=0)\n return resp\n\n\n@server.route('/static/<path:path>')\ndef send_static_file(path):\n return send_from_directory('static', path)\n\n\n@server.route('/search_user/<word>')\ndef search_user(word):\n username = request.cookies.get('username')\n wh = read_wh(username)\n if username is None:\n return {'stat': '404'}\n search_user_list[username] = wh.get_user_list(word)\n if debug_flag:\n print search_user_list\n return json.dumps({'stat': '200', 'result': search_user_list[username]})\n\n\n@server.route('/scrap/<user_no>')\ndef to_scrap(user_no):\n username = request.cookies.get('username')\n if username is None:\n return render_template('index.html')\n user = search_user_list[username][int(user_no)]\n last_record = get_info(SCRAP_INFO, cond=' 1=1 order by id desc limit 1')\n scrap_id = 0 if len(last_record) == 0 else (int(last_record[0]['id']) + 1)\n put_scrap_info(scrap_id, username, user['user_id'], '开始爬取%s的所有微博内容...' % user['title'])\n sp = Process(target=scrap_process, name='%s_%s_%s' % (username, user['user_id'], scrap_id), args=(username, user, scrap_id))\n sp.start()\n process_list.append(sp)\n return redirect('/scrap_listen?d=%s' % scrap_id)\n\n\n@server.route('/scrap_listen', methods=['GET'])\ndef scrap_listen():\n scrap_id = request.args.get('d')\n if debug_flag:\n print scrap_id\n user_list = read_cookie()\n return render_template('scrap_listen.html', scrap_id=scrap_id, user_list=user_list)\n\n\n@server.route('/read_scrap/<scrap_id>/<last_message_id>')\ndef read_scrap(scrap_id, last_message_id):\n data = get_info(SCRAP_INFO, cond=' scrap_id=%s and id > %s ' % (scrap_id, last_message_id))\n return json.dumps(data)\n\n\ndef scrap_process(username, user, scrap_id):\n try:\n wh = read_wh(username)\n data_list = scrap_user(wh, user, scrap_id, 0)\n batch_put_info(CONTENT_INFO, data_list)\n put_scrap_info(scrap_id, username, user['user_id'], '爬取完毕!共爬取%s%s条微博.保存至数据库....' % (user['title'], len(data_list)), 1)\n except Exception, e:\n traceback.print_exc()\n put_scrap_info(scrap_id, username, user['user_id'], '出现异常,数据未保存,请重新爬取数据!', -1)\n\n\n@server.route('/search')\ndef search_scrap_result():\n user_list = read_cookie()\n return render_template('/search.html', user_list=user_list)\n\n\n@server.route('/search_scraped_weibo/<username>', methods=['GET'])\ndef search_scraped_weibo(username):\n print 'here'\n keyword = request.args.get('keyword')\n print 'there'\n if keyword is None:\n weibo_list = get_scraped_weibo_info(username)\n else:\n weibo_list = get_scraped_weibo_info(username, keyword)\n return json.dumps({'stat': '200', 'result': weibo_list})\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# This file is used to run a program to perform Active measuremnts import commands import SocketServer import sys #Class to handle Socket request class Handler(SocketServer.BaseRequestHandler): def handle(self): # Get the IP of the client IP = self.request.recv(1024) #print 'IP=' + IP latency = '' try: # Use Scamper to determine the latency of the Requesting Client identified by the IP scamperCommand = "scamper -c 'ping -c 1' -i "+IP # Get the output of the system command output = commands.getoutput(scamperCommand) print "Output=" + output #Parse and get the Latency latency = output.split("\n")[1].split("time=")[1].split(" ")[0] except Exception: latency = 'Error' #print latency # Send latency to requester self.request.sendall(latency) return def main(argv): port = int(argv[1]) addr = ('', port) # Start an active measurement system which listenes to a given port server = SocketServer.TCPServer(addr, Handler); print 'Active Measurement Server Listening at ' + str(port) + "..." server.serve_forever() if __name__ == '__main__': main(sys.argv)
normal
{ "blob_id": "c853f922d1e4369df9816d150e5c0abc729b325c", "index": 4902, "step-1": "# This file is used to run a program to perform Active measuremnts\n\n\nimport commands\nimport SocketServer\nimport sys\n\n#Class to handle Socket request\nclass Handler(SocketServer.BaseRequestHandler):\n\n def handle(self):\n\n # Get the IP of the client\n IP = self.request.recv(1024)\n\n #print 'IP=' + IP\n\n latency = ''\n\n try:\n\n # Use Scamper to determine the latency of the Requesting Client identified by the IP\n scamperCommand = \"scamper -c 'ping -c 1' -i \"+IP\n\n # Get the output of the system command\n output = commands.getoutput(scamperCommand)\n print \"Output=\" + output\n #Parse and get the Latency\n latency = output.split(\"\\n\")[1].split(\"time=\")[1].split(\" \")[0]\n\n except Exception:\n latency = 'Error'\n\n #print latency\n\n # Send latency to requester\n self.request.sendall(latency)\n\n return\n\ndef main(argv):\n\n port = int(argv[1])\n addr = ('', port)\n\n # Start an active measurement system which listenes to a given port\n server = SocketServer.TCPServer(addr, Handler);\n\n\n print 'Active Measurement Server Listening at ' + str(port) + \"...\"\n\n\n server.serve_forever()\n\nif __name__ == '__main__':\n main(sys.argv)", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from functools import wraps import maya.cmds as mc import maya.mel as mel import pymel.core as pm from PySide2 import QtCore, QtGui, QtWidgets import adb_core.Class__multi_skin as ms import adbrower from CollDict import pysideColorDic as pyQtDic from maya.app.general.mayaMixin import MayaQWidgetDockableMixin import adb_tools.adb_pyQt.Class__rightClickCustom as adbRC from maya_script import Adbrower adb = adbrower.Adbrower() VERSION = 1.0 PATH_WINDOW = Adbrower.PATH_WINDOW_INIT + 'AppData/Roaming' PATH_LINUX = Adbrower.PATH_LINUX_INIT FOLDER_NAME = Adbrower.FOLDER_NAME_INIT ICONS_FOLDER = Adbrower.ICONS_FOLDER_INIT YELLOW = '#ffe100' ORANGE = '#fd651d' GREEN = '#597A59' DARKRED = '#745a54' def undo(func): ''' Puts the wrapped `func` into a single Maya Undo action, then undoes it when the function enters the finally: block from schworer Github ''' @wraps(func) def _undofunc(*args, **kwargs): try: # start an undo chunk mc.undoInfo(ock=True) return func(*args, **kwargs) finally: # after calling the func, end the undo chunk mc.undoInfo(cck=True) return _undofunc def flatList(ori_list=''): """ Flatten a list """ flat_list = [] for item in ori_list: if isinstance(item, list): for sub_item in item: flat_list.append(sub_item) else: flat_list.append(item) return flat_list #----------------------------------- # CLASS #----------------------------------- class MultiSkin_UI(MayaQWidgetDockableMixin, QtWidgets.QDialog): __dialog = None @classmethod def show_dialog(cls): if cls.__dialog is None: cls.__dialog = cls() else: cls.__dialog.raise_() cls.__dialog.show() def __init__(self,parent=None): super(MultiSkin_UI, self).__init__(parent=parent) self.meshTreeWidget=QtWidgets.QTreeWidget() self.setObjectName('multi skin ui') self.starting_height = 500 self.starting_width = 390 self.setWindowTitle('adbrower - Multi Skin Tool' + ' v' + str(VERSION)) self.setWindowFlags(QtCore.Qt.Tool) self.setMinimumWidth(self.starting_width) self.resize(self.starting_width, self.starting_height) # ----------------------------- # --- Create scrollArea self.mainBox = QtWidgets.QVBoxLayout() self.mainBox.setContentsMargins(0, 0, 0, 0) self.scroll_layout = QtWidgets.QScrollArea() self.mainBox.addWidget(self.scroll_layout) self.setLayout(self.mainBox) self.scroll_layout.setContentsMargins(0, 0, 0, 0) self.scroll_layout.setWidgetResizable(True) self.scroll_layout.setFrameStyle(QtWidgets.QFrame.NoFrame) self.scroll_layout.setFrameShadow(QtWidgets.QFrame.Plain) self.scroll_widget = QtWidgets.QWidget() self.scroll_layout.setWidget(self.scroll_widget) # ----------------------------- # --- Main Layout self.main_layout = QtWidgets.QVBoxLayout() self.main_layout.setContentsMargins(*[5] * 4) self.main_layout.setSpacing(2) self.setLayout(self.main_layout) self.scroll_widget.setLayout(self.main_layout) self.widgetsAndLayouts() self.create_Button() self.buildMainLayout() def widgetsAndLayouts(self): # --------- Predefine widgets def addLine(): line = QtWidgets. QFrame() line.setFrameShape(QtWidgets.QFrame.HLine) return line def addText(message, alignement=QtCore.Qt.AlignCenter, height=30, bold=False): myFont = QtGui.QFont() myFont.setBold(bold) text = QtWidgets.QLabel(message) text.setAlignment(alignement) text.setFixedHeight(height) text.setFont(myFont) return text # ------------------------------ #--------- Layouts self.vLayoutAndFunctions = [ # name, margins ['treeWidget', [1, 1, 1, 1]], ] self.vlayout = {} for layoutName, margins, in self.vLayoutAndFunctions: self.vlayout[layoutName] = QtWidgets.QVBoxLayout() self.vlayout[layoutName].setContentsMargins(margins[0], margins[1], margins[2], margins[3],) self.hLayoutAndFunctions = [ # name, margins ['filterOptions', [1, 1, 1, 1]], ['buttonsOptions', [1, 1, 1, 1]], ['searchBarWidget', [1, 1, 1, 1]], ] self.hlayout = {} for layoutName, margins, in self.hLayoutAndFunctions: self.hlayout[layoutName] = QtWidgets.QHBoxLayout() self.hlayout[layoutName].setContentsMargins(margins[0], margins[1], margins[2], margins[3],) # ------------------------------ # --------- QLINE EDIT WIDGET self.searchBar = QtWidgets.QLineEdit() self.searchBar.setPlaceholderText('Search...') self.searchBar.textEdited.connect(self.searchBarEdited) self.hlayout['searchBarWidget'].addWidget(self.searchBar) # ------------------------------ # --------- CHECKBOX WIDGET self.matchCaseChx = QtWidgets.QCheckBox() self.matchCaseChx.setChecked(False) self.matchCaseChx.setText('Match Case') self.matchCaseChx.stateChanged.connect(self.searchBarEdited) # ------------------------------ # --------- RADIO BUTTON WIDGET self.allFilter = QtWidgets.QRadioButton('All', self) self.allFilter.setChecked(True) self.allFilter.toggled.connect(self.refreshQtree) self.skinClusterFilter = QtWidgets.QRadioButton('Skin Clusters', self) self.skinClusterFilter.setChecked(True) self.skinClusterFilter.toggled.connect(self.refreshQtree) # ------------------------------ # --------- TREE LIST WIDGET self.meshTreeWidget=QtWidgets.QTreeWidget() self.meshTreeWidget.setHeaderLabel('Cloth Tree View') self.meshTreeWidget.setSelectionMode(self.meshTreeWidget.ExtendedSelection) self.vlayout['treeWidget'].addWidget(self.meshTreeWidget) header = QtWidgets.QTreeWidgetItem(["Geometries"]) self.meshTreeWidget.setHeaderItem(header) self.meshTreeWidget.itemClicked.connect(self.singleClickedAction) self.meshTreeWidget.itemSelectionChanged .connect(self.singleClickedAction) self.refreshQtree() def create_Button(self): """ Create the buttons """ self.buttonAndFunctions = [ # name, function , group number, labelColor, backgroundColor, layout, layout_coordinate width ['Show Selected', self.showSelected, 0, pyQtDic['colorLightGrey'], '', self.hlayout['searchBarWidget'], '', 30], ['Refresh', self.refreshQtree, 0, pyQtDic['colorLightGrey'], '', self.hlayout['filterOptions'], '', 30], ['Clear', self.meshTreeWidget.clear, 0, pyQtDic['colorLightGrey'], '', self.hlayout['filterOptions'], '', 30], ['Expand All', self.expandTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout['buttonsOptions'], '', 30], ['Close All', self.closeTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout['buttonsOptions'], '', 30], ] # Build Buttons self.buttons = {} for buttonName, buttonFunction, _, labColor, bgColor, layout, layout_coord, width, in self.buttonAndFunctions: self.buttons[buttonName] = adbRC.CustomQPushButton(buttonName) self.buttons[buttonName].clicked.connect(buttonFunction) try: layout.addWidget(self.buttons[buttonName], int(layout_coord.split(',')[0]), int(layout_coord.split(',')[1])) except ValueError: layout.addWidget(self.buttons[buttonName]) # add Right Clicked Options _optionsExpandAll = self.buttons['Expand All'].addButtonActions(['Shapes', 'Skin Clusters']) _optionsExpandAll['Shapes'].triggered.connect(lambda:self.expandTree('shape')) _optionsExpandAll['Skin Clusters'].triggered.connect(lambda:self.expandTree('skin cluster')) _optionsCloseAll = self.buttons['Close All'].addButtonActions(['Shapes', 'Skin Clusters']) _optionsCloseAll['Shapes'].triggered.connect(lambda:self.closeTree('shape')) _optionsCloseAll['Skin Clusters'].triggered.connect(lambda:self.closeTree('skin cluster')) def buildMainLayout(self): # ------------------------------ # --------- BUILD MAIN LAYOUT self.main_layout.addLayout(self.hlayout['filterOptions']) self.hlayout['filterOptions'].addWidget(self.allFilter) self.hlayout['filterOptions'].addWidget(self.skinClusterFilter) self.hlayout['filterOptions'].addStretch() self.main_layout.addLayout(self.hlayout['searchBarWidget']) self.hlayout['searchBarWidget'].addWidget(self.matchCaseChx) self.main_layout.addLayout(self.hlayout['buttonsOptions']) self.main_layout.addLayout(self.vlayout['treeWidget']) # ================================== # SLOTS # ================================== def refreshQtree(self): self.meshTreeWidget.clear() all_status = self.allFilter.isChecked() if all_status: _filter = 'all' else: _filter = 'skinClusters' self.filterList = self.filterMeshes(filter=_filter) self.populateQTree(self.filterList) def getSearchBarText(self): searchBarText = self.searchBar.text() return searchBarText def searchBarEdited(self): matchCase=bool(self.matchCaseChx.checkState()) query = self.searchBar.text() if matchCase: query_words = str(query).split(" ") else: query_words = str(query).lower().split(" ") query_words = filter(None, query_words) scoreList = {} for item in [str(x) for x in self.filterList]: score = 0 for query_word in query_words: if matchCase: if query_word in item: score += 1 else: if query_word in item.lower(): score += 1 scoreList[item] = score # If user enter more than one words, get only result with a score at least equal to the number of words in the query sorted_matches = [i for i in scoreList.items() if i[1] >= len(query_words)] # Sort matches by score sorted_matches = sorted(sorted_matches, key=lambda x: x[0]) sorted_matches_string = [name for name, index in sorted_matches] self.meshTreeWidget.clear() self.populateQTree(sorted_matches_string) def populateQTree(self, filterList): # Meshes # ---------------------- self.roots = [QtWidgets.QTreeWidgetItem(self.meshTreeWidget, [str(item)]) for item in filterList] [root.setIcon(0, QtGui.QIcon(':/out_mesh.png')) for root in self.roots] [root.setExpanded(True) for root in self.roots] # Shapes # ---------------------- self.QtShapes = [] shape_dic = self.getAllShapes(self.getAllMeshes()) QTroots_dic = {} # Keys are Qtree object for root in self.roots: try: QTroots_dic.update({root:shape_dic[root.text(0)]}) except KeyError: pass # added the shapes under there mesh for QTroot, shapesList in QTroots_dic.items(): [QtWidgets.QTreeWidgetItem(QTroot, [str(shape)]) for shape in shapesList] # changed their color child_count=QTroot.childCount() children=[QTroot.child(index) for index in range(child_count)] [child.setForeground(0, QtGui.QBrush(QtGui.QColor(YELLOW))) for child in children] [child.setIcon(0, QtGui.QIcon(':/out_transform.png')) for child in children] [child.setExpanded(True) for child in children] [self.QtShapes.append(child) for child in children] # skinClusters # ---------------------- self.QTClusters = [] cluster_dic = self.getSkinClusterbyShape(flatList(shape_dic.values())) QTshape_dic = {} for shape in self.QtShapes: QTshape_dic.update({shape:cluster_dic[shape.text(0)]}) # added the skinCluster under there shape for QTshape, clusterList in QTshape_dic.items(): if clusterList == 'None': pass else: QtWidgets.QTreeWidgetItem(QTshape, [str(clusterList)]) # changed their color child_count=QTshape.childCount() children=[QTshape.child(index) for index in range(child_count)] [child.setForeground(0, QtGui.QBrush(QtGui.QColor(GREEN))) for child in children] [child.setIcon(0, QtGui.QIcon(':/cluster.png')) for child in children] [self.QTClusters.append(child) for child in children] # Joints # ---------------------- bindJoints_dic = self.getBindJointsFromCluster([x for x in cluster_dic.values() if x != 'None']) QTcluster_dic = {} for cluster in self.QTClusters: QTcluster_dic.update({cluster:bindJoints_dic[cluster.text(0)]}) for QTCluster, jointList in QTcluster_dic.items(): [QtWidgets.QTreeWidgetItem(QTCluster, [str(jnt)]) for jnt in jointList] # changed their color child_count=QTCluster.childCount() children=[QTCluster.child(index) for index in range(child_count)] [child.setForeground(0, QtGui.QBrush(QtGui.QColor(DARKRED))) for child in children] [child.setIcon(0, QtGui.QIcon(':/out_joint.png')) for child in children] def closeTree(self, type='mesh'): if type == 'mesh': [root.setExpanded(False) for root in self.roots] elif type == 'shape': [shape.setExpanded(False) for shape in self.QtShapes] elif type == 'skin cluster': [sclus.setExpanded(False) for sclus in self.QTClusters] def expandTree(self, type='mesh'): if type == 'mesh': [root.setExpanded(True) for root in self.roots] elif type == 'shape': [shape.setExpanded(True) for shape in self.QtShapes] elif type == 'skin cluster': [sclus.setExpanded(True) for sclus in self.QTClusters] def showSelected(self): selection = pm.selected() selection.sort() self.meshTreeWidget.clear() self.populateQTree(selection) def singleClickedAction(self): mySelection = self.meshTreeWidget.selectedItems() str_selected = [x.text(0) for x in mySelection] pm.select(str_selected, r=1) def filterMeshes(self, filter = 'all'): """ filter: all : all meshes skinClusters : all meshes with skinClusters None """ if filter =='all': return self.getAllMeshes() elif filter == "skinClusters": clusters = pm.ls(type='skinCluster') meshesShapes = set(sum([pm.skinCluster(c, q=1, geometry=1) for c in clusters], [])) meshes = set([x.getParent() for x in meshesShapes if pm.objectType(x) == 'mesh']) return meshes elif filter == 'None': return None # ================================== # STATIC METHOD # ================================== @staticmethod def test(): print ('test') @staticmethod def getSkinCluster(_transform): """ Find a SkinCluster from a transform Returns the skinCluster node """ result = [] if not (pm.objExists(_transform)): return result validList = mel.eval('findRelatedDeformer("' + str(_transform) + '")') if validList is None: return result for elem in validList: if pm.nodeType(elem) == 'skinCluster': result.append(elem) pm.select(result, r=True) result_node = pm.selected() if len(result_node) > 1: return result_node else: try: return result_node[0] except IndexError: return False @staticmethod def getBindJointsFromCluster(clusterList): """ Find all joints attached to a skinCluster @param clusterList: List. list of skin Clusters return dic with key: skin Cluster. Value: list of joint """ bindJoints_dic = {} for cluster in clusterList: all_binds_jnts = [x for x in pm.listConnections(str(cluster) + '.matrix[*]', s=1)] bindJoints_dic.update({str(cluster):all_binds_jnts}) return bindJoints_dic @staticmethod def getAllMeshes(): """ return: list of all meshes / geometry """ shapesList = pm.ls(type="mesh", ni=1) transformList = list(set(pm.listRelatives(shapesList ,parent=True))) transformList.sort() return transformList @staticmethod def getAllShapes(transforms): """ @param transforms: List. return : dictionnary with key:mesh / values: shapes """ shapes_dic = {} for transform in transforms: all_shapes = pm.PyNode(transform).getShapes(ni=True) shapes_dic.update({str(transform):all_shapes}) return shapes_dic def getSkinClusterbyShape(self, shapes): """ get skinCluster attached to the shape @param shapes: List return: List """ cluster_dic = {} for shape in shapes: try: incoming = mc.listConnections('{}.inMesh'.format(shape))[0] if pm.objectType(incoming) == 'skinCluster': cluster_dic.update({str(shape):incoming}) else: skinCluster = self.getSkinCluster(shape) if skinCluster: if len(skinCluster) > 1: cluster_dic.update({str(shape):'None'}) else: cluster_dic.update({str(shape):skinCluster}) else: cluster_dic.update({str(shape):'None'}) except TypeError: cluster_dic.update({str(shape):'None'}) return cluster_dic # =============================== # BUILD WINDOW # =============================== def showUI(dialog = False): if dialog: MultiSkin_UI.show_dialog() else: # Make sure the UI is deleted before recreating global tools_cw_ui try: tools_cw_ui.deleteLater() except: pass tools_cw_ui = MultiSkin_UI() tools_cw_ui.show() # showUI()
normal
{ "blob_id": "819607d89035413fc2800e9f16222619a74a5d64", "index": 6429, "step-1": "<mask token>\n\n\nclass MultiSkin_UI(MayaQWidgetDockableMixin, QtWidgets.QDialog):\n <mask token>\n <mask token>\n <mask token>\n\n def widgetsAndLayouts(self):\n\n def addLine():\n line = QtWidgets.QFrame()\n line.setFrameShape(QtWidgets.QFrame.HLine)\n return line\n\n def addText(message, alignement=QtCore.Qt.AlignCenter, height=30,\n bold=False):\n myFont = QtGui.QFont()\n myFont.setBold(bold)\n text = QtWidgets.QLabel(message)\n text.setAlignment(alignement)\n text.setFixedHeight(height)\n text.setFont(myFont)\n return text\n self.vLayoutAndFunctions = [['treeWidget', [1, 1, 1, 1]]]\n self.vlayout = {}\n for layoutName, margins in self.vLayoutAndFunctions:\n self.vlayout[layoutName] = QtWidgets.QVBoxLayout()\n self.vlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.hLayoutAndFunctions = [['filterOptions', [1, 1, 1, 1]], [\n 'buttonsOptions', [1, 1, 1, 1]], ['searchBarWidget', [1, 1, 1, 1]]]\n self.hlayout = {}\n for layoutName, margins in self.hLayoutAndFunctions:\n self.hlayout[layoutName] = QtWidgets.QHBoxLayout()\n self.hlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.searchBar = QtWidgets.QLineEdit()\n self.searchBar.setPlaceholderText('Search...')\n self.searchBar.textEdited.connect(self.searchBarEdited)\n self.hlayout['searchBarWidget'].addWidget(self.searchBar)\n self.matchCaseChx = QtWidgets.QCheckBox()\n self.matchCaseChx.setChecked(False)\n self.matchCaseChx.setText('Match Case')\n self.matchCaseChx.stateChanged.connect(self.searchBarEdited)\n self.allFilter = QtWidgets.QRadioButton('All', self)\n self.allFilter.setChecked(True)\n self.allFilter.toggled.connect(self.refreshQtree)\n self.skinClusterFilter = QtWidgets.QRadioButton('Skin Clusters', self)\n self.skinClusterFilter.setChecked(True)\n self.skinClusterFilter.toggled.connect(self.refreshQtree)\n self.meshTreeWidget = QtWidgets.QTreeWidget()\n self.meshTreeWidget.setHeaderLabel('Cloth Tree View')\n self.meshTreeWidget.setSelectionMode(self.meshTreeWidget.\n ExtendedSelection)\n self.vlayout['treeWidget'].addWidget(self.meshTreeWidget)\n header = QtWidgets.QTreeWidgetItem(['Geometries'])\n self.meshTreeWidget.setHeaderItem(header)\n self.meshTreeWidget.itemClicked.connect(self.singleClickedAction)\n self.meshTreeWidget.itemSelectionChanged.connect(self.\n singleClickedAction)\n self.refreshQtree()\n\n def create_Button(self):\n \"\"\" Create the buttons \"\"\"\n self.buttonAndFunctions = [['Show Selected', self.showSelected, 0,\n pyQtDic['colorLightGrey'], '', self.hlayout['searchBarWidget'],\n '', 30], ['Refresh', self.refreshQtree, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Clear', self.meshTreeWidget.clear, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Expand All', self.expandTree, 0, pyQtDic['colorLightGrey'],\n '', self.hlayout['buttonsOptions'], '', 30], ['Close All', self\n .closeTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout[\n 'buttonsOptions'], '', 30]]\n self.buttons = {}\n for buttonName, buttonFunction, _, labColor, bgColor, layout, layout_coord, width in self.buttonAndFunctions:\n self.buttons[buttonName] = adbRC.CustomQPushButton(buttonName)\n self.buttons[buttonName].clicked.connect(buttonFunction)\n try:\n layout.addWidget(self.buttons[buttonName], int(layout_coord\n .split(',')[0]), int(layout_coord.split(',')[1]))\n except ValueError:\n layout.addWidget(self.buttons[buttonName])\n _optionsExpandAll = self.buttons['Expand All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsExpandAll['Shapes'].triggered.connect(lambda : self.\n expandTree('shape'))\n _optionsExpandAll['Skin Clusters'].triggered.connect(lambda : self.\n expandTree('skin cluster'))\n _optionsCloseAll = self.buttons['Close All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsCloseAll['Shapes'].triggered.connect(lambda : self.\n closeTree('shape'))\n _optionsCloseAll['Skin Clusters'].triggered.connect(lambda : self.\n closeTree('skin cluster'))\n\n def buildMainLayout(self):\n self.main_layout.addLayout(self.hlayout['filterOptions'])\n self.hlayout['filterOptions'].addWidget(self.allFilter)\n self.hlayout['filterOptions'].addWidget(self.skinClusterFilter)\n self.hlayout['filterOptions'].addStretch()\n self.main_layout.addLayout(self.hlayout['searchBarWidget'])\n self.hlayout['searchBarWidget'].addWidget(self.matchCaseChx)\n self.main_layout.addLayout(self.hlayout['buttonsOptions'])\n self.main_layout.addLayout(self.vlayout['treeWidget'])\n\n def refreshQtree(self):\n self.meshTreeWidget.clear()\n all_status = self.allFilter.isChecked()\n if all_status:\n _filter = 'all'\n else:\n _filter = 'skinClusters'\n self.filterList = self.filterMeshes(filter=_filter)\n self.populateQTree(self.filterList)\n\n def getSearchBarText(self):\n searchBarText = self.searchBar.text()\n return searchBarText\n\n def searchBarEdited(self):\n matchCase = bool(self.matchCaseChx.checkState())\n query = self.searchBar.text()\n if matchCase:\n query_words = str(query).split(' ')\n else:\n query_words = str(query).lower().split(' ')\n query_words = filter(None, query_words)\n scoreList = {}\n for item in [str(x) for x in self.filterList]:\n score = 0\n for query_word in query_words:\n if matchCase:\n if query_word in item:\n score += 1\n elif query_word in item.lower():\n score += 1\n scoreList[item] = score\n sorted_matches = [i for i in scoreList.items() if i[1] >= len(\n query_words)]\n sorted_matches = sorted(sorted_matches, key=lambda x: x[0])\n sorted_matches_string = [name for name, index in sorted_matches]\n self.meshTreeWidget.clear()\n self.populateQTree(sorted_matches_string)\n <mask token>\n <mask token>\n\n def expandTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(True) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(True) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(True) for sclus in self.QTClusters]\n\n def showSelected(self):\n selection = pm.selected()\n selection.sort()\n self.meshTreeWidget.clear()\n self.populateQTree(selection)\n\n def singleClickedAction(self):\n mySelection = self.meshTreeWidget.selectedItems()\n str_selected = [x.text(0) for x in mySelection]\n pm.select(str_selected, r=1)\n\n def filterMeshes(self, filter='all'):\n \"\"\"\n filter:\n all : all meshes\n skinClusters : all meshes with skinClusters\n None\n \"\"\"\n if filter == 'all':\n return self.getAllMeshes()\n elif filter == 'skinClusters':\n clusters = pm.ls(type='skinCluster')\n meshesShapes = set(sum([pm.skinCluster(c, q=1, geometry=1) for\n c in clusters], []))\n meshes = set([x.getParent() for x in meshesShapes if pm.\n objectType(x) == 'mesh'])\n return meshes\n elif filter == 'None':\n return None\n\n @staticmethod\n def test():\n print('test')\n\n @staticmethod\n def getSkinCluster(_transform):\n \"\"\"\n Find a SkinCluster from a transform\n Returns the skinCluster node\n \"\"\"\n result = []\n if not pm.objExists(_transform):\n return result\n validList = mel.eval('findRelatedDeformer(\"' + str(_transform) + '\")')\n if validList is None:\n return result\n for elem in validList:\n if pm.nodeType(elem) == 'skinCluster':\n result.append(elem)\n pm.select(result, r=True)\n result_node = pm.selected()\n if len(result_node) > 1:\n return result_node\n else:\n try:\n return result_node[0]\n except IndexError:\n return False\n\n @staticmethod\n def getBindJointsFromCluster(clusterList):\n \"\"\"\n Find all joints attached to a skinCluster\n @param clusterList: List. list of skin Clusters\n return dic with key: skin Cluster. Value: list of joint \n \"\"\"\n bindJoints_dic = {}\n for cluster in clusterList:\n all_binds_jnts = [x for x in pm.listConnections(str(cluster) +\n '.matrix[*]', s=1)]\n bindJoints_dic.update({str(cluster): all_binds_jnts})\n return bindJoints_dic\n\n @staticmethod\n def getAllMeshes():\n \"\"\"\n return: list of all meshes / geometry\n \"\"\"\n shapesList = pm.ls(type='mesh', ni=1)\n transformList = list(set(pm.listRelatives(shapesList, parent=True)))\n transformList.sort()\n return transformList\n\n @staticmethod\n def getAllShapes(transforms):\n \"\"\"\n @param transforms: List. \n return : dictionnary with key:mesh / values: shapes\n \"\"\"\n shapes_dic = {}\n for transform in transforms:\n all_shapes = pm.PyNode(transform).getShapes(ni=True)\n shapes_dic.update({str(transform): all_shapes})\n return shapes_dic\n\n def getSkinClusterbyShape(self, shapes):\n \"\"\"\n get skinCluster attached to the shape\n @param shapes: List\n return: List\n \"\"\"\n cluster_dic = {}\n for shape in shapes:\n try:\n incoming = mc.listConnections('{}.inMesh'.format(shape))[0]\n if pm.objectType(incoming) == 'skinCluster':\n cluster_dic.update({str(shape): incoming})\n else:\n skinCluster = self.getSkinCluster(shape)\n if skinCluster:\n if len(skinCluster) > 1:\n cluster_dic.update({str(shape): 'None'})\n else:\n cluster_dic.update({str(shape): skinCluster})\n else:\n cluster_dic.update({str(shape): 'None'})\n except TypeError:\n cluster_dic.update({str(shape): 'None'})\n return cluster_dic\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass MultiSkin_UI(MayaQWidgetDockableMixin, QtWidgets.QDialog):\n <mask token>\n <mask token>\n <mask token>\n\n def widgetsAndLayouts(self):\n\n def addLine():\n line = QtWidgets.QFrame()\n line.setFrameShape(QtWidgets.QFrame.HLine)\n return line\n\n def addText(message, alignement=QtCore.Qt.AlignCenter, height=30,\n bold=False):\n myFont = QtGui.QFont()\n myFont.setBold(bold)\n text = QtWidgets.QLabel(message)\n text.setAlignment(alignement)\n text.setFixedHeight(height)\n text.setFont(myFont)\n return text\n self.vLayoutAndFunctions = [['treeWidget', [1, 1, 1, 1]]]\n self.vlayout = {}\n for layoutName, margins in self.vLayoutAndFunctions:\n self.vlayout[layoutName] = QtWidgets.QVBoxLayout()\n self.vlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.hLayoutAndFunctions = [['filterOptions', [1, 1, 1, 1]], [\n 'buttonsOptions', [1, 1, 1, 1]], ['searchBarWidget', [1, 1, 1, 1]]]\n self.hlayout = {}\n for layoutName, margins in self.hLayoutAndFunctions:\n self.hlayout[layoutName] = QtWidgets.QHBoxLayout()\n self.hlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.searchBar = QtWidgets.QLineEdit()\n self.searchBar.setPlaceholderText('Search...')\n self.searchBar.textEdited.connect(self.searchBarEdited)\n self.hlayout['searchBarWidget'].addWidget(self.searchBar)\n self.matchCaseChx = QtWidgets.QCheckBox()\n self.matchCaseChx.setChecked(False)\n self.matchCaseChx.setText('Match Case')\n self.matchCaseChx.stateChanged.connect(self.searchBarEdited)\n self.allFilter = QtWidgets.QRadioButton('All', self)\n self.allFilter.setChecked(True)\n self.allFilter.toggled.connect(self.refreshQtree)\n self.skinClusterFilter = QtWidgets.QRadioButton('Skin Clusters', self)\n self.skinClusterFilter.setChecked(True)\n self.skinClusterFilter.toggled.connect(self.refreshQtree)\n self.meshTreeWidget = QtWidgets.QTreeWidget()\n self.meshTreeWidget.setHeaderLabel('Cloth Tree View')\n self.meshTreeWidget.setSelectionMode(self.meshTreeWidget.\n ExtendedSelection)\n self.vlayout['treeWidget'].addWidget(self.meshTreeWidget)\n header = QtWidgets.QTreeWidgetItem(['Geometries'])\n self.meshTreeWidget.setHeaderItem(header)\n self.meshTreeWidget.itemClicked.connect(self.singleClickedAction)\n self.meshTreeWidget.itemSelectionChanged.connect(self.\n singleClickedAction)\n self.refreshQtree()\n\n def create_Button(self):\n \"\"\" Create the buttons \"\"\"\n self.buttonAndFunctions = [['Show Selected', self.showSelected, 0,\n pyQtDic['colorLightGrey'], '', self.hlayout['searchBarWidget'],\n '', 30], ['Refresh', self.refreshQtree, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Clear', self.meshTreeWidget.clear, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Expand All', self.expandTree, 0, pyQtDic['colorLightGrey'],\n '', self.hlayout['buttonsOptions'], '', 30], ['Close All', self\n .closeTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout[\n 'buttonsOptions'], '', 30]]\n self.buttons = {}\n for buttonName, buttonFunction, _, labColor, bgColor, layout, layout_coord, width in self.buttonAndFunctions:\n self.buttons[buttonName] = adbRC.CustomQPushButton(buttonName)\n self.buttons[buttonName].clicked.connect(buttonFunction)\n try:\n layout.addWidget(self.buttons[buttonName], int(layout_coord\n .split(',')[0]), int(layout_coord.split(',')[1]))\n except ValueError:\n layout.addWidget(self.buttons[buttonName])\n _optionsExpandAll = self.buttons['Expand All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsExpandAll['Shapes'].triggered.connect(lambda : self.\n expandTree('shape'))\n _optionsExpandAll['Skin Clusters'].triggered.connect(lambda : self.\n expandTree('skin cluster'))\n _optionsCloseAll = self.buttons['Close All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsCloseAll['Shapes'].triggered.connect(lambda : self.\n closeTree('shape'))\n _optionsCloseAll['Skin Clusters'].triggered.connect(lambda : self.\n closeTree('skin cluster'))\n\n def buildMainLayout(self):\n self.main_layout.addLayout(self.hlayout['filterOptions'])\n self.hlayout['filterOptions'].addWidget(self.allFilter)\n self.hlayout['filterOptions'].addWidget(self.skinClusterFilter)\n self.hlayout['filterOptions'].addStretch()\n self.main_layout.addLayout(self.hlayout['searchBarWidget'])\n self.hlayout['searchBarWidget'].addWidget(self.matchCaseChx)\n self.main_layout.addLayout(self.hlayout['buttonsOptions'])\n self.main_layout.addLayout(self.vlayout['treeWidget'])\n\n def refreshQtree(self):\n self.meshTreeWidget.clear()\n all_status = self.allFilter.isChecked()\n if all_status:\n _filter = 'all'\n else:\n _filter = 'skinClusters'\n self.filterList = self.filterMeshes(filter=_filter)\n self.populateQTree(self.filterList)\n\n def getSearchBarText(self):\n searchBarText = self.searchBar.text()\n return searchBarText\n\n def searchBarEdited(self):\n matchCase = bool(self.matchCaseChx.checkState())\n query = self.searchBar.text()\n if matchCase:\n query_words = str(query).split(' ')\n else:\n query_words = str(query).lower().split(' ')\n query_words = filter(None, query_words)\n scoreList = {}\n for item in [str(x) for x in self.filterList]:\n score = 0\n for query_word in query_words:\n if matchCase:\n if query_word in item:\n score += 1\n elif query_word in item.lower():\n score += 1\n scoreList[item] = score\n sorted_matches = [i for i in scoreList.items() if i[1] >= len(\n query_words)]\n sorted_matches = sorted(sorted_matches, key=lambda x: x[0])\n sorted_matches_string = [name for name, index in sorted_matches]\n self.meshTreeWidget.clear()\n self.populateQTree(sorted_matches_string)\n <mask token>\n\n def closeTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(False) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(False) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(False) for sclus in self.QTClusters]\n\n def expandTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(True) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(True) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(True) for sclus in self.QTClusters]\n\n def showSelected(self):\n selection = pm.selected()\n selection.sort()\n self.meshTreeWidget.clear()\n self.populateQTree(selection)\n\n def singleClickedAction(self):\n mySelection = self.meshTreeWidget.selectedItems()\n str_selected = [x.text(0) for x in mySelection]\n pm.select(str_selected, r=1)\n\n def filterMeshes(self, filter='all'):\n \"\"\"\n filter:\n all : all meshes\n skinClusters : all meshes with skinClusters\n None\n \"\"\"\n if filter == 'all':\n return self.getAllMeshes()\n elif filter == 'skinClusters':\n clusters = pm.ls(type='skinCluster')\n meshesShapes = set(sum([pm.skinCluster(c, q=1, geometry=1) for\n c in clusters], []))\n meshes = set([x.getParent() for x in meshesShapes if pm.\n objectType(x) == 'mesh'])\n return meshes\n elif filter == 'None':\n return None\n\n @staticmethod\n def test():\n print('test')\n\n @staticmethod\n def getSkinCluster(_transform):\n \"\"\"\n Find a SkinCluster from a transform\n Returns the skinCluster node\n \"\"\"\n result = []\n if not pm.objExists(_transform):\n return result\n validList = mel.eval('findRelatedDeformer(\"' + str(_transform) + '\")')\n if validList is None:\n return result\n for elem in validList:\n if pm.nodeType(elem) == 'skinCluster':\n result.append(elem)\n pm.select(result, r=True)\n result_node = pm.selected()\n if len(result_node) > 1:\n return result_node\n else:\n try:\n return result_node[0]\n except IndexError:\n return False\n\n @staticmethod\n def getBindJointsFromCluster(clusterList):\n \"\"\"\n Find all joints attached to a skinCluster\n @param clusterList: List. list of skin Clusters\n return dic with key: skin Cluster. Value: list of joint \n \"\"\"\n bindJoints_dic = {}\n for cluster in clusterList:\n all_binds_jnts = [x for x in pm.listConnections(str(cluster) +\n '.matrix[*]', s=1)]\n bindJoints_dic.update({str(cluster): all_binds_jnts})\n return bindJoints_dic\n\n @staticmethod\n def getAllMeshes():\n \"\"\"\n return: list of all meshes / geometry\n \"\"\"\n shapesList = pm.ls(type='mesh', ni=1)\n transformList = list(set(pm.listRelatives(shapesList, parent=True)))\n transformList.sort()\n return transformList\n\n @staticmethod\n def getAllShapes(transforms):\n \"\"\"\n @param transforms: List. \n return : dictionnary with key:mesh / values: shapes\n \"\"\"\n shapes_dic = {}\n for transform in transforms:\n all_shapes = pm.PyNode(transform).getShapes(ni=True)\n shapes_dic.update({str(transform): all_shapes})\n return shapes_dic\n\n def getSkinClusterbyShape(self, shapes):\n \"\"\"\n get skinCluster attached to the shape\n @param shapes: List\n return: List\n \"\"\"\n cluster_dic = {}\n for shape in shapes:\n try:\n incoming = mc.listConnections('{}.inMesh'.format(shape))[0]\n if pm.objectType(incoming) == 'skinCluster':\n cluster_dic.update({str(shape): incoming})\n else:\n skinCluster = self.getSkinCluster(shape)\n if skinCluster:\n if len(skinCluster) > 1:\n cluster_dic.update({str(shape): 'None'})\n else:\n cluster_dic.update({str(shape): skinCluster})\n else:\n cluster_dic.update({str(shape): 'None'})\n except TypeError:\n cluster_dic.update({str(shape): 'None'})\n return cluster_dic\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass MultiSkin_UI(MayaQWidgetDockableMixin, QtWidgets.QDialog):\n __dialog = None\n\n @classmethod\n def show_dialog(cls):\n if cls.__dialog is None:\n cls.__dialog = cls()\n else:\n cls.__dialog.raise_()\n cls.__dialog.show()\n\n def __init__(self, parent=None):\n super(MultiSkin_UI, self).__init__(parent=parent)\n self.meshTreeWidget = QtWidgets.QTreeWidget()\n self.setObjectName('multi skin ui')\n self.starting_height = 500\n self.starting_width = 390\n self.setWindowTitle('adbrower - Multi Skin Tool' + ' v' + str(VERSION))\n self.setWindowFlags(QtCore.Qt.Tool)\n self.setMinimumWidth(self.starting_width)\n self.resize(self.starting_width, self.starting_height)\n self.mainBox = QtWidgets.QVBoxLayout()\n self.mainBox.setContentsMargins(0, 0, 0, 0)\n self.scroll_layout = QtWidgets.QScrollArea()\n self.mainBox.addWidget(self.scroll_layout)\n self.setLayout(self.mainBox)\n self.scroll_layout.setContentsMargins(0, 0, 0, 0)\n self.scroll_layout.setWidgetResizable(True)\n self.scroll_layout.setFrameStyle(QtWidgets.QFrame.NoFrame)\n self.scroll_layout.setFrameShadow(QtWidgets.QFrame.Plain)\n self.scroll_widget = QtWidgets.QWidget()\n self.scroll_layout.setWidget(self.scroll_widget)\n self.main_layout = QtWidgets.QVBoxLayout()\n self.main_layout.setContentsMargins(*([5] * 4))\n self.main_layout.setSpacing(2)\n self.setLayout(self.main_layout)\n self.scroll_widget.setLayout(self.main_layout)\n self.widgetsAndLayouts()\n self.create_Button()\n self.buildMainLayout()\n\n def widgetsAndLayouts(self):\n\n def addLine():\n line = QtWidgets.QFrame()\n line.setFrameShape(QtWidgets.QFrame.HLine)\n return line\n\n def addText(message, alignement=QtCore.Qt.AlignCenter, height=30,\n bold=False):\n myFont = QtGui.QFont()\n myFont.setBold(bold)\n text = QtWidgets.QLabel(message)\n text.setAlignment(alignement)\n text.setFixedHeight(height)\n text.setFont(myFont)\n return text\n self.vLayoutAndFunctions = [['treeWidget', [1, 1, 1, 1]]]\n self.vlayout = {}\n for layoutName, margins in self.vLayoutAndFunctions:\n self.vlayout[layoutName] = QtWidgets.QVBoxLayout()\n self.vlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.hLayoutAndFunctions = [['filterOptions', [1, 1, 1, 1]], [\n 'buttonsOptions', [1, 1, 1, 1]], ['searchBarWidget', [1, 1, 1, 1]]]\n self.hlayout = {}\n for layoutName, margins in self.hLayoutAndFunctions:\n self.hlayout[layoutName] = QtWidgets.QHBoxLayout()\n self.hlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.searchBar = QtWidgets.QLineEdit()\n self.searchBar.setPlaceholderText('Search...')\n self.searchBar.textEdited.connect(self.searchBarEdited)\n self.hlayout['searchBarWidget'].addWidget(self.searchBar)\n self.matchCaseChx = QtWidgets.QCheckBox()\n self.matchCaseChx.setChecked(False)\n self.matchCaseChx.setText('Match Case')\n self.matchCaseChx.stateChanged.connect(self.searchBarEdited)\n self.allFilter = QtWidgets.QRadioButton('All', self)\n self.allFilter.setChecked(True)\n self.allFilter.toggled.connect(self.refreshQtree)\n self.skinClusterFilter = QtWidgets.QRadioButton('Skin Clusters', self)\n self.skinClusterFilter.setChecked(True)\n self.skinClusterFilter.toggled.connect(self.refreshQtree)\n self.meshTreeWidget = QtWidgets.QTreeWidget()\n self.meshTreeWidget.setHeaderLabel('Cloth Tree View')\n self.meshTreeWidget.setSelectionMode(self.meshTreeWidget.\n ExtendedSelection)\n self.vlayout['treeWidget'].addWidget(self.meshTreeWidget)\n header = QtWidgets.QTreeWidgetItem(['Geometries'])\n self.meshTreeWidget.setHeaderItem(header)\n self.meshTreeWidget.itemClicked.connect(self.singleClickedAction)\n self.meshTreeWidget.itemSelectionChanged.connect(self.\n singleClickedAction)\n self.refreshQtree()\n\n def create_Button(self):\n \"\"\" Create the buttons \"\"\"\n self.buttonAndFunctions = [['Show Selected', self.showSelected, 0,\n pyQtDic['colorLightGrey'], '', self.hlayout['searchBarWidget'],\n '', 30], ['Refresh', self.refreshQtree, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Clear', self.meshTreeWidget.clear, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Expand All', self.expandTree, 0, pyQtDic['colorLightGrey'],\n '', self.hlayout['buttonsOptions'], '', 30], ['Close All', self\n .closeTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout[\n 'buttonsOptions'], '', 30]]\n self.buttons = {}\n for buttonName, buttonFunction, _, labColor, bgColor, layout, layout_coord, width in self.buttonAndFunctions:\n self.buttons[buttonName] = adbRC.CustomQPushButton(buttonName)\n self.buttons[buttonName].clicked.connect(buttonFunction)\n try:\n layout.addWidget(self.buttons[buttonName], int(layout_coord\n .split(',')[0]), int(layout_coord.split(',')[1]))\n except ValueError:\n layout.addWidget(self.buttons[buttonName])\n _optionsExpandAll = self.buttons['Expand All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsExpandAll['Shapes'].triggered.connect(lambda : self.\n expandTree('shape'))\n _optionsExpandAll['Skin Clusters'].triggered.connect(lambda : self.\n expandTree('skin cluster'))\n _optionsCloseAll = self.buttons['Close All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsCloseAll['Shapes'].triggered.connect(lambda : self.\n closeTree('shape'))\n _optionsCloseAll['Skin Clusters'].triggered.connect(lambda : self.\n closeTree('skin cluster'))\n\n def buildMainLayout(self):\n self.main_layout.addLayout(self.hlayout['filterOptions'])\n self.hlayout['filterOptions'].addWidget(self.allFilter)\n self.hlayout['filterOptions'].addWidget(self.skinClusterFilter)\n self.hlayout['filterOptions'].addStretch()\n self.main_layout.addLayout(self.hlayout['searchBarWidget'])\n self.hlayout['searchBarWidget'].addWidget(self.matchCaseChx)\n self.main_layout.addLayout(self.hlayout['buttonsOptions'])\n self.main_layout.addLayout(self.vlayout['treeWidget'])\n\n def refreshQtree(self):\n self.meshTreeWidget.clear()\n all_status = self.allFilter.isChecked()\n if all_status:\n _filter = 'all'\n else:\n _filter = 'skinClusters'\n self.filterList = self.filterMeshes(filter=_filter)\n self.populateQTree(self.filterList)\n\n def getSearchBarText(self):\n searchBarText = self.searchBar.text()\n return searchBarText\n\n def searchBarEdited(self):\n matchCase = bool(self.matchCaseChx.checkState())\n query = self.searchBar.text()\n if matchCase:\n query_words = str(query).split(' ')\n else:\n query_words = str(query).lower().split(' ')\n query_words = filter(None, query_words)\n scoreList = {}\n for item in [str(x) for x in self.filterList]:\n score = 0\n for query_word in query_words:\n if matchCase:\n if query_word in item:\n score += 1\n elif query_word in item.lower():\n score += 1\n scoreList[item] = score\n sorted_matches = [i for i in scoreList.items() if i[1] >= len(\n query_words)]\n sorted_matches = sorted(sorted_matches, key=lambda x: x[0])\n sorted_matches_string = [name for name, index in sorted_matches]\n self.meshTreeWidget.clear()\n self.populateQTree(sorted_matches_string)\n\n def populateQTree(self, filterList):\n self.roots = [QtWidgets.QTreeWidgetItem(self.meshTreeWidget, [str(\n item)]) for item in filterList]\n [root.setIcon(0, QtGui.QIcon(':/out_mesh.png')) for root in self.roots]\n [root.setExpanded(True) for root in self.roots]\n self.QtShapes = []\n shape_dic = self.getAllShapes(self.getAllMeshes())\n QTroots_dic = {}\n for root in self.roots:\n try:\n QTroots_dic.update({root: shape_dic[root.text(0)]})\n except KeyError:\n pass\n for QTroot, shapesList in QTroots_dic.items():\n [QtWidgets.QTreeWidgetItem(QTroot, [str(shape)]) for shape in\n shapesList]\n child_count = QTroot.childCount()\n children = [QTroot.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(YELLOW))) for\n child in children]\n [child.setIcon(0, QtGui.QIcon(':/out_transform.png')) for child in\n children]\n [child.setExpanded(True) for child in children]\n [self.QtShapes.append(child) for child in children]\n self.QTClusters = []\n cluster_dic = self.getSkinClusterbyShape(flatList(shape_dic.values()))\n QTshape_dic = {}\n for shape in self.QtShapes:\n QTshape_dic.update({shape: cluster_dic[shape.text(0)]})\n for QTshape, clusterList in QTshape_dic.items():\n if clusterList == 'None':\n pass\n else:\n QtWidgets.QTreeWidgetItem(QTshape, [str(clusterList)])\n child_count = QTshape.childCount()\n children = [QTshape.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(GREEN))) for\n child in children]\n [child.setIcon(0, QtGui.QIcon(':/cluster.png')) for child in\n children]\n [self.QTClusters.append(child) for child in children]\n bindJoints_dic = self.getBindJointsFromCluster([x for x in\n cluster_dic.values() if x != 'None'])\n QTcluster_dic = {}\n for cluster in self.QTClusters:\n QTcluster_dic.update({cluster: bindJoints_dic[cluster.text(0)]})\n for QTCluster, jointList in QTcluster_dic.items():\n [QtWidgets.QTreeWidgetItem(QTCluster, [str(jnt)]) for jnt in\n jointList]\n child_count = QTCluster.childCount()\n children = [QTCluster.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(DARKRED))) for\n child in children]\n [child.setIcon(0, QtGui.QIcon(':/out_joint.png')) for child in\n children]\n\n def closeTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(False) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(False) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(False) for sclus in self.QTClusters]\n\n def expandTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(True) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(True) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(True) for sclus in self.QTClusters]\n\n def showSelected(self):\n selection = pm.selected()\n selection.sort()\n self.meshTreeWidget.clear()\n self.populateQTree(selection)\n\n def singleClickedAction(self):\n mySelection = self.meshTreeWidget.selectedItems()\n str_selected = [x.text(0) for x in mySelection]\n pm.select(str_selected, r=1)\n\n def filterMeshes(self, filter='all'):\n \"\"\"\n filter:\n all : all meshes\n skinClusters : all meshes with skinClusters\n None\n \"\"\"\n if filter == 'all':\n return self.getAllMeshes()\n elif filter == 'skinClusters':\n clusters = pm.ls(type='skinCluster')\n meshesShapes = set(sum([pm.skinCluster(c, q=1, geometry=1) for\n c in clusters], []))\n meshes = set([x.getParent() for x in meshesShapes if pm.\n objectType(x) == 'mesh'])\n return meshes\n elif filter == 'None':\n return None\n\n @staticmethod\n def test():\n print('test')\n\n @staticmethod\n def getSkinCluster(_transform):\n \"\"\"\n Find a SkinCluster from a transform\n Returns the skinCluster node\n \"\"\"\n result = []\n if not pm.objExists(_transform):\n return result\n validList = mel.eval('findRelatedDeformer(\"' + str(_transform) + '\")')\n if validList is None:\n return result\n for elem in validList:\n if pm.nodeType(elem) == 'skinCluster':\n result.append(elem)\n pm.select(result, r=True)\n result_node = pm.selected()\n if len(result_node) > 1:\n return result_node\n else:\n try:\n return result_node[0]\n except IndexError:\n return False\n\n @staticmethod\n def getBindJointsFromCluster(clusterList):\n \"\"\"\n Find all joints attached to a skinCluster\n @param clusterList: List. list of skin Clusters\n return dic with key: skin Cluster. Value: list of joint \n \"\"\"\n bindJoints_dic = {}\n for cluster in clusterList:\n all_binds_jnts = [x for x in pm.listConnections(str(cluster) +\n '.matrix[*]', s=1)]\n bindJoints_dic.update({str(cluster): all_binds_jnts})\n return bindJoints_dic\n\n @staticmethod\n def getAllMeshes():\n \"\"\"\n return: list of all meshes / geometry\n \"\"\"\n shapesList = pm.ls(type='mesh', ni=1)\n transformList = list(set(pm.listRelatives(shapesList, parent=True)))\n transformList.sort()\n return transformList\n\n @staticmethod\n def getAllShapes(transforms):\n \"\"\"\n @param transforms: List. \n return : dictionnary with key:mesh / values: shapes\n \"\"\"\n shapes_dic = {}\n for transform in transforms:\n all_shapes = pm.PyNode(transform).getShapes(ni=True)\n shapes_dic.update({str(transform): all_shapes})\n return shapes_dic\n\n def getSkinClusterbyShape(self, shapes):\n \"\"\"\n get skinCluster attached to the shape\n @param shapes: List\n return: List\n \"\"\"\n cluster_dic = {}\n for shape in shapes:\n try:\n incoming = mc.listConnections('{}.inMesh'.format(shape))[0]\n if pm.objectType(incoming) == 'skinCluster':\n cluster_dic.update({str(shape): incoming})\n else:\n skinCluster = self.getSkinCluster(shape)\n if skinCluster:\n if len(skinCluster) > 1:\n cluster_dic.update({str(shape): 'None'})\n else:\n cluster_dic.update({str(shape): skinCluster})\n else:\n cluster_dic.update({str(shape): 'None'})\n except TypeError:\n cluster_dic.update({str(shape): 'None'})\n return cluster_dic\n\n\ndef showUI(dialog=False):\n if dialog:\n MultiSkin_UI.show_dialog()\n else:\n global tools_cw_ui\n try:\n tools_cw_ui.deleteLater()\n except:\n pass\n tools_cw_ui = MultiSkin_UI()\n tools_cw_ui.show()\n", "step-4": "<mask token>\n\n\ndef undo(func):\n \"\"\" \n Puts the wrapped `func` into a single Maya Undo action, then\n undoes it when the function enters the finally: block\n from schworer Github\n \"\"\"\n\n @wraps(func)\n def _undofunc(*args, **kwargs):\n try:\n mc.undoInfo(ock=True)\n return func(*args, **kwargs)\n finally:\n mc.undoInfo(cck=True)\n return _undofunc\n\n\n<mask token>\n\n\nclass MultiSkin_UI(MayaQWidgetDockableMixin, QtWidgets.QDialog):\n __dialog = None\n\n @classmethod\n def show_dialog(cls):\n if cls.__dialog is None:\n cls.__dialog = cls()\n else:\n cls.__dialog.raise_()\n cls.__dialog.show()\n\n def __init__(self, parent=None):\n super(MultiSkin_UI, self).__init__(parent=parent)\n self.meshTreeWidget = QtWidgets.QTreeWidget()\n self.setObjectName('multi skin ui')\n self.starting_height = 500\n self.starting_width = 390\n self.setWindowTitle('adbrower - Multi Skin Tool' + ' v' + str(VERSION))\n self.setWindowFlags(QtCore.Qt.Tool)\n self.setMinimumWidth(self.starting_width)\n self.resize(self.starting_width, self.starting_height)\n self.mainBox = QtWidgets.QVBoxLayout()\n self.mainBox.setContentsMargins(0, 0, 0, 0)\n self.scroll_layout = QtWidgets.QScrollArea()\n self.mainBox.addWidget(self.scroll_layout)\n self.setLayout(self.mainBox)\n self.scroll_layout.setContentsMargins(0, 0, 0, 0)\n self.scroll_layout.setWidgetResizable(True)\n self.scroll_layout.setFrameStyle(QtWidgets.QFrame.NoFrame)\n self.scroll_layout.setFrameShadow(QtWidgets.QFrame.Plain)\n self.scroll_widget = QtWidgets.QWidget()\n self.scroll_layout.setWidget(self.scroll_widget)\n self.main_layout = QtWidgets.QVBoxLayout()\n self.main_layout.setContentsMargins(*([5] * 4))\n self.main_layout.setSpacing(2)\n self.setLayout(self.main_layout)\n self.scroll_widget.setLayout(self.main_layout)\n self.widgetsAndLayouts()\n self.create_Button()\n self.buildMainLayout()\n\n def widgetsAndLayouts(self):\n\n def addLine():\n line = QtWidgets.QFrame()\n line.setFrameShape(QtWidgets.QFrame.HLine)\n return line\n\n def addText(message, alignement=QtCore.Qt.AlignCenter, height=30,\n bold=False):\n myFont = QtGui.QFont()\n myFont.setBold(bold)\n text = QtWidgets.QLabel(message)\n text.setAlignment(alignement)\n text.setFixedHeight(height)\n text.setFont(myFont)\n return text\n self.vLayoutAndFunctions = [['treeWidget', [1, 1, 1, 1]]]\n self.vlayout = {}\n for layoutName, margins in self.vLayoutAndFunctions:\n self.vlayout[layoutName] = QtWidgets.QVBoxLayout()\n self.vlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.hLayoutAndFunctions = [['filterOptions', [1, 1, 1, 1]], [\n 'buttonsOptions', [1, 1, 1, 1]], ['searchBarWidget', [1, 1, 1, 1]]]\n self.hlayout = {}\n for layoutName, margins in self.hLayoutAndFunctions:\n self.hlayout[layoutName] = QtWidgets.QHBoxLayout()\n self.hlayout[layoutName].setContentsMargins(margins[0], margins\n [1], margins[2], margins[3])\n self.searchBar = QtWidgets.QLineEdit()\n self.searchBar.setPlaceholderText('Search...')\n self.searchBar.textEdited.connect(self.searchBarEdited)\n self.hlayout['searchBarWidget'].addWidget(self.searchBar)\n self.matchCaseChx = QtWidgets.QCheckBox()\n self.matchCaseChx.setChecked(False)\n self.matchCaseChx.setText('Match Case')\n self.matchCaseChx.stateChanged.connect(self.searchBarEdited)\n self.allFilter = QtWidgets.QRadioButton('All', self)\n self.allFilter.setChecked(True)\n self.allFilter.toggled.connect(self.refreshQtree)\n self.skinClusterFilter = QtWidgets.QRadioButton('Skin Clusters', self)\n self.skinClusterFilter.setChecked(True)\n self.skinClusterFilter.toggled.connect(self.refreshQtree)\n self.meshTreeWidget = QtWidgets.QTreeWidget()\n self.meshTreeWidget.setHeaderLabel('Cloth Tree View')\n self.meshTreeWidget.setSelectionMode(self.meshTreeWidget.\n ExtendedSelection)\n self.vlayout['treeWidget'].addWidget(self.meshTreeWidget)\n header = QtWidgets.QTreeWidgetItem(['Geometries'])\n self.meshTreeWidget.setHeaderItem(header)\n self.meshTreeWidget.itemClicked.connect(self.singleClickedAction)\n self.meshTreeWidget.itemSelectionChanged.connect(self.\n singleClickedAction)\n self.refreshQtree()\n\n def create_Button(self):\n \"\"\" Create the buttons \"\"\"\n self.buttonAndFunctions = [['Show Selected', self.showSelected, 0,\n pyQtDic['colorLightGrey'], '', self.hlayout['searchBarWidget'],\n '', 30], ['Refresh', self.refreshQtree, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Clear', self.meshTreeWidget.clear, 0, pyQtDic[\n 'colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Expand All', self.expandTree, 0, pyQtDic['colorLightGrey'],\n '', self.hlayout['buttonsOptions'], '', 30], ['Close All', self\n .closeTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout[\n 'buttonsOptions'], '', 30]]\n self.buttons = {}\n for buttonName, buttonFunction, _, labColor, bgColor, layout, layout_coord, width in self.buttonAndFunctions:\n self.buttons[buttonName] = adbRC.CustomQPushButton(buttonName)\n self.buttons[buttonName].clicked.connect(buttonFunction)\n try:\n layout.addWidget(self.buttons[buttonName], int(layout_coord\n .split(',')[0]), int(layout_coord.split(',')[1]))\n except ValueError:\n layout.addWidget(self.buttons[buttonName])\n _optionsExpandAll = self.buttons['Expand All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsExpandAll['Shapes'].triggered.connect(lambda : self.\n expandTree('shape'))\n _optionsExpandAll['Skin Clusters'].triggered.connect(lambda : self.\n expandTree('skin cluster'))\n _optionsCloseAll = self.buttons['Close All'].addButtonActions([\n 'Shapes', 'Skin Clusters'])\n _optionsCloseAll['Shapes'].triggered.connect(lambda : self.\n closeTree('shape'))\n _optionsCloseAll['Skin Clusters'].triggered.connect(lambda : self.\n closeTree('skin cluster'))\n\n def buildMainLayout(self):\n self.main_layout.addLayout(self.hlayout['filterOptions'])\n self.hlayout['filterOptions'].addWidget(self.allFilter)\n self.hlayout['filterOptions'].addWidget(self.skinClusterFilter)\n self.hlayout['filterOptions'].addStretch()\n self.main_layout.addLayout(self.hlayout['searchBarWidget'])\n self.hlayout['searchBarWidget'].addWidget(self.matchCaseChx)\n self.main_layout.addLayout(self.hlayout['buttonsOptions'])\n self.main_layout.addLayout(self.vlayout['treeWidget'])\n\n def refreshQtree(self):\n self.meshTreeWidget.clear()\n all_status = self.allFilter.isChecked()\n if all_status:\n _filter = 'all'\n else:\n _filter = 'skinClusters'\n self.filterList = self.filterMeshes(filter=_filter)\n self.populateQTree(self.filterList)\n\n def getSearchBarText(self):\n searchBarText = self.searchBar.text()\n return searchBarText\n\n def searchBarEdited(self):\n matchCase = bool(self.matchCaseChx.checkState())\n query = self.searchBar.text()\n if matchCase:\n query_words = str(query).split(' ')\n else:\n query_words = str(query).lower().split(' ')\n query_words = filter(None, query_words)\n scoreList = {}\n for item in [str(x) for x in self.filterList]:\n score = 0\n for query_word in query_words:\n if matchCase:\n if query_word in item:\n score += 1\n elif query_word in item.lower():\n score += 1\n scoreList[item] = score\n sorted_matches = [i for i in scoreList.items() if i[1] >= len(\n query_words)]\n sorted_matches = sorted(sorted_matches, key=lambda x: x[0])\n sorted_matches_string = [name for name, index in sorted_matches]\n self.meshTreeWidget.clear()\n self.populateQTree(sorted_matches_string)\n\n def populateQTree(self, filterList):\n self.roots = [QtWidgets.QTreeWidgetItem(self.meshTreeWidget, [str(\n item)]) for item in filterList]\n [root.setIcon(0, QtGui.QIcon(':/out_mesh.png')) for root in self.roots]\n [root.setExpanded(True) for root in self.roots]\n self.QtShapes = []\n shape_dic = self.getAllShapes(self.getAllMeshes())\n QTroots_dic = {}\n for root in self.roots:\n try:\n QTroots_dic.update({root: shape_dic[root.text(0)]})\n except KeyError:\n pass\n for QTroot, shapesList in QTroots_dic.items():\n [QtWidgets.QTreeWidgetItem(QTroot, [str(shape)]) for shape in\n shapesList]\n child_count = QTroot.childCount()\n children = [QTroot.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(YELLOW))) for\n child in children]\n [child.setIcon(0, QtGui.QIcon(':/out_transform.png')) for child in\n children]\n [child.setExpanded(True) for child in children]\n [self.QtShapes.append(child) for child in children]\n self.QTClusters = []\n cluster_dic = self.getSkinClusterbyShape(flatList(shape_dic.values()))\n QTshape_dic = {}\n for shape in self.QtShapes:\n QTshape_dic.update({shape: cluster_dic[shape.text(0)]})\n for QTshape, clusterList in QTshape_dic.items():\n if clusterList == 'None':\n pass\n else:\n QtWidgets.QTreeWidgetItem(QTshape, [str(clusterList)])\n child_count = QTshape.childCount()\n children = [QTshape.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(GREEN))) for\n child in children]\n [child.setIcon(0, QtGui.QIcon(':/cluster.png')) for child in\n children]\n [self.QTClusters.append(child) for child in children]\n bindJoints_dic = self.getBindJointsFromCluster([x for x in\n cluster_dic.values() if x != 'None'])\n QTcluster_dic = {}\n for cluster in self.QTClusters:\n QTcluster_dic.update({cluster: bindJoints_dic[cluster.text(0)]})\n for QTCluster, jointList in QTcluster_dic.items():\n [QtWidgets.QTreeWidgetItem(QTCluster, [str(jnt)]) for jnt in\n jointList]\n child_count = QTCluster.childCount()\n children = [QTCluster.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(DARKRED))) for\n child in children]\n [child.setIcon(0, QtGui.QIcon(':/out_joint.png')) for child in\n children]\n\n def closeTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(False) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(False) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(False) for sclus in self.QTClusters]\n\n def expandTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(True) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(True) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(True) for sclus in self.QTClusters]\n\n def showSelected(self):\n selection = pm.selected()\n selection.sort()\n self.meshTreeWidget.clear()\n self.populateQTree(selection)\n\n def singleClickedAction(self):\n mySelection = self.meshTreeWidget.selectedItems()\n str_selected = [x.text(0) for x in mySelection]\n pm.select(str_selected, r=1)\n\n def filterMeshes(self, filter='all'):\n \"\"\"\n filter:\n all : all meshes\n skinClusters : all meshes with skinClusters\n None\n \"\"\"\n if filter == 'all':\n return self.getAllMeshes()\n elif filter == 'skinClusters':\n clusters = pm.ls(type='skinCluster')\n meshesShapes = set(sum([pm.skinCluster(c, q=1, geometry=1) for\n c in clusters], []))\n meshes = set([x.getParent() for x in meshesShapes if pm.\n objectType(x) == 'mesh'])\n return meshes\n elif filter == 'None':\n return None\n\n @staticmethod\n def test():\n print('test')\n\n @staticmethod\n def getSkinCluster(_transform):\n \"\"\"\n Find a SkinCluster from a transform\n Returns the skinCluster node\n \"\"\"\n result = []\n if not pm.objExists(_transform):\n return result\n validList = mel.eval('findRelatedDeformer(\"' + str(_transform) + '\")')\n if validList is None:\n return result\n for elem in validList:\n if pm.nodeType(elem) == 'skinCluster':\n result.append(elem)\n pm.select(result, r=True)\n result_node = pm.selected()\n if len(result_node) > 1:\n return result_node\n else:\n try:\n return result_node[0]\n except IndexError:\n return False\n\n @staticmethod\n def getBindJointsFromCluster(clusterList):\n \"\"\"\n Find all joints attached to a skinCluster\n @param clusterList: List. list of skin Clusters\n return dic with key: skin Cluster. Value: list of joint \n \"\"\"\n bindJoints_dic = {}\n for cluster in clusterList:\n all_binds_jnts = [x for x in pm.listConnections(str(cluster) +\n '.matrix[*]', s=1)]\n bindJoints_dic.update({str(cluster): all_binds_jnts})\n return bindJoints_dic\n\n @staticmethod\n def getAllMeshes():\n \"\"\"\n return: list of all meshes / geometry\n \"\"\"\n shapesList = pm.ls(type='mesh', ni=1)\n transformList = list(set(pm.listRelatives(shapesList, parent=True)))\n transformList.sort()\n return transformList\n\n @staticmethod\n def getAllShapes(transforms):\n \"\"\"\n @param transforms: List. \n return : dictionnary with key:mesh / values: shapes\n \"\"\"\n shapes_dic = {}\n for transform in transforms:\n all_shapes = pm.PyNode(transform).getShapes(ni=True)\n shapes_dic.update({str(transform): all_shapes})\n return shapes_dic\n\n def getSkinClusterbyShape(self, shapes):\n \"\"\"\n get skinCluster attached to the shape\n @param shapes: List\n return: List\n \"\"\"\n cluster_dic = {}\n for shape in shapes:\n try:\n incoming = mc.listConnections('{}.inMesh'.format(shape))[0]\n if pm.objectType(incoming) == 'skinCluster':\n cluster_dic.update({str(shape): incoming})\n else:\n skinCluster = self.getSkinCluster(shape)\n if skinCluster:\n if len(skinCluster) > 1:\n cluster_dic.update({str(shape): 'None'})\n else:\n cluster_dic.update({str(shape): skinCluster})\n else:\n cluster_dic.update({str(shape): 'None'})\n except TypeError:\n cluster_dic.update({str(shape): 'None'})\n return cluster_dic\n\n\ndef showUI(dialog=False):\n if dialog:\n MultiSkin_UI.show_dialog()\n else:\n global tools_cw_ui\n try:\n tools_cw_ui.deleteLater()\n except:\n pass\n tools_cw_ui = MultiSkin_UI()\n tools_cw_ui.show()\n", "step-5": "from functools import wraps\n\nimport maya.cmds as mc\nimport maya.mel as mel\nimport pymel.core as pm\nfrom PySide2 import QtCore, QtGui, QtWidgets\n\nimport adb_core.Class__multi_skin as ms\nimport adbrower\nfrom CollDict import pysideColorDic as pyQtDic\nfrom maya.app.general.mayaMixin import MayaQWidgetDockableMixin\nimport adb_tools.adb_pyQt.Class__rightClickCustom as adbRC\nfrom maya_script import Adbrower\n\nadb = adbrower.Adbrower()\n\nVERSION = 1.0\n\nPATH_WINDOW = Adbrower.PATH_WINDOW_INIT + 'AppData/Roaming'\nPATH_LINUX = Adbrower.PATH_LINUX_INIT\nFOLDER_NAME = Adbrower.FOLDER_NAME_INIT\nICONS_FOLDER = Adbrower.ICONS_FOLDER_INIT\n\nYELLOW = '#ffe100'\nORANGE = '#fd651d'\nGREEN = '#597A59'\nDARKRED = '#745a54'\n\ndef undo(func):\n ''' \n Puts the wrapped `func` into a single Maya Undo action, then\n undoes it when the function enters the finally: block\n from schworer Github\n '''\n @wraps(func)\n def _undofunc(*args, **kwargs):\n try:\n # start an undo chunk\n mc.undoInfo(ock=True)\n return func(*args, **kwargs)\n finally:\n # after calling the func, end the undo chunk\n mc.undoInfo(cck=True)\n return _undofunc\n\n\ndef flatList(ori_list=''):\n \"\"\"\n Flatten a list\n \"\"\"\n flat_list = []\n for item in ori_list:\n if isinstance(item, list):\n for sub_item in item:\n flat_list.append(sub_item)\n else:\n flat_list.append(item)\n return flat_list\n\n#-----------------------------------\n# CLASS\n#----------------------------------- \n\n\nclass MultiSkin_UI(MayaQWidgetDockableMixin, QtWidgets.QDialog):\n __dialog = None\n \n @classmethod\n def show_dialog(cls):\n if cls.__dialog is None:\n cls.__dialog = cls()\n else:\n cls.__dialog.raise_() \n cls.__dialog.show()\n \n def __init__(self,parent=None): \n super(MultiSkin_UI, self).__init__(parent=parent)\n \n self.meshTreeWidget=QtWidgets.QTreeWidget()\n \n self.setObjectName('multi skin ui')\n self.starting_height = 500\n self.starting_width = 390\n self.setWindowTitle('adbrower - Multi Skin Tool' + ' v' + str(VERSION))\n self.setWindowFlags(QtCore.Qt.Tool)\n self.setMinimumWidth(self.starting_width)\n self.resize(self.starting_width, self.starting_height)\n \n # -----------------------------\n # --- Create scrollArea\n\n self.mainBox = QtWidgets.QVBoxLayout()\n self.mainBox.setContentsMargins(0, 0, 0, 0)\n self.scroll_layout = QtWidgets.QScrollArea()\n\n self.mainBox.addWidget(self.scroll_layout)\n self.setLayout(self.mainBox)\n self.scroll_layout.setContentsMargins(0, 0, 0, 0)\n\n self.scroll_layout.setWidgetResizable(True)\n self.scroll_layout.setFrameStyle(QtWidgets.QFrame.NoFrame)\n self.scroll_layout.setFrameShadow(QtWidgets.QFrame.Plain)\n\n self.scroll_widget = QtWidgets.QWidget()\n self.scroll_layout.setWidget(self.scroll_widget) \n \n # -----------------------------\n # --- Main Layout\n\n self.main_layout = QtWidgets.QVBoxLayout()\n self.main_layout.setContentsMargins(*[5] * 4)\n self.main_layout.setSpacing(2)\n self.setLayout(self.main_layout)\n\n self.scroll_widget.setLayout(self.main_layout)\n self.widgetsAndLayouts()\n self.create_Button()\n self.buildMainLayout()\n\n\n def widgetsAndLayouts(self):\n\n # --------- Predefine widgets\n\n def addLine():\n line = QtWidgets. QFrame()\n line.setFrameShape(QtWidgets.QFrame.HLine)\n return line\n\n def addText(message, alignement=QtCore.Qt.AlignCenter, height=30, bold=False):\n myFont = QtGui.QFont()\n myFont.setBold(bold)\n text = QtWidgets.QLabel(message)\n text.setAlignment(alignement)\n text.setFixedHeight(height)\n text.setFont(myFont)\n return text \n \n # ------------------------------\n #--------- Layouts\n\n self.vLayoutAndFunctions = [\n # name, margins\n ['treeWidget', [1, 1, 1, 1]],\n ]\n self.vlayout = {}\n for layoutName, margins, in self.vLayoutAndFunctions:\n self.vlayout[layoutName] = QtWidgets.QVBoxLayout()\n self.vlayout[layoutName].setContentsMargins(margins[0], margins[1], margins[2], margins[3],) \n \n self.hLayoutAndFunctions = [\n # name, margins\n ['filterOptions', [1, 1, 1, 1]],\n ['buttonsOptions', [1, 1, 1, 1]],\n ['searchBarWidget', [1, 1, 1, 1]],\n ]\n self.hlayout = {}\n for layoutName, margins, in self.hLayoutAndFunctions:\n self.hlayout[layoutName] = QtWidgets.QHBoxLayout()\n self.hlayout[layoutName].setContentsMargins(margins[0], margins[1], margins[2], margins[3],) \n \n # ------------------------------\n # --------- QLINE EDIT WIDGET\n\n self.searchBar = QtWidgets.QLineEdit()\n self.searchBar.setPlaceholderText('Search...')\n self.searchBar.textEdited.connect(self.searchBarEdited)\n self.hlayout['searchBarWidget'].addWidget(self.searchBar) \n \n # ------------------------------\n # --------- CHECKBOX WIDGET\n \n self.matchCaseChx = QtWidgets.QCheckBox()\n self.matchCaseChx.setChecked(False)\n self.matchCaseChx.setText('Match Case')\n self.matchCaseChx.stateChanged.connect(self.searchBarEdited)\n \n # ------------------------------\n # --------- RADIO BUTTON WIDGET\n \n self.allFilter = QtWidgets.QRadioButton('All', self)\n self.allFilter.setChecked(True)\n self.allFilter.toggled.connect(self.refreshQtree)\n\n self.skinClusterFilter = QtWidgets.QRadioButton('Skin Clusters', self)\n self.skinClusterFilter.setChecked(True)\n self.skinClusterFilter.toggled.connect(self.refreshQtree)\n \n # ------------------------------\n # --------- TREE LIST WIDGET\n\n self.meshTreeWidget=QtWidgets.QTreeWidget()\n\n self.meshTreeWidget.setHeaderLabel('Cloth Tree View')\n self.meshTreeWidget.setSelectionMode(self.meshTreeWidget.ExtendedSelection)\n \n self.vlayout['treeWidget'].addWidget(self.meshTreeWidget)\n header = QtWidgets.QTreeWidgetItem([\"Geometries\"])\n self.meshTreeWidget.setHeaderItem(header)\n \n self.meshTreeWidget.itemClicked.connect(self.singleClickedAction)\n self.meshTreeWidget.itemSelectionChanged .connect(self.singleClickedAction)\n \n self.refreshQtree()\n \n def create_Button(self):\n \"\"\" Create the buttons \"\"\"\n self.buttonAndFunctions = [\n # name, function , group number, labelColor, backgroundColor, layout, layout_coordinate width\n ['Show Selected', self.showSelected, 0, pyQtDic['colorLightGrey'], '', self.hlayout['searchBarWidget'], '', 30],\n ['Refresh', self.refreshQtree, 0, pyQtDic['colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n ['Clear', self.meshTreeWidget.clear, 0, pyQtDic['colorLightGrey'], '', self.hlayout['filterOptions'], '', 30],\n \n ['Expand All', self.expandTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout['buttonsOptions'], '', 30],\n ['Close All', self.closeTree, 0, pyQtDic['colorLightGrey'], '', self.hlayout['buttonsOptions'], '', 30],\n ]\n\n # Build Buttons\n self.buttons = {}\n for buttonName, buttonFunction, _, labColor, bgColor, layout, layout_coord, width, in self.buttonAndFunctions:\n self.buttons[buttonName] = adbRC.CustomQPushButton(buttonName)\n self.buttons[buttonName].clicked.connect(buttonFunction) \n try:\n layout.addWidget(self.buttons[buttonName], int(layout_coord.split(',')[0]), int(layout_coord.split(',')[1]))\n except ValueError:\n layout.addWidget(self.buttons[buttonName])\n\n # add Right Clicked Options\n _optionsExpandAll = self.buttons['Expand All'].addButtonActions(['Shapes', 'Skin Clusters'])\n _optionsExpandAll['Shapes'].triggered.connect(lambda:self.expandTree('shape'))\n _optionsExpandAll['Skin Clusters'].triggered.connect(lambda:self.expandTree('skin cluster'))\n \n _optionsCloseAll = self.buttons['Close All'].addButtonActions(['Shapes', 'Skin Clusters'])\n _optionsCloseAll['Shapes'].triggered.connect(lambda:self.closeTree('shape'))\n _optionsCloseAll['Skin Clusters'].triggered.connect(lambda:self.closeTree('skin cluster'))\n\n\n def buildMainLayout(self):\n # ------------------------------\n # --------- BUILD MAIN LAYOUT \n \n self.main_layout.addLayout(self.hlayout['filterOptions'])\n self.hlayout['filterOptions'].addWidget(self.allFilter)\n self.hlayout['filterOptions'].addWidget(self.skinClusterFilter)\n self.hlayout['filterOptions'].addStretch()\n \n self.main_layout.addLayout(self.hlayout['searchBarWidget'])\n self.hlayout['searchBarWidget'].addWidget(self.matchCaseChx)\n self.main_layout.addLayout(self.hlayout['buttonsOptions'])\n self.main_layout.addLayout(self.vlayout['treeWidget'])\n\n\n# ==================================\n# SLOTS\n# ================================== \n\n def refreshQtree(self):\n self.meshTreeWidget.clear()\n all_status = self.allFilter.isChecked()\n if all_status:\n _filter = 'all'\n else:\n _filter = 'skinClusters'\n self.filterList = self.filterMeshes(filter=_filter)\n self.populateQTree(self.filterList)\n \n def getSearchBarText(self):\n searchBarText = self.searchBar.text()\n return searchBarText\n \n def searchBarEdited(self):\n matchCase=bool(self.matchCaseChx.checkState())\n query = self.searchBar.text()\n if matchCase:\n query_words = str(query).split(\" \")\n else:\n query_words = str(query).lower().split(\" \")\n query_words = filter(None, query_words)\n scoreList = {}\n \n for item in [str(x) for x in self.filterList]:\n score = 0\n for query_word in query_words:\n if matchCase:\n if query_word in item:\n score += 1\n else:\n if query_word in item.lower():\n score += 1\n scoreList[item] = score\n\n # If user enter more than one words, get only result with a score at least equal to the number of words in the query\n sorted_matches = [i for i in scoreList.items() if i[1] >= len(query_words)]\n \n # Sort matches by score\n sorted_matches = sorted(sorted_matches, key=lambda x: x[0])\n sorted_matches_string = [name for name, index in sorted_matches]\n \n self.meshTreeWidget.clear()\n self.populateQTree(sorted_matches_string)\n \n\n def populateQTree(self, filterList):\n # Meshes\n # ----------------------\n \n self.roots = [QtWidgets.QTreeWidgetItem(self.meshTreeWidget, [str(item)]) for item in filterList]\n [root.setIcon(0, QtGui.QIcon(':/out_mesh.png')) for root in self.roots]\n [root.setExpanded(True) for root in self.roots]\n \n # Shapes\n # ----------------------\n self.QtShapes = []\n shape_dic = self.getAllShapes(self.getAllMeshes())\n QTroots_dic = {} # Keys are Qtree object\n for root in self.roots:\n try:\n QTroots_dic.update({root:shape_dic[root.text(0)]})\n except KeyError:\n pass\n \n # added the shapes under there mesh\n for QTroot, shapesList in QTroots_dic.items():\n [QtWidgets.QTreeWidgetItem(QTroot, [str(shape)]) for shape in shapesList]\n \n # changed their color\n child_count=QTroot.childCount()\n children=[QTroot.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(YELLOW))) for child in children] \n [child.setIcon(0, QtGui.QIcon(':/out_transform.png')) for child in children] \n [child.setExpanded(True) for child in children] \n [self.QtShapes.append(child) for child in children]\n \n # skinClusters\n # ----------------------\n self.QTClusters = [] \n \n cluster_dic = self.getSkinClusterbyShape(flatList(shape_dic.values()))\n QTshape_dic = {}\n for shape in self.QtShapes:\n QTshape_dic.update({shape:cluster_dic[shape.text(0)]})\n \n # added the skinCluster under there shape\n for QTshape, clusterList in QTshape_dic.items():\n if clusterList == 'None':\n pass\n else:\n QtWidgets.QTreeWidgetItem(QTshape, [str(clusterList)]) \n \n # changed their color\n child_count=QTshape.childCount()\n children=[QTshape.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(GREEN))) for child in children] \n [child.setIcon(0, QtGui.QIcon(':/cluster.png')) for child in children] \n [self.QTClusters.append(child) for child in children] \n \n # Joints\n # ---------------------- \n bindJoints_dic = self.getBindJointsFromCluster([x for x in cluster_dic.values() if x != 'None'])\n \n QTcluster_dic = {}\n for cluster in self.QTClusters:\n QTcluster_dic.update({cluster:bindJoints_dic[cluster.text(0)]})\n \n for QTCluster, jointList in QTcluster_dic.items():\n [QtWidgets.QTreeWidgetItem(QTCluster, [str(jnt)]) for jnt in jointList]\n \n # changed their color\n child_count=QTCluster.childCount()\n children=[QTCluster.child(index) for index in range(child_count)]\n [child.setForeground(0, QtGui.QBrush(QtGui.QColor(DARKRED))) for child in children] \n [child.setIcon(0, QtGui.QIcon(':/out_joint.png')) for child in children] \n \n def closeTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(False) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(False) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(False) for sclus in self.QTClusters]\n\n def expandTree(self, type='mesh'):\n if type == 'mesh':\n [root.setExpanded(True) for root in self.roots]\n elif type == 'shape':\n [shape.setExpanded(True) for shape in self.QtShapes]\n elif type == 'skin cluster':\n [sclus.setExpanded(True) for sclus in self.QTClusters]\n \n def showSelected(self):\n selection = pm.selected()\n selection.sort()\n self.meshTreeWidget.clear()\n self.populateQTree(selection)\n \n def singleClickedAction(self):\n mySelection = self.meshTreeWidget.selectedItems()\n str_selected = [x.text(0) for x in mySelection]\n pm.select(str_selected, r=1)\n \n def filterMeshes(self, filter = 'all'):\n \"\"\"\n filter:\n all : all meshes\n skinClusters : all meshes with skinClusters\n None\n \"\"\"\n if filter =='all':\n return self.getAllMeshes()\n\n elif filter == \"skinClusters\":\n clusters = pm.ls(type='skinCluster')\n meshesShapes = set(sum([pm.skinCluster(c, q=1, geometry=1) for c in clusters], []))\n meshes = set([x.getParent() for x in meshesShapes if pm.objectType(x) == 'mesh'])\n return meshes\n \n elif filter == 'None':\n return None\n \n \n# ==================================\n# STATIC METHOD\n# ================================== \n \n @staticmethod\n def test():\n print ('test')\n\n @staticmethod\n def getSkinCluster(_transform):\n \"\"\"\n Find a SkinCluster from a transform\n Returns the skinCluster node\n \"\"\"\n result = []\n if not (pm.objExists(_transform)):\n return result\n validList = mel.eval('findRelatedDeformer(\"' + str(_transform) + '\")')\n if validList is None:\n return result\n for elem in validList:\n if pm.nodeType(elem) == 'skinCluster':\n result.append(elem)\n pm.select(result, r=True)\n result_node = pm.selected()\n \n if len(result_node) > 1:\n return result_node\n else:\n try:\n return result_node[0]\n except IndexError:\n return False\n\n @staticmethod\n def getBindJointsFromCluster(clusterList):\n \"\"\"\n Find all joints attached to a skinCluster\n @param clusterList: List. list of skin Clusters\n return dic with key: skin Cluster. Value: list of joint \n \"\"\"\n bindJoints_dic = {}\n for cluster in clusterList:\n all_binds_jnts = [x for x in pm.listConnections(str(cluster) + '.matrix[*]', s=1)]\n bindJoints_dic.update({str(cluster):all_binds_jnts})\n return bindJoints_dic\n \n @staticmethod\n def getAllMeshes():\n \"\"\"\n return: list of all meshes / geometry\n \"\"\"\n shapesList = pm.ls(type=\"mesh\", ni=1)\n transformList = list(set(pm.listRelatives(shapesList ,parent=True)))\n transformList.sort()\n return transformList\n \n @staticmethod\n def getAllShapes(transforms):\n \"\"\"\n @param transforms: List. \n return : dictionnary with key:mesh / values: shapes\n \"\"\"\n shapes_dic = {}\n for transform in transforms:\n all_shapes = pm.PyNode(transform).getShapes(ni=True)\n shapes_dic.update({str(transform):all_shapes}) \n return shapes_dic\n \n \n def getSkinClusterbyShape(self, shapes):\n \"\"\"\n get skinCluster attached to the shape\n @param shapes: List\n return: List\n \"\"\"\n cluster_dic = {}\n for shape in shapes: \n try:\n incoming = mc.listConnections('{}.inMesh'.format(shape))[0]\n if pm.objectType(incoming) == 'skinCluster':\n cluster_dic.update({str(shape):incoming})\n else:\n skinCluster = self.getSkinCluster(shape)\n if skinCluster:\n if len(skinCluster) > 1:\n cluster_dic.update({str(shape):'None'})\n else:\n cluster_dic.update({str(shape):skinCluster}) \n else:\n cluster_dic.update({str(shape):'None'}) \n except TypeError:\n cluster_dic.update({str(shape):'None'})\n return cluster_dic\n\n \n \n# ===============================\n# BUILD WINDOW\n# ===============================\n\n\ndef showUI(dialog = False):\n if dialog:\n MultiSkin_UI.show_dialog()\n else: \n # Make sure the UI is deleted before recreating\n global tools_cw_ui\n try:\n tools_cw_ui.deleteLater()\n except:\n pass\n tools_cw_ui = MultiSkin_UI()\n tools_cw_ui.show()\n \n \n \n# showUI()\n", "step-ids": [ 17, 18, 23, 24, 28 ] }
[ 17, 18, 23, 24, 28 ]
n = int(input()) a = [int(e) for e in input().split()] ans = [0] * n for i in range(n): s = a[i] ans[s - 1] = i + 1 print(*ans)
normal
{ "blob_id": "f74e2e6b59330bd63fee9192e74a72178abc1cab", "index": 8195, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(n):\n s = a[i]\n ans[s - 1] = i + 1\nprint(*ans)\n", "step-3": "n = int(input())\na = [int(e) for e in input().split()]\nans = [0] * n\nfor i in range(n):\n s = a[i]\n ans[s - 1] = i + 1\nprint(*ans)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
yuki = list(map(int, input().split())) S = input() enemy = [S.count('G'), S.count('C'), S.count('P')] ans = 0 for i in range(3): ans += min(yuki[i], enemy[(i + 1) % 3]) * 3 yuki[i], enemy[(i + 1) % 3] = max(0, yuki[i] - enemy[(i + 1) % 3]), max( 0, enemy[(i + 1) % 3] - yuki[i]) for i in range(3): ans += min(yuki[i], enemy[i]) print(ans)
normal
{ "blob_id": "ce98c13555c474de0a9cb12e99a97b2316312b00", "index": 979, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(3):\n ans += min(yuki[i], enemy[(i + 1) % 3]) * 3\n yuki[i], enemy[(i + 1) % 3] = max(0, yuki[i] - enemy[(i + 1) % 3]), max(\n 0, enemy[(i + 1) % 3] - yuki[i])\nfor i in range(3):\n ans += min(yuki[i], enemy[i])\nprint(ans)\n", "step-3": "yuki = list(map(int, input().split()))\nS = input()\nenemy = [S.count('G'), S.count('C'), S.count('P')]\nans = 0\nfor i in range(3):\n ans += min(yuki[i], enemy[(i + 1) % 3]) * 3\n yuki[i], enemy[(i + 1) % 3] = max(0, yuki[i] - enemy[(i + 1) % 3]), max(\n 0, enemy[(i + 1) % 3] - yuki[i])\nfor i in range(3):\n ans += min(yuki[i], enemy[i])\nprint(ans)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# The following code causes an infinite loop. Can you figure out what’s missing and how to fix it? # def print_range(start, end): # # Loop through the numbers from start to end # n = start # while n <= end: # print(n) # print_range(1, 5) # Should print 1 2 3 4 5 (each number on its own line) # Solution # Variable n's value is not being incremented. We need to increment the value. # Here is the example def print_range(start, end): # Loop through the numbers from start to end n = start while n <= end: print(n) n+=1 print_range(1, 5) # Should print 1 2 3 4 5 (each number on its own line)
normal
{ "blob_id": "05454cc6c9961aa5e0de6979bb546342f5bd7b79", "index": 3321, "step-1": "# The following code causes an infinite loop. Can you figure out what’s missing and how to fix it?\n\n# def print_range(start, end):\n# \t# Loop through the numbers from start to end\n# \tn = start\n# \twhile n <= end:\n# \t\tprint(n)\n\n# print_range(1, 5) # Should print 1 2 3 4 5 (each number on its own line) \n\n# Solution\n# Variable n's value is not being incremented. We need to increment the value.\n# Here is the example\n\n\ndef print_range(start, end):\n\t# Loop through the numbers from start to end\n\tn = start\n \n\twhile n <= end:\n\t\tprint(n)\n n+=1 \n\nprint_range(1, 5) # Should print 1 2 3 4 5 (each number on its own line) ", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python # coding: utf-8 # In[1]: #multi layer perceptron with back propogation import numpy as np import theano import matplotlib.pyplot as plt # In[2]: inputs=[[0,0], [1,0], [0,1], [1,1]] outputs=[1,0,0,1] # In[3]: x=theano.tensor.matrix(name='x') # In[4]: #Hidden layer as inputs from every neuron are 2 and we have 3 neuron w1val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse w1=theano.shared(w1val,name='w1') w2val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse w2=theano.shared(w2val,name='w2') w3val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse w3=theano.shared(w3val,name='w3') # In[5]: #Bias value is 1 b1 = theano.shared(1.1,name='b1') b2 = theano.shared(1.2,name='b2') b3 = theano.shared(1.3,name='b3') # In[6]: #computation foe every neuron #hidden layer a1sum=theano.tensor.dot(x,w1)+b1 a2sum=theano.tensor.dot(x,w2)+b2 a1=1/(1+theano.tensor.exp(-1*a1sum)) a2=1/(1+theano.tensor.exp(-1*a2sum)) #output layer neuron #stack is combining two hiding layer values & feeding to the output layer x2 = theano.tensor.stack([a1,a2],axis=1) # In[7]: '''if we write [[a11,a12,a21,a22],[a33,a34,a43,a44]]-> inputs what stack will do is [a11,a33],[a12,a34],[a21,a43],[a22,a44]''' a3sum=theano.tensor.dot(x2,w3)+b3 a3=1/(1+theano.tensor.exp(-1*a3sum)) #final output ahat=a3 #actual output a=theano.tensor.vector(name='a') # In[8]: #cost function cost=-(a*theano.tensor.log(ahat)+(1-a)*theano.tensor.log(1-ahat)).sum()#it is defined for 1/1+eraise to -z #GDA role #for calculating gradient dcostdw1 = theano.tensor.grad(cost,w1) dcostdw2 = theano.tensor.grad(cost,w2) dcostdw3 = theano.tensor.grad(cost,w3) dcostdb1=theano.tensor.grad(cost,b1) dcostdb2=theano.tensor.grad(cost,b2) dcostdb3=theano.tensor.grad(cost,b3) #apply GDA to update the weights wn1=w1-0.02*dcostdw1 wn2=w2-0.02*dcostdw2 wn3=w3-0.02*dcostdw3 wb1=b1-0.02*dcostdb1 wb2=b2-0.02*dcostdb2 wb3=b3-0.02*dcostdb3 #theano function for training the algorithm train=theano.function([x,a],[ahat,cost],updates=[(w1,wn1),(w2,wn2),(w3,wn3),(b1,wb1),(b2,wb2),(b3,wb3)]) cost1=[] val1=[] #training a model for i in range(25000): pval,costval=train(inputs,outputs) print(costval) val1.append(pval) cost1.append(costval) # In[9]: print('the final outputs are:') for i in range(len(inputs)): print("the output of x1=%d | x2=%d is %.2f"%(inputs[i][0],inputs[i][1],pval[i])) plt.plot(cost1,color='red') plt.show() # In[ ]: # In[ ]:
normal
{ "blob_id": "adec7efceb038c0ecb23c256c23c2ea212752d64", "index": 4010, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(25000):\n pval, costval = train(inputs, outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print('the output of x1=%d | x2=%d is %.2f' % (inputs[i][0], inputs[i][\n 1], pval[i]))\nplt.plot(cost1, color='red')\nplt.show()\n", "step-3": "<mask token>\ninputs = [[0, 0], [1, 0], [0, 1], [1, 1]]\noutputs = [1, 0, 0, 1]\nx = theano.tensor.matrix(name='x')\nw1val = np.asarray([np.random.randn(), np.random.randn()])\nw1 = theano.shared(w1val, name='w1')\nw2val = np.asarray([np.random.randn(), np.random.randn()])\nw2 = theano.shared(w2val, name='w2')\nw3val = np.asarray([np.random.randn(), np.random.randn()])\nw3 = theano.shared(w3val, name='w3')\nb1 = theano.shared(1.1, name='b1')\nb2 = theano.shared(1.2, name='b2')\nb3 = theano.shared(1.3, name='b3')\na1sum = theano.tensor.dot(x, w1) + b1\na2sum = theano.tensor.dot(x, w2) + b2\na1 = 1 / (1 + theano.tensor.exp(-1 * a1sum))\na2 = 1 / (1 + theano.tensor.exp(-1 * a2sum))\nx2 = theano.tensor.stack([a1, a2], axis=1)\n<mask token>\na3sum = theano.tensor.dot(x2, w3) + b3\na3 = 1 / (1 + theano.tensor.exp(-1 * a3sum))\nahat = a3\na = theano.tensor.vector(name='a')\ncost = -(a * theano.tensor.log(ahat) + (1 - a) * theano.tensor.log(1 - ahat)\n ).sum()\ndcostdw1 = theano.tensor.grad(cost, w1)\ndcostdw2 = theano.tensor.grad(cost, w2)\ndcostdw3 = theano.tensor.grad(cost, w3)\ndcostdb1 = theano.tensor.grad(cost, b1)\ndcostdb2 = theano.tensor.grad(cost, b2)\ndcostdb3 = theano.tensor.grad(cost, b3)\nwn1 = w1 - 0.02 * dcostdw1\nwn2 = w2 - 0.02 * dcostdw2\nwn3 = w3 - 0.02 * dcostdw3\nwb1 = b1 - 0.02 * dcostdb1\nwb2 = b2 - 0.02 * dcostdb2\nwb3 = b3 - 0.02 * dcostdb3\ntrain = theano.function([x, a], [ahat, cost], updates=[(w1, wn1), (w2, wn2),\n (w3, wn3), (b1, wb1), (b2, wb2), (b3, wb3)])\ncost1 = []\nval1 = []\nfor i in range(25000):\n pval, costval = train(inputs, outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print('the output of x1=%d | x2=%d is %.2f' % (inputs[i][0], inputs[i][\n 1], pval[i]))\nplt.plot(cost1, color='red')\nplt.show()\n", "step-4": "import numpy as np\nimport theano\nimport matplotlib.pyplot as plt\ninputs = [[0, 0], [1, 0], [0, 1], [1, 1]]\noutputs = [1, 0, 0, 1]\nx = theano.tensor.matrix(name='x')\nw1val = np.asarray([np.random.randn(), np.random.randn()])\nw1 = theano.shared(w1val, name='w1')\nw2val = np.asarray([np.random.randn(), np.random.randn()])\nw2 = theano.shared(w2val, name='w2')\nw3val = np.asarray([np.random.randn(), np.random.randn()])\nw3 = theano.shared(w3val, name='w3')\nb1 = theano.shared(1.1, name='b1')\nb2 = theano.shared(1.2, name='b2')\nb3 = theano.shared(1.3, name='b3')\na1sum = theano.tensor.dot(x, w1) + b1\na2sum = theano.tensor.dot(x, w2) + b2\na1 = 1 / (1 + theano.tensor.exp(-1 * a1sum))\na2 = 1 / (1 + theano.tensor.exp(-1 * a2sum))\nx2 = theano.tensor.stack([a1, a2], axis=1)\n<mask token>\na3sum = theano.tensor.dot(x2, w3) + b3\na3 = 1 / (1 + theano.tensor.exp(-1 * a3sum))\nahat = a3\na = theano.tensor.vector(name='a')\ncost = -(a * theano.tensor.log(ahat) + (1 - a) * theano.tensor.log(1 - ahat)\n ).sum()\ndcostdw1 = theano.tensor.grad(cost, w1)\ndcostdw2 = theano.tensor.grad(cost, w2)\ndcostdw3 = theano.tensor.grad(cost, w3)\ndcostdb1 = theano.tensor.grad(cost, b1)\ndcostdb2 = theano.tensor.grad(cost, b2)\ndcostdb3 = theano.tensor.grad(cost, b3)\nwn1 = w1 - 0.02 * dcostdw1\nwn2 = w2 - 0.02 * dcostdw2\nwn3 = w3 - 0.02 * dcostdw3\nwb1 = b1 - 0.02 * dcostdb1\nwb2 = b2 - 0.02 * dcostdb2\nwb3 = b3 - 0.02 * dcostdb3\ntrain = theano.function([x, a], [ahat, cost], updates=[(w1, wn1), (w2, wn2),\n (w3, wn3), (b1, wb1), (b2, wb2), (b3, wb3)])\ncost1 = []\nval1 = []\nfor i in range(25000):\n pval, costval = train(inputs, outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print('the output of x1=%d | x2=%d is %.2f' % (inputs[i][0], inputs[i][\n 1], pval[i]))\nplt.plot(cost1, color='red')\nplt.show()\n", "step-5": "#!/usr/bin/env python\n# coding: utf-8\n\n# In[1]:\n\n\n#multi layer perceptron with back propogation\nimport numpy as np\nimport theano\nimport matplotlib.pyplot as plt\n\n\n# In[2]:\n\n\ninputs=[[0,0],\n [1,0],\n [0,1],\n [1,1]]\noutputs=[1,0,0,1]\n\n\n# In[3]:\n\n\nx=theano.tensor.matrix(name='x')\n\n\n# In[4]:\n\n\n#Hidden layer as inputs from every neuron are 2 and we have 3 neuron\nw1val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse\nw1=theano.shared(w1val,name='w1')\nw2val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse\nw2=theano.shared(w2val,name='w2')\nw3val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse\nw3=theano.shared(w3val,name='w3')\n\n\n# In[5]:\n\n\n#Bias value is 1\nb1 = theano.shared(1.1,name='b1')\nb2 = theano.shared(1.2,name='b2')\nb3 = theano.shared(1.3,name='b3')\n\n\n# In[6]:\n\n\n#computation foe every neuron\n#hidden layer\na1sum=theano.tensor.dot(x,w1)+b1\na2sum=theano.tensor.dot(x,w2)+b2\n\na1=1/(1+theano.tensor.exp(-1*a1sum))\na2=1/(1+theano.tensor.exp(-1*a2sum))\n\n#output layer neuron\n#stack is combining two hiding layer values & feeding to the output layer\nx2 = theano.tensor.stack([a1,a2],axis=1)\n\n\n# In[7]:\n\n\n'''if we write\n[[a11,a12,a21,a22],[a33,a34,a43,a44]]-> inputs\nwhat stack will do is\n[a11,a33],[a12,a34],[a21,a43],[a22,a44]'''\n\na3sum=theano.tensor.dot(x2,w3)+b3\na3=1/(1+theano.tensor.exp(-1*a3sum))\n\n#final output\nahat=a3\n\n#actual output\na=theano.tensor.vector(name='a')\n\n\n# In[8]:\n\n\n#cost function\ncost=-(a*theano.tensor.log(ahat)+(1-a)*theano.tensor.log(1-ahat)).sum()#it is defined for 1/1+eraise to -z\n#GDA role\n#for calculating gradient\n\ndcostdw1 = theano.tensor.grad(cost,w1)\ndcostdw2 = theano.tensor.grad(cost,w2)\ndcostdw3 = theano.tensor.grad(cost,w3)\n\ndcostdb1=theano.tensor.grad(cost,b1)\ndcostdb2=theano.tensor.grad(cost,b2)\ndcostdb3=theano.tensor.grad(cost,b3)\n\n#apply GDA to update the weights\nwn1=w1-0.02*dcostdw1\nwn2=w2-0.02*dcostdw2\nwn3=w3-0.02*dcostdw3\n\nwb1=b1-0.02*dcostdb1\nwb2=b2-0.02*dcostdb2\nwb3=b3-0.02*dcostdb3\n#theano function for training the algorithm\ntrain=theano.function([x,a],[ahat,cost],updates=[(w1,wn1),(w2,wn2),(w3,wn3),(b1,wb1),(b2,wb2),(b3,wb3)])\n\ncost1=[]\nval1=[]\n\n#training a model\nfor i in range(25000):\n pval,costval=train(inputs,outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\n\n\n# In[9]:\n\n\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print(\"the output of x1=%d | x2=%d is %.2f\"%(inputs[i][0],inputs[i][1],pval[i]))\nplt.plot(cost1,color='red')\nplt.show()\n\n\n# In[ ]:\n\n\n\n\n\n# In[ ]:\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from flask_restful import Resource, reqparse import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.RegexpTokenizer(r"\w+") # CLASS DESCRIPTION: # Devides and clears the sentence of punctuation marks and builds a dependency tree on each sentence # Allocates its own names and verbs # added: Temuri Kitoshvili class Chunk_CleanSentences(Resource): parser = reqparse.RequestParser() parser.add_argument('text', type=str, required=True, help="გთხოვთ შეიყვანოთ სწორი წინადადება") def get(self): data = Chunk_CleanSentences.parser.parse_args() text = data['text'] sentences = sent_tokenize(text) clean_sentences = [] for sent in sentences: clear_sentence = tokenizer.tokenize(sent) clean_sentences.append(clear_sentence) for word in clean_sentences: tagged_sent = nltk.pos_tag(word) chunkGram = r"""Chunk: {<VB.?>*<NNP>?} """ chuckParser = nltk.RegexpParser(chunkGram) chunked = chuckParser.parse(tagged_sent) chunked.draw() return {"clean_sentences": clean_sentences}
normal
{ "blob_id": "6d042a2035eab579193452e4dc44c425125d9515", "index": 9402, "step-1": "<mask token>\n\n\nclass Chunk_CleanSentences(Resource):\n <mask token>\n parser.add_argument('text', type=str, required=True, help=\n 'გთხოვთ შეიყვანოთ სწორი წინადადება')\n\n def get(self):\n data = Chunk_CleanSentences.parser.parse_args()\n text = data['text']\n sentences = sent_tokenize(text)\n clean_sentences = []\n for sent in sentences:\n clear_sentence = tokenizer.tokenize(sent)\n clean_sentences.append(clear_sentence)\n for word in clean_sentences:\n tagged_sent = nltk.pos_tag(word)\n chunkGram = 'Chunk: {<VB.?>*<NNP>?} '\n chuckParser = nltk.RegexpParser(chunkGram)\n chunked = chuckParser.parse(tagged_sent)\n chunked.draw()\n return {'clean_sentences': clean_sentences}\n", "step-2": "<mask token>\n\n\nclass Chunk_CleanSentences(Resource):\n parser = reqparse.RequestParser()\n parser.add_argument('text', type=str, required=True, help=\n 'გთხოვთ შეიყვანოთ სწორი წინადადება')\n\n def get(self):\n data = Chunk_CleanSentences.parser.parse_args()\n text = data['text']\n sentences = sent_tokenize(text)\n clean_sentences = []\n for sent in sentences:\n clear_sentence = tokenizer.tokenize(sent)\n clean_sentences.append(clear_sentence)\n for word in clean_sentences:\n tagged_sent = nltk.pos_tag(word)\n chunkGram = 'Chunk: {<VB.?>*<NNP>?} '\n chuckParser = nltk.RegexpParser(chunkGram)\n chunked = chuckParser.parse(tagged_sent)\n chunked.draw()\n return {'clean_sentences': clean_sentences}\n", "step-3": "<mask token>\ntokenizer = nltk.RegexpTokenizer('\\\\w+')\n\n\nclass Chunk_CleanSentences(Resource):\n parser = reqparse.RequestParser()\n parser.add_argument('text', type=str, required=True, help=\n 'გთხოვთ შეიყვანოთ სწორი წინადადება')\n\n def get(self):\n data = Chunk_CleanSentences.parser.parse_args()\n text = data['text']\n sentences = sent_tokenize(text)\n clean_sentences = []\n for sent in sentences:\n clear_sentence = tokenizer.tokenize(sent)\n clean_sentences.append(clear_sentence)\n for word in clean_sentences:\n tagged_sent = nltk.pos_tag(word)\n chunkGram = 'Chunk: {<VB.?>*<NNP>?} '\n chuckParser = nltk.RegexpParser(chunkGram)\n chunked = chuckParser.parse(tagged_sent)\n chunked.draw()\n return {'clean_sentences': clean_sentences}\n", "step-4": "from flask_restful import Resource, reqparse\nimport nltk\nfrom nltk.tokenize import sent_tokenize\ntokenizer = nltk.RegexpTokenizer('\\\\w+')\n\n\nclass Chunk_CleanSentences(Resource):\n parser = reqparse.RequestParser()\n parser.add_argument('text', type=str, required=True, help=\n 'გთხოვთ შეიყვანოთ სწორი წინადადება')\n\n def get(self):\n data = Chunk_CleanSentences.parser.parse_args()\n text = data['text']\n sentences = sent_tokenize(text)\n clean_sentences = []\n for sent in sentences:\n clear_sentence = tokenizer.tokenize(sent)\n clean_sentences.append(clear_sentence)\n for word in clean_sentences:\n tagged_sent = nltk.pos_tag(word)\n chunkGram = 'Chunk: {<VB.?>*<NNP>?} '\n chuckParser = nltk.RegexpParser(chunkGram)\n chunked = chuckParser.parse(tagged_sent)\n chunked.draw()\n return {'clean_sentences': clean_sentences}\n", "step-5": "from flask_restful import Resource, reqparse\nimport nltk\nfrom nltk.tokenize import sent_tokenize\ntokenizer = nltk.RegexpTokenizer(r\"\\w+\")\n\n# CLASS DESCRIPTION:\n # Devides and clears the sentence of punctuation marks and builds a dependency tree on each sentence\n # Allocates its own names and verbs\n # added: Temuri Kitoshvili\n\nclass Chunk_CleanSentences(Resource):\n parser = reqparse.RequestParser()\n parser.add_argument('text',\n type=str,\n required=True,\n help=\"გთხოვთ შეიყვანოთ სწორი წინადადება\")\n\n def get(self):\n data = Chunk_CleanSentences.parser.parse_args()\n text = data['text']\n\n sentences = sent_tokenize(text)\n clean_sentences = []\n\n for sent in sentences:\n clear_sentence = tokenizer.tokenize(sent)\n clean_sentences.append(clear_sentence)\n\n for word in clean_sentences:\n tagged_sent = nltk.pos_tag(word)\n chunkGram = r\"\"\"Chunk: {<VB.?>*<NNP>?} \"\"\"\n chuckParser = nltk.RegexpParser(chunkGram)\n chunked = chuckParser.parse(tagged_sent)\n\n chunked.draw()\n\n return {\"clean_sentences\": clean_sentences}\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# -*- coding: utf-8 -*- """Transcoder with TOSHIBA RECAIUS API.""" import threading import queue import time import numpy as np from logzero import logger import requests import model.key AUTH_URL = 'https://api.recaius.jp/auth/v2/tokens' VOICE_URL = 'https://api.recaius.jp/asr/v2/voices' class Transcoder: """Transcoder Class.""" def __init__(self): """Constructor.""" logger.info('__init__:Enter') self._token = None self.transcript = None self._queue = queue.Queue() def start(self, token): """Start recognition.""" logger.info('start:Enter') self._token = token threading.Thread(target=self._process).start() def write_stream(self, buf): """Write audio stream.""" self._queue.put(buf) def _process(self): logger.info('_process:Enter') token = self._authenticate()['token'] uuid = self._start_recognition(token)['uuid'] logger.info('start transcode') i = 1 while True: arr = self._stream_generator() if(arr is None): break # logger.debug(f'{len(arr)} , {self._queue.qsize()}') inline = np.hstack(arr) arr_bytes = inline.tobytes('C') header = { 'Content-Type': 'multipart/form-data', 'X-Token': token } files = { 'voice_id': ('', i, ''), 'voice': ('', arr_bytes, 'application/octet-stream') } resp = requests.put( f'{VOICE_URL}/{uuid}', headers=header, files=files) if(resp.status_code == 200): logger.debug(resp.json()) result = resp.json()[0] if(result[0] == 'TMP_RESULT' or result[0] == 'RESULT'): self._write_result(result[1]) i = i + 1 self._flush_recognition(uuid, token, i) while True: if(self._get_result(uuid, token) is None): break time.sleep(0.1) self._end_recognition(uuid, token) logger.info('end transcode') def _authenticate(self): speechrecog_jajp_id = model.key.RECAIUS_ID speechrecog_jajp_password = model.key.RECAIUS_PASSWORD param = { "speech_recog_jaJP": { 'service_id': speechrecog_jajp_id, 'password': speechrecog_jajp_password } } return requests.post(AUTH_URL, json=param).json() def _flush_recognition(self, uuid, token, i): header = { 'Content-Type': 'application/json', 'X-Token': token } param = { 'voice_id': i, } resp = requests.put( f'{VOICE_URL}/{uuid}/flush', headers=header, json=param) if(resp.status_code == 200): logger.debug(f'frush result:{resp.json()}') return resp.json() else: logger.debug(f'flush result(status:{resp.status_code})') def _get_result(self, uuid, token): header = { 'X-Token': token } resp = requests.get(f'{VOICE_URL}/{uuid}/results', headers=header) if(resp.status_code == 200): logger.debug(f'get result:{resp.json()}') return resp.json() else: logger.debug(f'get result(status:{resp.status_code})') def _stream_generator(self): arr = [] while True: try: v = self._queue.get_nowait() # print(v) if v is None: return None arr.append((v * 32767).astype(np.int16)) except queue.Empty: if(len(arr) != 0): break else: time.sleep(0.1) return arr def _start_recognition(self, token): header = { 'Content-Type': 'application/json', 'X-Token': token } param = { 'model_id': 1 } return requests.post(VOICE_URL, headers=header, json=param).json() def _end_recognition(self, uuid, token): header = { 'X-Token': token } resp = requests.delete(f'{VOICE_URL}/{uuid}', headers=header) if(resp.status_code == 204): logger.debug(f'delete result(status:{resp.status_code})') def _write_result(self, transcipt): self.transcript = transcipt
normal
{ "blob_id": "421b0c1871350ff541b4e56d1e18d77016884552", "index": 5199, "step-1": "<mask token>\n\n\nclass Transcoder:\n <mask token>\n\n def __init__(self):\n \"\"\"Constructor.\"\"\"\n logger.info('__init__:Enter')\n self._token = None\n self.transcript = None\n self._queue = queue.Queue()\n\n def start(self, token):\n \"\"\"Start recognition.\"\"\"\n logger.info('start:Enter')\n self._token = token\n threading.Thread(target=self._process).start()\n <mask token>\n\n def _process(self):\n logger.info('_process:Enter')\n token = self._authenticate()['token']\n uuid = self._start_recognition(token)['uuid']\n logger.info('start transcode')\n i = 1\n while True:\n arr = self._stream_generator()\n if arr is None:\n break\n inline = np.hstack(arr)\n arr_bytes = inline.tobytes('C')\n header = {'Content-Type': 'multipart/form-data', 'X-Token': token}\n files = {'voice_id': ('', i, ''), 'voice': ('', arr_bytes,\n 'application/octet-stream')}\n resp = requests.put(f'{VOICE_URL}/{uuid}', headers=header,\n files=files)\n if resp.status_code == 200:\n logger.debug(resp.json())\n result = resp.json()[0]\n if result[0] == 'TMP_RESULT' or result[0] == 'RESULT':\n self._write_result(result[1])\n i = i + 1\n self._flush_recognition(uuid, token, i)\n while True:\n if self._get_result(uuid, token) is None:\n break\n time.sleep(0.1)\n self._end_recognition(uuid, token)\n logger.info('end transcode')\n\n def _authenticate(self):\n speechrecog_jajp_id = model.key.RECAIUS_ID\n speechrecog_jajp_password = model.key.RECAIUS_PASSWORD\n param = {'speech_recog_jaJP': {'service_id': speechrecog_jajp_id,\n 'password': speechrecog_jajp_password}}\n return requests.post(AUTH_URL, json=param).json()\n\n def _flush_recognition(self, uuid, token, i):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'voice_id': i}\n resp = requests.put(f'{VOICE_URL}/{uuid}/flush', headers=header,\n json=param)\n if resp.status_code == 200:\n logger.debug(f'frush result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'flush result(status:{resp.status_code})')\n <mask token>\n <mask token>\n\n def _start_recognition(self, token):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'model_id': 1}\n return requests.post(VOICE_URL, headers=header, json=param).json()\n\n def _end_recognition(self, uuid, token):\n header = {'X-Token': token}\n resp = requests.delete(f'{VOICE_URL}/{uuid}', headers=header)\n if resp.status_code == 204:\n logger.debug(f'delete result(status:{resp.status_code})')\n\n def _write_result(self, transcipt):\n self.transcript = transcipt\n", "step-2": "<mask token>\n\n\nclass Transcoder:\n <mask token>\n\n def __init__(self):\n \"\"\"Constructor.\"\"\"\n logger.info('__init__:Enter')\n self._token = None\n self.transcript = None\n self._queue = queue.Queue()\n\n def start(self, token):\n \"\"\"Start recognition.\"\"\"\n logger.info('start:Enter')\n self._token = token\n threading.Thread(target=self._process).start()\n\n def write_stream(self, buf):\n \"\"\"Write audio stream.\"\"\"\n self._queue.put(buf)\n\n def _process(self):\n logger.info('_process:Enter')\n token = self._authenticate()['token']\n uuid = self._start_recognition(token)['uuid']\n logger.info('start transcode')\n i = 1\n while True:\n arr = self._stream_generator()\n if arr is None:\n break\n inline = np.hstack(arr)\n arr_bytes = inline.tobytes('C')\n header = {'Content-Type': 'multipart/form-data', 'X-Token': token}\n files = {'voice_id': ('', i, ''), 'voice': ('', arr_bytes,\n 'application/octet-stream')}\n resp = requests.put(f'{VOICE_URL}/{uuid}', headers=header,\n files=files)\n if resp.status_code == 200:\n logger.debug(resp.json())\n result = resp.json()[0]\n if result[0] == 'TMP_RESULT' or result[0] == 'RESULT':\n self._write_result(result[1])\n i = i + 1\n self._flush_recognition(uuid, token, i)\n while True:\n if self._get_result(uuid, token) is None:\n break\n time.sleep(0.1)\n self._end_recognition(uuid, token)\n logger.info('end transcode')\n\n def _authenticate(self):\n speechrecog_jajp_id = model.key.RECAIUS_ID\n speechrecog_jajp_password = model.key.RECAIUS_PASSWORD\n param = {'speech_recog_jaJP': {'service_id': speechrecog_jajp_id,\n 'password': speechrecog_jajp_password}}\n return requests.post(AUTH_URL, json=param).json()\n\n def _flush_recognition(self, uuid, token, i):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'voice_id': i}\n resp = requests.put(f'{VOICE_URL}/{uuid}/flush', headers=header,\n json=param)\n if resp.status_code == 200:\n logger.debug(f'frush result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'flush result(status:{resp.status_code})')\n <mask token>\n <mask token>\n\n def _start_recognition(self, token):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'model_id': 1}\n return requests.post(VOICE_URL, headers=header, json=param).json()\n\n def _end_recognition(self, uuid, token):\n header = {'X-Token': token}\n resp = requests.delete(f'{VOICE_URL}/{uuid}', headers=header)\n if resp.status_code == 204:\n logger.debug(f'delete result(status:{resp.status_code})')\n\n def _write_result(self, transcipt):\n self.transcript = transcipt\n", "step-3": "<mask token>\n\n\nclass Transcoder:\n <mask token>\n\n def __init__(self):\n \"\"\"Constructor.\"\"\"\n logger.info('__init__:Enter')\n self._token = None\n self.transcript = None\n self._queue = queue.Queue()\n\n def start(self, token):\n \"\"\"Start recognition.\"\"\"\n logger.info('start:Enter')\n self._token = token\n threading.Thread(target=self._process).start()\n\n def write_stream(self, buf):\n \"\"\"Write audio stream.\"\"\"\n self._queue.put(buf)\n\n def _process(self):\n logger.info('_process:Enter')\n token = self._authenticate()['token']\n uuid = self._start_recognition(token)['uuid']\n logger.info('start transcode')\n i = 1\n while True:\n arr = self._stream_generator()\n if arr is None:\n break\n inline = np.hstack(arr)\n arr_bytes = inline.tobytes('C')\n header = {'Content-Type': 'multipart/form-data', 'X-Token': token}\n files = {'voice_id': ('', i, ''), 'voice': ('', arr_bytes,\n 'application/octet-stream')}\n resp = requests.put(f'{VOICE_URL}/{uuid}', headers=header,\n files=files)\n if resp.status_code == 200:\n logger.debug(resp.json())\n result = resp.json()[0]\n if result[0] == 'TMP_RESULT' or result[0] == 'RESULT':\n self._write_result(result[1])\n i = i + 1\n self._flush_recognition(uuid, token, i)\n while True:\n if self._get_result(uuid, token) is None:\n break\n time.sleep(0.1)\n self._end_recognition(uuid, token)\n logger.info('end transcode')\n\n def _authenticate(self):\n speechrecog_jajp_id = model.key.RECAIUS_ID\n speechrecog_jajp_password = model.key.RECAIUS_PASSWORD\n param = {'speech_recog_jaJP': {'service_id': speechrecog_jajp_id,\n 'password': speechrecog_jajp_password}}\n return requests.post(AUTH_URL, json=param).json()\n\n def _flush_recognition(self, uuid, token, i):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'voice_id': i}\n resp = requests.put(f'{VOICE_URL}/{uuid}/flush', headers=header,\n json=param)\n if resp.status_code == 200:\n logger.debug(f'frush result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'flush result(status:{resp.status_code})')\n\n def _get_result(self, uuid, token):\n header = {'X-Token': token}\n resp = requests.get(f'{VOICE_URL}/{uuid}/results', headers=header)\n if resp.status_code == 200:\n logger.debug(f'get result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'get result(status:{resp.status_code})')\n\n def _stream_generator(self):\n arr = []\n while True:\n try:\n v = self._queue.get_nowait()\n if v is None:\n return None\n arr.append((v * 32767).astype(np.int16))\n except queue.Empty:\n if len(arr) != 0:\n break\n else:\n time.sleep(0.1)\n return arr\n\n def _start_recognition(self, token):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'model_id': 1}\n return requests.post(VOICE_URL, headers=header, json=param).json()\n\n def _end_recognition(self, uuid, token):\n header = {'X-Token': token}\n resp = requests.delete(f'{VOICE_URL}/{uuid}', headers=header)\n if resp.status_code == 204:\n logger.debug(f'delete result(status:{resp.status_code})')\n\n def _write_result(self, transcipt):\n self.transcript = transcipt\n", "step-4": "<mask token>\nAUTH_URL = 'https://api.recaius.jp/auth/v2/tokens'\nVOICE_URL = 'https://api.recaius.jp/asr/v2/voices'\n\n\nclass Transcoder:\n \"\"\"Transcoder Class.\"\"\"\n\n def __init__(self):\n \"\"\"Constructor.\"\"\"\n logger.info('__init__:Enter')\n self._token = None\n self.transcript = None\n self._queue = queue.Queue()\n\n def start(self, token):\n \"\"\"Start recognition.\"\"\"\n logger.info('start:Enter')\n self._token = token\n threading.Thread(target=self._process).start()\n\n def write_stream(self, buf):\n \"\"\"Write audio stream.\"\"\"\n self._queue.put(buf)\n\n def _process(self):\n logger.info('_process:Enter')\n token = self._authenticate()['token']\n uuid = self._start_recognition(token)['uuid']\n logger.info('start transcode')\n i = 1\n while True:\n arr = self._stream_generator()\n if arr is None:\n break\n inline = np.hstack(arr)\n arr_bytes = inline.tobytes('C')\n header = {'Content-Type': 'multipart/form-data', 'X-Token': token}\n files = {'voice_id': ('', i, ''), 'voice': ('', arr_bytes,\n 'application/octet-stream')}\n resp = requests.put(f'{VOICE_URL}/{uuid}', headers=header,\n files=files)\n if resp.status_code == 200:\n logger.debug(resp.json())\n result = resp.json()[0]\n if result[0] == 'TMP_RESULT' or result[0] == 'RESULT':\n self._write_result(result[1])\n i = i + 1\n self._flush_recognition(uuid, token, i)\n while True:\n if self._get_result(uuid, token) is None:\n break\n time.sleep(0.1)\n self._end_recognition(uuid, token)\n logger.info('end transcode')\n\n def _authenticate(self):\n speechrecog_jajp_id = model.key.RECAIUS_ID\n speechrecog_jajp_password = model.key.RECAIUS_PASSWORD\n param = {'speech_recog_jaJP': {'service_id': speechrecog_jajp_id,\n 'password': speechrecog_jajp_password}}\n return requests.post(AUTH_URL, json=param).json()\n\n def _flush_recognition(self, uuid, token, i):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'voice_id': i}\n resp = requests.put(f'{VOICE_URL}/{uuid}/flush', headers=header,\n json=param)\n if resp.status_code == 200:\n logger.debug(f'frush result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'flush result(status:{resp.status_code})')\n\n def _get_result(self, uuid, token):\n header = {'X-Token': token}\n resp = requests.get(f'{VOICE_URL}/{uuid}/results', headers=header)\n if resp.status_code == 200:\n logger.debug(f'get result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'get result(status:{resp.status_code})')\n\n def _stream_generator(self):\n arr = []\n while True:\n try:\n v = self._queue.get_nowait()\n if v is None:\n return None\n arr.append((v * 32767).astype(np.int16))\n except queue.Empty:\n if len(arr) != 0:\n break\n else:\n time.sleep(0.1)\n return arr\n\n def _start_recognition(self, token):\n header = {'Content-Type': 'application/json', 'X-Token': token}\n param = {'model_id': 1}\n return requests.post(VOICE_URL, headers=header, json=param).json()\n\n def _end_recognition(self, uuid, token):\n header = {'X-Token': token}\n resp = requests.delete(f'{VOICE_URL}/{uuid}', headers=header)\n if resp.status_code == 204:\n logger.debug(f'delete result(status:{resp.status_code})')\n\n def _write_result(self, transcipt):\n self.transcript = transcipt\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"Transcoder with TOSHIBA RECAIUS API.\"\"\"\nimport threading\nimport queue\nimport time\n\nimport numpy as np\nfrom logzero import logger\nimport requests\n\nimport model.key\n\nAUTH_URL = 'https://api.recaius.jp/auth/v2/tokens'\nVOICE_URL = 'https://api.recaius.jp/asr/v2/voices'\n\n\nclass Transcoder:\n \"\"\"Transcoder Class.\"\"\"\n\n def __init__(self):\n \"\"\"Constructor.\"\"\"\n logger.info('__init__:Enter')\n self._token = None\n self.transcript = None\n self._queue = queue.Queue()\n\n def start(self, token):\n \"\"\"Start recognition.\"\"\"\n logger.info('start:Enter')\n self._token = token\n threading.Thread(target=self._process).start()\n\n def write_stream(self, buf):\n \"\"\"Write audio stream.\"\"\"\n self._queue.put(buf)\n\n def _process(self):\n logger.info('_process:Enter')\n token = self._authenticate()['token']\n uuid = self._start_recognition(token)['uuid']\n logger.info('start transcode')\n i = 1\n while True:\n arr = self._stream_generator()\n if(arr is None):\n break\n # logger.debug(f'{len(arr)} , {self._queue.qsize()}')\n inline = np.hstack(arr)\n arr_bytes = inline.tobytes('C')\n header = {\n 'Content-Type': 'multipart/form-data',\n 'X-Token': token\n }\n files = {\n 'voice_id': ('', i, ''),\n 'voice': ('', arr_bytes, 'application/octet-stream')\n }\n resp = requests.put(\n f'{VOICE_URL}/{uuid}', headers=header, files=files)\n if(resp.status_code == 200):\n logger.debug(resp.json())\n result = resp.json()[0]\n if(result[0] == 'TMP_RESULT' or result[0] == 'RESULT'):\n self._write_result(result[1])\n i = i + 1\n self._flush_recognition(uuid, token, i)\n while True:\n if(self._get_result(uuid, token) is None):\n break\n time.sleep(0.1)\n self._end_recognition(uuid, token)\n logger.info('end transcode')\n\n def _authenticate(self):\n speechrecog_jajp_id = model.key.RECAIUS_ID\n speechrecog_jajp_password = model.key.RECAIUS_PASSWORD\n param = {\n \"speech_recog_jaJP\": {\n 'service_id': speechrecog_jajp_id,\n 'password': speechrecog_jajp_password\n }\n }\n return requests.post(AUTH_URL, json=param).json()\n\n def _flush_recognition(self, uuid, token, i):\n header = {\n 'Content-Type': 'application/json',\n 'X-Token': token\n }\n param = {\n 'voice_id': i,\n }\n resp = requests.put(\n f'{VOICE_URL}/{uuid}/flush', headers=header, json=param)\n if(resp.status_code == 200):\n logger.debug(f'frush result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'flush result(status:{resp.status_code})')\n\n def _get_result(self, uuid, token):\n header = {\n 'X-Token': token\n }\n resp = requests.get(f'{VOICE_URL}/{uuid}/results', headers=header)\n if(resp.status_code == 200):\n logger.debug(f'get result:{resp.json()}')\n return resp.json()\n else:\n logger.debug(f'get result(status:{resp.status_code})')\n\n def _stream_generator(self):\n arr = []\n while True:\n try:\n v = self._queue.get_nowait()\n # print(v)\n if v is None:\n return None\n arr.append((v * 32767).astype(np.int16))\n except queue.Empty:\n if(len(arr) != 0):\n break\n else:\n time.sleep(0.1)\n return arr\n\n def _start_recognition(self, token):\n header = {\n 'Content-Type': 'application/json',\n 'X-Token': token\n }\n param = {\n 'model_id': 1\n }\n return requests.post(VOICE_URL, headers=header, json=param).json()\n\n def _end_recognition(self, uuid, token):\n header = {\n 'X-Token': token\n }\n resp = requests.delete(f'{VOICE_URL}/{uuid}', headers=header)\n if(resp.status_code == 204):\n logger.debug(f'delete result(status:{resp.status_code})')\n\n def _write_result(self, transcipt):\n self.transcript = transcipt\n", "step-ids": [ 9, 10, 12, 14, 16 ] }
[ 9, 10, 12, 14, 16 ]
def print_duplicates(arr): uniques = set() for elem in arr: if elem in uniques: print(elem, end=' ') else: uniques.add(elem)
normal
{ "blob_id": "420c3944de0a5436a9824604fd6caf27706eb99c", "index": 4102, "step-1": "<mask token>\n", "step-2": "def print_duplicates(arr):\n uniques = set()\n for elem in arr:\n if elem in uniques:\n print(elem, end=' ')\n else:\n uniques.add(elem)\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
# module: order functionality # HW2: complete this func def process_option(food, option): # print(food.keys()) food_name = list(food.keys())[option-1] food_price = food[food_name] print(food_price) print("You have chosen: ", option, food_name, "!", " For unit price: ", food_price) # HW2: ask quantity # if ENTER = cancel # if ent numb = calc total (func separate func) # print total # ask confirmation (y/n) # ask for costumer name # save the order data in data/<name>order.txt q = int(input("How many? ")) total = q * food_price print(food_name, "x", q, "=", total) # file = open("copy.txt", "w") # file.write("Your text goes here") # file.close() client_name = input("Your name pls: ") # file = open("data/" + client_name + ".txt", "w") # file.write(food_name + "|" + str(q) + str(food_price) + "|" + str(total)) # file.close() with open("data/" + client_name + ".txt", "w") as file: file.write(food_name + "|" + str(q) + "|" + str(food_price) + "|" + str(total)) def confirmation(): c = input("Press y/n for confirmation: ") if c == "y": print("Reservation confirmed!") elif c == "n": print("Reservation decline!") elif c == "": print("Cancel reservation") else: print("CK next time...") def show_order_info(): client_name = input("Your name in data: ") file = open("data/" + client_name + ".txt", "r") data = file.read() file.close() print(data)
normal
{ "blob_id": "07bd3c7cacbf8d0e39d06b21456258ad92cb2294", "index": 676, "step-1": "<mask token>\n", "step-2": "def process_option(food, option):\n food_name = list(food.keys())[option - 1]\n food_price = food[food_name]\n print(food_price)\n print('You have chosen: ', option, food_name, '!', ' For unit price: ',\n food_price)\n q = int(input('How many? '))\n total = q * food_price\n print(food_name, 'x', q, '=', total)\n client_name = input('Your name pls: ')\n with open('data/' + client_name + '.txt', 'w') as file:\n file.write(food_name + '|' + str(q) + '|' + str(food_price) + '|' +\n str(total))\n\n\n<mask token>\n", "step-3": "def process_option(food, option):\n food_name = list(food.keys())[option - 1]\n food_price = food[food_name]\n print(food_price)\n print('You have chosen: ', option, food_name, '!', ' For unit price: ',\n food_price)\n q = int(input('How many? '))\n total = q * food_price\n print(food_name, 'x', q, '=', total)\n client_name = input('Your name pls: ')\n with open('data/' + client_name + '.txt', 'w') as file:\n file.write(food_name + '|' + str(q) + '|' + str(food_price) + '|' +\n str(total))\n\n\ndef confirmation():\n c = input('Press y/n for confirmation: ')\n if c == 'y':\n print('Reservation confirmed!')\n elif c == 'n':\n print('Reservation decline!')\n elif c == '':\n print('Cancel reservation')\n else:\n print('CK next time...')\n\n\n<mask token>\n", "step-4": "def process_option(food, option):\n food_name = list(food.keys())[option - 1]\n food_price = food[food_name]\n print(food_price)\n print('You have chosen: ', option, food_name, '!', ' For unit price: ',\n food_price)\n q = int(input('How many? '))\n total = q * food_price\n print(food_name, 'x', q, '=', total)\n client_name = input('Your name pls: ')\n with open('data/' + client_name + '.txt', 'w') as file:\n file.write(food_name + '|' + str(q) + '|' + str(food_price) + '|' +\n str(total))\n\n\ndef confirmation():\n c = input('Press y/n for confirmation: ')\n if c == 'y':\n print('Reservation confirmed!')\n elif c == 'n':\n print('Reservation decline!')\n elif c == '':\n print('Cancel reservation')\n else:\n print('CK next time...')\n\n\ndef show_order_info():\n client_name = input('Your name in data: ')\n file = open('data/' + client_name + '.txt', 'r')\n data = file.read()\n file.close()\n print(data)\n", "step-5": "\r\n# module: order functionality\r\n\r\n\r\n# HW2: complete this func\r\n\r\ndef process_option(food, option):\r\n # print(food.keys())\r\n food_name = list(food.keys())[option-1]\r\n food_price = food[food_name]\r\n\r\n print(food_price)\r\n print(\"You have chosen: \", option, food_name, \"!\", \" For unit price: \", food_price)\r\n\r\n # HW2: ask quantity\r\n # if ENTER = cancel\r\n\r\n # if ent numb = calc total (func separate func)\r\n # print total\r\n # ask confirmation (y/n)\r\n # ask for costumer name\r\n # save the order data in data/<name>order.txt\r\n\r\n q = int(input(\"How many? \"))\r\n total = q * food_price\r\n print(food_name, \"x\", q, \"=\", total)\r\n\r\n\r\n # file = open(\"copy.txt\", \"w\")\r\n # file.write(\"Your text goes here\")\r\n # file.close()\r\n\r\n client_name = input(\"Your name pls: \")\r\n # file = open(\"data/\" + client_name + \".txt\", \"w\")\r\n # file.write(food_name + \"|\" + str(q) + str(food_price) + \"|\" + str(total))\r\n # file.close()\r\n\r\n with open(\"data/\" + client_name + \".txt\", \"w\") as file:\r\n file.write(food_name + \"|\" + str(q) + \"|\" + str(food_price) + \"|\" + str(total))\r\n\r\n\r\n\r\ndef confirmation():\r\n c = input(\"Press y/n for confirmation: \")\r\n if c == \"y\":\r\n print(\"Reservation confirmed!\")\r\n elif c == \"n\":\r\n print(\"Reservation decline!\")\r\n elif c == \"\":\r\n print(\"Cancel reservation\")\r\n else:\r\n print(\"CK next time...\")\r\n\r\n\r\ndef show_order_info():\r\n client_name = input(\"Your name in data: \")\r\n file = open(\"data/\" + client_name + \".txt\", \"r\")\r\n data = file.read()\r\n file.close()\r\n print(data)\r\n\r\n\r\n\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" table.py [-m] base1 base2 ... baseN Combines output from base1.txt, base2.txt, etc., which are created by the TestDriver (such as timcv.py) output, and displays tabulated comparison statistics to stdout. Each input file is represented by one column in the table. Optional argument -m shows a final column with the mean value of each statistic. """ def suck(f): hamdevall = spamdevall = (0.0, 0.0) cost = 0.0 bestcost = 0.0 fp = 0 fn = 0 un = 0 fpp = 0.0 fnp = 0.0 unp = 0.0 htest = 0 stest = 0 get = f.readline while 1: line = get() if line.startswith('-> <stat> tested'): print(line, end=' ') elif line.find(' items; mean ') > 0 and line.find('for all runs') > 0: vals = line.split(';') mean = float(vals[1].split()[-1]) sdev = float(vals[2].split()[-1]) val = (mean, sdev) ntested = int(vals[0].split()[-2]) typ = vals[0].split()[2] if line.find('for all runs') != -1: if typ == 'Ham': hamdevall = val htest = ntested else: spamdevall = val stest = ntested elif line.startswith('-> best cost for all runs: $'): bestcost = float(line.split('$')[-1]) elif line.startswith('-> <stat> all runs false positives: '): fp = int(line.split()[-1]) elif line.startswith('-> <stat> all runs false negatives: '): fn = int(line.split()[-1]) elif line.startswith('-> <stat> all runs unsure: '): un = int(line.split()[-1]) elif line.startswith('-> <stat> all runs false positive %: '): fpp = float(line.split()[-1]) elif line.startswith('-> <stat> all runs false negative %: '): fnp = float(line.split()[-1]) elif line.startswith('-> <stat> all runs unsure %: '): unp = float(line.split()[-1]) elif line.startswith('-> <stat> all runs cost: '): cost = float(line.split('$')[-1]) break return (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost, hamdevall, spamdevall) def windowsfy(fn): import os if os.path.exists(fn + '.txt'): return fn + '.txt' else: return fn def table(): import getopt, sys showMean = 0 fname = "filename: " fnam2 = " " ratio = "ham:spam: " rat2 = " " fptot = "fp total: " fpper = "fp %: " fntot = "fn total: " fnper = "fn %: " untot = "unsure t: " unper = "unsure %: " rcost = "real cost:" bcost = "best cost:" hmean = "h mean: " hsdev = "h sdev: " smean = "s mean: " ssdev = "s sdev: " meand = "mean diff:" kval = "k: " tfptot = tfpper = tfntot = tfnper = tuntot = tunper = trcost = tbcost = \ thmean = thsdev = tsmean = tssdev = tmeand = tkval = 0 args, fileargs = getopt.getopt(sys.argv[1:], 'm') for arg, val in args: if arg == "-m": showMean = 1 for filename in fileargs: filename = windowsfy(filename) (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost, hamdevall, spamdevall) = suck(file(filename)) if filename.endswith('.txt'): filename = filename[:-4] filename = filename[filename.rfind('/')+1:] filename = filename[filename.rfind("\\")+1:] if len(fname) > len(fnam2): fname += " " fname = fname[0:(len(fnam2) + 12)] fnam2 += " %11s" % filename else: fnam2 += " " fnam2 = fnam2[0:(len(fname) + 12)] fname += " %11s" % filename if len(ratio) > len(rat2): ratio += " " ratio = ratio[0:(len(rat2) + 12)] rat2 += " %11s" % ("%d:%d" % (htest, stest)) else: rat2 += " " rat2 = rat2[0:(len(ratio) + 12)] ratio += " %11s" % ("%d:%d" % (htest, stest)) fptot += "%12d" % fp tfptot += fp fpper += "%12.2f" % fpp tfpper += fpp fntot += "%12d" % fn tfntot += fn fnper += "%12.2f" % fnp tfnper += fnp untot += "%12d" % un tuntot += un unper += "%12.2f" % unp tunper += unp rcost += "%12s" % ("$%.2f" % cost) trcost += cost bcost += "%12s" % ("$%.2f" % bestcost) tbcost += bestcost hmean += "%12.2f" % hamdevall[0] thmean += hamdevall[0] hsdev += "%12.2f" % hamdevall[1] thsdev += hamdevall[1] smean += "%12.2f" % spamdevall[0] tsmean += spamdevall[0] ssdev += "%12.2f" % spamdevall[1] tssdev += spamdevall[1] meand += "%12.2f" % (spamdevall[0] - hamdevall[0]) tmeand += (spamdevall[0] - hamdevall[0]) k = (spamdevall[0] - hamdevall[0]) / (spamdevall[1] + hamdevall[1]) kval += "%12.2f" % k tkval += k nfiles = len(fileargs) if nfiles and showMean: fptot += "%12d" % (tfptot/nfiles) fpper += "%12.2f" % (tfpper/nfiles) fntot += "%12d" % (tfntot/nfiles) fnper += "%12.2f" % (tfnper/nfiles) untot += "%12d" % (tuntot/nfiles) unper += "%12.2f" % (tunper/nfiles) rcost += "%12s" % ("$%.2f" % (trcost/nfiles)) bcost += "%12s" % ("$%.2f" % (tbcost/nfiles)) hmean += "%12.2f" % (thmean/nfiles) hsdev += "%12.2f" % (thsdev/nfiles) smean += "%12.2f" % (tsmean/nfiles) ssdev += "%12.2f" % (tssdev/nfiles) meand += "%12.2f" % (tmeand/nfiles) kval += "%12.2f" % (tkval/nfiles) print(fname) if len(fnam2.strip()) > 0: print(fnam2) print(ratio) if len(rat2.strip()) > 0: print(rat2) print(fptot) print(fpper) print(fntot) print(fnper) print(untot) print(unper) print(rcost) print(bcost) print(hmean) print(hsdev) print(smean) print(ssdev) print(meand) print(kval) if __name__ == "__main__": table()
normal
{ "blob_id": "4e94e9e2b45d3786aa86be800be882cc3d5a80b5", "index": 8328, "step-1": "<mask token>\n\n\ndef suck(f):\n hamdevall = spamdevall = 0.0, 0.0\n cost = 0.0\n bestcost = 0.0\n fp = 0\n fn = 0\n un = 0\n fpp = 0.0\n fnp = 0.0\n unp = 0.0\n htest = 0\n stest = 0\n get = f.readline\n while 1:\n line = get()\n if line.startswith('-> <stat> tested'):\n print(line, end=' ')\n elif line.find(' items; mean ') > 0 and line.find('for all runs') > 0:\n vals = line.split(';')\n mean = float(vals[1].split()[-1])\n sdev = float(vals[2].split()[-1])\n val = mean, sdev\n ntested = int(vals[0].split()[-2])\n typ = vals[0].split()[2]\n if line.find('for all runs') != -1:\n if typ == 'Ham':\n hamdevall = val\n htest = ntested\n else:\n spamdevall = val\n stest = ntested\n elif line.startswith('-> best cost for all runs: $'):\n bestcost = float(line.split('$')[-1])\n elif line.startswith('-> <stat> all runs false positives: '):\n fp = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negatives: '):\n fn = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure: '):\n un = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false positive %: '):\n fpp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negative %: '):\n fnp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure %: '):\n unp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs cost: '):\n cost = float(line.split('$')[-1])\n break\n return (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost,\n hamdevall, spamdevall)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef suck(f):\n hamdevall = spamdevall = 0.0, 0.0\n cost = 0.0\n bestcost = 0.0\n fp = 0\n fn = 0\n un = 0\n fpp = 0.0\n fnp = 0.0\n unp = 0.0\n htest = 0\n stest = 0\n get = f.readline\n while 1:\n line = get()\n if line.startswith('-> <stat> tested'):\n print(line, end=' ')\n elif line.find(' items; mean ') > 0 and line.find('for all runs') > 0:\n vals = line.split(';')\n mean = float(vals[1].split()[-1])\n sdev = float(vals[2].split()[-1])\n val = mean, sdev\n ntested = int(vals[0].split()[-2])\n typ = vals[0].split()[2]\n if line.find('for all runs') != -1:\n if typ == 'Ham':\n hamdevall = val\n htest = ntested\n else:\n spamdevall = val\n stest = ntested\n elif line.startswith('-> best cost for all runs: $'):\n bestcost = float(line.split('$')[-1])\n elif line.startswith('-> <stat> all runs false positives: '):\n fp = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negatives: '):\n fn = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure: '):\n un = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false positive %: '):\n fpp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negative %: '):\n fnp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure %: '):\n unp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs cost: '):\n cost = float(line.split('$')[-1])\n break\n return (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost,\n hamdevall, spamdevall)\n\n\ndef windowsfy(fn):\n import os\n if os.path.exists(fn + '.txt'):\n return fn + '.txt'\n else:\n return fn\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef suck(f):\n hamdevall = spamdevall = 0.0, 0.0\n cost = 0.0\n bestcost = 0.0\n fp = 0\n fn = 0\n un = 0\n fpp = 0.0\n fnp = 0.0\n unp = 0.0\n htest = 0\n stest = 0\n get = f.readline\n while 1:\n line = get()\n if line.startswith('-> <stat> tested'):\n print(line, end=' ')\n elif line.find(' items; mean ') > 0 and line.find('for all runs') > 0:\n vals = line.split(';')\n mean = float(vals[1].split()[-1])\n sdev = float(vals[2].split()[-1])\n val = mean, sdev\n ntested = int(vals[0].split()[-2])\n typ = vals[0].split()[2]\n if line.find('for all runs') != -1:\n if typ == 'Ham':\n hamdevall = val\n htest = ntested\n else:\n spamdevall = val\n stest = ntested\n elif line.startswith('-> best cost for all runs: $'):\n bestcost = float(line.split('$')[-1])\n elif line.startswith('-> <stat> all runs false positives: '):\n fp = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negatives: '):\n fn = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure: '):\n un = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false positive %: '):\n fpp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negative %: '):\n fnp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure %: '):\n unp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs cost: '):\n cost = float(line.split('$')[-1])\n break\n return (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost,\n hamdevall, spamdevall)\n\n\ndef windowsfy(fn):\n import os\n if os.path.exists(fn + '.txt'):\n return fn + '.txt'\n else:\n return fn\n\n\ndef table():\n import getopt, sys\n showMean = 0\n fname = 'filename: '\n fnam2 = ' '\n ratio = 'ham:spam: '\n rat2 = ' '\n fptot = 'fp total: '\n fpper = 'fp %: '\n fntot = 'fn total: '\n fnper = 'fn %: '\n untot = 'unsure t: '\n unper = 'unsure %: '\n rcost = 'real cost:'\n bcost = 'best cost:'\n hmean = 'h mean: '\n hsdev = 'h sdev: '\n smean = 's mean: '\n ssdev = 's sdev: '\n meand = 'mean diff:'\n kval = 'k: '\n (tfptot) = (tfpper) = (tfntot) = (tfnper) = (tuntot) = (tunper) = (trcost\n ) = (tbcost) = (thmean) = (thsdev) = (tsmean) = (tssdev) = (tmeand) = (\n tkval) = 0\n args, fileargs = getopt.getopt(sys.argv[1:], 'm')\n for arg, val in args:\n if arg == '-m':\n showMean = 1\n for filename in fileargs:\n filename = windowsfy(filename)\n (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost, hamdevall,\n spamdevall) = suck(file(filename))\n if filename.endswith('.txt'):\n filename = filename[:-4]\n filename = filename[filename.rfind('/') + 1:]\n filename = filename[filename.rfind('\\\\') + 1:]\n if len(fname) > len(fnam2):\n fname += ' '\n fname = fname[0:len(fnam2) + 12]\n fnam2 += ' %11s' % filename\n else:\n fnam2 += ' '\n fnam2 = fnam2[0:len(fname) + 12]\n fname += ' %11s' % filename\n if len(ratio) > len(rat2):\n ratio += ' '\n ratio = ratio[0:len(rat2) + 12]\n rat2 += ' %11s' % ('%d:%d' % (htest, stest))\n else:\n rat2 += ' '\n rat2 = rat2[0:len(ratio) + 12]\n ratio += ' %11s' % ('%d:%d' % (htest, stest))\n fptot += '%12d' % fp\n tfptot += fp\n fpper += '%12.2f' % fpp\n tfpper += fpp\n fntot += '%12d' % fn\n tfntot += fn\n fnper += '%12.2f' % fnp\n tfnper += fnp\n untot += '%12d' % un\n tuntot += un\n unper += '%12.2f' % unp\n tunper += unp\n rcost += '%12s' % ('$%.2f' % cost)\n trcost += cost\n bcost += '%12s' % ('$%.2f' % bestcost)\n tbcost += bestcost\n hmean += '%12.2f' % hamdevall[0]\n thmean += hamdevall[0]\n hsdev += '%12.2f' % hamdevall[1]\n thsdev += hamdevall[1]\n smean += '%12.2f' % spamdevall[0]\n tsmean += spamdevall[0]\n ssdev += '%12.2f' % spamdevall[1]\n tssdev += spamdevall[1]\n meand += '%12.2f' % (spamdevall[0] - hamdevall[0])\n tmeand += spamdevall[0] - hamdevall[0]\n k = (spamdevall[0] - hamdevall[0]) / (spamdevall[1] + hamdevall[1])\n kval += '%12.2f' % k\n tkval += k\n nfiles = len(fileargs)\n if nfiles and showMean:\n fptot += '%12d' % (tfptot / nfiles)\n fpper += '%12.2f' % (tfpper / nfiles)\n fntot += '%12d' % (tfntot / nfiles)\n fnper += '%12.2f' % (tfnper / nfiles)\n untot += '%12d' % (tuntot / nfiles)\n unper += '%12.2f' % (tunper / nfiles)\n rcost += '%12s' % ('$%.2f' % (trcost / nfiles))\n bcost += '%12s' % ('$%.2f' % (tbcost / nfiles))\n hmean += '%12.2f' % (thmean / nfiles)\n hsdev += '%12.2f' % (thsdev / nfiles)\n smean += '%12.2f' % (tsmean / nfiles)\n ssdev += '%12.2f' % (tssdev / nfiles)\n meand += '%12.2f' % (tmeand / nfiles)\n kval += '%12.2f' % (tkval / nfiles)\n print(fname)\n if len(fnam2.strip()) > 0:\n print(fnam2)\n print(ratio)\n if len(rat2.strip()) > 0:\n print(rat2)\n print(fptot)\n print(fpper)\n print(fntot)\n print(fnper)\n print(untot)\n print(unper)\n print(rcost)\n print(bcost)\n print(hmean)\n print(hsdev)\n print(smean)\n print(ssdev)\n print(meand)\n print(kval)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef suck(f):\n hamdevall = spamdevall = 0.0, 0.0\n cost = 0.0\n bestcost = 0.0\n fp = 0\n fn = 0\n un = 0\n fpp = 0.0\n fnp = 0.0\n unp = 0.0\n htest = 0\n stest = 0\n get = f.readline\n while 1:\n line = get()\n if line.startswith('-> <stat> tested'):\n print(line, end=' ')\n elif line.find(' items; mean ') > 0 and line.find('for all runs') > 0:\n vals = line.split(';')\n mean = float(vals[1].split()[-1])\n sdev = float(vals[2].split()[-1])\n val = mean, sdev\n ntested = int(vals[0].split()[-2])\n typ = vals[0].split()[2]\n if line.find('for all runs') != -1:\n if typ == 'Ham':\n hamdevall = val\n htest = ntested\n else:\n spamdevall = val\n stest = ntested\n elif line.startswith('-> best cost for all runs: $'):\n bestcost = float(line.split('$')[-1])\n elif line.startswith('-> <stat> all runs false positives: '):\n fp = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negatives: '):\n fn = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure: '):\n un = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false positive %: '):\n fpp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negative %: '):\n fnp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure %: '):\n unp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs cost: '):\n cost = float(line.split('$')[-1])\n break\n return (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost,\n hamdevall, spamdevall)\n\n\ndef windowsfy(fn):\n import os\n if os.path.exists(fn + '.txt'):\n return fn + '.txt'\n else:\n return fn\n\n\ndef table():\n import getopt, sys\n showMean = 0\n fname = 'filename: '\n fnam2 = ' '\n ratio = 'ham:spam: '\n rat2 = ' '\n fptot = 'fp total: '\n fpper = 'fp %: '\n fntot = 'fn total: '\n fnper = 'fn %: '\n untot = 'unsure t: '\n unper = 'unsure %: '\n rcost = 'real cost:'\n bcost = 'best cost:'\n hmean = 'h mean: '\n hsdev = 'h sdev: '\n smean = 's mean: '\n ssdev = 's sdev: '\n meand = 'mean diff:'\n kval = 'k: '\n (tfptot) = (tfpper) = (tfntot) = (tfnper) = (tuntot) = (tunper) = (trcost\n ) = (tbcost) = (thmean) = (thsdev) = (tsmean) = (tssdev) = (tmeand) = (\n tkval) = 0\n args, fileargs = getopt.getopt(sys.argv[1:], 'm')\n for arg, val in args:\n if arg == '-m':\n showMean = 1\n for filename in fileargs:\n filename = windowsfy(filename)\n (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost, hamdevall,\n spamdevall) = suck(file(filename))\n if filename.endswith('.txt'):\n filename = filename[:-4]\n filename = filename[filename.rfind('/') + 1:]\n filename = filename[filename.rfind('\\\\') + 1:]\n if len(fname) > len(fnam2):\n fname += ' '\n fname = fname[0:len(fnam2) + 12]\n fnam2 += ' %11s' % filename\n else:\n fnam2 += ' '\n fnam2 = fnam2[0:len(fname) + 12]\n fname += ' %11s' % filename\n if len(ratio) > len(rat2):\n ratio += ' '\n ratio = ratio[0:len(rat2) + 12]\n rat2 += ' %11s' % ('%d:%d' % (htest, stest))\n else:\n rat2 += ' '\n rat2 = rat2[0:len(ratio) + 12]\n ratio += ' %11s' % ('%d:%d' % (htest, stest))\n fptot += '%12d' % fp\n tfptot += fp\n fpper += '%12.2f' % fpp\n tfpper += fpp\n fntot += '%12d' % fn\n tfntot += fn\n fnper += '%12.2f' % fnp\n tfnper += fnp\n untot += '%12d' % un\n tuntot += un\n unper += '%12.2f' % unp\n tunper += unp\n rcost += '%12s' % ('$%.2f' % cost)\n trcost += cost\n bcost += '%12s' % ('$%.2f' % bestcost)\n tbcost += bestcost\n hmean += '%12.2f' % hamdevall[0]\n thmean += hamdevall[0]\n hsdev += '%12.2f' % hamdevall[1]\n thsdev += hamdevall[1]\n smean += '%12.2f' % spamdevall[0]\n tsmean += spamdevall[0]\n ssdev += '%12.2f' % spamdevall[1]\n tssdev += spamdevall[1]\n meand += '%12.2f' % (spamdevall[0] - hamdevall[0])\n tmeand += spamdevall[0] - hamdevall[0]\n k = (spamdevall[0] - hamdevall[0]) / (spamdevall[1] + hamdevall[1])\n kval += '%12.2f' % k\n tkval += k\n nfiles = len(fileargs)\n if nfiles and showMean:\n fptot += '%12d' % (tfptot / nfiles)\n fpper += '%12.2f' % (tfpper / nfiles)\n fntot += '%12d' % (tfntot / nfiles)\n fnper += '%12.2f' % (tfnper / nfiles)\n untot += '%12d' % (tuntot / nfiles)\n unper += '%12.2f' % (tunper / nfiles)\n rcost += '%12s' % ('$%.2f' % (trcost / nfiles))\n bcost += '%12s' % ('$%.2f' % (tbcost / nfiles))\n hmean += '%12.2f' % (thmean / nfiles)\n hsdev += '%12.2f' % (thsdev / nfiles)\n smean += '%12.2f' % (tsmean / nfiles)\n ssdev += '%12.2f' % (tssdev / nfiles)\n meand += '%12.2f' % (tmeand / nfiles)\n kval += '%12.2f' % (tkval / nfiles)\n print(fname)\n if len(fnam2.strip()) > 0:\n print(fnam2)\n print(ratio)\n if len(rat2.strip()) > 0:\n print(rat2)\n print(fptot)\n print(fpper)\n print(fntot)\n print(fnper)\n print(untot)\n print(unper)\n print(rcost)\n print(bcost)\n print(hmean)\n print(hsdev)\n print(smean)\n print(ssdev)\n print(meand)\n print(kval)\n\n\nif __name__ == '__main__':\n table()\n", "step-5": "\"\"\"\ntable.py [-m] base1 base2 ... baseN\nCombines output from base1.txt, base2.txt, etc., which are created by\nthe TestDriver (such as timcv.py) output, and displays tabulated\ncomparison statistics to stdout. Each input file is represented by\none column in the table.\nOptional argument -m shows a final column with the mean value of each\nstatistic.\n\"\"\"\ndef suck(f):\n hamdevall = spamdevall = (0.0, 0.0)\n cost = 0.0\n bestcost = 0.0\n fp = 0\n fn = 0\n un = 0\n fpp = 0.0\n fnp = 0.0\n unp = 0.0\n htest = 0\n stest = 0\n get = f.readline\n while 1:\n line = get()\n if line.startswith('-> <stat> tested'):\n print(line, end=' ')\n elif line.find(' items; mean ') > 0 and line.find('for all runs') > 0:\n vals = line.split(';')\n mean = float(vals[1].split()[-1])\n sdev = float(vals[2].split()[-1])\n val = (mean, sdev)\n ntested = int(vals[0].split()[-2])\n typ = vals[0].split()[2]\n if line.find('for all runs') != -1:\n if typ == 'Ham':\n hamdevall = val\n htest = ntested\n else:\n spamdevall = val\n stest = ntested\n elif line.startswith('-> best cost for all runs: $'):\n bestcost = float(line.split('$')[-1])\n elif line.startswith('-> <stat> all runs false positives: '):\n fp = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negatives: '):\n fn = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure: '):\n un = int(line.split()[-1])\n elif line.startswith('-> <stat> all runs false positive %: '):\n fpp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs false negative %: '):\n fnp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs unsure %: '):\n unp = float(line.split()[-1])\n elif line.startswith('-> <stat> all runs cost: '):\n cost = float(line.split('$')[-1])\n break\n return (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost,\n hamdevall, spamdevall)\ndef windowsfy(fn):\n import os\n if os.path.exists(fn + '.txt'):\n return fn + '.txt'\n else:\n return fn\ndef table():\n import getopt, sys\n showMean = 0\n fname = \"filename: \"\n fnam2 = \" \"\n ratio = \"ham:spam: \"\n rat2 = \" \"\n fptot = \"fp total: \"\n fpper = \"fp %: \"\n fntot = \"fn total: \"\n fnper = \"fn %: \"\n untot = \"unsure t: \"\n unper = \"unsure %: \"\n rcost = \"real cost:\"\n bcost = \"best cost:\"\n hmean = \"h mean: \"\n hsdev = \"h sdev: \"\n smean = \"s mean: \"\n ssdev = \"s sdev: \"\n meand = \"mean diff:\"\n kval = \"k: \"\n tfptot = tfpper = tfntot = tfnper = tuntot = tunper = trcost = tbcost = \\\n thmean = thsdev = tsmean = tssdev = tmeand = tkval = 0\n args, fileargs = getopt.getopt(sys.argv[1:], 'm')\n for arg, val in args:\n if arg == \"-m\":\n showMean = 1\n for filename in fileargs:\n filename = windowsfy(filename)\n (htest, stest, fp, fn, un, fpp, fnp, unp, cost, bestcost,\n hamdevall, spamdevall) = suck(file(filename))\n if filename.endswith('.txt'):\n filename = filename[:-4]\n filename = filename[filename.rfind('/')+1:]\n filename = filename[filename.rfind(\"\\\\\")+1:]\n if len(fname) > len(fnam2):\n fname += \" \"\n fname = fname[0:(len(fnam2) + 12)]\n fnam2 += \" %11s\" % filename\n else:\n fnam2 += \" \"\n fnam2 = fnam2[0:(len(fname) + 12)]\n fname += \" %11s\" % filename\n if len(ratio) > len(rat2):\n ratio += \" \"\n ratio = ratio[0:(len(rat2) + 12)]\n rat2 += \" %11s\" % (\"%d:%d\" % (htest, stest))\n else:\n rat2 += \" \"\n rat2 = rat2[0:(len(ratio) + 12)]\n ratio += \" %11s\" % (\"%d:%d\" % (htest, stest))\n fptot += \"%12d\" % fp\n tfptot += fp\n fpper += \"%12.2f\" % fpp\n tfpper += fpp\n fntot += \"%12d\" % fn\n tfntot += fn\n fnper += \"%12.2f\" % fnp\n tfnper += fnp\n untot += \"%12d\" % un\n tuntot += un\n unper += \"%12.2f\" % unp\n tunper += unp\n rcost += \"%12s\" % (\"$%.2f\" % cost)\n trcost += cost\n bcost += \"%12s\" % (\"$%.2f\" % bestcost)\n tbcost += bestcost\n hmean += \"%12.2f\" % hamdevall[0]\n thmean += hamdevall[0]\n hsdev += \"%12.2f\" % hamdevall[1]\n thsdev += hamdevall[1]\n smean += \"%12.2f\" % spamdevall[0]\n tsmean += spamdevall[0]\n ssdev += \"%12.2f\" % spamdevall[1]\n tssdev += spamdevall[1]\n meand += \"%12.2f\" % (spamdevall[0] - hamdevall[0])\n tmeand += (spamdevall[0] - hamdevall[0])\n k = (spamdevall[0] - hamdevall[0]) / (spamdevall[1] + hamdevall[1])\n kval += \"%12.2f\" % k\n tkval += k\n nfiles = len(fileargs)\n if nfiles and showMean:\n fptot += \"%12d\" % (tfptot/nfiles)\n fpper += \"%12.2f\" % (tfpper/nfiles)\n fntot += \"%12d\" % (tfntot/nfiles)\n fnper += \"%12.2f\" % (tfnper/nfiles)\n untot += \"%12d\" % (tuntot/nfiles)\n unper += \"%12.2f\" % (tunper/nfiles)\n rcost += \"%12s\" % (\"$%.2f\" % (trcost/nfiles))\n bcost += \"%12s\" % (\"$%.2f\" % (tbcost/nfiles))\n hmean += \"%12.2f\" % (thmean/nfiles)\n hsdev += \"%12.2f\" % (thsdev/nfiles)\n smean += \"%12.2f\" % (tsmean/nfiles)\n ssdev += \"%12.2f\" % (tssdev/nfiles)\n meand += \"%12.2f\" % (tmeand/nfiles)\n kval += \"%12.2f\" % (tkval/nfiles)\n print(fname)\n if len(fnam2.strip()) > 0:\n print(fnam2)\n print(ratio)\n if len(rat2.strip()) > 0:\n print(rat2)\n print(fptot)\n print(fpper)\n print(fntot)\n print(fnper)\n print(untot)\n print(unper)\n print(rcost)\n print(bcost)\n print(hmean)\n print(hsdev)\n print(smean)\n print(ssdev)\n print(meand)\n print(kval)\nif __name__ == \"__main__\":\n table()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# Advent of Code: Day 4 """A new system policy has been put in place that requires all accounts to use a passphrase instead of simply a password. A passphrase consists of a series of words (lowercase letters) separated by spaces. To ensure security, a valid passphrase must contain no duplicate words. """ def valid(filename): f = open(filename, 'r') lines = f.readlines() f.close() result = 0 for line in lines: split = line.rstrip().split(' ') if len(split) == len(set(split)): result += 1 return result """For added security, yet another system policy has been put in place. Now, a valid passphrase must contain no two words that are anagrams of each other - that is, a passphrase is invalid if any word's letters can be rearranged to form any other word in the passphrase. """ def valid_anagram(filename): f = open(filename, 'r') lines = f.readlines() f.close() result = len(lines) for line in lines: split = line.rstrip().split(' ') split = [sorted(s) for s in split] for word in split: if split.count(word) > 1: result -= 1 break return result if __name__ == '__main__': print(valid('day4-input.txt')) print(valid_anagram('day4-input.txt'))
normal
{ "blob_id": "7dce240a891e807b1f5251a09a69368f4e513973", "index": 4472, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef valid_anagram(filename):\n f = open(filename, 'r')\n lines = f.readlines()\n f.close()\n result = len(lines)\n for line in lines:\n split = line.rstrip().split(' ')\n split = [sorted(s) for s in split]\n for word in split:\n if split.count(word) > 1:\n result -= 1\n break\n return result\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef valid(filename):\n f = open(filename, 'r')\n lines = f.readlines()\n f.close()\n result = 0\n for line in lines:\n split = line.rstrip().split(' ')\n if len(split) == len(set(split)):\n result += 1\n return result\n\n\n<mask token>\n\n\ndef valid_anagram(filename):\n f = open(filename, 'r')\n lines = f.readlines()\n f.close()\n result = len(lines)\n for line in lines:\n split = line.rstrip().split(' ')\n split = [sorted(s) for s in split]\n for word in split:\n if split.count(word) > 1:\n result -= 1\n break\n return result\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef valid(filename):\n f = open(filename, 'r')\n lines = f.readlines()\n f.close()\n result = 0\n for line in lines:\n split = line.rstrip().split(' ')\n if len(split) == len(set(split)):\n result += 1\n return result\n\n\n<mask token>\n\n\ndef valid_anagram(filename):\n f = open(filename, 'r')\n lines = f.readlines()\n f.close()\n result = len(lines)\n for line in lines:\n split = line.rstrip().split(' ')\n split = [sorted(s) for s in split]\n for word in split:\n if split.count(word) > 1:\n result -= 1\n break\n return result\n\n\nif __name__ == '__main__':\n print(valid('day4-input.txt'))\n print(valid_anagram('day4-input.txt'))\n", "step-5": "# Advent of Code: Day 4\n\n\"\"\"A new system policy has been put in place that requires all accounts to \nuse a passphrase instead of simply a password. A passphrase consists of a \nseries of words (lowercase letters) separated by spaces.\n\nTo ensure security, a valid passphrase must contain no duplicate words.\n\n\"\"\"\ndef valid(filename):\n\tf = open(filename, 'r')\n\tlines = f.readlines()\n\tf.close()\n\t\n\tresult = 0\n\tfor line in lines:\n\t\tsplit = line.rstrip().split(' ')\n\t\tif len(split) == len(set(split)):\n\t\t\tresult += 1\t\t\n\t\t\t\n\treturn result\n\t\n\n\"\"\"For added security, yet another system policy has been put in place. \nNow, a valid passphrase must contain no two words that are anagrams of \neach other - that is, a passphrase is invalid if any word's letters can \nbe rearranged to form any other word in the passphrase.\n\n\"\"\"\t\t\ndef valid_anagram(filename):\n\tf = open(filename, 'r')\n\tlines = f.readlines()\n\tf.close()\n\t\n\tresult = len(lines)\n\tfor line in lines:\n\t\tsplit = line.rstrip().split(' ')\n\t\tsplit = [sorted(s) for s in split]\n\t\tfor word in split:\n\t\t\tif split.count(word) > 1:\n\t\t\t\tresult -= 1\n\t\t\t\tbreak\t\t\n\t\t\t\n\treturn result\t\n\t\n\t\nif __name__ == '__main__':\n\tprint(valid('day4-input.txt'))\n\tprint(valid_anagram('day4-input.txt'))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# THIS FILE WAS CREATED IN THIS DIRECTORY EARLIER, NOW MOIVED TO ROOT OF THE REPO print "Hello buddy" print "Let's get started" spy_name = raw_input ("What is your spy name? ") if len(spy_name) >3: print "Welcome " + spy_name + ". Glad to have you with us." spy_salutation= raw_input("What's your title? ") if spy_salutation == "Mr." or spy_salutation =="Ms.": spy_name = spy_salutation + " " + spy_name print "Welcome " + spy_name + ". Let me know about you a bit more." spy_age = input("Please enter your age") if 50>spy_age>18: print "Your age is Correct." spy_rating = input("Please enter your rating ") if spy_rating>=5.0: print "Great spy" elif 3.5<=spy_rating<5.0: print "Good spy" elif 2<=spy_rating<3.5: print "Not bad." else : print "Not good. Need hardwork" spy_is_active = True print "Authentication process completed successfully. Welcome " +spy_name+ "age: " + str(spy_age) + " and rating: " + str(spy_rating) + " Glad to have ypou with us." else: print "Sorry, you are not eligible to be a spy" else: print "Invalid Information." else: print "Opps! please enter a valid name."
normal
{ "blob_id": "79f03af05fb40f5f5247b582eabae2dc125e6b52", "index": 4522, "step-1": "# THIS FILE WAS CREATED IN THIS DIRECTORY EARLIER, NOW MOIVED TO ROOT OF THE REPO\r\n\r\n\r\nprint \"Hello buddy\"\r\nprint \"Let's get started\"\r\nspy_name = raw_input (\"What is your spy name? \")\r\nif len(spy_name) >3:\r\n print \"Welcome \" + spy_name + \". Glad to have you with us.\"\r\n spy_salutation= raw_input(\"What's your title? \")\r\n if spy_salutation == \"Mr.\" or spy_salutation ==\"Ms.\":\r\n spy_name = spy_salutation + \" \" + spy_name\r\n print \"Welcome \" + spy_name + \". Let me know about you a bit more.\"\r\n spy_age = input(\"Please enter your age\")\r\n if 50>spy_age>18:\r\n print \"Your age is Correct.\"\r\n spy_rating = input(\"Please enter your rating \")\r\n if spy_rating>=5.0:\r\n print \"Great spy\"\r\n elif 3.5<=spy_rating<5.0:\r\n print \"Good spy\"\r\n elif 2<=spy_rating<3.5:\r\n print \"Not bad.\"\r\n else :\r\n print \"Not good. Need hardwork\"\r\n spy_is_active = True\r\n print \"Authentication process completed successfully. Welcome \" +spy_name+ \"age: \" + str(spy_age) + \" and rating: \" + str(spy_rating) + \" Glad to have ypou with us.\"\r\n\r\n else:\r\n print \"Sorry, you are not eligible to be a spy\"\r\n else:\r\n print \"Invalid Information.\"\r\nelse:\r\n print \"Opps! please enter a valid name.\"\r\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding:utf-8 -*- import time class Base: def getTime(self): ''' 获取时间戳 :return: ''' return str(time.time()).split('.')[0]
normal
{ "blob_id": "28a920072bad1b411d71f7f70cd991cb7dfbeb8c", "index": 8754, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Base:\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Base:\n\n def getTime(self):\n \"\"\"\n 获取时间戳\n :return: \n \"\"\"\n return str(time.time()).split('.')[0]\n", "step-4": "import time\n\n\nclass Base:\n\n def getTime(self):\n \"\"\"\n 获取时间戳\n :return: \n \"\"\"\n return str(time.time()).split('.')[0]\n", "step-5": "# -*- coding:utf-8 -*-\nimport time\nclass Base:\n def getTime(self):\n '''\n 获取时间戳\n :return: \n '''\n return str(time.time()).split('.')[0]", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Created on 02.09.2013 @author: Paul Schweizer @email: paulschweizer@gmx.net @brief: Holds all the namingconventions for pandora's box """ import os import json class NamingConvention(): """Imports naming conventions from the respective .json file and puts them into class variables. """ def __init__(self): namingconventions = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'data', 'strings', 'namingconvention.json') namingconventions = json.load(open(namingconventions)) for key, value in namingconventions.items(): setattr(NamingConvention, key, value) # end for constant in constants # end def __init__ # end class NamingConvention
normal
{ "blob_id": "d2a153fffccd4b681eebce823e641e195197cde7", "index": 54, "step-1": "<mask token>\n\n\nclass NamingConvention:\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass NamingConvention:\n <mask token>\n\n def __init__(self):\n namingconventions = os.path.join(os.path.dirname(os.path.dirname(\n __file__)), 'data', 'strings', 'namingconvention.json')\n namingconventions = json.load(open(namingconventions))\n for key, value in namingconventions.items():\n setattr(NamingConvention, key, value)\n", "step-3": "<mask token>\n\n\nclass NamingConvention:\n \"\"\"Imports naming conventions from the respective .json file and puts them\n into class variables.\n \"\"\"\n\n def __init__(self):\n namingconventions = os.path.join(os.path.dirname(os.path.dirname(\n __file__)), 'data', 'strings', 'namingconvention.json')\n namingconventions = json.load(open(namingconventions))\n for key, value in namingconventions.items():\n setattr(NamingConvention, key, value)\n", "step-4": "<mask token>\nimport os\nimport json\n\n\nclass NamingConvention:\n \"\"\"Imports naming conventions from the respective .json file and puts them\n into class variables.\n \"\"\"\n\n def __init__(self):\n namingconventions = os.path.join(os.path.dirname(os.path.dirname(\n __file__)), 'data', 'strings', 'namingconvention.json')\n namingconventions = json.load(open(namingconventions))\n for key, value in namingconventions.items():\n setattr(NamingConvention, key, value)\n", "step-5": "\"\"\"\nCreated on 02.09.2013\n@author: Paul Schweizer\n@email: paulschweizer@gmx.net\n@brief: Holds all the namingconventions for pandora's box\n\"\"\"\n\nimport os\nimport json\n\n\nclass NamingConvention():\n \"\"\"Imports naming conventions from the respective .json file and puts them\n into class variables.\n \"\"\"\n def __init__(self):\n namingconventions = os.path.join(os.path.dirname(os.path.dirname(__file__)),\n 'data', 'strings', 'namingconvention.json')\n namingconventions = json.load(open(namingconventions))\n for key, value in namingconventions.items():\n setattr(NamingConvention, key, value)\n # end for constant in constants\n # end def __init__\n# end class NamingConvention\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import argparse import cv2 import numpy as np refPt = [] cropping = False def click_and_crop(event, x, y, flags, param): global refPt, cropping if event == cv2.EVENT_LBUTTONDOWN: refPt = [(x, y)] cropping = True elif event == cv2.EVENT_LBUTTONUP: refPt.append((x, y)) cropping = False cv2.rectangle(image, refPt[0], refPt[1], (0, 255, 0), 2) cv2.imshow("image", image) ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="Path to the image") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) clone = image.copy() cv2.namedWindow("image") cv2.setMouseCallback("image", click_and_crop) while True: cv2.imshow("image", image) key = cv2.waitKey(1) & 0xFF if key == ord("r"): image = clone.copy() elif key == ord("c"): break if len(refPt) == 2: roi = clone[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]] cv2.imshow("ROI", roi) count=0 sum=np.array([0,0,0]) for i in range (0,np.size(roi,0)): for j in range(0,np.size(roi,1)): count+=1 sum+=roi[i,j] print "Average bgr: ",sum/count cv2.waitKey(0) cv2.destroyAllWindows()
normal
{ "blob_id": "986df5a41bc87ecb390dfbd1db9e1f5cd6c5b8fb", "index": 9702, "step-1": "\nimport argparse\nimport cv2\nimport numpy as np\n \n\nrefPt = []\ncropping = False\n \ndef click_and_crop(event, x, y, flags, param):\n\tglobal refPt, cropping\n \n\tif event == cv2.EVENT_LBUTTONDOWN:\n\t\trefPt = [(x, y)]\n\t\tcropping = True\n \n\telif event == cv2.EVENT_LBUTTONUP:\n\t\trefPt.append((x, y))\n\t\tcropping = False\n \n\t\n\t\tcv2.rectangle(image, refPt[0], refPt[1], (0, 255, 0), 2)\n\t\tcv2.imshow(\"image\", image)\n\n\nap = argparse.ArgumentParser()\nap.add_argument(\"-i\", \"--image\", required=True, help=\"Path to the image\")\nargs = vars(ap.parse_args())\n \nimage = cv2.imread(args[\"image\"])\nclone = image.copy()\ncv2.namedWindow(\"image\")\ncv2.setMouseCallback(\"image\", click_and_crop)\n \n\nwhile True:\n\tcv2.imshow(\"image\", image)\n\tkey = cv2.waitKey(1) & 0xFF\n \n\n\tif key == ord(\"r\"):\n\t\timage = clone.copy()\n \n\telif key == ord(\"c\"):\n\t\tbreak\n \n\nif len(refPt) == 2:\n\troi = clone[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]\n\tcv2.imshow(\"ROI\", roi)\n\tcount=0\n\tsum=np.array([0,0,0])\n\tfor i in range (0,np.size(roi,0)):\n\t\tfor j in range(0,np.size(roi,1)):\n\t\t\tcount+=1\n\t\t\tsum+=roi[i,j]\n\tprint \"Average bgr: \",sum/count\n\tcv2.waitKey(0)\n \n\ncv2.destroyAllWindows()", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#coding=utf-8 ######################################### # dbscan: # 用法说明:读取文件 # 生成路径文件及簇文件,输出分类准确率 ######################################### from matplotlib.pyplot import * import matplotlib.pyplot as plt from collections import defaultdict import random from math import * import numpy import datetime from dateutil.parser import parse import datetime import time def dataset(filename): #读取原始文件 lines = open(filename,'r').readlines() l = len(lines) all_points = [] for i in range(l): if lines[i].strip(): line = lines[i].split() time = line[0] +' '+ line[1] lat = float(line[4]) lon = float(line[6]) all_points.append([lat,lon,time]) return all_points def datarevise(all_points): #数据平滑处理 point_new = [] all_points1 = np.array(all_points) l = len(all_points) for i in range(2,l-3): lat_lon = np.array(all_points1[i-2:i+3,:-1],dtype = float).mean(0) point_new.append([lat_lon[0],lat_lon[1],all_points1[i][-1]]) return point_new def dist(p1, p2): #计算亮点之间的距离 a = cos(p1[0])*cos(p2[0]) b = sin(p1[0])*sin(p2[0])*cos(p2[1]-p1[1]) if a+b >=1: return 0 return acos(float(a+b))*6371*pi/180 def find_core(all_points,E,minPts): #查找核心点 #输出:核心点,要绘制的点,非核心点 other_points =[] core_points=[] plotted_points=[] for point in all_points: point.append(0) # 初始点标号为0 total = 0 #计数:对每个点周围大于给定距离的点的个数 for otherPoint in all_points: distance = dist(otherPoint,point) if distance <= E: total += 1 if total > minPts: core_points.append(point) plotted_points.append(point) else: other_points.append(point) return core_points,plotted_points,other_points def find_border(core_points,plotted_points,other_points,E): #在非核心点查找边界点 #输出:边界点,要绘制的点 border_points=[] for core in core_points: for other in other_points: if dist(core,other) <= E:#边界点的与核心点的距离小于E border_points.append(other) plotted_points.append(other) return border_points,plotted_points def algorithm(all_points,core_points,border_points,plotted_points,E): # 返回簇,噪声点 #将所有的核心点分成不同的簇 cluster_label = 0 for point in core_points: if point[-1] == 0: cluster_label += 1 point[-1] = cluster_label for point2 in plotted_points: distance = dist(point2,point) if point2[-1] ==0 and distance <= E: point2[-1] =point[-1] #将点集标号类型写成字典格式 cluster_dict = {} for point in plotted_points: if cluster_dict.get(point[-1]) is None: cluster_dict[point[-1]] = [point[0:-1]] else: cluster_dict[point[-1]].append(point[0:-1]) #将簇中各个点按时间排序 cluster_dict_sort = {} for lable in cluster_dict: cluster_dict_sort.setdefault(lable,[]) cl = np.array(cluster_dict[lable]) cl_sort = cl[cl[:,-1].argsort()] cluster_dict_sort[lable] = cl_sort #噪声点,既不在边界点也不在核心点中 noise_points=[] for point in all_points: if point not in core_points and point not in border_points: noise_points.append(point[0:-1]) return cluster_dict_sort,noise_points def durtime(noise_points,difftime): # 输入:噪声点,时间间隔 # 功能:分成不同的路径 # 输出:路径点[[],[]] no = np.array(noise_points) no_sort = no[no[:,-1].argsort()] l = len(no_sort) k = [0] for i in range(l-1): diff_time = (no_sort[i+1][-1] - no_sort[i][-1]).seconds if diff_time > difftime: k.append(i+1) k.append(l) no_split = [] for i in range(len(k)-1): no_split.append(no_sort[k[i]:k[i+1]]) return no_split def matplotshow(cluster_dict,no_split,name): #画出各个簇 markers = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] i=0 for lable in cluster_dict: for j in cluster_dict[lable]: plot(j[0], j[1],markers[i]) i += 1 i = i%10 print i #画出路径 markers = ['r', 'b', 'g', 'k', 'c', 'y', 'm',] l =len(no_split) for i in range(l): path = np.array(no_split[i]) plt.plot(path[:,0],path[:,1],markers[i%7]) print i title(" clusters created with E ="+str(E)+" Min Points="+str(minPts)+" total points="+str(len(all_points))+" noise Points = "+ str(len(noise_points))) savefig(name) show() def datewrite(no_split,filename,mark): f = open(filename,'w+') for path in no_split: f.write( str(mark) +'\n') for no_path in path: f.write(str(list(no_path))+'\n') f.close() def datewrite1(no_split,filename,mark): f = open(filename,'w+') for path in no_split: for no_path in path: f.write( str(mark) +'\n') for j in no_path: f.write(str(list(j))+'\n') f.close() if __name__ == '__main__': filename = 'D:/sensor_data/sensor/gps/location_zh0710.txt' all_points_old = dataset(filename) all_points = datarevise(all_points_old) E,minPts = 0.1,10 core_points,plotted_points,other_points = find_core(all_points,E,minPts) border_points,plotted_points = find_border(core_points,plotted_points,other_points,E) cluster_dict,noise_points = algorithm(all_points,border_points,core_points,plotted_points,E) difftime = 1200 no_split = durtime(noise_points,difftime) matplotshow(cluster_dict,no_split,"location_zh0710.png") filename = 'D:/sensor_data/sensor/gps/location_zh0710_no_split.txt' datewrite(no_split,filename,'path') filename = 'D:/sensor_data/sensor/gps/location_zh0710_cluster.txt' datewrite(cluster_dict.values(),filename,'lable')
normal
{ "blob_id": "99c839eddcbe985c81e709878d03c59e3be3c909", "index": 293, "step-1": "#coding=utf-8\n######################################### \n# dbscan: \n# 用法说明:读取文件\n# 生成路径文件及簇文件,输出分类准确率 \n######################################### \n\n\nfrom matplotlib.pyplot import *\nimport matplotlib.pyplot as plt\nfrom collections import defaultdict \nimport random\nfrom math import *\nimport numpy\nimport datetime\nfrom dateutil.parser import parse\nimport datetime\nimport time\n\n\n\ndef dataset(filename):\n #读取原始文件\n lines = open(filename,'r').readlines()\n l = len(lines)\n all_points = [] \n for i in range(l):\n if lines[i].strip():\n line = lines[i].split()\n time = line[0] +' '+ line[1]\n lat = float(line[4])\n lon = float(line[6])\n all_points.append([lat,lon,time])\n return all_points\n\ndef datarevise(all_points):\n #数据平滑处理\n point_new = []\n all_points1 = np.array(all_points)\n l = len(all_points)\n for i in range(2,l-3):\n lat_lon = np.array(all_points1[i-2:i+3,:-1],dtype = float).mean(0)\n point_new.append([lat_lon[0],lat_lon[1],all_points1[i][-1]])\n return point_new\n\n \ndef dist(p1, p2):\n #计算亮点之间的距离\n a = cos(p1[0])*cos(p2[0])\n b = sin(p1[0])*sin(p2[0])*cos(p2[1]-p1[1])\n if a+b >=1:\n return 0\n return acos(float(a+b))*6371*pi/180\n\ndef find_core(all_points,E,minPts):\n #查找核心点\n #输出:核心点,要绘制的点,非核心点\n other_points =[] \n core_points=[] \n plotted_points=[]\n for point in all_points:\n point.append(0) # 初始点标号为0\n total = 0 #计数:对每个点周围大于给定距离的点的个数\n for otherPoint in all_points:\n distance = dist(otherPoint,point)\n if distance <= E:\n total += 1\n if total > minPts:\n core_points.append(point)\n plotted_points.append(point)\n else:\n other_points.append(point)\n return core_points,plotted_points,other_points\n\ndef find_border(core_points,plotted_points,other_points,E):\n #在非核心点查找边界点\n #输出:边界点,要绘制的点\n border_points=[]\n for core in core_points:\n for other in other_points:\n if dist(core,other) <= E:#边界点的与核心点的距离小于E\n border_points.append(other)\n plotted_points.append(other)\n return border_points,plotted_points\n\n\ndef algorithm(all_points,core_points,border_points,plotted_points,E):\n # 返回簇,噪声点\n \n #将所有的核心点分成不同的簇\n cluster_label = 0\n for point in core_points:\n if point[-1] == 0:\n cluster_label += 1\n point[-1] = cluster_label\n for point2 in plotted_points:\n distance = dist(point2,point)\n if point2[-1] ==0 and distance <= E:\n point2[-1] =point[-1]\n #将点集标号类型写成字典格式 \n cluster_dict = {}\n for point in plotted_points:\n if cluster_dict.get(point[-1]) is None:\n cluster_dict[point[-1]] = [point[0:-1]]\n else:\n cluster_dict[point[-1]].append(point[0:-1])\n\n #将簇中各个点按时间排序\n cluster_dict_sort = {}\n for lable in cluster_dict:\n cluster_dict_sort.setdefault(lable,[])\n cl = np.array(cluster_dict[lable])\n cl_sort = cl[cl[:,-1].argsort()]\n cluster_dict_sort[lable] = cl_sort\n \n #噪声点,既不在边界点也不在核心点中 \n noise_points=[]\n for point in all_points:\n if point not in core_points and point not in border_points:\n noise_points.append(point[0:-1])\n return cluster_dict_sort,noise_points\n\n\n\ndef durtime(noise_points,difftime):\n # 输入:噪声点,时间间隔\n # 功能:分成不同的路径\n # 输出:路径点[[],[]]\n no = np.array(noise_points)\n no_sort = no[no[:,-1].argsort()]\n l = len(no_sort)\n k = [0]\n for i in range(l-1):\n diff_time = (no_sort[i+1][-1] - no_sort[i][-1]).seconds\n if diff_time > difftime:\n k.append(i+1)\n k.append(l)\n no_split = []\n for i in range(len(k)-1):\n no_split.append(no_sort[k[i]:k[i+1]])\n return no_split\n\ndef matplotshow(cluster_dict,no_split,name):\n #画出各个簇\n markers = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']\n i=0\n for lable in cluster_dict:\n for j in cluster_dict[lable]:\n plot(j[0], j[1],markers[i])\n i += 1\n i = i%10\n print i \n #画出路径\n markers = ['r', 'b', 'g', 'k', 'c', 'y', 'm',]\n l =len(no_split)\n for i in range(l):\n path = np.array(no_split[i])\n plt.plot(path[:,0],path[:,1],markers[i%7])\n print i\n title(\" clusters created with E =\"+str(E)+\" Min Points=\"+str(minPts)+\" total points=\"+str(len(all_points))+\" noise Points = \"+ str(len(noise_points)))\n savefig(name)\n show()\n\n \ndef datewrite(no_split,filename,mark): \n f = open(filename,'w+')\n for path in no_split:\n f.write( str(mark) +'\\n')\n for no_path in path:\n f.write(str(list(no_path))+'\\n') \n f.close()\n\ndef datewrite1(no_split,filename,mark): \n f = open(filename,'w+')\n for path in no_split:\n for no_path in path:\n f.write( str(mark) +'\\n')\n for j in no_path:\n f.write(str(list(j))+'\\n') \n f.close()\n \nif __name__ == '__main__':\n filename = 'D:/sensor_data/sensor/gps/location_zh0710.txt'\n all_points_old = dataset(filename)\n all_points = datarevise(all_points_old)\n E,minPts = 0.1,10\n core_points,plotted_points,other_points = find_core(all_points,E,minPts)\n border_points,plotted_points = find_border(core_points,plotted_points,other_points,E)\n cluster_dict,noise_points = algorithm(all_points,border_points,core_points,plotted_points,E)\n difftime = 1200\n no_split = durtime(noise_points,difftime)\n matplotshow(cluster_dict,no_split,\"location_zh0710.png\")\n filename = 'D:/sensor_data/sensor/gps/location_zh0710_no_split.txt'\n datewrite(no_split,filename,'path')\n filename = 'D:/sensor_data/sensor/gps/location_zh0710_cluster.txt'\n datewrite(cluster_dict.values(),filename,'lable')\n\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import argparse def wrong_subtraction(n, k): output = n for i in range(k): string_n = str(output) if string_n[len(string_n) - 1] == '0': output = int(string_n[:-1]) else: output -= 1 return output # d = "Do the wrong subtraction as per https://codeforces.com/problemset/problem/977/A" # # parser = argparse.ArgumentParser(description=d) # # parser.add_argument("n", type=int, help="input value for n") # parser.add_argument("k", type=int, help="input value for k") # # args = parser.parse_args() # # n = args.n # k = args.k a = list(map(int, input().split())) n = a[0] k = a[1] print(wrong_subtraction(n, k))
normal
{ "blob_id": "166a8cd0e09fbec739f43019659eeaf98b1d4fa4", "index": 4446, "step-1": "<mask token>\n\n\ndef wrong_subtraction(n, k):\n output = n\n for i in range(k):\n string_n = str(output)\n if string_n[len(string_n) - 1] == '0':\n output = int(string_n[:-1])\n else:\n output -= 1\n return output\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef wrong_subtraction(n, k):\n output = n\n for i in range(k):\n string_n = str(output)\n if string_n[len(string_n) - 1] == '0':\n output = int(string_n[:-1])\n else:\n output -= 1\n return output\n\n\n<mask token>\nprint(wrong_subtraction(n, k))\n", "step-3": "<mask token>\n\n\ndef wrong_subtraction(n, k):\n output = n\n for i in range(k):\n string_n = str(output)\n if string_n[len(string_n) - 1] == '0':\n output = int(string_n[:-1])\n else:\n output -= 1\n return output\n\n\na = list(map(int, input().split()))\nn = a[0]\nk = a[1]\nprint(wrong_subtraction(n, k))\n", "step-4": "import argparse\n\n\ndef wrong_subtraction(n, k):\n output = n\n for i in range(k):\n string_n = str(output)\n if string_n[len(string_n) - 1] == '0':\n output = int(string_n[:-1])\n else:\n output -= 1\n return output\n\n\na = list(map(int, input().split()))\nn = a[0]\nk = a[1]\nprint(wrong_subtraction(n, k))\n", "step-5": "import argparse\n\ndef wrong_subtraction(n, k):\n output = n\n for i in range(k):\n string_n = str(output)\n if string_n[len(string_n) - 1] == '0':\n output = int(string_n[:-1])\n else:\n output -= 1\n return output\n\n# d = \"Do the wrong subtraction as per https://codeforces.com/problemset/problem/977/A\"\n# \n# parser = argparse.ArgumentParser(description=d)\n# \n# parser.add_argument(\"n\", type=int, help=\"input value for n\")\n# parser.add_argument(\"k\", type=int, help=\"input value for k\")\n# \n# args = parser.parse_args()\n# \n# n = args.n\n# k = args.k\n\na = list(map(int, input().split()))\nn = a[0]\nk = a[1]\n\nprint(wrong_subtraction(n, k))\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# @Author: Chen yunsheng(Leo YS CHen) # @Location: Taiwan # @E-mail:leoyenschen@gmail.com # @Date: 2017-02-14 00:11:27 # @Last Modified by: Chen yunsheng import click from qstrader import settings from qstrader.compat import queue from qstrader.price_parser import PriceParser from qstrader.price_handler.yahoo_daily_csv_bar import YahooDailyCsvBarPriceHandler from qstrader.strategy import Strategies, DisplayStrategy from qstrader.risk_manager.example import ExampleRiskManager from qstrader.portfolio_handler import PortfolioHandler from qstrader.compliance.example import ExampleCompliance from qstrader.execution_handler.ib_simulated import IBSimulatedExecutionHandler from qstrader.statistics.simple import SimpleStatistics from qstrader.trading_session.backtest import Backtest #==================================================== import os,sys parentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) dir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0,dir) print("parentdir") print(parentdir) print("dir") print(dir) from custom_strategy import CustomStrategy from custom_position import CustomPositionSizer def run(config, testing, tickers, filename): # Set up variables needed for backtest events_queue = queue.Queue() csv_dir = config.CSV_DATA_DIR initial_equity = PriceParser.parse(500000.00) # Use Yahoo Daily Price Handler price_handler = YahooDailyCsvBarPriceHandler( csv_dir, events_queue, tickers ) # Use the Buy and Hold Strategy strategy = CustomStrategy(tickers, events_queue) strategy = Strategies(strategy, DisplayStrategy()) # Use an example Position Sizer position_sizer = CustomPositionSizer() # Use an example Risk Manager risk_manager = ExampleRiskManager() # Use the default Portfolio Handler portfolio_handler = PortfolioHandler( initial_equity, events_queue, price_handler, position_sizer, risk_manager ) # Use the ExampleCompliance component compliance = ExampleCompliance(config) # Use a simulated IB Execution Handler execution_handler = IBSimulatedExecutionHandler( events_queue, price_handler, compliance ) # Use the default Statistics statistics = SimpleStatistics(config, portfolio_handler) # Set up the backtest backtest = Backtest( price_handler, strategy, portfolio_handler, execution_handler, position_sizer, risk_manager, statistics, initial_equity ) results = backtest.simulate_trading(testing=testing) statistics.save(filename) return results """ @click.command() @click.option('--config', default=settings.DEFAULT_CONFIG_FILENAME, help='Config filename') @click.option('--testing/--no-testing', default=False, help='Enable testing mode') @click.option('--tickers', default='SP500TR', help='Tickers (use comma)') @click.option('--filename', default='', help='Pickle (.pkl) statistics filename') """ def main(config, testing, tickers, filename): tickers = tickers.split(",") config = settings.from_file(config, testing) run(config, testing, tickers, filename) if __name__ == "__main__": main(settings.DEFAULT_CONFIG_FILENAME,False,'SP500TR','')
normal
{ "blob_id": "0cec92bbfad87020baf5ef1bd005e64bc9a6ed01", "index": 5232, "step-1": "<mask token>\n\n\ndef run(config, testing, tickers, filename):\n events_queue = queue.Queue()\n csv_dir = config.CSV_DATA_DIR\n initial_equity = PriceParser.parse(500000.0)\n price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers\n )\n strategy = CustomStrategy(tickers, events_queue)\n strategy = Strategies(strategy, DisplayStrategy())\n position_sizer = CustomPositionSizer()\n risk_manager = ExampleRiskManager()\n portfolio_handler = PortfolioHandler(initial_equity, events_queue,\n price_handler, position_sizer, risk_manager)\n compliance = ExampleCompliance(config)\n execution_handler = IBSimulatedExecutionHandler(events_queue,\n price_handler, compliance)\n statistics = SimpleStatistics(config, portfolio_handler)\n backtest = Backtest(price_handler, strategy, portfolio_handler,\n execution_handler, position_sizer, risk_manager, statistics,\n initial_equity)\n results = backtest.simulate_trading(testing=testing)\n statistics.save(filename)\n return results\n\n\n<mask token>\n\n\ndef main(config, testing, tickers, filename):\n tickers = tickers.split(',')\n config = settings.from_file(config, testing)\n run(config, testing, tickers, filename)\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.insert(0, dir)\nprint('parentdir')\nprint(parentdir)\nprint('dir')\nprint(dir)\n<mask token>\n\n\ndef run(config, testing, tickers, filename):\n events_queue = queue.Queue()\n csv_dir = config.CSV_DATA_DIR\n initial_equity = PriceParser.parse(500000.0)\n price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers\n )\n strategy = CustomStrategy(tickers, events_queue)\n strategy = Strategies(strategy, DisplayStrategy())\n position_sizer = CustomPositionSizer()\n risk_manager = ExampleRiskManager()\n portfolio_handler = PortfolioHandler(initial_equity, events_queue,\n price_handler, position_sizer, risk_manager)\n compliance = ExampleCompliance(config)\n execution_handler = IBSimulatedExecutionHandler(events_queue,\n price_handler, compliance)\n statistics = SimpleStatistics(config, portfolio_handler)\n backtest = Backtest(price_handler, strategy, portfolio_handler,\n execution_handler, position_sizer, risk_manager, statistics,\n initial_equity)\n results = backtest.simulate_trading(testing=testing)\n statistics.save(filename)\n return results\n\n\n<mask token>\n\n\ndef main(config, testing, tickers, filename):\n tickers = tickers.split(',')\n config = settings.from_file(config, testing)\n run(config, testing, tickers, filename)\n\n\nif __name__ == '__main__':\n main(settings.DEFAULT_CONFIG_FILENAME, False, 'SP500TR', '')\n", "step-3": "<mask token>\nparentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\ndir = os.path.dirname(os.path.abspath(__file__))\nsys.path.insert(0, dir)\nprint('parentdir')\nprint(parentdir)\nprint('dir')\nprint(dir)\n<mask token>\n\n\ndef run(config, testing, tickers, filename):\n events_queue = queue.Queue()\n csv_dir = config.CSV_DATA_DIR\n initial_equity = PriceParser.parse(500000.0)\n price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers\n )\n strategy = CustomStrategy(tickers, events_queue)\n strategy = Strategies(strategy, DisplayStrategy())\n position_sizer = CustomPositionSizer()\n risk_manager = ExampleRiskManager()\n portfolio_handler = PortfolioHandler(initial_equity, events_queue,\n price_handler, position_sizer, risk_manager)\n compliance = ExampleCompliance(config)\n execution_handler = IBSimulatedExecutionHandler(events_queue,\n price_handler, compliance)\n statistics = SimpleStatistics(config, portfolio_handler)\n backtest = Backtest(price_handler, strategy, portfolio_handler,\n execution_handler, position_sizer, risk_manager, statistics,\n initial_equity)\n results = backtest.simulate_trading(testing=testing)\n statistics.save(filename)\n return results\n\n\n<mask token>\n\n\ndef main(config, testing, tickers, filename):\n tickers = tickers.split(',')\n config = settings.from_file(config, testing)\n run(config, testing, tickers, filename)\n\n\nif __name__ == '__main__':\n main(settings.DEFAULT_CONFIG_FILENAME, False, 'SP500TR', '')\n", "step-4": "import click\nfrom qstrader import settings\nfrom qstrader.compat import queue\nfrom qstrader.price_parser import PriceParser\nfrom qstrader.price_handler.yahoo_daily_csv_bar import YahooDailyCsvBarPriceHandler\nfrom qstrader.strategy import Strategies, DisplayStrategy\nfrom qstrader.risk_manager.example import ExampleRiskManager\nfrom qstrader.portfolio_handler import PortfolioHandler\nfrom qstrader.compliance.example import ExampleCompliance\nfrom qstrader.execution_handler.ib_simulated import IBSimulatedExecutionHandler\nfrom qstrader.statistics.simple import SimpleStatistics\nfrom qstrader.trading_session.backtest import Backtest\nimport os, sys\nparentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\ndir = os.path.dirname(os.path.abspath(__file__))\nsys.path.insert(0, dir)\nprint('parentdir')\nprint(parentdir)\nprint('dir')\nprint(dir)\nfrom custom_strategy import CustomStrategy\nfrom custom_position import CustomPositionSizer\n\n\ndef run(config, testing, tickers, filename):\n events_queue = queue.Queue()\n csv_dir = config.CSV_DATA_DIR\n initial_equity = PriceParser.parse(500000.0)\n price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers\n )\n strategy = CustomStrategy(tickers, events_queue)\n strategy = Strategies(strategy, DisplayStrategy())\n position_sizer = CustomPositionSizer()\n risk_manager = ExampleRiskManager()\n portfolio_handler = PortfolioHandler(initial_equity, events_queue,\n price_handler, position_sizer, risk_manager)\n compliance = ExampleCompliance(config)\n execution_handler = IBSimulatedExecutionHandler(events_queue,\n price_handler, compliance)\n statistics = SimpleStatistics(config, portfolio_handler)\n backtest = Backtest(price_handler, strategy, portfolio_handler,\n execution_handler, position_sizer, risk_manager, statistics,\n initial_equity)\n results = backtest.simulate_trading(testing=testing)\n statistics.save(filename)\n return results\n\n\n<mask token>\n\n\ndef main(config, testing, tickers, filename):\n tickers = tickers.split(',')\n config = settings.from_file(config, testing)\n run(config, testing, tickers, filename)\n\n\nif __name__ == '__main__':\n main(settings.DEFAULT_CONFIG_FILENAME, False, 'SP500TR', '')\n", "step-5": "# @Author: Chen yunsheng(Leo YS CHen)\n# @Location: Taiwan\n# @E-mail:leoyenschen@gmail.com\n# @Date: 2017-02-14 00:11:27\n# @Last Modified by: Chen yunsheng\n\nimport click\n\nfrom qstrader import settings\nfrom qstrader.compat import queue\nfrom qstrader.price_parser import PriceParser\nfrom qstrader.price_handler.yahoo_daily_csv_bar import YahooDailyCsvBarPriceHandler\nfrom qstrader.strategy import Strategies, DisplayStrategy\nfrom qstrader.risk_manager.example import ExampleRiskManager\nfrom qstrader.portfolio_handler import PortfolioHandler\nfrom qstrader.compliance.example import ExampleCompliance\nfrom qstrader.execution_handler.ib_simulated import IBSimulatedExecutionHandler\nfrom qstrader.statistics.simple import SimpleStatistics\nfrom qstrader.trading_session.backtest import Backtest\n#====================================================\nimport os,sys\nparentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\ndir = os.path.dirname(os.path.abspath(__file__))\nsys.path.insert(0,dir)\nprint(\"parentdir\")\nprint(parentdir)\nprint(\"dir\")\nprint(dir)\nfrom custom_strategy import CustomStrategy\nfrom custom_position import CustomPositionSizer\n\ndef run(config, testing, tickers, filename):\n\n # Set up variables needed for backtest\n events_queue = queue.Queue()\n csv_dir = config.CSV_DATA_DIR\n initial_equity = PriceParser.parse(500000.00)\n\n # Use Yahoo Daily Price Handler\n price_handler = YahooDailyCsvBarPriceHandler(\n csv_dir, events_queue, tickers\n )\n\n # Use the Buy and Hold Strategy\n strategy = CustomStrategy(tickers, events_queue)\n strategy = Strategies(strategy, DisplayStrategy())\n\n # Use an example Position Sizer\n position_sizer = CustomPositionSizer()\n\n # Use an example Risk Manager\n risk_manager = ExampleRiskManager()\n\n # Use the default Portfolio Handler\n portfolio_handler = PortfolioHandler(\n initial_equity, events_queue, price_handler,\n position_sizer, risk_manager\n )\n\n # Use the ExampleCompliance component\n compliance = ExampleCompliance(config)\n\n # Use a simulated IB Execution Handler\n execution_handler = IBSimulatedExecutionHandler(\n events_queue, price_handler, compliance\n )\n\n # Use the default Statistics\n statistics = SimpleStatistics(config, portfolio_handler)\n\n # Set up the backtest\n backtest = Backtest(\n price_handler, strategy,\n portfolio_handler, execution_handler,\n position_sizer, risk_manager,\n statistics, initial_equity\n )\n results = backtest.simulate_trading(testing=testing)\n statistics.save(filename)\n return results\n\n\"\"\"\n@click.command()\n@click.option('--config', default=settings.DEFAULT_CONFIG_FILENAME, help='Config filename')\n@click.option('--testing/--no-testing', default=False, help='Enable testing mode')\n@click.option('--tickers', default='SP500TR', help='Tickers (use comma)')\n@click.option('--filename', default='', help='Pickle (.pkl) statistics filename')\n\"\"\"\ndef main(config, testing, tickers, filename):\n tickers = tickers.split(\",\")\n config = settings.from_file(config, testing)\n run(config, testing, tickers, filename)\n\n\nif __name__ == \"__main__\":\n main(settings.DEFAULT_CONFIG_FILENAME,False,'SP500TR','')\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from click.testing import CliRunner from apitest.actions.cli import cli def test_sendto_cli_runs_ok(): runner = CliRunner() result = runner.invoke(cli, ["sendto"]) assert result.exit_code == 0
normal
{ "blob_id": "7537deb4560e880365b23a99584d0b1f8fa3daf4", "index": 5675, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_sendto_cli_runs_ok():\n runner = CliRunner()\n result = runner.invoke(cli, ['sendto'])\n assert result.exit_code == 0\n", "step-3": "from click.testing import CliRunner\nfrom apitest.actions.cli import cli\n\n\ndef test_sendto_cli_runs_ok():\n runner = CliRunner()\n result = runner.invoke(cli, ['sendto'])\n assert result.exit_code == 0\n", "step-4": "from click.testing import CliRunner\nfrom apitest.actions.cli import cli\n\n\ndef test_sendto_cli_runs_ok():\n runner = CliRunner()\n result = runner.invoke(cli, [\"sendto\"])\n \n assert result.exit_code == 0\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
class UF(object): def __init__(self, n): self.parents = [i for i in range(n)] self.weights = [1 for i in range(n)] self.n = n def find(self, i): while i != self.parents[i]: self.parents[i] = self.parents[self.parents[i]] i = self.parents[i] return i def union(self, p, q): i = self.find(p) j = self.find(q) if i == j: return if self.weights[i] < self.weights[j]: self.parents[i] = j self.weights[j] += self.weights[i] else: self.parents[j] = i self.weights[i] += self.weights[j] self.n -= 1 def is_connected(self, p, q): i = self.find(p) j = self.find(q) return i== j def __len__(self): return self.n if __name__ == '__main__': uf = UF(10) uf.union(1, 2) uf.union(3, 4) uf.union(2, 4) assert len(uf) == 7 assert uf.is_connected(1, 4) assert not uf.is_connected(1, 5)
normal
{ "blob_id": "c8d5b8515a468190d14311118e12a7d414908be6", "index": 8109, "step-1": "class UF(object):\n <mask token>\n\n def find(self, i):\n while i != self.parents[i]:\n self.parents[i] = self.parents[self.parents[i]]\n i = self.parents[i]\n return i\n\n def union(self, p, q):\n i = self.find(p)\n j = self.find(q)\n if i == j:\n return\n if self.weights[i] < self.weights[j]:\n self.parents[i] = j\n self.weights[j] += self.weights[i]\n else:\n self.parents[j] = i\n self.weights[i] += self.weights[j]\n self.n -= 1\n\n def is_connected(self, p, q):\n i = self.find(p)\n j = self.find(q)\n return i == j\n <mask token>\n\n\n<mask token>\n", "step-2": "class UF(object):\n <mask token>\n\n def find(self, i):\n while i != self.parents[i]:\n self.parents[i] = self.parents[self.parents[i]]\n i = self.parents[i]\n return i\n\n def union(self, p, q):\n i = self.find(p)\n j = self.find(q)\n if i == j:\n return\n if self.weights[i] < self.weights[j]:\n self.parents[i] = j\n self.weights[j] += self.weights[i]\n else:\n self.parents[j] = i\n self.weights[i] += self.weights[j]\n self.n -= 1\n\n def is_connected(self, p, q):\n i = self.find(p)\n j = self.find(q)\n return i == j\n\n def __len__(self):\n return self.n\n\n\n<mask token>\n", "step-3": "class UF(object):\n\n def __init__(self, n):\n self.parents = [i for i in range(n)]\n self.weights = [(1) for i in range(n)]\n self.n = n\n\n def find(self, i):\n while i != self.parents[i]:\n self.parents[i] = self.parents[self.parents[i]]\n i = self.parents[i]\n return i\n\n def union(self, p, q):\n i = self.find(p)\n j = self.find(q)\n if i == j:\n return\n if self.weights[i] < self.weights[j]:\n self.parents[i] = j\n self.weights[j] += self.weights[i]\n else:\n self.parents[j] = i\n self.weights[i] += self.weights[j]\n self.n -= 1\n\n def is_connected(self, p, q):\n i = self.find(p)\n j = self.find(q)\n return i == j\n\n def __len__(self):\n return self.n\n\n\n<mask token>\n", "step-4": "class UF(object):\n\n def __init__(self, n):\n self.parents = [i for i in range(n)]\n self.weights = [(1) for i in range(n)]\n self.n = n\n\n def find(self, i):\n while i != self.parents[i]:\n self.parents[i] = self.parents[self.parents[i]]\n i = self.parents[i]\n return i\n\n def union(self, p, q):\n i = self.find(p)\n j = self.find(q)\n if i == j:\n return\n if self.weights[i] < self.weights[j]:\n self.parents[i] = j\n self.weights[j] += self.weights[i]\n else:\n self.parents[j] = i\n self.weights[i] += self.weights[j]\n self.n -= 1\n\n def is_connected(self, p, q):\n i = self.find(p)\n j = self.find(q)\n return i == j\n\n def __len__(self):\n return self.n\n\n\nif __name__ == '__main__':\n uf = UF(10)\n uf.union(1, 2)\n uf.union(3, 4)\n uf.union(2, 4)\n assert len(uf) == 7\n assert uf.is_connected(1, 4)\n assert not uf.is_connected(1, 5)\n", "step-5": "class UF(object):\n def __init__(self, n):\n self.parents = [i for i in range(n)]\n self.weights = [1 for i in range(n)]\n self.n = n\n\n def find(self, i):\n while i != self.parents[i]:\n self.parents[i] = self.parents[self.parents[i]]\n i = self.parents[i]\n return i\n\n def union(self, p, q):\n i = self.find(p)\n j = self.find(q)\n if i == j:\n return\n\n if self.weights[i] < self.weights[j]:\n self.parents[i] = j\n self.weights[j] += self.weights[i]\n else:\n self.parents[j] = i\n self.weights[i] += self.weights[j]\n\n self.n -= 1\n\n def is_connected(self, p, q):\n i = self.find(p)\n j = self.find(q)\n return i== j\n\n def __len__(self):\n return self.n\n\n\nif __name__ == '__main__':\n uf = UF(10)\n uf.union(1, 2)\n uf.union(3, 4)\n uf.union(2, 4)\n\n assert len(uf) == 7\n\n assert uf.is_connected(1, 4)\n assert not uf.is_connected(1, 5)\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
import random from turtle import Turtle colors = ["red", "blue", 'green', 'peru', 'purple', 'pink', 'chocolate', 'grey', 'cyan', 'brown'] class Food(Turtle): def __init__(self): super().__init__() self.shape("circle") self.penup() self.color("red") self.speed("fastest") self.refresh() def refresh(self): self.color(random.choice(colors)) self.goto(random.randint(-280, 280), random.randint(-280, 280))
normal
{ "blob_id": "8adda42dfebd3f394a1026720465824a836c1dd1", "index": 7997, "step-1": "<mask token>\n\n\nclass Food(Turtle):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n self.shape('circle')\n self.penup()\n self.color('red')\n self.speed('fastest')\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-3": "<mask token>\ncolors = ['red', 'blue', 'green', 'peru', 'purple', 'pink', 'chocolate',\n 'grey', 'cyan', 'brown']\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n self.shape('circle')\n self.penup()\n self.color('red')\n self.speed('fastest')\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-4": "import random\nfrom turtle import Turtle\ncolors = ['red', 'blue', 'green', 'peru', 'purple', 'pink', 'chocolate',\n 'grey', 'cyan', 'brown']\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n self.shape('circle')\n self.penup()\n self.color('red')\n self.speed('fastest')\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-5": "import random\nfrom turtle import Turtle\n\ncolors = [\"red\", \"blue\", 'green', 'peru', 'purple', 'pink', 'chocolate', 'grey', 'cyan', 'brown']\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n\n self.shape(\"circle\")\n self.penup()\n self.color(\"red\")\n self.speed(\"fastest\")\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
import matplotlib.pyplot as plt import cartopy.crs as ccrs from cartopy.feature import ShapelyFeature from shapely.geometry import shape def plot(s): proj = ccrs.PlateCarree() ax = plt.axes(projection=proj) ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs=ccrs.PlateCarree()) shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor='#AAFFAA', edgecolor='k') ax.add_feature(shape_feature); gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2, color='gray', alpha=0.5, linestyle='--') gl.xlabels_top = False gl.ylabels_left = False gl.xlabel_style = {'size': 10, 'color': 'black'} gl.ylabel_style = {'size': 10, 'color': 'black'} return gl def plot_merc(s): proj = ccrs.Mercator() ax = plt.axes(projection=proj) ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs=ccrs.PlateCarree()) shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor='#AAFFAA', edgecolor='k') ax.add_feature(shape_feature); gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2, color='gray', alpha=0.5, linestyle='--') gl.xlabels_top = False gl.ylabels_left = False gl.xlabel_style = {'size': 10, 'color': 'black'} gl.ylabel_style = {'size': 10, 'color': 'black'} return gl
normal
{ "blob_id": "75754f4032d6e22e53cdbed0f6c640247473faec", "index": 7606, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef plot_merc(s):\n proj = ccrs.Mercator()\n ax = plt.axes(projection=proj)\n ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs\n =ccrs.PlateCarree())\n shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor=\n '#AAFFAA', edgecolor='k')\n ax.add_feature(shape_feature)\n gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2,\n color='gray', alpha=0.5, linestyle='--')\n gl.xlabels_top = False\n gl.ylabels_left = False\n gl.xlabel_style = {'size': 10, 'color': 'black'}\n gl.ylabel_style = {'size': 10, 'color': 'black'}\n return gl\n", "step-3": "<mask token>\n\n\ndef plot(s):\n proj = ccrs.PlateCarree()\n ax = plt.axes(projection=proj)\n ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs\n =ccrs.PlateCarree())\n shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor=\n '#AAFFAA', edgecolor='k')\n ax.add_feature(shape_feature)\n gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2,\n color='gray', alpha=0.5, linestyle='--')\n gl.xlabels_top = False\n gl.ylabels_left = False\n gl.xlabel_style = {'size': 10, 'color': 'black'}\n gl.ylabel_style = {'size': 10, 'color': 'black'}\n return gl\n\n\ndef plot_merc(s):\n proj = ccrs.Mercator()\n ax = plt.axes(projection=proj)\n ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs\n =ccrs.PlateCarree())\n shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor=\n '#AAFFAA', edgecolor='k')\n ax.add_feature(shape_feature)\n gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2,\n color='gray', alpha=0.5, linestyle='--')\n gl.xlabels_top = False\n gl.ylabels_left = False\n gl.xlabel_style = {'size': 10, 'color': 'black'}\n gl.ylabel_style = {'size': 10, 'color': 'black'}\n return gl\n", "step-4": "import matplotlib.pyplot as plt\nimport cartopy.crs as ccrs\nfrom cartopy.feature import ShapelyFeature\nfrom shapely.geometry import shape\n\n\ndef plot(s):\n proj = ccrs.PlateCarree()\n ax = plt.axes(projection=proj)\n ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs\n =ccrs.PlateCarree())\n shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor=\n '#AAFFAA', edgecolor='k')\n ax.add_feature(shape_feature)\n gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2,\n color='gray', alpha=0.5, linestyle='--')\n gl.xlabels_top = False\n gl.ylabels_left = False\n gl.xlabel_style = {'size': 10, 'color': 'black'}\n gl.ylabel_style = {'size': 10, 'color': 'black'}\n return gl\n\n\ndef plot_merc(s):\n proj = ccrs.Mercator()\n ax = plt.axes(projection=proj)\n ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs\n =ccrs.PlateCarree())\n shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor=\n '#AAFFAA', edgecolor='k')\n ax.add_feature(shape_feature)\n gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2,\n color='gray', alpha=0.5, linestyle='--')\n gl.xlabels_top = False\n gl.ylabels_left = False\n gl.xlabel_style = {'size': 10, 'color': 'black'}\n gl.ylabel_style = {'size': 10, 'color': 'black'}\n return gl\n", "step-5": "import matplotlib.pyplot as plt\nimport cartopy.crs as ccrs\nfrom cartopy.feature import ShapelyFeature\nfrom shapely.geometry import shape\n\n\ndef plot(s):\n proj = ccrs.PlateCarree()\n ax = plt.axes(projection=proj)\n ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs=ccrs.PlateCarree())\n shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor='#AAFFAA', edgecolor='k')\n ax.add_feature(shape_feature);\n \n gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,\n linewidth=2, color='gray', alpha=0.5, linestyle='--')\n gl.xlabels_top = False\n gl.ylabels_left = False\n gl.xlabel_style = {'size': 10, 'color': 'black'}\n gl.ylabel_style = {'size': 10, 'color': 'black'}\n \n return gl\n \n \n \n \n \ndef plot_merc(s):\n proj = ccrs.Mercator()\n ax = plt.axes(projection=proj)\n ax.set_extent((s.bounds[0], s.bounds[2], s.bounds[1], s.bounds[3]), crs=ccrs.PlateCarree())\n shape_feature = ShapelyFeature([s], ccrs.PlateCarree(), facecolor='#AAFFAA', edgecolor='k')\n ax.add_feature(shape_feature);\n\n gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,\n linewidth=2, color='gray', alpha=0.5, linestyle='--')\n gl.xlabels_top = False\n gl.ylabels_left = False\n gl.xlabel_style = {'size': 10, 'color': 'black'}\n gl.ylabel_style = {'size': 10, 'color': 'black'}\n \n return gl", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
individual = html.Div([ html.Div([ # input container html.Div([ dcc.RadioItems(id='view-radio', options=[ {'label': i, 'value': i} for i in ['Players', 'Teams'] ], value='Players' ) ]), html.Div([ dcc.Dropdown(id='drop-input') ]), ], className='two columns'), html.Div([ # visuals container html.Div([ # pic column container html.H6(id='name-header') dcc.Image(), # team or player image ], className='two columns'), html.Div([ # data container html.Div([ # graph dcc.Graph() ]), html.Div([ # table dash_table.datatable() ]) ]) ], className='eight columns') ]) @app.callback( Output('drop-input', 'options'), [Input('view-radio', 'value')] ) def update_dropdown(selection): if selection == 'Players': return [{'label': i, 'value':i} for i in active_players] if selection == 'Teams': return [{'label': i, 'value':i} for i in active_teams]
normal
{ "blob_id": "6c65d63ef07b6cdb2029e6a6e99f6ee35b448c4b", "index": 3147, "step-1": "individual = html.Div([\n\n html.Div([ # input container\n \n html.Div([\n dcc.RadioItems(id='view-radio',\n options=[\n {'label': i, 'value': i} for i in ['Players',\n 'Teams']\n ],\n value='Players'\n )\n ]),\n html.Div([\n dcc.Dropdown(id='drop-input')\n ]),\n ], className='two columns'),\n \n html.Div([ # visuals container\n \n html.Div([ # pic column container\n html.H6(id='name-header')\n dcc.Image(), # team or player image\n ], className='two columns'),\n \n html.Div([ # data container\n html.Div([ # graph\n dcc.Graph()\n ]),\n html.Div([ # table\n dash_table.datatable()\n ])\n ])\n ], className='eight columns')\n])\n\n@app.callback(\n Output('drop-input', 'options'),\n [Input('view-radio', 'value')]\n)\ndef update_dropdown(selection):\n if selection == 'Players':\n return [{'label': i, 'value':i} for i in active_players]\n if selection == 'Teams':\n return [{'label': i, 'value':i} for i in active_teams]", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
""" losettings.py Contains a class for profiles and methods to save and load them from xml files. Author: Stonepaw Version 2.0 Rewrote pretty much everything. Much more modular and requires no maintence when a new attribute is added. No longer fully supports profiles from 1.6 and earlier. Copyright 2010-2012 Stonepaw Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import clr import System clr.AddReference("System.Xml") from System import Convert from System.IO import File, StreamReader, StreamWriter from System.Xml import XmlDocument, XmlWriter, XmlWriterSettings from System.Windows.Forms import MessageBox, MessageBoxIcon, MessageBoxButtons from locommon import ExcludeRule, ExcludeGroup, Mode, PROFILEFILE, VERSION class Profile: """This class contains all the variables for a profile. Use save_to_xml to save the profile to a xml file. Use load_from_xml to load the profile from the file. Anytime a new variable is added it will automatically be save and loaded. """ def __init__(self): self.Version = 0 self.FolderTemplate = "" self.BaseFolder = "" self.FileTemplate = "" self.Name = "" self.EmptyFolder = "" self.EmptyData = {} self.Postfix = {} self.Prefix = {} self.Seperator = {} self.IllegalCharacters = {"?" : "", "/" : "", "\\" : "", "*" : "", ":" : " - ", "<" : "[", ">" : "]", "|" : "!", "\"" : "'"} self.Months = {1 : "January", 2 : "February", 3 : "March", 4 : "April", 5 : "May", 6 : "June", 7 : "July", 8 :"August", 9 : "September", 10 : "October", 11 : "November", 12 : "December", 13 : "Spring", 14 : "Summer", 15 : "Fall", 16 : "Winter"} self.TextBox = {} self.UseFolder = True self.UseFileName = True self.ExcludeFolders = [] self.DontAskWhenMultiOne = True self.ExcludeRules = [] self.ExcludeOperator = "Any" self.RemoveEmptyFolder = True self.ExcludedEmptyFolder = [] self.MoveFileless = False self.FilelessFormat = ".jpg" self.ExcludeMode = "Do not" self.FailEmptyValues = False self.MoveFailed = False self.FailedFolder = "" self.FailedFields = [] self.Mode = Mode.Move self.CopyMode = True self.AutoSpaceFields = True self.ReplaceMultipleSpaces = True self.CopyReadPercentage = True def duplicate(self): """Returns a duplicate of the profile instance.""" duplicate = Profile() for i in self.__dict__: if type(getattr(self, i)) is dict: setattr(duplicate, i, getattr(self, i).copy()) else: setattr(duplicate, i, getattr(self, i)) return duplicate def update(self): if self.Version < 2.0: if self.Mode is "Test": self.Mode = "Simulate" replacements = {"Language" : "LanguageISO", "Format" : "ShadowFormat", "Count" : "ShadowCount", "Number" : "ShadowNumber", "Series" : "ShadowSeries", "Title" : "ShadowTitle", "Volume" : "ShadowVolume", "Year" : "ShadowYear"} for key in self.EmptyData.keys(): if key in replacements: self.EmptyData[replacements[key]] = self.EmptyData[key] del(self.EmptyData[key]) insert_control_replacements = {"SeriesComplete" : "Series Complete", "Read" : "Read Percentage", "FirstLetter" : "First Letter", "AgeRating" : "Age Rating", "AlternateSeriesMulti" : "Alternate Series Multi", "MonthNumber" : "Month Number", "AlternateNumber" : "Alternate Number", "StartMonth" : "Start Month", "AlternateSeries" : "Alternate Series", "ScanInformation" : "Scan Information", "StartYear" : "Start Year", "AlternateCount" : "Alternate Count"} for key in insert_control_replacements : if key in self.TextBox.keys(): self.TextBox[insert_control_replacements[key]] = self.TextBox[key] del(self.TextBox[key]) if key in self.Prefix.keys(): self.Prefix[insert_control_replacements[key]] = self.Prefix[key] del(self.Prefix[key]) if key in self.Postfix.keys(): self.Postfix[insert_control_replacements[key]] = self.Postfix[key] del(self.Postfix[key]) if key in self.Seperator.keys(): self.Seperator[insert_control_replacements[key]] = self.Seperator[key] del(self.Seperator[key]) self.Version = VERSION def save_to_xml(self, xwriter): """ To save this profile intance to xml file using a XmlWriter. xwriter->should be a XmlWriter instance. """ xwriter.WriteStartElement("Profile") xwriter.WriteAttributeString("Name", self.Name) xwriter.WriteStartAttribute("Version") xwriter.WriteValue(self.Version) xwriter.WriteEndAttribute() for var_name in self.__dict__: var_type = type(getattr(self, var_name)) if var_type is str and var_name != "Name": self.write_string_to_xml(var_name, xwriter) elif var_type is bool: self.write_bool_to_xml(var_name, xwriter) elif var_type is dict: self.write_dict_to_xml(var_name, xwriter) elif var_type is list and var_name != "ExcludeRules": self.write_list_to_xml(var_name, xwriter) xwriter.WriteStartElement("ExcludeRules") xwriter.WriteAttributeString("Operator", self.ExcludeOperator) xwriter.WriteAttributeString("ExcludeMode", self.ExcludeMode) for rule in self.ExcludeRules: if rule: rule.save_xml(xwriter) xwriter.WriteEndElement() xwriter.WriteEndElement() def write_dict_to_xml(self, attribute_name, xmlwriter, write_empty=False): """Writes a dictionary to an xml file in the form of <attribute_name> <Item Name="attribute_name key" Value="attribute_name value" /> <Item Name="attribute_name key" Value="attribute_name value" /> etc. </attribute_name> attribute_name->The name of the dictonary attribute to write. xmlwriter->The xml writer to write with. write_empty->A bool of whether to write empty values to the xml file. Default is don't write them. """ if attribute_name in ("IllegalCharacters", "Months"): write_empty = True dictionary = getattr(self, attribute_name) xmlwriter.WriteStartElement(attribute_name) for key in dictionary: if dictionary[key] or write_empty: xmlwriter.WriteStartElement("Item") xmlwriter.WriteStartAttribute("Name") xmlwriter.WriteValue(key) xmlwriter.WriteEndAttribute() xmlwriter.WriteStartAttribute("Value") xmlwriter.WriteValue(dictionary[key]) xmlwriter.WriteEndAttribute() xmlwriter.WriteEndElement() xmlwriter.WriteEndElement() def write_list_to_xml(self, attribute_name, xmlwriter, write_empty=False): """Writes a list to an xml file in the form of <attribute_name> <Item>value</Item> <Item>value</Item> etc. </attribute_name> attribute_name->The name of the list attribute to write. xmlwriter->The xml writer to write with. write_empty->A bool of whether to write empty values to the xml file. Default is don't write them. """ attribute_list = getattr(self, attribute_name) xmlwriter.WriteStartElement(attribute_name) for item in attribute_list: if item or write_empty: xmlwriter.WriteElementString("Item", item) xmlwriter.WriteEndElement() def write_string_to_xml(self, attribute_name, xmlwriter, write_empty=True): """Writes a string to an xml file in the form of <attribute_name>string</attribute_name> attribute_name->The name of the string attribute to write. xmlwriter->The xml writer to write with. write_empty->A bool of whether to write empty strings to the xml file. Default is write empty strings. """ string = getattr(self, attribute_name) if string or write_empty: xmlwriter.WriteElementString(attribute_name, string) def write_bool_to_xml(self, attribute_name, xmlwriter): """Writes a boolean to an xml file in the form of <attribute_name>true/false</attribute_name> attribute_name->The name of the attribute to write. xmlwriter->The xml writer to write with. """ xmlwriter.WriteStartElement(attribute_name) xmlwriter.WriteValue(getattr(self, attribute_name)) xmlwriter.WriteEndElement() def load_from_xml(self, Xml): """Loads the profile instance from the Xml. Xml->should be a XmlNode/XmlDocument containing a profile node. """ try: #Text vars self.Name = Xml.Attributes["Name"].Value if "Version" in Xml.Attributes: self.Version = float(Xml.Attributes["Version"].Value) for var_name in self.__dict__: if type(getattr(self,var_name)) is str: self.load_text_from_xml(Xml, var_name) elif type(getattr(self,var_name)) is bool: self.load_bool_from_xml(Xml, var_name) elif type(getattr(self, var_name)) is list and var_name != "ExcludeRules": self.load_list_from_xml(Xml, var_name) elif type(getattr(self, var_name)) is dict: self.load_dict_from_xml(Xml, var_name) #Exclude Rules exclude_rules_node = Xml.SelectSingleNode("ExcludeRules") if exclude_rules_node is not None: self.ExcludeOperator = exclude_rules_node.Attributes["Operator"].Value self.ExcludeMode = exclude_rules_node.Attributes["ExcludeMode"].Value for node in exclude_rules_node.ChildNodes: if node.Name == "ExcludeRule": try: rule = ExcludeRule(node.Attributes["Field"].Value, node.Attributes["Operator"].Value, node.Attributes["Value"].Value) except AttributeError: rule = ExcludeRule(node.Attributes["Field"].Value, node.Attributes["Operator"].Value, node.Attributes["Text"].Value) self.ExcludeRules.append(rule) elif node.Name == "ExcludeGroup": group = ExcludeGroup(node.Attributes["Operator"].Value) group.load_from_xml(node) self.ExcludeRules.append(group) self.update() except Exception, ex: print ex return False def load_text_from_xml(self, xmldoc, name): """Loads a string with a specified node name from an XmlDocument and saves it to the attribute. The string should be saved as: <name>string</name> xmldoc->The XmlDocment to load from. name->The attribute to save to and the root node name to load the string from.""" if xmldoc.SelectSingleNode(name) is not None: setattr(self, name, xmldoc.SelectSingleNode(name).InnerText) def load_bool_from_xml(self, xmldoc, name): """Loads a bool with a specified node name from an XmlDocument and saves it to the attribute. The bool should be saved as: <name>true/false</name> xmldoc->The XmlDocment to load from. name->The attribute to save to and the root node name to load the bool from.""" if xmldoc.SelectSingleNode(name) is not None: setattr(self, name, Convert.ToBoolean(xmldoc.SelectSingleNode(name).InnerText)) def load_list_from_xml(self, xmldoc, name): """Loads a list with a specified node name from an XmlDocument and saves it to the attribute. The list should be saved as: <name> <Item>list value</Item> </name> xmldoc->The XmlDocment to load from. name->The attribute to save to and the root node name to load the list from.""" nodes = xmldoc.SelectNodes(name + "/Item") if nodes.Count > 0: setattr(self, name, [item.InnerText for item in nodes]) def load_dict_from_xml(self, xmldoc, name): """Loads a dict with a specified node name from an XmlDocument and saves it to the attribute. The dict should be saved as: <name> <Item Name="key" Value="value" /> </name> xmldoc->The XmlDocment to load from. name->The attribute to save to and the root node name to load the dict from.""" nodes = xmldoc.SelectNodes(name + "/Item") if nodes.Count > 0: dictionary = getattr(self, name) for node in nodes: if node.Attributes.Count == 2: if name == "Months": dictionary[int(node.Attributes["Name"].Value)] = node.Attributes["Value"].Value else: dictionary[node.Attributes["Name"].Value] = node.Attributes["Value"].Value def load_profiles(file_path): """ Load profiles from a xml file. If no profiles are found it creates a blank profile. file_path->The absolute path to the profile file Returns a dict of the found profiles and a list of the lastused profile(s) """ profiles, lastused = load_profiles_from_file(file_path) if len(profiles) == 0: #Just in case profiles["Default"] = Profile() profiles["Default"].Name = "Default" #Some default templates profiles["Default"].FileTemplate = "{<series>}{ Vol.<volume>}{ #<number2>}{ (of <count2>)}{ ({<month>, }<year>)}" profiles["Default"].FolderTemplate = "{<publisher>}\{<imprint>}\{<series>}{ (<startyear>{ <format>})}" if not lastused: lastused = [profiles.keys()[0]] return profiles, lastused def load_profiles_from_file(file_path): """ Loads profiles from a file. file_path->The absolute path the xml file Returns a dict of the profiles """ profiles = {} lastused = "" if File.Exists(file_path): try: with StreamReader(file_path) as xmlfile: xmldoc = XmlDocument() xmldoc.Load(xmlfile) if xmldoc.DocumentElement.Name == "Profiles": nodes = xmldoc.SelectNodes("Profiles/Profile") #Individual exported profiles are saved with the document element as Profile elif xmldoc.DocumentElement.Name == "Profile": nodes = xmldoc.SelectNodes("Profile") #Changed from 1.7 to 2.0 to use Profiles/Profile instead of Settings/Setting elif xmldoc.DocumentElement.Name == "Settings": nodes = xmldoc.SelectNodes("Settings/Setting") elif xmldoc.DocumentElement.Name == "Setting": nodes = xmldoc.SelectNodes("Setting") #No valid root elements else: MessageBox.Show(file_path + " is not a valid Library Organizer profile file.", "Not a valid profile file", MessageBoxButtons.OK, MessageBoxIcon.Error) return profiles, lastused if nodes.Count > 0: for node in nodes: profile = Profile() profile.Name = node.Attributes["Name"].Value result = profile.load_from_xml(node) #Error loading the profile if result == False: MessageBox.Show("An error occured loading the profile " + profile.Name + ". That profile has been skipped.") else: profiles[profile.Name] = profile #Load the last used profile rootnode = xmldoc.DocumentElement if rootnode.HasAttribute("LastUsed"): lastused = rootnode.Attributes["LastUsed"].Value.split(",") except Exception, ex: MessageBox.Show("Something seems to have gone wrong loading the xml file.\n\nThe error was:\n" + str(ex), "Error loading file", MessageBoxButtons.OK, MessageBoxIcon.Error) return profiles, lastused def import_profiles(file_path): """ Load profiles from a xml file. If no profiles are found it returns an empty dict. file_path->The absolute path to the profile file Returns a dict of the found profiles. """ profiles, lastused = load_profiles_from_file(file_path) return profiles def save_profiles(file_path, profiles, lastused=""): """ Saves the profiles to an xml file. settings_file: The complete file path of the file to save to. profiles: a dict of profile objects. lastused: a string containing the last used profile. """ try: xSettings = XmlWriterSettings() xSettings.Indent = True with XmlWriter.Create(file_path, xSettings) as writer: writer.WriteStartElement("Profiles") if lastused: writer.WriteAttributeString("LastUsed", ",".join(lastused)) for profile in profiles: profiles[profile].save_to_xml(writer) writer.WriteEndElement() except Exception, ex: MessageBox.Show("An error occured writing the settings file. The error was:\n\n" + ex.message, "Error saving settings file", MessageBoxButtons.OK, MessageBoxIcon.Error) def save_profile(file_path, profile): """ Saves a single profile to an xml file. settings_file: The complete file path of the file to save to. profile: a Profile object. """ try: xSettings = XmlWriterSettings() xSettings.Indent = True with XmlWriter.Create(file_path, xSettings) as writer: profile.save_to_xml(writer) except Exception, ex: MessageBox.Show("An error occured writing the settings file. The error was:\n\n" + ex.message, "Error saving settings file", MessageBoxButtons.OK, MessageBoxIcon.Error) def save_last_used(file_path, lastused): "Saves the lastused profiles to the xml file.""" x = XmlDocument() x.Load(file_path) x.DocumentElement.SetAttribute("LastUsed", ",".join(lastused)) x.Save(file_path)
normal
{ "blob_id": "b29c11b11fd357c7c4f774c3c6a857297ff0d021", "index": 3144, "step-1": "\"\"\"\r\nlosettings.py\r\n\r\nContains a class for profiles and methods to save and load them from xml files.\r\n\r\nAuthor: Stonepaw\r\n\r\nVersion 2.0\r\n\r\n Rewrote pretty much everything. Much more modular and requires no maintence when a new attribute is added.\r\n No longer fully supports profiles from 1.6 and earlier.\r\n\r\nCopyright 2010-2012 Stonepaw\r\n\r\nLicensed under the Apache License, Version 2.0 (the \"License\");\r\nyou may not use this file except in compliance with the License.\r\nYou may obtain a copy of the License at\r\n\r\n http://www.apache.org/licenses/LICENSE-2.0\r\n\r\nUnless required by applicable law or agreed to in writing, software\r\ndistributed under the License is distributed on an \"AS IS\" BASIS,\r\nWITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\r\nSee the License for the specific language governing permissions and\r\nlimitations under the License.\r\n\"\"\"\r\n\r\nimport clr\r\nimport System\r\n\r\nclr.AddReference(\"System.Xml\")\r\n\r\nfrom System import Convert\r\nfrom System.IO import File, StreamReader, StreamWriter\r\nfrom System.Xml import XmlDocument, XmlWriter, XmlWriterSettings\r\n\r\nfrom System.Windows.Forms import MessageBox, MessageBoxIcon, MessageBoxButtons\r\n\r\nfrom locommon import ExcludeRule, ExcludeGroup, Mode, PROFILEFILE, VERSION\r\n\r\n\r\n\r\nclass Profile:\r\n \"\"\"This class contains all the variables for a profile.\r\n Use save_to_xml to save the profile to a xml file.\r\n Use load_from_xml to load the profile from the file.\r\n\r\n Anytime a new variable is added it will automatically be save and loaded.\r\n \"\"\"\r\n def __init__(self):\r\n \r\n self.Version = 0\r\n\r\n self.FolderTemplate = \"\"\r\n self.BaseFolder = \"\"\r\n self.FileTemplate = \"\"\r\n self.Name = \"\"\r\n self.EmptyFolder = \"\"\r\n\r\n self.EmptyData = {}\r\n \r\n self.Postfix = {}\r\n\r\n self.Prefix = {}\r\n\r\n self.Seperator = {}\r\n\r\n self.IllegalCharacters = {\"?\" : \"\", \"/\" : \"\", \"\\\\\" : \"\", \"*\" : \"\", \":\" : \" - \", \"<\" : \"[\", \">\" : \"]\", \"|\" : \"!\", \"\\\"\" : \"'\"}\r\n\r\n self.Months = {1 : \"January\", 2 : \"February\", 3 : \"March\", 4 : \"April\", 5 : \"May\", 6 : \"June\", 7 : \"July\", 8 :\"August\", 9 : \"September\", 10 : \"October\",\r\n 11 : \"November\", 12 : \"December\", 13 : \"Spring\", 14 : \"Summer\", 15 : \"Fall\", 16 : \"Winter\"}\r\n\r\n self.TextBox = {}\r\n \r\n self.UseFolder = True\r\n \r\n self.UseFileName = True\r\n \r\n self.ExcludeFolders = []\r\n \r\n self.DontAskWhenMultiOne = True\r\n \r\n self.ExcludeRules = []\r\n \r\n self.ExcludeOperator = \"Any\"\r\n \r\n self.RemoveEmptyFolder = True\r\n self.ExcludedEmptyFolder = []\r\n \r\n self.MoveFileless = False \r\n self.FilelessFormat = \".jpg\"\r\n \r\n self.ExcludeMode = \"Do not\"\r\n \r\n\r\n self.FailEmptyValues = False\r\n self.MoveFailed = False\r\n self.FailedFolder = \"\"\r\n self.FailedFields = []\r\n\r\n self.Mode = Mode.Move\r\n\r\n self.CopyMode = True\r\n\r\n self.AutoSpaceFields = True\r\n\r\n self.ReplaceMultipleSpaces = True\r\n\r\n self.CopyReadPercentage = True\r\n\r\n\r\n def duplicate(self):\r\n \"\"\"Returns a duplicate of the profile instance.\"\"\"\r\n duplicate = Profile()\r\n \r\n for i in self.__dict__:\r\n if type(getattr(self, i)) is dict:\r\n setattr(duplicate, i, getattr(self, i).copy())\r\n else:\r\n setattr(duplicate, i, getattr(self, i))\r\n\r\n return duplicate\r\n\r\n\r\n def update(self):\r\n if self.Version < 2.0:\r\n if self.Mode is \"Test\":\r\n self.Mode = \"Simulate\"\r\n\r\n replacements = {\"Language\" : \"LanguageISO\", \"Format\" : \"ShadowFormat\", \"Count\" : \"ShadowCount\", \"Number\" : \"ShadowNumber\", \"Series\" : \"ShadowSeries\",\r\n \"Title\" : \"ShadowTitle\", \"Volume\" : \"ShadowVolume\", \"Year\" : \"ShadowYear\"}\r\n\r\n for key in self.EmptyData.keys():\r\n if key in replacements:\r\n self.EmptyData[replacements[key]] = self.EmptyData[key]\r\n del(self.EmptyData[key])\r\n\r\n insert_control_replacements = {\"SeriesComplete\" : \"Series Complete\", \"Read\" : \"Read Percentage\", \"FirstLetter\" : \"First Letter\", \"AgeRating\" : \"Age Rating\",\r\n \"AlternateSeriesMulti\" : \"Alternate Series Multi\", \"MonthNumber\" : \"Month Number\", \"AlternateNumber\" : \"Alternate Number\",\r\n \"StartMonth\" : \"Start Month\", \"AlternateSeries\" : \"Alternate Series\", \"ScanInformation\" : \"Scan Information\", \"StartYear\" : \"Start Year\",\r\n \"AlternateCount\" : \"Alternate Count\"}\r\n for key in insert_control_replacements :\r\n if key in self.TextBox.keys():\r\n self.TextBox[insert_control_replacements[key]] = self.TextBox[key]\r\n del(self.TextBox[key])\r\n\r\n if key in self.Prefix.keys():\r\n self.Prefix[insert_control_replacements[key]] = self.Prefix[key]\r\n del(self.Prefix[key])\r\n\r\n if key in self.Postfix.keys():\r\n self.Postfix[insert_control_replacements[key]] = self.Postfix[key]\r\n del(self.Postfix[key])\r\n\r\n if key in self.Seperator.keys():\r\n self.Seperator[insert_control_replacements[key]] = self.Seperator[key]\r\n del(self.Seperator[key])\r\n\r\n self.Version = VERSION\r\n\r\n \r\n def save_to_xml(self, xwriter):\r\n \"\"\"\r\n To save this profile intance to xml file using a XmlWriter.\r\n xwriter->should be a XmlWriter instance.\r\n \"\"\"\r\n\r\n xwriter.WriteStartElement(\"Profile\")\r\n xwriter.WriteAttributeString(\"Name\", self.Name)\r\n xwriter.WriteStartAttribute(\"Version\")\r\n xwriter.WriteValue(self.Version)\r\n xwriter.WriteEndAttribute()\r\n\r\n for var_name in self.__dict__:\r\n var_type = type(getattr(self, var_name))\r\n\r\n if var_type is str and var_name != \"Name\":\r\n self.write_string_to_xml(var_name, xwriter)\r\n\r\n elif var_type is bool:\r\n self.write_bool_to_xml(var_name, xwriter)\r\n\r\n elif var_type is dict:\r\n self.write_dict_to_xml(var_name, xwriter)\r\n\r\n elif var_type is list and var_name != \"ExcludeRules\":\r\n self.write_list_to_xml(var_name, xwriter)\r\n\r\n xwriter.WriteStartElement(\"ExcludeRules\")\r\n xwriter.WriteAttributeString(\"Operator\", self.ExcludeOperator)\r\n xwriter.WriteAttributeString(\"ExcludeMode\", self.ExcludeMode)\r\n for rule in self.ExcludeRules:\r\n if rule:\r\n rule.save_xml(xwriter)\r\n xwriter.WriteEndElement()\r\n \r\n xwriter.WriteEndElement()\r\n\r\n \r\n def write_dict_to_xml(self, attribute_name, xmlwriter, write_empty=False):\r\n \"\"\"Writes a dictionary to an xml file in the form of\r\n <attribute_name>\r\n <Item Name=\"attribute_name key\" Value=\"attribute_name value\" />\r\n <Item Name=\"attribute_name key\" Value=\"attribute_name value\" />\r\n etc.\r\n </attribute_name>\r\n\r\n attribute_name->The name of the dictonary attribute to write.\r\n xmlwriter->The xml writer to write with.\r\n write_empty->A bool of whether to write empty values to the xml file. Default is don't write them.\r\n \"\"\"\r\n if attribute_name in (\"IllegalCharacters\", \"Months\"):\r\n write_empty = True\r\n dictionary = getattr(self, attribute_name)\r\n xmlwriter.WriteStartElement(attribute_name)\r\n for key in dictionary:\r\n if dictionary[key] or write_empty:\r\n xmlwriter.WriteStartElement(\"Item\")\r\n xmlwriter.WriteStartAttribute(\"Name\")\r\n xmlwriter.WriteValue(key)\r\n xmlwriter.WriteEndAttribute()\r\n xmlwriter.WriteStartAttribute(\"Value\")\r\n xmlwriter.WriteValue(dictionary[key])\r\n xmlwriter.WriteEndAttribute()\r\n xmlwriter.WriteEndElement()\r\n xmlwriter.WriteEndElement()\r\n\r\n\r\n def write_list_to_xml(self, attribute_name, xmlwriter, write_empty=False):\r\n \"\"\"Writes a list to an xml file in the form of\r\n <attribute_name>\r\n <Item>value</Item>\r\n <Item>value</Item>\r\n etc.\r\n </attribute_name>\r\n\r\n attribute_name->The name of the list attribute to write.\r\n xmlwriter->The xml writer to write with.\r\n write_empty->A bool of whether to write empty values to the xml file. Default is don't write them.\r\n \"\"\"\r\n attribute_list = getattr(self, attribute_name)\r\n xmlwriter.WriteStartElement(attribute_name)\r\n for item in attribute_list:\r\n if item or write_empty:\r\n xmlwriter.WriteElementString(\"Item\", item)\r\n xmlwriter.WriteEndElement()\r\n\r\n\r\n def write_string_to_xml(self, attribute_name, xmlwriter, write_empty=True):\r\n \"\"\"Writes a string to an xml file in the form of\r\n <attribute_name>string</attribute_name>\r\n\r\n attribute_name->The name of the string attribute to write.\r\n xmlwriter->The xml writer to write with.\r\n write_empty->A bool of whether to write empty strings to the xml file. Default is write empty strings.\r\n \"\"\"\r\n string = getattr(self, attribute_name)\r\n if string or write_empty:\r\n xmlwriter.WriteElementString(attribute_name, string)\r\n\r\n\r\n def write_bool_to_xml(self, attribute_name, xmlwriter):\r\n \"\"\"Writes a boolean to an xml file in the form of\r\n <attribute_name>true/false</attribute_name>\r\n\r\n attribute_name->The name of the attribute to write.\r\n xmlwriter->The xml writer to write with.\r\n \"\"\"\r\n xmlwriter.WriteStartElement(attribute_name)\r\n xmlwriter.WriteValue(getattr(self, attribute_name))\r\n xmlwriter.WriteEndElement()\r\n\r\n\r\n def load_from_xml(self, Xml):\r\n \"\"\"Loads the profile instance from the Xml.\r\n \r\n Xml->should be a XmlNode/XmlDocument containing a profile node.\r\n \"\"\"\r\n try:\r\n #Text vars\r\n self.Name = Xml.Attributes[\"Name\"].Value\r\n\r\n if \"Version\" in Xml.Attributes:\r\n self.Version = float(Xml.Attributes[\"Version\"].Value)\r\n\r\n for var_name in self.__dict__:\r\n if type(getattr(self,var_name)) is str:\r\n self.load_text_from_xml(Xml, var_name)\r\n\r\n\r\n elif type(getattr(self,var_name)) is bool:\r\n self.load_bool_from_xml(Xml, var_name)\r\n\r\n\r\n elif type(getattr(self, var_name)) is list and var_name != \"ExcludeRules\":\r\n self.load_list_from_xml(Xml, var_name)\r\n\r\n elif type(getattr(self, var_name)) is dict:\r\n self.load_dict_from_xml(Xml, var_name)\r\n\r\n #Exclude Rules\r\n exclude_rules_node = Xml.SelectSingleNode(\"ExcludeRules\")\r\n if exclude_rules_node is not None:\r\n self.ExcludeOperator = exclude_rules_node.Attributes[\"Operator\"].Value\r\n\r\n self.ExcludeMode = exclude_rules_node.Attributes[\"ExcludeMode\"].Value\r\n\r\n for node in exclude_rules_node.ChildNodes:\r\n if node.Name == \"ExcludeRule\":\r\n try:\r\n rule = ExcludeRule(node.Attributes[\"Field\"].Value, node.Attributes[\"Operator\"].Value, node.Attributes[\"Value\"].Value)\r\n except AttributeError:\r\n rule = ExcludeRule(node.Attributes[\"Field\"].Value, node.Attributes[\"Operator\"].Value, node.Attributes[\"Text\"].Value)\r\n\r\n self.ExcludeRules.append(rule)\r\n \r\n elif node.Name == \"ExcludeGroup\":\r\n group = ExcludeGroup(node.Attributes[\"Operator\"].Value)\r\n group.load_from_xml(node)\r\n self.ExcludeRules.append(group)\r\n\r\n self.update()\r\n\r\n except Exception, ex:\r\n print ex\r\n return False\r\n\r\n\r\n def load_text_from_xml(self, xmldoc, name):\r\n \"\"\"Loads a string with a specified node name from an XmlDocument and saves it to the attribute. The string should be saved as:\r\n <name>string</name>\r\n\r\n xmldoc->The XmlDocment to load from.\r\n name->The attribute to save to and the root node name to load the string from.\"\"\"\r\n if xmldoc.SelectSingleNode(name) is not None:\r\n setattr(self, name, xmldoc.SelectSingleNode(name).InnerText)\r\n\r\n\r\n def load_bool_from_xml(self, xmldoc, name):\r\n \"\"\"Loads a bool with a specified node name from an XmlDocument and saves it to the attribute. The bool should be saved as:\r\n <name>true/false</name>\r\n\r\n xmldoc->The XmlDocment to load from.\r\n name->The attribute to save to and the root node name to load the bool from.\"\"\"\r\n if xmldoc.SelectSingleNode(name) is not None:\r\n setattr(self, name, Convert.ToBoolean(xmldoc.SelectSingleNode(name).InnerText))\r\n\r\n\r\n def load_list_from_xml(self, xmldoc, name):\r\n \"\"\"Loads a list with a specified node name from an XmlDocument and saves it to the attribute. The list should be saved as:\r\n <name>\r\n <Item>list value</Item>\r\n </name>\r\n\r\n xmldoc->The XmlDocment to load from.\r\n name->The attribute to save to and the root node name to load the list from.\"\"\"\r\n nodes = xmldoc.SelectNodes(name + \"/Item\")\r\n if nodes.Count > 0:\r\n setattr(self, name, [item.InnerText for item in nodes])\r\n\r\n\r\n def load_dict_from_xml(self, xmldoc, name):\r\n \"\"\"Loads a dict with a specified node name from an XmlDocument and saves it to the attribute. The dict should be saved as:\r\n <name>\r\n <Item Name=\"key\" Value=\"value\" />\r\n </name>\r\n\r\n xmldoc->The XmlDocment to load from.\r\n name->The attribute to save to and the root node name to load the dict from.\"\"\"\r\n nodes = xmldoc.SelectNodes(name + \"/Item\")\r\n if nodes.Count > 0:\r\n dictionary = getattr(self, name)\r\n for node in nodes:\r\n if node.Attributes.Count == 2:\r\n if name == \"Months\":\r\n dictionary[int(node.Attributes[\"Name\"].Value)] = node.Attributes[\"Value\"].Value\r\n else:\r\n dictionary[node.Attributes[\"Name\"].Value] = node.Attributes[\"Value\"].Value\r\n\r\n\r\n\r\ndef load_profiles(file_path):\r\n \"\"\"\r\n Load profiles from a xml file. If no profiles are found it creates a blank profile.\r\n file_path->The absolute path to the profile file\r\n\r\n Returns a dict of the found profiles and a list of the lastused profile(s)\r\n \"\"\"\r\n profiles, lastused = load_profiles_from_file(file_path)\r\n\r\n if len(profiles) == 0:\r\n #Just in case\r\n profiles[\"Default\"] = Profile()\r\n profiles[\"Default\"].Name = \"Default\"\r\n #Some default templates\r\n profiles[\"Default\"].FileTemplate = \"{<series>}{ Vol.<volume>}{ #<number2>}{ (of <count2>)}{ ({<month>, }<year>)}\"\r\n profiles[\"Default\"].FolderTemplate = \"{<publisher>}\\{<imprint>}\\{<series>}{ (<startyear>{ <format>})}\"\r\n \r\n if not lastused:\r\n lastused = [profiles.keys()[0]]\r\n \r\n return profiles, lastused \r\n\r\n\r\ndef load_profiles_from_file(file_path):\r\n \"\"\"\r\n Loads profiles from a file.\r\n \r\n file_path->The absolute path the xml file\r\n\r\n Returns a dict of the profiles\r\n \"\"\"\r\n profiles = {}\r\n\r\n lastused = \"\"\r\n\r\n if File.Exists(file_path):\r\n try:\r\n with StreamReader(file_path) as xmlfile:\r\n xmldoc = XmlDocument()\r\n xmldoc.Load(xmlfile)\r\n\r\n if xmldoc.DocumentElement.Name == \"Profiles\":\r\n nodes = xmldoc.SelectNodes(\"Profiles/Profile\")\r\n #Individual exported profiles are saved with the document element as Profile\r\n elif xmldoc.DocumentElement.Name == \"Profile\":\r\n nodes = xmldoc.SelectNodes(\"Profile\")\r\n\r\n #Changed from 1.7 to 2.0 to use Profiles/Profile instead of Settings/Setting\r\n elif xmldoc.DocumentElement.Name == \"Settings\":\r\n nodes = xmldoc.SelectNodes(\"Settings/Setting\")\r\n elif xmldoc.DocumentElement.Name == \"Setting\":\r\n nodes = xmldoc.SelectNodes(\"Setting\")\r\n\r\n #No valid root elements\r\n else:\r\n MessageBox.Show(file_path + \" is not a valid Library Organizer profile file.\", \"Not a valid profile file\", MessageBoxButtons.OK, MessageBoxIcon.Error)\r\n return profiles, lastused\r\n\r\n if nodes.Count > 0:\r\n for node in nodes: \r\n profile = Profile()\r\n profile.Name = node.Attributes[\"Name\"].Value\r\n result = profile.load_from_xml(node)\r\n\r\n #Error loading the profile\r\n if result == False:\r\n MessageBox.Show(\"An error occured loading the profile \" + profile.Name + \". That profile has been skipped.\")\r\n\r\n else:\r\n profiles[profile.Name] = profile\r\n\r\n\r\n #Load the last used profile\r\n rootnode = xmldoc.DocumentElement\r\n if rootnode.HasAttribute(\"LastUsed\"):\r\n lastused = rootnode.Attributes[\"LastUsed\"].Value.split(\",\")\r\n\r\n except Exception, ex:\r\n MessageBox.Show(\"Something seems to have gone wrong loading the xml file.\\n\\nThe error was:\\n\" + str(ex), \"Error loading file\", MessageBoxButtons.OK, MessageBoxIcon.Error)\r\n\r\n return profiles, lastused\r\n\r\n\r\ndef import_profiles(file_path):\r\n \"\"\"\r\n Load profiles from a xml file. If no profiles are found it returns an empty dict.\r\n file_path->The absolute path to the profile file\r\n\r\n Returns a dict of the found profiles.\r\n \"\"\"\r\n profiles, lastused = load_profiles_from_file(file_path)\r\n\r\n return profiles\r\n\r\n\r\ndef save_profiles(file_path, profiles, lastused=\"\"):\r\n \"\"\"\r\n Saves the profiles to an xml file.\r\n\r\n settings_file: The complete file path of the file to save to.\r\n profiles: a dict of profile objects.\r\n lastused: a string containing the last used profile.\r\n \"\"\"\r\n try:\r\n xSettings = XmlWriterSettings()\r\n xSettings.Indent = True\r\n with XmlWriter.Create(file_path, xSettings) as writer:\r\n writer.WriteStartElement(\"Profiles\")\r\n if lastused:\r\n writer.WriteAttributeString(\"LastUsed\", \",\".join(lastused))\r\n for profile in profiles:\r\n profiles[profile].save_to_xml(writer)\r\n writer.WriteEndElement()\r\n except Exception, ex:\r\n MessageBox.Show(\"An error occured writing the settings file. The error was:\\n\\n\" + ex.message, \"Error saving settings file\", MessageBoxButtons.OK, MessageBoxIcon.Error)\r\n\r\n\r\ndef save_profile(file_path, profile):\r\n \"\"\"\r\n Saves a single profile to an xml file.\r\n\r\n settings_file: The complete file path of the file to save to.\r\n profile: a Profile object.\r\n \"\"\"\r\n try:\r\n xSettings = XmlWriterSettings()\r\n xSettings.Indent = True\r\n with XmlWriter.Create(file_path, xSettings) as writer:\r\n profile.save_to_xml(writer)\r\n except Exception, ex:\r\n MessageBox.Show(\"An error occured writing the settings file. The error was:\\n\\n\" + ex.message, \"Error saving settings file\", MessageBoxButtons.OK, MessageBoxIcon.Error)\r\n\r\n\r\ndef save_last_used(file_path, lastused):\r\n \"Saves the lastused profiles to the xml file.\"\"\"\r\n x = XmlDocument()\r\n x.Load(file_path)\r\n x.DocumentElement.SetAttribute(\"LastUsed\", \",\".join(lastused))\r\n x.Save(file_path)", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]