ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
0147930e-0d97-4677-8292-daa6da3d7261
cpp
tensorflow/tensorflow
matmul_utils
third_party/xla/xla/service/gpu/matmul_utils.cc
third_party/xla/xla/service/gpu/matmul_utils_test.cc
#include "xla/service/gpu/matmul_utils.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_blas_lt.h" #include "xla/stream_executor/numeric_options.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<std::vector<int64_t>> GetNonContractingDims( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> contracting_dims) { std::vector<int64_t> non_contracting_dims; for (int64_t dim = 0; dim < shape.rank(); ++dim) { bool is_batch = absl::c_count(batch_dims, dim) != 0; bool is_contracting = absl::c_count(contracting_dims, dim) != 0; TF_RET_CHECK(!(is_batch && is_contracting)); if (!(is_batch || is_contracting)) non_contracting_dims.push_back(dim); } TF_RET_CHECK(batch_dims.size() + contracting_dims.size() + non_contracting_dims.size() == shape.rank()); return non_contracting_dims; } const tsl::protobuf::RepeatedField<int64_t>& BatchDimensionsForOperand( const HloInstruction& dot, const int operand_number) { const DotDimensionNumbers& dimension_numbers = dot.dot_dimension_numbers(); if (operand_number == 0) { return dimension_numbers.lhs_batch_dimensions(); } return dimension_numbers.rhs_batch_dimensions(); } absl::StatusOr<int64_t> ContractingDimensionIndex(const HloInstruction& dot, const int operand_number) { const DotDimensionNumbers& dimension_numbers = dot.dot_dimension_numbers(); if (operand_number == 0) { TF_RET_CHECK(dimension_numbers.lhs_contracting_dimensions().size() == 1); return dimension_numbers.lhs_contracting_dimensions(0); } TF_RET_CHECK(dimension_numbers.rhs_contracting_dimensions().size() == 1); return dimension_numbers.rhs_contracting_dimensions(0); } absl::StatusOr<int64_t> NonContractingDimensionIndex(const HloInstruction& dot, const int operand_number) { TF_ASSIGN_OR_RETURN(int64_t contracting_dim, ContractingDimensionIndex(dot, operand_number)); TF_ASSIGN_OR_RETURN( std::vector<int64_t> non_contracting_dims, GetNonContractingDims(dot.operand(operand_number)->shape(), BatchDimensionsForOperand(dot, operand_number), {contracting_dim})); TF_RET_CHECK(non_contracting_dims.size() == 1); return non_contracting_dims.front(); } absl::StatusOr<Shape> GetBatchRowColumnShape( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims) { TF_RET_CHECK(shape.has_layout()); std::vector<int64_t> minor_to_major; for (size_t i = 0; i < shape.rank();) { auto check_physically_sequential = [&](absl::Span<const int64_t> dims) -> absl::Status { for (auto it = dims.rbegin(); it != dims.rend(); ++it) { if (*it != shape.layout().minor_to_major()[i++]) return InvalidArgument("dims not physically_sequential"); } return absl::OkStatus(); }; int64_t dim = shape.layout().minor_to_major()[i]; if (!row_dims.empty() && dim == row_dims.back()) { minor_to_major.push_back(1); TF_RETURN_IF_ERROR(check_physically_sequential(row_dims)); } else if (!col_dims.empty() && dim == col_dims.back()) { minor_to_major.push_back(2); TF_RETURN_IF_ERROR(check_physically_sequential(col_dims)); } else if (!batch_dims.empty() && (dim == batch_dims.back())) { minor_to_major.push_back(0); TF_RETURN_IF_ERROR(check_physically_sequential(batch_dims)); } else { return InvalidArgument("dims not physically sequential"); } } if (col_dims.empty()) minor_to_major.push_back(2); if (row_dims.empty()) minor_to_major.push_back(1); if (batch_dims.empty()) minor_to_major.push_back(0); auto dim_size = [&](absl::Span<const int64_t> dims) { return absl::c_accumulate(dims, 1, [&](int64_t size, int64_t dim) { return size * shape.dimensions(dim); }); }; return ShapeUtil::MakeShapeWithDenseLayout( shape.element_type(), {dim_size(batch_dims), dim_size(row_dims), dim_size(col_dims)}, minor_to_major); } absl::StatusOr<MatrixLayout> MatrixLayout::For(const Shape& shape) { TF_RET_CHECK(shape.rank() == 3); TF_RET_CHECK(shape.has_layout()); int64_t batch_size = shape.dimensions(0); int64_t num_rows = shape.dimensions(1); int64_t num_cols = shape.dimensions(2); Order order{Order::kRowMajor}; int64_t leading_dim_stride = num_cols; int64_t batch_stride = num_rows * num_cols; absl::Span<const int64_t> minor_to_major = shape.layout().minor_to_major(); switch (64 * minor_to_major[2] + 8 * minor_to_major[1] + minor_to_major[0]) { case 012: break; case 021: order = Order::kColumnMajor; leading_dim_stride = num_rows; break; case 0102: leading_dim_stride = batch_size * num_cols; batch_stride = num_cols; break; case 0201: order = Order::kColumnMajor; leading_dim_stride = batch_size * num_rows; batch_stride = num_rows; break; default: return Unimplemented("batch in most minor dimension"); } if (batch_size == 1) { batch_stride = 0; } return MatrixLayout{se::gpu::MatrixLayout{shape.element_type(), num_rows, num_cols, order, batch_size, leading_dim_stride, batch_stride}}; } absl::StatusOr<MatrixLayout> MatrixLayout::For( const Shape& shape, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims) { TF_ASSIGN_OR_RETURN( Shape batch_row_col_shape, GetBatchRowColumnShape(shape, batch_dims, row_dims, col_dims)); return MatrixLayout::For(batch_row_col_shape); } absl::StatusOr<MatrixLayout> MatrixLayout::For( const Shape& shape, size_t lhs_num_batch_dims, size_t lhs_num_row_dims, size_t rhs_num_batch_dims, size_t rhs_num_col_dims) { size_t num_batch_dims = std::max(lhs_num_batch_dims, rhs_num_batch_dims); TF_RET_CHECK(shape.rank() == num_batch_dims + lhs_num_row_dims + rhs_num_col_dims); std::vector<int64_t> dims(shape.rank()); absl::c_iota(dims, 0); auto batch_dims = absl::Span<const int64_t>(dims).first(num_batch_dims); auto row_dims = absl::Span<const int64_t>(dims).subspan(num_batch_dims, lhs_num_row_dims); auto col_dims = absl::Span<const int64_t>(dims).last(rhs_num_col_dims); return MatrixLayout::For(shape, batch_dims, row_dims, col_dims); } namespace { std::vector<int64_t> NormalizedRelativeOrder(absl::Span<const int64_t> dims) { std::vector<int64_t> indices(dims.size()); absl::c_iota(indices, 0); absl::c_sort(indices, [&](int64_t a, int64_t b) { return dims[a] < dims[b]; }); return indices; } } absl::StatusOr<bool> CanFoldTransposeOperandIntoDot(const HloInstruction& dot, int64_t operand_idx) { if (Cast<HloDotInstruction>(&dot)->sparse_operands()) { return false; } TF_RET_CHECK(dot.opcode() == HloOpcode::kDot); TF_RET_CHECK(dot.operand_count() > operand_idx); const HloInstruction& transpose = *dot.operand(operand_idx); TF_RET_CHECK(transpose.opcode() == HloOpcode::kTranspose); const DotDimensionNumbers& dot_dims = dot.dot_dimension_numbers(); auto transposed = [&](const auto& dims) { std::vector<int64_t> transposed_dims; transposed_dims.reserve(dims.size()); for (int64_t dim : dims) { transposed_dims.push_back(transpose.dimensions(dim)); } return transposed_dims; }; auto batch_dims = (operand_idx == 0) ? dot_dims.lhs_batch_dimensions() : dot_dims.rhs_batch_dimensions(); auto contracting_dims = (operand_idx == 0) ? dot_dims.lhs_contracting_dimensions() : dot_dims.rhs_contracting_dimensions(); TF_ASSIGN_OR_RETURN( std::vector<int64_t> non_contracting_dims, GetNonContractingDims(transpose.shape(), batch_dims, contracting_dims)); auto transposed_non_contracting_dims = transposed(non_contracting_dims); if (NormalizedRelativeOrder(non_contracting_dims) != NormalizedRelativeOrder(transposed_non_contracting_dims)) { return false; } return MatrixLayout::For(transpose.operand(0)->shape(), transposed(batch_dims), transposed(contracting_dims), transposed_non_contracting_dims) .ok(); } absl::StatusOr<GemmConfig> GemmConfig::For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y) { return GemmConfig::For(lhs_shape, lhs_batch_dims, lhs_contracting_dims, rhs_shape, rhs_batch_dims, rhs_contracting_dims, output_shape, nullptr, output_shape, alpha_real, alpha_imag, beta, precision_algorithm, algorithm, compute_precision, grad_x, grad_y); } absl::StatusOr<GemmConfig> GemmConfig::For( const Shape& lhs_shape, absl::Span<const int64_t> lhs_batch_dims, absl::Span<const int64_t> lhs_contracting_dims, const Shape& rhs_shape, absl::Span<const int64_t> rhs_batch_dims, absl::Span<const int64_t> rhs_contracting_dims, const Shape& c_shape, const Shape* bias_shape_ptr, const Shape& output_shape, double alpha_real, double alpha_imag, double beta, PrecisionConfig::Algorithm precision_algorithm, std::optional<int64_t> algorithm, int64_t compute_precision, bool grad_x, bool grad_y) { absl::Span<const int64_t> lhs_col_dims = lhs_contracting_dims; TF_ASSIGN_OR_RETURN( std::vector<int64_t> lhs_row_dims, GetNonContractingDims(lhs_shape, lhs_batch_dims, lhs_col_dims)); TF_ASSIGN_OR_RETURN( MatrixLayout lhs_layout, MatrixLayout::For(lhs_shape, lhs_batch_dims, lhs_row_dims, lhs_col_dims)); absl::Span<const int64_t> rhs_row_dims = rhs_contracting_dims; TF_ASSIGN_OR_RETURN( std::vector<int64_t> rhs_col_dims, GetNonContractingDims(rhs_shape, rhs_batch_dims, rhs_row_dims)); TF_ASSIGN_OR_RETURN( MatrixLayout rhs_layout, MatrixLayout::For(rhs_shape, rhs_batch_dims, rhs_row_dims, rhs_col_dims)); int64_t num_batch_dims = std::max(lhs_batch_dims.size(), rhs_batch_dims.size()); TF_RET_CHECK(output_shape.rank() == num_batch_dims + lhs_row_dims.size() + rhs_col_dims.size()); std::vector<int64_t> output_dims(output_shape.rank()); absl::c_iota(output_dims, 0); auto output_batch_dims = absl::Span<const int64_t>(output_dims).first(num_batch_dims); auto output_row_dims = absl::Span<const int64_t>(output_dims) .subspan(num_batch_dims, lhs_row_dims.size()); auto output_col_dims = absl::Span<const int64_t>(output_dims).last(rhs_col_dims.size()); TF_ASSIGN_OR_RETURN(MatrixLayout output_layout, MatrixLayout::For(output_shape, output_batch_dims, output_row_dims, output_col_dims)); Shape c_matrix_shape = c_shape; if (primitive_util::IsF8Type(lhs_shape.element_type()) && primitive_util::IsF8Type(output_shape.element_type()) && beta == 0.0) { #if GOOGLE_CUDA c_matrix_shape.set_element_type( bias_shape_ptr != nullptr ? bias_shape_ptr->element_type() : BF16); #endif } TF_ASSIGN_OR_RETURN(MatrixLayout c_layout, MatrixLayout::For(c_matrix_shape, output_batch_dims, output_row_dims, output_col_dims)); if (lhs_shape.element_type() != F8E4M3FN && lhs_shape.element_type() != F8E5M2) { TF_RET_CHECK(lhs_layout.num_cols == rhs_layout.num_rows); TF_RET_CHECK(output_layout.num_rows == lhs_layout.num_rows); TF_RET_CHECK(output_layout.num_cols == rhs_layout.num_cols); } TF_RET_CHECK(c_layout.num_rows == output_layout.num_rows); TF_RET_CHECK(c_layout.num_cols == output_layout.num_cols); TF_RET_CHECK((lhs_layout.batch_size == output_layout.batch_size) || (lhs_layout.batch_size == 1)); TF_RET_CHECK((rhs_layout.batch_size == output_layout.batch_size) || (rhs_layout.batch_size == 1)); switch (output_shape.element_type()) { case F8E4M3FN: case F8E5M2: case F8E4M3FNUZ: case F8E5M2FNUZ: case F16: case BF16: case F32: case F64: TF_RET_CHECK(alpha_imag == 0); break; case C64: case C128: break; case S32: TF_RET_CHECK(alpha_imag == 0); if (lhs_layout.dtype != PrimitiveType::S8 || rhs_layout.dtype != PrimitiveType::S8) { return Internal( "For int32 gemm output only int8 input is supported, got input: " "%s, %s", primitive_util::LowercasePrimitiveTypeName(lhs_layout.dtype), primitive_util::LowercasePrimitiveTypeName(rhs_layout.dtype)); } break; default: return Internal("Unexpected GEMM datatype: %s", primitive_util::LowercasePrimitiveTypeName( output_shape.element_type())); } return GemmConfig{lhs_layout, rhs_layout, c_layout, output_layout, {alpha_real, alpha_imag}, beta, compute_precision, precision_algorithm, algorithm, grad_x, grad_y}; } namespace { bool IsTf32Allowed(PrecisionConfig::Algorithm algorithm, int64_t compute_precision) { if (algorithm == PrecisionConfig::ALG_UNSET) { return compute_precision <= 1; } return algorithm_util::HasTf32InputType(algorithm); } } absl::StatusOr<GemmConfig> GemmConfig::For( const HloInstruction* gemm) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, gemm->backend_config<GpuBackendConfig>()); return For(gemm, gpu_config.gemm_backend_config()); } absl::StatusOr<GemmConfig> GemmConfig::For( const HloInstruction* gemm, const GemmBackendConfig& config) { std::optional<int64_t> algorithm; if (config.algorithm_case() != GemmBackendConfig::ALGORITHM_NOT_SET) { algorithm = config.selected_algorithm(); } else { algorithm = se::blas::kDefaultAlgorithm; } const Shape& lhs_shape = gemm->operand(0)->shape(); const Shape& rhs_shape = gemm->operand(1)->shape(); const DotDimensionNumbers& dot_dims = config.dot_dimension_numbers(); const Shape& output_shape = gemm->shape().IsTuple() ? gemm->shape().tuple_shapes(0) : gemm->shape(); bool has_matrix_bias = config.beta() != 0.; Shape c_shape = has_matrix_bias ? gemm->operand(2)->shape() : output_shape; std::optional<Shape> vector_bias_shape; TF_ASSIGN_OR_RETURN( bool has_vector_bias, xla::gpu::gpublas_lt::EpilogueAddsVectorBias(config.epilogue())); if (has_vector_bias) { int vector_bias_index = has_matrix_bias ? 3 : 2; if (primitive_util::IsF8Type(lhs_shape.element_type())) { vector_bias_index += 2; } vector_bias_shape = gemm->operand(vector_bias_index)->shape(); } auto attributes = gemm->frontend_attributes().map(); bool grad_x = (attributes["grad_x"] == "true"); bool grad_y = (attributes["grad_y"] == "true"); int64_t precision = se::blas::kDefaultComputePrecision; for (auto operand_precision : config.precision_config().operand_precision()) { precision = std::max(precision, static_cast<int64_t>(operand_precision)); } const PrecisionConfig::Algorithm precision_algorithm = config.precision_config().algorithm(); return GemmConfig::For( lhs_shape, dot_dims.lhs_batch_dimensions(), dot_dims.lhs_contracting_dimensions(), rhs_shape, dot_dims.rhs_batch_dimensions(), dot_dims.rhs_contracting_dimensions(), c_shape, vector_bias_shape ? &vector_bias_shape.value() : nullptr, output_shape, config.alpha_real(), config.alpha_imag(), config.beta(), precision_algorithm, algorithm, precision, grad_x, grad_y); } absl::StatusOr<GemmConfig::DescriptorsTuple> GemmConfig::GetMatrixDescriptors( se::DeviceMemoryBase lhs_buf, se::DeviceMemoryBase rhs_buf, se::DeviceMemoryBase out_buf) const { auto create_matrix_desc = [](const se::gpu::MatrixLayout& layout, se::DeviceMemoryBase data) -> absl::StatusOr<se::gpu::MatrixDescriptor> { TF_ASSIGN_OR_RETURN(se::blas::DataType type, se::gpu::AsBlasDataType(layout.dtype)); return se::gpu::MatrixDescriptor{ data, layout.leading_dim_stride, layout.batch_stride, type, (layout.order == se::gpu::MatrixLayout::Order::kColumnMajor ? se::blas::Transpose::kNoTranspose : se::blas::Transpose::kTranspose)}; }; se::gpu::MatrixLayout lhs = lhs_layout, rhs = rhs_layout, out = output_layout; bool must_swap_operands = MakeOutputColumnMajor(lhs, rhs, out); if (must_swap_operands) { std::swap(lhs_buf, rhs_buf); } TF_ASSIGN_OR_RETURN(se::gpu::OutputMatrixDescriptor out_desc, create_matrix_desc(out, out_buf)); out_desc.batch_size = out.batch_size; out_desc.m = out.num_rows; out_desc.n = out.num_cols; out_desc.k = lhs.num_cols; TF_ASSIGN_OR_RETURN(out_desc.compute_type, se::gpu::GetBlasComputationType( PrecisionConfig::ALG_UNSET, lhs.dtype, out.dtype, se::blas::kDefaultComputePrecision)); TF_ASSIGN_OR_RETURN(se::gpu::MatrixDescriptor lhs_desc, create_matrix_desc(lhs, lhs_buf)); TF_ASSIGN_OR_RETURN(se::gpu::MatrixDescriptor rhs_desc, create_matrix_desc(rhs, rhs_buf)); return DescriptorsTuple{lhs_desc, rhs_desc, out_desc, must_swap_operands}; } namespace { template <typename Scale, typename Input, typename Output> absl::Status DoGemmWithAlgorithm(const se::gpu::MatrixDescriptor& lhs, const se::gpu::MatrixDescriptor& rhs, const se::gpu::OutputMatrixDescriptor& output, se::DeviceMemoryBase workspace, Scale alpha, Scale beta, se::Stream* stream, PrecisionConfig::Algorithm precision_algorithm, se::blas::AlgorithmType algorithm, se::blas::ComputePrecision compute_precision, const se::NumericOptions& numeric_options, se::blas::ProfileResult* profile_result, se::blas::CallContext context) { CHECK(output.transpose == se::blas::Transpose::kNoTranspose); PrimitiveType lhs_type = primitive_util::NativeToPrimitiveType<Input>(); PrimitiveType output_type = primitive_util::NativeToPrimitiveType<Output>(); TF_ASSIGN_OR_RETURN( se::blas::ComputationType computation_type, se::gpu::GetBlasComputationType(precision_algorithm, lhs_type, output_type, compute_precision)); se::DeviceMemory<Output> output_data(output.data); auto* blas = stream->parent()->AsBlas(); if (blas == nullptr) { return absl::InternalError("No Blas support for stream"); } se::blas::BlasSupport::ScopedWorkspace scoped_workspace(blas, &workspace); if (output.batch_size != 1) { return blas->BlasGemmStridedBatchedWithAlgorithm( stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, lhs.batch_stride, rhs.cast<Input>(), rhs.leading_dim_stride, rhs.batch_stride, beta, &output_data, output.leading_dim_stride, output.batch_stride, output.batch_size, computation_type, algorithm, numeric_options, profile_result, context); } else { return blas->BlasGemmWithAlgorithm( stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, rhs.cast<Input>(), rhs.leading_dim_stride, beta, &output_data, output.leading_dim_stride, computation_type, algorithm, numeric_options, profile_result, context); } } template <typename Scale, typename Input, typename Output> absl::Status DoGemm(const se::gpu::MatrixDescriptor& lhs, const se::gpu::MatrixDescriptor& rhs, const se::gpu::OutputMatrixDescriptor& output, se::DeviceMemoryBase workspace, Scale alpha, Scale beta, se::Stream* stream, PrecisionConfig::Algorithm precision_algorithm, std::optional<se::blas::AlgorithmType> algorithm, se::blas::ComputePrecision compute_precision, const se::NumericOptions& numeric_options, se::blas::ProfileResult* profile_result, se::blas::CallContext context) { CHECK(output.transpose == se::blas::Transpose::kNoTranspose); se::DeviceMemory<Output> output_data(output.data); auto* blas = stream->parent()->AsBlas(); if (blas == nullptr) { return absl::InternalError("No Blas support for stream"); } if (algorithm) { return DoGemmWithAlgorithm<Scale, Input, Output>( lhs, rhs, output, workspace, alpha, beta, stream, precision_algorithm, *algorithm, compute_precision, numeric_options, profile_result, context); } se::blas::BlasSupport::ScopedWorkspace scoped_workspace(blas, &workspace); if (output.batch_size != 1) { return blas->BlasGemmStridedBatched( stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, lhs.batch_stride, rhs.cast<Input>(), rhs.leading_dim_stride, rhs.batch_stride, beta, &output_data, output.leading_dim_stride, output.batch_stride, output.batch_size, numeric_options, context); } return blas->BlasGemm(stream, lhs.transpose, rhs.transpose, output.m, output.n, output.k, alpha, lhs.cast<Input>(), lhs.leading_dim_stride, rhs.cast<Input>(), rhs.leading_dim_stride, beta, &output_data, output.leading_dim_stride, numeric_options, context); } } absl::Status RunGemm(const GemmConfig& config, se::DeviceMemoryBase lhs_buffer, se::DeviceMemoryBase rhs_buffer, se::DeviceMemoryBase output_buffer, se::DeviceMemoryBase workspace_buffer, bool deterministic_ops, se::Stream* stream, std::optional<se::blas::AlgorithmType> algorithm, se::blas::ProfileResult* profile_result) { VLOG(2) << "Executing a GemmThunk"; TF_ASSIGN_OR_RETURN( GemmConfig::DescriptorsTuple desc, config.GetMatrixDescriptors(lhs_buffer, rhs_buffer, output_buffer)); se::NumericOptions numeric_options{ deterministic_ops, IsTf32Allowed(config.precision_algorithm, config.compute_precision)}; if (!algorithm) algorithm = config.algorithm; se::blas::CallContext context = se::blas::CallContext::kNone; if (config.grad_x) { context = desc.operands_swapped ? se::blas::CallContext::kBackpropInput2 : se::blas::CallContext::kBackpropInput1; } if (config.grad_y) { context = desc.operands_swapped ? se::blas::CallContext::kBackpropInput1 : se::blas::CallContext::kBackpropInput2; } std::tuple operand_types{config.lhs_layout.dtype, config.rhs_layout.dtype, config.output_layout.dtype}; if (config.alpha.real() == 0.0 && config.alpha.imag() == 0.0 && config.beta == 0.0) { return stream->MemZero(&output_buffer, output_buffer.size()); } #define TYPED_GEMM(SCALENTYPE, ATYPE, BTYPE, CTYPE) \ if (operand_types == std::make_tuple(ATYPE, BTYPE, CTYPE)) { \ using NativeScaleType = \ primitive_util::PrimitiveTypeToNative<SCALENTYPE>::type; \ using NativeAType = primitive_util::PrimitiveTypeToNative<ATYPE>::type; \ using NativeCType = primitive_util::PrimitiveTypeToNative<CTYPE>::type; \ return DoGemm<NativeScaleType, NativeAType, NativeCType>( \ desc.lhs, desc.rhs, desc.output, workspace_buffer, \ static_cast<NativeScaleType>(config.alpha.real()), \ static_cast<NativeScaleType>(config.beta), stream, \ config.precision_algorithm, algorithm, config.compute_precision, \ numeric_options, profile_result, context); \ } #define TYPED_GEMM_COMPLEX(SCALENTYPE, ATYPE, BTYPE, CTYPE) \ if (operand_types == std::make_tuple(ATYPE, BTYPE, CTYPE)) { \ using NativeScaleType = \ primitive_util::PrimitiveTypeToNative<SCALENTYPE>::type; \ using NativeAType = primitive_util::PrimitiveTypeToNative<ATYPE>::type; \ using NativeCType = primitive_util::PrimitiveTypeToNative<CTYPE>::type; \ return DoGemm<NativeScaleType, NativeAType, NativeCType>( \ desc.lhs, desc.rhs, desc.output, workspace_buffer, \ static_cast<NativeScaleType>(config.alpha), \ static_cast<NativeScaleType>(config.beta), stream, \ config.precision_algorithm, algorithm, config.compute_precision, \ numeric_options, profile_result, context); \ } if (config.output_layout.dtype == S32) { if (!algorithm) algorithm = se::blas::kDefaultGemmAlgo; return DoGemmWithAlgorithm<int32_t, int8_t, int32_t>( desc.lhs, desc.rhs, desc.output, workspace_buffer, static_cast<int32_t>(config.alpha.real()), static_cast<int32_t>(config.beta), stream, PrecisionConfig::ALG_UNSET, *algorithm, se::blas::kDefaultComputePrecision, numeric_options, profile_result, context); } TYPED_GEMM(F32, BF16, BF16, BF16) TYPED_GEMM(F32, F16, F16, F16) TYPED_GEMM(F32, S8, S8, F32) TYPED_GEMM(F32, BF16, BF16, F32) TYPED_GEMM(F32, F16, F16, F32) TYPED_GEMM(F32, F32, F32, F32) TYPED_GEMM(F64, F64, F64, F64) TYPED_GEMM_COMPLEX(C64, C64, C64, C64) TYPED_GEMM_COMPLEX(C128, C128, C128, C128) #undef TYPED_GEMM #undef TYPED_GEMM_COMPLEX return Internal( "Unexpected GEMM dtype: %s %s %s", primitive_util::LowercasePrimitiveTypeName(config.lhs_layout.dtype), primitive_util::LowercasePrimitiveTypeName(config.rhs_layout.dtype), primitive_util::LowercasePrimitiveTypeName(config.output_layout.dtype)); } namespace gpublas_lt { absl::StatusOr<bool> EpilogueAddsVectorBias( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: case GemmBackendConfig::RELU: case GemmBackendConfig::GELU: case GemmBackendConfig::GELU_AUX: return false; case GemmBackendConfig::BIAS: case GemmBackendConfig::BIAS_RELU: case GemmBackendConfig::BIAS_GELU: case GemmBackendConfig::BIAS_GELU_AUX: return true; default: return Internal("Unknown Epilogue."); } } absl::StatusOr<bool> EpilogueHasAuxiliaryOutput( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: case GemmBackendConfig::RELU: case GemmBackendConfig::GELU: case GemmBackendConfig::BIAS: case GemmBackendConfig::BIAS_RELU: case GemmBackendConfig::BIAS_GELU: return false; case GemmBackendConfig::GELU_AUX: case GemmBackendConfig::BIAS_GELU_AUX: return true; default: return Internal("Unknown Epilogue."); } } absl::StatusOr<se::gpu::BlasLt::Epilogue> AsBlasLtEpilogue( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: return se::gpu::BlasLt::Epilogue::kDefault; case GemmBackendConfig::RELU: return se::gpu::BlasLt::Epilogue::kReLU; case GemmBackendConfig::GELU: return se::gpu::BlasLt::Epilogue::kGELU; case GemmBackendConfig::GELU_AUX: return se::gpu::BlasLt::Epilogue::kGELUWithAux; case GemmBackendConfig::BIAS: return se::gpu::BlasLt::Epilogue::kBias; case GemmBackendConfig::BIAS_RELU: return se::gpu::BlasLt::Epilogue::kBiasThenReLU; case GemmBackendConfig::BIAS_GELU: return se::gpu::BlasLt::Epilogue::kBiasThenGELU; case GemmBackendConfig::BIAS_GELU_AUX: return se::gpu::BlasLt::Epilogue::kBiasThenGELUWithAux; default: return Internal("unexpected epilogue value"); } } } absl::StatusOr<TritonGemmConfig> TritonGemmConfig::FromProto( const AutotuneResult::TritonGemmKey& proto) { TF_RET_CHECK(proto.block_m() > 0); TF_RET_CHECK(proto.block_n() > 0); TF_RET_CHECK(proto.block_k() > 0); TF_RET_CHECK(proto.split_k() > 0); TF_RET_CHECK(proto.num_stages() > 0); TF_RET_CHECK(proto.num_warps() > 0); TF_RET_CHECK(proto.num_ctas() > 0); return TritonGemmConfig(proto.block_m(), proto.block_n(), proto.block_k(), proto.split_k(), proto.num_stages(), proto.num_warps(), proto.num_ctas()); } AutotuneResult::TritonGemmKey TritonGemmConfig::ToProto() const { AutotuneResult::TritonGemmKey key; key.set_block_m(block_m); key.set_block_n(block_n); key.set_block_k(block_k); key.set_split_k(split_k); key.set_num_stages(num_stages); key.set_num_warps(num_warps); key.set_num_ctas(num_ctas); return key; } std::string TritonGemmConfig::ToString() const { return absl::StrCat("{block_m:", block_m, ",block_n:", block_n, ",block_k:", block_k, ",split_k:", split_k, ",num_stages:", num_stages, ",num_warps:", num_warps, ",num_ctas:", num_ctas, "}"); } absl::StatusOr<bool> IsMatrixMultiplicationTooSmallForRewriting( const HloInstruction& dot, int64_t threshold) { CHECK_EQ(dot.opcode(), HloOpcode::kDot); const Shape& lhs_shape = dot.operand(0)->shape(); const Shape& rhs_shape = dot.operand(1)->shape(); const DotDimensionNumbers& dot_dims = dot.dot_dimension_numbers(); int64_t contracting_size = 1; for (int64_t dim : dot_dims.lhs_contracting_dimensions()) { contracting_size *= lhs_shape.dimensions(dim); } TF_ASSIGN_OR_RETURN( std::vector<int64_t> lhs_non_contracting_dims, GetNonContractingDims(lhs_shape, dot_dims.lhs_batch_dimensions(), dot_dims.lhs_contracting_dimensions())); int64_t lhs_non_contracting_size = 1; for (int64_t dim : lhs_non_contracting_dims) { lhs_non_contracting_size *= lhs_shape.dimensions(dim); } TF_ASSIGN_OR_RETURN( std::vector<int64_t> rhs_non_contracting_dims, GetNonContractingDims(rhs_shape, dot_dims.rhs_batch_dimensions(), dot_dims.rhs_contracting_dimensions())); int64_t rhs_non_contracting_size = 1; for (int64_t dim : rhs_non_contracting_dims) { rhs_non_contracting_size *= rhs_shape.dimensions(dim); } return (rhs_non_contracting_size + lhs_non_contracting_size) * contracting_size < threshold; } bool IsDotSupportedByClassicalEmitters(const HloInstruction& dot) { if (!algorithm_util::IsSupportedByElementalIrEmitter( dot.precision_config().algorithm())) { return false; } switch (dot.shape().element_type()) { case F16: case F32: case BF16: return true; default: return false; } } } }
#include "xla/service/gpu/matmul_utils.h" #include <cstdint> #include <memory> #include <vector> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::tsl::testing::IsOkAndHolds; TEST(GetNonContractingDimsTest, Valid) { Shape shape = ParseShape("f32[1,2,3,4,5,6]").value(); EXPECT_THAT(GetNonContractingDims(shape, {4}, {1, 5}), IsOkAndHolds(ElementsAre(0, 2, 3))); } using CanFoldTransposeOperandIntoDotTest = HloTestBase; TEST_F(CanFoldTransposeOperandIntoDotTest, ArgTransposeFoldGemm) { const char* hlo_text = R"( HloModule ArgTransposeFoldGemm ENTRY AddDotsFunc { x = f32[3,2] parameter(0) y = f32[3,4] parameter(1) x_transposed = f32[2,3] transpose(x), dimensions={1, 0} ROOT dot_a = f32[2,4] dot(x_transposed, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchedArgRowColTransposeFoldGemm) { const char* hlo_text = R"( HloModule BatchedArgRowColTransposeFoldGemm ENTRY AddDotsFunc { x = f32[5,3,2] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={0, 2, 1} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchRowTransposeFoldGemm) { const char* hlo_text = R"( HloModule BatchRowTransposeFoldCheck ENTRY AddDotsFunc { x = f32[2,5,3] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={1, 0, 2} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(true)); } TEST_F(CanFoldTransposeOperandIntoDotTest, BatchFromMinorDimTransposeDoesntFold) { const char* hlo_text = R"( HloModule BatchFromMinorDimTransposeDoesntFold ENTRY AddDotsFunc { x = f32[3,2,5] parameter(0) y = f32[5,3,4] parameter(1) x_transposed = f32[5,2,3] transpose(x), dimensions={2, 1, 0} ROOT dot_a = f32[5,2,4] dot(x_transposed, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 0), IsOkAndHolds(false)); } TEST_F(CanFoldTransposeOperandIntoDotTest, TransposedNonContractingDimsDontFold) { const char* hlo_text = R"( HloModule TransposedNonContractingDimsDontFold ENTRY AddDotsFunc { x = f32[5,3,4]{2,1,0} parameter(1) y = f32[5,2,6,3]{3,1,2,0} parameter(0) y_transposed = f32[5,6,2,3]{3,2,1,0} transpose(y), dimensions={0, 2, 1, 3} ROOT dot_a = f32[5,4,6,2]{3,2,1,0} dot(x, y_transposed), lhs_contracting_dims={1}, rhs_contracting_dims={3}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(CanFoldTransposeOperandIntoDot(*dot, 1), IsOkAndHolds(false)); } struct GetBatchRowColumnShapeTestParams { absl::string_view shape; std::vector<int64_t> batch_dims; std::vector<int64_t> row_dims; std::vector<int64_t> col_dims; absl::string_view expected_shape; }; using GetBatchRowColumnShapeTest = ::testing::TestWithParam<GetBatchRowColumnShapeTestParams>; TEST_P(GetBatchRowColumnShapeTest, ValidShape) { const GetBatchRowColumnShapeTestParams& params = GetParam(); Shape shape = ParseShape(params.shape).value(); EXPECT_THAT(GetBatchRowColumnShape(shape, params.batch_dims, params.row_dims, params.col_dims), IsOkAndHolds(ParseShape(params.expected_shape).value())); } INSTANTIATE_TEST_SUITE_P( GetBatchRowColumnShapeTests, GetBatchRowColumnShapeTest, ::testing::ValuesIn<GetBatchRowColumnShapeTestParams>({ {"f32[3,4]{1,0}", {}, {0}, {1}, "f32[1,3,4]{2,1,0}"}, {"f32[3,4]{0,1}", {}, {0}, {1}, "f32[1,3,4]{1,2,0}"}, {"f32[3,4]{1,0}", {}, {1}, {0}, "f32[1,4,3]{1,2,0}"}, {"f32[3,4,5]{2,1,0}", {0}, {1}, {2}, "f32[3,4,5]{2,1,0}"}, {"f32[3,4,5]{2,1,0}", {2}, {1}, {0}, "f32[5,4,3]{0,1,2}"}, {"f32[3,4,5,6,7,8]{5,2,4,1,3,0}", {0, 3}, {1, 4}, {2, 5}, "f32[18,28,40]{2,1,0}"}, })); TEST(GetBatchRowColumnShapeTest, BatchRowsColsInterleaved) { Shape shape = ParseShape("f32[3,4,5,6,7,8]{5,4,3,2,1,0}").value(); auto result = GetBatchRowColumnShape(shape, {0, 3}, {1, 4}, {2, 5}); EXPECT_FALSE(result.ok()); } TEST(GetBatchRowColumnShapeTest, WrongPhysicalOrder) { Shape shape = ParseShape("f32[3,4,5,6]{3,2,0,1}").value(); auto result = GetBatchRowColumnShape(shape, {0, 1}, {2}, {3}); EXPECT_FALSE(result.ok()); } using Order = MatrixLayout::Order; struct GetMatrixLayoutTestParams { absl::string_view shape; int64_t batch_size; int64_t num_rows; int64_t num_cols; Order order; int64_t leading_dim_stride; int64_t batch_stride; }; using GetMatrixLayoutTest = ::testing::TestWithParam<GetMatrixLayoutTestParams>; TEST_P(GetMatrixLayoutTest, ValidShape) { const GetMatrixLayoutTestParams& params = GetParam(); Shape shape = ParseShape(params.shape).value(); MatrixLayout result = MatrixLayout::For(shape).value(); EXPECT_EQ(result.batch_size, params.batch_size); EXPECT_EQ(result.num_rows, params.num_rows); EXPECT_EQ(result.num_cols, params.num_cols); EXPECT_EQ(result.order, params.order); EXPECT_EQ(result.leading_dim_stride, params.leading_dim_stride); EXPECT_EQ(result.batch_stride, params.batch_stride); } INSTANTIATE_TEST_SUITE_P( GetMatrixLayoutTests, GetMatrixLayoutTest, ::testing::ValuesIn<GetMatrixLayoutTestParams>({ {"f32[3,4,5]{2,1,0}", 3, 4, 5, Order::kRowMajor, 5, 20}, {"f32[3,4,5]{1,2,0}", 3, 4, 5, Order::kColumnMajor, 4, 20}, {"f32[3,4,5]{2,0,1}", 3, 4, 5, Order::kRowMajor, 15, 5}, {"f32[3,4,5]{1,0,2}", 3, 4, 5, Order::kColumnMajor, 12, 4}, })); TEST(GetMatrixLayoutTest, BatchInMostMinorPhysicalDimension) { Shape shape = ParseShape("f32[3,4,5]{0,2,1}").value(); EXPECT_FALSE(MatrixLayout::For(shape).ok()); } using GetMatrixSizeRewriteThresholdTest = HloTestBase; TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulTooSmallForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[100,30,3] parameter(0) y = f32[100,3,3] parameter(1) ROOT dot = f32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(true)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulSupportedByClassicalEmitters) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[100,30,3] parameter(0) y = f32[100,3,3] parameter(1) ROOT dot = f32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_TRUE(IsDotSupportedByClassicalEmitters(*dot)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulUnsupportedByClassicalEmitters) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = s8[100,30,3] parameter(0) y = s8[100,3,3] parameter(1) ROOT dot = s32[100,30,3] dot(x, y), lhs_contracting_dims={2}, rhs_contracting_dims={1}, lhs_batch_dims={0}, rhs_batch_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_FALSE(IsDotSupportedByClassicalEmitters(*dot)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulLeftLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[50,2] parameter(0) y = f32[2,2] parameter(1) ROOT dot = f32[50,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulRightLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[2,2] parameter(0) y = f32[2,50] parameter(1) ROOT dot = f32[2,50] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } TEST_F(GetMatrixSizeRewriteThresholdTest, MatMulTogetherLargeEnoughForRewrite) { const char* hlo_text = R"( HloModule DotFuncModule ENTRY DotFunc { x = f32[4,16] parameter(0) y = f32[16,4] parameter(1) ROOT dot = f32[4,4] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); auto dot = module->entry_computation()->root_instruction(); EXPECT_THAT(IsMatrixMultiplicationTooSmallForRewriting(*dot, 100), IsOkAndHolds(false)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/matmul_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/matmul_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c06ee53d-22e7-4329-98c3-c4268f794d6d
cpp
tensorflow/tensorflow
resize_area_op
tensorflow/core/kernels/image/resize_area_op.cc
tensorflow/core/kernels/image/resize_area_op_test.cc
#define EIGEN_USE_THREADS #include <algorithm> #include <memory> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/image_resizer_state.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; namespace { struct CachedInterpolation { int64_t start; int64_t end; float start_scale; float end_minus_one_scale; bool needs_bounding; }; } template <typename Device, typename T> class ResizeAreaOp : public OpKernel { public: explicit ResizeAreaOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("align_corners", &align_corners_)); } template <bool NeedsXBounding> static void ComputePatchSumOf3Channels(float scale, const ImageResizerState& st, const std::vector<const T*>& y_ptrs, const std::vector<float>& y_scales, const CachedInterpolation& x_interp, float* output_ptr) { #define BOUND_IF_NEEDED(x, y) (NeedsXBounding ? Bound(x, y) : (x)) float sum_0 = 0; float sum_1 = 0; float sum_2 = 0; for (int i = 0; i < y_ptrs.size(); ++i) { const T* ptr = y_ptrs[i]; float scale_x = x_interp.start_scale; int64_t offset = 3 * BOUND_IF_NEEDED(x_interp.start, st.in_width); float sum_y_0 = static_cast<float>(ptr[offset + 0]) * scale_x; float sum_y_1 = static_cast<float>(ptr[offset + 1]) * scale_x; float sum_y_2 = static_cast<float>(ptr[offset + 2]) * scale_x; if (x_interp.start + 1 != x_interp.end) { for (int64_t x = x_interp.start + 1; x < x_interp.end - 1; ++x) { int64_t offset = 3 * BOUND_IF_NEEDED(x, st.in_width); sum_y_0 += static_cast<float>(ptr[offset + 0]); sum_y_1 += static_cast<float>(ptr[offset + 1]); sum_y_2 += static_cast<float>(ptr[offset + 2]); } scale_x = x_interp.end_minus_one_scale; offset = 3 * BOUND_IF_NEEDED(x_interp.end - 1, st.in_width); sum_y_0 += static_cast<float>(ptr[offset + 0]) * scale_x; sum_y_1 += static_cast<float>(ptr[offset + 1]) * scale_x; sum_y_2 += static_cast<float>(ptr[offset + 2]) * scale_x; } sum_0 += sum_y_0 * y_scales[i]; sum_1 += sum_y_1 * y_scales[i]; sum_2 += sum_y_2 * y_scales[i]; } output_ptr[0] = sum_0 * scale; output_ptr[1] = sum_1 * scale; output_ptr[2] = sum_2 * scale; #undef BOUND_IF_NEEDED } template <bool NeedsXBounding> static void ComputePatchSum(float scale, const ImageResizerState& st, const std::vector<const T*>& y_ptrs, const std::vector<float>& y_scales, const CachedInterpolation& x_interp, float* output_ptr) { #define BOUND_IF_NEEDED(x, y) (NeedsXBounding ? Bound(x, y) : (x)) const auto num_channels = st.channels; for (int64_t c = 0; c < num_channels; ++c) { float sum = 0; for (int i = 0; i < y_ptrs.size(); ++i) { const T* ptr = y_ptrs[i]; float scale_x = x_interp.start_scale; float sum_y = static_cast<float>( ptr[num_channels * BOUND_IF_NEEDED(x_interp.start, st.in_width) + c]) * scale_x; if (x_interp.start + 1 != x_interp.end) { for (int64_t x = x_interp.start + 1; x < x_interp.end - 1; ++x) { sum_y += static_cast<float>( ptr[num_channels * BOUND_IF_NEEDED(x, st.in_width) + c]); } scale_x = x_interp.end_minus_one_scale; sum_y += static_cast<float>( ptr[num_channels * BOUND_IF_NEEDED(x_interp.end - 1, st.in_width) + c]) * scale_x; } sum += sum_y * y_scales[i]; } output_ptr[c] = sum * scale; } #undef BOUND_IF_NEEDED } void Compute(OpKernelContext* context) override { ImageResizerState st(align_corners_, false); st.ValidateAndCreateOutput(context); if (!context->status().ok()) return; typename TTypes<T, 4>::ConstTensor input_data( context->input(0).tensor<T, 4>()); std::vector<CachedInterpolation> x_interps(st.out_width); for (int64_t x = 0; x < st.out_width; ++x) { auto& x_interp = x_interps[x]; const float in_x = x * st.width_scale; const float in_x1 = (x + 1) * st.width_scale; int64_t v = std::floor(in_x); x_interp.start = v; x_interp.start_scale = v < in_x ? (v + 1 > in_x1 ? st.width_scale : v + 1 - in_x) : (v + 1 > in_x1 ? in_x1 - v : 1.0); v = std::ceil(in_x1); x_interp.end = v; v = x_interp.end - 1; x_interp.end_minus_one_scale = v < in_x ? (v + 1 > in_x1 ? st.width_scale : v + 1 - in_x) : (v + 1 > in_x1 ? in_x1 - v : 1.0); x_interp.needs_bounding = Bound(x_interp.start, st.in_width) != x_interp.start || Bound(x_interp.end - 1, st.in_width) != (x_interp.end - 1); } if (st.channels == 3) { ComputeLoop<3>(st, x_interps, input_data); } else { ComputeLoop<-1>(st, x_interps, input_data); } } template <int64_t kKnownNumChannels> void ComputeLoop(const ImageResizerState& st, const std::vector<CachedInterpolation>& x_interps, typename TTypes<T, 4>::ConstTensor input_data) { TTypes<float, 4>::Tensor output_data = st.output->tensor<float, 4>(); const T* const input_ptr = input_data.data(); std::vector<float> y_scales; std::vector<const T*> y_ptrs; float scale = 1.0 / (st.height_scale * st.width_scale); float* output_ptr = output_data.data(); for (int64_t b = 0; b < st.batch_size; ++b) { for (int64_t y = 0; y < st.out_height; ++y) { const float in_y = y * st.height_scale; const float in_y1 = (y + 1) * st.height_scale; const int64_t y_start = std::floor(in_y); const int64_t y_end = std::ceil(in_y1); y_scales.clear(); y_ptrs.clear(); for (int64_t i = y_start; i < y_end; ++i) { float scale_y; if (i < in_y) { scale_y = (i + 1 > in_y1 ? st.height_scale : i + 1 - in_y); } else { scale_y = (i + 1 > in_y1 ? in_y1 - i : 1.0); } y_scales.push_back(scale_y); y_ptrs.push_back( input_ptr + (b * st.in_height * st.in_width * st.channels + Bound(i, st.in_height) * st.in_width * st.channels)); } if (kKnownNumChannels == 3) { for (int64_t x = 0; x < st.out_width; ++x) { const CachedInterpolation& x_interp = x_interps[x]; if (x_interp.needs_bounding) { ComputePatchSumOf3Channels<true>(scale, st, y_ptrs, y_scales, x_interp, output_ptr); } else { ComputePatchSumOf3Channels<false>(scale, st, y_ptrs, y_scales, x_interp, output_ptr); } output_ptr += 3; } } else { for (int64_t x = 0; x < st.out_width; ++x) { const CachedInterpolation& x_interp = x_interps[x]; if (x_interp.needs_bounding) { ComputePatchSum<true>(scale, st, y_ptrs, y_scales, x_interp, output_ptr); } else { ComputePatchSum<false>(scale, st, y_ptrs, y_scales, x_interp, output_ptr); } output_ptr += st.channels; } } } } } private: static EIGEN_ALWAYS_INLINE int64_t Bound(int64_t val, int64_t limit) { return std::min(limit - 1, std::max(int64_t{0}, val)); } bool align_corners_; }; #define REGISTER_KERNEL(T) \ REGISTER_KERNEL_BUILDER(Name("ResizeArea") \ .Device(DEVICE_CPU) \ .TypeConstraint<T>("T") \ .HostMemory("size"), \ ResizeAreaOp<CPUDevice, T>); TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL); #undef REGISTER_KERNEL }
#include <cmath> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { class ResizeAreaOpTest : public OpsTestBase { protected: ResizeAreaOpTest() = default; void CreateOp(bool align_corners) { TF_EXPECT_OK(NodeDefBuilder("resize_area_op", "ResizeArea") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("align_corners", align_corners) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); } const Tensor* SetRandomImageInput(const TensorShape& shape) { inputs_.clear(); CHECK_EQ(shape.dims(), 4) << "All images must have 4 dimensions."; bool is_ref = IsRefType(input_types_[inputs_.size()]); Tensor* input = new Tensor(device_->GetAllocator(AllocatorAttributes()), DataTypeToEnum<float>::v(), shape); input->flat<float>().setRandom(); tensors_.push_back(input); if (is_ref) { CHECK_EQ(RemoveRefType(input_types_[inputs_.size()]), DataTypeToEnum<float>::v()); inputs_.push_back({&lock_for_refs_, input}); } else { CHECK_EQ(input_types_[inputs_.size()], DataTypeToEnum<float>::v()); inputs_.push_back({nullptr, input}); } return input; } private: void ResizeAreaBaseline(TTypes<float, 4>::ConstTensor input_data, TTypes<float, 4>::Tensor output_data) { const int batch_size = input_data.dimension(0); const int64_t in_height = input_data.dimension(1); const int64_t in_width = input_data.dimension(2); const int channels = input_data.dimension(3); ASSERT_EQ(batch_size, output_data.dimension(0)); ASSERT_EQ(channels, output_data.dimension(3)); const int64_t out_height = output_data.dimension(1); const int64_t out_width = output_data.dimension(2); const float height_scale = in_height / static_cast<float>(out_height); const float width_scale = in_width / static_cast<float>(out_width); Tensor sum_tensor(DT_FLOAT, TensorShape({channels})); typename TTypes<float, 1>::Tensor sum_data = sum_tensor.vec<float>(); float scale = 1.0 / (height_scale * width_scale); for (int64_t b = 0; b < batch_size; ++b) { for (int64_t y = 0; y < out_height; ++y) { const float in_y = y * height_scale; const float in_y1 = (y + 1) * height_scale; int64_t y_start = std::floor(in_y); int64_t y_end = std::ceil(in_y1); for (int64_t x = 0; x < out_width; ++x) { const float in_x = x * width_scale; const float in_x1 = (x + 1) * width_scale; int64_t x_start = std::floor(in_x); int64_t x_end = std::ceil(in_x1); sum_data.setConstant(0.0); for (int64_t i = y_start; i < y_end; ++i) { float scale_y = i < in_y ? (i + 1 > in_y1 ? height_scale : i + 1 - in_y) : (i + 1 > in_y1 ? in_y1 - i : 1.0); for (int64_t j = x_start; j < x_end; ++j) { float scale_x = j < in_x ? (j + 1 > in_x1 ? width_scale : j + 1 - in_x) : (j + 1 > in_x1 ? in_x1 - j : 1.0); for (int64_t c = 0; c < channels; ++c) { #define BOUND(val, limit) \ std::min(((limit)-int64_t{1}), (std::max(int64_t{0}, (val)))) sum_data(c) += static_cast<float>(input_data(b, BOUND(i, in_height), BOUND(j, in_width), c)) * scale_y * scale_x * scale; #undef BOUND } } } for (int64_t c = 0; c < channels; ++c) { output_data(b, y, x, c) = sum_data(c); } } } } } protected: void RunRandomTest(int in_height, int in_width, int target_height, int target_width, int channels) { const Tensor* input = SetRandomImageInput(TensorShape({1, in_height, in_width, channels})); AddInputFromArray<int32>(TensorShape({2}), {target_height, target_width}); TF_ASSERT_OK(RunOpKernel()); std::unique_ptr<Tensor> expected( new Tensor(device_->GetAllocator(AllocatorAttributes()), DataTypeToEnum<float>::v(), TensorShape({1, target_height, target_width, channels}))); ResizeAreaBaseline(input->tensor<float, 4>(), expected->tensor<float, 4>()); test::ExpectTensorNear<float>(*expected, *GetOutput(0), 0.00001); } void RunManyRandomTests(int channels) { for (int in_w : {2, 4, 7, 20, 165}) { for (int in_h : {1, 3, 5, 8, 100, 233}) { for (int target_height : {1, 2, 3, 50, 113}) { for (int target_width : {target_height, target_height / 2 + 1}) { RunRandomTest(in_h, in_w, target_height, target_width, channels); } } } } } }; TEST_F(ResizeAreaOpTest, TestAreaRandom141x186) { CreateOp(false); RunRandomTest(141, 186, 299, 299, 3 ); } TEST_F(ResizeAreaOpTest, TestAreaRandom183x229) { CreateOp(false); RunRandomTest(183, 229, 299, 299, 3 ); } TEST_F(ResizeAreaOpTest, TestAreaRandom749x603) { CreateOp(false); RunRandomTest(749, 603, 299, 299, 3 ); } TEST_F(ResizeAreaOpTest, TestAreaRandom1x1) { CreateOp(false); RunRandomTest(1, 1, 8, 8, 3 ); } TEST_F(ResizeAreaOpTest, TestAreaRandom1x1AlignCorners) { CreateOp(true); RunRandomTest(1, 1, 8, 8, 3 ); } TEST_F(ResizeAreaOpTest, TestAreaRandomDataSeveralInputsSizes1Channel) { CreateOp(false); RunManyRandomTests(1); } TEST_F(ResizeAreaOpTest, TestAreaRandomDataSeveralInputsSizes3Channels) { CreateOp(false); RunManyRandomTests(3); } TEST_F(ResizeAreaOpTest, TestAreaRandomDataSeveralInputsSizes4Channels) { CreateOp(false); RunManyRandomTests(4); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/image/resize_area_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/image/resize_area_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f984bfc5-570a-4e15-a5fa-d3f2a282abf0
cpp
abseil/abseil-cpp
iostream_state_saver
absl/random/internal/iostream_state_saver.h
absl/random/internal/iostream_state_saver_test.cc
#ifndef ABSL_RANDOM_INTERNAL_IOSTREAM_STATE_SAVER_H_ #define ABSL_RANDOM_INTERNAL_IOSTREAM_STATE_SAVER_H_ #include <cmath> #include <iostream> #include <limits> #include <type_traits> #include "absl/meta/type_traits.h" #include "absl/numeric/int128.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { template <typename T> class null_state_saver { public: using stream_type = T; using flags_type = std::ios_base::fmtflags; null_state_saver(T&, flags_type) {} ~null_state_saver() {} }; template <typename OStream> class ostream_state_saver { public: using ostream_type = OStream; using flags_type = std::ios_base::fmtflags; using fill_type = typename ostream_type::char_type; using precision_type = std::streamsize; ostream_state_saver(ostream_type& os, flags_type flags, fill_type fill) : os_(os), flags_(os.flags(flags)), fill_(os.fill(fill)), precision_(os.precision()) { } ~ostream_state_saver() { os_.precision(precision_); os_.fill(fill_); os_.flags(flags_); } private: ostream_type& os_; const flags_type flags_; const fill_type fill_; const precision_type precision_; }; #if defined(__NDK_MAJOR__) && __NDK_MAJOR__ < 16 #define ABSL_RANDOM_INTERNAL_IOSTREAM_HEXFLOAT 1 #else #define ABSL_RANDOM_INTERNAL_IOSTREAM_HEXFLOAT 0 #endif template <typename CharT, typename Traits> ostream_state_saver<std::basic_ostream<CharT, Traits>> make_ostream_state_saver( std::basic_ostream<CharT, Traits>& os, std::ios_base::fmtflags flags = std::ios_base::dec | std::ios_base::left | #if ABSL_RANDOM_INTERNAL_IOSTREAM_HEXFLOAT std::ios_base::fixed | #endif std::ios_base::scientific) { using result_type = ostream_state_saver<std::basic_ostream<CharT, Traits>>; return result_type(os, flags, os.widen(' ')); } template <typename T> typename absl::enable_if_t<!std::is_base_of<std::ios_base, T>::value, null_state_saver<T>> make_ostream_state_saver(T& is, std::ios_base::fmtflags flags = std::ios_base::dec) { std::cerr << "null_state_saver"; using result_type = null_state_saver<T>; return result_type(is, flags); } template <typename T> struct stream_precision_helper { static constexpr int kPrecision = (std::numeric_limits<T>::max_digits10 > std::numeric_limits<T>::digits10) ? std::numeric_limits<T>::max_digits10 : (std::numeric_limits<T>::digits10 + 3); }; template <> struct stream_precision_helper<float> { static constexpr int kPrecision = 9; }; template <> struct stream_precision_helper<double> { static constexpr int kPrecision = 17; }; template <> struct stream_precision_helper<long double> { static constexpr int kPrecision = 36; }; template <typename IStream> class istream_state_saver { public: using istream_type = IStream; using flags_type = std::ios_base::fmtflags; istream_state_saver(istream_type& is, flags_type flags) : is_(is), flags_(is.flags(flags)) {} ~istream_state_saver() { is_.flags(flags_); } private: istream_type& is_; flags_type flags_; }; template <typename CharT, typename Traits> istream_state_saver<std::basic_istream<CharT, Traits>> make_istream_state_saver( std::basic_istream<CharT, Traits>& is, std::ios_base::fmtflags flags = std::ios_base::dec | std::ios_base::scientific | std::ios_base::skipws) { using result_type = istream_state_saver<std::basic_istream<CharT, Traits>>; return result_type(is, flags); } template <typename T> typename absl::enable_if_t<!std::is_base_of<std::ios_base, T>::value, null_state_saver<T>> make_istream_state_saver(T& is, std::ios_base::fmtflags flags = std::ios_base::dec) { using result_type = null_state_saver<T>; return result_type(is, flags); } template <typename T> struct stream_format_type : public std::conditional<(sizeof(T) == sizeof(char)), int, T> {}; template <typename T> struct stream_u128_helper; template <> struct stream_u128_helper<absl::uint128> { template <typename IStream> inline absl::uint128 read(IStream& in) { uint64_t h = 0; uint64_t l = 0; in >> h >> l; return absl::MakeUint128(h, l); } template <typename OStream> inline void write(absl::uint128 val, OStream& out) { uint64_t h = absl::Uint128High64(val); uint64_t l = absl::Uint128Low64(val); out << h << out.fill() << l; } }; #ifdef ABSL_HAVE_INTRINSIC_INT128 template <> struct stream_u128_helper<__uint128_t> { template <typename IStream> inline __uint128_t read(IStream& in) { uint64_t h = 0; uint64_t l = 0; in >> h >> l; return (static_cast<__uint128_t>(h) << 64) | l; } template <typename OStream> inline void write(__uint128_t val, OStream& out) { uint64_t h = static_cast<uint64_t>(val >> 64u); uint64_t l = static_cast<uint64_t>(val); out << h << out.fill() << l; } }; #endif template <typename FloatType, typename IStream> inline FloatType read_floating_point(IStream& is) { static_assert(std::is_floating_point<FloatType>::value, ""); FloatType dest; is >> dest; if (is.fail() && (std::fabs(dest) == (std::numeric_limits<FloatType>::min)() || std::fpclassify(dest) == FP_SUBNORMAL)) { is.clear(is.rdstate() & (~std::ios_base::failbit)); } return dest; } } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/iostream_state_saver.h" #include <errno.h> #include <stdio.h> #include <sstream> #include <string> #include "gtest/gtest.h" namespace { using absl::random_internal::make_istream_state_saver; using absl::random_internal::make_ostream_state_saver; using absl::random_internal::stream_precision_helper; template <typename T> typename absl::enable_if_t<std::is_integral<T>::value, T> StreamRoundTrip(T t) { std::stringstream ss; { auto saver = make_ostream_state_saver(ss); ss.precision(stream_precision_helper<T>::kPrecision); ss << t; } T result = 0; { auto saver = make_istream_state_saver(ss); ss >> result; } EXPECT_FALSE(ss.fail()) << ss.str() << " " << (ss.good() ? "good " : "") << (ss.bad() ? "bad " : "") << (ss.eof() ? "eof " : "") << (ss.fail() ? "fail " : ""); return result; } template <typename T> typename absl::enable_if_t<std::is_floating_point<T>::value, T> StreamRoundTrip(T t) { std::stringstream ss; { auto saver = make_ostream_state_saver(ss); ss.precision(stream_precision_helper<T>::kPrecision); ss << t; } T result = 0; { auto saver = make_istream_state_saver(ss); result = absl::random_internal::read_floating_point<T>(ss); } EXPECT_FALSE(ss.fail()) << ss.str() << " " << (ss.good() ? "good " : "") << (ss.bad() ? "bad " : "") << (ss.eof() ? "eof " : "") << (ss.fail() ? "fail " : ""); return result; } TEST(IOStreamStateSaver, BasicSaverState) { std::stringstream ss; ss.precision(2); ss.fill('x'); ss.flags(std::ios_base::dec | std::ios_base::right); { auto saver = make_ostream_state_saver(ss); ss.precision(10); EXPECT_NE('x', ss.fill()); EXPECT_EQ(10, ss.precision()); EXPECT_NE(std::ios_base::dec | std::ios_base::right, ss.flags()); ss << 1.23; } EXPECT_EQ('x', ss.fill()); EXPECT_EQ(2, ss.precision()); EXPECT_EQ(std::ios_base::dec | std::ios_base::right, ss.flags()); } TEST(IOStreamStateSaver, RoundTripInts) { const uint64_t kUintValues[] = { 0, 1, static_cast<uint64_t>(-1), 2, static_cast<uint64_t>(-2), 1 << 7, 1 << 8, 1 << 16, 1ull << 32, 1ull << 50, 1ull << 62, 1ull << 63, (1 << 7) - 1, (1 << 8) - 1, (1 << 16) - 1, (1ull << 32) - 1, (1ull << 50) - 1, (1ull << 62) - 1, (1ull << 63) - 1, static_cast<uint64_t>(-(1 << 8)), static_cast<uint64_t>(-(1 << 16)), static_cast<uint64_t>(-(1ll << 32)), static_cast<uint64_t>(-(1ll << 50)), static_cast<uint64_t>(-(1ll << 62)), static_cast<uint64_t>(-(1 << 8) - 1), static_cast<uint64_t>(-(1 << 16) - 1), static_cast<uint64_t>(-(1ll << 32) - 1), static_cast<uint64_t>(-(1ll << 50) - 1), static_cast<uint64_t>(-(1ll << 62) - 1), }; for (const uint64_t u : kUintValues) { EXPECT_EQ(u, StreamRoundTrip<uint64_t>(u)); int64_t x = static_cast<int64_t>(u); EXPECT_EQ(x, StreamRoundTrip<int64_t>(x)); double d = static_cast<double>(x); EXPECT_EQ(d, StreamRoundTrip<double>(d)); float f = d; EXPECT_EQ(f, StreamRoundTrip<float>(f)); } } TEST(IOStreamStateSaver, RoundTripFloats) { static_assert( stream_precision_helper<float>::kPrecision >= 9, "stream_precision_helper<float>::kPrecision should be at least 9"); const float kValues[] = { 1, std::nextafter(1.0f, 0.0f), std::nextafter(1.0f, 2.0f), 1.0e+1f, 1.0e-1f, 1.0e+2f, 1.0e-2f, 1.0e+10f, 1.0e-10f, 0.00000051110000111311111111f, -0.00000051110000111211111111f, 1.234678912345678912345e+6f, 1.234678912345678912345e-6f, 1.234678912345678912345e+30f, 1.234678912345678912345e-30f, 1.234678912345678912345e+38f, 1.0234678912345678912345e-38f, std::numeric_limits<float>::max(), std::numeric_limits<float>::lowest(), std::numeric_limits<float>::epsilon(), std::nextafter(std::numeric_limits<float>::min(), 1.0f), std::numeric_limits<float>::min(), std::numeric_limits<float>::denorm_min(), std::numeric_limits<float>::min() / 2, std::nextafter(std::numeric_limits<float>::min(), 0.0f), std::nextafter(std::numeric_limits<float>::denorm_min(), 1.0f), }; for (const float f : kValues) { EXPECT_EQ(f, StreamRoundTrip<float>(f)); EXPECT_EQ(-f, StreamRoundTrip<float>(-f)); double d = f; EXPECT_EQ(d, StreamRoundTrip<double>(d)); EXPECT_EQ(-d, StreamRoundTrip<double>(-d)); if (f <= static_cast<float>(std::numeric_limits<int64_t>::max()) && f >= static_cast<float>(std::numeric_limits<int64_t>::lowest())) { int64_t x = static_cast<int64_t>(f); EXPECT_EQ(x, StreamRoundTrip<int64_t>(x)); } } } TEST(IOStreamStateSaver, RoundTripDoubles) { static_assert( stream_precision_helper<double>::kPrecision >= 17, "stream_precision_helper<double>::kPrecision should be at least 17"); const double kValues[] = { 1, std::nextafter(1.0, 0.0), std::nextafter(1.0, 2.0), 1.0e+1, 1.0e-1, 1.0e+2, 1.0e-2, 1.0e+10, 1.0e-10, 0.00000051110000111311111111, -0.00000051110000111211111111, 1.234678912345678912345e+6, 1.234678912345678912345e-6, 1.234678912345678912345e+30, 1.234678912345678912345e-30, 1.234678912345678912345e+38, 1.0234678912345678912345e-38, 1.0e+100, 1.0e-100, 1.234678912345678912345e+308, 1.0234678912345678912345e-308, 2.22507385850720138e-308, std::numeric_limits<double>::max(), std::numeric_limits<double>::lowest(), std::numeric_limits<double>::epsilon(), std::nextafter(std::numeric_limits<double>::min(), 1.0), std::numeric_limits<double>::min(), std::numeric_limits<double>::denorm_min(), std::numeric_limits<double>::min() / 2, std::nextafter(std::numeric_limits<double>::min(), 0.0), std::nextafter(std::numeric_limits<double>::denorm_min(), 1.0f), }; for (const double d : kValues) { EXPECT_EQ(d, StreamRoundTrip<double>(d)); EXPECT_EQ(-d, StreamRoundTrip<double>(-d)); if (d <= std::numeric_limits<float>::max() && d >= std::numeric_limits<float>::lowest()) { float f = static_cast<float>(d); EXPECT_EQ(f, StreamRoundTrip<float>(f)); } if (d <= static_cast<double>(std::numeric_limits<int64_t>::max()) && d >= static_cast<double>(std::numeric_limits<int64_t>::lowest())) { int64_t x = static_cast<int64_t>(d); EXPECT_EQ(x, StreamRoundTrip<int64_t>(x)); } } } TEST(IOStreamStateSaver, RoundTripLongDoubles) { static_assert( stream_precision_helper<long double>::kPrecision >= 36, "stream_precision_helper<long double>::kPrecision should be at least 36"); using real_type = long double; const real_type kValues[] = { 1, std::nextafter(1.0, 0.0), std::nextafter(1.0, 2.0), 1.0e+1, 1.0e-1, 1.0e+2, 1.0e-2, 1.0e+10, 1.0e-10, 0.00000051110000111311111111, -0.00000051110000111211111111, 1.2346789123456789123456789123456789e+6, 1.2346789123456789123456789123456789e-6, 1.2346789123456789123456789123456789e+30, 1.2346789123456789123456789123456789e-30, 1.2346789123456789123456789123456789e+38, 1.2346789123456789123456789123456789e-38, 1.2346789123456789123456789123456789e+308, 1.2346789123456789123456789123456789e-308, 1.0e+100, 1.0e-100, 1.234678912345678912345e+308, 1.0234678912345678912345e-308, std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::lowest(), std::numeric_limits<real_type>::epsilon(), std::nextafter(std::numeric_limits<real_type>::min(), real_type(1)), std::numeric_limits<real_type>::min(), std::numeric_limits<real_type>::denorm_min(), std::numeric_limits<real_type>::min() / 2, std::nextafter(std::numeric_limits<real_type>::min(), 0.0), std::nextafter(std::numeric_limits<real_type>::denorm_min(), 1.0f), }; int index = -1; for (const long double dd : kValues) { index++; EXPECT_EQ(dd, StreamRoundTrip<real_type>(dd)) << index; EXPECT_EQ(-dd, StreamRoundTrip<real_type>(-dd)) << index; if (dd <= std::numeric_limits<double>::max() && dd >= std::numeric_limits<double>::lowest()) { double d = static_cast<double>(dd); EXPECT_EQ(d, StreamRoundTrip<double>(d)); } if (dd <= static_cast<long double>(std::numeric_limits<int64_t>::max()) && dd >= static_cast<long double>(std::numeric_limits<int64_t>::lowest())) { int64_t x = static_cast<int64_t>(dd); EXPECT_EQ(x, StreamRoundTrip<int64_t>(x)); } } } TEST(StrToDTest, DoubleMin) { const char kV[] = "2.22507385850720138e-308"; char* end; double x = std::strtod(kV, &end); EXPECT_EQ(std::numeric_limits<double>::min(), x); } TEST(StrToDTest, DoubleDenormMin) { const char kV[] = "4.94065645841246544e-324"; char* end; double x = std::strtod(kV, &end); EXPECT_EQ(std::numeric_limits<double>::denorm_min(), x); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/iostream_state_saver.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/iostream_state_saver_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
43adc7c9-b886-457c-a5e5-6eed4f63e185
cpp
tensorflow/tensorflow
atan2_custom
tensorflow/lite/kernels/atan2_custom.cc
tensorflow/lite/kernels/atan2_custom_test.cc
#include <cmath> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/custom_ops_register.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace atan2 { TfLiteStatus EnsureSameShape(TfLiteContext* context, const TfLiteTensor* a, const TfLiteTensor* b) { TF_LITE_ENSURE_EQ(context, tflite::NumDimensions(a), tflite::NumDimensions(b)); return TfLiteStatus::kTfLiteOk; } TfLiteStatus Atan2Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, tflite::NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, tflite::NumOutputs(node), 1); const TfLiteTensor* input_y = tflite::GetInput(context, node, 0); const TfLiteTensor* input_x = tflite::GetInput(context, node, 1); TfLiteTensor* output = tflite::GetOutput(context, node, 0); TF_LITE_ENSURE_OK(context, EnsureSameShape(context, input_y, input_x)); TF_LITE_ENSURE_TYPES_EQ(context, input_y->type, input_x->type); TF_LITE_ENSURE_TYPES_EQ(context, input_y->type, output->type); TF_LITE_ENSURE(context, input_y->type == kTfLiteFloat32 || input_y->type == kTfLiteFloat64); TfLiteIntArray* output_shape = TfLiteIntArrayCopy(input_y->dims); return context->ResizeTensor(context, output, output_shape); } template <typename Float> TfLiteStatus Atan2(const TfLiteTensor* input_y, const TfLiteTensor* input_x, TfLiteTensor* output) { const Float* data_y = tflite::GetTensorData<Float>(input_y); const Float* data_x = tflite::GetTensorData<Float>(input_x); Float* data_output = tflite::GetTensorData<Float>(output); const int64_t num_elements = NumElements(input_y); for (int64_t i = 0; i < num_elements; ++i) { data_output[i] = std::atan2(data_y[i], data_x[i]); } return TfLiteStatus::kTfLiteOk; } TfLiteStatus Atan2Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input_y = tflite::GetInput(context, node, 0); const TfLiteTensor* input_x = tflite::GetInput(context, node, 1); TfLiteTensor* output = tflite::GetOutput(context, node, 0); switch (output->type) { case kTfLiteFloat32: TF_LITE_ENSURE_OK(context, Atan2<float>(input_y, input_x, output)); break; case kTfLiteFloat64: TF_LITE_ENSURE_OK(context, Atan2<double>(input_y, input_x, output)); break; default: { TF_LITE_KERNEL_LOG(context, "Unsupported datatype for atan2 output: %s", TfLiteTypeGetName(output->type)); return TfLiteStatus::kTfLiteError; } } return TfLiteStatus::kTfLiteOk; } } TfLiteRegistration* Register_ATAN2() { static TfLiteRegistration r = {nullptr, nullptr, atan2::Atan2Prepare, atan2::Atan2Eval}; return &r; } } } }
#include <cmath> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/custom_ops_register.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace { template <typename T> tflite::TensorType GetTTEnum(); template <> tflite::TensorType GetTTEnum<float>() { return tflite::TensorType_FLOAT32; } template <> tflite::TensorType GetTTEnum<double>() { return tflite::TensorType_FLOAT64; } class Atan2Model : public tflite::SingleOpModel { public: Atan2Model(tflite::TensorData y, tflite::TensorData x, tflite::TensorData output) { y_ = AddInput(y); x_ = AddInput(x); output_ = AddOutput(output); SetCustomOp("atan2", {}, ops::custom::Register_ATAN2); BuildInterpreter({GetShape(y_), GetShape(x_)}); } int y_; int x_; int output_; template <typename T> std::vector<T> GetOutput(const std::vector<T>& y, const std::vector<T>& x) { PopulateTensor<T>(y_, y); PopulateTensor<T>(x_, x); Invoke(); return ExtractVector<T>(output_); } }; template <typename Float> class Atan2CustomTest : public ::testing::Test { public: using FloatType = Float; }; using TestTypes = ::testing::Types<float, double>; TYPED_TEST_SUITE(Atan2CustomTest, TestTypes); TYPED_TEST(Atan2CustomTest, TestScalar) { using Float = typename TestFixture::FloatType; tflite::TensorData y = {GetTTEnum<Float>(), {}}; tflite::TensorData x = {GetTTEnum<Float>(), {}}; tflite::TensorData output = {GetTTEnum<Float>(), {}}; Atan2Model m(y, x, output); auto got = m.GetOutput<Float>({0.0}, {0.0}); ASSERT_EQ(got.size(), 1); EXPECT_FLOAT_EQ(got[0], 0.0); ASSERT_FLOAT_EQ(m.GetOutput<Float>({1.0}, {0.0})[0], M_PI / 2); ASSERT_FLOAT_EQ(m.GetOutput<Float>({0.0}, {1.0})[0], 0.0); ASSERT_FLOAT_EQ(m.GetOutput<Float>({-1.0}, {0.0})[0], -M_PI / 2); } TYPED_TEST(Atan2CustomTest, TestBatch) { using Float = typename TestFixture::FloatType; tflite::TensorData y = {GetTTEnum<Float>(), {4, 2, 1}}; tflite::TensorData x = {GetTTEnum<Float>(), {4, 2, 1}}; tflite::TensorData output = {GetTTEnum<Float>(), {4, 2, 1}}; Atan2Model m(y, x, output); std::vector<Float> y_data = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}; std::vector<Float> x_data = {0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}; auto got = m.GetOutput<Float>(y_data, x_data); ASSERT_EQ(got.size(), 8); for (int i = 0; i < 8; ++i) { EXPECT_FLOAT_EQ(got[i], std::atan2(y_data[i], x_data[i])); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/atan2_custom.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/atan2_custom_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b8fd7778-aef1-4e13-95a9-3baf8f3db331
cpp
tensorflow/tensorflow
preprocessor
tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.cc
tensorflow/lite/delegates/gpu/gl/compiler/preprocessor_test.cc
#include "tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.h" #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/lite/delegates/gpu/common/status.h" namespace tflite { namespace gpu { namespace gl { namespace { absl::string_view FindInlineBlock(absl::string_view s, char delimiter) { size_t start = s.find(delimiter); if (start != absl::string_view::npos) { size_t end = s.find(delimiter, start + 1); if (end != std::string::npos) { return s.substr(start, end - start + 1); } return s.substr(start, 1); } return s.substr(s.size(), 0); } absl::string_view PastSubstr(absl::string_view s, absl::string_view subs) { return s.substr(subs.data() + subs.size() - s.data()); } } absl::Status TextPreprocessor::Rewrite(const std::string& input, std::string* output) { absl::string_view s = input; std::string result; while (true) { absl::string_view inline_block = FindInlineBlock(s, inline_delimiter_); result.append(s.data(), inline_block.data() - s.data()); if (inline_block.empty()) { break; } if (inline_block.size() == 1) { return absl::NotFoundError("Unable to find end of inline block"); } s = PastSubstr(s, inline_block); bool processed = false; for (auto& rewrite : inline_rewrites_) { if (processed) { break; } switch (rewrite->Rewrite(inline_block.substr(1, inline_block.size() - 2), &result)) { case RewriteStatus::NOT_RECOGNIZED: break; case RewriteStatus::SUCCESS: processed = true; break; case RewriteStatus::ERROR: return absl::InternalError(absl::StrCat("Error while rewriting '", inline_block, "': ", result)); } } if (!processed) { if (!keep_unknown_rewrites_) { return absl::NotFoundError(absl::StrCat( "Didn't find inline rewrite for '", inline_block, "'")); } absl::StrAppend(&result, inline_block); } } *output = std::move(result); return absl::OkStatus(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" namespace tflite { namespace gpu { namespace gl { namespace { class AccuInlineRewrite : public InlineRewrite { public: explicit AccuInlineRewrite(std::vector<std::string>* blocks) : blocks_(blocks) {} RewriteStatus Rewrite(absl::string_view input, std::string* output) final { blocks_->push_back(std::string(input.data(), input.size())); output->append("r:"); output->append(input.data(), input.size()); return RewriteStatus::SUCCESS; } std::vector<std::string>* blocks_; }; std::vector<std::string> ParseInlines(const std::string& text) { std::vector<std::string> blocks; TextPreprocessor preprocessor('$', false); AccuInlineRewrite rewrite(&blocks); preprocessor.AddRewrite(&rewrite); std::string discard; preprocessor.Rewrite(text, &discard).IgnoreError(); return blocks; } TEST(Preprocessor, CornerCases) { EXPECT_THAT(ParseInlines(""), testing::ElementsAre()); EXPECT_THAT(ParseInlines("text text"), testing::ElementsAre()); EXPECT_THAT(ParseInlines("$$"), testing::ElementsAre("")); } TEST(Preprocessor, One) { EXPECT_THAT(ParseInlines("$text$"), testing::ElementsAre("text")); EXPECT_THAT(ParseInlines(" $text$ "), testing::ElementsAre("text")); } TEST(Preprocessor, More) { EXPECT_THAT(ParseInlines("Test $inline1$\n$inline2$ test $inline3$ "), testing::ElementsAre("inline1", "inline2", "inline3")); } std::string RewriteInlines(const std::string& text) { std::vector<std::string> blocks; TextPreprocessor preprocessor('$', false); AccuInlineRewrite rewrite(&blocks); preprocessor.AddRewrite(&rewrite); std::string out; preprocessor.Rewrite(text, &out).IgnoreError(); return out; } TEST(Preprocessor, RewriteCornerCases) { EXPECT_EQ(RewriteInlines(""), ""); EXPECT_EQ(RewriteInlines("text text"), "text text"); EXPECT_EQ(RewriteInlines("$$"), "r:"); } TEST(Preprocessor, RewriteOne) { EXPECT_EQ(RewriteInlines("$text$"), "r:text"); EXPECT_EQ(RewriteInlines(" $text$ "), " r:text "); } TEST(Preprocessor, RewriteMore) { EXPECT_EQ(RewriteInlines("Test $inline1$\n$inline2$ test $inline3$ "), "Test r:inline1\nr:inline2 test r:inline3 "); } class SingleRewrite : public InlineRewrite { public: RewriteStatus Rewrite(absl::string_view input, std::string* output) final { if (input == "foo") { output->append("bla"); return RewriteStatus::SUCCESS; } return RewriteStatus::NOT_RECOGNIZED; } std::vector<std::string>* blocks_; }; TEST(Preprocessor, KeepUnknownRewrites) { TextPreprocessor preprocessor('$', true); SingleRewrite rewrite; preprocessor.AddRewrite(&rewrite); std::string out; ASSERT_TRUE(preprocessor.Rewrite("Good morning, $name$! $foo$", &out).ok()); EXPECT_EQ("Good morning, $name$! bla", out); } TEST(Preprocessor, KeepUnknownRewrites_Fail) { TextPreprocessor preprocessor('$', false); SingleRewrite rewrite; preprocessor.AddRewrite(&rewrite); std::string out; EXPECT_FALSE(preprocessor.Rewrite("Good morning, $name$! $foo$", &out).ok()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/compiler/preprocessor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
20faff15-9cb2-45e3-8fb6-71e81ba3c0a8
cpp
tensorflow/tensorflow
sine
tensorflow/lite/experimental/shlo/ops/sine.cc
tensorflow/lite/experimental/shlo/ops/sine_test.cc
#include "tensorflow/lite/experimental/shlo/ops/sine.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Sine { template <class T> T operator()(T v) const { return std::sin(v); } }; template <> F16 Sine::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Sine::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } SineOp Create(SineOp::Attributes) { return {}; } absl::Status Prepare(SineOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("sine"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("sine"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(SineOp& op, const Tensor& input, Tensor& output) { Sine sine; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), sine, input, output) } else if (!input.IsQuantized() && IsFloat(input.StorageType())) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), sine, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/sine.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<SineOp> { static std::string Get() { return "Sine"; } }; namespace { struct Sine { template <class T> T operator()(T v) const { return std::sin(v); } } sine_ref; template <> F16 Sine::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Sine::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } INSTANTIATE_TYPED_TEST_SUITE_P(Sine, UnaryElementwiseOpShapePropagationTest, SineOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Sine, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<SineOp>, TestParamNames); using UnsupportedTypes = WithOpTypes< SineOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Sine, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct FloatSineTest : ::testing::Test {}; TYPED_TEST_SUITE(FloatSineTest, FloatTestTypes, TestParamNames); TYPED_TEST(FloatSineTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const TensorType tensor_type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}; Tensor input_tensor{.type = tensor_type, .data = input_data.data()}; Tensor output_tensor{.type = tensor_type, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), sine_ref); auto op = Create(SineOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedSineTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedSineTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedSineTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const QuantizedPerTensorTensorType tensor_type = { .shape = shape, .element_type = QuantizedElementTypePerTensor( TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale)}; Tensor input_tensor{.type = tensor_type, .data = input_data.data()}; Tensor output_tensor{.type = tensor_type, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = sine_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(SineOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/sine.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/sine_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b2165cf5-6d76-4ef0-ab7b-10c49b938012
cpp
google/tsl
path
tsl/platform/path.cc
tsl/platform/path_test.cc
#include "tsl/platform/path.h" #include <errno.h> #include <fcntl.h> #include <stdlib.h> #include <sys/stat.h> #include <sys/types.h> #if defined(PLATFORM_WINDOWS) #include <windows.h> #else #include <unistd.h> #endif #include <string> #include <vector> #include "absl/algorithm/container.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/scanner.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace io { namespace internal { namespace { const char kPathSep[] = "/"; } string JoinPathImpl(std::initializer_list<absl::string_view> paths) { string result; for (absl::string_view path : paths) { if (path.empty()) continue; if (result.empty()) { result = string(path); continue; } if (IsAbsolutePath(path)) path = path.substr(1); if (result[result.size() - 1] == kPathSep[0]) { strings::StrAppend(&result, path); } else { strings::StrAppend(&result, kPathSep, path); } } return result; } std::pair<absl::string_view, absl::string_view> SplitPath( absl::string_view uri) { absl::string_view scheme, host, path; ParseURI(uri, &scheme, &host, &path); auto pos = path.rfind('/'); #ifdef PLATFORM_WINDOWS if (pos == StringPiece::npos) pos = path.rfind('\\'); #endif if (pos == absl::string_view::npos) return std::make_pair( absl::string_view(uri.data(), host.end() - uri.begin()), path); if (pos == 0) return std::make_pair( absl::string_view(uri.data(), path.begin() + 1 - uri.begin()), absl::string_view(path.data() + 1, path.size() - 1)); return std::make_pair( absl::string_view(uri.data(), path.begin() + pos - uri.begin()), absl::string_view(path.data() + pos + 1, path.size() - (pos + 1))); } std::pair<absl::string_view, absl::string_view> SplitBasename( absl::string_view path) { path = Basename(path); auto pos = path.rfind('.'); if (pos == absl::string_view::npos) return std::make_pair(path, absl::string_view(path.data() + path.size(), 0)); return std::make_pair( absl::string_view(path.data(), pos), absl::string_view(path.data() + pos + 1, path.size() - (pos + 1))); } } bool IsAbsolutePath(absl::string_view path) { return !path.empty() && path[0] == '/'; } absl::string_view Dirname(absl::string_view path) { return internal::SplitPath(path).first; } absl::string_view Basename(absl::string_view path) { return internal::SplitPath(path).second; } absl::string_view Extension(absl::string_view path) { return internal::SplitBasename(path).second; } absl::string_view BasenamePrefix(absl::string_view path) { return internal::SplitBasename(path).first; } string CleanPath(absl::string_view unclean_path) { string path(unclean_path); const char* src = path.c_str(); string::iterator dst = path.begin(); const bool is_absolute_path = *src == '/'; if (is_absolute_path) { *dst++ = *src++; while (*src == '/') ++src; } string::const_iterator backtrack_limit = dst; while (*src) { bool parsed = false; if (src[0] == '.') { if (src[1] == '/' || !src[1]) { if (*++src) { ++src; } parsed = true; } else if (src[1] == '.' && (src[2] == '/' || !src[2])) { src += 2; if (dst != backtrack_limit) { for (--dst; dst != backtrack_limit && dst[-1] != '/'; --dst) { } } else if (!is_absolute_path) { src -= 2; *dst++ = *src++; *dst++ = *src++; if (*src) { *dst++ = *src; } backtrack_limit = dst; } if (*src) { ++src; } parsed = true; } } if (!parsed) { while (*src && *src != '/') { *dst++ = *src++; } if (*src) { *dst++ = *src++; } } while (*src == '/') { ++src; } } string::difference_type path_length = dst - path.begin(); if (path_length != 0) { if (path_length > 1 && path[path_length - 1] == '/') { --path_length; } path.resize(path_length); } else { path.assign(1, '.'); } return path; } void ParseURI(absl::string_view uri, absl::string_view* scheme, absl::string_view* host, absl::string_view* path) { if (!strings::Scanner(uri) .One(strings::Scanner::LETTER) .Many(strings::Scanner::LETTER_DIGIT_DOT) .StopCapture() .OneLiteral(": .GetResult(&uri, scheme)) { *scheme = absl::string_view(uri.data(), 0); *host = absl::string_view(uri.data(), 0); *path = uri; return; } if (!strings::Scanner(uri).ScanUntil('/').GetResult(&uri, host)) { *host = uri; *path = absl::string_view(); return; } *path = uri; } string CreateURI(absl::string_view scheme, absl::string_view host, absl::string_view path) { if (scheme.empty()) { return string(path); } return strings::StrCat(scheme, ": } int64_t UniqueId() { static mutex mu(LINKER_INITIALIZED); static int64_t id = 0; mutex_lock l(mu); return ++id; } string CommonPathPrefix(absl::Span<const string> paths) { if (paths.empty()) return ""; size_t min_filename_size = absl::c_min_element(paths, [](const string& a, const string& b) { return a.size() < b.size(); })->size(); if (min_filename_size == 0) return ""; size_t common_prefix_size = [&] { for (size_t prefix_size = 0; prefix_size < min_filename_size; prefix_size++) { char c = paths[0][prefix_size]; for (int f = 1; f < paths.size(); f++) { if (paths[f][prefix_size] != c) { return prefix_size; } } } return min_filename_size; }(); size_t rpos = absl::string_view(paths[0]) .substr(0, common_prefix_size) .rfind(internal::kPathSep); return rpos == std::string::npos ? "" : std::string(absl::string_view(paths[0]).substr(0, rpos + 1)); } string GetTempFilename(const string& extension) { #if defined(__ANDROID__) LOG(FATAL) << "GetTempFilename is not implemented in this platform."; #elif defined(PLATFORM_WINDOWS) char temp_dir[_MAX_PATH]; DWORD retval; retval = GetTempPath(_MAX_PATH, temp_dir); if (retval > _MAX_PATH || retval == 0) { LOG(FATAL) << "Cannot get the directory for temporary files."; } char temp_file_name[_MAX_PATH]; retval = GetTempFileName(temp_dir, "", UniqueId(), temp_file_name); if (retval > _MAX_PATH || retval == 0) { LOG(FATAL) << "Cannot get a temporary file in: " << temp_dir; } string full_tmp_file_name(temp_file_name); full_tmp_file_name.append(extension); return full_tmp_file_name; #else for (const char* dir : std::vector<const char*>( {getenv("TEST_TMPDIR"), getenv("TMPDIR"), getenv("TMP"), "/tmp"})) { if (!dir || !dir[0]) { continue; } struct stat statbuf; if (!stat(dir, &statbuf) && S_ISDIR(statbuf.st_mode)) { string tmp_filepath; int fd; if (extension.length()) { tmp_filepath = io::JoinPath( dir, strings::StrCat("tmp_file_tensorflow_", UniqueId(), "_XXXXXX.", extension)); fd = mkstemps(&tmp_filepath[0], extension.length() + 1); } else { tmp_filepath = io::JoinPath( dir, strings::StrCat("tmp_file_tensorflow_", UniqueId(), "_XXXXXX")); fd = mkstemp(&tmp_filepath[0]); } if (fd < 0) { LOG(FATAL) << "Failed to create temp file."; } else { if (close(fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } return tmp_filepath; } } } LOG(FATAL) << "No temp directory found."; std::abort(); #endif } namespace { bool StartsWithSegment(absl::string_view path, absl::string_view segment) { return absl::StartsWith(path, segment) && (path.size() == segment.size() || path.at(segment.size()) == internal::kPathSep[0]); } } bool GetTestWorkspaceDir(string* dir) { const char* srcdir = getenv("TEST_SRCDIR"); if (srcdir == nullptr) { return false; } const char* workspace = getenv("TEST_WORKSPACE"); if (workspace == nullptr) { return false; } if (dir != nullptr) { *dir = tsl::io::JoinPath(srcdir, workspace); } return true; } bool GetTestUndeclaredOutputsDir(string* dir) { const char* outputs_dir = getenv("TEST_UNDECLARED_OUTPUTS_DIR"); if (outputs_dir == nullptr) { return false; } if (dir != nullptr) { *dir = outputs_dir; } return true; } bool ResolveTestPrefixes(absl::string_view path, string& resolved_path) { constexpr absl::string_view kTestWorkspaceSegment = "TEST_WORKSPACE"; constexpr absl::string_view kOutputDirSegment = "TEST_UNDECLARED_OUTPUTS_DIR"; if (StartsWithSegment(path, kTestWorkspaceSegment)) { if (!GetTestWorkspaceDir(&resolved_path)) { return false; } resolved_path += path.substr(kTestWorkspaceSegment.size()); return true; } else if (StartsWithSegment(path, kOutputDirSegment)) { if (!GetTestUndeclaredOutputsDir(&resolved_path)) { return false; } resolved_path += path.substr(kOutputDirSegment.size()); return true; } else { resolved_path = path; return true; } } [[maybe_unused]] std::string& AppendDotExeIfWindows(std::string& path) { #ifdef PLATFORM_WINDOWS path.append(".exe"); #endif return path; } } }
#include "tsl/platform/path.h" #include <string> #include "tsl/platform/env.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/test.h" namespace tsl { namespace io { TEST(PathTest, JoinPath) { EXPECT_EQ("/foo/bar", JoinPath("/foo", "bar")); EXPECT_EQ("foo/bar", JoinPath("foo", "bar")); EXPECT_EQ("foo/bar", JoinPath("foo", "/bar")); EXPECT_EQ("/foo/bar", JoinPath("/foo", "/bar")); EXPECT_EQ("/bar", JoinPath("", "/bar")); EXPECT_EQ("bar", JoinPath("", "bar")); EXPECT_EQ("/foo", JoinPath("/foo", "")); EXPECT_EQ("/foo/bar/baz/blah/blink/biz", JoinPath("/foo/bar/baz/", "/blah/blink/biz")); EXPECT_EQ("/foo/bar/baz/blah", JoinPath("/foo", "bar", "baz", "blah")); } TEST(PathTest, IsAbsolutePath) { EXPECT_FALSE(IsAbsolutePath("")); EXPECT_FALSE(IsAbsolutePath("../foo")); EXPECT_FALSE(IsAbsolutePath("foo")); EXPECT_FALSE(IsAbsolutePath("./foo")); EXPECT_FALSE(IsAbsolutePath("foo/bar/baz/")); EXPECT_TRUE(IsAbsolutePath("/foo")); EXPECT_TRUE(IsAbsolutePath("/foo/bar/../baz")); } TEST(PathTest, Dirname) { EXPECT_EQ("hdfs: Dirname("hdfs: EXPECT_EQ("/hello", Dirname("/hello/")); EXPECT_EQ("/", Dirname("/hello")); EXPECT_EQ("hello", Dirname("hello/world")); EXPECT_EQ("hello", Dirname("hello/")); EXPECT_EQ("", Dirname("world")); EXPECT_EQ("/", Dirname("/")); EXPECT_EQ("", Dirname("")); } TEST(PathTest, Basename) { EXPECT_EQ("", Basename("/hello/")); EXPECT_EQ("hello", Basename("/hello")); EXPECT_EQ("world", Basename("hello/world")); EXPECT_EQ("", Basename("hello/")); EXPECT_EQ("world", Basename("world")); EXPECT_EQ("", Basename("/")); EXPECT_EQ("", Basename("")); } TEST(PathTest, Extension) { EXPECT_EQ("gif", Extension("foo.gif")); EXPECT_EQ("", Extension("foo.")); EXPECT_EQ("", Extension("")); EXPECT_EQ("", Extension("/")); EXPECT_EQ("", Extension("foo")); EXPECT_EQ("", Extension("foo/")); EXPECT_EQ("gif", Extension("/a/path/to/foo.gif")); EXPECT_EQ("html", Extension("/a/path.bar/to/foo.html")); EXPECT_EQ("", Extension("/a/path.bar/to/foo")); EXPECT_EQ("baz", Extension("/a/path.bar/to/foo.bar.baz")); } TEST(PathTest, CleanPath) { EXPECT_EQ(".", CleanPath("")); EXPECT_EQ("x", CleanPath("x")); EXPECT_EQ("/a/b/c/d", CleanPath("/a/b/c/d")); EXPECT_EQ("/a/b/c/dtrue); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); EXPECT_TRUE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, "/repo/src/my/workspace"); EXPECT_TRUE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_SRCDIR"); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::setenv("TEST_SRCDIR", "/repo/src", true); tsl::unsetenv("TEST_WORKSPACE"); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_SRCDIR"); tsl::unsetenv("TEST_WORKSPACE"); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); } TEST(PathTest, GetTestUndeclaredOutputsDir) { constexpr absl::string_view kOriginalValue = "original value"; std::string dir; dir = kOriginalValue; tsl::setenv("TEST_UNDECLARED_OUTPUTS_DIR", "/test/outputs", true); EXPECT_TRUE(GetTestUndeclaredOutputsDir(&dir)); EXPECT_EQ(dir, "/test/outputs"); EXPECT_TRUE(GetTestUndeclaredOutputsDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_UNDECLARED_OUTPUTS_DIR"); EXPECT_FALSE(GetTestUndeclaredOutputsDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestUndeclaredOutputsDir(nullptr)); } TEST(PathTest, ResolveTestPrefixesKeepsThePathUnchanged) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("", resolved_path)); EXPECT_EQ(resolved_path, ""); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/", resolved_path)); EXPECT_EQ(resolved_path, "/"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("alpha/beta", resolved_path)); EXPECT_EQ(resolved_path, "alpha/beta"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/alpha/beta", resolved_path)); EXPECT_EQ(resolved_path, "/alpha/beta"); } TEST(PathTest, ResolveTestPrefixesCanResolveTestWorkspace) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::setenv("TEST_SRCDIR", "/repo/src", true); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE/", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace/"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE/a/b", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace/a/b"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACEE", resolved_path)); EXPECT_EQ(resolved_path, "TEST_WORKSPACEE"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, "/TEST_WORKSPACE"); } TEST(PathTest, ResolveTestPrefixesCannotResolveTestWorkspace) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::unsetenv("TEST_SRCDIR"); tsl::unsetenv("TEST_WORKSPACE"); resolved_path = kOriginalValue; EXPECT_FALSE(ResolveTestPrefixes("TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, kOriginalValue); } TEST(PathTest, ResolveTestPrefixesCanResolveTestUndeclaredOutputsDir) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::setenv("TEST_UNDECLARED_OUTPUTS_DIR", "/test/outputs", true); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR/", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs/"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR/a/b", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs/a/b"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIRR", resolved_path)); EXPECT_EQ(resolved_path, "TEST_UNDECLARED_OUTPUTS_DIRR"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("/TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, "/TEST_UNDECLARED_OUTPUTS_DIR"); } TEST(PathTest, ResolveTestPrefixesCannotResolveTestUndeclaredOutputsDir) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::unsetenv("TEST_UNDECLARED_OUTPUTS_DIR"); resolved_path = kOriginalValue; EXPECT_FALSE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, kOriginalValue); } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/path.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/path_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
f3b52274-8026-4ff3-9390-a910d61136c0
cpp
tensorflow/tensorflow
array_spec
third_party/xla/xla/python/ifrt/array_spec.cc
third_party/xla/xla/python/ifrt/array_spec_test.cc
#include "xla/python/ifrt/array_spec.h" #include <string> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { absl::StatusOr<ArraySpec> ArraySpec::FromProto( DeviceList::LookupDeviceFunc lookup_device, const ArraySpecProto& proto) { TF_ASSIGN_OR_RETURN(auto dtype, DType::FromProto(proto.dtype())); TF_ASSIGN_OR_RETURN(auto shape, Shape::FromProto(proto.shape())); TF_ASSIGN_OR_RETURN(auto sharding, Sharding::FromProto(lookup_device, proto.sharding())); return ArraySpec{dtype, std::move(shape), std::move(sharding)}; } absl::StatusOr<ArraySpecProto> ArraySpec::ToProto() const { ArraySpecProto proto; *proto.mutable_dtype() = dtype.ToProto(); *proto.mutable_shape() = shape.ToProto(); TF_ASSIGN_OR_RETURN(*proto.mutable_sharding(), sharding->ToProto()); return proto; } std::string ArraySpec::DebugString() const { return absl::StrCat("ArraySpec(dtype=", dtype.DebugString(), ",shape=", shape.DebugString(), ",sharding=", sharding->DebugString(), ")"); } } }
#include "xla/python/ifrt/array_spec.h" #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "llvm/Support/Casting.h" #include "xla/python/ifrt/array_spec.pb.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_test_util.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class ArraySpecTest : public test_util::DeviceTest {}; TEST_P(ArraySpecTest, ToFromProto) { auto device_list = GetDevices({0, 1}); DType dtype(DType::kS32); Shape shape({4, 2}); Shape shard_shape({2, 2}); ArraySpec spec{dtype, shape, ConcreteEvenSharding::Create(device_list, MemoryKind(), shape, shard_shape)}; auto lookup_device_func = [&](DeviceId device_id) -> absl::StatusOr<Device*> { return client()->LookupDevice(device_id); }; TF_ASSERT_OK_AND_ASSIGN(const ArraySpecProto proto, spec.ToProto()); TF_ASSERT_OK_AND_ASSIGN(const ArraySpec array_spec_copy, ArraySpec::FromProto(lookup_device_func, proto)); EXPECT_EQ(array_spec_copy.dtype, dtype); EXPECT_EQ(array_spec_copy.shape, shape); const auto* sharding = llvm::dyn_cast<ConcreteEvenSharding>(array_spec_copy.sharding.get()); ASSERT_NE(sharding, nullptr); EXPECT_EQ(*sharding->devices(), *spec.sharding->devices()); EXPECT_EQ(sharding->memory_kind(), spec.sharding->memory_kind()); EXPECT_EQ(sharding->shape(), shape); EXPECT_EQ(sharding->shard_shape(), shard_shape); } INSTANTIATE_TEST_SUITE_P(NumDevices, ArraySpecTest, testing::Values(test_util::DeviceTestParam{ 2, 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/array_spec.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/array_spec_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3b9c8a87-0a4d-43ad-924a-6cf494b4f7e3
cpp
google/arolla
operator_name
arolla/util/operator_name.h
arolla/util/operator_name_test.cc
#ifndef AROLLA_UTIL_OPERATOR_NAME_H_ #define AROLLA_UTIL_OPERATOR_NAME_H_ #include "absl/strings/string_view.h" #include "arolla/util/string.h" namespace arolla { constexpr bool IsOperatorName(absl::string_view name) { return IsQualifiedIdentifier(name); } #define AROLLA_OPERATOR_NAME(name) \ ( \ []() { \ static_assert(::arolla::IsOperatorName(name), \ "Invalid operator name."); \ }(), \ name) } #endif
#include "arolla/util/operator_name.h" #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/string_view.h" namespace arolla { namespace { using ::testing::Eq; using ::testing::StrEq; TEST(OperatorNameTest, Macro) { const char* name1 = AROLLA_OPERATOR_NAME("foo.bar"); EXPECT_THAT(name1, StrEq("foo.bar")); absl::string_view name2 = AROLLA_OPERATOR_NAME("foo.bar"); EXPECT_THAT(name2, Eq("foo.bar")); std::string name3 = AROLLA_OPERATOR_NAME("foo.bar"); EXPECT_THAT(name1, Eq("foo.bar")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/operator_name.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/operator_name_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
7dde5b77-37ca-4936-8496-28e66a591fb5
cpp
tensorflow/tensorflow
buffer_comparator
third_party/xla/xla/service/gpu/buffer_comparator.cc
third_party/xla/xla/service/gpu/buffer_comparator_test.cc
#include "xla/service/gpu/buffer_comparator.h" #include <algorithm> #include <cmath> #include <cstdint> #include <string_view> #include <type_traits> #include <vector> #include "Eigen/Core" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { template <typename ElementT> using ComparisonKernelT = se::TypedKernel<se::DeviceMemory<ElementT>, se::DeviceMemory<ElementT>, float, uint64_t, se::DeviceMemory<uint64_t>>; struct ComparisonParams { double relative_tol = 0.1; bool verbose = true; const Shape* shape = nullptr; se::Stream* stream = nullptr; se::DeviceMemoryBase current{}; se::DeviceMemoryBase expected{}; }; template <typename ElementT> static absl::StatusOr<bool> DeviceCompare(std::string_view kernel_name, void* kernel_symbol, const ComparisonParams& params) { se::StreamExecutor* executor = params.stream->parent(); se::DeviceMemoryHandle out(executor, executor->AllocateScalar<uint64_t>()); TF_RETURN_IF_ERROR( params.stream->MemZero(out.memory_ptr(), sizeof(uint64_t))); if (params.current.size() != params.expected.size()) { return Internal("Mismatched buffer size: %d bytes vs. %d bytes", params.current.size(), params.expected.size()); } se::DeviceMemory<ElementT> current_typed(params.current); se::DeviceMemory<ElementT> expected_typed(params.expected); uint64_t buffer_size = current_typed.ElementCount(); TF_ASSIGN_OR_RETURN( ComparisonKernelT<ElementT> comparison_kernel, (se::TypedKernelFactory< se::DeviceMemory<ElementT>, se::DeviceMemory<ElementT>, float, uint64_t, se::DeviceMemory<uint64_t>>::Create(executor, kernel_name, kernel_symbol))); const se::DeviceDescription& gpu_device_info = executor->GetDeviceDescription(); LaunchDimensions dim = CalculateLaunchDimensions(*params.shape, gpu_device_info); se::DeviceMemory<uint64_t> as_uint64(out.memory()); TF_RETURN_IF_ERROR(params.stream->ThenLaunch( dim.thread_counts_per_block(), dim.block_counts(), comparison_kernel, current_typed, expected_typed, static_cast<float>(params.relative_tol), buffer_size, as_uint64)); uint64_t result = -1; CHECK_EQ(out.memory().size(), sizeof(result)); TF_RETURN_IF_ERROR( params.stream->Memcpy(&result, out.memory(), sizeof(result))); TF_RETURN_IF_ERROR(params.stream->BlockHostUntilDone()); return result == 0; } template <typename ElementType, typename ComparisonType> static absl::StatusOr<bool> HostCompare(const ComparisonParams& params) { int64_t n = params.current.size() / sizeof(ElementType); std::vector<ElementType> host_current(n), host_expected(n); TF_RETURN_IF_ERROR(params.stream->Memcpy(host_current.data(), params.current, params.current.size())); TF_RETURN_IF_ERROR(params.stream->Memcpy( host_expected.data(), params.expected, params.expected.size())); TF_RETURN_IF_ERROR(params.stream->BlockHostUntilDone()); const auto canonicalize = [](ComparisonType a) -> ComparisonType { if (std::is_same<ElementType, Eigen::half>::value && a) { constexpr ComparisonType kMaxFp16Value = 65505; if (std::isnan(a)) { return a; } return std::max(-kMaxFp16Value, std::min(a, kMaxFp16Value)); } return a; }; int differences_seen = 0; for (int64_t i = 0; i < n && differences_seen < 10; ++i) { auto current_value = static_cast<ComparisonType>(host_current[i]); auto expected_value = static_cast<ComparisonType>(host_expected[i]); ComparisonType current_value_canonical = canonicalize(current_value); ComparisonType expected_value_canonical = canonicalize(expected_value); if (std::isnan(current_value_canonical) && std::isnan(expected_value_canonical)) { continue; } if (std::isinf(current_value_canonical) && std::isinf(expected_value_canonical) && current_value_canonical == expected_value_canonical) { continue; } if (std::isfinite(current_value_canonical) != std::isfinite(expected_value_canonical) || !(std::abs(current_value_canonical - expected_value_canonical) / (std::max(std::abs(current_value_canonical), std::abs(expected_value_canonical)) + 1) < params.relative_tol)) { if (!params.verbose) return false; ++differences_seen; LOG(ERROR) << "Difference at " << i << ": " << current_value << ", expected " << expected_value; } } return differences_seen == 0; } template <typename ElementT, typename ComparisonT> static absl::StatusOr<bool> CompareEqualParameterized( std::string_view kernel_name, void* kernel_symbol, const ComparisonParams& params) { XLA_SCOPED_LOGGING_TIMER("BufferComparator::CompareEqual"); TF_ASSIGN_OR_RETURN( bool result, DeviceCompare<ElementT>(kernel_name, kernel_symbol, params)); if (result) { return true; } TF_ASSIGN_OR_RETURN(bool host_return, (HostCompare<ElementT, ComparisonT>(params))); CHECK_EQ(host_return, result) << "Host comparison succeeded even though GPU comparison failed."; return false; } absl::StatusOr<bool> BufferComparator::CompareEqual( se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected) const { ComparisonParams params{relative_tol_, verbose_, &shape_, stream, current, expected}; switch (shape_.element_type()) { #if GOOGLE_CUDA case xla::F8E4M3FN: return CompareEqualParameterized<tsl::float8_e4m3fn, float>( "fp8_e4m3fn_comparison", buffer_comparator::fp8_e4m3fn_comparison(), params); case xla::F8E5M2: return CompareEqualParameterized<tsl::float8_e5m2, float>( "fp8_e5m2_comparison", buffer_comparator::fp8_e5m2_comparison(), params); #endif #if TENSORFLOW_USE_ROCM && TF_ROCM_VERSION >= 60200 case xla::F8E4M3FNUZ: return CompareEqualParameterized<tsl::float8_e4m3fnuz, float>( "fp8_e4m3fnuz_comparison", buffer_comparator::fp8_e4m3fnuz_comparison(), params); case xla::F8E5M2FNUZ: return CompareEqualParameterized<tsl::float8_e5m2fnuz, float>( "fp8_e5m2fnuz_comparison", buffer_comparator::fp8_e5m2fnuz_comparison(), params); #endif case xla::F16: return CompareEqualParameterized<Eigen::half, float>( "fp16_comparison", buffer_comparator::fp16_comparison(), params); case xla::BF16: return CompareEqualParameterized<Eigen::bfloat16, float>( "bf16_comparison", buffer_comparator::bf16_comparison(), params); case xla::F32: return CompareEqualParameterized<float, float>( "fp32_comparison", buffer_comparator::fp32_comparison(), params); case xla::F64: return CompareEqualParameterized<double, double>( "fp64_comparison", buffer_comparator::fp64_comparison(), params); case xla::S8: return CompareEqualParameterized<int8_t, float>( "int8_comparison", buffer_comparator::int8_comparison(), params); case xla::S32: return CompareEqualParameterized<int32_t, float>( "int32_comparison", buffer_comparator::int32_comparison(), params); default: return Unimplemented("Unimplemented element type"); } } BufferComparator::BufferComparator(const Shape& shape, double tolerance, bool verbose) : shape_(shape), relative_tol_(tolerance), verbose_(verbose) { auto double_dim_size = [&]() { int64_t prev_zero_dim_size = shape_.dimensions(0); shape_.set_dimensions(0, prev_zero_dim_size * 2); }; if (shape_.element_type() == PrimitiveType::C64) { shape_.set_element_type(PrimitiveType::F32); double_dim_size(); } else if (shape_.element_type() == PrimitiveType::C128) { shape_.set_element_type(PrimitiveType::F64); double_dim_size(); } } } }
#include "xla/service/gpu/buffer_comparator.h" #include <cmath> #include <complex> #include <cstdint> #include <limits> #include <vector> #include "xla/primitive_util.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/types.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { constexpr double kDefaultTolerance = 0.1; class BufferComparatorTest : public testing::Test { protected: BufferComparatorTest() #if GOOGLE_CUDA : platform_(se::PlatformManager::PlatformWithName("CUDA").value()), #elif TENSORFLOW_USE_ROCM : platform_(se::PlatformManager::PlatformWithName("ROCM").value()), #endif stream_exec_(platform_->ExecutorForDevice(0).value()) { } template <typename ElementType> bool CompareEqualBuffers(const std::vector<ElementType>& current, const std::vector<ElementType>& expected, double tolerance) { auto stream = stream_exec_->CreateStream().value(); se::DeviceMemoryHandle current_buffer( stream_exec_, stream_exec_->AllocateArray<ElementType>(current.size())); se::DeviceMemoryHandle expected_buffer( stream_exec_, stream_exec_->AllocateArray<ElementType>(expected.size())); TF_CHECK_OK(stream->Memcpy(current_buffer.memory_ptr(), current.data(), current_buffer.memory().size())); TF_CHECK_OK(stream->Memcpy(expected_buffer.memory_ptr(), expected.data(), expected_buffer.memory().size())); TF_CHECK_OK(stream->BlockHostUntilDone()); BufferComparator comparator( ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<ElementType>(), {static_cast<int64_t>(current.size())}), tolerance); return comparator .CompareEqual(stream.get(), current_buffer.memory(), expected_buffer.memory()) .value(); } template <typename ElementType> bool CompareEqualFloatBuffers(const std::vector<float>& lhs_float, const std::vector<float>& rhs_float, double tolerance = kDefaultTolerance) { std::vector<ElementType> lhs(lhs_float.begin(), lhs_float.end()); std::vector<ElementType> rhs(rhs_float.begin(), rhs_float.end()); return CompareEqualBuffers(lhs, rhs, tolerance); } template <typename ElementType> bool CompareEqualComplex(const std::vector<std::complex<ElementType>>& lhs, const std::vector<std::complex<ElementType>>& rhs) { return CompareEqualBuffers<std::complex<ElementType>>(lhs, rhs, kDefaultTolerance); } se::Platform* platform_; se::StreamExecutor* stream_exec_; }; TEST_F(BufferComparatorTest, TestComplex) { EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 7}})); EXPECT_TRUE(CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2.2, 3.3}})); EXPECT_TRUE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2, 3}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 3}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 7}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 6}, {2, 3}})); EXPECT_TRUE(CompareEqualComplex<double>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2.2, 3.3}})); EXPECT_FALSE( CompareEqualComplex<double>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2, 7}})); } TEST_F(BufferComparatorTest, TestNaNs) { EXPECT_TRUE( CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {1.})); EXPECT_TRUE( CompareEqualFloatBuffers<float>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE( CompareEqualFloatBuffers<float>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({std::nanf("")}, {1.})); EXPECT_TRUE( CompareEqualFloatBuffers<double>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE( CompareEqualFloatBuffers<double>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({std::nanf("")}, {1.})); } TEST_F(BufferComparatorTest, TestInfs) { const auto inf = std::numeric_limits<float>::infinity(); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({inf}, {inf})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({inf}, {65504})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {-20})); #if GOOGLE_CUDA EXPECT_TRUE( CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {inf})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {448})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-448})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-20})); EXPECT_FALSE( CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {-inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {57344})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {-57344})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {-20})); #endif } TEST_F(BufferComparatorTest, TestNumbers) { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {101})); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({100}, {120})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {120}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({90}, {120}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({0}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({90}, {100})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {90})); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({-128}, {127})); #if GOOGLE_CUDA EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {30.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({11}, {12})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({12}, {11})); #endif const double tol = 0.001; EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({0.9}, {1}, tol)); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({0.9}, {0.901}, tol)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({10}, {10.1}, tol)); EXPECT_TRUE(CompareEqualFloatBuffers<float>({10}, {10.01}, tol)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({100}, {101}, tol)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {20.1}, tol)); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {20.01}, tol)); } TEST_F(BufferComparatorTest, TestMultiple) { { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<float>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<float>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<float>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<double>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<double>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<double>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({20, 30, 40, 50, 60}, {21, 31, 41, 51, 61})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } #if GOOGLE_CUDA { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } #endif } TEST_F(BufferComparatorTest, BF16) { const int element_count = 3123; int64_t rng_state = 0; auto stream = stream_exec_->CreateStream().value(); se::DeviceMemoryHandle lhs( stream_exec_, stream_exec_->AllocateArray<Eigen::bfloat16>(element_count)); InitializeBuffer(stream.get(), BF16, &rng_state, lhs.memory()); se::DeviceMemoryHandle rhs( stream_exec_, stream_exec_->AllocateArray<Eigen::bfloat16>(element_count)); InitializeBuffer(stream.get(), BF16, &rng_state, rhs.memory()); BufferComparator comparator(ShapeUtil::MakeShape(BF16, {element_count})); EXPECT_FALSE(comparator.CompareEqual(stream.get(), lhs.memory(), rhs.memory()) .value()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/buffer_comparator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/buffer_comparator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
321442fe-b4d4-4301-bf31-494056f960f8
cpp
tensorflow/tensorflow
host_callback
third_party/xla/xla/python/ifrt/host_callback.cc
third_party/xla/xla/pjrt/host_callback_test.cc
#include "xla/python/ifrt/host_callback.h" namespace xla { namespace ifrt { char HostCallback::ID = 0; char LoadedHostCallback::ID = 0; } }
#include "xla/pjrt/host_callback.h" #include <cstring> #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { class TestPjRtHostMemoryForDeviceManager : public PjRtHostMemoryForDeviceManager { public: ~TestPjRtHostMemoryForDeviceManager() override = default; absl::StatusOr<PjRtChunk> ToDeviceLayout(const void* src_data, size_t src_size, const Shape& host_shape, const Shape& device_shape) override { auto chunk = PjRtChunk::AllocateDefault(src_size); std::memcpy(chunk.data(), src_data, src_size); return chunk; } absl::Status ToHostLayout(const void* src_data, size_t src_size, const Shape& src_shape, void* dst_data, size_t dst_size, const Shape& dst_shape) override { CHECK_EQ(src_size, dst_size); std::memcpy(dst_data, src_data, src_size); return absl::OkStatus(); } }; class TestStream : public CopyToDeviceStream { public: TestStream(int64_t total_bytes, int64_t granule_bytes, PjRtChunk& chunk, absl::Notification& done) : CopyToDeviceStream(total_bytes, granule_bytes), chunk_(chunk), done_(done) {} PjRtFuture<> AddChunk(PjRtChunk chunk) override { CHECK(!done_.HasBeenNotified()); chunk_ = std::move(chunk); done_.Notify(); return PjRtFuture<>(absl::OkStatus()); } private: PjRtChunk& chunk_; absl::Notification& done_; }; TEST(HostCallbackTest, Basic) { HostCallback host_callback; Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); size_t byte_size = ShapeUtil::ByteSizeOf(shape); host_callback.operands = {HostCallbackArgInfo{1, shape}}; host_callback.results = {HostCallbackArgInfo{2, shape}}; host_callback.callback = [byte_size](void** outputs, void** inputs) { std::memcpy(outputs[0], inputs[0], byte_size); return absl::OkStatus(); }; HostCallbackStates states; auto& send_callbacks = states.send_callbacks.emplace_back(); auto& recv_callbacks = states.recv_callbacks.emplace_back(); TestPjRtHostMemoryForDeviceManager test_host_memory_for_device_manager; auto context = CreateHostCallbackStateAndAppendSendRecvCallbacks( std::move(host_callback), &test_host_memory_for_device_manager, send_callbacks, recv_callbacks, false); PjRtTransferMetadata metadata; metadata.device_shape = shape; auto literal = LiteralUtil::CreateR2({{1.0f, 2.0f}, {3.0f, 4.0f}}); auto chunk = PjRtChunk::AllocateDefault(byte_size); ASSERT_EQ(chunk.size(), literal.size_bytes()); std::memcpy(chunk.data(), literal.untyped_data(), literal.size_bytes()); TF_ASSERT_OK(context->OnSend(0, metadata, std::move(chunk))); PjRtChunk received_chunk; absl::Notification done; auto stream = std::make_unique<TestStream>(byte_size, 8, received_chunk, done); context->Receive(0, metadata, std::move(stream)); done.WaitForNotification(); BorrowingLiteral borrowing_literal( reinterpret_cast<const char*>(received_chunk.data()), shape); EXPECT_TRUE(LiteralTestUtil::Equal(literal, borrowing_literal)); } TEST(HostCallbackTest, NonBlockingRecv) { HostCallback host_callback; Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); size_t byte_size = ShapeUtil::ByteSizeOf(shape); host_callback.operands = {HostCallbackArgInfo{1, shape}}; host_callback.results = {HostCallbackArgInfo{2, shape}}; host_callback.callback = [byte_size](void** outputs, void** inputs) { std::memcpy(outputs[0], inputs[0], byte_size); return absl::OkStatus(); }; HostCallbackStates states; auto& send_callbacks = states.send_callbacks.emplace_back(); auto& recv_callbacks = states.recv_callbacks.emplace_back(); TestPjRtHostMemoryForDeviceManager test_host_memory_for_device_manager; auto context = CreateHostCallbackStateAndAppendSendRecvCallbacks( std::move(host_callback), &test_host_memory_for_device_manager, send_callbacks, recv_callbacks, false); PjRtTransferMetadata metadata; metadata.device_shape = shape; auto literal = LiteralUtil::CreateR2({{1.0f, 2.0f}, {3.0f, 4.0f}}); auto chunk = PjRtChunk::AllocateDefault(byte_size); ASSERT_EQ(chunk.size(), literal.size_bytes()); std::memcpy(chunk.data(), literal.untyped_data(), literal.size_bytes()); absl::Notification done; PjRtChunk received_chunk; auto stream = std::make_unique<TestStream>(byte_size, 8, received_chunk, done); context->Receive(0, metadata, std::move(stream)); TF_ASSERT_OK(context->OnSend(0, metadata, std::move(chunk))); done.WaitForNotification(); BorrowingLiteral borrowing_literal( reinterpret_cast<const char*>(received_chunk.data()), shape); EXPECT_TRUE(LiteralTestUtil::Equal(literal, borrowing_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/host_callback.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/host_callback_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e9777cc8-9c3a-4a56-9982-bde1e1df8706
cpp
google/arolla
compile_std_function_operator
arolla/expr/eval/compile_std_function_operator.cc
arolla/expr/eval/compile_std_function_operator_test.cc
#include "arolla/expr/eval/compile_std_function_operator.h" #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/eval/executable_builder.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operators/std_function_operator.h" #include "arolla/memory/frame.h" #include "arolla/qexpr/bound_operators.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { absl::Status CompileStdFunctionOperator( const expr_operators::StdFunctionOperator& std_function_op, absl::Span<const TypedSlot> input_slots, TypedSlot output_slot, ExecutableBuilder& executable_builder, ExprNodePtr node) { RETURN_IF_ERROR(ValidateDepsCount(std_function_op.signature(), input_slots.size(), absl::StatusCode::kFailedPrecondition)); auto fn = std_function_op.GetEvalFn(); int64_t ip = executable_builder.AddEvalOp( MakeBoundOperator([fn, output_slot, input_slots = std::vector(input_slots.begin(), input_slots.end())]( EvaluationContext* ctx, FramePtr frame) { std::vector<TypedRef> inputs; inputs.reserve(input_slots.size()); for (const auto input_slot : input_slots) { inputs.push_back(TypedRef::FromSlot(input_slot, frame)); } ASSIGN_OR_RETURN(auto res, fn(inputs), ctx->set_status(std::move(_))); if (res.GetType() != output_slot.GetType()) { ctx->set_status(absl::InvalidArgumentError(absl::StrFormat( "expected the result to have qtype %s, got %s", output_slot.GetType()->name(), res.GetType()->name()))); return; } ctx->set_status(res.CopyToSlot(output_slot, frame)); }), FormatOperatorCall(std_function_op.display_name(), input_slots, {output_slot}), std::string(std_function_op.display_name())); executable_builder.RegisterStacktrace(ip, node); return absl::OkStatus(); } }
#include <cstdint> #include <memory> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/invoke.h" #include "arolla/expr/eval/test_utils.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/expr/operators/std_function_operator.h" #include "arolla/memory/frame.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/testing/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::testing::TypedValueWith; using ::testing::AllOf; using ::testing::Eq; class StdFunctionOperatorTest : public ::testing::TestWithParam<DynamicEvaluationEngineOptions> { protected: DynamicEvaluationEngineOptions GetOptions() const { return GetParam(); } }; absl::StatusOr<TypedValue> Add(absl::Span<const TypedRef> inputs) { ASSIGN_OR_RETURN(int32_t x, inputs[0].As<int32_t>()); ASSIGN_OR_RETURN(int64_t y, inputs[1].As<int64_t>()); double z = 3.0; return TypedValue::FromValue(x + y + z); } INSTANTIATE_TEST_SUITE_P( GarbageCollection, StdFunctionOperatorTest, ::testing::Values( DynamicEvaluationEngineOptions{.collect_op_descriptions = true, .allow_overriding_input_slots = false}, DynamicEvaluationEngineOptions{.collect_op_descriptions = true, .allow_overriding_input_slots = true})); TEST_P(StdFunctionOperatorTest, SimpleFn) { auto op = std::make_shared<expr_operators::StdFunctionOperator>( "add", ExprOperatorSignature{{"x"}, {"y"}}, "dummy op docstring", [](absl::Span<const QTypePtr> input_qtypes) { return GetQType<double>(); }, Add); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op, {Leaf("x"), Leaf("y")})); FrameLayout::Builder layout_builder; expr::DynamicEvaluationEngineOptions options; options.collect_op_descriptions = true; auto x_slot = layout_builder.AddSlot<int32_t>(); auto y_slot = layout_builder.AddSlot<int64_t>(); EXPECT_THAT(expr::CompileAndBindForDynamicEvaluation( options, &layout_builder, expr, {{"x", TypedSlot::FromSlot(x_slot)}, {"y", TypedSlot::FromSlot(y_slot)}}), IsOkAndHolds(AllOf( InitOperationsAre(), EvalOperationsAre( "FLOAT64 [0x10] = add(INT32 [0x00], INT64 [0x08])")))); EXPECT_THAT(Invoke(expr, {{"x", TypedValue::FromValue(1)}, {"y", TypedValue::FromValue(int64_t{2})}}, GetOptions()), IsOkAndHolds(TypedValueWith<double>(Eq(6.0)))); } TEST_F(StdFunctionOperatorTest, StackTraceTest) { auto error_op = std::make_shared<expr_operators::StdFunctionOperator>( "error_op", ExprOperatorSignature{}, "dummy op docstring", [](absl::Span<const QTypePtr> input_qtypes) { return GetQType<double>(); }, [](absl::Span<const TypedRef> refs) -> absl::StatusOr<TypedValue> { return absl::InternalError("Error from StdFunctionOperator"); }); ASSERT_OK_AND_ASSIGN( auto error_lambda, MakeLambdaOperator("error_lambda", ExprOperatorSignature{}, CallOp(error_op, {}))); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(error_lambda, {})); FrameLayout::Builder layout_builder; expr::DynamicEvaluationEngineOptions options{.enable_expr_stack_trace = true}; EXPECT_THAT(expr::CompileAndBindForDynamicEvaluation(options, &layout_builder, expr, {}), StatusIs(absl::StatusCode::kInternal, "Error from StdFunctionOperator; " "during evaluation of operator error_op\n" "ORIGINAL NODE: error_lambda():FLOAT64\n" "COMPILED NODE: error_op():FLOAT64; while doing literal" " folding; while transforming error_lambda():FLOAT64")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/compile_std_function_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/compile_std_function_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
c721eaba-76e8-4a86-a444-76fea2575e91
cpp
tensorflow/tensorflow
custom_call_target_registry
third_party/xla/xla/service/custom_call_target_registry.cc
third_party/xla/xla/service/custom_call_target_registry_test.cc
#include "xla/service/custom_call_target_registry.h" #include <cstdlib> #include <iostream> #include <mutex> #include <string> #include <unordered_map> #include <utility> namespace xla { CustomCallTargetRegistry* CustomCallTargetRegistry::Global() { static auto* registry = new CustomCallTargetRegistry; return registry; } void CustomCallTargetRegistry::Register(const std::string& symbol, void* address, const std::string& platform) { std::lock_guard<std::mutex> lock(mu_); const auto [it, inserted] = registered_symbols_.insert({{symbol, platform}, address}); if (!inserted && it->second != address) { std::cerr << "Duplicate custom call registration detected for symbol \"" << symbol << "\" with different addresses " << address << "(current) and " << it->second << " (previous) on platform " << platform << "Rejecting the registration to avoid confusion about which " "symbol would actually get used at runtime.\n"; std::exit(1); } } void* CustomCallTargetRegistry::Lookup(const std::string& symbol, const std::string& platform) const { std::lock_guard<std::mutex> lock(mu_); auto it = registered_symbols_.find(std::make_pair(symbol, platform)); return it == registered_symbols_.end() ? nullptr : it->second; } std::unordered_map<std::string, void*> CustomCallTargetRegistry::registered_symbols( const std::string& platform) const { std::unordered_map<std::string, void*> calls; std::lock_guard<std::mutex> lock(mu_); for (const auto& [metadata, address] : registered_symbols_) { if (metadata.second == platform) { calls[metadata.first] = address; } } return calls; } }
#include "xla/service/custom_call_target_registry.h" #include "xla/service/custom_call_status.h" #include "xla/test.h" namespace xla { namespace { using ::testing::_; using ::testing::Pair; using ::testing::UnorderedElementsAre; void custom_call(void*, const void**, XlaCustomCallStatus*) {} void custom_call2(void*, const void**, XlaCustomCallStatus*) {} TEST(CustomCallRegistryTest, Registers) { CustomCallTargetRegistry registry; EXPECT_EQ(registry.Lookup("custom_call", "Host"), nullptr); registry.Register("custom_call", reinterpret_cast<void*>(custom_call), "Host"); EXPECT_EQ(custom_call, registry.Lookup("custom_call", "Host")); registry.Register("custom_call2", reinterpret_cast<void*>(&custom_call), "Host"); EXPECT_EQ(registry.Lookup("custom_call", "CUDA"), nullptr); registry.Register("custom_call", reinterpret_cast<void*>(custom_call), "CUDA"); EXPECT_EQ(custom_call, registry.Lookup("custom_call", "CUDA")); registry.Register("custom_call", reinterpret_cast<void*>(custom_call), "Host"); EXPECT_THAT( registry.registered_symbols("Host"), UnorderedElementsAre(Pair("custom_call", _), Pair("custom_call2", _))); EXPECT_THAT(registry.registered_symbols("CUDA"), UnorderedElementsAre(Pair("custom_call", _))); } TEST(CustomCallRegistryDeathTest, RejectsDuplicateRegistrations) { CustomCallTargetRegistry registry; registry.Register("custom_call", reinterpret_cast<void*>(custom_call), "Host"); EXPECT_DEATH(registry.Register("custom_call", reinterpret_cast<void*>(custom_call2), "Host"), "Duplicate custom call"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/custom_call_target_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/custom_call_target_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a907909a-7bf7-4305-a605-0a452f58af0a
cpp
tensorflow/tensorflow
sampling_dataset_op
tensorflow/core/kernels/data/experimental/sampling_dataset_op.cc
tensorflow/core/kernels/data/experimental/sampling_dataset_op_test.cc
#include "tensorflow/core/kernels/data/experimental/sampling_dataset_op.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/random/philox_random.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/random/random_distributions.h" #include "tensorflow/core/lib/random/simple_philox.h" namespace tensorflow { namespace data { namespace experimental { constexpr const char* const SamplingDatasetOp::kDatasetType; constexpr const char* const SamplingDatasetOp::kInputDataset; constexpr const char* const SamplingDatasetOp::kRate; constexpr const char* const SamplingDatasetOp::kSeed; constexpr const char* const SamplingDatasetOp::kSeed2; constexpr const char* const SamplingDatasetOp::kOutputTypes; constexpr const char* const SamplingDatasetOp::kOutputShapes; class SamplingDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, float rate, int64_t seed, int64_t seed2, const DatasetBase* input) : DatasetBase(DatasetContext(ctx)), rate_(rate), seeds_(seed, seed2), input_(input) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::unique_ptr<IteratorBase>( new Iterator({this, name_utils::IteratorPrefix(kDatasetType, prefix)}, seeds_.first, seeds_.second)); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return input_->output_shapes(); } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* rate = nullptr; Node* seed = nullptr; Node* seed2 = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(rate_, &rate)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.first, &seed)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.second, &seed2)); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, rate, seed, seed2}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params, int64_t seed, int64_t seed2) : DatasetIterator<Dataset>(params), seeds_(MaybeOverrideSeeds({seed, seed2})), parent_generator_(seeds_.first, seeds_.second), generator_(&parent_generator_) {} Status Initialize(IteratorContext* ctx) override { return dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { bool rand_val_hit; do { { tf_shared_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR( input_impl_->GetNext(ctx, out_tensors, end_of_sequence)); } if (*end_of_sequence) { mutex_lock l(mu_); input_impl_.reset(); return absl::OkStatus(); } float rand_val = Random(); rand_val_hit = rand_val < dataset()->rate_; if (!rand_val_hit) { out_tensors->clear(); } } while (!rand_val_hit); *end_of_sequence = false; return absl::OkStatus(); } protected: void ResetRngs() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { parent_generator_ = random::PhiloxRandom(seeds_.first, seeds_.second); generator_ = random::SingleSampleAdapter<random::PhiloxRandom>(&parent_generator_); generator_.Skip(num_random_samples_); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar( this->full_name("num_random_samples"), num_random_samples_)); TF_RETURN_IF_ERROR( writer->WriteScalar(this->full_name("seed"), seeds_.first)); TF_RETURN_IF_ERROR( writer->WriteScalar(this->full_name("seed2"), seeds_.second)); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } else { TF_RETURN_IF_ERROR( writer->WriteScalar(full_name("input_impl_empty"), "")); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(reader->ReadScalar( this->full_name("num_random_samples"), &num_random_samples_)); int64_t seed; TF_RETURN_IF_ERROR(reader->ReadScalar(this->full_name("seed"), &seed)); int64_t seed2; TF_RETURN_IF_ERROR(reader->ReadScalar(this->full_name("seed2"), &seed2)); seeds_ = {seed, seed2}; ResetRngs(); if (!reader->Contains(full_name("input_impl_empty"))) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } return absl::OkStatus(); } mutex mu_; std::pair<int64_t, int64_t> seeds_ TF_GUARDED_BY(mu_); private: std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); float Random() { mutex_lock l(mu_); num_random_samples_++; uint32 random_uint = generator_(); return random::Uint32ToFloat(random_uint); } random::PhiloxRandom parent_generator_ TF_GUARDED_BY(mu_); random::SingleSampleAdapter<random::PhiloxRandom> generator_ TF_GUARDED_BY(mu_); int64_t num_random_samples_ TF_GUARDED_BY(mu_) = 0; }; const float rate_; const std::pair<int64_t, int64_t> seeds_; const DatasetBase* const input_; }; SamplingDatasetOp::SamplingDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void SamplingDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { float rate; int64_t seed; int64_t seed2; OP_REQUIRES_OK(ctx, ParseScalarArgument<float>(ctx, kRate, &rate)); OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed, &seed)); OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed2, &seed2)); *output = new Dataset(ctx, rate, seed, seed2, input); } namespace { REGISTER_KERNEL_BUILDER(Name("SamplingDataset").Device(DEVICE_CPU), SamplingDatasetOp); } } } }
#include "tensorflow/core/kernels/data/experimental/sampling_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace experimental { namespace { constexpr char kNodeName[] = "sampling_dataset"; constexpr int64_t kRandomSeed = 42; constexpr int64_t kRandomSeed2 = 7; class SamplingDatasetParams : public DatasetParams { public: template <typename T> SamplingDatasetParams(T input_dataset_params, float rate, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), rate_(rate) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { Tensor rate = CreateTensor<float>(TensorShape({}), {rate_}); Tensor seed_tensor = CreateTensor<int64_t>(TensorShape({}), {seed_tensor_}); Tensor seed2_tensor = CreateTensor<int64_t>(TensorShape({}), {seed2_tensor_}); return {rate, seed_tensor, seed2_tensor}; } Status GetInputNames(std::vector<string>* input_names) const override { *input_names = {SamplingDatasetOp::kInputDataset, SamplingDatasetOp::kRate, SamplingDatasetOp::kSeed, SamplingDatasetOp::kSeed2}; return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{SamplingDatasetOp::kOutputTypes, output_dtypes_}, {SamplingDatasetOp::kOutputShapes, output_shapes_}}; return absl::OkStatus(); } string dataset_type() const override { return SamplingDatasetOp::kDatasetType; } private: float rate_; int64_t seed_tensor_ = kRandomSeed; int64_t seed2_tensor_ = kRandomSeed2; }; class SamplingDatasetOpTest : public DatasetOpsTestBase {}; SamplingDatasetParams OneHundredPercentSampleParams() { return SamplingDatasetParams(RangeDatasetParams(0, 3, 1), 1.0, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } SamplingDatasetParams TenPercentSampleParams() { return SamplingDatasetParams(RangeDatasetParams(0, 20, 1), 0.1, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } SamplingDatasetParams ZeroPercentSampleParams() { return SamplingDatasetParams(RangeDatasetParams(0, 20, 1), 0.0, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } std::vector<GetNextTestCase<SamplingDatasetParams>> GetNextTestCases() { return { {OneHundredPercentSampleParams(), CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}, {TenPercentSampleParams(), CreateTensors<int64_t>(TensorShape({}), {{9}, {11}, {19}})}, {ZeroPercentSampleParams(), {}}}; } ITERATOR_GET_NEXT_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, GetNextTestCases()) std::vector<DatasetNodeNameTestCase<SamplingDatasetParams>> DatasetNodeNameTestCases() { return {{TenPercentSampleParams(), kNodeName}}; } DATASET_NODE_NAME_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, DatasetNodeNameTestCases()) std::vector<DatasetTypeStringTestCase<SamplingDatasetParams>> DatasetTypeStringTestCases() { return {{TenPercentSampleParams(), name_utils::OpName( SamplingDatasetOp::kDatasetType)}}; } DATASET_TYPE_STRING_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, DatasetTypeStringTestCases()) std::vector<DatasetOutputDtypesTestCase<SamplingDatasetParams>> DatasetOutputDtypesTestCases() { return {{TenPercentSampleParams(), {DT_INT64}}}; } DATASET_OUTPUT_DTYPES_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, DatasetOutputDtypesTestCases()) std::vector<DatasetOutputShapesTestCase<SamplingDatasetParams>> DatasetOutputShapesTestCases() { return {{TenPercentSampleParams(), {PartialTensorShape({})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<SamplingDatasetParams>> CardinalityTestCases() { return {{OneHundredPercentSampleParams(), kUnknownCardinality}, {TenPercentSampleParams(), kUnknownCardinality}, {ZeroPercentSampleParams(), kUnknownCardinality}}; } DATASET_CARDINALITY_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, CardinalityTestCases()) std::vector<IteratorOutputDtypesTestCase<SamplingDatasetParams>> IteratorOutputDtypesTestCases() { return {{TenPercentSampleParams(), {DT_INT64}}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, IteratorOutputDtypesTestCases()) std::vector<IteratorOutputShapesTestCase<SamplingDatasetParams>> IteratorOutputShapesTestCases() { return {{TenPercentSampleParams(), {PartialTensorShape({})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, IteratorOutputShapesTestCases()) std::vector<IteratorPrefixTestCase<SamplingDatasetParams>> IteratorOutputPrefixTestCases() { return {{TenPercentSampleParams(), name_utils::IteratorPrefix( SamplingDatasetOp::kDatasetType, TenPercentSampleParams().iterator_prefix())}}; } ITERATOR_PREFIX_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, IteratorOutputPrefixTestCases()) std::vector<IteratorSaveAndRestoreTestCase<SamplingDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{OneHundredPercentSampleParams(), {0, 2, 5}, CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}, {TenPercentSampleParams(), {0, 2, 5}, CreateTensors<int64_t>(TensorShape({}), {{9}, {11}, {19}})}, {ZeroPercentSampleParams(), {0, 2, 5}, {}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(SamplingDatasetOpTest, SamplingDatasetParams, IteratorSaveAndRestoreTestCases()) } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/sampling_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/sampling_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
af3cb316-da96-4619-8d4c-eff187dc6413
cpp
google/quiche
hpack_decoder_string_buffer
quiche/http2/hpack/decoder/hpack_decoder_string_buffer.cc
quiche/http2/hpack/decoder/hpack_decoder_string_buffer_test.cc
#include "quiche/http2/hpack/decoder/hpack_decoder_string_buffer.h" #include <ostream> #include <string> #include <utility> #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { std::ostream& operator<<(std::ostream& out, const HpackDecoderStringBuffer::State v) { switch (v) { case HpackDecoderStringBuffer::State::RESET: return out << "RESET"; case HpackDecoderStringBuffer::State::COLLECTING: return out << "COLLECTING"; case HpackDecoderStringBuffer::State::COMPLETE: return out << "COMPLETE"; } int unknown = static_cast<int>(v); QUICHE_BUG(http2_bug_50_1) << "Invalid HpackDecoderStringBuffer::State: " << unknown; return out << "HpackDecoderStringBuffer::State(" << unknown << ")"; } std::ostream& operator<<(std::ostream& out, const HpackDecoderStringBuffer::Backing v) { switch (v) { case HpackDecoderStringBuffer::Backing::RESET: return out << "RESET"; case HpackDecoderStringBuffer::Backing::UNBUFFERED: return out << "UNBUFFERED"; case HpackDecoderStringBuffer::Backing::BUFFERED: return out << "BUFFERED"; } auto v2 = static_cast<int>(v); QUICHE_BUG(http2_bug_50_2) << "Invalid HpackDecoderStringBuffer::Backing: " << v2; return out << "HpackDecoderStringBuffer::Backing(" << v2 << ")"; } HpackDecoderStringBuffer::HpackDecoderStringBuffer() : remaining_len_(0), is_huffman_encoded_(false), state_(State::RESET), backing_(Backing::RESET) {} HpackDecoderStringBuffer::~HpackDecoderStringBuffer() = default; void HpackDecoderStringBuffer::Reset() { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::Reset"; state_ = State::RESET; } void HpackDecoderStringBuffer::OnStart(bool huffman_encoded, size_t len) { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer::OnStart"; QUICHE_DCHECK_EQ(state_, State::RESET); remaining_len_ = len; is_huffman_encoded_ = huffman_encoded; state_ = State::COLLECTING; if (huffman_encoded) { decoder_.Reset(); buffer_.clear(); backing_ = Backing::BUFFERED; len = len * 8 / 5; if (buffer_.capacity() < len) { buffer_.reserve(len); } } else { backing_ = Backing::RESET; value_ = absl::string_view(); } } bool HpackDecoderStringBuffer::OnData(const char* data, size_t len) { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer::OnData state=" << state_ << ", backing=" << backing_; QUICHE_DCHECK_EQ(state_, State::COLLECTING); QUICHE_DCHECK_LE(len, remaining_len_); remaining_len_ -= len; if (is_huffman_encoded_) { QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); return decoder_.Decode(absl::string_view(data, len), &buffer_); } if (backing_ == Backing::RESET) { if (remaining_len_ == 0) { value_ = absl::string_view(data, len); backing_ = Backing::UNBUFFERED; return true; } backing_ = Backing::BUFFERED; buffer_.reserve(remaining_len_ + len); buffer_.assign(data, len); return true; } QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); buffer_.append(data, len); return true; } bool HpackDecoderStringBuffer::OnEnd() { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer::OnEnd"; QUICHE_DCHECK_EQ(state_, State::COLLECTING); QUICHE_DCHECK_EQ(0u, remaining_len_); if (is_huffman_encoded_) { QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); if (!decoder_.InputProperlyTerminated()) { return false; } value_ = buffer_; } else if (backing_ == Backing::BUFFERED) { value_ = buffer_; } state_ = State::COMPLETE; return true; } void HpackDecoderStringBuffer::BufferStringIfUnbuffered() { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::BufferStringIfUnbuffered state=" << state_ << ", backing=" << backing_; if (state_ != State::RESET && backing_ == Backing::UNBUFFERED) { QUICHE_DVLOG(2) << "HpackDecoderStringBuffer buffering std::string of length " << value_.size(); buffer_.assign(value_.data(), value_.size()); if (state_ == State::COMPLETE) { value_ = buffer_; } backing_ = Backing::BUFFERED; } } bool HpackDecoderStringBuffer::IsBuffered() const { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::IsBuffered"; return state_ != State::RESET && backing_ == Backing::BUFFERED; } size_t HpackDecoderStringBuffer::BufferedLength() const { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::BufferedLength"; return IsBuffered() ? buffer_.size() : 0; } absl::string_view HpackDecoderStringBuffer::str() const { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::str"; QUICHE_DCHECK_EQ(state_, State::COMPLETE); return value_; } absl::string_view HpackDecoderStringBuffer::GetStringIfComplete() const { if (state_ != State::COMPLETE) { return {}; } return str(); } std::string HpackDecoderStringBuffer::ReleaseString() { QUICHE_DVLOG(3) << "HpackDecoderStringBuffer::ReleaseString"; QUICHE_DCHECK_EQ(state_, State::COMPLETE); QUICHE_DCHECK_EQ(backing_, Backing::BUFFERED); if (state_ == State::COMPLETE) { state_ = State::RESET; if (backing_ == Backing::BUFFERED) { return std::move(buffer_); } else { return std::string(value_); } } return ""; } void HpackDecoderStringBuffer::OutputDebugStringTo(std::ostream& out) const { out << "{state=" << state_; if (state_ != State::RESET) { out << ", backing=" << backing_; out << ", remaining_len=" << remaining_len_; out << ", is_huffman_encoded=" << is_huffman_encoded_; if (backing_ == Backing::BUFFERED) { out << ", buffer: " << buffer_; } else { out << ", value: " << value_; } } out << "}"; } std::ostream& operator<<(std::ostream& out, const HpackDecoderStringBuffer& v) { v.OutputDebugStringTo(out); return out; } }
#include "quiche/http2/hpack/decoder/hpack_decoder_string_buffer.h" #include <initializer_list> #include <sstream> #include <string> #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::AssertionResult; using ::testing::AssertionSuccess; using ::testing::HasSubstr; namespace http2 { namespace test { namespace { class HpackDecoderStringBufferTest : public quiche::test::QuicheTest { protected: typedef HpackDecoderStringBuffer::State State; typedef HpackDecoderStringBuffer::Backing Backing; State state() const { return buf_.state_for_testing(); } Backing backing() const { return buf_.backing_for_testing(); } AssertionResult VerifyLogHasSubstrs(std::initializer_list<std::string> strs) { QUICHE_VLOG(1) << buf_; std::ostringstream ss; buf_.OutputDebugStringTo(ss); std::string dbg_str(ss.str()); for (const auto& expected : strs) { HTTP2_VERIFY_TRUE(absl::StrContains(dbg_str, expected)); } return AssertionSuccess(); } HpackDecoderStringBuffer buf_; }; TEST_F(HpackDecoderStringBufferTest, PlainWhole) { absl::string_view data("some text."); QUICHE_LOG(INFO) << buf_; EXPECT_EQ(state(), State::RESET); buf_.OnStart( false, data.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::RESET); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(data.data(), data.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::UNBUFFERED); EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::UNBUFFERED); EXPECT_EQ(0u, buf_.BufferedLength()); EXPECT_TRUE(VerifyLogHasSubstrs( {"state=COMPLETE", "backing=UNBUFFERED", "value: some text."})); EXPECT_EQ(data.data(), buf_.str().data()); buf_.BufferStringIfUnbuffered(); QUICHE_LOG(INFO) << buf_; EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); EXPECT_EQ(data, buf_.str()); EXPECT_NE(data.data(), buf_.str().data()); EXPECT_TRUE(VerifyLogHasSubstrs( {"state=COMPLETE", "backing=BUFFERED", "buffer: some text."})); } TEST_F(HpackDecoderStringBufferTest, PlainSplit) { absl::string_view data("some text."); absl::string_view part1 = data.substr(0, 1); absl::string_view part2 = data.substr(1); EXPECT_EQ(state(), State::RESET); buf_.OnStart( false, data.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::RESET); EXPECT_TRUE(buf_.OnData(part1.data(), part1.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), part1.size()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(part2.data(), part2.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); QUICHE_LOG(INFO) << buf_; absl::string_view buffered = buf_.str(); EXPECT_EQ(data, buffered); EXPECT_NE(data.data(), buffered.data()); buf_.BufferStringIfUnbuffered(); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), data.size()); EXPECT_EQ(buffered, buf_.str()); EXPECT_EQ(buffered.data(), buf_.str().data()); } TEST_F(HpackDecoderStringBufferTest, HuffmanWhole) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("f1e3c2e5f23a6ba0ab90f4ff", &encoded)); absl::string_view decoded("www.example.com"); EXPECT_EQ(state(), State::RESET); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_TRUE(buf_.OnData(encoded.data(), encoded.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), decoded.size()); EXPECT_EQ(decoded, buf_.str()); EXPECT_TRUE(VerifyLogHasSubstrs( {"{state=COMPLETE", "backing=BUFFERED", "buffer: www.example.com}"})); std::string s = buf_.ReleaseString(); EXPECT_EQ(s, decoded); EXPECT_EQ(state(), State::RESET); } TEST_F(HpackDecoderStringBufferTest, HuffmanSplit) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("f1e3c2e5f23a6ba0ab90f4ff", &encoded)); std::string part1 = encoded.substr(0, 5); std::string part2 = encoded.substr(5); absl::string_view decoded("www.example.com"); EXPECT_EQ(state(), State::RESET); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(0u, buf_.BufferedLength()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(part1.data(), part1.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_GT(buf_.BufferedLength(), 0u); EXPECT_LT(buf_.BufferedLength(), decoded.size()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnData(part2.data(), part2.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), decoded.size()); QUICHE_LOG(INFO) << buf_; EXPECT_TRUE(buf_.OnEnd()); EXPECT_EQ(state(), State::COMPLETE); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_EQ(buf_.BufferedLength(), decoded.size()); EXPECT_EQ(decoded, buf_.str()); QUICHE_LOG(INFO) << buf_; buf_.Reset(); EXPECT_EQ(state(), State::RESET); QUICHE_LOG(INFO) << buf_; } TEST_F(HpackDecoderStringBufferTest, InvalidHuffmanOnData) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("ffffffff", &encoded)); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_FALSE(buf_.OnData(encoded.data(), encoded.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); QUICHE_LOG(INFO) << buf_; } TEST_F(HpackDecoderStringBufferTest, InvalidHuffmanOnEnd) { std::string encoded; ASSERT_TRUE(absl::HexStringToBytes("00", &encoded)); buf_.OnStart( true, encoded.size()); EXPECT_EQ(state(), State::COLLECTING); EXPECT_TRUE(buf_.OnData(encoded.data(), encoded.size())); EXPECT_EQ(state(), State::COLLECTING); EXPECT_EQ(backing(), Backing::BUFFERED); EXPECT_FALSE(buf_.OnEnd()); QUICHE_LOG(INFO) << buf_; } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder_string_buffer.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder_string_buffer_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
753e4b82-adbd-4336-a554-86e584815eb5
cpp
google/tensorstore
btree
tensorstore/kvstore/ocdbt/format/btree.cc
tensorstore/kvstore/ocdbt/format/btree_test.cc
#include "tensorstore/kvstore/ocdbt/format/btree.h" #include <algorithm> #include <cassert> #include <cstring> #include <limits> #include <memory> #include <ostream> #include <string> #include <string_view> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/reader.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/kvstore/ocdbt/format/btree_codec.h" #include "tensorstore/kvstore/ocdbt/format/codec_util.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/kvstore/ocdbt/format/data_file_id_codec.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference_codec.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_ocdbt { namespace { bool ReadKeyPrefixLengths(riegeli::Reader& reader, span<KeyLength> prefix_lengths, KeyLength& common_prefix_length) { KeyLength min_prefix_length = kMaxKeyLength; for (auto& prefix_length : prefix_lengths) { if (!KeyLengthCodec{}(reader, prefix_length)) return false; min_prefix_length = std::min(min_prefix_length, prefix_length); } common_prefix_length = min_prefix_length; return true; } bool ReadKeySuffixLengths(riegeli::Reader& reader, span<KeyLength> suffix_lengths) { for (auto& length : suffix_lengths) { if (!KeyLengthCodec{}(reader, length)) return false; } return true; } template <typename Entry> bool ReadKeys(riegeli::Reader& reader, std::string_view& common_prefix, BtreeNode::KeyBuffer& key_buffer, span<Entry> entries) { const size_t num_entries = entries.size(); KeyLength common_prefix_length; std::vector<KeyLength> key_length_buffer(num_entries * 2); span<KeyLength> prefix_lengths(key_length_buffer.data(), num_entries); span<KeyLength> suffix_lengths(key_length_buffer.data() + num_entries, num_entries); if (!ReadKeyPrefixLengths(reader, prefix_lengths.subspan(1), common_prefix_length)) { return false; } if (!ReadKeySuffixLengths(reader, suffix_lengths)) return false; if constexpr (std::is_same_v<Entry, InteriorNodeEntry>) { for (auto& entry : entries) { if (!KeyLengthCodec{}(reader, entry.subtree_common_prefix_length)) { return false; } common_prefix_length = std::min(common_prefix_length, entry.subtree_common_prefix_length); } } common_prefix_length = std::min(suffix_lengths[0], common_prefix_length); size_t key_buffer_size = common_prefix_length; for (size_t i = 0, prev_length = 0; i < num_entries; ++i) { size_t prefix_length = prefix_lengths[i]; if (prefix_length > prev_length) { reader.Fail(absl::DataLossError(absl::StrFormat( "Child %d: Prefix length of %d exceeds previous key length %d", i, prefix_length, prev_length))); return false; } size_t suffix_length = suffix_lengths[i]; size_t key_length = prefix_length + suffix_length; if (key_length > kMaxKeyLength) { reader.Fail(absl::DataLossError( absl::StrFormat("Child %d: Key length %d exceeds limit of %d", i, key_length, kMaxKeyLength))); return false; } if constexpr (std::is_same_v<Entry, InteriorNodeEntry>) { auto& entry = entries[i]; if (entry.subtree_common_prefix_length > key_length) { reader.Fail(absl::DataLossError(absl::StrFormat( "Key %d: subtree common prefix length of %d exceeds key length of " "%d", i, entry.subtree_common_prefix_length, key_length))); return false; } assert(entry.subtree_common_prefix_length >= common_prefix_length); entry.subtree_common_prefix_length -= common_prefix_length; } prev_length = key_length; key_buffer_size += key_length - common_prefix_length; } key_buffer = BtreeNode::KeyBuffer(key_buffer_size); char* key_buffer_ptr = key_buffer.data.get(); const auto append_key_data = [&](auto... parts) { std::string_view s(key_buffer_ptr, (parts.size() + ...)); (static_cast<void>(std::memcpy(key_buffer_ptr, parts.data(), parts.size()), key_buffer_ptr += parts.size()), ...); return s; }; { size_t key_length = suffix_lengths[0]; if (!reader.Pull(key_length)) return false; auto full_first_key = append_key_data(std::string_view(reader.cursor(), key_length)); common_prefix = full_first_key.substr(0, common_prefix_length); entries[0].key = full_first_key.substr(common_prefix_length); reader.move_cursor(key_length); } for (size_t i = 1; i < num_entries; ++i) { size_t prefix_length = prefix_lengths[i] - common_prefix_length; size_t suffix_length = suffix_lengths[i]; if (!reader.Pull(suffix_length)) return false; auto prev_key = std::string_view(entries[i - 1].key); auto suffix = std::string_view(reader.cursor(), suffix_length); if (prev_key.substr(prefix_length) >= suffix) { reader.Fail(absl::DataLossError("Invalid key order")); return false; } entries[i].key = append_key_data(prev_key.substr(0, prefix_length), suffix); reader.move_cursor(suffix_length); } return true; } template <typename Entry> bool ReadBtreeNodeEntries(riegeli::Reader& reader, const DataFileTable& data_file_table, uint64_t num_entries, BtreeNode& node) { auto& entries = node.entries.emplace<std::vector<Entry>>(); entries.resize(num_entries); if (!ReadKeys<Entry>(reader, node.key_prefix, node.key_buffer, entries)) { return false; } if constexpr (std::is_same_v<Entry, InteriorNodeEntry>) { return BtreeNodeReferenceArrayCodec{data_file_table, [](auto& entry) -> decltype(auto) { return (entry.node); }}(reader, entries); } else { return LeafNodeValueReferenceArrayCodec{data_file_table, [](auto& entry) -> decltype(auto) { return (entry.value_reference); }}(reader, entries); } } } Result<BtreeNode> DecodeBtreeNode(const absl::Cord& encoded, const BasePath& base_path) { BtreeNode node; auto status = DecodeWithOptionalCompression( encoded, kBtreeNodeMagic, kBtreeNodeFormatVersion, [&](riegeli::Reader& reader, uint32_t version) -> bool { if (!reader.ReadByte(node.height)) return false; DataFileTable data_file_table; if (!ReadDataFileTable(reader, base_path, data_file_table)) { return false; } uint32_t num_entries; if (!ReadVarintChecked(reader, num_entries)) return false; if (num_entries == 0) { reader.Fail(absl::DataLossError("Empty b-tree node")); return false; } if (num_entries > kMaxNodeArity) { reader.Fail(absl::DataLossError(absl::StrFormat( "B-tree node has arity %d, which exceeds limit of %d", num_entries, kMaxNodeArity))); return false; } if (node.height == 0) { return ReadBtreeNodeEntries<LeafNodeEntry>(reader, data_file_table, num_entries, node); } else { return ReadBtreeNodeEntries<InteriorNodeEntry>( reader, data_file_table, num_entries, node); } }); if (!status.ok()) { return tensorstore::MaybeAnnotateStatus(status, "Error decoding b-tree node"); } #ifndef NDEBUG CheckBtreeNodeInvariants(node); #endif return node; } absl::Status ValidateBtreeNodeReference(const BtreeNode& node, BtreeNodeHeight height, std::string_view inclusive_min_key) { if (node.height != height) { return absl::DataLossError(absl::StrFormat( "Expected height of %d but received: %d", height, node.height)); } return std::visit( [&](auto& entries) { if (ComparePrefixedKeyToUnprefixedKey{node.key_prefix}( entries.front().key, inclusive_min_key) < 0) { return absl::DataLossError( tensorstore::StrCat("First key ", tensorstore::QuoteString(tensorstore::StrCat( node.key_prefix, entries.front().key)), " is less than inclusive_min ", tensorstore::QuoteString(inclusive_min_key), " specified by parent node")); } return absl::OkStatus(); }, node.entries); } bool operator==(const BtreeNodeStatistics& a, const BtreeNodeStatistics& b) { return a.num_indirect_value_bytes == b.num_indirect_value_bytes && a.num_tree_bytes == b.num_tree_bytes && a.num_keys == b.num_keys; } std::ostream& operator<<(std::ostream& os, const BtreeNodeStatistics& x) { return os << "{num_indirect_value_bytes=" << x.num_indirect_value_bytes << ", num_tree_bytes=" << x.num_tree_bytes << ", num_keys=" << x.num_keys << "}"; } BtreeNodeStatistics& BtreeNodeStatistics::operator+=( const BtreeNodeStatistics& other) { num_indirect_value_bytes = internal::AddSaturate( num_indirect_value_bytes, other.num_indirect_value_bytes); num_tree_bytes = internal::AddSaturate(num_tree_bytes, other.num_tree_bytes); num_keys = internal::AddSaturate(num_keys, other.num_keys); return *this; } bool operator==(const LeafNodeEntry& a, const LeafNodeEntry& b) { return a.key == b.key && a.value_reference == b.value_reference; } std::ostream& operator<<(std::ostream& os, const LeafNodeValueReference& x) { if (auto* value = std::get_if<absl::Cord>(&x)) { return os << tensorstore::QuoteString(std::string(*value)); } else { return os << std::get<IndirectDataReference>(x); } } std::ostream& operator<<(std::ostream& os, const LeafNodeEntry& e) { return os << "{key=" << tensorstore::QuoteString(e.key) << ", value_reference=" << e.value_reference << "}"; } bool operator==(const BtreeNodeReference& a, const BtreeNodeReference& b) { return a.location == b.location && a.statistics == b.statistics; } std::ostream& operator<<(std::ostream& os, const BtreeNodeReference& x) { return os << "{location=" << x.location << ", statistics=" << x.statistics << "}"; } std::ostream& operator<<(std::ostream& os, const InteriorNodeEntry& e) { return os << "{key=" << tensorstore::QuoteString(e.key) << ", subtree_common_prefix_length=" << e.subtree_common_prefix_length << ", node=" << e.node << "}"; } const LeafNodeEntry* FindBtreeEntry(span<const LeafNodeEntry> entries, std::string_view key) { const LeafNodeEntry* entry = FindBtreeEntryLowerBound(entries, key); if (entry == entries.data() + entries.size() || entry->key != key) { return nullptr; } return entry; } const LeafNodeEntry* FindBtreeEntryLowerBound(span<const LeafNodeEntry> entries, std::string_view inclusive_min) { return std::lower_bound( entries.data(), entries.data() + entries.size(), inclusive_min, [](const LeafNodeEntry& entry, std::string_view inclusive_min) { return entry.key < inclusive_min; }); } span<const LeafNodeEntry> FindBtreeEntryRange(span<const LeafNodeEntry> entries, std::string_view inclusive_min, std::string_view exclusive_max) { const LeafNodeEntry* lower = FindBtreeEntryLowerBound(entries, inclusive_min); const LeafNodeEntry* upper = entries.data() + entries.size(); if (!exclusive_max.empty()) { upper = std::lower_bound( lower, upper, exclusive_max, [](const LeafNodeEntry& entry, std::string_view exclusive_max) { return entry.key < exclusive_max; }); } return {lower, upper}; } const InteriorNodeEntry* FindBtreeEntry(span<const InteriorNodeEntry> entries, std::string_view key) { auto it = std::lower_bound( entries.data(), entries.data() + entries.size(), key, [](const InteriorNodeEntry& entry, std::string_view inclusive_min) { return entry.key <= inclusive_min; }); if (it == entries.data()) { return nullptr; } return it - 1; } const InteriorNodeEntry* FindBtreeEntryLowerBound( span<const InteriorNodeEntry> entries, std::string_view inclusive_min) { auto it = std::lower_bound( entries.data(), entries.data() + entries.size(), inclusive_min, [](const InteriorNodeEntry& entry, std::string_view inclusive_min) { return entry.key <= inclusive_min; }); if (it != entries.data()) --it; return it; } span<const InteriorNodeEntry> FindBtreeEntryRange( span<const InteriorNodeEntry> entries, std::string_view inclusive_min, std::string_view exclusive_max) { const InteriorNodeEntry* lower = FindBtreeEntryLowerBound(entries, inclusive_min); const InteriorNodeEntry* upper = entries.data() + entries.size(); if (!exclusive_max.empty()) { upper = std::lower_bound( lower, upper, exclusive_max, [](const InteriorNodeEntry& entry, std::string_view exclusive_max) { return entry.key < exclusive_max; }); } return {lower, upper}; } #ifndef NDEBUG void CheckBtreeNodeInvariants(const BtreeNode& node) { if (node.height == 0) { assert(std::holds_alternative<BtreeNode::LeafNodeEntries>(node.entries)); auto& entries = std::get<BtreeNode::LeafNodeEntries>(node.entries); assert(!entries.empty()); assert(entries.size() <= kMaxNodeArity); for (size_t i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; if (auto* location = std::get_if<IndirectDataReference>(&entry.value_reference)) { assert(!location->IsMissing()); } if (i != 0) { assert(entry.key > entries[i - 1].key); } } } else { assert( std::holds_alternative<BtreeNode::InteriorNodeEntries>(node.entries)); auto& entries = std::get<BtreeNode::InteriorNodeEntries>(node.entries); assert(!entries.empty()); assert(entries.size() <= kMaxNodeArity); for (size_t i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; assert(entry.subtree_common_prefix_length <= entry.key.size()); assert(!entry.node.location.IsMissing()); if (i != 0) { assert(entry.key > entries[i - 1].key); } } } } #endif } }
#include "tensorstore/kvstore/ocdbt/format/btree.h" #include <stddef.h> #include <algorithm> #include <string> #include <string_view> #include <type_traits> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/writer.h" #include "tensorstore/kvstore/ocdbt/format/btree_codec.h" #include "tensorstore/kvstore/ocdbt/format/btree_node_encoder.h" #include "tensorstore/kvstore/ocdbt/format/codec_util.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal_ocdbt::BtreeNode; using ::tensorstore::internal_ocdbt::BtreeNodeEncoder; using ::tensorstore::internal_ocdbt::Config; using ::tensorstore::internal_ocdbt::DecodeBtreeNode; using ::tensorstore::internal_ocdbt::EncodedNode; using ::tensorstore::internal_ocdbt::InteriorNodeEntry; using ::tensorstore::internal_ocdbt::kMaxNodeArity; using ::tensorstore::internal_ocdbt::LeafNodeEntry; Result<std::vector<EncodedNode>> EncodeExistingNode(const Config& config, const BtreeNode& node) { return std::visit( [&](const auto& entries) { using Entry = typename std::decay_t<decltype(entries)>::value_type; BtreeNodeEncoder<Entry> encoder(config, node.height, node.key_prefix); for (const auto& entry : entries) { encoder.AddEntry(true, Entry(entry)); } return encoder.Finalize(false); }, node.entries); } void TestBtreeNodeRoundTrip(const Config& config, const BtreeNode& node) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded_nodes, EncodeExistingNode(config, node)); ASSERT_EQ(1, encoded_nodes.size()); auto& encoded_node = encoded_nodes[0]; EXPECT_EQ(node.key_prefix, encoded_node.info.inclusive_min_key.substr( 0, encoded_node.info.excluded_prefix_length)); SCOPED_TRACE(tensorstore::StrCat( "data=", tensorstore::QuoteString(std::string(encoded_node.encoded_node)))); std::visit( [&](const auto& entries) { using Entry = typename std::decay_t<decltype(entries)>::value_type; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node, DecodeBtreeNode(encoded_nodes[0].encoded_node, {})); EXPECT_EQ(node.key_prefix, tensorstore::StrCat( encoded_node.info.inclusive_min_key.substr( 0, encoded_node.info.excluded_prefix_length), decoded_node.key_prefix)); EXPECT_THAT(decoded_node.entries, ::testing::VariantWith<std::vector<Entry>>(entries)); }, node.entries); } TEST(BtreeNodeTest, LeafNodeRoundTrip) { Config config; config.compression = Config::NoCompression{}; BtreeNode node; node.height = 0; node.key_prefix = "ab"; auto& entries = node.entries.emplace<BtreeNode::LeafNodeEntries>(); entries.push_back({"c", absl::Cord("value1")}); entries.push_back({"d", absl::Cord("value2")}); TestBtreeNodeRoundTrip(config, node); } TEST(BtreeNodeTest, InteriorNodeRoundTrip) { Config config; BtreeNode node; node.height = 2; auto& entries = node.entries.emplace<BtreeNode::InteriorNodeEntries>(); { InteriorNodeEntry entry; entry.key = "abc"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc"; entry.node.location.file_id.relative_path = "def"; entry.node.location.offset = 5; entry.node.location.length = 6; entry.node.statistics.num_indirect_value_bytes = 100; entry.node.statistics.num_tree_bytes = 200; entry.node.statistics.num_keys = 5; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "def"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def1"; entry.node.location.offset = 42; entry.node.location.length = 9; entry.node.statistics.num_indirect_value_bytes = 101; entry.node.statistics.num_tree_bytes = 220; entry.node.statistics.num_keys = 8; entries.push_back(entry); } TestBtreeNodeRoundTrip(config, node); } TEST(BtreeNodeTest, InteriorNodeBasePath) { Config config; BtreeNode node; node.height = 2; auto& entries = node.entries.emplace<BtreeNode::InteriorNodeEntries>(); { InteriorNodeEntry entry; entry.key = "abc"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc"; entry.node.location.file_id.relative_path = "def"; entry.node.location.offset = 5; entry.node.location.length = 6; entry.node.statistics.num_indirect_value_bytes = 100; entry.node.statistics.num_tree_bytes = 200; entry.node.statistics.num_keys = 5; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "def"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def1"; entry.node.location.offset = 42; entry.node.location.length = 9; entry.node.statistics.num_indirect_value_bytes = 101; entry.node.statistics.num_tree_bytes = 220; entry.node.statistics.num_keys = 8; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "ghi"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def2"; entry.node.location.offset = 43; entry.node.location.length = 10; entry.node.statistics.num_indirect_value_bytes = 102; entry.node.statistics.num_tree_bytes = 230; entry.node.statistics.num_keys = 9; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "jkl"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def1"; entry.node.location.offset = 43; entry.node.location.length = 10; entry.node.statistics.num_indirect_value_bytes = 102; entry.node.statistics.num_tree_bytes = 230; entry.node.statistics.num_keys = 9; entries.push_back(entry); } TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded_nodes, EncodeExistingNode(config, node)); ASSERT_EQ(1, encoded_nodes.size()); auto& encoded_node = encoded_nodes[0]; EXPECT_EQ(node.key_prefix, encoded_node.info.inclusive_min_key.substr( 0, encoded_node.info.excluded_prefix_length)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node, DecodeBtreeNode(encoded_nodes[0].encoded_node, "xyz/")); entries[0].node.location.file_id.base_path = "xyz/abc"; entries[1].node.location.file_id.base_path = "xyz/abc1"; entries[2].node.location.file_id.base_path = "xyz/abc1"; entries[3].node.location.file_id.base_path = "xyz/abc1"; EXPECT_THAT(decoded_node.entries, ::testing::VariantWith<std::vector<InteriorNodeEntry>>(entries)); } absl::Cord EncodeRawBtree(const std::vector<unsigned char>& data) { using ::tensorstore::internal_ocdbt::kBtreeNodeFormatVersion; using ::tensorstore::internal_ocdbt::kBtreeNodeMagic; Config config; config.compression = Config::NoCompression{}; return EncodeWithOptionalCompression( config, kBtreeNodeMagic, kBtreeNodeFormatVersion, [&](riegeli::Writer& writer) -> bool { return writer.Write(std::string_view( reinterpret_cast<const char*>(data.data()), data.size())); }) .value(); } absl::Status RoundTripRawBtree(const std::vector<unsigned char>& data) { return DecodeBtreeNode(EncodeRawBtree(data), {}).status(); } TEST(BtreeNodeTest, CorruptTruncateBodyZeroSize) { EXPECT_THAT( RoundTripRawBtree({}), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Unexpected end of data; .*")); } TEST(BtreeNodeTest, CorruptLeafTruncatedNumEntries) { EXPECT_THAT( RoundTripRawBtree({ 0, }), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Unexpected end of data; .*")); } TEST(BtreeNodeTest, CorruptLeafZeroNumEntries) { EXPECT_THAT( RoundTripRawBtree({ 0, 0, 0, 0, }), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Empty b-tree node; .*")); } TEST(BtreeNodeTest, CorruptInteriorZeroNumEntries) { EXPECT_THAT( RoundTripRawBtree({ 1, 0, 0, 0, }), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Empty b-tree node; .*")); } TEST(BtreeNodeTest, MaxArity) { Config config; config.compression = Config::NoCompression{}; config.max_decoded_node_bytes = 1000000000; BtreeNode node; node.height = 0; auto& entries = node.entries.emplace<BtreeNode::LeafNodeEntries>(); std::vector<std::string> keys; for (size_t i = 0; i <= kMaxNodeArity; ++i) { keys.push_back(absl::StrFormat("%07d", i)); } std::sort(keys.begin(), keys.end()); const auto add_entry = [&](size_t i) { entries.push_back({keys[i], absl::Cord()}); }; for (size_t i = 0; i < kMaxNodeArity; ++i) { add_entry(i); } TestBtreeNodeRoundTrip(config, node); add_entry(kMaxNodeArity); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded_nodes, EncodeExistingNode(config, node)); ASSERT_EQ(2, encoded_nodes.size()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node1, DecodeBtreeNode(encoded_nodes[0].encoded_node, {})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node2, DecodeBtreeNode(encoded_nodes[1].encoded_node, {})); EXPECT_EQ(kMaxNodeArity / 2 + 1, std::get<BtreeNode::LeafNodeEntries>(decoded_node1.entries).size()); EXPECT_EQ(kMaxNodeArity / 2, std::get<BtreeNode::LeafNodeEntries>(decoded_node2.entries).size()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/btree.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/btree_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f97dfb87-0805-43bb-806b-b6193861e8fb
cpp
tensorflow/tensorflow
execution_state
third_party/xla/xla/ffi/execution_state.cc
third_party/xla/xla/ffi/execution_state_test.cc
#include "xla/ffi/execution_state.h" #include <utility> #include "absl/status/status.h" #include "xla/ffi/type_id_registry.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla::ffi { ExecutionState::ExecutionState() : type_id_(TypeIdRegistry::kUnknownTypeId), state_(nullptr), deleter_(nullptr) {} ExecutionState::~ExecutionState() { if (deleter_) deleter_(state_); } absl::Status ExecutionState::Set(TypeId type_id, void* state, Deleter<void> deleter) { DCHECK(state && deleter) << "State and deleter must not be null"; if (type_id_ != TypeIdRegistry::kUnknownTypeId) { return FailedPrecondition("State is already set with a type id %d", type_id_.value()); } type_id_ = type_id; state_ = state; deleter_ = std::move(deleter); return absl::OkStatus(); } absl::StatusOr<void*> ExecutionState::Get(TypeId type_id) const { if (type_id_ == TypeIdRegistry::kUnknownTypeId) { return NotFound("State is not set"); } if (type_id_ != type_id) { return InvalidArgument( "Set state type id %d does not match the requested one %d", type_id_.value(), type_id.value()); } return state_; } bool ExecutionState::IsSet() const { return type_id_ != TypeIdRegistry::kUnknownTypeId; } }
#include "xla/ffi/execution_state.h" #include <cstdint> #include <memory> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { using TypeId = ExecutionState::TypeId; using ::testing::HasSubstr; TEST(ExecutionStateTest, SetAndGet) { ExecutionState state; EXPECT_FALSE(state.IsSet()); { auto data = state.Get(TypeId(1)); EXPECT_THAT(data.status().message(), HasSubstr("State is not set")); } { auto data = state.Get<int32_t>(); EXPECT_THAT(data.status().message(), HasSubstr("State is not set")); } TF_ASSERT_OK(state.Set(std::make_unique<int32_t>(42))); EXPECT_TRUE(state.IsSet()); TF_ASSERT_OK_AND_ASSIGN(int32_t* data, state.Get<int32_t>()); EXPECT_EQ(*data, 42); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
10d27e5d-535e-4d4c-b8ea-82d4c765fccf
cpp
tensorflow/tensorflow
profiler_lock
third_party/xla/third_party/tsl/tsl/profiler/lib/profiler_lock.cc
third_party/xla/third_party/tsl/tsl/profiler/lib/profiler_lock_test.cc
#include "tsl/profiler/lib/profiler_lock.h" #include <atomic> #include "absl/status/statusor.h" #include "xla/tsl/util/env_var.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" namespace tsl { namespace profiler { namespace { std::atomic<int> g_session_active = ATOMIC_VAR_INIT(0); static_assert(ATOMIC_INT_LOCK_FREE == 2, "Assumed atomic<int> was lock free"); } bool ProfilerLock::HasActiveSession() { return g_session_active.load(std::memory_order_relaxed) != 0; } absl::StatusOr<ProfilerLock> ProfilerLock::Acquire() { static bool tf_profiler_disabled = [] { bool disabled = false; ReadBoolFromEnvVar("TF_DISABLE_PROFILING", false, &disabled).IgnoreError(); return disabled; }(); if (TF_PREDICT_FALSE(tf_profiler_disabled)) { return errors::AlreadyExists( "TensorFlow Profiler is permanently disabled by env var " "TF_DISABLE_PROFILING."); } int already_active = g_session_active.exchange(1, std::memory_order_acq_rel); if (already_active) { return errors::AlreadyExists(kProfilerLockContention); } return ProfilerLock(true); } void ProfilerLock::ReleaseIfActive() { if (active_) { g_session_active.store(0, std::memory_order_release); active_ = false; } } } }
#include "tsl/profiler/lib/profiler_lock.h" #include <utility> #include "absl/status/statusor.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(ProfilerLockTest, DefaultConstructorCreatesInactiveInstance) { ProfilerLock profiler_lock; EXPECT_FALSE(profiler_lock.Active()); } TEST(ProfilerLockTest, AcquireAndReleaseExplicitly) { absl::StatusOr<ProfilerLock> profiler_lock = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock.ok()); EXPECT_TRUE(profiler_lock->Active()); profiler_lock->ReleaseIfActive(); EXPECT_FALSE(profiler_lock->Active()); } TEST(ProfilerLockTest, AcquireAndReleaseOnDestruction) { absl::StatusOr<ProfilerLock> profiler_lock = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock.ok()); EXPECT_TRUE(profiler_lock->Active()); } TEST(ProfilerLockTest, ReacquireWithoutReleaseFails) { absl::StatusOr<ProfilerLock> profiler_lock_1 = ProfilerLock::Acquire(); absl::StatusOr<ProfilerLock> profiler_lock_2 = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock_1.ok()); EXPECT_TRUE(profiler_lock_1->Active()); EXPECT_FALSE(profiler_lock_2.ok()); } TEST(ProfilerLockTest, ReacquireAfterReleaseSucceeds) { auto profiler_lock_1 = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock_1.ok()); ASSERT_TRUE(profiler_lock_1->Active()); profiler_lock_1->ReleaseIfActive(); ASSERT_FALSE(profiler_lock_1->Active()); auto profiler_lock_2 = ProfilerLock::Acquire(); EXPECT_TRUE(profiler_lock_2.ok()); EXPECT_TRUE(profiler_lock_2->Active()); } TEST(ProfilerLockTest, InactiveAfterMove) { absl::StatusOr<ProfilerLock> profiler_lock_1 = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock_1.ok()); ASSERT_TRUE(profiler_lock_1->Active()); ProfilerLock profiler_lock_2 = std::move(*profiler_lock_1); EXPECT_FALSE(profiler_lock_1->Active()); EXPECT_TRUE(profiler_lock_2.Active()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/profiler/lib/profiler_lock.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/profiler/lib/profiler_lock_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0239edc1-2484-43d0-8cc0-3407d549341e
cpp
tensorflow/tensorflow
c_api
tensorflow/c/eager/c_api.cc
tensorflow/c/eager/c_api_test.cc
#include "tensorflow/c/eager/c_api.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "tensorflow/c/c_api.h" #include "tensorflow/c/c_api_internal.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/immediate_execution_operation.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/eager/tfe_context_internal.h" #include "tensorflow/c/eager/tfe_op_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_buffer_internal.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor_internal.h" #include "xla/tsl/c/tsl_status_internal.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/attr_builder.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/custom_device.h" #include "tensorflow/core/common_runtime/eager/custom_device_op_handler.h" #include "tensorflow/core/common_runtime/eager/execute.h" #include "tensorflow/core/common_runtime/eager/placement_utils.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/platform.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/version.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/common_runtime/eager/context_distributed_manager.h" #endif using tensorflow::string; namespace { string DeviceName(const tensorflow::Device* d) { return (d == nullptr) ? "cpu:0" : d->name(); } void AnnotateEagerRuntimeConstructionContext( tensorflow::FunctionDef& function_def) { tensorflow::AttrValue value; SetAttrValue("kEagerRuntime", &value); (*function_def.mutable_attr())["_construction_context"] = value; } } extern "C" { TFE_ContextOptions* TFE_NewContextOptions() { return new TFE_ContextOptions; } void TFE_ContextOptionsSetConfig(TFE_ContextOptions* options, const void* proto, size_t proto_len, TF_Status* status) { TF_SetConfig(&options->session_options, proto, proto_len, status); } void TFE_ContextOptionsSetAsync(TFE_ContextOptions* options, unsigned char enable) { options->async = enable; } void TFE_ContextOptionsSetDevicePlacementPolicy( TFE_ContextOptions* options, TFE_ContextDevicePlacementPolicy policy) { options->device_placement_policy = policy; } void TFE_DeleteContextOptions(TFE_ContextOptions* options) { delete options; } TFE_Context* TFE_NewContext(const TFE_ContextOptions* opts, TF_Status* status) { if (opts->use_tfrt) { status->status = tensorflow::errors::Unimplemented("TFRT is not supported"); return nullptr; } std::vector<std::unique_ptr<tensorflow::Device>> devices; status->status = tensorflow::DeviceFactory::AddDevices( opts->session_options.options, "/job:localhost/replica:0/task:0", &devices); if (!status->status.ok()) return nullptr; std::unique_ptr<tensorflow::DeviceMgr> device_mgr( new tensorflow::DynamicDeviceMgr(std::move(devices))); auto r = tsl::core::RefCountPtr<tensorflow::IntraProcessRendezvous>( new tensorflow::IntraProcessRendezvous(device_mgr.get())); tensorflow::EagerContext* eager_context = new tensorflow::EagerContext( opts->session_options.options, static_cast<tensorflow::ContextDevicePlacementPolicy>( opts->device_placement_policy), opts->async, device_mgr.release(), true, std::move(r), nullptr, nullptr, opts->run_eager_op_as_function, opts->jit_compile_rewrite); #if !defined(IS_MOBILE_PLATFORM) eager_context->SetDistributedManager( std::make_unique<tensorflow::EagerContextDistributedManager>( eager_context)); #endif return tensorflow::wrap(eager_context); } void TFE_DeleteContext(TFE_Context* ctx) { if (ctx == nullptr) { return; } tensorflow::unwrap(ctx)->Release(); } TF_DeviceList* TFE_ContextListDevices(TFE_Context* ctx, TF_Status* status) { TF_DeviceList* l = new TF_DeviceList; tensorflow::unwrap(ctx)->ListDevices(&l->response); return l; } void TFE_ContextClearCaches(TFE_Context* ctx) { tensorflow::unwrap(ctx)->ClearCachesAndThreadExecutors(); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDef(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status) { TFE_ContextSetServerDefWithTimeoutAndRetries( ctx, keep_alive_secs, proto, proto_len, 0, 0, status, false); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status, bool clear_existing_contexts) { TFE_ContextSetServerDefWithTimeoutAndRetries( ctx, keep_alive_secs, proto, proto_len, init_timeout_in_ms, 0, status, clear_existing_contexts); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeoutAndRetries( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, int retries, TF_Status* status, bool clear_existing_contexts) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextSetServerDef not supported on mobile"); #else tensorflow::ServerDef server_def; if (!server_def.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument( "Invalid tensorflow.ServerDef protocol buffer"); return; } status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->SetOrUpdateServerDef( server_def, true, keep_alive_secs, init_timeout_in_ms, retries, clear_existing_contexts); #endif } TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDef(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status) { TFE_ContextUpdateServerDefWithTimeout(ctx, keep_alive_secs, proto, proto_len, 0, status); } TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextUpdateServerDef not supported on mobile"); #else tensorflow::ServerDef server_def; tensorflow::EagerContext* context = tensorflow::ContextFromInterface(tensorflow::unwrap(ctx)); if (!server_def.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument( "Invalid tensorflow.ServerDef protocol buffer"); return; } else if (context->GetContextId() == tensorflow::EagerContext::kInvalidContextId) { status->status = tensorflow::errors::InvalidArgument( "Trying to update a context with invalid context id."); } status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->SetOrUpdateServerDef( server_def, false, keep_alive_secs, init_timeout_in_ms, 0); #endif } TF_CAPI_EXPORT extern bool TFE_ContextCheckAlive(TFE_Context* ctx, const char* worker_name, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextSetServerDef not supported on mobile"); return false; #else bool is_alive; status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->CheckRemoteAlive( worker_name, &is_alive); return is_alive; #endif } TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::OkStatus(); #else status->status = tensorflow::unwrap(ctx)->AsyncWait(); #endif } void TFE_ContextSetThreadLocalDevicePlacementPolicy( TFE_Context* ctx, TFE_ContextDevicePlacementPolicy policy) { tensorflow::unwrap(ctx)->SetThreadLocalDevicePlacementPolicy( static_cast<tensorflow::ContextDevicePlacementPolicy>(policy)); } extern TFE_ContextDevicePlacementPolicy TFE_ContextGetDevicePlacementPolicy( TFE_Context* ctx) { return static_cast<TFE_ContextDevicePlacementPolicy>( tensorflow::unwrap(ctx)->GetDevicePlacementPolicy()); } TFE_TensorHandle* TFE_NewTensorHandle(const TF_Tensor* t, TF_Status* status) { tensorflow::Tensor tensor; status->status = tensorflow::TF_TensorToTensor(t, &tensor); if (!status->status.ok()) return nullptr; return tensorflow::wrap(tensorflow::TensorHandle::CreateLocalHandle(tensor)); } void TFE_DeleteTensorHandle(TFE_TensorHandle* h) { if (h == nullptr) return; tsl::profiler::TraceMe activity("TFE_DeleteTensorHandle", tsl::profiler::TraceMeLevel::kInfo); if (h) { tensorflow::unwrap(h)->Unref(); } } TF_DataType TFE_TensorHandleDataType(TFE_TensorHandle* h) { return static_cast<TF_DataType>(tensorflow::unwrap(h)->DataType()); } int TFE_TensorHandleNumDims(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int num_dims = -1; status->status = tensorflow::unwrap(h)->NumDims(&num_dims); return num_dims; } int64_t TFE_TensorHandleNumElements(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int64_t num_elements = -1; status->status = tensorflow::unwrap(h)->NumElements(&num_elements); return num_elements; } int64_t TFE_TensorHandleDim(TFE_TensorHandle* h, int dim_index, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int64_t dim = -1; status->status = tensorflow::unwrap(h)->Dim(dim_index, &dim); return dim; } const char* TFE_TensorHandleDeviceName(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } return tensorflow::unwrap(h)->DeviceName(&status->status); } const char* TFE_TensorHandleBackingDeviceName(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } return tensorflow::unwrap(h)->BackingDeviceName(&status->status); } TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopySharingTensor( TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::unwrap(h)->Ref(); return h; } TF_Tensor* TFE_TensorHandleResolve(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::AbstractTensorInterface* t = tensorflow::unwrap(h)->Resolve(&status->status); if (t == nullptr) { return nullptr; } return new TF_Tensor{t}; } void* TFE_TensorHandleDevicePointer(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::ImmediateExecutionTensorHandle* unwrapped_handle = tensorflow::unwrap(h); if (tensorflow::CustomDeviceTensorHandle::classof(unwrapped_handle)) { return tensorflow::down_cast<tensorflow::CustomDeviceTensorHandle*>( unwrapped_handle) ->DevicePointer(); } if (!tensorflow::TensorHandle::classof(unwrapped_handle)) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::TensorHandle* handle = tensorflow::TensorHandleFromInterface(unwrapped_handle); if (handle->Type() != tensorflow::TensorHandle::LOCAL) { status->status = tensorflow::errors::InvalidArgument( "TFE_TensorHandleDevicePointer may not be called on a ", handle->TypeString(), " tensor handle."); return nullptr; } tensorflow::Device* device(handle->device()); if (device != nullptr) { status->status = device->Sync(); if (!status->status.ok()) { return nullptr; } } const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return nullptr; } return const_cast<void*>( static_cast<const void*>(tensor->tensor_data().data())); } namespace tensorflow { namespace { class CustomDeviceAPI : public tensorflow::CustomDevice { public: CustomDeviceAPI(TFE_Context* context, TFE_CustomDevice device, void* info, string name) : context_(context), device_(device), info_(info), name_(name) {} ~CustomDeviceAPI() override { device_.delete_device(info_); } const string& name() override { return name_; } tensorflow::Status CopyTensorToDevice( ImmediateExecutionTensorHandle* handle, ImmediateExecutionTensorHandle** result) override { handle->Ref(); TF_Status status; TFE_TensorHandle* result_handle = device_.copy_tensor_to_device( context_, tensorflow::wrap(handle), &status, info_); handle->Unref(); if (!status.status.ok()) return status.status; *result = tensorflow::unwrap(result_handle); (*result)->Ref(); TFE_DeleteTensorHandle(result_handle); return status.status; } tensorflow::Status CopyTensorFromDevice( ImmediateExecutionTensorHandle* handle, const tensorflow::string& target_device_name, ImmediateExecutionTensorHandle** result) override { TF_Status status; handle->Ref(); TFE_TensorHandle* result_handle = device_.copy_tensor_from_device( context_, tensorflow::wrap(handle), target_device_name.c_str(), &status, info_); handle->Unref(); if (!status.status.ok()) return status.status; *result = tensorflow::unwrap(result_handle); (*result)->Ref(); TFE_DeleteTensorHandle(result_handle); return status.status; } tensorflow::Status Execute(const ImmediateExecutionOperation* op, ImmediateExecutionTensorHandle** retvals, int* num_retvals) override { std::vector<TFE_TensorHandle*> outputs(*num_retvals); TF_Status status; device_.execute(tensorflow::wrap(op), num_retvals, outputs.data(), &status, info_); if (status.status.ok()) { for (int i = 0; i < *num_retvals; ++i) { retvals[i] = tensorflow::unwrap(outputs[i]); retvals[i]->Ref(); TFE_DeleteTensorHandle(outputs[i]); } } return status.status; } tensorflow::Status Pack(absl::Span<ImmediateExecutionTensorHandle*> handles, ImmediateExecutionTensorHandle** result) override { TF_Status status; *result = tensorflow::unwrap(device_.pack(context_, tensorflow::wrap(handles.data()), handles.size(), &status, info_)); return status.status; } absl::StatusOr<bool> ShallPinToThisDevice( const ImmediateExecutionOperation* op) override { TF_Status status; if (device_.shall_pin_to_this_device != nullptr) { return device_.shall_pin_to_this_device(tensorflow::wrap(op), &status); } return errors::Unimplemented("No custom device pinning implementation."); } private: TFE_Context* context_; TFE_CustomDevice device_; void* info_; string name_; }; class CAPICustomDeviceTensorHandle : public tensorflow::CustomDeviceTensorHandle { public: CAPICustomDeviceTensorHandle(tensorflow::ImmediateExecutionContext* context, tensorflow::CustomDevice* device, tensorflow::DataType dtype, void* data, TFE_CustomDeviceTensorHandleMethods methods) : tensorflow::CustomDeviceTensorHandle(context, device, dtype), data_(data), methods_(methods) {} ~CAPICustomDeviceTensorHandle() override { methods_.deallocator(data_); } void* DevicePointer() const override { return data_; } Status NumDims(int* num_dims) const override { TF_Status s; *num_dims = methods_.num_dims(data_, &s); return s.status; } Status Dim(int dim_index, int64_t* dim) const override { TF_Status s; *dim = methods_.dim(data_, dim_index, &s); return s.status; } bool PreferCustomSummarizer() const override { return methods_.summarize != nullptr; } Status SummarizeValue(std::string& summary) const override { if (methods_.summarize == nullptr) { return tensorflow::CustomDeviceTensorHandle::SummarizeValue(summary); } TF_Status c_status; std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> summary_buffer( methods_.summarize(data_, &c_status), TF_DeleteBuffer); if (!c_status.status.ok()) { return c_status.status; } summary = std::string(reinterpret_cast<const char*>(summary_buffer->data), summary_buffer->length); return absl::OkStatus(); } private: void* const data_; const TFE_CustomDeviceTensorHandleMethods methods_; }; } } TFE_TensorHandle* TFE_NewCustomDeviceTensorHandle( TFE_Context* ctx, const char* device_name, TF_DataType dtype, void* data, TFE_CustomDeviceTensorHandleMethods methods, TF_Status* status) { tensorflow::ImmediateExecutionContext* context = tensorflow::unwrap(ctx); tensorflow::CustomDevice* device = nullptr; if (!context->GetCustomDeviceOpHandler().FindCustomDeviceFromName(device_name, &device)) { methods.deallocator(data); status->status = tensorflow::errors::InvalidArgument(device_name, " unknown device."); return nullptr; } return tensorflow::wrap(new tensorflow::CAPICustomDeviceTensorHandle( context, device, *reinterpret_cast<tensorflow::DataType*>(&dtype), data, methods)); } TFE_TensorHandle* TFE_NewTensorHandleFromDeviceMemory( TFE_Context* ctx, const char* device_name, TF_DataType dtype, const int64_t* dims, int num_dims, void* data, size_t len, void (*deallocator)(void* data, size_t len, void* arg), void* deallocator_arg, TF_Status* status) { tensorflow::Device* device = nullptr; tensorflow::EagerContext* context = tensorflow::ContextFromInterface(tensorflow::unwrap(ctx)); status->status = context->FindDeviceFromName(device_name, &device); if (!status->status.ok()) { deallocator(data, len, deallocator_arg); status->status = tensorflow::errors::InvalidArgument(device_name, " unknown device."); return nullptr; } std::vector<int64_t> dimvec(num_dims); for (int i = 0; i < num_dims; ++i) { dimvec[i] = static_cast<int64_t>(dims[i]); } TF_ManagedBuffer* buf = new TF_ManagedBuffer(data, len, deallocator, deallocator_arg, false); tensorflow::Tensor t(static_cast<tensorflow::DataType>(dtype), tensorflow::TensorShape(dimvec), buf); buf->Unref(); return tensorflow::wrap(tensorflow::TensorHandle::CreateLocalHandle( std::move(t), device, device, context)); } size_t TFE_TensorHandleDeviceMemorySize(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return 0; } tensorflow::TensorHandle* handle = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(h)); if (handle->Type() != tensorflow::TensorHandle::LOCAL) { status->status = tensorflow::errors::InvalidArgument( "TFE_TensorHandleDeviceMemorySize may not be called on a ", handle->TypeString(), " tensor handle."); return 0; } const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return 0; } return tensor->TotalBytes(); } TFE_Op* TFE_NewOp(TFE_Context* ctx, const char* op_or_function_name, TF_Status* status) { tensorflow::ImmediateExecutionOperation* new_op = tensorflow::unwrap(ctx)->CreateOperation(); status->status = new_op->Reset(op_or_function_name, nullptr); if (!status->status.ok()) { new_op->Release(); new_op = nullptr; } return tensorflow::wrap(new_op); } void TFE_DeleteOp(TFE_Op* op) { if (op == nullptr) { return; } tensorflow::unwrap(op)->Release(); } const char* TFE_OpGetName(const TFE_Op* op, TF_Status* status) { return tensorflow::unwrap(op)->Name().c_str(); } TFE_Context* TFE_OpGetContext(const TFE_Op* op, TF_Status* status) { return tensorflow::wrap(tensorflow::unwrap(op)->GetContext()); } void TFE_OpSetDevice(TFE_Op* op, const char* device_name, TF_Status* status) { status->status = tensorflow::unwrap(op)->SetDeviceName(device_name); } const char* TFE_OpGetDevice(const TFE_Op* op, TF_Status* status) { return tensorflow::unwrap(op)->DeviceName().c_str(); } void TFE_OpAddInput(TFE_Op* op, TFE_TensorHandle* input, TF_Status* status) { status->status = tensorflow::unwrap(op)->AddInput(tensorflow::unwrap(input)); } void TFE_OpAddInputList(TFE_Op* op, TFE_TensorHandle** inputs, int num_inputs, TF_Status* status) { status->status = tensorflow::unwrap(op)->AddInputList( {reinterpret_cast<tensorflow::AbstractTensorHandle**>( tensorflow::unwrap(inputs)), static_cast<size_t>(num_inputs)}); } extern int TFE_OpGetFlatInputCount(const TFE_Op* op, TF_Status* status) { return tensorflow::unwrap(op)->GetInputs().size(); } extern TFE_TensorHandle* TFE_OpGetFlatInput(const TFE_Op* op, int index, TF_Status* status) { return tensorflow::wrap(tensorflow::unwrap(op)->GetInputs()[index]); } TF_AttrType TFE_OpGetAttrType(TFE_Op* op, const char* attr_name, unsigned char* is_list, TF_Status* status) { TF_AttrType ret = TF_ATTR_INT; const tensorflow::AttrTypeMap* attr_types_; bool is_function; status->status = tensorflow::AttrTypeMapForOp( tensorflow::unwrap(op)->Name().c_str(), &attr_types_, &is_function); if (!status->status.ok()) { return ret; } status->status = tensorflow::AttrTypeByName(*attr_types_, attr_name, &ret, is_list); return ret; } TF_AttrType TFE_OpNameGetAttrType(TFE_Context* ctx, const char* op_or_function_name, const char* attr_name, unsigned char* is_list, TF_Status* status) { TF_AttrType ret; TFE_Op* op = TFE_NewOp(ctx, op_or_function_name, status); if (status->status.ok()) { ret = TFE_OpGetAttrType(op, attr_name, is_list, status); } else { ret = TF_ATTR_INT; } TFE_DeleteOp(op); return ret; } void TFE_OpSetAttrString(TFE_Op* op, const char* attr_name, const void* value, size_t length) { auto s = tensorflow::unwrap(op)->SetAttrString( attr_name, static_cast<const char*>(value), length); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrInt(TFE_Op* op, const char* attr_name, int64_t value) { auto s = tensorflow::unwrap(op)->SetAttrInt(attr_name, value); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrFloat(TFE_Op* op, const char* attr_name, float value) { auto s = tensorflow::unwrap(op)->SetAttrFloat(attr_name, value); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrBool(TFE_Op* op, const char* attr_name, unsigned char value) { auto s = tensorflow::unwrap(op)->SetAttrBool(attr_name, (value == 0) ? false : true); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrType(TFE_Op* op, const char* attr_name, TF_DataType value) { auto s = tensorflow::unwrap(op)->SetAttrType( attr_name, static_cast<tensorflow::DataType>(value)); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrShape(TFE_Op* op, const char* attr_name, const int64_t* dims, const int num_dims, TF_Status* out_status) { out_status->status = tensorflow::unwrap(op)->SetAttrShape(attr_name, dims, num_dims); } void TFE_OpSetAttrFunction(TFE_Op* op, const char* attr_name, const TFE_Op* value) { auto s = tensorflow::unwrap(op)->SetAttrFunction( attr_name, tensorflow::unwrap(const_cast<TFE_Op*>(value))); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrFunctionName(TFE_Op* op, const char* attr_name, const char* data, size_t length) { auto s = tensorflow::unwrap(op)->SetAttrFunctionName(attr_name, data, length); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrTensor(TFE_Op* op, const char* attr_name, TF_Tensor* tensor, TF_Status* status) { tensorflow::Tensor t; status->status = TF_TensorToTensor(tensor, &t); tensorflow::TensorInterface interface(t); status->status = tensorflow::unwrap(op)->SetAttrTensor(attr_name, &interface); } void TFE_OpSetAttrStringList(TFE_Op* op, const char* attr_name, const void* const* values, const size_t* lengths, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrStringList(attr_name, values, lengths, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrFloatList(TFE_Op* op, const char* attr_name, const float* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrFloatList(attr_name, values, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrIntList(TFE_Op* op, const char* attr_name, const int64_t* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrIntList(attr_name, values, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrTypeList(TFE_Op* op, const char* attr_name, const TF_DataType* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrTypeList( attr_name, reinterpret_cast<const tensorflow::DataType*>(values), num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrBoolList(TFE_Op* op, const char* attr_name, const unsigned char* values, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrBoolList(attr_name, values, num_values); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrShapeList(TFE_Op* op, const char* attr_name, const int64_t** dims, const int* num_dims, int num_values, TF_Status* out_status) { out_status->status = tensorflow::unwrap(op)->SetAttrShapeList( attr_name, dims, num_dims, num_values); } void TFE_OpSetAttrFunctionList(TFE_Op* op, const char* attr_name, const TFE_Op** value, int num_values) { auto s = tensorflow::unwrap(op)->SetAttrFunctionList( attr_name, {reinterpret_cast<const tensorflow::AbstractOperation**>( tensorflow::unwrap(value)), static_cast<size_t>(num_values)}); if (!s.ok()) { LOG(WARNING) << "Unable to set attribute: " << attr_name; } } void TFE_OpSetAttrValueProto(const TFE_Op* op, const char* attr_name, const void* proto, size_t proto_len, TF_Status* status) { tensorflow::AttrValue attr_value; if (!attr_value.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument("Unparseable AttrValue proto"); return; } if (op == nullptr) { status->status = tensorflow::errors::InvalidArgument( "Got a null or uninitialized `op` argument"); return; } tensorflow::EagerOperation* operation = OperationFromInterface(tensorflow::unwrap(const_cast<TFE_Op*>(op))); operation->MutableAttrs()->Set(attr_name, attr_value); } TF_CAPI_EXPORT extern int TFE_OpGetInputLength(TFE_Op* op, const char* input_name, TF_Status* status) { int ret = -1; status->status = tensorflow::unwrap(op)->InputLength(input_name, &ret); return ret; } TF_CAPI_EXPORT extern int TFE_OpGetOutputLength(TFE_Op* op, const char* output_name, TF_Status* status) { int ret = -1; status->status = tensorflow::unwrap(op)->OutputLength(output_name, &ret); return ret; } void TFE_Execute(TFE_Op* op, TFE_TensorHandle** retvals, int* num_retvals, TF_Status* status) { tensorflow::ImmediateExecutionOperation* unwrapped_op = tensorflow::unwrap(op); status->status = unwrapped_op->GetContext()->GetCustomDeviceOpHandler().Execute( unwrapped_op, reinterpret_cast<tensorflow::ImmediateExecutionTensorHandle**>( retvals), num_retvals); } TFE_TensorHandle* TFE_TensorHandleCopyToDevice(TFE_TensorHandle* h, TFE_Context* ctx, const char* device_name, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::ImmediateExecutionContext* unwrapped_ctx = tensorflow::unwrap(ctx); auto* result = unwrapped_ctx->GetCustomDeviceOpHandler().CopyTensorHandleToDevice( unwrapped_ctx, tensorflow::unwrap(h), device_name, &status->status); if (status->status.ok()) { return tensorflow::wrap(result); } return nullptr; } void TFE_ContextAddFunctionDef(TFE_Context* ctx, const char* serialized_function_def, size_t size, TF_Status* status) { tensorflow::FunctionDef function_def; if (!function_def.ParseFromArray(serialized_function_def, size)) { status->status = tensorflow::errors::InvalidArgument("Invalid FunctionDef proto"); return; } AnnotateEagerRuntimeConstructionContext(function_def); status->status = tensorflow::unwrap(ctx)->AddFunctionDef(function_def); } void TFE_ContextAddFunction(TFE_Context* ctx, TF_Function* function, TF_Status* status) { auto fdef_or = function->record->mutable_fdef(); if (!fdef_or.ok()) { status->status = fdef_or.status(); return; } AnnotateEagerRuntimeConstructionContext(*fdef_or.value()); status->status = tensorflow::unwrap(ctx)->AddFunctionDefWithStackTraces( *fdef_or.value(), function->record->stack_traces()); } TF_Function* TFE_ContextGetFunction(TFE_Context* ctx, const char* name, TF_Status* status) { tensorflow::core::RefCountPtr<tensorflow::FunctionRecord> record = tensorflow::unwrap(ctx)->FindRecord(name); if (record == nullptr) { status->status = tensorflow::errors::NotFound( "Unable to find Function with name: ", name); return nullptr; } TF_Function* result = new TF_Function(); record->Ref(); result->record = record.get(); return result; } void TFE_ContextRemoveFunction(TFE_Context* ctx, const char* name, TF_Status* status) { status->status = tensorflow::unwrap(ctx)->RemoveFunction(name); } unsigned char TFE_ContextHasFunction(TFE_Context* ctx, const char* name) { return tensorflow::unwrap(ctx)->FindFunctionDef(name) != nullptr; } void TFE_ContextEnableRunMetadata(TFE_Context* ctx) { tensorflow::unwrap(ctx)->SetShouldStoreGraphs(true); } void TFE_ContextDisableRunMetadata(TFE_Context* ctx) { tensorflow::unwrap(ctx)->SetShouldStoreGraphs(false); } } TFE_TensorHandle* TFE_NewTensorHandle(const tensorflow::Tensor& t, TF_Status* status) { return tensorflow::wrap(tensorflow::TensorHandle::CreateLocalHandle(t)); } void TFE_ContextExportRunMetadata(TFE_Context* ctx, TF_Buffer* buf, TF_Status* status) { auto* context = tensorflow::unwrap(ctx); status->status = context->AsyncWait(); if (!status->status.ok()) return; auto run_metadata = context->ExportRunMetadata(); status->status = MessageToBuffer(*run_metadata, buf); } namespace { TFE_Op* GetFunc(TFE_Context* ctx, const tensorflow::NameAttrList& func, TF_Status* status) { TFE_Op* func_op = TFE_NewOp(ctx, func.name().data(), status); for (const auto& attr : func.attr()) { if (!status->status.ok()) return nullptr; SetOpAttrValueScalar(ctx, func_op, attr.second, attr.first.data(), status); if (!status->status.ok()) return nullptr; } return func_op; } } void TFE_ContextStartStep(TFE_Context* ctx) { tensorflow::unwrap(ctx)->StartStep(); } void TFE_ContextEndStep(TFE_Context* ctx) { tensorflow::unwrap(ctx)->EndStep(); } const TFE_OpAttrs* TFE_OpGetAttrs(const TFE_Op* op) { return tensorflow::wrap(tensorflow::unwrap(op)->GetOpAttrs()); } void TFE_OpAddAttrs(TFE_Op* op, const TFE_OpAttrs* attrs) { tensorflow::unwrap(op)->AddAttrs(tensorflow::unwrap(attrs)); } void TFE_OpAttrsSerialize(const TFE_OpAttrs* attrs, TF_Buffer* buf, TF_Status* status) { tensorflow::NameAttrList name_and_attrs; tensorflow::unwrap(attrs)->GetNameAttrList(&name_and_attrs); status->status = MessageToBuffer(name_and_attrs, buf); } namespace tensorflow { void SetOpAttrValueScalar(TFE_Context* ctx, TFE_Op* op, const tensorflow::AttrValue& default_value, const char* attr_name, TF_Status* status) { switch (default_value.value_case()) { case tensorflow::AttrValue::kS: { const string& v = default_value.s(); TFE_OpSetAttrString(op, attr_name, v.data(), v.size()); break; } case tensorflow::AttrValue::kI: TFE_OpSetAttrInt(op, attr_name, static_cast<int64_t>(default_value.i())); break; case tensorflow::AttrValue::kF: TFE_OpSetAttrFloat(op, attr_name, default_value.f()); break; case tensorflow::AttrValue::kB: TFE_OpSetAttrBool(op, attr_name, default_value.b()); break; case tensorflow::AttrValue::kType: TFE_OpSetAttrType(op, attr_name, static_cast<TF_DataType>(default_value.type())); break; case tensorflow::AttrValue::kShape: { const auto& tensor_shape = default_value.shape(); if (tensor_shape.unknown_rank()) { TFE_OpSetAttrShape(op, attr_name, nullptr, -1, status); } else { const auto num_dims = tensor_shape.dim_size(); std::unique_ptr<int64_t[]> dims(new int64_t[num_dims]); for (int i = 0; i < num_dims; ++i) { dims[i] = tensor_shape.dim(i).size(); } TFE_OpSetAttrShape(op, attr_name, dims.get(), num_dims, status); } } break; case tensorflow::AttrValue::kFunc: { const auto func_op = GetFunc(ctx, default_value.func(), status); if (!status->status.ok()) return; TFE_OpSetAttrFunction(op, attr_name, func_op); TFE_DeleteOp(func_op); } break; case tensorflow::AttrValue::kList: { if (const int s_size = default_value.list().s_size()) { absl::InlinedVector<const void*, 4> values_vector; values_vector.reserve(s_size); absl::InlinedVector<size_t, 4> lengths_vector; lengths_vector.reserve(s_size); for (int i = 0; i < s_size; ++i) { const string& v = default_value.list().s(i); values_vector.push_back(v.data()); lengths_vector.push_back(v.size()); } TFE_OpSetAttrStringList(op, attr_name, values_vector.data(), lengths_vector.data(), s_size); } if (const int i_size = default_value.list().i_size()) { absl::InlinedVector<int64_t, 4> i_vector; i_vector.reserve(i_size); for (int i = 0; i < i_size; ++i) { i_vector.push_back(default_value.list().i(i)); } TFE_OpSetAttrIntList(op, attr_name, i_vector.data(), i_size); } if (const int f_size = default_value.list().f_size()) { absl::InlinedVector<float, 4> f_vector; f_vector.reserve(f_size); for (int i = 0; i < f_size; ++i) { f_vector.push_back(default_value.list().f(i)); } TFE_OpSetAttrFloatList(op, attr_name, f_vector.data(), f_size); } if (const int b_size = default_value.list().b_size()) { absl::InlinedVector<unsigned char, 4> b_vector; b_vector.reserve(b_size); for (int i = 0; i < b_size; i++) { b_vector.push_back(default_value.list().b(i)); } TFE_OpSetAttrBoolList(op, attr_name, b_vector.data(), b_size); } if (const int type_size = default_value.list().type_size()) { absl::InlinedVector<unsigned int, 4> type_vector; type_vector.reserve(type_size); for (int i = 0; i < type_size; ++i) { type_vector.push_back(default_value.list().type(i)); } TFE_OpSetAttrTypeList( op, attr_name, reinterpret_cast<const TF_DataType*>(type_vector.data()), type_size); } if (default_value.list().shape_size() > 0 || default_value.list().func_size() > 0 || default_value.list().tensor_size() > 0) { TF_SetStatus( status, TF_UNIMPLEMENTED, tensorflow::strings::StrCat("Unable to get setfor default value: ", default_value.DebugString()) .data()); } } break; case tensorflow::AttrValue::kTensor: TF_FALLTHROUGH_INTENDED; case tensorflow::AttrValue::kPlaceholder: TF_FALLTHROUGH_INTENDED; case tensorflow::AttrValue::VALUE_NOT_SET: TF_SetStatus( status, TF_UNIMPLEMENTED, tensorflow::strings::StrCat("Unable to get setfor default value: ", default_value.DebugString()) .data()); } } } namespace { TFE_TensorHandle* DefaultCustomDevicePack(TFE_Context* context, TFE_TensorHandle** handles, int num_handles, TF_Status* status, void* device_info) { TF_SetStatus(status, TF_UNIMPLEMENTED, "This custom device does not support packing tensors."); return nullptr; } } extern "C" { bool TFE_IsCustomDevice(TFE_Context* ctx, const char* device_name) { return tensorflow::unwrap(ctx)->IsCustomDevice(device_name); } void TFE_RegisterCustomDevice(TFE_Context* ctx, TFE_CustomDevice device, const char* device_name, void* device_info, TF_Status* status) { if (device.pack == nullptr) { device.pack = &DefaultCustomDevicePack; } auto custom_device = std::make_unique<tensorflow::CustomDeviceAPI>( ctx, device, device_info, device_name); status->status = tensorflow::unwrap(ctx)->RegisterCustomDevice( device_name, std::move(custom_device)); } }
#include "tensorflow/c/eager/c_api.h" #include <string.h> #include <memory> #include <string> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/platform.h" #include "absl/strings/match.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/tfe_op_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_datatype.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/protobuf/tensorflow_server.pb.h" using tensorflow::string; namespace { void BM_InitOp(::testing::benchmark::State& state) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); for (auto s : state) { TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_DeleteOp(matmul); } TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_InitOp); void BM_Execute(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteAsync" : "Execute"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = TFE_NewOp(ctx, "MatMul", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; for (auto s : state) { TFE_OpReset(matmul, "MatMul", nullptr, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(matmul, &retvals[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_Execute)->Arg(0)->Arg(1); void BM_Execute_Identity(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteIdentityAsync" : "ExecuteIdentity"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* identity = TFE_NewOp(ctx, "Identity", status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; for (auto s : state) { TFE_OpReset(identity, "Identity", nullptr, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(identity, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(identity, &retvals[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteOp(identity); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_Execute_Identity)->Arg(0)->Arg(1); TEST(CAPI, Context) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); TFE_DeleteContextOptions(opts); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const int num_devices = TF_DeviceListCount(devices); EXPECT_GE(num_devices, 1) << "At least one CPU device should exist"; for (int i = 0; i < num_devices; ++i) { EXPECT_NE("", TF_DeviceListName(devices, i, status)) << i; EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); } TF_DeleteDeviceList(devices); TF_DeleteStatus(status); } TEST(CAPI, TensorHandle) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); CHECK_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteContextOptions(opts); TFE_TensorHandle* h = TestMatrixTensorHandle(ctx); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(h)); TF_Tensor* t = TFE_TensorHandleResolve(h, status.get()); ASSERT_EQ(16, TF_TensorByteSize(t)); float data[4] = {0}; memcpy(&data[0], TF_TensorData(t), TF_TensorByteSize(t)); EXPECT_EQ(1.0, data[0]); EXPECT_EQ(2.0, data[1]); EXPECT_EQ(3.0, data[2]); EXPECT_EQ(4.0, data[3]); TF_DeleteTensor(t); TFE_DeleteTensorHandle(h); TFE_DeleteContext(ctx); } void TensorHandleCopyBetweenDevices(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); const int num_devices = TF_DeviceListCount(devices); const char* kCPUDevice = "CPU:0"; for (int i = 0; i < num_devices; ++i) { const string name(TF_DeviceListName(devices, i, status.get())); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << i << " -- " << TF_Message(status.get()); continue; } auto tag = tensorflow::strings::StrCat("Device #", i, " (", name, ")"); TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, name.c_str(), status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_TensorHandle* hdevice2 = TFE_TensorHandleCopyToDevice(hdevice, ctx, name.c_str(), status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_DeleteTensorHandle(hdevice); TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hdevice2, ctx, kCPUDevice, status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_DeleteTensorHandle(hdevice2); TF_Tensor* tcopy = TFE_TensorHandleResolve(hcopy, status.get()); TFE_DeleteTensorHandle(hcopy); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag; continue; } EXPECT_EQ(TF_TensorByteSize(t), TF_TensorByteSize(tcopy)) << tag; EXPECT_EQ( 0, memcmp(TF_TensorData(t), TF_TensorData(tcopy), TF_TensorByteSize(t))) << tag; TF_DeleteTensor(tcopy); } TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenDevices) { TensorHandleCopyBetweenDevices(false); } TEST(CAPI, TensorHandleCopyBetweenDevicesAsync) { TensorHandleCopyBetweenDevices(true); } void TensorHandleCopyBetweenDevicesError(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* kErrorDevice = "NoSuchDevice:0"; TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, kErrorDevice, status.get()); EXPECT_NE(TF_OK, TF_GetCode(status.get())); const char* msg = "NoSuchDevice:0 unknown device"; EXPECT_TRUE(strstr(TF_Message(status.get()), msg) != nullptr) << TF_Message(status.get()); TF_SetStatus(status.get(), TF_OK, ""); const char* kCPUDevice = "CPU:0"; TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hcpu, ctx, kCPUDevice, status.get()); EXPECT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); EXPECT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteTensorHandle(hcopy); TFE_DeleteTensorHandle(hcpu); if (hdevice != nullptr) TFE_DeleteTensorHandle(hdevice); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenDevicesError) { TensorHandleCopyBetweenDevicesError(false); } TEST(CAPI, TensorHandleCopyBetweenDevicesErrorAsync) { TensorHandleCopyBetweenDevicesError(true); } void TensorHandleCopyBetweenTwoGPUDevices(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); const int num_devices = TF_DeviceListCount(devices); bool has_gpu0 = false; bool has_gpu1 = false; for (int i = 0; i < num_devices; ++i) { const char* dev = TF_DeviceListName(devices, i, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); string device_name(dev); if (device_name.find("GPU:0") != string::npos) { has_gpu0 = true; } if (device_name.find("GPU:1") != string::npos) { has_gpu1 = true; } } const char* kCPUDevice = "CPU:0"; if (!has_gpu0 || !has_gpu1) { TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); return; } const string gpu_1_name(TF_DeviceListName(devices, 1, status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); const string gpu_2_name(TF_DeviceListName(devices, 2, status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, gpu_1_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_TensorHandle* hdevice2 = TFE_TensorHandleCopyToDevice( hdevice, ctx, gpu_2_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_DeleteTensorHandle(hdevice); TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hdevice2, ctx, kCPUDevice, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_DeleteTensorHandle(hdevice2); TF_Tensor* tcopy = TFE_TensorHandleResolve(hcopy, status.get()); TFE_DeleteTensorHandle(hcopy); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); EXPECT_EQ(TF_TensorByteSize(t), TF_TensorByteSize(tcopy)); EXPECT_EQ( 0, memcmp(TF_TensorData(t), TF_TensorData(tcopy), TF_TensorByteSize(t))); TF_DeleteTensor(tcopy); TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenTwoGPUDevices) { TensorHandleCopyBetweenTwoGPUDevices(false); } TEST(CAPI, TensorHandleCopyBetweenTwoGPUDevicesAsync) { TensorHandleCopyBetweenTwoGPUDevices(true); } void TensorHandleSilentCopy(bool async, TFE_ContextDevicePlacementPolicy global_policy, TFE_ContextDevicePlacementPolicy thread_policy, bool cpu_op) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_ContextOptionsSetDevicePlacementPolicy(opts, global_policy); TFE_Context* ctx = TFE_NewContext(opts, status.get()); if (thread_policy != global_policy) { TFE_ContextSetThreadLocalDevicePlacementPolicy(ctx, thread_policy); } TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); auto cpu_arg = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(hcpu)); auto gpu_arg = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(hgpu)); auto gpu_device = gpu_arg->device(); ASSERT_FALSE(cpu_arg->HasLocalMirror(gpu_device)); TFE_Op* matmul = MatMulOp(ctx, hcpu, hgpu); if (cpu_op) { string cpu_device_name; ASSERT_TRUE(GetDeviceName(ctx, &cpu_device_name, "CPU")); TFE_OpSetDevice(matmul, cpu_device_name.c_str(), status.get()); } else { TFE_OpSetDevice(matmul, gpu_device_name.c_str(), status.get()); } ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); ASSERT_TRUE(cpu_arg->HasLocalMirror(gpu_device)); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleSilentCopy) { TensorHandleSilentCopy(false, TFE_DEVICE_PLACEMENT_SILENT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyAsync) { TensorHandleSilentCopy(true, TFE_DEVICE_PLACEMENT_SILENT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyLocalPolicy) { TensorHandleSilentCopy(false, TFE_DEVICE_PLACEMENT_EXPLICIT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyLocalPolicyAsync) { TensorHandleSilentCopy(true, TFE_DEVICE_PLACEMENT_EXPLICIT, TFE_DEVICE_PLACEMENT_SILENT, false); } void SetAndGetOpDevices(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_OpSetDevice(matmul, "GPU:0", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); const char* device_name = TFE_OpGetDevice(matmul, status); ASSERT_TRUE(strstr(device_name, "GPU:0") != nullptr); TFE_OpSetDevice(matmul, "CPU:0", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); device_name = TFE_OpGetDevice(matmul, status); ASSERT_TRUE(strstr(device_name, "CPU:0") != nullptr); } TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } TEST(CAPI, TensorHandleNullptr) { TFE_TensorHandle* h = nullptr; std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TF_Tensor* t = TFE_TensorHandleResolve(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(t, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); const char* device_name = TFE_TensorHandleDeviceName(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_name, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); device_name = TFE_TensorHandleBackingDeviceName(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_name, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int num_dims = TFE_TensorHandleNumDims(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(num_dims, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int dim = TFE_TensorHandleDim(h, 0, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(dim, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); } TEST(CAPI, TensorHandleDevices) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* device_name = TFE_TensorHandleDeviceName(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_name, "CPU:0")) << device_name; const char* backing_device_name = TFE_TensorHandleBackingDeviceName(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU:0")) << backing_device_name; string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_Op* shape_op = ShapeOp(ctx, hgpu); TFE_OpSetDevice(shape_op, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(shape_op, &retvals[0], &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); device_name = TFE_TensorHandleDeviceName(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_name, "GPU:0")) << device_name; backing_device_name = TFE_TensorHandleBackingDeviceName(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU:0")) << backing_device_name; TFE_DeleteOp(shape_op); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } void ExecuteAdd(bool async, bool forward_input, bool tfrt) { #ifdef PLATFORM_WINDOWS return; #else TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetTfrt(opts, tfrt); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* n = TestMatrixTensorHandle100x100(ctx); std::string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* n_gpu = TFE_TensorHandleCopyToDevice(n, ctx, gpu_device_name.c_str(), status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(n); n = n_gpu; } TFE_TensorHandle* m = TestMatrixTensorHandle100x100(ctx); TF_Tensor* orig = TFE_TensorHandleResolve(n, status); void* orig_ptr = TF_TensorData(orig); TF_DeleteTensor(orig); TFE_Op* add_op = AddOp(ctx, n, m); std::string cpu_device_name; ASSERT_TRUE(GetDeviceName(ctx, &cpu_device_name, "CPU")); TFE_OpSetDevice(add_op, cpu_device_name.c_str(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (forward_input) { TFE_DeleteTensorHandle(n); } int num_retvals = 1; if (async) { for (int i = 0; i < 100000; ++i) { TFE_Op* add_op_dummy = AddOp(ctx, m, m); TFE_OpSetDevice(add_op_dummy, cpu_device_name.c_str(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* dummy = nullptr; TFE_Execute(add_op_dummy, &dummy, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(dummy); TFE_DeleteOp(add_op_dummy); } } TFE_TensorHandle* retval = nullptr; TFE_Execute(add_op, &retval, &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (!forward_input) { TFE_DeleteTensorHandle(n); } TFE_DeleteOp(add_op); TF_Tensor* t = TFE_TensorHandleResolve(retval, status); if (async) { if (forward_input) { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } else { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } } else { if (forward_input) { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } else { EXPECT_NE(orig_ptr, TF_TensorData(t)); } } ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(m); TFE_DeleteTensorHandle(retval); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float result[100 * 100] = {0}; EXPECT_EQ(sizeof(result), TF_TensorByteSize(t)); memcpy(&result[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); for (int i = 0; i < 100 * 100; ++i) { EXPECT_EQ(2.0f, result[i]); } TFE_DeleteContext(ctx); TF_DeleteStatus(status); #endif } TEST(CAPI, ExecuteAdd) { ExecuteAdd( false, false, false); } TEST(CAPI, DISABLED_ExecuteAddAsync) { ExecuteAdd( true, false, false); } TEST(CAPI, ExecuteAddForward) { ExecuteAdd( false, true, false); } TEST(CAPI, ExecuteAddForwardAsync) { ExecuteAdd( true, true, false); } #ifdef PLATFORM_GOOGLE TEST(CAPI, DISABLED_ExecuteAddTfrt) { ExecuteAdd( false, false, true); } #endif void Execute_MatMul_CPU(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_TensorHandle* retvals[2] = {nullptr, nullptr}; int num_retvals = 2; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); TF_DeleteStatus(status); } TEST(CAPI, Execute_MatMul_CPU) { Execute_MatMul_CPU(false); } TEST(CAPI, Execute_MatMul_CPUAsync) { Execute_MatMul_CPU(true); } void Execute_MatMul_CPU_Runtime_Error(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* m2 = DoubleTestMatrixTensorHandle3X2(ctx); TFE_Op* matmul = MatMulOp(ctx, m1, m2); TFE_OpSetDevice(matmul, "/job:localhost/replica:0/task:0/device:CPU:0", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* matmul2 = MatMulOp(ctx, m1, m1); TFE_OpSetDevice(matmul2, "/job:localhost/replica:0/task:0/device:CPU:0", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status); TFE_DeleteOp(matmul); if (!async) { EXPECT_NE(TF_OK, TF_GetCode(status)); } else { TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); EXPECT_NE(TF_OK, TF_GetCode(status)); EXPECT_EQ(nullptr, t); const char* msg = "Matrix size-incompatible: In[0]: [2,2], In[1]: [3,2]"; EXPECT_TRUE(strstr(TF_Message(status), msg) != nullptr) << TF_Message(status); TF_SetStatus(status, TF_OK, ""); TFE_DeleteTensorHandle(retvals[0]); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TF_SetStatus(status, TF_OK, ""); retvals[0] = nullptr; TFE_Execute(matmul2, &retvals[0], &num_retvals, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TFE_ExecutorClearError(executor); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } TF_SetStatus(status, TF_OK, ""); if (retvals[0] != nullptr) { TFE_DeleteTensorHandle(retvals[0]); } retvals[0] = nullptr; TFE_Execute(matmul2, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_DeleteTensor(t); TFE_DeleteOp(matmul2); TFE_DeleteTensorHandle(m1); TFE_DeleteTensorHandle(m2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, Execute_MatMul_CPU_Runtime_Error) { Execute_MatMul_CPU_Runtime_Error(false); } TEST(CAPI, Execute_MatMul_CPU_Runtime_ErrorAsync) { Execute_MatMul_CPU_Runtime_Error(true); } void Execute_MatMul_CPU_Type_Error(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* m2 = DoubleTestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m1, m2); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m1); TFE_DeleteTensorHandle(m2); if (retvals[0] != nullptr) { TFE_DeleteTensorHandle(retvals[0]); } TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, Execute_MatMul_CPU_Type_Error) { Execute_MatMul_CPU_Type_Error(false); } TEST(CAPI, Execute_MatMul_CPU_Type_ErrorAsync) { Execute_MatMul_CPU_Type_Error(true); } TEST(CAPI, Execute_Min_CPU) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input = TestMatrixTensorHandle(ctx); TFE_TensorHandle* axis = TestAxisTensorHandle(ctx); TFE_Op* minOp = MinOp(ctx, input, axis); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(minOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(minOp); TFE_DeleteTensorHandle(input); TFE_DeleteTensorHandle(axis); ASSERT_EQ(1, num_retvals); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(retvals[0]); float output[2] = {0}; EXPECT_EQ(sizeof(output), TF_TensorByteSize(t)); memcpy(&output[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(1, output[0]); EXPECT_EQ(3, output[1]); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } void ExecuteWithTracing(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); TFE_ContextEnableRunMetadata(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TF_Buffer* b = TF_NewBuffer(); TFE_ContextExportRunMetadata(ctx, b, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::RunMetadata rm; EXPECT_TRUE( rm.ParseFromString({reinterpret_cast<const char*>(b->data), b->length})); TF_DeleteBuffer(b); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); TF_DeleteStatus(status); } TEST(CAPI, ExecuteWithTracing) { ExecuteWithTracing(false); } TEST(CAPI, ExecuteWithTracingAsync) { ExecuteWithTracing(true); } REGISTER_OP("TestNonCommUnavailable") .Output("out: string") .Doc(R"doc(Test non-communication op throwing Unavailable error.)doc"); REGISTER_OP("TestCommUnavailable") .Output("out: string") .SetIsDistributedCommunication() .Doc(R"doc(Test communication op throwing Unavailable error.)doc"); class TestUnavailableErrorOp : public tensorflow::OpKernel { public: explicit TestUnavailableErrorOp(tensorflow::OpKernelConstruction* ctx) : tensorflow::OpKernel(ctx) {} void Compute(tensorflow::OpKernelContext* ctx) override { ctx->SetStatus(tensorflow::errors::Unavailable("Test error.")); } }; REGISTER_KERNEL_BUILDER( Name("TestNonCommUnavailable").Device(tensorflow::DEVICE_DEFAULT), TestUnavailableErrorOp); REGISTER_KERNEL_BUILDER( Name("TestCommUnavailable").Device(tensorflow::DEVICE_DEFAULT), TestUnavailableErrorOp); string FunctionWithErrorOp(const tensorflow::StringPiece op_name) { const std::string& func_str = " signature {" " name: 'FunctionWith__OP_NAME__'" " output_arg {" " name: 'out'" " type: DT_STRING" " }" " }" " node_def {" " name: 'error_op'" " op: '__OP_NAME__'" " }" " ret {" " key: 'out'" " value: 'error_op:out'" " }"; tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( tensorflow::str_util::StringReplace(func_str, "__OP_NAME__", op_name, true), &def)); return def.SerializeAsString(); } TEST(CAPI, ExecuteOpAndFunctionWithError) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(false)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* non_comm_op = TFE_NewOp(ctx, "TestNonCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retval[1] = {}; int num_retvals = 1; TFE_Execute(non_comm_op, retval, &num_retvals, status); EXPECT_EQ(TF_INTERNAL, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(non_comm_op); TFE_Op* comm_op = TFE_NewOp(ctx, "TestCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(comm_op, retval, &num_retvals, status); EXPECT_EQ(TF_UNAVAILABLE, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(comm_op); const string& fdef1 = FunctionWithErrorOp("TestNonCommUnavailable"); TFE_ContextAddFunctionDef(ctx, fdef1.data(), fdef1.size(), status); TFE_Op* fn1 = TFE_NewOp(ctx, "FunctionWithTestNonCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(fn1, retval, &num_retvals, status); EXPECT_EQ(TF_INTERNAL, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(fn1); const string& fdef2 = FunctionWithErrorOp("TestCommUnavailable"); TFE_ContextAddFunctionDef(ctx, fdef2.data(), fdef2.size(), status); TFE_Op* fn2 = TFE_NewOp(ctx, "FunctionWithTestCommUnavailable", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(fn2, retval, &num_retvals, status); EXPECT_EQ(TF_UNAVAILABLE, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(fn2); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } string MatMulFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'MatMulFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'm'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'matmul'" " op: 'MatMul'" " input: 'a'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }" " }" " ret {" " key: 'm'" " value: 'matmul:product'" " }", &def)); return def.SerializeAsString(); } string AddFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'AddFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'o'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'output'" " op: 'Add'" " input: 'a'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }" " }" " ret {" " key: 'o'" " value: 'output:z'" " }", &def)); return def.SerializeAsString(); } void FunctionDefAndExecute(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); string function_def = MatMulFunction(); TFE_ContextAddFunctionDef(ctx, function_def.data(), function_def.size(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (bool clear_cache : {true, false, true}) { if (clear_cache) { TFE_ContextClearCaches(ctx); } TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_TensorHandle* retval[1] = {nullptr}; int num_retvals = 1; TFE_Op* op = TFE_NewOp(ctx, "MatMulFunction", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, m, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &retval[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); TFE_DeleteOp(op); TFE_DeleteTensorHandle(m); TF_Tensor* t = TFE_TensorHandleResolve(retval[0], status); TFE_DeleteTensorHandle(retval[0]); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); } TFE_ContextRemoveFunction(ctx, "MatMulFunction", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } TEST(CAPI, FunctionDefAndExecute) { FunctionDefAndExecute(false); } TEST(CAPI, FunctionDefAndExecuteAsync) { FunctionDefAndExecute(true); } void RunAddFunction(bool use_tfrt, bool enable_grappler) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetTfrt(opts, use_tfrt); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); string function_def = AddFunction(); TFE_ContextAddFunctionDef(ctx, function_def.data(), function_def.size(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_TensorHandle* retval[1] = {nullptr}; int num_retvals = 1; TFE_Op* op = TFE_NewOp(ctx, "AddFunction", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (enable_grappler) { tensorflow::ConfigProto config; config.mutable_graph_options() ->mutable_rewrite_options() ->set_min_graph_nodes(-1); string serialized_config; ASSERT_TRUE(config.SerializeToString(&serialized_config)); TFE_OpSetAttrString( op, "config_proto", reinterpret_cast<const void*>(serialized_config.c_str()), serialized_config.length()); } if (use_tfrt) { TFE_OpSetAttrBool(op, "TFRT_TEST_enable_native_ops", false); TFE_OpSetAttrBool(op, "TFRT_TEST_enable_grappler", enable_grappler); } ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, m, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &retval[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); TFE_DeleteOp(op); TFE_DeleteTensorHandle(m); TF_Tensor* t = TFE_TensorHandleResolve(retval[0], status); TFE_DeleteTensorHandle(retval[0]); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(2, product[0]); EXPECT_EQ(4, product[1]); EXPECT_EQ(6, product[2]); EXPECT_EQ(8, product[3]); if (use_tfrt) { TF_Buffer* buf = TF_NewBuffer(); TFE_GetExecutedOpNames(ctx, buf, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); #ifndef NDEBUG if (enable_grappler) EXPECT_NE(strstr(static_cast<const char*>(buf->data), "tf.Mul"), nullptr); else EXPECT_NE(strstr(static_cast<const char*>(buf->data), "tf.Add"), nullptr); #endif TF_DeleteBuffer(buf); } TFE_ContextRemoveFunction(ctx, "AddFunction", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } TEST(CAPI, RunAddFunctionWithGrappler) { RunAddFunction(false, true); } void BM_ExecuteFunction(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteFunctionAsync" : "ExecuteFunction"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); string function_def = MatMulFunction(); TFE_ContextAddFunctionDef(ctx, function_def.data(), function_def.size(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_TensorHandle* retval[1] = {nullptr}; int num_retvals = 1; for (auto s : state) { TFE_Op* matmul = TFE_NewOp(ctx, "MatMulFunction", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(matmul, &retval[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteTensorHandle(m); TFE_DeleteTensorHandle(retval[0]); TFE_ContextRemoveFunction(ctx, "MatMulFunction", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_ExecuteFunction)->Arg(0)->Arg(1); TEST(CAPI, Variables) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* var_handle = TestVariable(ctx, 12.0); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* op = TFE_NewOp(ctx, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_retvals = 1; TFE_TensorHandle* value_handle = nullptr; TFE_Execute(op, &value_handle, &num_retvals, status); TFE_DeleteOp(op); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(value_handle)); EXPECT_EQ(0, TFE_TensorHandleNumDims(value_handle, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(value_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(12.0, value); TFE_DeleteTensorHandle(var_handle); TFE_DeleteTensorHandle(value_handle); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } void BM_ReadVariable(::testing::benchmark::State& state) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* var_handle = TestVariable(ctx, 5.0); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_retvals = 1; TFE_TensorHandle* h = nullptr; for (auto s : state) { TFE_Op* op = TFE_NewOp(ctx, "ReadVariableOp", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &h, &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); CHECK_EQ(1, num_retvals); CHECK(h); CHECK_EQ(TF_FLOAT, TFE_TensorHandleDataType(h)); CHECK_EQ(0, TFE_TensorHandleNumDims(h, status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); h = nullptr; TFE_DeleteOp(op); } TFE_DeleteTensorHandle(var_handle); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_ReadVariable); TEST(CAPI, StringAttributes) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); std::vector<int64_t> dims(4, 1); TFE_Op* op = TFE_NewOp(ctx, "AvgPool", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* tensor = TF_AllocateTensor(TF_FLOAT, dims.data(), dims.size(), sizeof(float)); float tensor_data[] = {1}; memcpy(TF_TensorData(tensor), tensor_data, TF_TensorByteSize(tensor)); TFE_TensorHandle* tensor_handle = TFE_NewTensorHandle(tensor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, tensor_handle, status); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(tensor_handle); std::vector<int64_t> values(4, 1); TFE_OpSetAttrIntList(op, "ksize", values.data(), values.size()); TFE_OpSetAttrIntList(op, "strides", values.data(), values.size()); const int BUFFER_SIZE = 10; char buffer[BUFFER_SIZE]; std::strncpy(buffer, "VALID", BUFFER_SIZE); TFE_OpSetAttrString(op, "padding", buffer, std::strlen(buffer)); std::strncpy(buffer, "NHWC", BUFFER_SIZE); TFE_OpSetAttrString(op, "data_format", buffer, std::strlen(buffer)); TFE_OpSetAttrType(op, "T", TF_FLOAT); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(op, &retvals[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); tensor = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(4, TF_TensorByteSize(tensor)); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteOp(op); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, TestTFE_SetOpAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); std::vector<int64_t> dims(4, 1); TFE_Op* op = TFE_NewOp(ctx, "AvgPool", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* tensor = TF_AllocateTensor(TF_FLOAT, dims.data(), dims.size(), sizeof(float)); float tensor_data[] = {1}; memcpy(TF_TensorData(tensor), tensor_data, TF_TensorByteSize(tensor)); TFE_TensorHandle* tensor_handle = TFE_NewTensorHandle(tensor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(op, tensor_handle, status); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(tensor_handle); tensorflow::AttrValue i_list_values; for (int i = 0; i < 4; ++i) { i_list_values.mutable_list()->add_i(1); } SetOpAttrValueScalar(ctx, op, i_list_values, "ksize", status); SetOpAttrValueScalar(ctx, op, i_list_values, "strides", status); tensorflow::AttrValue padding_value; *padding_value.mutable_s() = "VALID"; tensorflow::SetOpAttrValueScalar(ctx, op, padding_value, "padding", status); tensorflow::AttrValue data_format_value; *data_format_value.mutable_s() = "NHWC"; tensorflow::SetOpAttrValueScalar(ctx, op, data_format_value, "data_format", status); TFE_OpSetAttrType(op, "T", TF_FLOAT); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(op, &retvals[0], &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(1, num_retvals); tensor = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(4, TF_TensorByteSize(tensor)); TF_DeleteTensor(tensor); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteOp(op); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, TestTFE_TensorHandleCopySharingUnderlyingTensorHandle) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); CHECK_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteContextOptions(opts); TFE_TensorHandle* h = TestMatrixTensorHandle(ctx); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(h)); TFE_TensorHandle* h_shares_tensor = TFE_TensorHandleCopySharingTensor(h, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_Tensor* t = TFE_TensorHandleResolve(h_shares_tensor, status.get()); ASSERT_EQ(16, TF_TensorByteSize(t)); float data[4] = {0}; memcpy(&data[0], TF_TensorData(t), TF_TensorByteSize(t)); EXPECT_EQ(1.0, data[0]); EXPECT_EQ(2.0, data[1]); EXPECT_EQ(3.0, data[2]); EXPECT_EQ(4.0, data[3]); TF_DeleteTensor(t); TFE_DeleteTensorHandle(h); TFE_DeleteTensorHandle(h_shares_tensor); TFE_DeleteContext(ctx); } tensorflow::AttrValueMap ExtractAttrs(TFE_Op* op) { tensorflow::AttrValueMap attr_values; tensorflow::EagerOperation* operation = tensorflow::OperationFromInterface(tensorflow::unwrap(op)); operation->Attrs().FillAttrValueMap(&attr_values); return attr_values; } TEST(CAPI, TestTFE_OpInferSingleInputAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input = TestMatrixTensorHandle(ctx); TFE_TensorHandle* axis = TestAxisTensorHandle(ctx); TFE_Op* minOp = TFE_NewOp(ctx, "Min", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(minOp, input, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(minOp, axis, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(minOp); tensorflow::AttrValueMap::const_iterator attr_found = attr_values.find("T"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.type(), tensorflow::DataType::DT_FLOAT); attr_found = attr_values.find("Tidx"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.type(), tensorflow::DataType::DT_INT32); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(minOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(minOp); TFE_DeleteTensorHandle(input); TFE_DeleteTensorHandle(axis); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpInferSingleTypeInputListAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* dim = TestScalarTensorHandle(ctx, 0); TFE_Op* concatOp = TFE_NewOp(ctx, "Concat", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInput(concatOp, dim, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInputList(concatOp, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(concatOp); tensorflow::AttrValueMap::const_iterator attr_found = attr_values.find("T"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.type(), tensorflow::DataType::DT_FLOAT); attr_found = attr_values.find("N"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.i(), 2); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(concatOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(concatOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(dim); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpInferMixedTypeInputListAttrs) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* condition = TestScalarTensorHandle(ctx, true); TFE_TensorHandle* t1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* t2 = TestAxisTensorHandle(ctx); TFE_Op* assertOp = TFE_NewOp(ctx, "Assert", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(assertOp, condition, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* data[] = {condition, t1, t2}; TFE_OpAddInputList(assertOp, data, 3, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(assertOp); tensorflow::AttrValueMap::const_iterator attr_found = attr_values.find("T"); EXPECT_NE(attr_found, attr_values.cend()); EXPECT_EQ(attr_found->second.list().type(0), tensorflow::DataType::DT_BOOL); EXPECT_EQ(attr_found->second.list().type(1), tensorflow::DataType::DT_FLOAT); EXPECT_EQ(attr_found->second.list().type(2), tensorflow::DataType::DT_INT32); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(assertOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(assertOp); TFE_DeleteTensorHandle(condition); TFE_DeleteTensorHandle(t1); TFE_DeleteTensorHandle(t2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpAttrsInferenceDisabledWhenNotCallingOpAddInputList) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* dim = TestScalarTensorHandle(ctx, 0); TFE_Op* concatOp = TFE_NewOp(ctx, "Concat", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInput(concatOp, dim, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); CHECK(tensorflow::unwrap(concatOp)->OpDef()); TFE_OpAddInput(concatOp, inputs[0], status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_FALSE(tensorflow::unwrap(concatOp)->OpDef()) << "Inference context is still present"; TFE_OpAddInput(concatOp, inputs[1], status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values = ExtractAttrs(concatOp); EXPECT_EQ(attr_values.find("T"), attr_values.end()); EXPECT_EQ(attr_values.find("N"), attr_values.end()); TF_DeleteStatus(status); TFE_DeleteOp(concatOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(dim); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpGetInputAndOutputLengths) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_Op* identityOp = TFE_NewOp(ctx, "IdentityN", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetInputLength(identityOp, "input", status)); CHECK_NE(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetOutputLength(identityOp, "output", status)); CHECK_NE(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInputList(identityOp, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetInputLength(identityOp, "input", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetOutputLength(identityOp, "output", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[2] = {nullptr}; int num_retvals = 2; TFE_Execute(identityOp, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetInputLength(identityOp, "input", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(2, TFE_OpGetOutputLength(identityOp, "output", status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(identityOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(retvals[1]); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpGetInputAndOutputLengthsFailForUnknownArguments) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_Op* identityOp = TFE_NewOp(ctx, "IdentityN", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInputList(identityOp, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetInputLength(identityOp, "cheese", status)); CHECK_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(-1, TFE_OpGetOutputLength(identityOp, "cheese", status)); CHECK_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteOp(identityOp); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteContext(ctx); } void TestOpAddAttrs(bool use_tfrt) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetTfrt(opts, use_tfrt); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* var_op = TFE_NewOp(ctx, "VarHandleOp", status); TFE_OpSetAttrType(var_op, "dtype", TF_INT64); TFE_OpSetAttrShape(var_op, "shape", {}, 0, status); const TFE_OpAttrs* attributes = TFE_OpGetAttrs(var_op); TFE_Op* copy_op = TFE_NewOp(ctx, "VarHandleOp", status); TFE_OpSetAttrType(copy_op, "dtype", TF_FLOAT); TFE_OpAddAttrs(copy_op, attributes); unsigned char is_list = 0; ASSERT_EQ(TF_ATTR_TYPE, TFE_OpGetAttrType(copy_op, "dtype", &is_list, status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(TF_ATTR_SHAPE, TFE_OpGetAttrType(copy_op, "shape", &is_list, status)); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values; tensorflow::EagerOperation* op = tensorflow::OperationFromInterface(tensorflow::unwrap(copy_op)); op->Attrs().FillAttrValueMap(&attr_values); EXPECT_EQ(tensorflow::DT_FLOAT, attr_values.find("dtype")->second.type()); TF_DeleteStatus(status); TFE_DeleteOp(var_op); TFE_DeleteOp(copy_op); TFE_DeleteContext(ctx); } TEST(CAPI, TestTFE_OpAddAttrs) { TestOpAddAttrs(false); } TEST(CAPI, TestTFE_OpAttrsSerialize) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* var_op = TFE_NewOp(ctx, "VarHandleOp", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(var_op, "dtype", TF_INT64); TFE_OpSetAttrShape(var_op, "shape", {}, 0, status); const TFE_OpAttrs* attributes = TFE_OpGetAttrs(var_op); TF_Buffer* serialized_attr_values = TF_NewBuffer(); TFE_OpAttrsSerialize(attributes, serialized_attr_values, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::NameAttrList name_and_attrs; ASSERT_TRUE(name_and_attrs.ParseFromArray(serialized_attr_values->data, serialized_attr_values->length)); ASSERT_EQ("VarHandleOp", name_and_attrs.name()); ASSERT_EQ(tensorflow::DT_INT64, name_and_attrs.attr().find("dtype")->second.type()); TF_DeleteBuffer(serialized_attr_values); TFE_Op* var_op_2 = TFE_NewOp(ctx, "VarHandleOp", status); string serialized_dtype; ASSERT_TRUE(name_and_attrs.attr().find("dtype")->second.SerializeToString( &serialized_dtype)); TFE_OpSetAttrValueProto( var_op_2, "dtype", reinterpret_cast<const void*>(serialized_dtype.c_str()), serialized_dtype.length(), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::AttrValueMap attr_values; tensorflow::EagerOperation* op = tensorflow::OperationFromInterface(tensorflow::unwrap(var_op_2)); op->Attrs().FillAttrValueMap(&attr_values); EXPECT_EQ(tensorflow::DT_INT64, attr_values.find("dtype")->second.type()); TF_DeleteStatus(status); TFE_DeleteOp(var_op); TFE_DeleteOp(var_op_2); TFE_DeleteContext(ctx); } TFE_Op* CloneOp(const TFE_Op* other) { TF_Status* status = TF_NewStatus(); TFE_Context* context = TFE_OpGetContext(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const char* op_name = TFE_OpGetName(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* ret = TFE_NewOp(context, op_name, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const char* device = TFE_OpGetDevice(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetDevice(ret, device, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddAttrs(ret, TFE_OpGetAttrs(other)); int num_inputs = TFE_OpGetFlatInputCount(other, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (int input_index = 0; input_index < num_inputs; ++input_index) { TFE_TensorHandle* input = TFE_OpGetFlatInput(other, input_index, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(ret, input, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); } TF_DeleteStatus(status); return ret; } TEST(CAPI, TestTFE_OpRecreation) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Op* original_var_op = TFE_NewOp(ctx, "VarHandleOp", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(original_var_op, "dtype", TF_INT64); TFE_OpSetAttrShape(original_var_op, "shape", {}, 0, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ("", std::string(TFE_OpGetDevice(original_var_op, status))); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetDevice(original_var_op, "/job:localhost/replica:0/task:0/device:CPU:0", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* cloned = CloneOp(original_var_op); EXPECT_EQ("/job:localhost/replica:0/task:0/device:CPU:0", std::string(TFE_OpGetDevice(cloned, status))); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ("VarHandleOp", std::string(TFE_OpGetName(cloned, status))); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_retvals = 1; TFE_TensorHandle* ret; TFE_Execute(cloned, &ret, &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(ret); TFE_TensorHandle* input1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* input2 = TestMatrixTensorHandle(ctx); TFE_Op* original_identity = TFE_NewOp(ctx, "IdentityN", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* inputs[] = {input1, input2}; TFE_OpAddInputList(original_identity, inputs, 2, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* cloned_identity = CloneOp(original_identity); EXPECT_EQ("", std::string(TFE_OpGetDevice(cloned_identity, status))); TFE_TensorHandle* identity_ret[] = {nullptr, nullptr}; num_retvals = 2; TFE_Execute(cloned_identity, identity_ret, &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(input1); TFE_DeleteTensorHandle(input2); TFE_DeleteTensorHandle(identity_ret[0]); TFE_DeleteTensorHandle(identity_ret[1]); TFE_DeleteOp(cloned_identity); TFE_DeleteOp(original_identity); TFE_DeleteOp(original_var_op); TFE_DeleteOp(cloned); TF_DeleteStatus(status); TFE_DeleteContext(ctx); } TEST(CAPI, ShareVariableAcrossContextsWorks) { tensorflow::ServerDef server_def_0 = GetServerDef(3); server_def_0.mutable_default_session_config()->set_isolate_session_state( false); tensorflow::ServerDef server_def_1 = ReplaceTaskInServerDef(server_def_0, 0); string serialized_server_def_0 = server_def_0.SerializeAsString(); string serialized_server_def_1 = server_def_1.SerializeAsString(); server_def_0.set_task_index(1); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); server_def_0.set_task_index(2); std::unique_ptr<tensorflow::GrpcServer> worker_server2; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server2) .ok()); ASSERT_TRUE(worker_server2->Start().ok()); TFE_Context* ctx_0 = CreateContext(serialized_server_def_0, false, 0); TFE_Context* ctx_1 = CreateContext(serialized_server_def_1, false, 0); const char remote_device[] = "/job:localhost/replica:0/task:1/device:CPU:0"; { const std::vector<std::string>& device_names = ListDeviceNames(ctx_0); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } { const std::vector<std::string>& device_names = ListDeviceNames(ctx_1); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } TFE_TensorHandle* handle_0 = CreateVariable(ctx_0, 1.2, remote_device, "var2"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_0, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); { TFE_TensorHandle* var_handle = CreateVarHandle(ctx_1, remote_device, "var2"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_1, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteTensorHandle(handle_0); TFE_DeleteContext(ctx_0); TFE_DeleteContext(ctx_1); worker_server1.release(); worker_server2.release(); } TEST(CAPI, ShareVariableAcrossContextsAfterUpdateContextWorks) { tensorflow::ServerDef server_def_0 = GetServerDef(3); server_def_0.mutable_default_session_config()->set_isolate_session_state( false); tensorflow::ServerDef server_def_1 = ReplaceTaskInServerDef(server_def_0, 0); string serialized_server_def_0 = server_def_0.SerializeAsString(); string serialized_server_def_1 = server_def_1.SerializeAsString(); server_def_0.set_task_index(1); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); server_def_0.set_task_index(2); std::unique_ptr<tensorflow::GrpcServer> worker_server2; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server2) .ok()); ASSERT_TRUE(worker_server2->Start().ok()); TFE_Context* ctx_0 = CreateContext(serialized_server_def_0, false, 0); TFE_Context* ctx_1 = CreateContext(serialized_server_def_1, false, 0); const char remote_device[] = "/job:localhost/replica:0/task:2/device:CPU:0"; { const std::vector<std::string>& device_names = ListDeviceNames(ctx_0); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } { const std::vector<std::string>& device_names = ListDeviceNames(ctx_1); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } TFE_TensorHandle* handle_0 = CreateVariable(ctx_0, 1.2, remote_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_0, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); int port = tensorflow::testing::PickUnusedPortOrDie(); ReplaceTaskInServerDef(&server_def_0, 1, "localhost", port); ReplaceTaskInServerDef(&server_def_1, 1, "localhost", port); server_def_0.set_task_index(1); worker_server1.release(); ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); { server_def_0.set_task_index(0); string serialized_update = server_def_0.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDef(ctx_0, 0, serialized_update.data(), serialized_update.size(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { server_def_1.set_task_index(0); string serialized_update = server_def_1.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDef(ctx_1, 0, serialized_update.data(), serialized_update.size(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { TFE_TensorHandle* var_handle = CreateVarHandle(ctx_1, remote_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_1, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteTensorHandle(handle_0); TFE_DeleteContext(ctx_0); TFE_DeleteContext(ctx_1); worker_server1.release(); worker_server2.release(); } tensorflow::ServerDef CreateSingleHostServerDef( const tensorflow::ServerDef& cluster_server_def, int task_index) { tensorflow::ServerDef single_host_server_def; single_host_server_def.set_job_name("worker"); single_host_server_def.set_protocol(cluster_server_def.protocol()); single_host_server_def.set_task_index(0); tensorflow::ClusterDef* cluster_def = single_host_server_def.mutable_cluster(); tensorflow::JobDef* job_def = cluster_def->add_job(); job_def->set_name("client"); job_def->mutable_tasks()->insert( {0, tensorflow::strings::StrCat( "localhost:", tensorflow::testing::PickUnusedPortOrDie())}); tensorflow::JobDef* job_def2 = cluster_def->add_job(); job_def2->set_name("worker"); for (auto task : cluster_server_def.cluster().job(0).tasks()) { if (task.first == task_index) { job_def2->mutable_tasks()->insert({task.first, task.second}); } } return single_host_server_def; } tensorflow::ServerDef GetClusterServerDef(const string& worker_job_name, int num_workers) { tensorflow::ServerDef server_def = GetServerDef(worker_job_name, num_workers); tensorflow::ClusterDef* cluster_def = server_def.mutable_cluster(); tensorflow::JobDef* job_def2 = cluster_def->add_job(); job_def2->set_name("client"); job_def2->mutable_tasks()->insert( {0, tensorflow::strings::StrCat( "localhost:", tensorflow::testing::PickUnusedPortOrDie())}); return server_def; } TEST(CAPI, SingleHostServerDefV1Works) { tensorflow::ServerDef cluster_server_def = GetClusterServerDef("worker", 2); tensorflow::ServerDef worker_1_server_def = CreateSingleHostServerDef(cluster_server_def, 1); worker_1_server_def.set_task_index(1); worker_1_server_def.set_job_name("worker"); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create(worker_1_server_def, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); worker_1_server_def.set_task_index(0); worker_1_server_def.set_job_name("client"); TFE_Context* local_ctx = CreateContext(worker_1_server_def.SerializeAsString(), false, 0); const char remote_device[] = "/job:worker/replica:0/task:1/device:CPU:0"; TFE_TensorHandle* handle_0 = CreateVariable(local_ctx, 1.2, remote_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(local_ctx, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteTensorHandle(handle_0); tensorflow::ServerDef worker_0_server_def = CreateSingleHostServerDef(cluster_server_def, 0); worker_0_server_def.set_task_index(0); std::unique_ptr<tensorflow::GrpcServer> worker_server0; ASSERT_TRUE(tensorflow::GrpcServer::Create(worker_0_server_def, tensorflow::Env::Default(), &worker_server0) .ok()); ASSERT_TRUE(worker_server0->Start().ok()); cluster_server_def.set_task_index(0); cluster_server_def.set_job_name("client"); TFE_Context* remote_ctx = CreateContext(cluster_server_def.SerializeAsString(), false, 0); { TFE_TensorHandle* var_handle = CreateVarHandle(remote_ctx, remote_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(remote_ctx, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteContext(local_ctx); TFE_DeleteContext(remote_ctx); worker_server1.release(); worker_server0.release(); } TEST(CAPI, SingleHostServerDefV2Works) { tensorflow::ServerDef cluster_server_def = GetClusterServerDef("worker", 2); cluster_server_def.set_task_index(0); cluster_server_def.set_job_name("worker"); std::unique_ptr<tensorflow::GrpcServer> worker_server0; ASSERT_TRUE(tensorflow::GrpcServer::Create(cluster_server_def, tensorflow::Env::Default(), &worker_server0) .ok()); ASSERT_TRUE(worker_server0->Start().ok()); cluster_server_def.set_task_index(1); cluster_server_def.set_job_name("worker"); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create(cluster_server_def, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); cluster_server_def.set_task_index(0); cluster_server_def.set_job_name("client"); TFE_Context* ctx_with_cluster_server_def = CreateContext(cluster_server_def.SerializeAsString(), false, 0); const char worker_1_device[] = "/job:worker/replica:0/task:1/device:CPU:0"; TFE_TensorHandle* handle_0 = CreateVariable(ctx_with_cluster_server_def, 1.2, worker_1_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_with_cluster_server_def, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); TFE_DeleteTensorHandle(handle_0); tensorflow::ServerDef worker_1_server_def = CreateSingleHostServerDef(cluster_server_def, 1); worker_1_server_def.set_task_index(0); worker_1_server_def.set_job_name("client"); TFE_Context* ctx_with_worker_1_server_def = CreateContext(worker_1_server_def.SerializeAsString(), false, 0); { TFE_TensorHandle* var_handle = CreateVarHandle( ctx_with_worker_1_server_def, worker_1_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_with_worker_1_server_def, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteContext(ctx_with_worker_1_server_def); TFE_DeleteContext(ctx_with_cluster_server_def); worker_server1.release(); worker_server0.release(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/c_api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f04a7bc0-66d1-4061-a1dd-c9111cff0a3a
cpp
tensorflow/tensorflow
tfprof_tensor
tensorflow/core/profiler/internal/tfprof_tensor.cc
tensorflow/core/profiler/internal/tfprof_tensor_test.cc
#include "tensorflow/core/profiler/internal/tfprof_tensor.h" #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" namespace tensorflow { namespace tfprof { void TFProfTensor::Display(string* formatted_str, TFProfTensorProto* tfprof_tensor_pb) { if (formatted_str) { if (formatted_str_.length() >= kTFProfTenosrMaxDisplayLen) { *formatted_str = absl::StrCat(formatted_str_, "...omitted from display\n\n"); } else { *formatted_str = formatted_str_; } } if (tfprof_tensor_pb) { tfprof_tensor_pb->MergeFrom(tfprof_tensor_pb_); } } void TFProfTensor::Build() { tfprof_tensor_pb_.set_dtype(tensor_->dtype()); switch (tensor_->dtype()) { case DataType::DT_FLOAT: case DataType::DT_DOUBLE: { std::vector<double> values_vec; if (tensor_->dtype() == DataType::DT_FLOAT) { GetValueVec<float, double>(&values_vec); } else if (tensor_->dtype() == DataType::DT_DOUBLE) { GetValueVec<double, double>(&values_vec); } BuildOutput<double>(0, 0, values_vec, &tfprof_tensor_pb_); break; } case DataType::DT_INT32: case DataType::DT_INT64: { std::vector<int64_t> values_vec; if (tensor_->dtype() == DataType::DT_INT32) { GetValueVec<int32, int64_t>(&values_vec); } else if (tensor_->dtype() == DataType::DT_INT64) { GetValueVec<int64_t, int64_t>(&values_vec); } BuildOutput<int64_t>(0, 0, values_vec, &tfprof_tensor_pb_); break; } case DataType::DT_STRING: { std::vector<tstring> values_vec; GetValueVec<tstring, tstring>(&values_vec); BuildOutput<tstring>(0, 0, values_vec, &tfprof_tensor_pb_); break; } default: { absl::FPrintF(stderr, "Not Supported type %d\n", tensor_->dtype()); break; } } } } }
#include <memory> #include <utility> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/internal/tfprof_stats.h" #include "tensorflow/core/profiler/internal/tfprof_utils.h" #include "tensorflow/core/profiler/tfprof_log.pb.h" #include "tensorflow/core/profiler/tfprof_options.h" #include "tensorflow/core/profiler/tfprof_output.pb.h" namespace tensorflow { namespace tfprof { class TFProfTensorTest : public ::testing::Test { protected: TFProfTensorTest() { string graph_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/graph.pbtxt"); std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef()); TF_CHECK_OK( ReadProtoFile(Env::Default(), graph_path, graph_pb.get(), false)); std::unique_ptr<tensorflow::RunMetadata> run_meta_pb; std::unique_ptr<OpLogProto> op_log_pb; string ckpt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/ckpt"); TF_Status* status = TF_NewStatus(); std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader( new checkpoint::CheckpointReader(ckpt_path, status)); CHECK(TF_GetCode(status) == TF_OK); TF_DeleteStatus(status); tf_stats_ = std::make_unique<TFStats>(std::move(graph_pb), std::move(run_meta_pb), std::move(op_log_pb), std::move(ckpt_reader)); tf_stats_->BuildAllViews(); } std::unique_ptr<TFStats> tf_stats_; }; TEST_F(TFProfTensorTest, Basics) { Options opts(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {"VariableV2"}, {".*"}, {""}, {".*"}, {""}, false, {"tensor_value"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("scope", opts); EXPECT_EQ(root.children(0).name(), "DW"); EXPECT_GT(root.children(0).tensor_value().value_double_size(), 10); EXPECT_EQ(root.children(1).name(), "DW2"); EXPECT_GT(root.children(1).tensor_value().value_double_size(), 10); EXPECT_EQ(root.children(2).name(), "ScalarW"); EXPECT_EQ(root.children(2).tensor_value().value_double_size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b237aaf1-e2e0-46bd-9a9f-7c64978e4db3
cpp
tensorflow/tensorflow
window_dataset_op
tensorflow/core/kernels/data/window_dataset_op.cc
tensorflow/core/kernels/data/window_dataset_op_test.cc
#include "tensorflow/core/kernels/data/window_dataset_op.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/data/window_dataset.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr const char* const WindowDatasetOp::kDatasetType; constexpr const char* const WindowDatasetOp::kInputDataset; constexpr const char* const WindowDatasetOp::kSize; constexpr const char* const WindowDatasetOp::kShift; constexpr const char* const WindowDatasetOp::kStride; constexpr const char* const WindowDatasetOp::kDropRemainder; constexpr const char* const WindowDatasetOp::kOutputTypes; constexpr const char* const WindowDatasetOp::kOutputShapes; constexpr char kInputImplEmpty[] = "input_impl_empty"; constexpr char kBufferSize[] = "buffer_size"; constexpr char kBuffer[] = "buffer"; constexpr char kSizeSuffix[] = ".size"; constexpr char kCodeSuffix[] = ".code"; constexpr char kErrorMessage[] = ".error_message"; class WindowDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, int64_t window_size, int64_t window_shift, int64_t window_stride, bool drop_remainder) : DatasetBase(DatasetContext(ctx)), input_(input), window_size_(window_size), window_shift_(window_shift), window_stride_(window_stride), drop_remainder_(drop_remainder), output_dtypes_(input_->output_dtypes().size(), {DT_VARIANT}), output_shapes_(input_->output_shapes().size(), TensorShape({})), traceme_metadata_( {{"window_size", strings::Printf("%lld", static_cast<long long>(window_size))}, {"window_shift", strings::Printf("%lld", static_cast<long long>(window_shift))}, {"window_stride", strings::Printf("%lld", static_cast<long long>( window_stride))}}) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return output_dtypes_; } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { name_utils::DatasetDebugStringParams params; params.set_args(window_size_, window_shift_, window_stride_, drop_remainder_); return name_utils::DatasetDebugString(kDatasetType, params); } int64_t CardinalityInternal(CardinalityOptions options) const override { int64_t n = input_->Cardinality(options); if (n == kInfiniteCardinality || n == kUnknownCardinality) { return n; } int64_t cardinality = 0; if (drop_remainder_) { int64_t rest_elements = n - ((window_size_ - 1) * window_stride_ + 1); cardinality = rest_elements < 0 ? 0 : rest_elements / window_shift_ + 1; } else { cardinality = n / window_shift_ + (n % window_shift_ == 0 ? 0 : 1); } return cardinality; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* window_size_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(window_size_, &window_size_node)); Node* window_shift_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(window_shift_, &window_shift_node)); Node* window_stride_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(window_stride_, &window_stride_node)); Node* drop_remainder_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(drop_remainder_, &drop_remainder_node)); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, window_size_node, window_shift_node, window_stride_node, drop_remainder_node}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params) {} Status Initialize(IteratorContext* ctx) override { return dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { const int64_t window_size = dataset()->window_size_; const int64_t window_shift = dataset()->window_shift_; const int64_t window_stride = dataset()->window_stride_; std::vector<std::vector<Tensor>> window_elements; Status status = absl::OkStatus(); { const size_t target_size = TargetBufferSize(window_size, window_stride); mutex_lock l(mu_); if (!input_impl_ && (buffer_.empty() || (dataset()->drop_remainder_ && buffer_.size() < target_size))) { *end_of_sequence = true; return absl::OkStatus(); } if (input_impl_) { *end_of_sequence = false; for (size_t i = buffer_.size(); i < target_size && !*end_of_sequence; ++i) { std::vector<Tensor> element; Status status = input_impl_->GetNext(ctx, &element, end_of_sequence); if (!*end_of_sequence) { RecordBufferEnqueue(ctx, element); buffer_.emplace_back(std::move(element), status); } else { input_impl_.reset(); } } } if (buffer_.empty() || (dataset()->drop_remainder_ && buffer_.size() < target_size)) { DCHECK(*end_of_sequence); return absl::OkStatus(); } int num_elements = 1 + (buffer_.size() - 1) / window_stride; window_elements.reserve(num_elements); for (size_t i = 0; i < num_elements; ++i) { status.Update(buffer_[window_stride * i].status); if (!status.ok()) { break; } window_elements.emplace_back(buffer_[window_stride * i].result); } int buffer_size = buffer_.size(); if (window_shift >= buffer_size) { for (size_t i = buffer_size; input_impl_ && i < window_shift; ++i) { bool end_of_input; std::vector<Tensor> element; input_impl_->GetNext(ctx, &element, &end_of_input).IgnoreError(); if (end_of_input) { input_impl_.reset(); } } for (size_t i = 0; i < buffer_.size(); ++i) { RecordBufferDequeue(ctx, buffer_.at(i).result); } buffer_.clear(); } else { for (size_t i = 0; i < window_shift; ++i) { RecordBufferDequeue(ctx, buffer_.at(i).result); } buffer_.erase(buffer_.begin(), buffer_.begin() + window_shift); } } if (!status.ok()) { return status; } const size_t num_tuple_components = window_elements[0].size(); const int64_t num_window_elements = window_elements.size(); *end_of_sequence = false; for (size_t idx = 0; idx < num_tuple_components; ++idx) { DatasetBase* window_dataset; std::vector<std::vector<Tensor>> window_component_elements; window_component_elements.reserve(num_window_elements); for (size_t i = 0; i < num_window_elements; ++i) { std::vector<Tensor> component_element; component_element.push_back(std::move(window_elements[i][idx])); window_component_elements.push_back(component_element); } DataTypeVector output_types({dataset()->input_->output_dtypes()[idx]}); std::vector<PartialTensorShape> output_shapes( {dataset()->input_->output_shapes()[idx]}); TF_RETURN_IF_ERROR(NewWindow(window_component_elements, output_types, output_shapes, &window_dataset)); out_tensors->emplace_back(DT_VARIANT, TensorShape({})); TF_RETURN_IF_ERROR( StoreDatasetInVariantTensor(window_dataset, &out_tensors->back())); } return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), dataset()->window_shift_); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); if (!input_impl_) { TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kInputImplEmpty, "")); } else { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kBufferSize, buffer_.size())); for (int64_t i = 0; i < buffer_.size(); i++) { TF_RETURN_IF_ERROR(WriteStatusLocked(writer, i, buffer_[i].status)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), strings::StrCat(kBuffer, "[", i, "]", kSizeSuffix), buffer_[i].result.size())); for (int64_t j = 0; j < buffer_[i].result.size(); j++) { TF_RETURN_IF_ERROR(writer->WriteTensor( prefix(), strings::StrCat(kBuffer, "[", i, "][", j, "]"), buffer_[i].result[j])); } } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); if (!reader->Contains(prefix(), kInputImplEmpty)) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } int64_t buffer_size = 0; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kBufferSize, &buffer_size)); buffer_.resize(buffer_size); for (int64_t i = 0; i < buffer_size; i++) { int64_t vector_size; TF_RETURN_IF_ERROR(ReadStatusLocked(reader, i, &buffer_[i].status)); TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), strings::StrCat(kBuffer, "[", i, "]", kSizeSuffix), &vector_size)); buffer_[i].result.resize(vector_size); for (int64_t j = 0; j < vector_size; j++) { TF_RETURN_IF_ERROR( reader->ReadTensor(ctx->flr(), prefix(), strings::StrCat(kBuffer, "[", i, "][", j, "]"), &buffer_[i].result[j])); } } return absl::OkStatus(); } TraceMeMetadata GetTraceMeMetadata() const override { return dataset()->traceme_metadata_; } private: struct InvocationResult { InvocationResult() = default; InvocationResult(std::vector<Tensor>&& result, const Status& status) : result(result), status(status) {} std::vector<Tensor> result; Status status; }; Status WriteStatusLocked(IteratorStateWriter* writer, size_t index, const Status& status) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), CodeKey(index), static_cast<int64_t>(status.code()))); if (!status.ok()) { TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), ErrorMessageKey(index), std::string(status.message()))); } return absl::OkStatus(); } Status ReadStatusLocked(IteratorStateReader* reader, size_t index, Status* status) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t code_int; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), CodeKey(index), &code_int)); absl::StatusCode code = static_cast<absl::StatusCode>(code_int); if (code != absl::StatusCode::kOk) { tstring error_message; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), ErrorMessageKey(index), &error_message)); *status = Status(code, error_message); } else { *status = absl::OkStatus(); } return absl::OkStatus(); } string CodeKey(size_t index) { return strings::StrCat(kBuffer, "[", index, "]", kCodeSuffix); } string ErrorMessageKey(size_t index) { return strings::StrCat(kBuffer, "[", index, "]", kErrorMessage); } size_t TargetBufferSize(int64_t window_size, int64_t window_stride) { return (window_size - 1) * window_stride + 1; } mutex mu_; std::deque<InvocationResult> buffer_ TF_GUARDED_BY(mu_); std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); }; const DatasetBase* const input_; const int64_t window_size_; const int64_t window_shift_; const int64_t window_stride_; const bool drop_remainder_; const DataTypeVector output_dtypes_; const std::vector<PartialTensorShape> output_shapes_; const TraceMeMetadata traceme_metadata_; }; WindowDatasetOp::WindowDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void WindowDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t window_size = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSize, &window_size)); OP_REQUIRES( ctx, window_size > 0, errors::InvalidArgument("Window size must be greater than zero.")); int64_t window_shift = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kShift, &window_shift)); OP_REQUIRES( ctx, window_shift > 0, errors::InvalidArgument("Window shift must be greater than zero.")); int64_t window_stride = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kStride, &window_stride)); OP_REQUIRES( ctx, window_stride > 0, errors::InvalidArgument("Window stride must be greater than zero.")); bool drop_remainder; OP_REQUIRES_OK( ctx, ParseScalarArgument<bool>(ctx, kDropRemainder, &drop_remainder)); *output = new Dataset(ctx, input, window_size, window_shift, window_stride, drop_remainder); } namespace { REGISTER_KERNEL_BUILDER(Name("WindowDataset").Device(DEVICE_CPU), WindowDatasetOp); } } }
#include "tensorflow/core/kernels/data/window_dataset_op.h" #include <string> #include <utility> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "window_dataset"; class WindowDatasetParams : public DatasetParams { public: template <typename T> WindowDatasetParams(T input_dataset_params, int64_t size, int64_t shift, int64_t stride, bool drop_remainder, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), size_(size), shift_(shift), stride_(stride), drop_remainder_(drop_remainder) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return {CreateTensor<int64_t>(TensorShape({}), {size_}), CreateTensor<int64_t>(TensorShape({}), {shift_}), CreateTensor<int64_t>(TensorShape({}), {stride_}), CreateTensor<bool>(TensorShape({}), {drop_remainder_})}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back(WindowDatasetOp::kInputDataset); input_names->emplace_back(WindowDatasetOp::kSize); input_names->emplace_back(WindowDatasetOp::kShift); input_names->emplace_back(WindowDatasetOp::kStride); input_names->emplace_back(WindowDatasetOp::kDropRemainder); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); attr_vector->emplace_back("output_types", output_dtypes_); attr_vector->emplace_back("output_shapes", output_shapes_); attr_vector->emplace_back("metadata", ""); return absl::OkStatus(); } string dataset_type() const override { return WindowDatasetOp::kDatasetType; } private: int64_t size_; int64_t shift_; int64_t stride_; bool drop_remainder_; }; class WindowDatasetOpTest : public DatasetOpsTestBase {}; WindowDatasetParams WindowDatasetParams1() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 2, 1, false, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams2() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 2, 2, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams3() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 8, 3, 1, false, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams4() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 8, 3, 1, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams5() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 8, 1, false, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams6() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 8, 1, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams7() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 2, 8, false, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams8() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 2, 8, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams9() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 4, 2, 2, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParams10() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 5, 2, 2, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParamsWithInvalidWindowSize() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 0, 2, 2, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParamswithInvalidWindowShift() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 0, 2, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } WindowDatasetParams WindowDatasetParamsWithInvalidWindowStride() { return WindowDatasetParams(RangeDatasetParams(0, 7, 1), 2, 2, 0, true, {DT_VARIANT}, {PartialTensorShape({})}, kNodeName); } template <typename T> struct GetNextTestCase { T dataset_params; std::vector<std::vector<Tensor>> expected_outputs; }; std::vector<GetNextTestCase<WindowDatasetParams>> GetNextTestCases() { return {{WindowDatasetParams1(), {CreateTensors<int64_t>(TensorShape{}, {{0}, {1}}), CreateTensors<int64_t>(TensorShape{}, {{2}, {3}}), CreateTensors<int64_t>(TensorShape{}, {{4}, {5}}), CreateTensors<int64_t>(TensorShape{}, {{6}})}}, {WindowDatasetParams2(), {CreateTensors<int64_t>(TensorShape{}, {{0}, {2}}), CreateTensors<int64_t>(TensorShape{}, {{2}, {4}}), CreateTensors<int64_t>(TensorShape{}, {{4}, {6}})}}, {WindowDatasetParams3(), {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}}), CreateTensors<int64_t>(TensorShape({}), {{3}, {4}, {5}, {6}}), CreateTensors<int64_t>(TensorShape({}), {{6}})}}, {WindowDatasetParams4(), {}}, {WindowDatasetParams5(), {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}})}}, {WindowDatasetParams6(), {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}})}}, {WindowDatasetParams7(), {CreateTensors<int64_t>(TensorShape({}), {{0}}), CreateTensors<int64_t>(TensorShape({}), {{2}}), CreateTensors<int64_t>(TensorShape({}), {{4}}), CreateTensors<int64_t>(TensorShape({}), {{6}})}}, {WindowDatasetParams8(), {}}, {WindowDatasetParams9(), {CreateTensors<int64_t>(TensorShape({}), {{0}, {2}, {4}, {6}})}}, {WindowDatasetParams10(), {}}}; } class ParameterizedGetNextTest : public WindowDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<WindowDatasetParams>> {}; TEST_P(ParameterizedGetNextTest, GetNext) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); bool end_of_sequence = false; auto expected_outputs_it = test_case.expected_outputs.begin(); while (!end_of_sequence) { std::vector<Tensor> out_tensors; TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); if (!end_of_sequence) { for (const auto& window_dataset_tensor : out_tensors) { DatasetBase* window_dataset; TF_ASSERT_OK(GetDatasetFromVariantTensor(window_dataset_tensor, &window_dataset)); std::unique_ptr<IteratorBase> window_dataset_iterator; TF_ASSERT_OK(window_dataset->MakeIterator( iterator_ctx_.get(), nullptr, test_case.dataset_params.iterator_prefix(), &window_dataset_iterator)); bool end_of_window_dataset = false; std::vector<Tensor> window_elements; while (!end_of_window_dataset) { std::vector<Tensor> next_element; TF_EXPECT_OK(window_dataset_iterator->GetNext( iterator_ctx_.get(), &next_element, &end_of_window_dataset)); window_elements.insert(window_elements.end(), next_element.begin(), next_element.end()); } EXPECT_LT(expected_outputs_it, test_case.expected_outputs.end()); TF_EXPECT_OK(ExpectEqual(window_elements, *expected_outputs_it, false)); expected_outputs_it++; } } } EXPECT_EQ(expected_outputs_it, test_case.expected_outputs.end()); } INSTANTIATE_TEST_CASE_P(WindowDatasetOpTest, ParameterizedGetNextTest, ::testing::ValuesIn(GetNextTestCases())); TEST_F(WindowDatasetOpTest, DatasetTypeString) { auto dataset_params = WindowDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(WindowDatasetOp::kDatasetType))); } TEST_F(WindowDatasetOpTest, DatasetNodeName) { auto dataset_params = WindowDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(WindowDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = WindowDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes(dataset_params.output_dtypes())); } TEST_F(WindowDatasetOpTest, DatasetOutputShapes) { auto dataset_params = WindowDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes(dataset_params.output_shapes())); } std::vector<CardinalityTestCase<WindowDatasetParams>> DatasetCardinalityTestCases() { return {{WindowDatasetParams1(), 4}, {WindowDatasetParams2(), 3}, {WindowDatasetParams3(), 3}, {WindowDatasetParams4(), 0}, {WindowDatasetParams5(), 1}, {WindowDatasetParams6(), 1}, {WindowDatasetParams7(), 4}, {WindowDatasetParams8(), 0}, {WindowDatasetParams9(), 1}, {WindowDatasetParams10(), 0}}; } DATASET_CARDINALITY_TEST_P(WindowDatasetOpTest, WindowDatasetParams, DatasetCardinalityTestCases()) TEST_F(WindowDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = WindowDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes(dataset_params.output_dtypes())); } TEST_F(WindowDatasetOpTest, IteratorOutputShapes) { auto dataset_params = WindowDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes(dataset_params.output_shapes())); } TEST_F(WindowDatasetOpTest, IteratorOutputPrefix) { auto dataset_params = WindowDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( WindowDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } template <typename T> struct IteratorSaveAndRestoreTestCase { T dataset_params; std::vector<int> breakpoints; std::vector<std::vector<Tensor>> expected_outputs; }; std::vector<IteratorSaveAndRestoreTestCase<WindowDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{WindowDatasetParams1(), {0, 1, 9}, {CreateTensors<int64_t>(TensorShape{}, {{0}, {1}}), CreateTensors<int64_t>(TensorShape{}, {{2}, {3}}), CreateTensors<int64_t>(TensorShape{}, {{4}, {5}}), CreateTensors<int64_t>(TensorShape{}, {{6}})}}, {WindowDatasetParams2(), {0, 1, 9}, {CreateTensors<int64_t>(TensorShape{}, {{0}, {2}}), CreateTensors<int64_t>(TensorShape{}, {{2}, {4}}), CreateTensors<int64_t>(TensorShape{}, {{4}, {6}})}}, {WindowDatasetParams3(), {0, 1, 9}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}}), CreateTensors<int64_t>(TensorShape({}), {{3}, {4}, {5}, {6}}), CreateTensors<int64_t>(TensorShape({}), {{6}})}}, {WindowDatasetParams4(), {0, 1, 9}, {}}, {WindowDatasetParams5(), {0, 1, 9}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}})}}, {WindowDatasetParams6(), {0, 1, 9}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {1}})}}, {WindowDatasetParams7(), {0, 1, 9}, {CreateTensors<int64_t>(TensorShape({}), {{0}}), CreateTensors<int64_t>(TensorShape({}), {{2}}), CreateTensors<int64_t>(TensorShape({}), {{4}}), CreateTensors<int64_t>(TensorShape({}), {{6}})}}, {WindowDatasetParams8(), {0, 1, 9}, {}}, {WindowDatasetParams9(), {0, 1, 9}, {CreateTensors<int64_t>(TensorShape({}), {{0}, {2}, {4}, {6}})}}, {WindowDatasetParams10(), {0, 1, 9}, {}}}; } class ParameterizedIteratorSaveAndRestoreTest : public WindowDatasetOpTest, public ::testing::WithParamInterface< IteratorSaveAndRestoreTestCase<WindowDatasetParams>> {}; TEST_P(ParameterizedIteratorSaveAndRestoreTest, IteratorSaveAndRestore) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); std::unique_ptr<SerializationContext> serialization_ctx; TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx)); std::unique_ptr<SerializationContext> window_serialization_ctx; TF_ASSERT_OK(CreateSerializationContext(&window_serialization_ctx)); bool end_of_sequence = false; auto expected_outputs_it = test_case.expected_outputs.begin(); int cur_iteration = 0; for (int breakpoint : test_case.breakpoints) { VariantTensorDataWriter writer; TF_EXPECT_OK(iterator_->Save(serialization_ctx.get(), &writer)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); TF_EXPECT_OK(RestoreIterator(iterator_ctx_.get(), &reader, test_case.dataset_params.iterator_prefix(), *dataset_, &iterator_)); while (cur_iteration <= breakpoint) { while (!end_of_sequence) { std::vector<Tensor> out_tensors; TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); if (!end_of_sequence) { for (const auto& window_dataset_tensor : out_tensors) { DatasetBase* window_dataset; TF_ASSERT_OK(GetDatasetFromVariantTensor(window_dataset_tensor, &window_dataset)); std::unique_ptr<IteratorBase> window_dataset_iterator; TF_ASSERT_OK(window_dataset->MakeIterator( iterator_ctx_.get(), nullptr, test_case.dataset_params.iterator_prefix(), &window_dataset_iterator)); bool end_of_window_dataset = false; std::vector<Tensor> window_elements; VariantTensorDataWriter window_dataset_writer; std::vector<const VariantTensorData*> window_dataset_data; TF_EXPECT_OK(window_dataset_iterator->Save( window_serialization_ctx.get(), &window_dataset_writer)); window_dataset_writer.GetData(&window_dataset_data); VariantTensorDataReader window_reader(window_dataset_data); while (!end_of_window_dataset) { std::vector<Tensor> next_element; TF_EXPECT_OK(window_dataset_iterator->GetNext( iterator_ctx_.get(), &next_element, &end_of_window_dataset)); } TF_EXPECT_OK( RestoreIterator(iterator_ctx_.get(), &window_reader, test_case.dataset_params.iterator_prefix(), *window_dataset, &window_dataset_iterator)); end_of_window_dataset = false; while (!end_of_window_dataset) { std::vector<Tensor> next_element; TF_EXPECT_OK(window_dataset_iterator->GetNext( iterator_ctx_.get(), &next_element, &end_of_window_dataset)); window_elements.insert(window_elements.end(), next_element.begin(), next_element.end()); } EXPECT_LT(expected_outputs_it, test_case.expected_outputs.end()); TF_EXPECT_OK( ExpectEqual(window_elements, *expected_outputs_it, false)); expected_outputs_it++; } } } cur_iteration++; } } EXPECT_EQ(expected_outputs_it, test_case.expected_outputs.end()); } INSTANTIATE_TEST_CASE_P(WindowDatasetOpTest, ParameterizedIteratorSaveAndRestoreTest, ::testing::ValuesIn(IteratorSaveAndRestoreTestCases())); TEST_F(WindowDatasetOpTest, InvalidArguments) { std::vector<WindowDatasetParams> dataset_params_vec( {WindowDatasetParamsWithInvalidWindowSize(), WindowDatasetParamswithInvalidWindowShift(), WindowDatasetParamsWithInvalidWindowStride()}); for (const auto& dataset_params : dataset_params_vec) { EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/window_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/window_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8c9a6d30-6696-4abf-84bf-5fb88854d093
cpp
google/quiche
quiche_time_utils
quiche/common/platform/api/quiche_time_utils.h
quiche/common/platform/api/quiche_time_utils_test.cc
#ifndef QUICHE_COMMON_PLATFORM_API_QUICHE_TIME_UTILS_H_ #define QUICHE_COMMON_PLATFORM_API_QUICHE_TIME_UTILS_H_ #include <cstdint> #include "quiche_platform_impl/quiche_time_utils_impl.h" namespace quiche { inline std::optional<int64_t> QuicheUtcDateTimeToUnixSeconds( int year, int month, int day, int hour, int minute, int second) { return QuicheUtcDateTimeToUnixSecondsImpl(year, month, day, hour, minute, second); } } #endif
#include "quiche/common/platform/api/quiche_time_utils.h" #include <optional> #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace { TEST(QuicheTimeUtilsTest, Basic) { EXPECT_EQ(1, QuicheUtcDateTimeToUnixSeconds(1970, 1, 1, 0, 0, 1)); EXPECT_EQ(365 * 86400, QuicheUtcDateTimeToUnixSeconds(1971, 1, 1, 0, 0, 0)); EXPECT_EQ(1152966896, QuicheUtcDateTimeToUnixSeconds(2006, 7, 15, 12, 34, 56)); EXPECT_EQ(1591130001, QuicheUtcDateTimeToUnixSeconds(2020, 6, 2, 20, 33, 21)); EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 2, 29, 0, 0, 1)); EXPECT_NE(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1972, 2, 29, 0, 0, 1)); } TEST(QuicheTimeUtilsTest, Bounds) { EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 1, 32, 0, 0, 1)); EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 4, 31, 0, 0, 1)); EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 1, 0, 0, 0, 1)); EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 13, 1, 0, 0, 1)); EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 0, 1, 0, 0, 1)); EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 1, 1, 24, 0, 0)); EXPECT_EQ(std::nullopt, QuicheUtcDateTimeToUnixSeconds(1970, 1, 1, 0, 60, 0)); } TEST(QuicheTimeUtilsTest, LeapSecond) { EXPECT_EQ(QuicheUtcDateTimeToUnixSeconds(2015, 6, 30, 23, 59, 60), QuicheUtcDateTimeToUnixSeconds(2015, 7, 1, 0, 0, 0)); EXPECT_EQ(QuicheUtcDateTimeToUnixSeconds(2015, 6, 30, 25, 59, 60), std::nullopt); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/platform/api/quiche_time_utils.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/platform/api/quiche_time_utils_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
b157befa-2457-49ea-98c8-27c339742c71
cpp
tensorflow/tensorflow
pjrt_c_api_cpu
third_party/xla/xla/pjrt/c/pjrt_c_api_cpu.cc
third_party/xla/xla/pjrt/c/pjrt_c_api_cpu_test.cc
#include "xla/pjrt/c/pjrt_c_api_cpu.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_cpu_internal.h" const PJRT_Api* GetPjrtApi() { return pjrt::cpu_plugin::GetCpuPjrtApi(); }
#include "xla/pjrt/c/pjrt_c_api_cpu.h" #include "xla/pjrt/c/pjrt_c_api_test.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" namespace pjrt { namespace { const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "cpu"), true); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_cpu.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_cpu_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
429e12ca-dd05-4f23-8bf5-04fa9872c11b
cpp
tensorflow/tensorflow
op_stats_combiner
tensorflow/core/profiler/convert/op_stats_combiner.cc
tensorflow/core/profiler/convert/op_stats_combiner_test.cc
#include "tensorflow/core/profiler/convert/op_stats_combiner.h" #include <algorithm> #include <cstddef> #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/profiler/convert/op_metrics_db_combiner.h" #include "tensorflow/core/profiler/convert/xplane_to_tf_functions.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/hardware_types.pb.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/power_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/protobuf/topology.pb.h" #include "tensorflow/core/profiler/utils/hardware_type_utils.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/step_intersection.h" namespace tensorflow { namespace profiler { namespace { void CombinePerCoreStepInfo( int src_host_id, const PerCoreStepInfo& src, bool use_incomplete_step, PerCoreStepInfo* dst, OpMetricsDbCombiner* hlo_metrics_db_complete_steps_only_combiner, OpMetricsDbCombiner* hlo_metrics_db_per_step_combiner) { CombineCoreIdMap(src_host_id, src.step_info_per_core(), dst->mutable_step_info_per_core()); uint32 new_step_num = dst->step_num(); for (auto& percore_stepinfo : *dst->mutable_step_info_per_core()) { auto& stepinfo = percore_stepinfo.second; stepinfo.set_step_num(new_step_num); } if (!use_incomplete_step) { hlo_metrics_db_complete_steps_only_combiner->Combine(src.hlo_metrics_db()); } hlo_metrics_db_per_step_combiner->Combine(src.hlo_metrics_db()); CombineCoreIdMap(src_host_id, src.all_reduce_db_per_core(), dst->mutable_all_reduce_db_per_core()); CombineCoreIdMap(src_host_id, src.core_id_to_replica_id_map(), dst->mutable_core_id_to_replica_id_map()); } void CombineStepDatabase( int src_host_id, const StepIntersection& step_intersection, const StepDatabaseResult& src, StepDatabaseResult* dst, OpMetricsDbCombiner* hlo_metrics_db_complete_steps_only_combiner, std::vector<OpMetricsDbCombiner>* hlo_metrics_db_per_step_combiners) { if (src.use_incomplete_step()) dst->set_use_incomplete_step(true); uint32 src_first_step_idx = step_intersection.FirstStepIndex(src_host_id); for (uint32 i = 0; i < step_intersection.NumSteps(); i++) { CombinePerCoreStepInfo( src_host_id, src.step_sequence(src_first_step_idx + i), src.use_incomplete_step(), dst->mutable_step_sequence(i), hlo_metrics_db_complete_steps_only_combiner, &(*hlo_metrics_db_per_step_combiners)[i]); } } void CombinePowerMetrics(const RunEnvironment& src, RunEnvironment* dst) { const size_t src_hosts = src.hostnames_size(); const size_t dst_hosts = dst->hostnames_size(); const double src_weight = src_hosts * 1.0 / (src_hosts + dst_hosts); const double dst_weight = dst_hosts * 1.0 / (src_hosts + dst_hosts); for (const auto& src_metric : src.power_metrics().power_component_metrics()) { for (auto& dst_metric : *dst->mutable_power_metrics()->mutable_power_component_metrics()) { if (src_metric.component_name() != dst_metric.component_name()) continue; dst_metric.set_max_power( std::max(src_metric.max_power(), dst_metric.max_power())); dst_metric.set_avg_power(src_metric.avg_power() * src_weight + dst_metric.avg_power() * dst_weight); } } } void CombineRunEnvironment(const RunEnvironment& src, RunEnvironment* dst) { dst->mutable_hostnames()->insert(src.hostnames().begin(), src.hostnames().end()); dst->set_host_count(dst->hostnames_size()); if (src.device_type() != "CPU" && src.device_type() != "Device") { dst->set_device_type(src.device_type()); dst->set_device_core_count(src.device_core_count() + dst->device_core_count()); dst->set_replica_count(std::max(src.replica_count(), dst->replica_count())); dst->set_num_cores_per_replica( std::max(src.num_cores_per_replica(), dst->num_cores_per_replica())); *dst->mutable_system_topology() = src.system_topology(); } else if (dst->device_type().empty()) { dst->set_device_type(src.device_type()); } dst->set_task_count(src.task_count() + dst->task_count()); if (src.host_independent_job_info().profile_duration_ms() > 0) { (*dst->mutable_host_independent_job_info()) = src.host_independent_job_info(); } for (const auto& job_info : src.host_dependent_job_info()) { *(dst->add_host_dependent_job_info()) = job_info; } dst->set_host_trace_level(src.host_trace_level()); dst->set_is_training(src.is_training()); CombinePowerMetrics(src, dst); } void CombinePerfEnv(const PerfEnv& src, PerfEnv* dst) { if (src.peak_tera_flops_per_second() > 0) { dst->set_peak_tera_flops_per_second(src.peak_tera_flops_per_second()); } if (src.peak_bws_giga_bytes_per_second_size() > 0 && dst->peak_bws_giga_bytes_per_second_size() == 0) { *dst->mutable_peak_bws_giga_bytes_per_second() = src.peak_bws_giga_bytes_per_second(); } if (src.ridge_point() > 0) { dst->set_ridge_point(src.ridge_point()); } } void CombineDiagnostics(const Diagnostics& src, Diagnostics* dst) { dst->mutable_info()->MergeFrom(src.info()); dst->mutable_warnings()->MergeFrom(src.warnings()); dst->mutable_errors()->MergeFrom(src.errors()); } void CombineOpStats( bool no_accelerator_in_system, int src_host_id, HardwareType hardware_type, const StepIntersection& step_intersection, const OpStats& src, OpStats* dst, OpMetricsDbCombiner* host_op_metrics_db_combiner, OpMetricsDbCombiner* device_op_metrics_db_combiner, OpMetricsDbCombiner* hlo_metrics_db_complete_steps_only_combiner, std::vector<OpMetricsDbCombiner>* hlo_metrics_db_per_step_combiners) { host_op_metrics_db_combiner->Combine(src.host_op_metrics_db(), false); device_op_metrics_db_combiner->Combine(src.device_op_metrics_db()); if (!IsCoordinator(no_accelerator_in_system, hardware_type)) { CombineStepDatabase(src_host_id, step_intersection, src.step_db(), dst->mutable_step_db(), hlo_metrics_db_complete_steps_only_combiner, hlo_metrics_db_per_step_combiners); } CombineRunEnvironment(src.run_environment(), dst->mutable_run_environment()); CombinePerfEnv(src.perf_env(), dst->mutable_perf_env()); CombineDiagnostics(src.diagnostics(), dst->mutable_diagnostics()); dst->mutable_kernel_stats_db()->mutable_reports()->MergeFrom( src.kernel_stats_db().reports()); CombineTfFunctionDb(src.tf_function_db(), dst->mutable_tf_function_db()); CombineCoreIdMap(src_host_id, src.core_id_to_details(), dst->mutable_core_id_to_details()); dst->mutable_performance_counter_result() ->set_matrix_unit_utilization_percent( dst->performance_counter_result().matrix_unit_utilization_percent() + src.performance_counter_result().matrix_unit_utilization_percent()); } } bool IsCoordinator(bool no_accelerator_in_system, HardwareType hardware_type) { return !HasDevice(hardware_type) && !no_accelerator_in_system; } bool NoAcceleratorInSystem(const std::vector<OpStatsInfo>& all_op_stats_info) { for (const auto& op_stats_info : all_op_stats_info) { if (HasDevice(op_stats_info.hardware_type)) { return false; } } return true; } uint32 GlobalCoreId(int host_id, uint32 device_ordinal) { constexpr uint32 kMaxDevicesPerHost = 1000; return host_id * kMaxDevicesPerHost + device_ordinal; } StepIntersection ComputeStepIntersectionToMergeOpStats( const std::vector<OpStatsInfo>& all_op_stats_info, uint32 max_step_per_host) { bool no_accelerator_in_system = NoAcceleratorInSystem(all_op_stats_info); absl::flat_hash_map<uint32, const StepDatabaseResult*> per_host_step_db; for (const auto& op_stats_info : all_op_stats_info) { if (IsCoordinator(no_accelerator_in_system, op_stats_info.hardware_type)) continue; per_host_step_db[op_stats_info.src_host_id] = &op_stats_info.op_stats->step_db(); } return StepIntersection(max_step_per_host, per_host_step_db); } void CombineAllOpStats(const std::vector<OpStatsInfo>& all_op_stats_info, const StepIntersection& step_intersection, OpStats* combined_op_stats) { if (all_op_stats_info.size() == 1) { *combined_op_stats = *all_op_stats_info[0].op_stats; return; } StepDatabaseResult* combined_step_db = combined_op_stats->mutable_step_db(); for (uint32 dst_step_num : step_intersection.DstStepNumbers()) { combined_step_db->add_step_sequence()->set_step_num(dst_step_num); } combined_step_db->set_num_steps_dropped(step_intersection.StepsDropped()); combined_step_db->set_empty_intersect(step_intersection.EmptyIntersect()); OpMetricsDbCombiner host_op_metrics_db_combiner( combined_op_stats->mutable_host_op_metrics_db()); OpMetricsDbCombiner device_op_metrics_db_combiner( combined_op_stats->mutable_device_op_metrics_db()); OpMetricsDbCombiner hlo_metrics_db_complete_steps_only_combiner( combined_op_stats->mutable_hlo_metrics_db_complete_steps_only()); std::vector<OpMetricsDbCombiner> hlo_metrics_db_per_step_combiners; hlo_metrics_db_per_step_combiners.reserve( combined_step_db->step_sequence_size()); for (PerCoreStepInfo& step_info : *combined_step_db->mutable_step_sequence()) { hlo_metrics_db_per_step_combiners.emplace_back( step_info.mutable_hlo_metrics_db()); } bool no_accelerator_in_system = NoAcceleratorInSystem(all_op_stats_info); for (const auto& op_stats_info : all_op_stats_info) { CombineOpStats(no_accelerator_in_system, op_stats_info.src_host_id, op_stats_info.hardware_type, step_intersection, *op_stats_info.op_stats, combined_op_stats, &host_op_metrics_db_combiner, &device_op_metrics_db_combiner, &hlo_metrics_db_complete_steps_only_combiner, &hlo_metrics_db_per_step_combiners); } SortAndKeepTopKDurationKernelReportsInDb( combined_op_stats->mutable_kernel_stats_db()); combined_op_stats->mutable_performance_counter_result() ->set_matrix_unit_utilization_percent( combined_op_stats->performance_counter_result() .matrix_unit_utilization_percent() / all_op_stats_info.size()); } } }
#include "tensorflow/core/profiler/convert/op_stats_combiner.h" #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/hardware_types.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/utils/step_intersection.h" namespace tensorflow { namespace profiler { namespace { TEST(CombineAllOpStatsTest, CombineRunEnvironment) { OpStats dst_op_stats, op_stats_1, op_stats_2; op_stats_1.mutable_run_environment() ->mutable_host_independent_job_info() ->set_profile_duration_ms(100); op_stats_2.mutable_run_environment() ->mutable_host_independent_job_info() ->set_profile_duration_ms(0); OpStatsInfo op_stats_info_1(&op_stats_1, TPU, 0), op_stats_info_2(&op_stats_2, TPU, 0); std::vector<OpStatsInfo> all_op_stats_info = {op_stats_info_1, op_stats_info_2}; StepDatabaseResult dummy_step_db_result; absl::flat_hash_map<uint32 , const StepDatabaseResult*> result; result.insert({0, &dummy_step_db_result}); StepIntersection dummy_step_intersection = StepIntersection(1, result); CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats); EXPECT_EQ(100, dst_op_stats.run_environment() .host_independent_job_info() .profile_duration_ms()); } TEST(CombineAllOpStatsTest, CombineRunEnvironmentWithUnknownDevice) { OpStats dst_op_stats, op_stats_1, op_stats_2; op_stats_1.mutable_run_environment()->set_device_type("TPU"); op_stats_2.mutable_run_environment()->set_device_type("Device"); OpStatsInfo op_stats_info_1(&op_stats_1, TPU, 0), op_stats_info_2(&op_stats_2, TPU, 0); std::vector<OpStatsInfo> all_op_stats_info = {op_stats_info_1, op_stats_info_2}; StepDatabaseResult dummy_step_db_result; absl::flat_hash_map<uint32 , const StepDatabaseResult*> result; result.insert({0, &dummy_step_db_result}); StepIntersection dummy_step_intersection = StepIntersection(1, result); CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats); EXPECT_EQ("TPU", dst_op_stats.run_environment().device_type()); } TEST(CombineAllOpStatsTest, CombinePerfEnvOrderZero) { OpStats dst_op_stats1, dst_op_stats2, op_stats_1, op_stats_2; op_stats_1.mutable_perf_env()->set_peak_tera_flops_per_second(100); op_stats_2.mutable_perf_env()->set_peak_tera_flops_per_second(0); absl::flat_hash_map<uint32 , const StepDatabaseResult*> result; StepIntersection dummy_step_intersection = StepIntersection(1, result); OpStatsInfo op_stats_info_1(&op_stats_1, TPU, 0), op_stats_info_2(&op_stats_2, TPU, 0); std::vector<OpStatsInfo> all_op_stats_info = {op_stats_info_1, op_stats_info_2}; CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats1); EXPECT_EQ(100, dst_op_stats1.perf_env().peak_tera_flops_per_second()); all_op_stats_info = { op_stats_info_2, op_stats_info_1, }; CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats2); EXPECT_EQ(100, dst_op_stats2.perf_env().peak_tera_flops_per_second()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_combiner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_combiner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5bb9930c-5eb7-4105-82de-1bfb82725b8c
cpp
tensorflow/tensorflow
function_optimization_registry
tensorflow/core/common_runtime/function_optimization_registry.cc
tensorflow/core/common_runtime/function_optimization_registry_test.cc
#include "tensorflow/core/common_runtime/function_optimization_registry.h" #include <string> #include "tensorflow/core/framework/metrics.h" namespace tensorflow { void FunctionOptimizationPassRegistry::Init( std::unique_ptr<FunctionOptimizationPass> pass) { DCHECK(!pass_) << "Only one pass should be set."; pass_ = std::move(pass); } Status FunctionOptimizationPassRegistry::Run( const std::string& function_name, const DeviceSet& device_set, const ConfigProto& config_proto, const FunctionOptimizationPass::FunctionOptions& function_options, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, std::vector<std::string>* control_ret_node_names, bool* control_rets_updated) { if (!pass_) return absl::OkStatus(); tensorflow::metrics::ScopedCounter<2> timings( tensorflow::metrics::GetGraphOptimizationCounter(), {"GraphOptimizationPass", "FunctionOptimizationPassRegistry"}); return pass_->Run(function_name, device_set, config_proto, function_options, graph, flib_def, control_ret_node_names, control_rets_updated); } FunctionOptimizationPassRegistry& FunctionOptimizationPassRegistry::Global() { static FunctionOptimizationPassRegistry* kGlobalRegistry = new FunctionOptimizationPassRegistry; return *kGlobalRegistry; } }
#include "tensorflow/core/common_runtime/function_optimization_registry.h" #include <memory> #include <string> #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { class PassingFunctionPass : public FunctionOptimizationPass { public: static bool ran_; Status Run(const std::string& function_name, const DeviceSet& device_set, const ConfigProto& config_proto, const FunctionOptions& function_options, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, std::vector<std::string>* control_ret_node_names, bool* control_rets_updated) override { ran_ = true; return absl::OkStatus(); } }; bool PassingFunctionPass::ran_ = false; TEST(FunctionOptimizationPassRegistry, PassNoError) { EXPECT_FALSE(PassingFunctionPass::ran_); FunctionOptimizationPassRegistry::Global().Init( std::make_unique<PassingFunctionPass>()); DeviceSet device_set; ConfigProto config_proto; FunctionOptimizationPass::FunctionOptions function_options; Status status = FunctionOptimizationPassRegistry::Global().Run( "test_func", device_set, config_proto, function_options, nullptr, nullptr, nullptr, nullptr); EXPECT_EQ(status, absl::OkStatus()); EXPECT_TRUE(PassingFunctionPass::ran_); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/function_optimization_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/function_optimization_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
74dff902-ed21-4c41-9e79-1b623a9d17d4
cpp
google/arolla
utility_operators
arolla/qexpr/operators/core/utility_operators.cc
arolla/qexpr/operators/core/utility_operators_test.cc
#include "arolla/qexpr/operators/core/utility_operators.h" #include <memory> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/qexpr/bound_operators.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/operators.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/qtype.h" namespace arolla { namespace { class CopyOperator : public QExprOperator { public: explicit CopyOperator(QTypePtr type) : QExprOperator(QExprOperatorSignature::Get({type}, type)) {} private: absl::StatusOr<std::unique_ptr<BoundOperator>> DoBind( absl::Span<const TypedSlot> input_slots, TypedSlot output_slot) const final { return MakeBoundOperator( [input_slot = input_slots[0], output_slot = output_slot]( EvaluationContext*, FramePtr frame) { input_slot.CopyTo(frame, output_slot, frame); }); } }; } OperatorPtr MakeCopyOp(QTypePtr type) { return OperatorPtr(std::make_unique<CopyOperator>(type)); } }
#include "arolla/qexpr/operators/core/utility_operators.h" #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/memory/frame.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/operators.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/qtype/typed_slot.h" namespace arolla { namespace { using ::testing::Eq; TEST(UtilityOperatorsTest, Identity) { auto i32 = GetQType<int>(); auto copy_op = MakeCopyOp(i32); ASSERT_EQ(copy_op->signature(), QExprOperatorSignature::Get({i32}, i32)); FrameLayout::Builder layout_builder; auto i0_slot = layout_builder.AddSlot<int>(); auto i1_slot = layout_builder.AddSlot<int>(); ASSERT_OK_AND_ASSIGN( auto copy_bound_op0, copy_op->Bind(ToTypedSlots(i0_slot), TypedSlot::FromSlot(i1_slot))); auto memory_layout = std::move(layout_builder).Build(); RootEvaluationContext root_ctx(&memory_layout); EvaluationContext ctx(root_ctx); root_ctx.Set(i0_slot, 7); copy_bound_op0->Run(&ctx, root_ctx.frame()); EXPECT_OK(ctx.status()); EXPECT_THAT(root_ctx.Get(i1_slot), Eq(7)); } TEST(UtilityOperatorsTest, MakeTuple) { auto i32 = GetQType<int>(); auto f64 = GetQType<double>(); auto tuple_qtype = MakeTupleQType({i32, f64}); ASSERT_OK_AND_ASSIGN(auto copy_op, OperatorRegistry::GetInstance()->LookupOperator( "core.make_tuple", {i32, f64}, tuple_qtype)); ASSERT_EQ(copy_op->signature(), QExprOperatorSignature::Get({i32, f64}, tuple_qtype)); FrameLayout::Builder layout_builder; auto tuple0_slot = AddSlot(tuple_qtype, &layout_builder); ASSERT_EQ(tuple0_slot.SubSlotCount(), 2); ASSERT_OK_AND_ASSIGN(auto i0_slot, tuple0_slot.SubSlot(0).ToSlot<int>()); ASSERT_OK_AND_ASSIGN(auto d0_slot, tuple0_slot.SubSlot(1).ToSlot<double>()); auto tuple1_slot = AddSlot(tuple_qtype, &layout_builder); ASSERT_EQ(tuple1_slot.SubSlotCount(), 2); ASSERT_OK_AND_ASSIGN(auto i1_slot, tuple1_slot.SubSlot(0).ToSlot<int>()); ASSERT_OK_AND_ASSIGN(auto d1_slot, tuple1_slot.SubSlot(1).ToSlot<double>()); ASSERT_OK_AND_ASSIGN( auto copy_bound_op, copy_op->Bind(ToTypedSlots(i0_slot, d0_slot), {tuple1_slot})); auto memory_layout = std::move(layout_builder).Build(); RootEvaluationContext root_ctx(&memory_layout); EvaluationContext ctx(root_ctx); root_ctx.Set(i0_slot, 7); root_ctx.Set(d0_slot, 4.5); copy_bound_op->Run(&ctx, root_ctx.frame()); EXPECT_OK(ctx.status()); EXPECT_THAT(root_ctx.Get(i1_slot), Eq(7)); EXPECT_THAT(root_ctx.Get(d1_slot), Eq(4.5)); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/core/utility_operators.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/core/utility_operators_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
1acdc449-82ca-466a-ac4b-e2a65acee19e
cpp
tensorflow/tensorflow
gcs_throttle
third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_throttle.cc
third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_throttle_test.cc
#include "tsl/platform/cloud/gcs_throttle.h" #include <algorithm> namespace tsl { namespace { EnvTime* get_default_env_time() { static EnvTime* default_env_time = new EnvTime; return default_env_time; } } GcsThrottle::GcsThrottle(EnvTime* env_time) : last_updated_secs_(env_time ? env_time->GetOverridableNowSeconds() : EnvTime::NowSeconds()), available_tokens_(0), env_time_(env_time ? env_time : get_default_env_time()) {} bool GcsThrottle::AdmitRequest() { mutex_lock l(mu_); UpdateState(); if (available_tokens_ < config_.tokens_per_request) { return false || !config_.enabled; } available_tokens_ -= config_.tokens_per_request; return true; } void GcsThrottle::RecordResponse(size_t num_bytes) { mutex_lock l(mu_); UpdateState(); available_tokens_ -= request_bytes_to_tokens(num_bytes); } void GcsThrottle::SetConfig(GcsThrottleConfig config) { mutex_lock l(mu_); config_ = config; available_tokens_ = config.initial_tokens; last_updated_secs_ = env_time_->GetOverridableNowSeconds(); } void GcsThrottle::UpdateState() { int64_t now = env_time_->GetOverridableNowSeconds(); uint64 delta_secs = std::max(int64_t{0}, now - static_cast<int64_t>(last_updated_secs_)); available_tokens_ += delta_secs * config_.token_rate; available_tokens_ = std::min(available_tokens_, config_.bucket_size); last_updated_secs_ = now; } }
#include "tsl/platform/cloud/gcs_throttle.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { namespace { class TestTime : public EnvTime { public: uint64 GetOverridableNowNanos() const override { return now_micros_ * kMicrosToNanos; } void SetTime(uint64 now_micros) { now_micros_ = now_micros; } void AdvanceSeconds(int64_t secs) { now_micros_ += secs * kSecondsToMicros; } private: uint64 now_micros_ = 1234567890000000ULL; }; class GcsThrottleTest : public ::testing::Test { protected: GcsThrottleTest() : throttle_(&time_) { config_.enabled = true; throttle_.SetConfig(config_); } GcsThrottleConfig config_; TestTime time_; GcsThrottle throttle_; }; TEST_F(GcsThrottleTest, ReplenishTokens) { EXPECT_EQ(0, throttle_.available_tokens()); time_.AdvanceSeconds(1); EXPECT_EQ(100000, throttle_.available_tokens()); time_.AdvanceSeconds(2); EXPECT_EQ(300000, throttle_.available_tokens()); } TEST_F(GcsThrottleTest, RejectRequest) { EXPECT_EQ(0, throttle_.available_tokens()); time_.AdvanceSeconds(1); EXPECT_TRUE(throttle_.AdmitRequest()); EXPECT_EQ(99900, throttle_.available_tokens()); for (int i = 1; i < 1000; i++) { EXPECT_TRUE(throttle_.AdmitRequest()); } EXPECT_FALSE(throttle_.AdmitRequest()); } TEST_F(GcsThrottleTest, MarkResponses) { time_.AdvanceSeconds(1); EXPECT_TRUE(throttle_.AdmitRequest()); throttle_.RecordResponse(128000000); EXPECT_EQ(-25100, throttle_.available_tokens()); EXPECT_FALSE(throttle_.AdmitRequest()); time_.AdvanceSeconds(1); EXPECT_TRUE(throttle_.AdmitRequest()) << "Available tokens: " << throttle_.available_tokens(); } TEST_F(GcsThrottleTest, Skippingtime_) { EXPECT_EQ(0, throttle_.available_tokens()); time_.AdvanceSeconds(90); EXPECT_EQ(9000000, throttle_.available_tokens()); } TEST_F(GcsThrottleTest, BucketLimit) { time_.AdvanceSeconds(120); EXPECT_EQ(10000000, throttle_.available_tokens()); } TEST_F(GcsThrottleTest, ReverseTime) { time_.AdvanceSeconds(1); EXPECT_EQ(100000, throttle_.available_tokens()); time_.AdvanceSeconds(-3600); EXPECT_EQ(100000, throttle_.available_tokens()); time_.AdvanceSeconds(1); EXPECT_EQ(200000, throttle_.available_tokens()); } TEST(GcsThrottleDisabledTest, Disabled) { TestTime time; GcsThrottle throttle(&time); ASSERT_FALSE(throttle.is_enabled()); EXPECT_EQ(0, throttle.available_tokens()); time.AdvanceSeconds(1); EXPECT_EQ(100000, throttle.available_tokens()); EXPECT_TRUE(throttle.AdmitRequest()); EXPECT_EQ(99900, throttle.available_tokens()); time.AdvanceSeconds(1); EXPECT_EQ(199900, throttle.available_tokens()); throttle.RecordResponse(128000000); EXPECT_LT(0, throttle.available_tokens()); EXPECT_TRUE(throttle.AdmitRequest()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_throttle.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_throttle_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
37982d4d-cc04-490b-a3c7-68edcd3f1dc4
cpp
tensorflow/tensorflow
gpu_bfc_allocator
tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc
tensorflow/core/common_runtime/gpu/gpu_bfc_allocator_test.cc
#include "tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.h" #include <cstdlib> #include <cstring> #include <memory> #include <string> #include <utility> #include "xla/tsl/framework/bfc_allocator.h" #include "tsl/platform/logging.h" namespace tensorflow { namespace { bool GetAllowGrowthValue(bool orig_value) { const char* force_allow_growth_string = std::getenv("TF_FORCE_GPU_ALLOW_GROWTH"); if (force_allow_growth_string == nullptr) { return orig_value; } if (strcmp("false", force_allow_growth_string) == 0) { if (orig_value) { LOG(WARNING) << "Overriding orig_value setting because the" << " TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original" << " config value was " << orig_value << "."; } return false; } else if (strcmp("true", force_allow_growth_string) == 0) { if (!orig_value) { LOG(WARNING) << "Overriding orig_value setting because the" << " TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original" << " config value was " << orig_value << "."; } return true; } LOG(ERROR) << "The TF_FORCE_GPU_ALLOW_GROWTH environment variable is set but could" << " not be parsed: \"" << force_allow_growth_string << "\". Valid" << " values are \"true\" or \"false\". Using original config value" << " of " << orig_value << "."; return orig_value; } bool GetGarbageCollectionValue() { const char* enable_gpu_garbage_collection = std::getenv("TF_ENABLE_GPU_GARBAGE_COLLECTION"); if (enable_gpu_garbage_collection == nullptr) { return true; } if (strcmp("false", enable_gpu_garbage_collection) == 0) { return false; } else if (strcmp("true", enable_gpu_garbage_collection) == 0) { return true; } LOG(ERROR) << "The TF_ENABLE_GPU_GARBAGE_COLLECTION environment variable is set but" << " could not be parsed: \"" << enable_gpu_garbage_collection << "\"." << " Valid values are \"true\" or \"false\"." << " Using the default value \"true\"."; return true; } } GPUBFCAllocator::GPUBFCAllocator( std::unique_ptr<tsl::SubAllocator> sub_allocator, size_t total_memory, const std::string& name, const Options& opts) : BFCAllocator(std::move(sub_allocator), total_memory, name, [&] { BFCAllocator::Options o; o.allow_growth = GetAllowGrowthValue(opts.allow_growth); o.allow_retry_on_failure = opts.allow_retry_on_failure; if (opts.garbage_collection.has_value()) { o.garbage_collection = *opts.garbage_collection; } else { o.garbage_collection = GetGarbageCollectionValue(); } o.fragmentation_fraction = opts.fragmentation_fraction; return o; }()) {} }
#if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \ (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM) #include "tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.h" #include <algorithm> #include <optional> #include <vector> #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/lib/gtl/inlined_vector.h" #include "xla/tsl/lib/random/simple_philox.h" #include "tensorflow/core/common_runtime/device/device_mem_allocator.h" #include "tensorflow/core/framework/typed_allocator.h" #include "tensorflow/core/protobuf/bfc_memory_map.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/types.h" namespace tsl { namespace { using stream_executor::GPUMachineManager; using tensorflow::BinSummary; using tensorflow::DeviceMemAllocator; using tensorflow::GPUBFCAllocator; using tensorflow::GPUOptions; using tensorflow::TypedAllocator; void CheckStats(Allocator* a, int64_t num_allocs, int64_t bytes_in_use, int64_t peak_bytes_in_use, int64_t largest_alloc_size) { std::optional<AllocatorStats> stats = a->GetStats(); EXPECT_TRUE(stats); if (!stats) { return; } LOG(INFO) << "Alloc stats: " << std::endl << stats->DebugString(); EXPECT_EQ(stats->bytes_in_use, bytes_in_use); EXPECT_EQ(stats->peak_bytes_in_use, peak_bytes_in_use); EXPECT_EQ(stats->num_allocs, num_allocs); EXPECT_EQ(stats->largest_alloc_size, largest_alloc_size); } class GPUBFCAllocatorTest : public ::testing::TestWithParam<std::unique_ptr<SubAllocator> (*)( size_t)> {}; std::unique_ptr<SubAllocator> CreateGPUMemAllocator(size_t) { PlatformDeviceId gpu_id(0); return absl::WrapUnique(new DeviceMemAllocator( GPUMachineManager()->ExecutorForDevice(gpu_id.value()).value(), gpu_id, stream_executor::MemoryType::kDevice, {}, {})); } std::unique_ptr<SubAllocator> CreateSubAllocator( size_t virtual_address_space_size = 1ull << 32) { return CreateGPUMemAllocator(virtual_address_space_size); } auto TestSuiteValues() { return ::testing::Values(&CreateGPUMemAllocator); } TEST_P(GPUBFCAllocatorTest, NoDups) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); CheckStats(&a, 0, 0, 0, 0); std::vector<void*> ptrs; for (int s = 1; s < 1024; s++) { void* raw = a.AllocateRaw(1, s); ptrs.push_back(raw); } CheckStats(&a, 1023, 654336, 654336, 1024); std::sort(ptrs.begin(), ptrs.end()); for (size_t i = 1; i < ptrs.size(); i++) { ASSERT_NE(ptrs[i], ptrs[i - 1]); size_t req_size = a.RequestedSize(ptrs[i - 1]); ASSERT_GT(req_size, 0); ASSERT_GE(static_cast<char*>(ptrs[i]) - static_cast<char*>(ptrs[i - 1]), req_size); } for (size_t i = 0; i < ptrs.size(); i++) { a.DeallocateRaw(ptrs[i]); } CheckStats(&a, 1023, 0, 654336, 1024); } TEST_P(GPUBFCAllocatorTest, AllocationsAndDeallocations) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); random::PhiloxRandom philox(123, 17); random::SimplePhilox rand(&philox); std::vector<void*> initial_ptrs; for (int s = 1; s < 256; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % 1048576, 100), 1048576); void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } std::vector<void*> existing_ptrs; for (size_t i = 0; i < initial_ptrs.size(); i++) { if (i % 2 == 1) { a.DeallocateRaw(initial_ptrs[i]); } else { existing_ptrs.push_back(initial_ptrs[i]); } } void* out_of_memory_ptr = a.AllocateRaw(1, (1 << 30) + 1); CHECK_EQ(out_of_memory_ptr, nullptr); for (int s = 1; s < 256; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % 1048576, 100), 1048576); void* raw = a.AllocateRaw(1, size); existing_ptrs.push_back(raw); } std::sort(existing_ptrs.begin(), existing_ptrs.end()); for (size_t i = 1; i < existing_ptrs.size(); i++) { CHECK_NE(existing_ptrs[i], existing_ptrs[i - 1]); size_t req_size = a.RequestedSize(existing_ptrs[i - 1]); ASSERT_GT(req_size, 0); ASSERT_GE(static_cast<char*>(existing_ptrs[i]) - static_cast<char*>(existing_ptrs[i - 1]), req_size); } for (size_t i = 0; i < existing_ptrs.size(); i++) { a.DeallocateRaw(existing_ptrs[i]); } } TEST_P(GPUBFCAllocatorTest, ExerciseCoalescing) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); CheckStats(&a, 0, 0, 0, 0); float* first_ptr = TypedAllocator::Allocate<float>(&a, 1024, {}); a.DeallocateRaw(first_ptr); CheckStats(&a, 1, 0, 4096, 4096); for (int i = 0; i < 1024; ++i) { float* t1 = TypedAllocator::Allocate<float>(&a, 1024, {}); int64_t* t2 = TypedAllocator::Allocate<int64_t>(&a, 1048576, {}); double* t3 = TypedAllocator::Allocate<double>(&a, 2048, {}); float* t4 = TypedAllocator::Allocate<float>(&a, 10485760, {}); a.DeallocateRaw(t1); a.DeallocateRaw(t2); a.DeallocateRaw(t3); a.DeallocateRaw(t4); } CheckStats(&a, 4097, 0, 1024 * sizeof(float) + 1048576 * sizeof(int64_t) + 2048 * sizeof(double) + 10485760 * sizeof(float), 10485760 * sizeof(float)); float* first_ptr_after = TypedAllocator::Allocate<float>(&a, 1024, {}); EXPECT_EQ(first_ptr, first_ptr_after); a.DeallocateRaw(first_ptr_after); } TEST_P(GPUBFCAllocatorTest, AllocateZeroBufSize) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); float* ptr = TypedAllocator::Allocate<float>(&a, 0, {}); EXPECT_EQ(nullptr, ptr); } TEST_P(GPUBFCAllocatorTest, TracksSizes) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); EXPECT_EQ(true, a.TracksAllocationSizes()); } TEST_P(GPUBFCAllocatorTest, AllocatedVsRequested) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); float* t1 = TypedAllocator::Allocate<float>(&a, 1, {}); EXPECT_EQ(4, a.RequestedSize(t1)); EXPECT_EQ(256, a.AllocatedSize(t1)); a.DeallocateRaw(t1); } TEST_P(GPUBFCAllocatorTest, TestCustomMemoryLimit) { GPUBFCAllocator a(GetParam()(1ull << 32), 2 << 20, "GPU_0_bfc", {}); float* first_ptr = TypedAllocator::Allocate<float>(&a, 1 << 6, {}); float* second_ptr = TypedAllocator::Allocate<float>(&a, 2 << 20, {}); EXPECT_NE(nullptr, first_ptr); EXPECT_EQ(nullptr, second_ptr); a.DeallocateRaw(first_ptr); } TEST_P(GPUBFCAllocatorTest, AllocationsAndDeallocationsWithGrowth) { GPUOptions options; options.set_allow_growth(true); GPUBFCAllocator a(GetParam()(1ull << 32), 1LL << 31, "GPU_0_bfc", {}); random::PhiloxRandom philox(123, 17); random::SimplePhilox rand(&philox); const int32_t max_mem = 1 << 27; std::vector<void*> initial_ptrs; for (int s = 1; s < 10; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % max_mem, 100), max_mem); void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } std::vector<void*> existing_ptrs; for (size_t i = 0; i < initial_ptrs.size(); i++) { if (i % 2 == 1) { a.DeallocateRaw(initial_ptrs[i]); } else { existing_ptrs.push_back(initial_ptrs[i]); } } const int32_t max_mem_2 = 1 << 26; for (int s = 1; s < 10; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % max_mem_2, 100), max_mem_2); void* raw = a.AllocateRaw(1, size); existing_ptrs.push_back(raw); } std::sort(existing_ptrs.begin(), existing_ptrs.end()); for (size_t i = 1; i < existing_ptrs.size(); i++) { CHECK_NE(existing_ptrs[i], existing_ptrs[i - 1]); size_t req_size = a.RequestedSize(existing_ptrs[i - 1]); ASSERT_GT(req_size, 0); ASSERT_GE(static_cast<char*>(existing_ptrs[i]) - static_cast<char*>(existing_ptrs[i - 1]), req_size); } for (size_t i = 0; i < existing_ptrs.size(); i++) { a.DeallocateRaw(existing_ptrs[i]); } std::optional<AllocatorStats> stats = a.GetStats(); if (stats) { LOG(INFO) << "Alloc stats: \n" << stats->DebugString(); } } TEST_P(GPUBFCAllocatorTest, DISABLED_AllocatorReceivesZeroMemory) { GPUBFCAllocator a(GetParam()(1ul << 62), 1UL << 60, "GPU_0_bfc", {}); GPUBFCAllocator b(GetParam()(1ul << 62), 1UL << 60, "GPU_0_bfc", {}); void* amem = a.AllocateRaw(1, 1); void* bmem = b.AllocateRaw(1, 1 << 30); a.DeallocateRaw(amem); b.DeallocateRaw(bmem); } INSTANTIATE_TEST_SUITE_P(GPUBFCAllocatorTestSuite, GPUBFCAllocatorTest, TestSuiteValues()); static void BM_Allocation(::testing::benchmark::State& state) { GPUBFCAllocator a(CreateSubAllocator(1ul << 36), 1uLL << 33, "GPU_0_bfc", {}); std::vector<size_t> sizes = {256, 4096, 16384, 524288, 512, 1048576, 10485760, 104857600, 1048576000, 2048576000}; int size_index = 0; for (auto s : state) { size_t bytes = sizes[size_index++ % sizes.size()]; void* p = a.AllocateRaw(1, bytes); a.DeallocateRaw(p); } } BENCHMARK(BM_Allocation); static void BM_AllocationThreaded(::testing::benchmark::State& state) { int num_threads = state.range(0); int sub_iters = 500; for (auto s : state) { state.PauseTiming(); GPUBFCAllocator a(CreateSubAllocator(1ul << 36), 1uLL << 33, "GPU_0_bfc", {}); thread::ThreadPool pool(Env::Default(), "test", num_threads); std::atomic_int_fast32_t count(sub_iters); mutex done_lock; condition_variable done; bool done_flag = false; state.ResumeTiming(); for (int t = 0; t < num_threads; t++) { pool.Schedule([&a, &count, &done_lock, &done, &done_flag, sub_iters]() { std::vector<int> sizes = {256, 4096, 16384, 524288, 512, 1048576, 10485760, 104857600}; int size_index = 0; for (int i = 0; i < sub_iters; i++) { int bytes = sizes[size_index++ % sizes.size()]; void* p = a.AllocateRaw(1, bytes); a.DeallocateRaw(p); if (count.fetch_sub(1) == 1) { mutex_lock l(done_lock); done_flag = true; done.notify_all(); break; } } }); } mutex_lock l(done_lock); if (!done_flag) { done.wait(l); } } } BENCHMARK(BM_AllocationThreaded)->Arg(1)->Arg(4)->Arg(16); static void BM_AllocationDelayed(::testing::benchmark::State& state) { int delay = state.range(0); GPUBFCAllocator a(CreateSubAllocator(1ull << 32), 1 << 30, "GPU_0_bfc", {}); std::vector<int> sizes = {256, 4096, 16384, 4096, 512, 1024, 1024}; int size_index = 0; std::vector<void*> ptrs; ptrs.reserve(delay); for (int i = 0; i < delay; i++) { ptrs.push_back(nullptr); } int pindex = 0; for (auto s : state) { if (ptrs[pindex] != nullptr) { a.DeallocateRaw(ptrs[pindex]); ptrs[pindex] = nullptr; } int bytes = sizes[size_index++ % sizes.size()]; void* p = a.AllocateRaw(1, bytes); ptrs[pindex] = p; pindex = (pindex + 1) % ptrs.size(); } for (int i = 0; i < ptrs.size(); i++) { if (ptrs[i] != nullptr) { a.DeallocateRaw(ptrs[i]); } } } BENCHMARK(BM_AllocationDelayed)->Arg(1)->Arg(10)->Arg(100)->Arg(1000); } class GPUBFCAllocatorPrivateMethodsTest : public ::testing::TestWithParam<std::unique_ptr<SubAllocator> (*)( size_t)> { protected: void SetUp() override { CHECK_EQ(unsetenv("TF_FORCE_GPU_ALLOW_GROWTH"), 0); } void TestBinDebugInfo() { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); std::vector<void*> initial_ptrs; std::vector<size_t> initial_ptrs_allocated_sizes; const int kNumTestSizes = 5; const int kNumChunksPerSize = 2; for (int i = 0; i < kNumTestSizes; i++) { for (int j = 0; j < kNumChunksPerSize; j++) { size_t size = 256 << i; void* raw = a.AllocateRaw(1, size); ASSERT_NE(raw, nullptr); initial_ptrs.push_back(raw); initial_ptrs_allocated_sizes.push_back(a.AllocatedSize(raw)); } } std::array<BFCAllocator::BinDebugInfo, BFCAllocator::kNumBins> bin_infos; { absl::MutexLock l(&a.mutex_); bin_infos = a.get_bin_debug_info(); } { MemoryDump md = a.RecordMemoryMap(); EXPECT_EQ(md.chunk_size(), 1 + (kNumTestSizes * kNumChunksPerSize)); for (int i = 0; i < BFCAllocator::kNumBins; i++) { const BFCAllocator::BinDebugInfo& bin_info = bin_infos[i]; const BinSummary& bin_summary = md.bin_summary(i); if (i < kNumTestSizes) { const size_t requested_size = 2 * (256 << i); EXPECT_EQ(requested_size, a.RequestedSize(initial_ptrs[2 * i]) + a.RequestedSize(initial_ptrs[2 * i + 1])); size_t allocated_size = initial_ptrs_allocated_sizes[2 * i] + initial_ptrs_allocated_sizes[2 * i + 1]; EXPECT_EQ(bin_info.total_bytes_in_use, allocated_size); EXPECT_EQ(bin_summary.total_bytes_in_use(), allocated_size); EXPECT_EQ(bin_info.total_bytes_in_bin, allocated_size); EXPECT_EQ(bin_summary.total_bytes_in_bin(), allocated_size); EXPECT_EQ(bin_info.total_requested_bytes_in_use, requested_size); EXPECT_EQ(bin_info.total_chunks_in_use, kNumChunksPerSize); EXPECT_EQ(bin_summary.total_chunks_in_use(), kNumChunksPerSize); EXPECT_EQ(bin_info.total_chunks_in_bin, kNumChunksPerSize); EXPECT_EQ(bin_summary.total_chunks_in_bin(), kNumChunksPerSize); } else { EXPECT_EQ(bin_info.total_bytes_in_use, 0); EXPECT_EQ(bin_summary.total_bytes_in_use(), 0); EXPECT_EQ(bin_info.total_requested_bytes_in_use, 0); EXPECT_EQ(bin_info.total_chunks_in_use, 0); EXPECT_EQ(bin_summary.total_chunks_in_use(), 0); if (i == BFCAllocator::kNumBins - 1) { EXPECT_GT(bin_info.total_bytes_in_bin, 0); EXPECT_GT(bin_summary.total_bytes_in_bin(), 0); EXPECT_EQ(bin_info.total_chunks_in_bin, 1); EXPECT_EQ(bin_summary.total_chunks_in_bin(), 1); } else { EXPECT_EQ(bin_info.total_bytes_in_bin, 0); EXPECT_EQ(bin_summary.total_bytes_in_bin(), 0); EXPECT_EQ(bin_info.total_chunks_in_bin, 0); EXPECT_EQ(bin_summary.total_chunks_in_bin(), 0); } } } } for (size_t i = 1; i < initial_ptrs.size(); i += 2) { a.DeallocateRaw(initial_ptrs[i]); initial_ptrs[i] = nullptr; } { absl::MutexLock l(&a.mutex_); bin_infos = a.get_bin_debug_info(); } for (int i = 0; i < BFCAllocator::kNumBins; i++) { const BFCAllocator::BinDebugInfo& bin_info = bin_infos[i]; if (i < 5) { size_t requested_size = 256 << i; EXPECT_EQ(requested_size, a.RequestedSize(initial_ptrs[2 * i])); EXPECT_EQ(bin_info.total_bytes_in_use, initial_ptrs_allocated_sizes[2 * i]); EXPECT_GE(bin_info.total_bytes_in_bin, initial_ptrs_allocated_sizes[2 * i]); EXPECT_EQ(bin_info.total_requested_bytes_in_use, requested_size); EXPECT_EQ(bin_info.total_chunks_in_use, 1); EXPECT_GE(bin_info.total_chunks_in_bin, 1); } else { EXPECT_EQ(bin_info.total_bytes_in_use, 0); EXPECT_EQ(bin_info.total_requested_bytes_in_use, 0); EXPECT_EQ(bin_info.total_chunks_in_use, 0); } } } void TestForceAllowGrowth() { unsetenv("TF_FORCE_GPU_ALLOW_GROWTH"); GPUBFCAllocator::Options opts; opts.allow_growth = true; GPUBFCAllocator unset_flag_allocator(GetParam()(1ull << 32), 1LL << 31, "GPU_0_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(size_t{2 << 20}), unset_flag_allocator.curr_region_allocation_bytes_); setenv("TF_FORCE_GPU_ALLOW_GROWTH", "unparseable", 1); GPUBFCAllocator unparsable_flag_allocator(GetParam()(1ull << 32), 1LL << 31, "GPU_1_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(size_t{2 << 20}), unparsable_flag_allocator.curr_region_allocation_bytes_); setenv("TF_FORCE_GPU_ALLOW_GROWTH", "true", 1); opts.allow_growth = false; GPUBFCAllocator force_allow_growth_allocator(GetParam()(1ull << 32), 1LL << 31, "GPU_2_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(size_t{2 << 20}), force_allow_growth_allocator.curr_region_allocation_bytes_); setenv("TF_FORCE_GPU_ALLOW_GROWTH", "false", 1); opts.allow_growth = true; GPUBFCAllocator force_no_allow_growth_allocator( GetParam()(1ull << 32), 1LL << 31, "GPU_3_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(1LL << 31), force_no_allow_growth_allocator.curr_region_allocation_bytes_); } }; TEST_P(GPUBFCAllocatorPrivateMethodsTest, BinDebugInfo) { TestBinDebugInfo(); } TEST_P(GPUBFCAllocatorPrivateMethodsTest, ForceAllowGrowth) { TestForceAllowGrowth(); } INSTANTIATE_TEST_SUITE_P(GPUBFCAllocatorPrivateMethodTestSuite, GPUBFCAllocatorPrivateMethodsTest, TestSuiteValues()); class GPUBFCAllocatorTest_SubAllocatorSpecific : public ::testing::Test {}; TEST_F(GPUBFCAllocatorTest_SubAllocatorSpecific, PhysicalAllocatorOomsFragmentation) { GPUBFCAllocator::Options options; options.allow_growth = true; constexpr size_t k512MiB = 512ull << 20; GPUBFCAllocator a(CreateGPUMemAllocator( 0), k512MiB, "GPU_0_bfc", options); const size_t size = 1LL << 22; std::vector<void*> initial_ptrs; for (size_t s = 0; s < 128; s++) { void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } for (int i = 0; i < 127; ++i) { a.DeallocateRaw(initial_ptrs[i]); } void* big_alloc = a.AllocateRaw(1, k512MiB - size); EXPECT_EQ(big_alloc, nullptr); } class GPUBFCAllocatorPrivateMethodsTest_SubAllocatorSpecific : public ::testing::Test { protected: void SetUp() override { CHECK_EQ(unsetenv("TF_FORCE_GPU_ALLOW_GROWTH"), 0); } void TestRegionDeallocation() { GPUBFCAllocator::Options options; options.allow_growth = true; GPUBFCAllocator a(CreateGPUMemAllocator( 0), 1LL << 31, "GPU_0_bfc", options); const size_t size = 1LL << 22; std::vector<void*> initial_ptrs; for (size_t s = 0; s < 128; s++) { void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } { absl::MutexLock l(&a.mutex_); EXPECT_LT(1, a.region_manager_.regions().size()); } for (size_t i = 0; i < initial_ptrs.size() - 1; i++) { a.DeallocateRaw(initial_ptrs[i]); } EXPECT_EQ(true, a.DeallocateFreeRegions(0)); { absl::MutexLock l(&a.mutex_); EXPECT_EQ(1, a.region_manager_.regions().size()); } size_t num_chunks_in_bins = 0; for (int i = 0; i < BFCAllocator::kNumBins; i++) { BFCAllocator::Bin* bin = a.BinFromIndex(i); num_chunks_in_bins += bin->free_chunks.size(); } EXPECT_EQ(1, num_chunks_in_bins); } }; TEST_F(GPUBFCAllocatorPrivateMethodsTest_SubAllocatorSpecific, TestRegionDeallocation) { TestRegionDeallocation(); } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_bfc_allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e116ea05-6142-4a01-912a-9c43073b8666
cpp
tensorflow/tensorflow
slicing
third_party/xla/xla/hlo/builder/lib/slicing.cc
third_party/xla/xla/hlo/builder/lib/slicing_test.cc
#include "xla/hlo/builder/lib/slicing.h" #include <algorithm> #include <cstdint> #include <functional> #include <limits> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { XlaOp SliceInMinorDims(XlaOp x, absl::Span<const int64_t> start, absl::Span<const int64_t> end) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RET_CHECK(start.size() == end.size()); int64_t n_minor_dims = start.size(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); TF_RET_CHECK(n_minor_dims <= n_dims); auto major_dims = shape.dimensions().subspan( 0, n_dims - n_minor_dims); std::vector<int64_t> padded_start(n_dims, 0); std::copy(start.begin(), start.end(), padded_start.begin() + major_dims.size()); std::vector<int64_t> padded_end(n_dims); std::copy(major_dims.begin(), major_dims.end(), padded_end.begin()); std::copy(end.begin(), end.end(), padded_end.begin() + major_dims.size()); std::vector<int64_t> strides(n_dims, 1); return Slice(x, padded_start, padded_end, strides); }); } XlaOp UpdateSlice(XlaOp x, XlaOp update, absl::Span<const int64_t> start) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); const int64_t start_size = start.size(); TF_RET_CHECK(start_size == n_dims); std::vector<int32_t> start_as_int32(start.begin(), start.end()); std::vector<XlaOp> start_ops(start.size()); for (int i = 0, end = start.size(); i < end; ++i) { start_ops[i] = ConstantR0(builder, start_as_int32[i]); } return DynamicUpdateSlice(x, update, start_ops); }); } XlaOp UpdateSliceInMinorDims(XlaOp x, XlaOp update, absl::Span<const int64_t> start) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); const int64_t n_minor_dims = start.size(); TF_RET_CHECK(n_minor_dims <= n_dims); std::vector<int64_t> padded_start(n_dims, 0); std::copy(start.begin(), start.end(), padded_start.begin() + (n_dims - n_minor_dims)); return UpdateSlice(x, update, padded_start); }); } namespace { std::vector<int64_t> ConcatVectors(absl::Span<const int64_t> xs, absl::Span<const int64_t> ys) { std::vector<int64_t> output(xs.size() + ys.size()); std::copy(xs.begin(), xs.end(), output.begin()); std::copy(ys.begin(), ys.end(), output.begin() + xs.size()); return output; } absl::StatusOr<std::vector<XlaOp>> PrependZerosInMajorDims( XlaOp x, absl::Span<const XlaOp> starts) { XlaBuilder* builder = x.builder(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); auto zero = ConstantR0<int32_t>(builder, 0); std::vector<XlaOp> padded_starts(n_dims, zero); for (int i = 0; i < starts.size(); ++i) { padded_starts[n_dims - starts.size() + i] = starts[i]; } return padded_starts; } } XlaOp DynamicSliceInMinorDims(XlaOp x, absl::Span<const XlaOp> starts, absl::Span<const int64_t> sizes) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); int64_t n_minor_dims = starts.size(); TF_RET_CHECK(n_minor_dims == sizes.size()); TF_RET_CHECK(n_minor_dims <= n_dims); auto major_dims = shape.dimensions().subspan( 0, n_dims - sizes.size()); TF_ASSIGN_OR_RETURN(auto padded_starts, PrependZerosInMajorDims(x, starts)); auto padded_sizes = ConcatVectors(major_dims, sizes); return DynamicSlice(x, padded_starts, padded_sizes); }); } XlaOp DynamicUpdateSliceInMinorDims(XlaOp x, XlaOp update, absl::Span<const XlaOp> starts) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto padded_starts, PrependZerosInMajorDims(x, starts)); return DynamicUpdateSlice(x, update, padded_starts); }); } XlaOp TorchGather(XlaOp input, XlaOp index, int64_t dim, bool sparse) { XlaBuilder* builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape index_shape, builder->GetShape(index)); TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); if (ShapeUtil::ElementHasBitWidth(index_shape, 64) && input_shape.dimensions(dim) < std::numeric_limits<uint32_t>::max()) { index = ConvertElementType(index, U32); index_shape.set_element_type(U32); } if (index_shape.rank() == 1) { return TorchIndexSelect(input, index, 0); } if (!sparse) { std::vector<int64_t> index_broadcast_dims; std::vector<int64_t> input_broadcast_dims; std::vector<int64_t> sizes; sizes.reserve(index_shape.rank()); for (int64_t i = 0; i < index_shape.rank(); ++i) { if (i < dim) { input_broadcast_dims.push_back(i); index_broadcast_dims.push_back(i); } else if (i == dim) { sizes.push_back(input_shape.dimensions(i)); input_broadcast_dims.push_back(i); index_broadcast_dims.push_back(i + 1); } else { input_broadcast_dims.push_back(i + 1); index_broadcast_dims.push_back(i + 1); } sizes.push_back(index_shape.dimensions(i)); } auto mask = Eq( BroadcastInDim(index, sizes, index_broadcast_dims), Iota(builder, ShapeUtil::MakeShape(index_shape.element_type(), sizes), dim)); auto masked_input = Select( mask, BroadcastInDim(input, sizes, input_broadcast_dims), Zeros(builder, ShapeUtil::MakeShape(input_shape.element_type(), sizes))); return Reduce(masked_input, Zero(builder, input_shape.element_type()), CreateScalarIdentityWithZeroComputation( input_shape.element_type(), builder), {dim}); } ShapeUtil::AppendMajorDimension(1, &index_shape); std::vector<XlaOp> to_concat; to_concat.reserve(input_shape.rank()); for (int64_t i = 0; i < input_shape.rank(); ++i) { if (i == dim) { to_concat.push_back(Reshape(index, index_shape.dimensions())); } else { to_concat.push_back(Iota(builder, index_shape, i)); } } XlaOp gather_indices = ConcatInDim(builder, to_concat, input_shape.rank()); std::vector<int64_t> slice_sizes(input_shape.rank(), 1); GatherDimensionNumbers gather_dnums; gather_dnums.set_index_vector_dim(input_shape.rank()); for (int64_t i = 0; i < input_shape.rank(); ++i) { gather_dnums.add_collapsed_slice_dims(i); gather_dnums.add_start_index_map(i); } return Gather(input, gather_indices, gather_dnums, slice_sizes); }); } XlaOp TorchScatterDense(XlaOp input, XlaOp index, XlaOp src, int64_t dim, const std::function<XlaOp(XlaOp, XlaOp)>& combiner) { XlaBuilder* builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape index_shape, builder->GetShape(index)); TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); std::vector<int64_t> index_broadcast_dims; std::vector<int64_t> sizes; const auto rank = index_shape.rank(); sizes.reserve(rank + 1); for (int64_t i = 0; i < index_shape.rank(); ++i) { if (i < dim) { index_broadcast_dims.push_back(i); } else { if (i == dim) { sizes.push_back(input_shape.dimensions(i)); } index_broadcast_dims.push_back(i + 1); } sizes.push_back(index_shape.dimensions(i)); } auto mask = Eq(BroadcastInDim(index, sizes, index_broadcast_dims), Iota(builder, ShapeUtil::MakeShape(index_shape.element_type(), sizes), dim)); auto masked_src = Select(mask, BroadcastInDim(src, sizes, index_broadcast_dims), Zeros(builder, ShapeUtil::MakeShape(input_shape.element_type(), sizes))); return combiner( input, Reduce(masked_src, Zero(builder, input_shape.element_type()), CreateScalarComputation("reducer", input_shape.element_type(), builder, combiner), {dim + 1})); }); } XlaOp TorchIndexSelect(XlaOp input, XlaOp index, int64_t dim, int64_t batch_dims) { XlaBuilder* builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape input_shape, builder->GetShape(input)); TF_ASSIGN_OR_RETURN(Shape index_shape, builder->GetShape(index)); if (dim < batch_dims) { return InvalidArgument( "Gather dim must be greater than or equal to the number of batch " "dims"); } if (ShapeUtil::ElementHasBitWidth(index_shape, 64) && input_shape.dimensions(dim) < std::numeric_limits<uint32_t>::max()) { index = ConvertElementType(index, U32); index_shape.set_element_type(U32); } std::vector<int64_t> slice_sizes = SpanToVector(input_shape.dimensions()); GatherDimensionNumbers gather_dnums; gather_dnums.set_index_vector_dim(index_shape.rank()); if (batch_dims > 0) { ShapeUtil::AppendMajorDimension(1, &index_shape); std::vector<XlaOp> to_concat; to_concat.reserve(batch_dims + 1); xla::Shape iota_shape = xla::ShapeUtil::MakeStaticShape(index_shape); for (int64_t batch_dim = 0; batch_dim < batch_dims; ++batch_dim) { to_concat.push_back(Iota(builder, iota_shape, batch_dim)); } to_concat.push_back(Reshape(index, index_shape.dimensions())); index = ConcatInDim(builder, to_concat, gather_dnums.index_vector_dim()); } for (int64_t i = 0; i < input_shape.rank(); ++i) { if (i < batch_dims || i == dim) { slice_sizes[i] = std::min<int64_t>(slice_sizes[i], 1); gather_dnums.add_collapsed_slice_dims(i); gather_dnums.add_start_index_map(i); } else { if (i < dim) { gather_dnums.add_offset_dims(i); } else { gather_dnums.add_offset_dims(i + gather_dnums.index_vector_dim() - (1 + batch_dims)); } } } return Gather(input, index, gather_dnums, slice_sizes); }); } }
#include "xla/hlo/builder/lib/slicing.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/error_spec.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using SlicingTest = xla::ClientLibraryTestBase; xla::Array2D<float> BValsRight() { return {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}; } xla::Array2D<float> BValsLeft() { return {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}; } xla::Array2D<float> AValsFull() { return {{2, 0, 1, 2}, {3, 6, 0, 1}, {4, 7, 9, 0}, {5, 8, 10, 11}}; } xla::Array3D<float> BatchedAValsFull() { return {{ {2, 0, 1, 2}, {3, 6, 0, 1}, {4, 7, 9, 0}, {5, 8, 10, 11}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 456, 106}, {12, 48, 106, 62}, }}; } XLA_TEST_F(SlicingTest, Simple2dLookup) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, x, y; auto a_data = CreateR2Parameter<float>(BValsRight(), 0, "a", &builder, &a); auto x_data = CreateR0Parameter<int>(2, 1, "x", &builder, &x); auto y_data = CreateR0Parameter<int>(1, 2, "y", &builder, &y); DynamicSliceInMinorDims(a, {x, y}, {1, 1}); ComputeAndCompareR2<float>(&builder, {{10}}, {a_data.get(), x_data.get(), y_data.get()}, xla::ErrorSpec(1e-2, 1e-2)); } XLA_TEST_F(SlicingTest, Simple3dLookup) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto index_data = CreateR0Parameter<int>(1, 1, "index", &builder, &index); DynamicSliceInMinorDims(a, {index, xla::ConstantR0<int32_t>(&builder, 0)}, {1, 4}); ComputeAndCompareR3<float>(&builder, {{{3, 6, 0, 1}}, {{24, 61, 82, 48}}}, {a_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, NestedLookup) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto index_data = CreateR0Parameter<int>(1, 1, "index", &builder, &index); auto slice = DynamicSliceInMinorDims( a, {index, xla::ConstantR0<int32_t>(&builder, 0)}, {1, 4}); DynamicSliceInMinorDims(slice, {xla::ConstantR0<int32_t>(&builder, 0), index}, {1, 1}); ComputeAndCompareR3<float>(&builder, {{{6}}, {{61}}}, {a_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, SimpleSliceUpdate) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, b, x, y; auto a_data = CreateR2Parameter<float>(AValsFull(), 0, "a", &builder, &a); auto b_data = CreateR2Parameter<float>({{9, 1, -10}}, 1, "b", &builder, &b); auto x_data = CreateR0Parameter<int>(2, 2, "x", &builder, &x); auto y_data = CreateR0Parameter<int>(1, 3, "y", &builder, &y); DynamicUpdateSliceInMinorDims(a, b, {x, y}); xla::Array2D<float> expected( {{{2, 0, 1, 2}, {3, 6, 0, 1}, {4, 9, 1, -10}, {5, 8, 10, 11}}}); ComputeAndCompareR2<float>( &builder, expected, {a_data.get(), b_data.get(), x_data.get(), y_data.get()}); } XLA_TEST_F(SlicingTest, NestedSliceUpdate) { xla::XlaBuilder builder(TestName()); xla::XlaOp a, b, x, y; auto a_data = CreateR2Parameter<float>(AValsFull(), 0, "a", &builder, &a); auto b_data = CreateR2Parameter<float>({{1, -10}}, 1, "b", &builder, &b); auto x_data = CreateR0Parameter<int>(2, 2, "x", &builder, &x); auto y_data = CreateR0Parameter<int>(1, 3, "y", &builder, &y); auto z = xla::ConstantR0<int32_t>(&builder, 0); auto slice = DynamicSliceInMinorDims(a, {x, z}, {1, 4}); auto inner = DynamicUpdateSliceInMinorDims(slice, b, {z, y}); DynamicUpdateSlice(a, inner, {x, z}); xla::Array2D<float> expected( {{{2, 0, 1, 2}, {3, 6, 0, 1}, {4, 1, -10, 0}, {5, 8, 10, 11}}}); ComputeAndCompareR2<float>( &builder, expected, {a_data.get(), b_data.get(), x_data.get(), y_data.get()}); } XLA_TEST_F(SlicingTest, TorchGatherSparse) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<int>({{1, 2}, {3, 4}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{0, 0}, {1, 0}}, 1, "index", &builder, &index); TorchGather(input, index, 1); ComputeAndCompareR2<int>(&builder, {{1, 1}, {4, 3}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchGatherDense) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<int>({{1, 2}, {3, 4}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{0, 0}, {1, 0}}, 1, "index", &builder, &index); TorchGather(input, index, 1, false); ComputeAndCompareR2<int>(&builder, {{1, 1}, {4, 3}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchScatterDense) { xla::XlaBuilder builder(TestName()); xla::XlaOp src, index, input; auto input_data = CreateR2Parameter<int>({{0, 0, 0}, {0, 0, 0}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{1, 0}, {1, 2}}, 1, "index", &builder, &index); auto src_data = CreateR2Parameter<int>({{1, 2}, {3, 4}}, 2, "src", &builder, &src); TorchScatterDense(input, index, src, 1, [](XlaOp l, XlaOp r) { return l + r; }); ComputeAndCompareR2<int>( &builder, {{2, 1, 0}, {0, 3, 4}}, {input_data.get(), index_data.get(), src_data.get()}); } XLA_TEST_F(SlicingTest, TorchIndexSelectOn0) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>({{0.1427, 0.0231, -0.5414, -1.0009}, {-0.4664, 0.2647, -0.1228, -1.1068}, {-1.1734, -0.6571, 0.7230, -0.6004}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({0, 2}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 0); ComputeAndCompareR2<float>( &builder, {{0.1427, 0.0231, -0.5414, -1.0009}, {-1.1734, -0.6571, 0.7230, -0.6004}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchIndexSelectOn0Size1) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>( {{-1.1734, -0.6571, 0.7230, -0.6004}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({0, 0, 0, 0, 0, 0}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 0); ComputeAndCompareR2<float>(&builder, {{-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}, {-1.1734, -0.6571, 0.7230, -0.6004}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, TorchIndexSelectOn1) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>({{0.1427, 0.0231, -0.5414, -1.0009}, {-0.4664, 0.2647, -0.1228, -1.1068}, {-1.1734, -0.6571, 0.7230, -0.6004}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({0, 2}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 1); ComputeAndCompareR2<float>( &builder, {{0.1427, -0.5414}, {-0.4664, -0.1228}, {-1.1734, 0.7230}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, EmptyIndexSelect) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR2Parameter<float>({{0}, {0}, {0}}, 0, "input", &builder, &input); auto index_data = CreateR1Parameter<int>({}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 1); ComputeAndCompareR2<float>(&builder, {{}, {}, {}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, DoubleEmptyIndexSelect) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; Literal l(ShapeUtil::MakeShape(F32, {0, 1, 2, 0})); Literal i(ShapeUtil::MakeShape(S32, {0})); TF_ASSERT_OK_AND_ASSIGN( auto input_data, CreateParameterAndTransferLiteral(0, l, "input", &builder, &input)); TF_ASSERT_OK_AND_ASSIGN( auto index_data, CreateParameterAndTransferLiteral(1, i, "index", &builder, &index)); TorchIndexSelect(input, index, 0); ComputeAndCompareLiteral(&builder, l, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, EmptyIndexSelectNonZero) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; Literal l(ShapeUtil::MakeShape(F32, {0, 2})); TF_ASSERT_OK_AND_ASSIGN( auto input_data, CreateParameterAndTransferLiteral(0, l, "input", &builder, &input)); auto index_data = CreateR1Parameter<int>({0, 0, 0}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 0); ComputeAndCompareR2<float>(&builder, {{0.0f, 0.0f}, {0.0f, 0.0f}, {0.0f, 0.0f}}, {input_data.get(), index_data.get()}); } XLA_TEST_F(SlicingTest, BatchTorchIndexSelectOn0) { xla::XlaBuilder builder(TestName()); xla::XlaOp input, index; auto input_data = CreateR3Parameter<int>({{{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}}, {{3, 2, 1, 0}, {7, 6, 5, 4}, {11, 10, 9, 8}}}, 0, "input", &builder, &input); auto index_data = CreateR2Parameter<int>({{0, 2}, {1, 2}}, 1, "index", &builder, &index); TorchIndexSelect(input, index, 1, 1); ComputeAndCompareR3<int>( &builder, {{{0, 1, 2, 3}, {8, 9, 10, 11}}, {{7, 6, 5, 4}, {11, 10, 9, 8}}}, {input_data.get(), index_data.get()}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/slicing.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/slicing_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f12c6805-40c7-43da-a825-1cf3263758dd
cpp
tensorflow/tensorflow
select
tensorflow/lite/experimental/shlo/legacy/src/select.cc
tensorflow/lite/experimental/shlo/legacy/test/select_test.cc
#include <cstddef> #include <type_traits> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/dispatch.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { template <typename Value> absl::Status CheckParameters(const Tensor& pred, const Value& on_true, const Value& on_false, Value& result) { if (!(pred.rank() == 0 or pred.shape() == on_true.shape())) { return absl::InvalidArgumentError( "Constraint violation: rank(pred) = 0 or shape(pred) = " "shape(on_true)"); } else if (!(on_true.baseline_type() == on_false.baseline_type() and on_true.baseline_type() == result.baseline_type())) { return absl::InvalidArgumentError( "Constraint violation: baseline_type(on_true) = " "baseline_type(on_false) = baseline_type(result)"); } else if (pred.element_type() != ElementType::kI1) { return absl::InvalidArgumentError("Expected boolean tensor as predicate"); } if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (!(on_true.is_per_tensor_quantized() and on_false.is_per_tensor_quantized() and result.is_per_tensor_quantized())) { return absl::InvalidArgumentError("Expected per-tensor quantization"); } } if (pred.layout().has_strides() || on_true.layout().has_strides() || on_false.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type, typename Value> absl::Status Select(const Tensor& pred, const Value& on_true, const Value& on_false, Value& result) { if (auto check = CheckParameters(pred, on_true, on_false, result); !check.ok()) { return check; } using P = Storage<ElementType::kI1>; using S = Storage<storage_type>; const bool pred_is_tensor = (pred.rank() > 0); const size_t n = result.num_elements(); auto pred_buffer = pred.buffer(); auto on_true_buffer = on_true.buffer(); auto on_false_buffer = on_false.buffer(); auto result_buffer = result.buffer(); if constexpr (std::is_same_v<Value, Tensor>) { if (storage_type != result.element_type()) { return absl::InvalidArgumentError("Unexpected tensor element type"); } bool selection_value; for (size_t i = 0; i < n; ++i) { if (pred_is_tensor || (i == 0)) { selection_value = P::Get(pred_buffer, i); } auto input_buffer = selection_value ? on_true_buffer : on_false_buffer; auto result_value = S::Get(input_buffer, i); S::Set(result_buffer, i, result_value); } } else { static_assert(std::is_same_v<Value, QuantizedTensor>); if (storage_type != result.storage_type()) { return absl::InvalidArgumentError("Unexpected storage type"); } else if (expressed_type != result.expressed_type()) { return absl::InvalidArgumentError("Unexpected expressed type"); } using ET = typename Storage<expressed_type>::Type; const QuantizedParameter& on_true_quant_param = on_true.type().element_type().parameters(0); const QuantizedParameter& on_false_quant_param = on_false.type().element_type().parameters(0); const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); bool selection_value; for (size_t i = 0; i < n; ++i) { if (pred_is_tensor || (i == 0)) { selection_value = P::Get(pred_buffer, i); } const void* input_buffer; const QuantizedParameter* input_quant_param; if (selection_value) { input_buffer = on_true_buffer; input_quant_param = &on_true_quant_param; } else { input_buffer = on_false_buffer; input_quant_param = &on_false_quant_param; } auto input_storage = S::Get(input_buffer, i); auto result_storage = DequantizeOpQuantizePartial<storage_type, expressed_type>( input_storage, *input_quant_param, result_scale_inv, result_quant_param.zero_point, [](auto x) { return x; }); S::Set(result_buffer, i, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } } return absl::OkStatus(); } } absl::Status Select(const Tensor& pred, const Tensor& on_true, const Tensor& on_false, Tensor& result) { DISPATCH_BOOL_INT_FLOAT(Select, result.element_type(), pred, on_true, on_false, result); } absl::Status Select(const Tensor& pred, const QuantizedTensor& on_true, const QuantizedTensor& on_false, QuantizedTensor& result) { DISPATCH_QUANTIZED(Select, result.storage_type(), result.expressed_type(), pred, on_true, on_false, result); } }
#include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(std::initializer_list<DimensionSize>&& shape, std::vector<typename Storage<ElementType::kI1>::Type>&& pred_values, std::vector<typename Storage<element_type>::Type>&& on_true_values, std::vector<typename Storage<element_type>::Type>&& on_false_values, std::vector<typename Storage<element_type>::Type>&& expected_values) { Shape pred_shape = (pred_values.size() > 1) ? Shape(shape) : Shape(); Tensor pred(TensorType(std::move(pred_shape), ElementType::kI1), pred_values.data()); Tensor on_true(TensorType(Shape(shape), element_type), on_true_values.data()); Tensor on_false(TensorType(Shape(shape), element_type), on_false_values.data()); Tensor expected(TensorType(Shape(shape), element_type), expected_values.data()); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(shape), element_type), result_values.data()); ASSERT_OK(Select(pred, on_true, on_false, result)); EXPECT_EQ(result, expected) << "pred: " << pred << "\non_true: " << on_true << "\nnon_false: " << on_false; } template <ElementType storage_type, ElementType expressed_type> void test( QuantizedParameter&& quantized_parameter, std::initializer_list<DimensionSize>&& shape, std::vector<typename Storage<ElementType::kI1>::Type>&& pred_values, std::vector<typename Storage<expressed_type>::Type>&& on_true_values, std::vector<typename Storage<expressed_type>::Type>&& on_false_values, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { Shape pred_shape = (pred_values.size() > 1) ? Shape(shape) : Shape(); Tensor pred(TensorType(std::move(pred_shape), ElementType::kI1), pred_values.data()); auto on_true_quant_values = QuantizeVector<storage_type, expressed_type>( on_true_values, quantized_parameter); auto on_false_quant_values = QuantizeVector<storage_type, expressed_type>( on_false_values, quantized_parameter); auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); std::vector<typename Storage<storage_type>::Type> result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor on_true( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), on_true_quant_values.data()); QuantizedTensor on_false( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), on_false_quant_values.data()); QuantizedTensor expected( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); ASSERT_OK(Select(pred, on_true, on_false, result)); EXPECT_EQ(result, expected) << "pred: " << pred << "\non_true: " << on_true << "\nnon_false: " << on_false; } TEST(Select, Unquantized) { test<ElementType::kI1>({2}, {true}, {true, false}, {false, true}, {true, false}); test<ElementType::kSI8>({2}, {false}, {1, 2}, {-1, -2}, {-1, -2}); test<ElementType::kSI16>({2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kSI32>({2}, {false}, {1, 2}, {-1, -2}, {-1, -2}); test<ElementType::kBF16>({2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kF16>({2}, {false}, {1, 2}, {-1, -2}, {-1, -2}); test<ElementType::kF32>({2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kI1>({2}, {true, false}, {true, true}, {false, false}, {true, false}); test<ElementType::kSI8>({2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI16>({2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI32>({2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kBF16>({2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kF16>({2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kF32>({2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); } TEST(Select, Quantized) { test<ElementType::kSI8, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kSI8, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {2}, {false}, {1, 2}, {-1, -2}, {-1, -2}); test<ElementType::kSI8, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kSI8, ElementType::kBF16>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI8, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI8, ElementType::kF32>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI16, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kSI16, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {2}, {false}, {1, 2}, {-1, -2}, {-1, -2}); test<ElementType::kSI16, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kSI16, ElementType::kBF16>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI16, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI16, ElementType::kF32>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI32, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kSI32, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {2}, {false}, {1, 2}, {-1, -2}, {-1, -2}); test<ElementType::kSI32, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {2}, {true}, {1, 2}, {-1, -2}, {1, 2}); test<ElementType::kSI32, ElementType::kBF16>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI32, ElementType::kF16>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); test<ElementType::kSI32, ElementType::kF32>({.scale = 0.1, .zero_point = 0}, {2}, {true, false}, {1, 2}, {-1, -2}, {1, -2}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/select.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/select_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b291c2ed-7b74-4ed8-8198-339942ef74bb
cpp
google/cel-cpp
new
internal/new.cc
internal/new_test.cc
#include "internal/new.h" #include <cstddef> #include <cstdlib> #include <new> #include <utility> #ifdef _MSC_VER #include <malloc.h> #endif #include "absl/base/config.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/numeric/bits.h" #include "internal/align.h" #if defined(__cpp_aligned_new) && __cpp_aligned_new >= 201606L #define CEL_INTERNAL_HAVE_ALIGNED_NEW 1 #endif #if defined(__cpp_sized_deallocation) && __cpp_sized_deallocation >= 201309L #define CEL_INTERNAL_HAVE_SIZED_DELETE 1 #endif namespace cel::internal { namespace { [[noreturn, maybe_unused]] void ThrowStdBadAlloc() { #ifdef ABSL_HAVE_EXCEPTIONS throw std::bad_alloc(); #else std::abort(); #endif } } void* New(size_t size) { return ::operator new(size); } void* AlignedNew(size_t size, std::align_val_t alignment) { ABSL_DCHECK(absl::has_single_bit(static_cast<size_t>(alignment))); #ifdef CEL_INTERNAL_HAVE_ALIGNED_NEW return ::operator new(size, alignment); #else if (static_cast<size_t>(alignment) <= kDefaultNewAlignment) { return New(size); } #if defined(_MSC_VER) void* ptr = _aligned_malloc(size, static_cast<size_t>(alignment)); if (ABSL_PREDICT_FALSE(size != 0 && ptr == nullptr)) { ThrowStdBadAlloc(); } return ptr; #else void* ptr = std::aligned_alloc(static_cast<size_t>(alignment), size); if (ABSL_PREDICT_FALSE(size != 0 && ptr == nullptr)) { ThrowStdBadAlloc(); } return ptr; #endif #endif } std::pair<void*, size_t> SizeReturningNew(size_t size) { return std::pair{::operator new(size), size}; } std::pair<void*, size_t> SizeReturningAlignedNew(size_t size, std::align_val_t alignment) { ABSL_DCHECK(absl::has_single_bit(static_cast<size_t>(alignment))); #ifdef CEL_INTERNAL_HAVE_ALIGNED_NEW return std::pair{::operator new(size, alignment), size}; #else return std::pair{AlignedNew(size, alignment), size}; #endif } void Delete(void* ptr) noexcept { ::operator delete(ptr); } void SizedDelete(void* ptr, size_t size) noexcept { #ifdef CEL_INTERNAL_HAVE_SIZED_DELETE ::operator delete(ptr, size); #else ::operator delete(ptr); #endif } void AlignedDelete(void* ptr, std::align_val_t alignment) noexcept { ABSL_DCHECK(absl::has_single_bit(static_cast<size_t>(alignment))); #ifdef CEL_INTERNAL_HAVE_ALIGNED_NEW ::operator delete(ptr, alignment); #else if (static_cast<size_t>(alignment) <= kDefaultNewAlignment) { Delete(ptr, size); } else { #if defined(_MSC_VER) _aligned_free(ptr); #else std::free(ptr); #endif } #endif } void SizedAlignedDelete(void* ptr, size_t size, std::align_val_t alignment) noexcept { ABSL_DCHECK(absl::has_single_bit(static_cast<size_t>(alignment))); #ifdef CEL_INTERNAL_HAVE_ALIGNED_NEW #ifdef CEL_INTERNAL_HAVE_SIZED_DELETE ::operator delete(ptr, size, alignment); #else ::operator delete(ptr, alignment); #endif #else AlignedDelete(ptr, alignment); #endif } }
#include "internal/new.h" #include <cstddef> #include <cstdint> #include <new> #include <tuple> #include "internal/testing.h" namespace cel::internal { namespace { using ::testing::Ge; using ::testing::NotNull; TEST(New, Basic) { void* p = New(sizeof(uint64_t)); EXPECT_THAT(p, NotNull()); Delete(p); } TEST(AlignedNew, Basic) { void* p = AlignedNew(alignof(std::max_align_t) * 2, static_cast<std::align_val_t>(alignof(std::max_align_t) * 2)); EXPECT_THAT(p, NotNull()); AlignedDelete(p, static_cast<std::align_val_t>(alignof(std::max_align_t) * 2)); } TEST(SizeReturningNew, Basic) { void* p; size_t n; std::tie(p, n) = SizeReturningNew(sizeof(uint64_t)); EXPECT_THAT(p, NotNull()); EXPECT_THAT(n, Ge(sizeof(uint64_t))); SizedDelete(p, n); } TEST(SizeReturningAlignedNew, Basic) { void* p; size_t n; std::tie(p, n) = SizeReturningAlignedNew( alignof(std::max_align_t) * 2, static_cast<std::align_val_t>(alignof(std::max_align_t) * 2)); EXPECT_THAT(p, NotNull()); EXPECT_THAT(n, Ge(alignof(std::max_align_t) * 2)); SizedAlignedDelete( p, n, static_cast<std::align_val_t>(alignof(std::max_align_t) * 2)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/new.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/new_test.cc
4552db5798fb0853b131b783d8875794334fae7f
532dfe70-788a-4603-8e3b-05d98d46586b
cpp
google/arolla
derived_qtype_cast_operator
arolla/expr/derived_qtype_cast_operator.cc
arolla/expr/derived_qtype_cast_operator_test.cc
#include "arolla/expr/derived_qtype_cast_operator.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/derived_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/util/fingerprint.h" namespace arolla::expr { absl::StatusOr<QTypePtr> DerivedQTypeUpcastOperator::GetOutputQType( QTypePtr derived_qtype, QTypePtr value_qtype) { if (value_qtype == derived_qtype) { return DecayDerivedQType(derived_qtype); } return absl::InvalidArgumentError( absl::StrFormat("expected %s, got value: %s", derived_qtype->name(), value_qtype->name())); } DerivedQTypeUpcastOperator::DerivedQTypeUpcastOperator(QTypePtr derived_qtype) : BasicExprOperator( absl::StrFormat("derived_qtype.upcast[%s]", derived_qtype->name()), ExprOperatorSignature{{"value"}}, "Casts a derived value to the base type.", FingerprintHasher("arolla::expr::DerivedQTypeUpcastOperator") .Combine(derived_qtype) .Finish()), derived_qtype_(derived_qtype) {} absl::StatusOr<QTypePtr> DerivedQTypeUpcastOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { return DerivedQTypeUpcastOperator::GetOutputQType(derived_qtype_, input_qtypes[0]); } QTypePtr DerivedQTypeUpcastOperator::derived_qtype() const { return derived_qtype_; } absl::StatusOr<QTypePtr> DerivedQTypeDowncastOperator::GetOutputQType( QTypePtr derived_qtype, QTypePtr value_qtype) { const auto* base_qtype = DecayDerivedQType(derived_qtype); if (value_qtype == base_qtype) { return derived_qtype; } return absl::InvalidArgumentError(absl::StrFormat( "expected %s, got value: %s", base_qtype->name(), value_qtype->name())); } DerivedQTypeDowncastOperator::DerivedQTypeDowncastOperator( QTypePtr derived_qtype) : BasicExprOperator( absl::StrFormat("derived_qtype.downcast[%s]", derived_qtype->name()), ExprOperatorSignature{{"value"}}, "Casts a base qtype value to the derived qtype.", FingerprintHasher("arolla::expr::DerivedQTypeDowncastOperator") .Combine(derived_qtype) .Finish()), derived_qtype_(derived_qtype) {} absl::StatusOr<QTypePtr> DerivedQTypeDowncastOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { return DerivedQTypeDowncastOperator::GetOutputQType(derived_qtype_, input_qtypes[0]); } QTypePtr DerivedQTypeDowncastOperator::derived_qtype() const { return derived_qtype_; } }
#include "arolla/expr/derived_qtype_cast_operator.h" #include <memory> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/no_destructor.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/derived_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/repr.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla::expr { namespace { using ::absl_testing::StatusIs; using ::arolla::testing::InvokeExprOperator; using ::arolla::testing::ReprTokenEq; using ::testing::HasSubstr; struct TimeQType final : BasicDerivedQType { TimeQType() : BasicDerivedQType(ConstructorArgs{ .name = "TIME", .base_qtype = GetQType<float>(), }) {} ReprToken UnsafeReprToken(const void* source) const override { auto result = GetBaseQType()->UnsafeReprToken(source); result.str += "s"; return result; } static QTypePtr get() { static const absl::NoDestructor<TimeQType> result; return result.get(); } }; struct DistanceQType final : BasicDerivedQType { DistanceQType() : BasicDerivedQType(ConstructorArgs{ .name = "DISTANCE", .base_qtype = GetQType<float>(), }) {} ReprToken UnsafeReprToken(const void* source) const override { auto result = GetBaseQType()->UnsafeReprToken(source); result.str += "m"; return result; } static QTypePtr get() { static const absl::NoDestructor<DistanceQType> result; return result.get(); } }; TEST(DerivedQTypeCastOperatorTests, UpcastDistance_WithDistanceInput) { ExprOperatorPtr upcast_distance = std::make_shared<DerivedQTypeUpcastOperator>(DistanceQType::get()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); ASSERT_OK_AND_ASSIGN(auto f32, InvokeExprOperator<TypedValue>(upcast_distance, d)); EXPECT_EQ(f32.GetType(), GetQType<float>()); EXPECT_THAT(f32.GenReprToken(), ReprTokenEq("6.28", ReprToken::kSafeForNegation)); } TEST(DerivedQTypeCastOperatorTests, UpcastDistance_WithFloat32Input) { ExprOperatorPtr upcast_distance = std::make_shared<DerivedQTypeUpcastOperator>(DistanceQType::get()); EXPECT_THAT(InvokeExprOperator<TypedValue>(upcast_distance, 6.28f), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected DISTANCE, got value: FLOAT32"))); } TEST(DerivedQTypeCastOperatorTests, UpcastFloat32_WithDistanceInput) { ExprOperatorPtr upcast_float32 = std::make_shared<DerivedQTypeUpcastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); EXPECT_THAT(InvokeExprOperator<TypedValue>(upcast_float32, d), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected FLOAT32, got value: DISTANCE"))); } TEST(DerivedQTypeCastOperatorTests, UpcastFloat32_WithFloat32Input) { ExprOperatorPtr upcast_float32 = std::make_shared<DerivedQTypeUpcastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN(auto f32, InvokeExprOperator<TypedValue>(upcast_float32, 6.28f)); EXPECT_EQ(f32.GetType(), GetQType<float>()); EXPECT_THAT(f32.GenReprToken(), ReprTokenEq("6.28", ReprToken::kSafeForNegation)); } TEST(DerivedQTypeCastOperatorTests, DowncastDistance_WithDistanceInput) { ExprOperatorPtr downcast_distance = std::make_shared<DerivedQTypeDowncastOperator>(DistanceQType::get()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); EXPECT_THAT(InvokeExprOperator<TypedValue>(downcast_distance, d), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected FLOAT32, got value: DISTANCE"))); } TEST(DerivedQTypeCastOperatorTests, DowncastDistance_WithFloat32Input) { ExprOperatorPtr downcast_distance = std::make_shared<DerivedQTypeDowncastOperator>(DistanceQType::get()); ASSERT_OK_AND_ASSIGN( auto d, InvokeExprOperator<TypedValue>(downcast_distance, 6.28f)); EXPECT_EQ(d.GetType(), DistanceQType::get()); EXPECT_THAT(d.GenReprToken(), ReprTokenEq("6.28m", ReprToken::kSafeForNegation)); } TEST(DerivedQTypeCastOperatorTests, DowncastFloat32_WithDistanceInput) { ExprOperatorPtr downcast_float32 = std::make_shared<DerivedQTypeDowncastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); EXPECT_THAT(InvokeExprOperator<TypedValue>(downcast_float32, d), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected FLOAT32, got value: DISTANCE"))); } TEST(DerivedQTypeCastOperatorTests, DowncastFloat32_WithFloat32Input) { ExprOperatorPtr downcast_float32 = std::make_shared<DerivedQTypeDowncastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN(auto f32, InvokeExprOperator<TypedValue>(downcast_float32, 6.28f)); EXPECT_EQ(f32.GetType(), GetQType<float>()); EXPECT_THAT(f32.GenReprToken(), ReprTokenEq("6.28", ReprToken::kSafeForNegation)); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/derived_qtype_cast_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/derived_qtype_cast_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
4a4ecea8-5f00-46ff-b387-1843c5c83db4
cpp
google/langsvr
buffer_reader
src/buffer_reader.cc
src/buffer_reader_test.cc
#include "langsvr/buffer_reader.h" #include <cstring> namespace langsvr { BufferReader::~BufferReader() = default; size_t BufferReader::Read(std::byte* out, size_t count) { size_t n = std::min(count, bytes_remaining_); memcpy(out, data_, n); data_ += n; bytes_remaining_ -= n; return n; } }
#include "langsvr/buffer_reader.h" #include "gtest/gtest.h" namespace langsvr { namespace { template <typename... ARGS> auto Data(ARGS&&... args) { return std::vector{std::byte{static_cast<uint8_t>(args)}...}; } TEST(BufferReaderTest, String) { BufferReader reader{"hello world"}; auto first = reader.String(5); ASSERT_EQ(first, Success); EXPECT_EQ(first.Get(), "hello"); auto second = reader.String(6); ASSERT_EQ(second, Success); EXPECT_EQ(second.Get(), " world"); auto third = reader.String(1); EXPECT_NE(third, Success); } } }
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/buffer_reader.cc
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/buffer_reader_test.cc
303c526231a90049a3e384549720f3fbd453cf66
e8ad88dc-6c07-443c-8df2-ecbfd02997c0
cpp
tensorflow/tensorflow
register
tensorflow/lite/core/kernels/register.cc
tensorflow/lite/core/kernels/register_test.cc
#include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tflite_with_xnnpack_optional.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_NUMERIC_VERIFY(); TfLiteRegistration* Register_AUDIO_SPECTROGRAM(); TfLiteRegistration* Register_MFCC(); TfLiteRegistration* Register_DETECTION_POSTPROCESS(); } namespace builtin { BuiltinOpResolver::BuiltinOpResolver() { AddBuiltin(BuiltinOperator_ABS, Register_ABS(), 1, 5); AddBuiltin(BuiltinOperator_HARD_SWISH, Register_HARD_SWISH()); AddBuiltin(BuiltinOperator_RELU, Register_RELU(), 1, 3); AddBuiltin(BuiltinOperator_RELU_N1_TO_1, Register_RELU_N1_TO_1()); AddBuiltin(BuiltinOperator_RELU_0_TO_1, Register_RELU_0_TO_1()); AddBuiltin(BuiltinOperator_RELU6, Register_RELU6(), 1, 3); AddBuiltin(BuiltinOperator_TANH, Register_TANH(), 1, 3); AddBuiltin(BuiltinOperator_LOGISTIC, Register_LOGISTIC(), 1, 3); AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, Register_AVERAGE_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_MAX_POOL_2D, Register_MAX_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_L2_POOL_2D, Register_L2_POOL_2D()); AddBuiltin(BuiltinOperator_CONV_2D, Register_CONV_2D(), 1, 8); AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D, Register_DEPTHWISE_CONV_2D(), 1, 7); AddBuiltin(BuiltinOperator_SVDF, Register_SVDF(), 1, 4); AddBuiltin(BuiltinOperator_RNN, Register_RNN(), 1, 3); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, Register_BIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, Register_UNIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP, Register_EMBEDDING_LOOKUP(), 1, 4); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, Register_EMBEDDING_LOOKUP_SPARSE()); AddBuiltin(BuiltinOperator_FULLY_CONNECTED, Register_FULLY_CONNECTED(), 1, 13); AddBuiltin(BuiltinOperator_LSH_PROJECTION, Register_LSH_PROJECTION()); AddBuiltin(BuiltinOperator_HASHTABLE_LOOKUP, Register_HASHTABLE_LOOKUP()); AddBuiltin(BuiltinOperator_SOFTMAX, Register_SOFTMAX(), 1, 3); AddBuiltin(BuiltinOperator_CONCATENATION, Register_CONCATENATION(), 1, 4); AddBuiltin(BuiltinOperator_ADD, Register_ADD(), 1, 5); AddBuiltin(BuiltinOperator_SPACE_TO_BATCH_ND, Register_SPACE_TO_BATCH_ND(), 1, 4); AddBuiltin(BuiltinOperator_BATCH_TO_SPACE_ND, Register_BATCH_TO_SPACE_ND(), 1, 4); AddBuiltin(BuiltinOperator_MUL, Register_MUL(), 1, 7); AddBuiltin(BuiltinOperator_L2_NORMALIZATION, Register_L2_NORMALIZATION(), 1, 2); AddBuiltin(BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, Register_LOCAL_RESPONSE_NORMALIZATION()); AddBuiltin(BuiltinOperator_LSTM, Register_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, Register_BIDIRECTIONAL_SEQUENCE_LSTM(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, Register_UNIDIRECTIONAL_SEQUENCE_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_PAD, Register_PAD(), 1, 4); AddBuiltin(BuiltinOperator_PADV2, Register_PADV2(), 1, 4); AddBuiltin(BuiltinOperator_RESHAPE, Register_RESHAPE()); AddBuiltin(BuiltinOperator_RESIZE_BILINEAR, Register_RESIZE_BILINEAR(), 1, 4); AddBuiltin(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, Register_RESIZE_NEAREST_NEIGHBOR(), 1, 4); AddBuiltin(BuiltinOperator_SKIP_GRAM, Register_SKIP_GRAM()); AddBuiltin(BuiltinOperator_SPACE_TO_DEPTH, Register_SPACE_TO_DEPTH(), 1, 2); AddBuiltin(BuiltinOperator_DEPTH_TO_SPACE, Register_DEPTH_TO_SPACE(), 1, 2); AddBuiltin(BuiltinOperator_GATHER, Register_GATHER(), 1, 7); AddBuiltin(BuiltinOperator_TRANSPOSE, Register_TRANSPOSE(), 1, 6); AddBuiltin(BuiltinOperator_MEAN, Register_MEAN(), 1, 3); AddBuiltin(BuiltinOperator_DIV, Register_DIV(), 1, 2); AddBuiltin(BuiltinOperator_SUB, Register_SUB(), 1, 5); AddBuiltin(BuiltinOperator_SPLIT, Register_SPLIT(), 1, 4); AddBuiltin(BuiltinOperator_SPLIT_V, Register_SPLIT_V(), 1, 2); AddBuiltin(BuiltinOperator_SQUEEZE, Register_SQUEEZE(), 1, 2); AddBuiltin(BuiltinOperator_STRIDED_SLICE, Register_STRIDED_SLICE(), 1, 8); AddBuiltin(BuiltinOperator_EXP, Register_EXP(), 1, 2); AddBuiltin(BuiltinOperator_TOPK_V2, Register_TOPK_V2(), 1, 3); AddBuiltin(BuiltinOperator_LOG, Register_LOG(), 1, 2); AddBuiltin(BuiltinOperator_LOG_SOFTMAX, Register_LOG_SOFTMAX(), 1, 2); AddBuiltin(BuiltinOperator_CAST, Register_CAST(), 1, 6); AddBuiltin(BuiltinOperator_DEQUANTIZE, Register_DEQUANTIZE(), 1, 6); AddBuiltin(BuiltinOperator_PRELU, Register_PRELU()); AddBuiltin(BuiltinOperator_MAXIMUM, Register_MAXIMUM(), 1, 4); AddBuiltin(BuiltinOperator_MINIMUM, Register_MINIMUM(), 1, 4); AddBuiltin(BuiltinOperator_ARG_MAX, Register_ARG_MAX(), 1, 3); AddBuiltin(BuiltinOperator_ARG_MIN, Register_ARG_MIN(), 1, 3); AddBuiltin(BuiltinOperator_GREATER, Register_GREATER(), 1, 2); AddBuiltin(BuiltinOperator_GREATER_EQUAL, Register_GREATER_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_LESS, Register_LESS(), 1, 3); AddBuiltin(BuiltinOperator_LESS_EQUAL, Register_LESS_EQUAL(), 1, 2); AddBuiltin(BuiltinOperator_FLOOR, Register_FLOOR()); AddBuiltin(BuiltinOperator_CEIL, Register_CEIL()); AddBuiltin(BuiltinOperator_ROUND, Register_ROUND()); AddBuiltin(BuiltinOperator_NEG, Register_NEG()); AddBuiltin(BuiltinOperator_SELECT, Register_SELECT(), 1, 4); AddBuiltin(BuiltinOperator_SELECT_V2, Register_SELECT_V2(), 1, 2); AddBuiltin(BuiltinOperator_SLICE, Register_SLICE(), 1, 6); AddBuiltin(BuiltinOperator_SIN, Register_SIN()); AddBuiltin(BuiltinOperator_COS, Register_COS()); AddBuiltin(BuiltinOperator_TRANSPOSE_CONV, Register_TRANSPOSE_CONV(), 1, 5); AddBuiltin(BuiltinOperator_TILE, Register_TILE(), 1, 3); AddBuiltin(BuiltinOperator_SUM, Register_SUM(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_PROD, Register_REDUCE_PROD(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_MAX, Register_REDUCE_MAX(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_MIN, Register_REDUCE_MIN(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_ANY, Register_REDUCE_ANY()); AddBuiltin(BuiltinOperator_REDUCE_ALL, Register_REDUCE_ALL()); AddBuiltin(BuiltinOperator_EXPAND_DIMS, Register_EXPAND_DIMS()); AddBuiltin(BuiltinOperator_SPARSE_TO_DENSE, Register_SPARSE_TO_DENSE(), 1, 3); AddBuiltin(BuiltinOperator_EQUAL, Register_EQUAL(), 1, 4); AddBuiltin(BuiltinOperator_NOT_EQUAL, Register_NOT_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_SQRT, Register_SQRT()); AddBuiltin(BuiltinOperator_RSQRT, Register_RSQRT(), 1, 3); AddBuiltin(BuiltinOperator_SHAPE, Register_SHAPE()); AddBuiltin(BuiltinOperator_RANK, Register_RANK()); AddBuiltin(BuiltinOperator_POW, Register_POW()); AddBuiltin(BuiltinOperator_FAKE_QUANT, Register_FAKE_QUANT(), 1, 2); AddBuiltin(BuiltinOperator_PACK, Register_PACK(), 1, 4); AddBuiltin(BuiltinOperator_ONE_HOT, Register_ONE_HOT()); AddBuiltin(BuiltinOperator_LOGICAL_OR, Register_LOGICAL_OR()); AddBuiltin(BuiltinOperator_LOGICAL_AND, Register_LOGICAL_AND()); AddBuiltin(BuiltinOperator_LOGICAL_NOT, Register_LOGICAL_NOT()); AddBuiltin(BuiltinOperator_UNPACK, Register_UNPACK(), 1, 4); AddBuiltin(BuiltinOperator_FLOOR_DIV, Register_FLOOR_DIV(), 1, 3); AddBuiltin(BuiltinOperator_SQUARE, Register_SQUARE()); AddBuiltin(BuiltinOperator_ZEROS_LIKE, Register_ZEROS_LIKE()); AddBuiltin(BuiltinOperator_FLOOR_MOD, Register_FLOOR_MOD(), 1, 2); AddBuiltin(BuiltinOperator_RANGE, Register_RANGE(), 1, 2); AddBuiltin(BuiltinOperator_LEAKY_RELU, Register_LEAKY_RELU(), 1, 2); AddBuiltin(BuiltinOperator_SQUARED_DIFFERENCE, Register_SQUARED_DIFFERENCE(), 1, 2); AddBuiltin(BuiltinOperator_FILL, Register_FILL(), 1, 4); AddBuiltin(BuiltinOperator_MIRROR_PAD, Register_MIRROR_PAD(), 1, 3); AddBuiltin(BuiltinOperator_UNIQUE, Register_UNIQUE()); AddBuiltin(BuiltinOperator_REVERSE_V2, Register_REVERSE_V2(), 1, 3); AddBuiltin(BuiltinOperator_ADD_N, Register_ADD_N()); AddBuiltin(BuiltinOperator_GATHER_ND, Register_GATHER_ND(), 1, 5); AddBuiltin(BuiltinOperator_WHERE, Register_WHERE(), 1, 2); AddBuiltin(BuiltinOperator_ELU, Register_ELU()); AddBuiltin(BuiltinOperator_REVERSE_SEQUENCE, Register_REVERSE_SEQUENCE()); AddBuiltin(BuiltinOperator_MATRIX_DIAG, Register_MATRIX_DIAG()); AddBuiltin(BuiltinOperator_QUANTIZE, Register_QUANTIZE(), 1, 3); AddBuiltin(BuiltinOperator_MATRIX_SET_DIAG, Register_MATRIX_SET_DIAG()); AddBuiltin(BuiltinOperator_IF, tflite::ops::builtin::Register_IF()); AddBuiltin(BuiltinOperator_WHILE, tflite::ops::builtin::Register_WHILE()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V4, Register_NON_MAX_SUPPRESSION_V4()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V5, Register_NON_MAX_SUPPRESSION_V5()); AddBuiltin(BuiltinOperator_SCATTER_ND, Register_SCATTER_ND()); AddBuiltin(BuiltinOperator_DENSIFY, Register_DENSIFY()); AddBuiltin(BuiltinOperator_SEGMENT_SUM, Register_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_BATCH_MATMUL, Register_BATCH_MATMUL(), 1, 4); AddBuiltin(BuiltinOperator_CUMSUM, Register_CUMSUM()); AddBuiltin(BuiltinOperator_BROADCAST_TO, Register_BROADCAST_TO(), 2, 3); AddBuiltin(BuiltinOperator_CALL_ONCE, tflite::ops::builtin::Register_CALL_ONCE()); AddBuiltin(BuiltinOperator_RFFT2D, Register_RFFT2D()); AddBuiltin(BuiltinOperator_CONV_3D, Register_CONV_3D()); AddBuiltin(BuiltinOperator_IMAG, Register_IMAG()); AddBuiltin(BuiltinOperator_REAL, Register_REAL()); AddBuiltin(BuiltinOperator_COMPLEX_ABS, Register_COMPLEX_ABS()); AddBuiltin(BuiltinOperator_BROADCAST_ARGS, Register_BROADCAST_ARGS()); AddBuiltin(BuiltinOperator_HASHTABLE, Register_HASHTABLE()); AddBuiltin(BuiltinOperator_HASHTABLE_FIND, Register_HASHTABLE_FIND()); AddBuiltin(BuiltinOperator_HASHTABLE_IMPORT, Register_HASHTABLE_IMPORT()); AddBuiltin(BuiltinOperator_HASHTABLE_SIZE, Register_HASHTABLE_SIZE()); AddBuiltin(BuiltinOperator_CONV_3D_TRANSPOSE, Register_CONV_3D_TRANSPOSE()); AddBuiltin(BuiltinOperator_VAR_HANDLE, Register_VAR_HANDLE()); AddBuiltin(BuiltinOperator_READ_VARIABLE, Register_READ_VARIABLE()); AddBuiltin(BuiltinOperator_ASSIGN_VARIABLE, Register_ASSIGN_VARIABLE()); AddBuiltin(BuiltinOperator_MULTINOMIAL, Register_MULTINOMIAL()); AddBuiltin(BuiltinOperator_RANDOM_STANDARD_NORMAL, Register_RANDOM_STANDARD_NORMAL()); AddBuiltin(BuiltinOperator_BUCKETIZE, Register_BUCKETIZE()); AddBuiltin(BuiltinOperator_RANDOM_UNIFORM, Register_RANDOM_UNIFORM()); AddBuiltin(BuiltinOperator_GELU, Register_GELU(), 1, 2); AddBuiltin(BuiltinOperator_DYNAMIC_UPDATE_SLICE, Register_DYNAMIC_UPDATE_SLICE(), 1, 2); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_PROD, Register_UNSORTED_SEGMENT_PROD()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MAX, Register_UNSORTED_SEGMENT_MAX()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MIN, Register_UNSORTED_SEGMENT_MIN()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_SUM, Register_UNSORTED_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_ATAN2, Register_ATAN2()); AddBuiltin(BuiltinOperator_SIGN, Register_SIGN(), 1, 2); AddBuiltin(BuiltinOperator_BITCAST, Register_BITCAST()); AddBuiltin(BuiltinOperator_BITWISE_XOR, Register_BITWISE_XOR()); AddBuiltin(BuiltinOperator_RIGHT_SHIFT, Register_RIGHT_SHIFT()); AddBuiltin(BuiltinOperator_STABLEHLO_SCATTER, Register_STABLEHLO_SCATTER()); AddBuiltin(BuiltinOperator_DILATE, Register_DILATE()); AddBuiltin(BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR, Register_STABLEHLO_RNG_BIT_GENERATOR()); AddBuiltin(BuiltinOperator_REDUCE_WINDOW, Register_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_REDUCE_WINDOW, Register_STABLEHLO_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_GATHER, Register_STABLEHLO_GATHER()); AddBuiltin(BuiltinOperator_STABLEHLO_ADD, Register_STABLEHLO_ADD()); AddBuiltin(BuiltinOperator_STABLEHLO_AND, Register_STABLEHLO_AND()); AddBuiltin(BuiltinOperator_STABLEHLO_MULTIPLY, Register_STABLEHLO_MULTIPLY()); AddBuiltin(BuiltinOperator_STABLEHLO_MAXIMUM, Register_STABLEHLO_MAXIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_MINIMUM, Register_STABLEHLO_MINIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_SHIFT_LEFT, Register_STABLEHLO_SHIFT_LEFT()); AddBuiltin(BuiltinOperator_STABLEHLO_PAD, Register_STABLEHLO_PAD()); AddBuiltin(BuiltinOperator_STABLEHLO_COMPOSITE, Register_STABLEHLO_COMPOSITE()); AddCustom("NumericVerify", tflite::ops::custom::Register_NUMERIC_VERIFY()); AddCustom("Mfcc", tflite::ops::custom::Register_MFCC()); AddCustom("AudioSpectrogram", tflite::ops::custom::Register_AUDIO_SPECTROGRAM()); AddCustom("TFLite_Detection_PostProcess", tflite::ops::custom::Register_DETECTION_POSTPROCESS()); may_directly_contain_user_defined_ops_ = false; delegate_creators_.push_back([](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, XNNPackQS8Options::default_value); }); } BuiltinOpResolverWithXNNPACK::BuiltinOpResolverWithXNNPACK( bool enable_xnnpack_unsigned_quantized) { delegate_creators_.clear(); XNNPackQS8Options xnnpack_qs8_options = enable_xnnpack_unsigned_quantized ? XNNPackQS8Options::enabled : XNNPackQS8Options::disabled; delegate_creators_.push_back([xnnpack_qs8_options](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, xnnpack_qs8_options); }); } } } }
#include "tensorflow/lite/core/kernels/register.h" #include <memory> #include <gtest/gtest.h> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite::ops::builtin { namespace { TEST(BuiltinOpResolverTest, SupportsAdd) { BuiltinOpResolver builtin_op_resolver; const TfLiteRegistration *add = builtin_op_resolver.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } TEST(BuiltinOpResolverTest, CopySupportsAdd) { BuiltinOpResolver builtin_op_resolver; MutableOpResolver copy = builtin_op_resolver; const TfLiteRegistration *add = copy.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } #if defined(TFLITE_WITHOUT_XNNPACK) TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8_QU8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, Disable_QU8) { BuiltinOpResolverWithXNNPACK builtin_op_resolver(false); ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, 0); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/kernels/register.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/kernels/register_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9ebf61e1-2594-4952-877e-18440a751526
cpp
abseil/abseil-cpp
invoke
absl/base/internal/invoke.h
absl/base/invoke_test.cc
#ifndef ABSL_BASE_INTERNAL_INVOKE_H_ #define ABSL_BASE_INTERNAL_INVOKE_H_ #include "absl/base/config.h" #if ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L #include <functional> namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { using std::invoke; using std::invoke_result_t; using std::is_invocable_r; } ABSL_NAMESPACE_END } #else #include <algorithm> #include <type_traits> #include <utility> #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { template <typename Derived> struct StrippedAccept { template <typename... Args> struct Accept : Derived::template AcceptImpl<typename std::remove_cv< typename std::remove_reference<Args>::type>::type...> {}; }; struct MemFunAndRef : StrippedAccept<MemFunAndRef> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename MemFunType, typename C, typename Obj, typename... Args> struct AcceptImpl<MemFunType C::*, Obj, Args...> : std::integral_constant<bool, std::is_base_of<C, Obj>::value && absl::is_function<MemFunType>::value> { }; template <typename MemFun, typename Obj, typename... Args> static decltype((std::declval<Obj>().* std::declval<MemFun>())(std::declval<Args>()...)) Invoke(MemFun&& mem_fun, Obj&& obj, Args&&... args) { #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(11, 0) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif return (std::forward<Obj>(obj).* std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...); #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(11, 0) #pragma GCC diagnostic pop #endif } }; struct MemFunAndPtr : StrippedAccept<MemFunAndPtr> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename MemFunType, typename C, typename Ptr, typename... Args> struct AcceptImpl<MemFunType C::*, Ptr, Args...> : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value && absl::is_function<MemFunType>::value> { }; template <typename MemFun, typename Ptr, typename... Args> static decltype(((*std::declval<Ptr>()).* std::declval<MemFun>())(std::declval<Args>()...)) Invoke(MemFun&& mem_fun, Ptr&& ptr, Args&&... args) { return ((*std::forward<Ptr>(ptr)).* std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...); } }; struct DataMemAndRef : StrippedAccept<DataMemAndRef> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename R, typename C, typename Obj> struct AcceptImpl<R C::*, Obj> : std::integral_constant<bool, std::is_base_of<C, Obj>::value && !absl::is_function<R>::value> {}; template <typename DataMem, typename Ref> static decltype(std::declval<Ref>().*std::declval<DataMem>()) Invoke( DataMem&& data_mem, Ref&& ref) { return std::forward<Ref>(ref).*std::forward<DataMem>(data_mem); } }; struct DataMemAndPtr : StrippedAccept<DataMemAndPtr> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename R, typename C, typename Ptr> struct AcceptImpl<R C::*, Ptr> : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value && !absl::is_function<R>::value> {}; template <typename DataMem, typename Ptr> static decltype((*std::declval<Ptr>()).*std::declval<DataMem>()) Invoke( DataMem&& data_mem, Ptr&& ptr) { return (*std::forward<Ptr>(ptr)).*std::forward<DataMem>(data_mem); } }; struct Callable { template <typename F, typename... Args> static decltype(std::declval<F>()(std::declval<Args>()...)) Invoke( F&& f, Args&&... args) { return std::forward<F>(f)(std::forward<Args>(args)...); } }; template <typename... Args> struct Invoker { typedef typename std::conditional< MemFunAndRef::Accept<Args...>::value, MemFunAndRef, typename std::conditional< MemFunAndPtr::Accept<Args...>::value, MemFunAndPtr, typename std::conditional< DataMemAndRef::Accept<Args...>::value, DataMemAndRef, typename std::conditional<DataMemAndPtr::Accept<Args...>::value, DataMemAndPtr, Callable>::type>::type>:: type>::type type; }; template <typename F, typename... Args> using invoke_result_t = decltype(Invoker<F, Args...>::type::Invoke( std::declval<F>(), std::declval<Args>()...)); template <typename F, typename... Args> invoke_result_t<F, Args...> invoke(F&& f, Args&&... args) { return Invoker<F, Args...>::type::Invoke(std::forward<F>(f), std::forward<Args>(args)...); } template <typename AlwaysVoid, typename, typename, typename...> struct IsInvocableRImpl : std::false_type {}; template <typename R, typename F, typename... Args> struct IsInvocableRImpl< absl::void_t<absl::base_internal::invoke_result_t<F, Args...> >, R, F, Args...> : std::integral_constant< bool, std::is_convertible<absl::base_internal::invoke_result_t<F, Args...>, R>::value || std::is_void<R>::value> {}; template <typename R, typename F, typename... Args> using is_invocable_r = IsInvocableRImpl<void, R, F, Args...>; } ABSL_NAMESPACE_END } #endif #endif
#include "absl/base/internal/invoke.h" #include <functional> #include <memory> #include <string> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { int Function(int a, int b) { return a - b; } void VoidFunction(int& a, int& b) { a += b; b = a - b; a -= b; } int ZeroArgFunction() { return -1937; } int Sink(std::unique_ptr<int> p) { return *p; } std::unique_ptr<int> Factory(int n) { return make_unique<int>(n); } void NoOp() {} struct ConstFunctor { int operator()(int a, int b) const { return a - b; } }; struct MutableFunctor { int operator()(int a, int b) { return a - b; } }; struct EphemeralFunctor { int operator()(int a, int b) && { return a - b; } }; struct OverloadedFunctor { template <typename... Args> std::string operator()(const Args&... args) & { return StrCat("&", args...); } template <typename... Args> std::string operator()(const Args&... args) const& { return StrCat("const&", args...); } template <typename... Args> std::string operator()(const Args&... args) && { return StrCat("&&", args...); } }; struct Class { int Method(int a, int b) { return a - b; } int ConstMethod(int a, int b) const { return a - b; } int RefMethod(int a, int b) & { return a - b; } int RefRefMethod(int a, int b) && { return a - b; } int NoExceptMethod(int a, int b) noexcept { return a - b; } int VolatileMethod(int a, int b) volatile { return a - b; } int member; }; struct FlipFlop { int ConstMethod() const { return member; } FlipFlop operator*() const { return {-member}; } int member; }; template <typename F> decltype(base_internal::invoke(std::declval<const F&>())) CallMaybeWithArg( const F& f) { return base_internal::invoke(f); } template <typename F> decltype(base_internal::invoke(std::declval<const F&>(), 42)) CallMaybeWithArg( const F& f) { return base_internal::invoke(f, 42); } TEST(InvokeTest, Function) { EXPECT_EQ(1, base_internal::invoke(Function, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Function, 3, 2)); } TEST(InvokeTest, NonCopyableArgument) { EXPECT_EQ(42, base_internal::invoke(Sink, make_unique<int>(42))); } TEST(InvokeTest, NonCopyableResult) { EXPECT_THAT(base_internal::invoke(Factory, 42), ::testing::Pointee(42)); } TEST(InvokeTest, VoidResult) { base_internal::invoke(NoOp); } TEST(InvokeTest, ConstFunctor) { EXPECT_EQ(1, base_internal::invoke(ConstFunctor(), 3, 2)); } TEST(InvokeTest, MutableFunctor) { MutableFunctor f; EXPECT_EQ(1, base_internal::invoke(f, 3, 2)); EXPECT_EQ(1, base_internal::invoke(MutableFunctor(), 3, 2)); } TEST(InvokeTest, EphemeralFunctor) { EphemeralFunctor f; EXPECT_EQ(1, base_internal::invoke(std::move(f), 3, 2)); EXPECT_EQ(1, base_internal::invoke(EphemeralFunctor(), 3, 2)); } TEST(InvokeTest, OverloadedFunctor) { OverloadedFunctor f; const OverloadedFunctor& cf = f; EXPECT_EQ("&", base_internal::invoke(f)); EXPECT_EQ("& 42", base_internal::invoke(f, " 42")); EXPECT_EQ("const&", base_internal::invoke(cf)); EXPECT_EQ("const& 42", base_internal::invoke(cf, " 42")); EXPECT_EQ("&&", base_internal::invoke(std::move(f))); OverloadedFunctor f2; EXPECT_EQ("&& 42", base_internal::invoke(std::move(f2), " 42")); } TEST(InvokeTest, ReferenceWrapper) { ConstFunctor cf; MutableFunctor mf; EXPECT_EQ(1, base_internal::invoke(std::cref(cf), 3, 2)); EXPECT_EQ(1, base_internal::invoke(std::ref(cf), 3, 2)); EXPECT_EQ(1, base_internal::invoke(std::ref(mf), 3, 2)); } TEST(InvokeTest, MemberFunction) { std::unique_ptr<Class> p(new Class); std::unique_ptr<const Class> cp(new Class); std::unique_ptr<volatile Class> vp(new Class); EXPECT_EQ(1, base_internal::invoke(&Class::Method, p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::Method, p.get(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::Method, *p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::RefMethod, p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::RefMethod, p.get(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::RefMethod, *p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::RefRefMethod, std::move(*p), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::NoExceptMethod, p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::NoExceptMethod, p.get(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::NoExceptMethod, *p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, p.get(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, *p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, cp, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, cp.get(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, *cp, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::VolatileMethod, p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::VolatileMethod, p.get(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::VolatileMethod, *p, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::VolatileMethod, vp, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::VolatileMethod, vp.get(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::VolatileMethod, *vp, 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::Method, make_unique<Class>(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, make_unique<Class>(), 3, 2)); EXPECT_EQ(1, base_internal::invoke(&Class::ConstMethod, make_unique<const Class>(), 3, 2)); } TEST(InvokeTest, DataMember) { std::unique_ptr<Class> p(new Class{42}); std::unique_ptr<const Class> cp(new Class{42}); EXPECT_EQ(42, base_internal::invoke(&Class::member, p)); EXPECT_EQ(42, base_internal::invoke(&Class::member, *p)); EXPECT_EQ(42, base_internal::invoke(&Class::member, p.get())); base_internal::invoke(&Class::member, p) = 42; base_internal::invoke(&Class::member, p.get()) = 42; EXPECT_EQ(42, base_internal::invoke(&Class::member, cp)); EXPECT_EQ(42, base_internal::invoke(&Class::member, *cp)); EXPECT_EQ(42, base_internal::invoke(&Class::member, cp.get())); } TEST(InvokeTest, FlipFlop) { FlipFlop obj = {42}; EXPECT_EQ(42, base_internal::invoke(&FlipFlop::ConstMethod, obj)); EXPECT_EQ(42, base_internal::invoke(&FlipFlop::member, obj)); } TEST(InvokeTest, SfinaeFriendly) { CallMaybeWithArg(NoOp); EXPECT_THAT(CallMaybeWithArg(Factory), ::testing::Pointee(42)); } TEST(IsInvocableRTest, CallableExactMatch) { static_assert( base_internal::is_invocable_r<int, decltype(Function), int, int>::value, "Should be true for exact match of types on a free function"); } TEST(IsInvocableRTest, CallableArgumentConversionMatch) { static_assert( base_internal::is_invocable_r<int, decltype(Function), char, int>::value, "Should be true for convertible argument type"); } TEST(IsInvocableRTest, CallableReturnConversionMatch) { static_assert(base_internal::is_invocable_r<double, decltype(Function), int, int>::value, "Should be true for convertible return type"); } TEST(IsInvocableRTest, CallableReturnVoid) { static_assert(base_internal::is_invocable_r<void, decltype(VoidFunction), int&, int&>::value, "Should be true for void expected and actual return types"); static_assert( base_internal::is_invocable_r<void, decltype(Function), int, int>::value, "Should be true for void expected and non-void actual return types"); } TEST(IsInvocableRTest, CallableRefQualifierMismatch) { static_assert(!base_internal::is_invocable_r<void, decltype(VoidFunction), int&, const int&>::value, "Should be false for reference constness mismatch"); static_assert(!base_internal::is_invocable_r<void, decltype(VoidFunction), int&&, int&>::value, "Should be false for reference value category mismatch"); } TEST(IsInvocableRTest, CallableArgumentTypeMismatch) { static_assert(!base_internal::is_invocable_r<int, decltype(Function), std::string, int>::value, "Should be false for argument type mismatch"); } TEST(IsInvocableRTest, CallableReturnTypeMismatch) { static_assert(!base_internal::is_invocable_r<std::string, decltype(Function), int, int>::value, "Should be false for return type mismatch"); } TEST(IsInvocableRTest, CallableTooFewArgs) { static_assert( !base_internal::is_invocable_r<int, decltype(Function), int>::value, "Should be false for too few arguments"); } TEST(IsInvocableRTest, CallableTooManyArgs) { static_assert(!base_internal::is_invocable_r<int, decltype(Function), int, int, int>::value, "Should be false for too many arguments"); } TEST(IsInvocableRTest, MemberFunctionAndReference) { static_assert(base_internal::is_invocable_r<int, decltype(&Class::Method), Class&, int, int>::value, "Should be true for exact match of types on a member function " "and class reference"); } TEST(IsInvocableRTest, MemberFunctionAndPointer) { static_assert(base_internal::is_invocable_r<int, decltype(&Class::Method), Class*, int, int>::value, "Should be true for exact match of types on a member function " "and class pointer"); } TEST(IsInvocableRTest, DataMemberAndReference) { static_assert(base_internal::is_invocable_r<int, decltype(&Class::member), Class&>::value, "Should be true for exact match of types on a data member and " "class reference"); } TEST(IsInvocableRTest, DataMemberAndPointer) { static_assert(base_internal::is_invocable_r<int, decltype(&Class::member), Class*>::value, "Should be true for exact match of types on a data member and " "class pointer"); } TEST(IsInvocableRTest, CallableZeroArgs) { static_assert( base_internal::is_invocable_r<int, decltype(ZeroArgFunction)>::value, "Should be true for exact match for a zero-arg free function"); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/invoke.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/invoke_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
2292926a-6678-41a1-8dd4-0c5f8f61af9c
cpp
tensorflow/tensorflow
collective_permute_decomposer
third_party/xla/xla/service/collective_permute_decomposer.cc
third_party/xla/xla/service/collective_permute_decomposer_test.cc
#include "xla/service/collective_permute_decomposer.h" #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/graphcycles/graphcycles.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { using SourceTargetPair = std::pair<int64_t, int64_t>; using SourceTargetPairs = std::vector<SourceTargetPair>; bool HasCycles(const SourceTargetPairs& pairs) { GraphCycles graph; absl::flat_hash_map<int64_t, int32_t> replica_to_node_id; auto get_node_id = [&](int64_t replica) { auto it_and_inserted = replica_to_node_id.emplace(replica, -1); auto it = it_and_inserted.first; auto inserted = it_and_inserted.second; if (inserted) { it->second = graph.NewNode(); } return it->second; }; for (auto pair : pairs) { auto source = get_node_id(pair.first); auto target = get_node_id(pair.second); VLOG(3) << "See source " << source << " -> target " << target; if (!graph.InsertEdge(source, target)) { VLOG(3) << "Detected cycles"; return true; } } return false; } bool ShouldDecompose(const HloCollectivePermuteInstruction& collective_permute, int64_t threshold_in_bytes) { if (!collective_permute.channel_id().has_value()) { return false; } const Shape& result_shape = collective_permute.shape(); if (!result_shape.IsArray()) { return false; } if (ShapeUtil::ByteSizeOf(result_shape) < threshold_in_bytes) { return false; } return !HasCycles(collective_permute.source_target_pairs()); } bool MayPipeline(const HloCollectivePermuteInstruction& collective_permute) { const HloInstruction* data = collective_permute.operand(0); return (data->opcode() == HloOpcode::kGetTupleElement && data->operand(0)->opcode() == HloOpcode::kParameter); } absl::Status DecomposeCollectivePermute( HloCollectivePermuteInstruction* collective_permute, HloComputation* computation, const std::string& pipeline_decision) { int64_t channel_id = collective_permute->channel_id().value(); HloInstruction* data = collective_permute->mutable_operand(0); const Shape& data_shape = data->shape(); const OpMetadata& metadata = collective_permute->metadata(); const xla::FrontendAttributes& old_attributes = collective_permute->frontend_attributes(); xla::FrontendAttributes attributes; std::string source_target_pairs_string = "{" + absl::StrJoin(collective_permute->source_target_pairs(), ",", absl::PairFormatter( [](std::string* out, int64_t value) { absl::StrAppend(out, "{", value); }, ",", [](std::string* out, int64_t value) { absl::StrAppend(out, value, "}"); })) + "}"; attributes.mutable_map()->insert(old_attributes.map().begin(), old_attributes.map().end()); (*attributes.mutable_map())[kSendRecvSourceTargetPairsAttr] = source_target_pairs_string; HloInstruction* after_all = computation->AddInstruction(HloInstruction::CreateToken()); HloInstruction* recv = computation->AddInstruction( HloInstruction::CreateRecv(data_shape, after_all, channel_id)); recv->add_frontend_attributes(attributes); recv->set_metadata(metadata); HloInstruction* send = computation->AddInstruction( HloInstruction::CreateSend(data, after_all, channel_id)); send->add_frontend_attributes(attributes); send->set_metadata(metadata); HloInstruction* recv_done = computation->AddInstruction(HloInstruction::CreateRecvDone(recv)); HloInstruction* send_done = computation->AddInstruction(HloInstruction::CreateSendDone(send)); TF_RETURN_IF_ERROR(send->AddControlDependencyTo(recv_done)); HloInstruction* recv_data = computation->AddInstruction( HloInstruction::CreateGetTupleElement(recv_done, 0)); TF_RETURN_IF_ERROR(collective_permute->ReplaceAllUsesWith(recv_data)); TF_RETURN_IF_ERROR( computation->RemoveInstructionAndUnusedOperands(collective_permute)); if (!pipeline_decision.empty()) { xla::FrontendAttributes attributes; (*attributes.mutable_map())[kSendRecvPipelineAttr] = pipeline_decision; send->add_frontend_attributes(attributes); send_done->add_frontend_attributes(attributes); recv->add_frontend_attributes(attributes); recv_done->add_frontend_attributes(attributes); } return absl::OkStatus(); } bool IsForwardCycle(const SourceTargetPair& backedge, const SourceTargetPairs& others) { int64_t num_pairs = others.size() + 1; if (backedge.first != num_pairs - 1 || backedge.second != 0) { return false; } for (int64_t i = 0; i < num_pairs - 1; ++i) { const SourceTargetPair& pair = others[i]; if (pair.first != i || pair.second != i + 1) { return false; } } return true; } bool IsBackwardCycle(const SourceTargetPair& backedge, const SourceTargetPairs& others) { int64_t num_pairs = others.size() + 1; if (backedge.first != 0 || backedge.second != num_pairs - 1) { return false; } for (int64_t i = 0; i < num_pairs - 1; ++i) { const SourceTargetPair& pair = others[i]; if (pair.first != i + 1 || pair.second != i) { return false; } } return true; } std::optional<std::pair<HloCollectivePermuteInstruction*, HloCollectivePermuteInstruction*>> CheckCyclePatterns(HloCollectivePermuteInstruction* cp0, HloCollectivePermuteInstruction* cp1) { const SourceTargetPairs& cp0_pairs = cp0->source_target_pairs(); const SourceTargetPairs& cp1_pairs = cp1->source_target_pairs(); if (cp0_pairs.size() == 1) { if (IsForwardCycle(cp0_pairs.front(), cp1_pairs) || IsBackwardCycle(cp0_pairs.front(), cp1_pairs)) { return std::make_pair(cp0, cp1); } } if (cp1_pairs.size() == 1) { if (IsForwardCycle(cp1_pairs.front(), cp0_pairs) || IsBackwardCycle(cp1_pairs.front(), cp0_pairs)) { return std::make_pair(cp1, cp0); } } return std::nullopt; } } absl::StatusOr<bool> CollectivePermuteDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloComputation*> all_computations = module->MakeComputationPostOrder(execution_threads); absl::flat_hash_set<HloComputation*> while_bodies; for (auto iter = all_computations.rbegin(); iter != all_computations.rend(); ++iter) { HloComputation* computation = *iter; bool may_pipeline = while_bodies.contains(computation); std::vector<HloCollectivePermuteInstruction*> cps_to_decompose; HloCollectivePermuteInstruction* cp0_to_pipeline = nullptr; HloCollectivePermuteInstruction* cp1_to_pipeline = nullptr; for (HloInstruction* hlo : computation->MakeInstructionPostOrder()) { if (hlo->opcode() == HloOpcode::kWhile) { while_bodies.insert(hlo->while_body()); continue; } if (hlo->opcode() != HloOpcode::kCollectivePermute) { continue; } HloCollectivePermuteInstruction* cp = Cast<HloCollectivePermuteInstruction>(hlo); if (!ShouldDecompose(*cp, threshold_in_bytes_)) { continue; } cps_to_decompose.push_back(cp); if (!while_bodies.contains(computation) || !may_pipeline) { continue; } if (cp0_to_pipeline != nullptr && cp1_to_pipeline != nullptr) { continue; } if (!MayPipeline(*cp)) { continue; } if (cp0_to_pipeline == nullptr) { cp0_to_pipeline = cp; continue; } auto optional_pair = CheckCyclePatterns(cp0_to_pipeline, cp); if (optional_pair.has_value()) { cp0_to_pipeline = optional_pair.value().first; cp1_to_pipeline = optional_pair.value().second; } } for (HloCollectivePermuteInstruction* cp : cps_to_decompose) { std::string pipeline_decision; if (cp0_to_pipeline == cp) { pipeline_decision = "0"; } else if (cp1_to_pipeline == cp) { pipeline_decision = "1"; } TF_RETURN_IF_ERROR( DecomposeCollectivePermute(cp, computation, pipeline_decision)); } if (!cps_to_decompose.empty()) { changed = true; } } return changed; } }
#include "xla/service/collective_permute_decomposer.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { using ::testing::HasSubstr; namespace op = xla::testing::opcode_matchers; using CollectivePermuteDecomposerTest = HloTestBase; TEST_F(CollectivePermuteDecomposerTest, WithCycleNotTransformed) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, WithContextDataNotTransformed) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = (u32[], u32[], u32[], u32[]) collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, TransformedExplicitChannelId) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, metadata={op_name="op1/op2/add" source_file="foo/bar/mysource.py" source_line=35} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto check_metadata = [](const HloInstruction* inst) { EXPECT_EQ(inst->metadata().op_name(), "op1/op2/add"); EXPECT_EQ(inst->metadata().source_file(), "foo/bar/mysource.py"); EXPECT_EQ(inst->metadata().source_line(), 35); }; auto check_not_pipelined = [](const HloInstruction* instr) { const FrontendAttributes& attributes = instr->frontend_attributes(); EXPECT_EQ(attributes.map().end(), attributes.map().find(kSendRecvPipelineAttr)); }; HloInstruction* after_all = FindInstruction(module.get(), "after-all"); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->operand(0), after_all); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT( recv->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); check_metadata(recv); check_not_pipelined(recv); HloInstruction* recv_done = FindInstruction(module.get(), "recv-done"); EXPECT_EQ(recv_done->operand(0), recv); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_EQ(send->operand(1), after_all); EXPECT_EQ(send->channel_id().value(), 1); EXPECT_THAT( send->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); check_metadata(send); check_not_pipelined(send); HloInstruction* send_done = FindInstruction(module.get(), "send-done"); EXPECT_EQ(send_done->operand(0), send); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::GetTupleElement(recv_done, 0)); } TEST_F(CollectivePermuteDecomposerTest, NotTransformedDefaultChannelId) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, ThresholdNotTransformed) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT cp = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, metadata={op_name="op1/op2/add" source_file="foo/bar/mysource.py" source_line=35} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(8); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteDecomposerTest, Pipeline1) { const char* const kModuleStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(2) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 recv-data = u32[2] collective-permute(send-data), channel_id=1, source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, frontend_attributes={_xla_other_attribute="xyz"} c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT( recv->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_other_attribute=\"xyz\"")); HloInstruction* recv_done = FindInstruction(module.get(), "recv-done"); EXPECT_THAT(recv_done->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_EQ(send->channel_id().value(), 1); EXPECT_THAT( send->ToString(), HasSubstr( "_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3},{3,4}}")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_other_attribute=\"xyz\"")); HloInstruction* send_done = FindInstruction(module.get(), "send-done"); EXPECT_THAT(send_done->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); EXPECT_FALSE(recv_done->control_predecessors().empty()); EXPECT_EQ(recv_done->control_predecessors()[0], send); } TEST_F(CollectivePermuteDecomposerTest, ForwardPipeline2) { const char* const kModuleStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(2) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 recv-data.0 = u32[2] collective-permute(send-data), channel_id=1, source_target_pairs={{3,0}} recv-data.1 = u32[2] collective-permute(send-data), channel_id=2, source_target_pairs={{0,1}, {1,2}, {2,3}} replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[2] broadcast(compare0), dimensions={} recv-data = u32[2] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{3,0}}")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{3,0}}")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* recv1 = FindInstruction(module.get(), "recv.1"); EXPECT_EQ(recv1->channel_id().value(), 2); EXPECT_THAT( recv1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3}}")); EXPECT_THAT(recv1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* recv_done1 = FindInstruction(module.get(), "recv-done.1"); EXPECT_THAT(recv_done1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* send1 = FindInstruction(module.get(), "send.1"); EXPECT_THAT( send1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,1},{1,2},{2,3}}")); EXPECT_THAT(send1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* send_done1 = FindInstruction(module.get(), "send-done.1"); EXPECT_THAT(send_done1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); } TEST_F(CollectivePermuteDecomposerTest, ForwardPipelineWithMatmul) { const char* const kModuleStr = R"( HloModule test while_body { inputs = (u32[], f32[2,2], f32[2,2]) parameter(0) iter = u32[] get-tuple-element(inputs), index=0 iter_increment = u32[] constant(1) next_iter = u32[] add(iter, iter_increment) partition-id = u32[] partition-id() zero = u32[] constant(0) compare = pred[] compare(partition-id, zero), direction=EQ broadcast = pred[2,2] broadcast(compare), dimensions={} weights = f32[2,2] get-tuple-element(inputs), index=2 data = f32[2,2] get-tuple-element(inputs), index=1 cp_back = f32[2,2] collective-permute(data), channel_id=1, source_target_pairs={{3,0}}, frontend_attributes={_xla_send_recv_validation="{{3,10}}"} cp_forward = f32[2,2] collective-permute(data), channel_id=2, source_target_pairs={{0,1},{1,2},{2,3}}, frontend_attributes={_xla_send_recv_validation="{{0,7},{1,8},{2,9}}"} select = f32[2,2] select(broadcast, cp_back, cp_forward) matmul = f32[2,2] dot(weights, select), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT result = (u32[], f32[2,2], f32[2,2]) tuple(next_iter, matmul, weights) } while_cond { inputs = (u32[], f32[2,2], f32[2,2]) parameter(0) iter = u32[] get-tuple-element(inputs), index=0 max_iter = u32[] constant(3) ROOT compare = pred[] compare(iter, max_iter), direction=LT } ENTRY test_computation { start_iter = u32[] constant(0) input_data = f32[2,2] parameter(0) input_weights = f32[2,2] parameter(1) input = (u32[], f32[2,2], f32[2,2]) tuple(start_iter, input_data, input_weights) while_result = (u32[], f32[2,2], f32[2,2]) while(input), condition=while_cond, body=while_body ROOT data_out = f32[2,2] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloModule* transformed_module = module.get(); HloComputation* while_body = FindComputation(transformed_module, "while_body"); HloInstruction* recv_bwd = hlo_query::FindInstruction(while_body, "recv"); EXPECT_EQ(recv_bwd->channel_id().value(), 1); auto recv_bwd_frontend_attributes = recv_bwd->frontend_attributes().map(); EXPECT_EQ(recv_bwd_frontend_attributes.size(), 3); EXPECT_EQ(recv_bwd_frontend_attributes.at(kSendRecvValidationAttr), "{{3,10}}"); EXPECT_EQ(recv_bwd_frontend_attributes.at(kSendRecvPipelineAttr), "0"); EXPECT_EQ(recv_bwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{3,0}}"); HloInstruction* send_bwd = hlo_query::FindInstruction(while_body, "send"); auto send_bwd_frontend_attributes = send_bwd->frontend_attributes().map(); EXPECT_THAT(send_bwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{3,0}}"); HloInstruction* recv_fwd = hlo_query::FindInstruction(while_body, "recv.1"); EXPECT_EQ(recv_fwd->channel_id().value(), 2); auto recv_fwd_frontend_attributes = recv_fwd->frontend_attributes().map(); EXPECT_EQ(recv_fwd_frontend_attributes.size(), 3); EXPECT_EQ(recv_fwd_frontend_attributes.at(kSendRecvPipelineAttr), "1"); EXPECT_EQ(recv_fwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{0,1},{1,2},{2,3}}"); HloInstruction* send_fwd = hlo_query::FindInstruction(while_body, "send.1"); auto send_fwd_frontend_attributes = send_fwd->frontend_attributes().map(); EXPECT_EQ(send_fwd_frontend_attributes.size(), 3); EXPECT_EQ(send_fwd_frontend_attributes.at(kSendRecvPipelineAttr), "1"); EXPECT_EQ(send_fwd_frontend_attributes.at(kSendRecvSourceTargetPairsAttr), "{{0,1},{1,2},{2,3}}"); EXPECT_NE(while_body, nullptr); HloInstruction* recv_done_fwd = hlo_query::FindInstruction(while_body, "recv-done"); HloInstruction* recv_done_bwd = hlo_query::FindInstruction(while_body, "recv-done.1"); EXPECT_EQ(recv_done_fwd->control_predecessors()[0], send_bwd); EXPECT_EQ(recv_done_bwd->control_predecessors()[0], send_fwd); } TEST_F(CollectivePermuteDecomposerTest, BackwardPipeline2) { const char* const kModuleStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(2) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 recv-data.0 = u32[2] collective-permute(send-data), channel_id=1, source_target_pairs={{1,0},{2,1},{3,2}} recv-data.1 = u32[2] collective-permute(send-data), channel_id=2, source_target_pairs={{0,3}} replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=NE compare = pred[2] broadcast(compare0), dimensions={} recv-data = u32[2] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* recv = FindInstruction(module.get(), "recv"); EXPECT_EQ(recv->channel_id().value(), 1); EXPECT_THAT( recv->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{1,0},{2,1},{3,2}}")); EXPECT_THAT(recv->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* send = FindInstruction(module.get(), "send"); EXPECT_THAT( send->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{1,0},{2,1},{3,2}}")); EXPECT_THAT(send->ToString(), HasSubstr("_xla_send_recv_pipeline=\"1\"")); HloInstruction* recv1 = FindInstruction(module.get(), "recv.1"); EXPECT_EQ(recv1->channel_id().value(), 2); EXPECT_THAT(recv1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,3}}")); EXPECT_THAT(recv1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); HloInstruction* send1 = FindInstruction(module.get(), "send.1"); EXPECT_THAT(send1->ToString(), HasSubstr("_xla_send_recv_source_target_pairs={{0,3}}")); EXPECT_THAT(send1->ToString(), HasSubstr("_xla_send_recv_pipeline=\"0\"")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_permute_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/collective_permute_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bf439647-1c08-4d9d-aff6-6426f3038b19
cpp
google/quiche
quic_version_manager
quiche/quic/core/quic_version_manager.cc
quiche/quic/core/quic_version_manager_test.cc
#include "quiche/quic/core/quic_version_manager.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/base/macros.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" namespace quic { QuicVersionManager::QuicVersionManager( ParsedQuicVersionVector supported_versions) : allowed_supported_versions_(std::move(supported_versions)) {} QuicVersionManager::~QuicVersionManager() {} const ParsedQuicVersionVector& QuicVersionManager::GetSupportedVersions() { MaybeRefilterSupportedVersions(); return filtered_supported_versions_; } const ParsedQuicVersionVector& QuicVersionManager::GetSupportedVersionsWithOnlyHttp3() { MaybeRefilterSupportedVersions(); return filtered_supported_versions_with_http3_; } const std::vector<std::string>& QuicVersionManager::GetSupportedAlpns() { MaybeRefilterSupportedVersions(); return filtered_supported_alpns_; } void QuicVersionManager::MaybeRefilterSupportedVersions() { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); if (enable_version_2_draft_08_ != GetQuicReloadableFlag(quic_enable_version_rfcv2) || disable_version_rfcv1_ != GetQuicReloadableFlag(quic_disable_version_rfcv1) || disable_version_draft_29_ != GetQuicReloadableFlag(quic_disable_version_draft_29) || disable_version_q046_ != GetQuicReloadableFlag(quic_disable_version_q046)) { enable_version_2_draft_08_ = GetQuicReloadableFlag(quic_enable_version_rfcv2); disable_version_rfcv1_ = GetQuicReloadableFlag(quic_disable_version_rfcv1); disable_version_draft_29_ = GetQuicReloadableFlag(quic_disable_version_draft_29); disable_version_q046_ = GetQuicReloadableFlag(quic_disable_version_q046); RefilterSupportedVersions(); } } void QuicVersionManager::RefilterSupportedVersions() { filtered_supported_versions_ = FilterSupportedVersions(allowed_supported_versions_); filtered_supported_versions_with_http3_.clear(); filtered_transport_versions_.clear(); filtered_supported_alpns_.clear(); for (const ParsedQuicVersion& version : filtered_supported_versions_) { auto transport_version = version.transport_version; if (std::find(filtered_transport_versions_.begin(), filtered_transport_versions_.end(), transport_version) == filtered_transport_versions_.end()) { filtered_transport_versions_.push_back(transport_version); } if (version.UsesHttp3()) { filtered_supported_versions_with_http3_.push_back(version); } if (std::find(filtered_supported_alpns_.begin(), filtered_supported_alpns_.end(), AlpnForVersion(version)) == filtered_supported_alpns_.end()) { filtered_supported_alpns_.emplace_back(AlpnForVersion(version)); } } } void QuicVersionManager::AddCustomAlpn(const std::string& alpn) { filtered_supported_alpns_.push_back(alpn); } }
#include "quiche/quic/core/quic_version_manager.h" #include "absl/base/macros.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" using ::testing::ElementsAre; namespace quic { namespace test { namespace { class QuicVersionManagerTest : public QuicTest {}; TEST_F(QuicVersionManagerTest, QuicVersionManager) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); for (const ParsedQuicVersion& version : AllSupportedVersions()) { QuicEnableVersion(version); } QuicDisableVersion(ParsedQuicVersion::RFCv2()); QuicDisableVersion(ParsedQuicVersion::RFCv1()); QuicDisableVersion(ParsedQuicVersion::Draft29()); QuicVersionManager manager(AllSupportedVersions()); ParsedQuicVersionVector expected_parsed_versions; expected_parsed_versions.push_back(ParsedQuicVersion::Q046()); EXPECT_EQ(expected_parsed_versions, manager.GetSupportedVersions()); EXPECT_EQ(FilterSupportedVersions(AllSupportedVersions()), manager.GetSupportedVersions()); EXPECT_TRUE(manager.GetSupportedVersionsWithOnlyHttp3().empty()); EXPECT_THAT(manager.GetSupportedAlpns(), ElementsAre("h3-Q046")); QuicEnableVersion(ParsedQuicVersion::Draft29()); expected_parsed_versions.insert(expected_parsed_versions.begin(), ParsedQuicVersion::Draft29()); EXPECT_EQ(expected_parsed_versions, manager.GetSupportedVersions()); EXPECT_EQ(FilterSupportedVersions(AllSupportedVersions()), manager.GetSupportedVersions()); EXPECT_EQ(1u, manager.GetSupportedVersionsWithOnlyHttp3().size()); EXPECT_EQ(CurrentSupportedHttp3Versions(), manager.GetSupportedVersionsWithOnlyHttp3()); EXPECT_THAT(manager.GetSupportedAlpns(), ElementsAre("h3-29", "h3-Q046")); QuicEnableVersion(ParsedQuicVersion::RFCv1()); expected_parsed_versions.insert(expected_parsed_versions.begin(), ParsedQuicVersion::RFCv1()); EXPECT_EQ(expected_parsed_versions, manager.GetSupportedVersions()); EXPECT_EQ(FilterSupportedVersions(AllSupportedVersions()), manager.GetSupportedVersions()); EXPECT_EQ(2u, manager.GetSupportedVersionsWithOnlyHttp3().size()); EXPECT_EQ(CurrentSupportedHttp3Versions(), manager.GetSupportedVersionsWithOnlyHttp3()); EXPECT_THAT(manager.GetSupportedAlpns(), ElementsAre("h3", "h3-29", "h3-Q046")); QuicEnableVersion(ParsedQuicVersion::RFCv2()); expected_parsed_versions.insert(expected_parsed_versions.begin(), ParsedQuicVersion::RFCv2()); EXPECT_EQ(expected_parsed_versions, manager.GetSupportedVersions()); EXPECT_EQ(FilterSupportedVersions(AllSupportedVersions()), manager.GetSupportedVersions()); EXPECT_EQ(3u, manager.GetSupportedVersionsWithOnlyHttp3().size()); EXPECT_EQ(CurrentSupportedHttp3Versions(), manager.GetSupportedVersionsWithOnlyHttp3()); EXPECT_THAT(manager.GetSupportedAlpns(), ElementsAre("h3", "h3-29", "h3-Q046")); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_version_manager.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_version_manager_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
752addfa-8501-4302-a483-b6663f69ea03
cpp
tensorflow/tensorflow
recognize_commands
tensorflow/examples/speech_commands/recognize_commands.cc
tensorflow/examples/speech_commands/recognize_commands_test.cc
#include "tensorflow/examples/speech_commands/recognize_commands.h" #include "absl/status/status.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { RecognizeCommands::RecognizeCommands(const std::vector<string>& labels, int32_t average_window_duration_ms, float detection_threshold, int32_t suppression_ms, int32_t minimum_count) : labels_(labels), average_window_duration_ms_(average_window_duration_ms), detection_threshold_(detection_threshold), suppression_ms_(suppression_ms), minimum_count_(minimum_count) { labels_count_ = labels.size(); previous_top_label_ = "_silence_"; previous_top_label_time_ = std::numeric_limits<int64_t>::min(); } Status RecognizeCommands::ProcessLatestResults(const Tensor& latest_results, const int64_t current_time_ms, string* found_command, float* score, bool* is_new_command) { if (latest_results.NumElements() != labels_count_) { return errors::InvalidArgument( "The results for recognition should contain ", labels_count_, " elements, but there are ", latest_results.NumElements()); } if ((!previous_results_.empty()) && (current_time_ms < previous_results_.front().first)) { return errors::InvalidArgument( "Results must be fed in increasing time order, but received a " "timestamp of ", current_time_ms, " that was earlier than the previous one of ", previous_results_.front().first); } previous_results_.push_back({current_time_ms, latest_results}); const int64_t time_limit = current_time_ms - average_window_duration_ms_; while (previous_results_.front().first < time_limit) { previous_results_.pop_front(); } const int64_t how_many_results = previous_results_.size(); const int64_t earliest_time = previous_results_.front().first; const int64_t samples_duration = current_time_ms - earliest_time; if ((how_many_results < minimum_count_) || (samples_duration < (average_window_duration_ms_ / 4))) { *found_command = previous_top_label_; *score = 0.0f; *is_new_command = false; return absl::OkStatus(); } std::vector<float> average_scores(labels_count_); for (const auto& previous_result : previous_results_) { const Tensor& scores_tensor = previous_result.second; auto scores_flat = scores_tensor.flat<float>(); for (int i = 0; i < scores_flat.size(); ++i) { average_scores[i] += scores_flat(i) / how_many_results; } } std::vector<std::pair<int, float>> sorted_average_scores; sorted_average_scores.reserve(labels_count_); for (int i = 0; i < labels_count_; ++i) { sorted_average_scores.push_back( std::pair<int, float>({i, average_scores[i]})); } std::sort(sorted_average_scores.begin(), sorted_average_scores.end(), [](const std::pair<int, float>& left, const std::pair<int, float>& right) { return left.second > right.second; }); const int current_top_index = sorted_average_scores[0].first; const string current_top_label = labels_[current_top_index]; const float current_top_score = sorted_average_scores[0].second; int64_t time_since_last_top; if ((previous_top_label_ == "_silence_") || (previous_top_label_time_ == std::numeric_limits<int64_t>::min())) { time_since_last_top = std::numeric_limits<int64_t>::max(); } else { time_since_last_top = current_time_ms - previous_top_label_time_; } if ((current_top_score > detection_threshold_) && (current_top_label != previous_top_label_) && (time_since_last_top > suppression_ms_)) { previous_top_label_ = current_top_label; previous_top_label_time_ = current_time_ms; *is_new_command = true; } else { *is_new_command = false; } *found_command = current_top_label; *score = current_top_score; return absl::OkStatus(); } }
#include "tensorflow/examples/speech_commands/recognize_commands.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { TEST(RecognizeCommandsTest, Basic) { RecognizeCommands recognize_commands({"_silence_", "a", "b"}); Tensor results(DT_FLOAT, {3}); test::FillValues<float>(&results, {1.0f, 0.0f, 0.0f}); string found_command; float score; bool is_new_command; TF_EXPECT_OK(recognize_commands.ProcessLatestResults( results, 0, &found_command, &score, &is_new_command)); } TEST(RecognizeCommandsTest, FindCommands) { RecognizeCommands recognize_commands({"_silence_", "a", "b"}, 1000, 0.2f); Tensor results(DT_FLOAT, {3}); test::FillValues<float>(&results, {0.0f, 1.0f, 0.0f}); bool has_found_new_command = false; string new_command; for (int i = 0; i < 10; ++i) { string found_command; float score; bool is_new_command; int64_t current_time_ms = 0 + (i * 100); TF_EXPECT_OK(recognize_commands.ProcessLatestResults( results, current_time_ms, &found_command, &score, &is_new_command)); if (is_new_command) { EXPECT_FALSE(has_found_new_command); has_found_new_command = true; new_command = found_command; } } EXPECT_TRUE(has_found_new_command); EXPECT_EQ("a", new_command); test::FillValues<float>(&results, {0.0f, 0.0f, 1.0f}); has_found_new_command = false; new_command = ""; for (int i = 0; i < 10; ++i) { string found_command; float score; bool is_new_command; int64_t current_time_ms = 1000 + (i * 100); TF_EXPECT_OK(recognize_commands.ProcessLatestResults( results, current_time_ms, &found_command, &score, &is_new_command)); if (is_new_command) { EXPECT_FALSE(has_found_new_command); has_found_new_command = true; new_command = found_command; } } EXPECT_TRUE(has_found_new_command); EXPECT_EQ("b", new_command); } TEST(RecognizeCommandsTest, BadInputLength) { RecognizeCommands recognize_commands({"_silence_", "a", "b"}, 1000, 0.2f); Tensor bad_results(DT_FLOAT, {2}); test::FillValues<float>(&bad_results, {1.0f, 0.0f}); string found_command; float score; bool is_new_command; EXPECT_FALSE(recognize_commands .ProcessLatestResults(bad_results, 0, &found_command, &score, &is_new_command) .ok()); } TEST(RecognizeCommandsTest, BadInputTimes) { RecognizeCommands recognize_commands({"_silence_", "a", "b"}, 1000, 0.2f); Tensor results(DT_FLOAT, {3}); test::FillValues<float>(&results, {1.0f, 0.0f, 0.0f}); string found_command; float score; bool is_new_command; TF_EXPECT_OK(recognize_commands.ProcessLatestResults( results, 100, &found_command, &score, &is_new_command)); EXPECT_FALSE(recognize_commands .ProcessLatestResults(results, 0, &found_command, &score, &is_new_command) .ok()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/examples/speech_commands/recognize_commands.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/examples/speech_commands/recognize_commands_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3ec29614-5909-4ff3-94b0-a536b979a79e
cpp
google/libphonenumber
unicodetext
cpp/src/phonenumbers/utf/unicodetext.cc
cpp/test/phonenumbers/utf/unicodetext_test.cc
#include <algorithm> #include <sstream> #include <cassert> #include <cstdio> #include "phonenumbers/default_logger.h" #include "phonenumbers/utf/unicodetext.h" #include "phonenumbers/utf/stringpiece.h" #include "phonenumbers/utf/utf.h" #include "phonenumbers/utf/unilib.h" namespace i18n { namespace phonenumbers { using std::string; using std::stringstream; using std::max; using std::hex; using std::dec; static int CodepointDistance(const char* start, const char* end) { int n = 0; for (const char* p = start; p < end; ++p) { n += (*reinterpret_cast<const signed char*>(p) >= -0x40); } return n; } static int CodepointCount(const char* utf8, int len) { return CodepointDistance(utf8, utf8 + len); } UnicodeText::const_iterator::difference_type distance(const UnicodeText::const_iterator& first, const UnicodeText::const_iterator& last) { return CodepointDistance(first.it_, last.it_); } static int ConvertToInterchangeValid(char* start, int len) { char* const in = start; char* out = start; char* const end = start + len; while (start < end) { int good = UniLib::SpanInterchangeValid(start, static_cast<int>(end - start)); if (good > 0) { if (out != start) { memmove(out, start, good); } out += good; start += good; if (start == end) { break; } } Rune rune; int n; if (isvalidcharntorune(start, static_cast<int>(end - start), &rune, &n)) { start += n; } else { start += 1; } *out++ = ' '; } return static_cast<int>(out - in); } void UnicodeText::Repr::reserve(int new_capacity) { if (capacity_ >= new_capacity && ours_) return; capacity_ = max(new_capacity, (3 * capacity_) / 2 + 20); char* new_data = new char[capacity_]; if (data_) { memcpy(new_data, data_, size_); if (ours_) delete[] data_; } data_ = new_data; ours_ = true; } void UnicodeText::Repr::resize(int new_size) { if (new_size == 0) { clear(); } else { if (!ours_ || new_size > capacity_) reserve(new_size); if (size_ < new_size) memset(data_ + size_, 0, new_size - size_); size_ = new_size; ours_ = true; } } void UnicodeText::Repr::clear() { if (ours_) delete[] data_; data_ = NULL; size_ = capacity_ = 0; ours_ = true; } void UnicodeText::Repr::Copy(const char* data, int size) { resize(size); memcpy(data_, data, size); } void UnicodeText::Repr::TakeOwnershipOf(char* data, int size, int capacity) { if (data == data_) return; if (ours_ && data_) delete[] data_; data_ = data; size_ = size; capacity_ = capacity; ours_ = true; } void UnicodeText::Repr::PointTo(const char* data, int size) { if (ours_ && data_) delete[] data_; data_ = const_cast<char*>(data); size_ = size; capacity_ = size; ours_ = false; } void UnicodeText::Repr::append(const char* bytes, int byte_length) { reserve(size_ + byte_length); memcpy(data_ + size_, bytes, byte_length); size_ += byte_length; } string UnicodeText::Repr::DebugString() const { stringstream ss; ss << "{Repr " << hex << this << " data=" << data_ << " size=" << dec << size_ << " capacity=" << capacity_ << " " << (ours_ ? "Owned" : "Alias") << "}"; string result; ss >> result; return result; } UnicodeText::UnicodeText() { } UnicodeText::UnicodeText(const UnicodeText& src) { Copy(src); } UnicodeText::UnicodeText(const UnicodeText::const_iterator& first, const UnicodeText::const_iterator& last) { assert(first <= last && "Incompatible iterators"); repr_.append(first.it_, static_cast<int>(last.it_ - first.it_)); } string UnicodeText::UTF8Substring(const const_iterator& first, const const_iterator& last) { assert(first <= last && "Incompatible iterators"); return string(first.it_, last.it_ - first.it_); } UnicodeText& UnicodeText::operator=(const UnicodeText& src) { if (this != &src) { Copy(src); } return *this; } UnicodeText& UnicodeText::Copy(const UnicodeText& src) { repr_.Copy(src.repr_.data_, src.repr_.size_); return *this; } UnicodeText& UnicodeText::CopyUTF8(const char* buffer, int byte_length) { repr_.Copy(buffer, byte_length); repr_.utf8_was_valid_ = UniLib:: IsInterchangeValid(buffer, byte_length); if (!repr_.utf8_was_valid_) { LOG(WARNING) << "UTF-8 buffer is not interchange-valid."; repr_.size_ = ConvertToInterchangeValid(repr_.data_, byte_length); } return *this; } UnicodeText& UnicodeText::UnsafeCopyUTF8(const char* buffer, int byte_length) { repr_.Copy(buffer, byte_length); return *this; } UnicodeText& UnicodeText::TakeOwnershipOfUTF8(char* buffer, int byte_length, int byte_capacity) { repr_.TakeOwnershipOf(buffer, byte_length, byte_capacity); repr_.utf8_was_valid_ = UniLib:: IsInterchangeValid(buffer, byte_length); if (!repr_.utf8_was_valid_) { LOG(WARNING) << "UTF-8 buffer is not interchange-valid."; repr_.size_ = ConvertToInterchangeValid(repr_.data_, byte_length); } return *this; } UnicodeText& UnicodeText::UnsafeTakeOwnershipOfUTF8(char* buffer, int byte_length, int byte_capacity) { repr_.TakeOwnershipOf(buffer, byte_length, byte_capacity); return *this; } UnicodeText& UnicodeText::PointToUTF8(const char* buffer, int byte_length) { repr_.utf8_was_valid_ = UniLib:: IsInterchangeValid(buffer, byte_length); if (repr_.utf8_was_valid_) { repr_.PointTo(buffer, byte_length); } else { LOG(WARNING) << "UTF-8 buffer is not interchange-valid."; repr_.Copy(buffer, byte_length); repr_.size_ = ConvertToInterchangeValid(repr_.data_, byte_length); } return *this; } UnicodeText& UnicodeText::UnsafePointToUTF8(const char* buffer, int byte_length) { repr_.PointTo(buffer, byte_length); return *this; } UnicodeText& UnicodeText::PointTo(const UnicodeText& src) { repr_.PointTo(src.repr_.data_, src.repr_.size_); return *this; } UnicodeText& UnicodeText::PointTo(const const_iterator &first, const const_iterator &last) { assert(first <= last && " Incompatible iterators"); repr_.PointTo(first.utf8_data(), static_cast<int>(last.utf8_data() - first.utf8_data())); return *this; } UnicodeText& UnicodeText::append(const UnicodeText& u) { repr_.append(u.repr_.data_, u.repr_.size_); return *this; } UnicodeText& UnicodeText::append(const const_iterator& first, const const_iterator& last) { assert(first <= last && "Incompatible iterators"); repr_.append(first.it_, static_cast<int>(last.it_ - first.it_)); return *this; } UnicodeText& UnicodeText::UnsafeAppendUTF8(const char* utf8, int len) { repr_.append(utf8, len); return *this; } UnicodeText::const_iterator UnicodeText::find(const UnicodeText& look, const_iterator start_pos) const { assert(start_pos.utf8_data() >= utf8_data()); assert(start_pos.utf8_data() <= utf8_data() + utf8_length()); return UnsafeFind(look, start_pos); } UnicodeText::const_iterator UnicodeText::find(const UnicodeText& look) const { return UnsafeFind(look, begin()); } UnicodeText::const_iterator UnicodeText::UnsafeFind( const UnicodeText& look, const_iterator start_pos) const { StringPiece searching(utf8_data(), utf8_length()); StringPiece look_piece(look.utf8_data(), look.utf8_length()); StringPiece::size_type found = searching.find(look_piece, start_pos.utf8_data() - utf8_data()); if (found == StringPiece::npos) return end(); return const_iterator(utf8_data() + found); } bool UnicodeText::HasReplacementChar() const { StringPiece searching(utf8_data(), utf8_length()); StringPiece looking_for("\xEF\xBF\xBD", 3); return searching.find(looking_for) != StringPiece::npos; } void UnicodeText::clear() { repr_.clear(); } UnicodeText::~UnicodeText() {} void UnicodeText::push_back(char32 c) { if (UniLib::IsValidCodepoint(c)) { char buf[UTFmax]; Rune rune = c; int len = runetochar(buf, &rune); if (UniLib::IsInterchangeValid(buf, len)) { repr_.append(buf, len); } else { fprintf(stderr, "Unicode value 0x%x is not valid for interchange\n", c); repr_.append(" ", 1); } } else { fprintf(stderr, "Illegal Unicode value: 0x%x\n", c); repr_.append(" ", 1); } } int UnicodeText::size() const { return CodepointCount(repr_.data_, repr_.size_); } bool operator==(const UnicodeText& lhs, const UnicodeText& rhs) { if (&lhs == &rhs) return true; if (lhs.repr_.size_ != rhs.repr_.size_) return false; return memcmp(lhs.repr_.data_, rhs.repr_.data_, lhs.repr_.size_) == 0; } string UnicodeText::DebugString() const { stringstream ss; ss << "{UnicodeText " << hex << this << dec << " chars=" << size() << " repr=" << repr_.DebugString() << "}"; #if 0 return StringPrintf("{UnicodeText %p chars=%d repr=%s}", this, size(), repr_.DebugString().c_str()); #endif string result; ss >> result; return result; } UnicodeText::const_iterator::const_iterator() : it_(0) {} UnicodeText::const_iterator::const_iterator(const const_iterator& other) : it_(other.it_) { } UnicodeText::const_iterator& UnicodeText::const_iterator::operator=(const const_iterator& other) { if (&other != this) it_ = other.it_; return *this; } UnicodeText::const_iterator UnicodeText::begin() const { return const_iterator(repr_.data_); } UnicodeText::const_iterator UnicodeText::end() const { return const_iterator(repr_.data_ + repr_.size_); } bool operator<(const UnicodeText::const_iterator& lhs, const UnicodeText::const_iterator& rhs) { return lhs.it_ < rhs.it_; } char32 UnicodeText::const_iterator::operator*() const { uint8 byte1 = static_cast<uint8>(it_[0]); if (byte1 < 0x80) return byte1; uint8 byte2 = static_cast<uint8>(it_[1]); if (byte1 < 0xE0) return ((byte1 & 0x1F) << 6) | (byte2 & 0x3F); uint8 byte3 = static_cast<uint8>(it_[2]); if (byte1 < 0xF0) return ((byte1 & 0x0F) << 12) | ((byte2 & 0x3F) << 6) | (byte3 & 0x3F); uint8 byte4 = static_cast<uint8>(it_[3]); return ((byte1 & 0x07) << 18) | ((byte2 & 0x3F) << 12) | ((byte3 & 0x3F) << 6) | (byte4 & 0x3F); } UnicodeText::const_iterator& UnicodeText::const_iterator::operator++() { it_ += UniLib::OneCharLen(it_); return *this; } UnicodeText::const_iterator& UnicodeText::const_iterator::operator--() { while (UniLib::IsTrailByte(*--it_)) { } return *this; } int UnicodeText::const_iterator::get_utf8(char* utf8_output) const { utf8_output[0] = it_[0]; if (static_cast<unsigned char>(it_[0]) < 0x80) return 1; utf8_output[1] = it_[1]; if (static_cast<unsigned char>(it_[0]) < 0xE0) return 2; utf8_output[2] = it_[2]; if (static_cast<unsigned char>(it_[0]) < 0xF0) return 3; utf8_output[3] = it_[3]; return 4; } UnicodeText::const_iterator UnicodeText::MakeIterator(const char* p) const { #ifndef NDEBUG assert(p != NULL); const char* start = utf8_data(); int len = utf8_length(); const char* end = start + len; assert(p >= start); assert(p <= end); assert(p == end || !UniLib::IsTrailByte(*p)); #endif return const_iterator(p); } string UnicodeText::const_iterator::DebugString() const { stringstream ss; ss << "{iter " << hex << it_ << "}"; string result; ss >> result; return result; } } }
#include <gtest/gtest.h> #include "phonenumbers/utf/unicodetext.h" namespace i18n { namespace phonenumbers { TEST(UnicodeTextTest, Iterator) { struct value { const char* utf8; char32 code_point; } values[] = { { "\x31", 0x31 }, { "\xC2\xBD", 0x00BD }, { "\xEF\xBC\x91", 0xFF11 }, { "\xF0\x9F\x80\x80", 0x1F000 }, }; for (size_t i = 0; i < sizeof values / sizeof values[0]; i++) { string number(values[i].utf8); UnicodeText number_as_unicode; number_as_unicode.PointToUTF8(number.data(), number.size()); EXPECT_TRUE(number_as_unicode.UTF8WasValid()); UnicodeText::const_iterator it = number_as_unicode.begin(); EXPECT_EQ(values[i].code_point, *it); } } } }
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/src/phonenumbers/utf/unicodetext.cc
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/test/phonenumbers/utf/unicodetext_test.cc
9aa9aaa39ad8098aef56071d2df4f6f8d251c98b
58f7e05d-6f1d-41ca-932f-498558a8bde2
cpp
tensorflow/tensorflow
nvptx_compiler
third_party/xla/xla/service/gpu/nvptx_compiler.cc
third_party/xla/xla/service/gpu/nvptx_compiler_test.cc
#include "xla/service/gpu/nvptx_compiler.h" #include <algorithm> #include <array> #include <cstdint> #include <fstream> #include <iterator> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/call_once.h" #include "absl/cleanup/cleanup.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_fix.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/call_inliner.h" #include "xla/service/convert_mover.h" #include "xla/service/dot_dimension_merger.h" #include "xla/service/dump.h" #include "xla/service/float_normalization.h" #include "xla/service/float_support.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/autotuning/conv_algorithm_picker.h" #include "xla/service/gpu/autotuning/gemm_algorithm_picker.h" #include "xla/service/gpu/autotuning/gemm_fusion_autotuner.h" #include "xla/service/gpu/buffer_sharing.h" #include "xla/service/gpu/cublas_padding_requirements.h" #include "xla/service/gpu/gpu_asm_opts_util.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.h" #include "xla/service/gpu/metrics.h" #include "xla/service/gpu/target_constants.h" #include "xla/service/gpu/transforms/algebraic_simplifier.h" #include "xla/service/gpu/transforms/conv_padding_legalization.h" #include "xla/service/gpu/transforms/conv_rewriter.h" #include "xla/service/gpu/transforms/cublas_pad_for_gemms.h" #include "xla/service/gpu/transforms/cudnn_custom_call_compiler.h" #include "xla/service/gpu/transforms/cudnn_fused_conv_rewriter.h" #include "xla/service/gpu/transforms/cudnn_fused_mha_rewriter.h" #include "xla/service/gpu/transforms/cudnn_fused_mha_transpose_fusion.h" #include "xla/service/gpu/transforms/cudnn_fusion_compiler.h" #include "xla/service/gpu/transforms/cudnn_norm_rewriter.h" #include "xla/service/gpu/transforms/cudnn_pad_for_convolutions.h" #include "xla/service/gpu/transforms/cudnn_simplify_padding.h" #include "xla/service/gpu/transforms/cudnn_vectorize_convolutions.h" #include "xla/service/gpu/transforms/dot_sparsity_rewriter.h" #include "xla/service/gpu/transforms/gpusolver_rewriter.h" #include "xla/service/gpu/transforms/sort_rewriter.h" #include "xla/service/gpu/transforms/triangular_solve_rewriter.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_verifier.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/reshape_mover.h" #include "xla/service/tuple_simplifier.h" #include "xla/stream_executor/cuda/cuda_asm_compiler.h" #include "xla/stream_executor/cuda/cuda_diagnostics.h" #include "xla/stream_executor/cuda/cuda_driver.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #include "xla/stream_executor/cuda/nvjitlink.h" #include "xla/stream_executor/cuda/nvjitlink_support.h" #include "xla/stream_executor/cuda/ptx_compilation_method.h" #include "xla/stream_executor/cuda/ptx_compiler.h" #include "xla/stream_executor/cuda/ptx_compiler_support.h" #include "xla/stream_executor/cuda/ptx_linking_method.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_executor.h" #include "xla/stream_executor/semantic_version.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/util/env_var.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/scoped_annotation.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace gpu { namespace { class ConvBfloat16Support : public FloatSupport { public: explicit ConvBfloat16Support( se::dnn::VersionInfo cudnn_version, se::CudaComputeCapability cuda_compute_capability) : FloatSupport(BF16), is_conv_bf16_supported_((cudnn_version.major_version() > 8 || (cudnn_version.major_version() == 8 && cudnn_version.minor_version() >= 2)) && cuda_compute_capability.IsAtLeast( se::CudaComputeCapability::AMPERE)) {} bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { return (hlo.opcode() != HloOpcode::kConvolution) || is_conv_bf16_supported_; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { return (hlo.opcode() != HloOpcode::kConvolution) || is_conv_bf16_supported_; } bool SupportsMixedPrecisions(const HloInstruction& hlo) const override { return (hlo.opcode() != HloOpcode::kConvolution); } private: bool is_conv_bf16_supported_; }; class MatmulBfloat16Support : public FloatSupport { public: explicit MatmulBfloat16Support( se::CudaComputeCapability cuda_compute_capability) : FloatSupport(BF16), is_matmul_bf16_supported_(cuda_compute_capability.IsAtLeast( se::CudaComputeCapability::AMPERE)) {} bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { return (hlo.opcode() != HloOpcode::kDot) || is_matmul_bf16_supported_; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { return (hlo.opcode() != HloOpcode::kDot) || is_matmul_bf16_supported_; } bool SupportsMixedPrecisions(const HloInstruction& hlo) const override { return true; } private: bool is_matmul_bf16_supported_; }; } absl::Status NVPTXCompiler::OptimizeHloConvolutionCanonicalization( HloModule* hlo_module, se::GpuComputeCapability gpu_version, se::dnn::VersionInfo dnn_version, se::DeviceMemoryAllocator* device_allocator, const se::SemanticVersion& toolkit_version) { auto cuda_compute_capability = std::get<se::CudaComputeCapability>(gpu_version); HloPassPipeline pipeline("conv_canonicalization"); pipeline.AddInvariantCheckerDebug<HloVerifier>( false, false); ConvBfloat16Support conv_bf16_support(dnn_version, cuda_compute_capability); pipeline.AddPass<FloatNormalization>(&conv_bf16_support); MatmulBfloat16Support matmul_bf16_support(cuda_compute_capability); pipeline.AddPass<FloatNormalization>(&matmul_bf16_support); pipeline.AddPass<GpusolverRewriter>(); if (!hlo_module->config() .debug_options() .xla_gpu_experimental_disable_binary_libraries()) { pipeline.AddPass<ConvRewriter>(cuda_compute_capability); pipeline.AddPass<CudnnFusedConvRewriter>(cuda_compute_capability, dnn_version, toolkit_version); pipeline.AddPass<ConvPaddingLegalization>(); pipeline.AddPass<CudnnPadForConvolutions>(cuda_compute_capability); pipeline.AddPass<CudnnVectorizeConvolutions>(cuda_compute_capability, dnn_version); } pipeline.AddPass<CallInliner>(); pipeline.AddPass<TupleSimplifier>(); AlgebraicSimplifierOptions algsimp_options = GetAlgebraicSimplifierOptions(hlo_module->config()); algsimp_options.set_supports_non_canonical_dots(false); algsimp_options.set_enable_conv_operand_swap(false); algsimp_options.set_enable_unconditional_reduce_of_concat_replacement(false); pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>(algsimp_options, gpu_version); if (!hlo_module->config() .debug_options() .xla_gpu_experimental_disable_binary_libraries()) { pipeline.AddPass<CudnnSimplifyPadding>(); } [&, &pipeline = pipeline.AddPass<HloPassFix<HloPassPipeline>>( "reshape_mover_after_conv_canonicalization")] { ReshapeMoverOptions reshape_mover_options; reshape_mover_options.reshape_of_1d_broadcast_is_cheap = true; pipeline.AddPass<ReshapeMover>(reshape_mover_options); pipeline.AddPass<GpuAlgebraicSimplifier>(algsimp_options, gpu_version); }(); [&, &pipeline = pipeline.AddPass<HloPassFix<HloPassPipeline>>( "simplify_after_conv_canonicalization")] { pipeline.AddPass<ConvertMover>(); pipeline.AddPass<GpuAlgebraicSimplifier>(algsimp_options, gpu_version); }(); pipeline.AddPass<HloConstantFolding>(); TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status()); return absl::OkStatus(); } absl::Status NVPTXCompiler::OptimizeHloPostLayoutAssignment( HloModule* hlo_module, se::StreamExecutor* stream_exec, const CompileOptions& options, const TargetConfig& gpu_target_config, tsl::thread::ThreadPool* thread_pool) { auto cuda_compute_capability = std::get<se::CudaComputeCapability>( gpu_target_config.device_description.gpu_compute_capability()); if (hlo_module->config().debug_options().xla_gpu_enable_cudnn_fmha() && !hlo_module->config() .debug_options() .xla_gpu_experimental_disable_binary_libraries()) { HloPassPipeline mha_fusion_pipeline( "nvptx cudnn multi-headed attention fusion"); AlgebraicSimplifierOptions alg_sim_options = GetAlgebraicSimplifierOptions(hlo_module->config()); alg_sim_options.set_supports_non_canonical_dots(false); alg_sim_options.set_is_layout_sensitive(true); alg_sim_options.set_enable_conv_operand_swap(false); alg_sim_options.set_minmax_propagate_nan( !hlo_module->config().debug_options().xla_gpu_enable_fast_min_max()); alg_sim_options.set_enable_unconditional_reduce_of_concat_replacement( false); mha_fusion_pipeline.AddPass<HloCSE>(true); se::GpuComputeCapability gpu_version = gpu_target_config.device_description.gpu_compute_capability(); mha_fusion_pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>( alg_sim_options, gpu_version); mha_fusion_pipeline.AddPass<HloCSE>(true); if (stream_exec) { mha_fusion_pipeline.AddPass<CudnnFusedMHARewriter>( cuda_compute_capability, stream_exec); } else { mha_fusion_pipeline.AddPass<CudnnFusedMHARewriter>( cuda_compute_capability, gpu_target_config.dnn_version_info); } mha_fusion_pipeline.AddPass<GpuAlgebraicSimplifier>(alg_sim_options, gpu_version); mha_fusion_pipeline.AddPass<CudnnFusedMHATransposeFusion>(); mha_fusion_pipeline.AddPass<HloDCE>(); mha_fusion_pipeline.AddPass<HloCSE>(true); TF_RETURN_IF_ERROR(mha_fusion_pipeline.Run(hlo_module).status()); } HloPassPipeline pre_pipeline("nvptx post-layout_assignment part 1"); if (hlo_module->config().debug_options().xla_gpu_enable_cudnn_layer_norm() && !hlo_module->config() .debug_options() .xla_gpu_experimental_disable_binary_libraries()) { pre_pipeline.AddPass<CudnnNormRewriter>(cuda_compute_capability); } pre_pipeline.AddPass<DotDimensionMerger>(); pre_pipeline.AddPass<DotSparsityRewriter>(); if (!hlo_module->config() .debug_options() .xla_gpu_experimental_disable_binary_libraries()) { for (const CublasPaddingRequirement& requirement : CublasPaddingRequirements) { if (cuda_compute_capability.IsAtLeast( requirement.min_compute_capability)) { pre_pipeline.AddPass<CublasPadForGemms>(cuda_compute_capability, requirement.data_type, requirement.multiple_of); } } } pre_pipeline.AddPass<HloConstantFolding>(); TF_RETURN_IF_ERROR(pre_pipeline.Run(hlo_module).status()); TF_RETURN_IF_ERROR(GpuCompiler::OptimizeHloPostLayoutAssignment( hlo_module, stream_exec, options, gpu_target_config, thread_pool)); HloPassPipeline post_pipeline("nvptx post-layout_assignment part 2"); post_pipeline.AddPass<TriangularSolveRewriter>(); TF_RETURN_IF_ERROR(post_pipeline.Run(hlo_module).status()); return absl::OkStatus(); } bool NVPTXCompiler::RequiresCollectiveScheduleLinearizer( const HloModule* module, se::StreamExecutor* stream_exec) { if (stream_exec == nullptr || !GpuConvAlgorithmPicker::IsEnabled(module)) { return false; } for (const HloComputation* comp : module->MakeNonfusionComputations()) { for (const HloInstruction* inst : comp->instructions()) { if (GpuConvAlgorithmPicker::IsCandidate(inst)) { return true; } } } return false; } absl::Status NVPTXCompiler::AddConvAndGemmAutotuningPasses( HloPassPipeline* pipeline, const se::GpuComputeCapability& gpu_version, const CompileOptions& options, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool) { if (hlo_module->config() .debug_options() .xla_gpu_experimental_disable_binary_libraries()) { return absl::OkStatus(); } if (GpuConvAlgorithmPicker::IsEnabled(hlo_module)) { pipeline->AddPass<GpuConvAlgorithmPicker>(autotune_config); } if (!std::get<se::CudaComputeCapability>(gpu_version).IsAtLeastAmpere() || options.is_autotuning_compilation) { pipeline->AddPass<GemmAlgorithmPicker>(autotune_config); } return absl::OkStatus(); } absl::Status NVPTXCompiler::AddGemmFusionAutotuningPasses( HloPassPipeline* pipeline, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool, const MultiProcessKeyValueStore& key_value_store, const se::SemanticVersion& toolkit_version) { pipeline->AddPass<GemmFusionAutotuner>(autotune_config, toolkit_version, thread_pool, key_value_store); return absl::OkStatus(); } absl::Status NVPTXCompiler::AddCustomKernelReplacementPasses( HloPassPipeline* pipeline, const DebugOptions& debug_options) { if (debug_options.xla_gpu_enable_cub_radix_sort()) { pipeline->AddPass<SortRewriter>(); } return absl::OkStatus(); } absl::Status NVPTXCompiler::RunCudnnCompilerPasses( HloModule* module, se::StreamExecutor* stream_exec, BinaryMap* dnn_compiled_graphs) { if (module->config() .debug_options() .xla_gpu_experimental_disable_binary_libraries()) { return absl::OkStatus(); } tsl::profiler::ScopedAnnotation annotation([&] { return absl::StrFormat("XlaCompileCudnnFusion:#module=%s,program_id=%d#", module->name(), module->unique_id()); }); CuDnnFusionCompiler fusion_compiler(*stream_exec, *dnn_compiled_graphs); TF_RETURN_IF_ERROR(fusion_compiler.Run(module).status()); CuDnnCustomCallCompiler call_compiler(*stream_exec, *dnn_compiled_graphs); return call_compiler.Run(module).status(); } namespace { bool MaybeLoadPtxFromFile(const HloModuleConfig module_config, const HloModule* module, std::string* ptx) { std::string prefix = xla::FilenameFor(*module, "", *ptx); std::string matched_filename; for (const std::string& full_filename : module_config.debug_options().xla_gpu_ptx_file()) { auto filename = tsl::io::Basename(full_filename); if (absl::StartsWith(filename, prefix)) { matched_filename = full_filename; VLOG(1) << "RunBackend() - Will load PTX from file: " << full_filename; break; } } if (!module_config.debug_options().xla_gpu_ptx_file().empty() && matched_filename.empty()) { VLOG(1) << "RunBackend() - For module with prefix '" << prefix << "', we did not found a PTX file to load."; } if (!matched_filename.empty()) { std::ifstream ifs(matched_filename, std::ifstream::in); *ptx = std::string(std::istreambuf_iterator<char>(ifs), std::istreambuf_iterator<char>()); CHECK(!ptx->empty()) << "Empty or non existing PTX file: " << matched_filename; return true; } return false; } std::unique_ptr<llvm::Module> MaybeLoadLLVMFromFile(const HloModule* module, llvm::Module* llvm_module) { if (module == nullptr) { return nullptr; } std::string prefix = xla::FilenameFor(*module, "", ""); auto xla_gpu_llvm_ir_file = module->config().debug_options().xla_gpu_llvm_ir_file(); auto matched_filename = absl::c_find_if( xla_gpu_llvm_ir_file, [prefix](const std::string& full_filename) { return absl::StartsWith(tsl::io::Basename(full_filename), prefix); }); if (!xla_gpu_llvm_ir_file.empty() && matched_filename == std::end(xla_gpu_llvm_ir_file)) { VLOG(1) << "RunBackend() - For module with prefix '" << prefix << "', we did not found a LLVM file to load."; } if (matched_filename != std::end(xla_gpu_llvm_ir_file)) { VLOG(1) << "RunBackend() - Will load LLVM from file: " << *matched_filename; llvm::LLVMContext& context = llvm_module->getContext(); llvm::SMDiagnostic err; std::unique_ptr<llvm::Module> loaded_module = llvm::parseIRFile(*matched_filename, err, context); if (!loaded_module) { err.print("ERR", llvm::errs()); LOG(FATAL) << "Failed to load an LLVM file. It is probably invalid LLVM."; } llvm_ir::DumpIrIfEnabled(*module, *loaded_module, false); return loaded_module; } return nullptr; } } void WarnIfBadDriverJITVersion() { static absl::once_flag run_once; absl::call_once(run_once, [] { auto version_or_status = se::cuda::Diagnostician::FindKernelDriverVersion(); if (!version_or_status.ok()) { LOG(WARNING) << "Couldn't read CUDA driver version."; return; } se::cuda::DriverVersion version = version_or_status.value(); if (version < std::make_tuple(396, 20, 0)) { LOG(WARNING) << "*** WARNING *** Invoking the PTX->SASS JIT from driver version " << se::cuda::DriverVersionToString(version) << ", which is older than 396.20.0. These versions are known to " "miscompile XLA code, leading to incorrect results or " "invalid-address errors.\nXLA only uses the driver JIT if it " "cannot find ptxas; you don't need to update your driver if " "you can point XLA to ptxas 9.2.88 or newer."; } }); } NVPTXCompiler::NVPTXCompiler() : GpuCompiler(stream_executor::cuda::kCudaPlatformId, nvptx::TargetTriple(), nvptx::DataLayout()) {} HloDataflowAnalysis::CanShareBuffer NVPTXCompiler::GetCanShareBuffer() const { return &CanShareBufferHint; } constexpr const uint8_t kPtxPrefix[] = {'P', 'T', 'X', ':', ' '}; absl::StatusOr<GpuCompiler::BackendCompileResult> NVPTXCompiler::CompileTargetBinary(const HloModuleConfig& module_config, llvm::Module* llvm_module, se::GpuComputeCapability gpu_version, bool relocatable, const HloModule* debug_module, const CompileOptions& options) { std::unique_ptr<llvm::Module> loaded_module = MaybeLoadLLVMFromFile(debug_module, llvm_module); llvm::Module* selected_module = nullptr; if (loaded_module) { selected_module = loaded_module.get(); } else { selected_module = llvm_module; } std::string ptx; if (!(debug_module && MaybeLoadPtxFromFile(module_config, debug_module, &ptx))) { XLA_SCOPED_LOGGING_TIMER_IF( absl::StrCat( "NVPTXCompiler::CompileTargetBinary - CompileToPtx for ", (debug_module != nullptr ? debug_module->name() : "(unknown")), !options.is_autotuning_compilation); uint64_t start_usecs = tsl::Env::Default()->NowMicros(); TF_ASSIGN_OR_RETURN(ptx, nvptx::CompileToPtx(selected_module, gpu_version, module_config.debug_options())); uint64_t end_usecs = tsl::Env::Default()->NowMicros(); RecordLlvmPassesAndLlvmToPtxDuration(end_usecs - start_usecs); } TF_ASSIGN_OR_RETURN(se::PtxLinkingMethod linking_method, ChooseLinkingMethod(module_config.debug_options())); if (linking_method == se::PtxLinkingMethod::kNvJitLink && relocatable) { VLOG(2) << "Deferring the PTX to CUBIN compilation of the relocatable " "module to the linking step."; std::vector<uint8_t> binary; if (!ptx.empty()) { binary.reserve(sizeof(kPtxPrefix) + ptx.size() + 1); binary.insert(binary.end(), kPtxPrefix, kPtxPrefix + sizeof(kPtxPrefix)); binary.insert(binary.end(), ptx.begin(), ptx.end()); binary.emplace_back('\0'); } return BackendCompileResult{std::move(ptx), std::move(binary)}; } absl::StatusOr<std::vector<uint8_t>> maybe_cubin = CompileGpuAsmOrGetCachedResult( ptx, std::get<se::CudaComputeCapability>(gpu_version), module_config, (debug_module != nullptr ? debug_module->name() : "(unknown)"), relocatable, options); if (!maybe_cubin.ok()) { return maybe_cubin.status(); } return BackendCompileResult{std::move(ptx), std::move(maybe_cubin.value())}; } using stream_executor::PtxCompilationMethod; std::vector<PtxCompilationMethod> GetSupportedCompilationMethods() { std::vector<PtxCompilationMethod> methods; if (se::IsLibNvPtxCompilerSupported()) { methods.emplace_back(PtxCompilationMethod::kNvPtxCompiler); } if (se::IsLibNvJitLinkSupported()) { methods.emplace_back(PtxCompilationMethod::kNvJitLink); } methods.emplace_back(PtxCompilationMethod::kPtxas); return methods; } absl::StatusOr<PtxCompilationMethod> ChooseCompilationMethod( absl::Span<const PtxCompilationMethod> available_compilation_methods, const DebugOptions& debug_options, bool relocatable) { std::vector<PtxCompilationMethod> compilation_methods( available_compilation_methods.begin(), available_compilation_methods.end()); VLOG(2) << "Available compilation methods: " << absl::StrJoin(compilation_methods, ", "); auto remove_compilation_method = [&](PtxCompilationMethod method) { auto it = absl::c_find(compilation_methods, method); if (it != compilation_methods.end()) { compilation_methods.erase(it); } }; if (!debug_options.xla_gpu_enable_libnvjitlink()) { VLOG(3) << "Discarding NvJitLink since it is disabled."; remove_compilation_method(PtxCompilationMethod::kNvJitLink); } if (!debug_options.xla_gpu_enable_libnvptxcompiler()) { VLOG(3) << "Discarding NvPtxCompiler since it is disabled."; remove_compilation_method(PtxCompilationMethod::kNvPtxCompiler); } VLOG(2) << "Supported and enabled compilation methods: " << absl::StrJoin(compilation_methods, ", "); if (relocatable && absl::c_linear_search(compilation_methods, PtxCompilationMethod::kNvJitLink)) { VLOG(3) << "Discarding NvJitLink since it can't produce the requested " "relocatable CUBIN."; remove_compilation_method(PtxCompilationMethod::kNvJitLink); } VLOG(2) << "Considered compilation methods: " << absl::StrJoin(compilation_methods, ", "); if (compilation_methods.empty()) { return absl::UnavailableError( "No supported compilation method is available."); } return compilation_methods.front(); } static absl::StatusOr<std::vector<uint8_t>> AssembleOptionsAndCompile( const std::string& ptx, se::CudaComputeCapability cc, const HloModuleConfig& hlo_module_config, GpuCompiler::CompileOptions options, bool relocatable) { if (ptx.empty()) { return std::vector<uint8_t>(); } se::GpuAsmOpts ptxas_config = PtxOptsFromDebugOptions(hlo_module_config.debug_options()); if (relocatable) { ptxas_config.extra_flags.push_back("-c"); } uint64_t start_usecs = tsl::Env::Default()->NowMicros(); bool cancel_if_reg_spill = hlo_module_config.debug_options() .xla_gpu_filter_kernels_spilling_registers_on_autotuning() && options.is_autotuning_compilation; std::vector<PtxCompilationMethod> supported_compilation_methods = GetSupportedCompilationMethods(); TF_ASSIGN_OR_RETURN( PtxCompilationMethod compilation_method, ChooseCompilationMethod(supported_compilation_methods, hlo_module_config.debug_options(), relocatable)); VLOG(2) << "Using compilation method: " << compilation_method; absl::StatusOr<std::vector<uint8_t>> maybe_cubin = [&] { switch (compilation_method) { case PtxCompilationMethod::kNvJitLink: return se::CompileAndLinkUsingLibNvJitLink( cc.major, cc.minor, {se::NvJitLinkInput{ se::NvJitLinkInput::Type::kPtx, absl::Span<const uint8_t>{ reinterpret_cast<const uint8_t*>(ptx.c_str()), ptx.size() + 1 }}}, ptxas_config, cancel_if_reg_spill); case PtxCompilationMethod::kNvPtxCompiler: return se::CompileGpuAsmUsingLibNvPtxCompiler( cc.major, cc.minor, ptx.c_str(), ptxas_config, cancel_if_reg_spill); case PtxCompilationMethod::kPtxas: return se::CompileGpuAsmUsingPtxAs(cc.major, cc.minor, ptx.c_str(), ptxas_config, cancel_if_reg_spill); } }(); if (maybe_cubin.ok()) { uint64_t end_usecs = tsl::Env::Default()->NowMicros(); RecordPtxToCubinDuration(end_usecs - start_usecs); VLOG(1) << "Compiled PTX size: " << ptx.size() << "bytes. CUBIN size: " << maybe_cubin.value().size() << "bytes."; return maybe_cubin; } if (maybe_cubin.status().code() == absl::StatusCode::kNotFound) { if (!hlo_module_config.debug_options() .xla_gpu_unsafe_fallback_to_driver_on_ptxas_not_found()) { LOG(WARNING) << nvptx::CantFindCudaMessage( "Can't find ptxas binary in ${CUDA_DIR}/bin. Custom ptxas " "location can be specified using $PATH.", hlo_module_config.debug_options().xla_gpu_cuda_data_dir()); LOG(FATAL) << "Can't find ptxas binary. You can pass the flag " "--xla_gpu_unsafe_fallback_to_driver_on_ptxas_not_found " "to use the GPU driver for compiling ptx instead. However " "this option is discouraged and can lead to increased " "memory consumptions and other subtle runtime issues."; } LOG_FIRST_N(WARNING, 1) << nvptx::CantFindCudaMessage( "Can't find ptxas binary in ${CUDA_DIR}/bin. Will back to " "the GPU driver for PTX -> sass compilation. This is OK so " "long as you don't see a warning below about an out-of-date " "driver version. Custom ptxas location can be specified " "using $PATH.", hlo_module_config.debug_options().xla_gpu_cuda_data_dir()); WarnIfBadDriverJITVersion(); return maybe_cubin; } if (maybe_cubin.status().code() == absl::StatusCode::kCancelled) { return maybe_cubin; } if (maybe_cubin.status().code() == absl::StatusCode::kResourceExhausted) { return maybe_cubin; } if (maybe_cubin.status().code() != absl::StatusCode::kUnimplemented) { return AppendStatus( maybe_cubin.status(), "If the error message indicates that a file could not be written, " "please verify that sufficient filesystem space is provided."); } return maybe_cubin; } absl::StatusOr<std::vector<uint8_t>> NVPTXCompiler::CompileGpuAsmOrGetCachedResult( const std::string& ptx, se::CudaComputeCapability cc, const HloModuleConfig& hlo_module_config, absl::string_view module_name, bool relocatable, const CompileOptions& options) { XLA_SCOPED_LOGGING_TIMER_IF( absl::StrCat("NVPTXCompiler::CompileGpuAsmOrGetCachedResult for ", module_name), !options.is_autotuning_compilation); tsl::profiler::ScopedAnnotation annotation([&] { return absl::StrFormat("XlaCompileGpuAsm:#module=%s#", module_name); }); tsl::profiler::TraceMe activity("PTX->CUBIN", tsl::profiler::TraceMeLevel::kInfo); CompilationCacheValue* cache_value = nullptr; bool inserted = [&] { auto flags = CompilationCacheFlags{ hlo_module_config.debug_options() .xla_gpu_filter_kernels_spilling_registers_on_autotuning()}; absl::MutexLock lock(&mutex_); auto [iter, inserted] = compilation_cache_.emplace( std::piecewise_construct, std::forward_as_tuple(ptx, cc.major, cc.minor, relocatable, flags), std::forward_as_tuple()); cache_value = &iter->second; return inserted; }(); absl::MutexLock lock(&cache_value->mutex); if (inserted) { CHECK(!cache_value->compilation_done); absl::Cleanup mark_compilation_as_done = [cache_value] { cache_value->compilation_done = true; cache_value->compilation_done_cv.SignalAll(); }; cache_value->maybe_cubin = AssembleOptionsAndCompile( ptx, cc, hlo_module_config, options, relocatable); return cache_value->maybe_cubin; } while (!cache_value->compilation_done) { cache_value->compilation_done_cv.Wait(&cache_value->mutex); } return cache_value->maybe_cubin; } static bool IsNvlinkEnabled() { const bool use_nvlink_by_default = #ifdef TF_DISABLE_NVLINK_BY_DEFAULT false; #else true; #endif bool use_nvlink; TF_CHECK_OK(tsl::ReadBoolFromEnvVar("TF_USE_NVLINK_FOR_PARALLEL_COMPILATION", use_nvlink_by_default, &use_nvlink)); return use_nvlink; } static absl::StatusOr<stream_executor::SemanticVersion> GetAsmCompilerVersion( const DebugOptions& debug_options, const std::string& preferred_cuda_dir) { if (debug_options.xla_gpu_enable_libnvptxcompiler() && se::IsLibNvPtxCompilerSupported()) { return stream_executor::GetLibNvPtxCompilerVersion(); } return se::GetAsmCompilerVersion(preferred_cuda_dir); } absl::StatusOr<se::PtxLinkingMethod> NVPTXCompiler::ChooseLinkingMethod( const DebugOptions& debug_options) { se::GpuAsmOpts ptxas_config = PtxOptsFromDebugOptions(debug_options); std::string& preferred_cuda_dir = ptxas_config.preferred_cuda_dir; using LinkingMethod = se::PtxLinkingMethod; if (stream_executor::IsLibNvJitLinkSupported() && debug_options.xla_gpu_enable_libnvjitlink()) { return se::PtxLinkingMethod::kNvJitLink; } TF_ASSIGN_OR_RETURN(auto asm_compiler_version, GetAsmCompilerVersion(debug_options, preferred_cuda_dir)); auto nvlink_version = stream_executor::GetNvLinkVersion(preferred_cuda_dir); if (IsNvlinkEnabled() && nvlink_version.ok() && nvlink_version.value() >= asm_compiler_version) { return LinkingMethod::kNvLink; } int ptxas_version = asm_compiler_version.major() * 1000 + asm_compiler_version.minor() * 10; TF_ASSIGN_OR_RETURN(int driver_version, se::gpu::GpuDriver::GetDriverVersion()); if (driver_version >= ptxas_version) { return LinkingMethod::kDriver; } LOG_FIRST_N(WARNING, 1) << "The NVIDIA driver's CUDA version is " << absl::StrFormat("%d.%d", driver_version / 1000, (driver_version % 1000) / 10) << " which is older than the PTX compiler version " << asm_compiler_version << ". Because the driver is older than the PTX compiler version, XLA is " "disabling parallel compilation, which may slow down compilation. " "You should update your NVIDIA driver or use the NVIDIA-provided " "CUDA forward compatibility packages."; return se::PtxLinkingMethod::kNone; } absl::StatusOr<bool> NVPTXCompiler::CanUseLinkModules( const HloModuleConfig& hlo_module_config) { TF_ASSIGN_OR_RETURN(se::PtxLinkingMethod linking_method, ChooseLinkingMethod(hlo_module_config.debug_options())); return linking_method != se::PtxLinkingMethod::kNone; } absl::StatusOr<std::vector<uint8_t>> NVPTXCompiler::LinkModules( se::GpuComputeCapability compute_capability, se::StreamExecutor* stream_exec, std::vector<std::vector<uint8_t>> modules, const DebugOptions& debug_options) { if (modules.empty()) return std::vector<uint8_t>{}; auto cc = std::get<stream_executor::CudaComputeCapability>(compute_capability); TF_ASSIGN_OR_RETURN(se::PtxLinkingMethod linking_method, ChooseLinkingMethod(debug_options)); VLOG(1) << "Linking " << modules.size() << " modules with linking method: " << linking_method; if (linking_method == se::PtxLinkingMethod::kNvJitLink) { const auto module_contains_ptx = [](const std::vector<uint8_t>& module) -> bool { return module.size() >= sizeof(kPtxPrefix) && std::equal(std::begin(kPtxPrefix), std::end(kPtxPrefix), std::begin(module)); }; std::vector<stream_executor::NvJitLinkInput> nvjitlink_inputs; nvjitlink_inputs.reserve(modules.size()); for (std::vector<uint8_t>& module : modules) { if (module_contains_ptx(module)) { nvjitlink_inputs.push_back( {se::NvJitLinkInput::Type::kPtx, absl::Span<const uint8_t>(module).subspan(sizeof(kPtxPrefix))}); } else { nvjitlink_inputs.push_back({se::NvJitLinkInput::Type::kCubin, module}); } } se::GpuAsmOpts ptxas_config = PtxOptsFromDebugOptions(debug_options); return stream_executor::CompileAndLinkUsingLibNvJitLink( cc.major, cc.minor, nvjitlink_inputs, ptxas_config, false); } std::vector<stream_executor::CubinOrPTXImage> cubin_images; cubin_images.reserve(modules.size()); for (std::vector<uint8_t>& module : modules) { { std::string profile = absl::StrCat("sm_", cc.major, cc.minor); cubin_images.push_back({std::move(profile), std::move(module)}); } } if (linking_method == se::PtxLinkingMethod::kNvLink) { return LinkUsingNvlink(cc, debug_options.xla_gpu_cuda_data_dir(), cubin_images); } return LinkGpuAsm(cc, se::gpu::ExtractGpuExecutor(stream_exec)->gpu_context(), cubin_images); } } }
#include "xla/service/gpu/nvptx_compiler.h" #include <cstdint> #include <memory> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/backend.h" #include "xla/service/buffer_assignment.h" #include "xla/service/buffer_value.h" #include "xla/service/gpu/gpu_constants.h" #include "xla/service/gpu/gpu_hlo_schedule.h" #include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/service/logical_buffer.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { int64_t CountCopies(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { count++; } } return count; } int64_t CountCopies(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountCopies(*computation); } return count; } class NVPTXCompilerTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<BufferAssignment>> AssignBuffers( HloModule* module) { constexpr uint64_t pointer_size = 4; const se::DeviceDescription& gpu_device_info = backend().default_stream_executor()->GetDeviceDescription(); TF_RETURN_IF_ERROR( ScheduleGpuModule(module, pointer_size, gpu_device_info).status()); auto buffer_size_bytes_function = [](const BufferValue& buffer_value) -> int64_t { return GetSizeOfShape(buffer_value.shape(), pointer_size); }; return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(module->schedule()), buffer_size_bytes_function, [](LogicalBuffer::Color) { return kXlaAllocatedBufferAlignBytes; }); } }; class NVPTXCompilerTestTriton : public NVPTXCompilerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_cublas_fallback(false); return debug_options; } }; TEST_F(NVPTXCompilerTest, AllReducePerformedInplace) { const absl::string_view hlo_string = R"( HloModule Module, input_output_alias={ {}: (0, {}, may-alias) } summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0) ROOT allreduce = f32[128] all-reduce(param0), replica_groups={}, to_apply=summit } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto buffer_assignment, AssignBuffers(module.get())); HloInstruction* all_reduce = module->entry_computation()->root_instruction(); EXPECT_TRUE(buffer_assignment->SharesTopLevelSlice(all_reduce, all_reduce->operand(0))); } TEST_F(NVPTXCompilerTest, AllReducePerformedInplaceTwoOperands) { const absl::string_view hlo_string = R"( HloModule Module, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias) } summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0) param1 = f32[128] parameter(1) ROOT allreduce = (f32[128], f32[128]) all-reduce(param0, param1), replica_groups={}, to_apply=summit } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto buffer_assignment, AssignBuffers(module.get())); HloInstruction* all_reduce = module->entry_computation()->root_instruction(); EXPECT_TRUE(buffer_assignment->SharesSliceAtIndex( all_reduce, {0}, all_reduce->operand(0), {})); EXPECT_TRUE(buffer_assignment->SharesSliceAtIndex( all_reduce, {1}, all_reduce->operand(1), {})); } TEST_F(NVPTXCompilerTestTriton, DotDimensionAreSortedBeforePaddingForCublasEnablingTritonFusion) { const absl::string_view hlo_string = R"( ENTRY e { p0 = f16[11,22,33,44] parameter(0) p1 = s8[11,22,33,44] parameter(1) p1c = f16[11,22,33,44] convert(p1) ROOT d = f16[11,22,44,44] dot(p0, p1c), lhs_batch_dims={0,1}, lhs_contracting_dims={2}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; se::CudaComputeCapability cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); if (cc.IsAtLeastAmpere()) { MatchOptimizedHlo(hlo_string, R"( ; CHECK: ENTRY ; CHECK-NEXT: parameter ; CHECK-NEXT: parameter ; CHECK-NEXT: __triton_gemm )"); } else { MatchOptimizedHlo(hlo_string, R"( ; CHECK-NOT: triton )"); } } TEST_F(NVPTXCompilerTest, RemovesUnnecessaryCopyInPostSchedulingPipelines) { const absl::string_view hlo_text = R"( HloModule all_gather_overlapping, is_scheduled=true condition { input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=2 } body { c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 add = f32[1,128] add(splat_c0, param_0) param_1 = f32[2,128] get-tuple-element(input_tuple), index=1 c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true all-gather-done = f32[2,128] all-gather-done(all-gather-start) copy = f32[2,128] copy(all-gather-done) cond = pred[] get-tuple-element(input_tuple), index=2 ROOT output_tuple = (f32[1,128], f32[2,128], pred[]) tuple(dynamic-slice, copy, cond) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = pred[] parameter(2) copy_param_0 = f32[1,128] copy(param_0) copy_param_1 = f32[2,128] copy(param_1) tuple = (f32[1,128], f32[2,128], pred[]) tuple(copy_param_0, copy_param_1, param_2) while = (f32[1,128], f32[2,128], pred[]) while(tuple), condition=condition, body=body get-tuple-element = f32[1,128]{1,0} get-tuple-element((f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) while), index=0 get-tuple-element.1 = f32[2,128]{1,0} get-tuple-element((f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) while), index=1 get-tuple-element.2 = pred[] get-tuple-element((f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) while), index=2 copy.3 = pred[] copy(pred[] get-tuple-element.2) ROOT tuple.2 = (f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) tuple(f32[1,128]{1,0} get-tuple-element, f32[2,128]{1,0} get-tuple-element.1, pred[] copy.3) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); EXPECT_EQ(CountCopies(*module), 4); const HloInstruction* while_op = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kCopy); NVPTXCompiler compiler; TF_EXPECT_OK(compiler.RunPostSchedulingPipelines( module.get(), 100000, backend().default_stream_executor()->GetDeviceDescription())); EXPECT_EQ(CountCopies(*module), 3); while_op = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kAllGatherDone); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/nvptx_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/nvptx_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
511d6642-4f1a-4dc8-bc5f-e3d3f7835350
cpp
google/glog
mock-log
src/mock-log.h
src/mock-log_unittest.cc
#ifndef GLOG_SRC_MOCK_LOG_H_ #define GLOG_SRC_MOCK_LOG_H_ #include <gmock/gmock.h> #include <string> #include "glog/logging.h" #include "utilities.h" namespace google { namespace glog_testing { class ScopedMockLog : public google::LogSink { public: ScopedMockLog() { AddLogSink(this); } ~ScopedMockLog() override { RemoveLogSink(this); } MOCK_METHOD3(Log, void(google::LogSeverity severity, const std::string& file_path, const std::string& message)); private: void send(google::LogSeverity severity, const char* full_filename, const char* , int , const LogMessageTime& , const char* message, size_t message_len) override { message_info_.severity = severity; message_info_.file_path = full_filename; message_info_.message = std::string(message, message_len); } void WaitTillSent() override { MessageInfo message_info = message_info_; Log(message_info.severity, message_info.file_path, message_info.message); } struct MessageInfo { google::LogSeverity severity; std::string file_path; std::string message; }; MessageInfo message_info_; }; } } #endif
#include "mock-log.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include <string> namespace { using google::GLOG_ERROR; using google::GLOG_INFO; using google::GLOG_WARNING; using google::glog_testing::ScopedMockLog; using std::string; using testing::_; using testing::EndsWith; using testing::InSequence; using testing::InvokeWithoutArgs; TEST(ScopedMockLogTest, InterceptsLog) { ScopedMockLog log; InSequence s; EXPECT_CALL(log, Log(GLOG_WARNING, EndsWith("mock-log_unittest.cc"), "Fishy.")); EXPECT_CALL(log, Log(GLOG_INFO, _, "Working...")).Times(2); EXPECT_CALL(log, Log(GLOG_ERROR, _, "Bad!!")); LOG(WARNING) << "Fishy."; LOG(INFO) << "Working..."; LOG(INFO) << "Working..."; LOG(ERROR) << "Bad!!"; } void LogBranch() { LOG(INFO) << "Logging a branch..."; } void LogTree() { LOG(INFO) << "Logging the whole tree..."; } void LogForest() { LOG(INFO) << "Logging the entire forest."; LOG(INFO) << "Logging the entire forest.."; LOG(INFO) << "Logging the entire forest..."; } TEST(ScopedMockLogTest, LogDuringIntercept) { ScopedMockLog log; InSequence s; EXPECT_CALL(log, Log(GLOG_INFO, __FILE__, "Logging a branch...")) .WillOnce(InvokeWithoutArgs(LogTree)); EXPECT_CALL(log, Log(GLOG_INFO, __FILE__, "Logging the whole tree...")) .WillOnce(InvokeWithoutArgs(LogForest)); EXPECT_CALL(log, Log(GLOG_INFO, __FILE__, "Logging the entire forest.")); EXPECT_CALL(log, Log(GLOG_INFO, __FILE__, "Logging the entire forest..")); EXPECT_CALL(log, Log(GLOG_INFO, __FILE__, "Logging the entire forest...")); LogBranch(); } } int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); testing::InitGoogleTest(&argc, argv); testing::InitGoogleMock(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/mock-log.h
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/mock-log_unittest.cc
de309c08c05382fee0792380de7df1bd65332da2
c30fe9e6-8cac-4bf9-8a3a-a1ee162dddce
cpp
tensorflow/tensorflow
functionalize_control_flow
tensorflow/compiler/tf2xla/functionalize_control_flow.cc
tensorflow/compiler/tf2xla/functionalize_control_flow_test.cc
#include "tensorflow/compiler/tf2xla/functionalize_control_flow.h" #include <algorithm> #include <deque> #include <stack> #include <unordered_set> #include <vector> #include "absl/memory/memory.h" #include "absl/types/optional.h" #include "tensorflow/compiler/tf2xla/functionalize_cond.h" #include "tensorflow/compiler/tf2xla/functionalize_control_flow_util.h" #include "tensorflow/compiler/tf2xla/functionalize_while.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "xla/status_macros.h" #include "xla/union_find.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_optimizer.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/control_flow.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { using FuncMap = std::map<string, std::optional<string>>; using FuncMapIter = std::map<string, std::optional<string>>::const_iterator; bool FunctionHasBeenProcessed(FuncMapIter func_iter, const FuncMap* func_map) { return func_iter != func_map->end(); } bool FunctionHasBeenModified(FuncMapIter func_iter) { return func_iter->second.has_value(); } string GetNewFunctionName( const string& func_name, Node* n, AssociatedFunctionInfo::AssociatedFunctionType func_type, FunctionLibraryDefinition* fld) { return ( func_type == AssociatedFunctionInfo::AssociatedFunctionType::kSymbolicGradient ? fld->UniqueFunctionName(absl::StrCat(n->name(), "_f15n_")) : fld->UniqueFunctionName(absl::StrCat(func_name, "_f15n_"))); } const string& GetMappedFunctionName(FuncMapIter func_iter) { DCHECK(func_iter->second.has_value()); return func_iter->second.value(); } void UpdateFunctionMap(FuncMap* func_map, const string& canonicalized_name, const string& new_func_name, bool function_modified) { (*func_map)[canonicalized_name] = function_modified ? absl::make_optional(new_func_name) : std::nullopt; } Status AddFunctionDefToGraphLibrary( const string& func_name, const AssociatedFunctionInfo& associated_function, Graph* graph, FunctionLibraryDefinition* fld) { const OpRegistrationData* op_reg_data; if (graph->flib_def().LookUp(func_name, &op_reg_data).ok()) return absl::OkStatus(); const FunctionDef* new_fdef = fld->Find(func_name); DCHECK(new_fdef != nullptr); FunctionDefLibrary fdef_lib; *(fdef_lib.add_function()) = *new_fdef; return graph->AddFunctionLibrary(fdef_lib); } Status FunctionalizeControlFlowForFunction( const string& func_name, const string& new_func_name, const protobuf::Map<string, tensorflow::AttrValue>& attrs, FunctionLibraryDefinition* fld, FunctionLibraryRuntime* flr, FuncMap* func_map, bool* function_modified, const NodeFilter& node_filter = {}); Status FunctionalizeControlFlowForNodeAssociatedFunctions( FuncMap* func_map, Graph* graph, FunctionLibraryDefinition* fld, FunctionLibraryRuntime* flr, bool* any_function_modified, const NodeFilter& node_filter) { std::vector<std::pair<Node*, std::vector<AssociatedFunctionInfo>>> nodes_to_associated_functions; for (auto* n : graph->nodes()) { auto associated_functions = GetAssociatedFunctions(*n, fld); if (!associated_functions.empty()) { nodes_to_associated_functions.push_back({n, associated_functions}); } } for (const auto& pair : nodes_to_associated_functions) { Node* n = pair.first; auto associated_functions = pair.second; for (auto& associated_function : associated_functions) { DCHECK(associated_function.type() != AssociatedFunctionInfo::kFunctionCallNode || associated_functions.size() == 1); string func_name = associated_function.func_name(); string canonicalized_name = Canonicalize(func_name, AttrSlice(&associated_function.attrs())); auto func_iter = func_map->find(canonicalized_name); string new_func_name; if (FunctionHasBeenProcessed(func_iter, func_map)) { if (FunctionHasBeenModified(func_iter)) { *any_function_modified = true; new_func_name = GetMappedFunctionName(func_iter); TF_RETURN_IF_ERROR(RewriteAssociatedFunction( graph, n, fld, associated_function, new_func_name)); } continue; } bool function_modified = false; new_func_name = GetNewFunctionName(func_name, n, associated_function.type(), fld); TF_RETURN_IF_ERROR(FunctionalizeControlFlowForFunction( func_name, new_func_name, associated_function.attrs(), fld, flr, func_map, &function_modified, node_filter)); UpdateFunctionMap(func_map, canonicalized_name, new_func_name, function_modified); if (function_modified) { *any_function_modified = true; TF_RETURN_IF_ERROR(AddFunctionDefToGraphLibrary( new_func_name, associated_function, graph, fld)); TF_RETURN_IF_ERROR(RewriteAssociatedFunction( graph, n, fld, associated_function, new_func_name)); } } } return absl::OkStatus(); } Status FunctionalizeControlFlowForFunction( const string& func_name, const string& new_func_name, const protobuf::Map<string, tensorflow::AttrValue>& attrs, FunctionLibraryDefinition* fld, FunctionLibraryRuntime* flr, FuncMap* func_map, bool* function_modified, const NodeFilter& node_filter) { *function_modified = false; FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR(flr->Instantiate(func_name, AttrSlice(&attrs), &handle)); Status ret_status = absl::OkStatus(); auto cleanup_handle = gtl::MakeCleanup([&]() { auto s = flr->ReleaseHandle(handle); if (!s.ok()) { ret_status.Update(s); } }); const FunctionBody* body = flr->GetFunctionBody(handle); Graph* g = body->graph; bool has_switch_or_merge = false; for (Node* n : body->graph->nodes()) { if (node_filter && !node_filter(n)) continue; if (n->type_string() == "Switch" || n->type_string() == "Merge") { has_switch_or_merge = true; break; } } TF_RETURN_IF_ERROR(FunctionalizeControlFlowForNodeAssociatedFunctions( func_map, g, fld, flr, function_modified, node_filter)); if (has_switch_or_merge) { *function_modified = true; if (VLOG_IS_ON(4)) { DumpGraphToFile( absl::StrCat("functionalize_control_flow_before_fdef_", func_name), *g, fld); } TF_RETURN_IF_ERROR(FunctionalizeControlFlow(g, fld, node_filter)); if (VLOG_IS_ON(4)) { DumpGraphToFile( absl::StrCat("functionalize_control_flow_after_fdef_", func_name), *g, fld); } } if (*function_modified) { FunctionDef functionalized_fdef; TF_RETURN_IF_ERROR( GraphToFunctionDef(*g, new_func_name, &functionalized_fdef)); if (func_name == new_func_name) { VLOG(2) << "Replacing function " << func_name; TF_RETURN_IF_ERROR( fld->ReplaceFunction(new_func_name, functionalized_fdef)); } else { VLOG(2) << "Adding function " << new_func_name; TF_RETURN_IF_ERROR(fld->AddFunctionDef(functionalized_fdef)); } } return ret_status; } Status FunctionalizeControlFlow(Graph* graph, FunctionLibraryDefinition* library, const NodeFilter& node_filter, bool include_functions) { VLOG(2) << "FunctionalizeControlFlow (initial): " << DumpGraphToFile("functionalize_initial", *graph, library); if (include_functions) { auto pflr = std::make_unique<ProcessFunctionLibraryRuntime>( nullptr, tensorflow::Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, library, tensorflow::OptimizerOptions()); FunctionLibraryRuntime* flr = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); FuncMap func_map; bool modified = false; TF_RETURN_IF_ERROR(FunctionalizeControlFlowForNodeAssociatedFunctions( &func_map, graph, library, flr, &modified, node_filter)); } TF_RETURN_IF_ERROR(FunctionalizeWhileLoop(graph, library, node_filter)); TF_RETURN_IF_ERROR(FunctionalizeCond(graph, library, node_filter)); VLOG(2) << "FunctionalizeControlFlow (final): " << DumpGraphToFile("functionalize_final", *graph, library); return absl::OkStatus(); } Status FunctionalizeControlFlowForGraphDef(GraphDef* graph_def, FunctionLibraryDefinition* library, const NodeFilter& node_filter, bool include_functions) { FunctionDefLibrary function_lib = graph_def->library(); Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR(ConvertGraphDefToGraph({}, *graph_def, &graph)); TF_RETURN_IF_ERROR(FunctionalizeControlFlow(&graph, library, node_filter, include_functions)); graph.ToGraphDef(graph_def); std::swap(*graph_def->mutable_library(), function_lib); return absl::OkStatus(); } Status FunctionalizeControlFlowForXlaPass::Run( const GraphOptimizationPassOptions& options) { Graph* graph = options.graph->get(); if (VLOG_IS_ON(4)) { DumpGraphToFile("functionalize_control_flow_before", *graph, options.flib_def); } const auto* config = &options.session_options->config; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime( nullptr, options.session_options->env, config, TF_GRAPH_DEF_VERSION, options.flib_def, config->graph_options().optimizer_options())); FunctionLibraryRuntime* flr = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); static std::map<string, string>* kNodeTypeToFunctionAttrMapping = new std::map<string, string>{ {"_TPUReplicate", "computation"}, {"XlaLaunch", "function"}, }; FuncMap func_map; bool fld_modified = false; for (Node* n : graph->nodes()) { auto it = kNodeTypeToFunctionAttrMapping->find(n->type_string()); if (it == kNodeTypeToFunctionAttrMapping->end()) { continue; } const string func_attr = it->second; NameAttrList func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), func_attr, &func)); VLOG(2) << "Graph has node " << n->type_string() << ". Corresponding function: " << func.name(); string new_func_name = options.flib_def->UniqueFunctionName( absl::StrCat(func.name(), "_f15n_")); bool modified; TF_RETURN_IF_ERROR(FunctionalizeControlFlowForFunction( func.name(), new_func_name, func.attr(), options.flib_def, flr, &func_map, &modified)); if (modified) { n->ClearAttr(func_attr); func.set_name(new_func_name); n->AddAttr(func_attr, func); fld_modified = true; } } if (false) { if (VLOG_IS_ON(4)) { DumpGraphToFile("functionalize_control_flow_before_prune", *graph, options.flib_def); } TF_RETURN_IF_ERROR( PruneUnreachableFunctionsFromGraph(*graph, options.flib_def)); } if (VLOG_IS_ON(4)) { DumpGraphToFile("functionalize_control_flow_after", *graph, options.flib_def); } return absl::OkStatus(); } }
#include "tensorflow/compiler/tf2xla/functionalize_control_flow.h" #include <string> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/tf2xla/cc/ops/xla_ops.h" #include "tensorflow/compiler/tf2xla/test_util.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/graph/validate.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/dump_graph.h" #include "tensorflow/core/util/equal_graph_def.h" namespace tensorflow { namespace { Status FindIfThenAndElse(const GraphDef& graph, string* op_name, NameAttrList* then_fn, NameAttrList* else_fn) { for (const NodeDef& node : graph.node()) { if (node.op() == "If") { *op_name = node.name(); const NameAttrList* result; TF_RETURN_IF_ERROR(GetNodeAttr(node, "then_branch", &result)); *then_fn = *result; TF_RETURN_IF_ERROR(GetNodeAttr(node, "else_branch", &result)); *else_fn = *result; return absl::OkStatus(); } } return errors::NotFound("No If node found in graph"); } class ConditionalTestFixture : public ::testing::TestWithParam<std::tuple<bool, bool>> { protected: void SetUp() override { restrict_to_tpu_nodes_ = std::get<0>(GetParam()); wrap_condition_in_function_ = std::get<1>(GetParam()); } void RunTest(); private: void BuildCondGraph(Graph* cond_graph); void CheckGraphDef(const GraphDef& graph_def, const FunctionLibraryDefinition& library); bool restrict_to_tpu_nodes_ = false; bool wrap_condition_in_function_ = false; }; TEST_P(ConditionalTestFixture, ConditionalTests) { RunTest(); } INSTANTIATE_TEST_SUITE_P( FunctionalizeControlFlow, ConditionalTestFixture, ::testing::Combine(::testing::Bool(), ::testing::Bool()), [](const ::testing::TestParamInfo<ConditionalTestFixture::ParamType>& info) { bool restrict_to_tpu_nodes = std::get<0>(info.param); bool wrap_cond_in_function = std::get<1>(info.param); string name = absl::StrCat(restrict_to_tpu_nodes ? "with_filter" : "without_filter", wrap_cond_in_function ? "_in_function" : "_in_graph"); return name; }); void ConditionalTestFixture::BuildCondGraph(Graph* cond_graph) { { Scope scope = Scope::NewRootScope().ExitOnError(); auto x = ops::Placeholder(scope.WithOpName("x"), DT_INT32); auto y = ops::Placeholder(scope.WithOpName("y"), DT_INT32); auto less = ops::Less(scope.WithOpName("cond/Less"), y, x); auto switch_1 = ops::Switch(scope.WithOpName("cond/Switch"), less, less); auto identity_t = ops::Identity(scope.WithOpName("cond/Identity"), switch_1.output_true); auto seventeen = ops::Const<int32>( scope.WithOpName("cond").WithControlDependencies(identity_t), 17); auto switch_2 = ops::Switch(scope.WithOpName("cond/Switch"), y, less); auto mul = ops::Multiply(scope.WithOpName("cond/Mul"), switch_2.output_true, seventeen); auto identity_f = ops::Identity(scope.WithOpName("cond/Identity"), switch_1.output_false); auto twenty_three = ops::Const<int32>( scope.WithOpName("cond").WithControlDependencies(identity_f), 23); auto switch_3 = ops::Switch(scope.WithOpName("cond/Switch"), x, less); auto add = ops::Add(scope.WithOpName("cond/false/add"), switch_3.output_false, twenty_three); auto merge = ops::Merge(scope.WithOpName("cond/Merge"), std::initializer_list<Input>{add, mul}); TF_EXPECT_OK(scope.ToGraph(cond_graph)); for (Node* n : cond_graph->nodes()) { std::string dummy_value = "value"; for (absl::string_view attr_name : kAttrsToPropagate) { n->AddAttr(std::string(attr_name), dummy_value); } } } } void ConditionalTestFixture::CheckGraphDef( const GraphDef& graph_def, const FunctionLibraryDefinition& library) { string op_name; NameAttrList then_fn; NameAttrList else_fn; TF_EXPECT_OK(FindIfThenAndElse(graph_def, &op_name, &then_fn, &else_fn)); InstantiationResultForTest else_result; TF_EXPECT_OK( InstantiateFunctionForTest(else_fn.name(), library, &else_result)); { Scope scope = Scope::NewRootScope().ExitOnError(); auto y = ops::Placeholder(scope.WithOpName("y"), DT_INT32); auto x = ops::Placeholder(scope.WithOpName("x"), DT_INT32); auto less = ops::Less(scope.WithOpName("cond/Less"), y, x); auto if_op = ops::If(scope.WithOpName(op_name), less, std::initializer_list<Input>{less, y, x}, {DT_INT32}, then_fn, else_fn, ops::If::OutputShapes({PartialTensorShape()})); auto id = ops::Identity(scope.WithOpName("cond/Merge"), if_op.output[0]); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); TF_EXPECT_GRAPH_EQ(expected, graph_def); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg_0 = ops::_Arg(scope.WithOpName("arg0"), DT_BOOL, 0); auto arg_1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto arg_2 = ops::_Arg(scope.WithOpName("arg2"), DT_INT32, 2); auto identity = ops::Identity(scope.WithOpName("cond/Identity"), arg_0); auto cond = ops::Const( scope.WithOpName("cond").WithControlDependencies(identity), 17); auto mul = ops::Mul(scope.WithOpName("cond/Mul"), arg_1, cond); auto retval0 = ops::_Retval(scope.WithOpName("retval0_RetVal"), mul, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK(InstantiateFunctionForTest(then_fn.name(), library, &result)); EXPECT_EQ(DataTypeVector{DT_INT32}, result.ret_types); EXPECT_EQ((DataTypeVector{DT_BOOL, DT_INT32, DT_INT32}), result.arg_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg_0 = ops::_Arg(scope.WithOpName("arg0"), DT_BOOL, 0); auto arg_1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto arg_2 = ops::_Arg(scope.WithOpName("arg2"), DT_INT32, 2); auto identity = ops::Identity(scope.WithOpName("cond/Identity_1"), arg_0); auto cond_1 = ops::Const( scope.WithOpName("cond_1").WithControlDependencies(identity), 23); auto add = ops::Add(scope.WithOpName("cond/false/add"), arg_2, cond_1); auto retval0 = ops::_Retval(scope.WithOpName("retval0_RetVal"), add, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK(InstantiateFunctionForTest(else_fn.name(), library, &result)); EXPECT_EQ(DataTypeVector{DT_INT32}, result.ret_types); EXPECT_EQ((DataTypeVector{DT_BOOL, DT_INT32, DT_INT32}), result.arg_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); for (const NodeDef& node : graph_def.node()) { if (node.op() == "If") { for (absl::string_view attr_name : kAttrsToPropagate) { std::string attr_val; TF_EXPECT_OK(GetNodeAttr(node, attr_name, &attr_val)); EXPECT_EQ(attr_val, "value"); } } } } } void ConditionalTestFixture::RunTest() { Graph graph(OpRegistry::Global()); if (wrap_condition_in_function_) { Scope scope = Scope::NewRootScope().ExitOnError(); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); Graph cond_graph(OpRegistry::Global()); BuildCondGraph(&cond_graph); FunctionDef cond_fdef; TF_ASSERT_OK(GraphToFunctionDef(cond_graph, "cond_fn", &cond_fdef)); FunctionDefLibrary fdef_lib; *(fdef_lib.add_function()) = cond_fdef; TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); NodeDef cond_fn; cond_fn.set_name("cond_node"); cond_fn.set_op("cond_fn"); *(cond_fn.add_input()) = "source"; Status status; scope.graph()->AddNode(cond_fn, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.ToGraph(&graph)); } else { BuildCondGraph(&graph); } FunctionLibraryDefinition library(graph.flib_def()); NodeFilter node_filter = restrict_to_tpu_nodes_ ? [](const Node* n) { return n->attrs().Find("_tpu_replicate"); } : NodeFilter{}; GraphDef optimized_graph_def; graph.ToGraphDef(&optimized_graph_def); TF_ASSERT_OK(FunctionalizeControlFlowForGraphDef( &optimized_graph_def, &library, node_filter, wrap_condition_in_function_)); TF_ASSERT_OK(FunctionalizeControlFlow( &graph, &library, node_filter, wrap_condition_in_function_)); if (wrap_condition_in_function_) { auto pflr = std::make_unique<ProcessFunctionLibraryRuntime>( nullptr, tensorflow::Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, &library, tensorflow::OptimizerOptions()); FunctionLibraryRuntime* flr = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); FunctionLibraryRuntime::Handle handle; string func_name; for (Node* n : graph.nodes()) { if (n->name() == "cond_node") { func_name = n->type_string(); break; } } TF_ASSERT_OK(flr->Instantiate(func_name, AttrSlice(), &handle)); const FunctionBody* body = flr->GetFunctionBody(handle); GraphDef graph_def; body->graph->ToGraphDef(&graph_def); CheckGraphDef(graph_def, library); } else { CheckGraphDef(optimized_graph_def, library); GraphDef converted_graph_def; graph.ToGraphDef(&converted_graph_def); CheckGraphDef(converted_graph_def, library); } } Status FindWhileCondAndBody(const GraphDef& graph, NameAttrList* cond, NameAttrList* body) { for (const NodeDef& node : graph.node()) { if (node.op() == "While") { const NameAttrList* result; TF_RETURN_IF_ERROR(GetNodeAttr(node, "cond", &result)); *cond = *result; TF_RETURN_IF_ERROR(GetNodeAttr(node, "body", &result)); *body = *result; return absl::OkStatus(); } } return errors::NotFound("No While node found in graph"); } TEST(FunctionalizeControlFlow, OneLoopVar) { Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto dummy = ops::Placeholder(scope.WithOpName("Dummy"), DT_INT32); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); auto enter = ops::internal::Enter(scope.WithOpName("while/Enter"), source, "aloop"); auto enter2 = ops::internal::Enter(scope.WithOpName("while/Enter2"), source, "aloop"); auto merge = ops::Merge(scope.WithOpName("while/Merge"), std::initializer_list<Input>{enter, dummy}); auto ten = ops::Const<int32>( scope.WithOpName("while/Less/y").WithControlDependencies(merge.output), 10); auto less = ops::Less(scope.WithOpName("while/Less"), merge.output, ten); auto loop_cond = ops::LoopCond(scope.WithOpName("while/LoopCond"), less); auto switch_ = ops::Switch(scope.WithOpName("while/Switch"), merge.output, loop_cond); auto exit = ops::internal::Exit(scope.WithOpName("while/Exit"), switch_.output_false); auto identity = ops::Identity(scope.WithOpName("while/Identity"), switch_.output_true); auto one = ops::Const<int32>( scope.WithOpName("while/add/y").WithControlDependencies(identity), 1); auto add = ops::Add(scope.WithOpName("while/add"), identity, one); auto next_iteration = ops::NextIteration(scope.WithOpName("while/NextIteration"), add); auto sink = ops::Identity(scope.WithOpName("sink"), exit); scope.graph()->RemoveNode(dummy.node()); scope.graph()->AddEdge(next_iteration.node(), 0, merge.output.node(), 1); TF_EXPECT_OK(scope.ToGraph(&graph)); } for (Node* n : graph.nodes()) { if (n->name() == "while/Enter") { graph.AddControlEdge(n, graph.sink_node()); } } FunctionLibraryDefinition library(OpRegistry::Global(), FunctionDefLibrary()); GraphDef optimized_graph_def; graph.ToGraphDef(&optimized_graph_def); TF_ASSERT_OK( FunctionalizeControlFlowForGraphDef(&optimized_graph_def, &library)); TF_ASSERT_OK(FunctionalizeControlFlow(&graph, &library)); GraphDef converted_graph_def; graph.ToGraphDef(&converted_graph_def); for (const GraphDef& graph_def : {optimized_graph_def, converted_graph_def}) { NameAttrList cond_fn, body_fn; TF_EXPECT_OK(FindWhileCondAndBody(graph_def, &cond_fn, &body_fn)); { Scope scope = Scope::NewRootScope().ExitOnError(); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); auto while_op = ops::While(scope.WithOpName("while/LoopCond"), std::initializer_list<Input>{source}, cond_fn, body_fn); auto sink = ops::Identity(scope.WithOpName("sink"), while_op[0]); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); TF_EXPECT_GRAPH_EQ(expected, graph_def); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto ten = ops::Const<int32>( scope.WithOpName("while/Less/y").WithControlDependencies(arg), 10); auto less = ops::Less(scope.WithOpName("while/Less"), arg, ten); auto retval = ops::_Retval(scope.WithOpName("retval0_RetVal"), less, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(cond_fn.name(), library, &result)); EXPECT_EQ(DataTypeVector{DT_INT32}, result.arg_types); EXPECT_EQ(DataTypeVector{DT_BOOL}, result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto identity = ops::Identity(scope.WithOpName("while/Identity"), arg); auto one = ops::Const<int32>( scope.WithOpName("while/add/y").WithControlDependencies(identity), 1); auto add = ops::Add(scope.WithOpName("while/add"), identity, one); auto retval = ops::_Retval(scope.WithOpName("retval0_RetVal"), add, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(body_fn.name(), library, &result)); EXPECT_EQ(DataTypeVector{DT_INT32}, result.arg_types); EXPECT_EQ(DataTypeVector{DT_INT32}, result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } } } FunctionDef GetNoinlineFunctionDef() { FunctionDef fdef = FunctionDefHelper::Create( "increment_fn", {"x:int32"}, {"add:int32"}, {}, { {{"add/y"}, "Const", {}, {{"dtype", DT_INT32}}}, {{"add_0"}, "Add", {"x", "add/y:output:0"}, {{"T", DT_INT32}}}, }, {{"add", "add_0:z:0"}}); (*fdef.mutable_attr())["_noinline"].set_b(true); return fdef; } Status AddNoinlineFunctionToGraph(const string& node_name, Graph* graph) { FunctionDefLibrary fdef_lib; *(fdef_lib.add_function()) = GetNoinlineFunctionDef(); TF_RETURN_IF_ERROR(graph->AddFunctionLibrary(fdef_lib)); NodeDef increment_fn; increment_fn.set_name(node_name); increment_fn.set_op("increment_fn"); *increment_fn.add_input() = "while/Identity"; *increment_fn.add_input() = "^while/Identity"; Status status; graph->AddNode(increment_fn, &status); return status; } TEST(FunctionalizeControlFlow, NoinlineLoopBody) { const string& noinline_node_name = "while/increment_fn"; Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto dummy = ops::Placeholder(scope.WithOpName("Dummy"), DT_INT32); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); auto enter = ops::internal::Enter(scope.WithOpName("while/Enter"), source, "while/while_context"); auto merge = ops::Merge(scope.WithOpName("while/Merge"), std::initializer_list<Input>{enter, dummy}); auto ten = ops::Const<int32>( scope.WithOpName("while/Less/y").WithControlDependencies(merge.output), 10); auto less = ops::Less(scope.WithOpName("while/Less"), merge.output, ten); auto loop_cond = ops::LoopCond(scope.WithOpName("while/LoopCond"), less); auto switch_ = ops::Switch(scope.WithOpName("while/Switch"), merge.output, loop_cond); auto exit = ops::internal::Exit(scope.WithOpName("while/Exit"), switch_.output_false); auto identity = ops::Identity(scope.WithOpName("while/Identity"), switch_.output_true); TF_ASSERT_OK(AddNoinlineFunctionToGraph(noinline_node_name, scope.graph())); NodeDef next_iter; next_iter.set_name("while/NextIteration"); next_iter.set_op("NextIteration"); *next_iter.add_input() = noinline_node_name; (*next_iter.mutable_attr())["T"].set_type(DT_INT32); Status status; Node* n = scope.graph()->AddNode(next_iter, &status); TF_ASSERT_OK(status); scope.graph()->RemoveNode(dummy.node()); scope.graph()->AddEdge(n, 0, merge.output.node(), 1); TF_ASSERT_OK(scope.ToGraph(&graph)); } FunctionLibraryDefinition library(graph.flib_def()); GraphDef optimized_graph_def; graph.ToGraphDef(&optimized_graph_def); *(optimized_graph_def.mutable_library()->add_function()) = GetNoinlineFunctionDef(); TF_ASSERT_OK( FunctionalizeControlFlowForGraphDef(&optimized_graph_def, &library)); TF_ASSERT_OK(FunctionalizeControlFlow(&graph, &library)); GraphDef converted_graph_def; graph.ToGraphDef(&converted_graph_def); for (const GraphDef& graph_def : {optimized_graph_def, converted_graph_def}) { NameAttrList cond_fn, body_fn; TF_ASSERT_OK(FindWhileCondAndBody(graph_def, &cond_fn, &body_fn)); { Scope scope = Scope::NewRootScope().ExitOnError(); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); auto while_op = ops::While(scope.WithOpName("while/LoopCond"), std::initializer_list<Input>{source}, cond_fn, body_fn); GraphDef expected; TF_ASSERT_OK(scope.ToGraphDef(&expected)); TF_EXPECT_GRAPH_EQ(expected, graph_def); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); TF_ASSERT_OK( AddNoinlineFunctionToGraph(noinline_node_name, scope.graph())); auto identity = ops::Identity(scope.WithOpName("while/Identity"), arg); NodeDef retval; retval.set_name("retval0_RetVal"); retval.set_op(FunctionLibraryDefinition::kRetOp); *retval.add_input() = noinline_node_name; (*retval.mutable_attr())["T"].set_type(DT_INT32); (*retval.mutable_attr())["index"].set_i(0); Status status; scope.graph()->AddNode(retval, &status); TF_ASSERT_OK(status); GraphDef expected; TF_ASSERT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(body_fn.name(), library, &result)); EXPECT_EQ(DataTypeVector{DT_INT32}, result.arg_types); EXPECT_EQ(DataTypeVector{DT_INT32}, result.ret_types); expected.clear_library(); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } } } TEST(FunctionalizeControlFlow, MissingFunctionDefInLibrary) { const string& noinline_node_name = "while/increment_fn"; Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); auto identity = ops::Identity(scope.WithOpName("while/Identity"), source); TF_ASSERT_OK(AddNoinlineFunctionToGraph(noinline_node_name, scope.graph())); TF_ASSERT_OK(scope.ToGraph(&graph)); } FunctionLibraryDefinition library(graph.flib_def()); GraphDef graph_def; graph.ToGraphDef(&graph_def); graph_def.clear_library(); Status status = FunctionalizeControlFlowForGraphDef(&graph_def, &library); EXPECT_EQ(tensorflow::error::NOT_FOUND, status.code()); } TEST(FunctionalizeControlFlow, OneLoopVarWithoutExit) { Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto dummy = ops::Placeholder(scope.WithOpName("Dummy"), DT_INT32); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); auto enter = ops::internal::Enter(scope.WithOpName("while/Enter"), source, "aloop"); auto merge = ops::Merge(scope.WithOpName("while/Merge"), std::initializer_list<Input>{enter, dummy}); auto ten = ops::Const<int32>( scope.WithOpName("while/Less/y").WithControlDependencies(merge.output), 10); auto less = ops::Less(scope.WithOpName("while/Less"), merge.output, ten); auto loop_cond = ops::LoopCond(scope.WithOpName("while/LoopCond"), less); auto switch_ = ops::Switch(scope.WithOpName("while/Switch"), merge.output, loop_cond); auto identity = ops::Identity(scope.WithOpName("while/Identity"), switch_.output_true); auto one = ops::Const<int32>( scope.WithOpName("while/add/y").WithControlDependencies(identity), 1); auto add = ops::Add(scope.WithOpName("while/add"), identity, one); auto next_iteration = ops::NextIteration(scope.WithOpName("while/NextIteration"), add); scope.graph()->RemoveNode(dummy.node()); scope.graph()->AddEdge(next_iteration.node(), 0, merge.output.node(), 1); TF_EXPECT_OK(scope.ToGraph(&graph)); } FunctionLibraryDefinition library(OpRegistry::Global(), FunctionDefLibrary()); GraphDef optimized_graph_def; graph.ToGraphDef(&optimized_graph_def); TF_ASSERT_OK( FunctionalizeControlFlowForGraphDef(&optimized_graph_def, &library)); TF_ASSERT_OK(FunctionalizeControlFlow(&graph, &library)); GraphDef converted_graph_def; graph.ToGraphDef(&converted_graph_def); for (const GraphDef& graph_def : {optimized_graph_def, converted_graph_def}) { NameAttrList cond_fn, body_fn; TF_EXPECT_OK(FindWhileCondAndBody(graph_def, &cond_fn, &body_fn)); { Scope scope = Scope::NewRootScope().ExitOnError(); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32); auto while_op = ops::While(scope.WithOpName("while/LoopCond"), std::initializer_list<Input>{source}, cond_fn, body_fn); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); TF_EXPECT_GRAPH_EQ(expected, graph_def); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto ten = ops::Const<int32>( scope.WithOpName("while/Less/y").WithControlDependencies(arg), 10); auto less = ops::Less(scope.WithOpName("while/Less"), arg, ten); auto retval = ops::_Retval(scope.WithOpName("retval0_RetVal"), less, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(cond_fn.name(), library, &result)); EXPECT_EQ(DataTypeVector{DT_INT32}, result.arg_types); EXPECT_EQ(DataTypeVector{DT_BOOL}, result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto identity = ops::Identity(scope.WithOpName("while/Identity"), arg); auto one = ops::Const<int32>( scope.WithOpName("while/add/y").WithControlDependencies(identity), 1); auto add = ops::Add(scope.WithOpName("while/add"), identity, one); auto retval = ops::_Retval(scope.WithOpName("retval0_RetVal"), add, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(body_fn.name(), library, &result)); EXPECT_EQ(DataTypeVector{DT_INT32}, result.arg_types); EXPECT_EQ(DataTypeVector{DT_INT32}, result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } } } TEST(FunctionalizeControlFlow, TwoLoopVars) { Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto dummy = ops::Placeholder(scope.WithOpName("Dummy"), DT_INT32); auto x = ops::Placeholder(scope.WithOpName("Placeholder/x"), DT_INT32); auto y = ops::Placeholder(scope.WithOpName("Placeholder/y"), DT_INT32); auto enter_x = ops::internal::Enter(scope.WithOpName("while/Enter/x"), x, "aloop"); auto enter_y = ops::internal::Enter(scope.WithOpName("while/Enter/y"), y, "aloop"); auto merge_x = ops::Merge(scope.WithOpName("while/Merge/x"), std::initializer_list<Input>{enter_x, dummy}); auto merge_y = ops::Merge(scope.WithOpName("while/Merge/y"), std::initializer_list<Input>{enter_y, dummy}); auto three = ops::Const<int32>(scope.WithOpName("while/cond/three") .WithControlDependencies(merge_x.output), 3); auto cond_add = ops::Add(scope.WithOpName("while/cond/Add"), merge_x.output, three); auto ten = ops::Const<int32>(scope.WithOpName("while/cond/ten") .WithControlDependencies(merge_x.output), 10); auto less = ops::Less(scope.WithOpName("while/cond/Less"), cond_add, ten); auto loop_cond = ops::LoopCond(scope.WithOpName("while/LoopCond"), less); auto switch_x = ops::Switch(scope.WithOpName("while/Switch/x"), merge_x.output, loop_cond); auto switch_y = ops::Switch(scope.WithOpName("while/Switch/y"), merge_y.output, loop_cond); auto exit_x = ops::internal::Exit(scope.WithOpName("while/Exit/x"), switch_x.output_false); auto exit_y = ops::internal::Exit(scope.WithOpName("while/Exit/y"), switch_y.output_false); auto identity_x = ops::Identity(scope.WithOpName("while/Identity/x"), switch_x.output_true); auto identity_y = ops::Identity(scope.WithOpName("while/Identity/y"), switch_y.output_true); auto one = ops::Const<int32>( scope.WithOpName("while/add/one").WithControlDependencies(identity_x), 1); auto two = ops::Const<int32>( scope.WithOpName("while/mul/two").WithControlDependencies(identity_x), 2); auto add = ops::Add(scope.WithOpName("while/add"), identity_x, one); auto mul = ops::Add(scope.WithOpName("while/mul"), identity_y, two); auto next_iteration_x = ops::NextIteration(scope.WithOpName("while/NextIteration/x"), add); auto next_iteration_y = ops::NextIteration(scope.WithOpName("while/NextIteration/y"), mul); auto sink_x = ops::Identity(scope.WithOpName("sink_x"), exit_x); auto sink_y = ops::Identity(scope.WithOpName("sink_y"), exit_y); scope.graph()->RemoveNode(dummy.node()); scope.graph()->AddEdge(next_iteration_x.node(), 0, merge_x.output.node(), 1); scope.graph()->AddEdge(next_iteration_y.node(), 0, merge_y.output.node(), 1); TF_EXPECT_OK(scope.ToGraph(&graph)); } FunctionLibraryDefinition library(OpRegistry::Global(), FunctionDefLibrary()); GraphDef optimized_graph_def; graph.ToGraphDef(&optimized_graph_def); TF_ASSERT_OK( FunctionalizeControlFlowForGraphDef(&optimized_graph_def, &library)); TF_ASSERT_OK(FunctionalizeControlFlow(&graph, &library)); GraphDef converted_graph_def; graph.ToGraphDef(&converted_graph_def); for (const GraphDef& graph_def : {optimized_graph_def, converted_graph_def}) { NameAttrList cond_fn, body_fn; TF_EXPECT_OK(FindWhileCondAndBody(graph_def, &cond_fn, &body_fn)); { Scope scope = Scope::NewRootScope().ExitOnError(); auto x = ops::Placeholder(scope.WithOpName("Placeholder/x"), DT_INT32); auto y = ops::Placeholder(scope.WithOpName("Placeholder/y"), DT_INT32); auto while_op = ops::While(scope.WithOpName("while/LoopCond"), std::initializer_list<Input>{x, y}, cond_fn, body_fn); auto sink_x = ops::Identity(scope.WithOpName("sink_x"), while_op[0]); auto sink_y = ops::Identity(scope.WithOpName("sink_y"), while_op[1]); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); TF_EXPECT_GRAPH_EQ(expected, graph_def); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto three = ops::Const<int32>(scope.WithOpName("while/cond/three") .WithControlDependencies(arg0.output), 3); auto cond_add = ops::Add(scope.WithOpName("while/cond/Add"), arg0.output, three); auto ten = ops::Const<int32>(scope.WithOpName("while/cond/ten") .WithControlDependencies(arg0.output), 10); auto less = ops::Less(scope.WithOpName("while/cond/Less"), cond_add, ten); auto retval = ops::_Retval(scope.WithOpName("retval0_RetVal"), less, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(cond_fn.name(), library, &result)); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32}), result.arg_types); EXPECT_EQ(DataTypeVector{DT_BOOL}, result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto identity_x = ops::Identity(scope.WithOpName("while/Identity/x"), arg0); auto identity_y = ops::Identity(scope.WithOpName("while/Identity/y"), arg1); auto one = ops::Const<int32>( scope.WithOpName("while/add/one").WithControlDependencies(identity_x), 1); auto two = ops::Const<int32>( scope.WithOpName("while/mul/two").WithControlDependencies(identity_x), 2); auto add = ops::Add(scope.WithOpName("while/add"), identity_x, one); auto mul = ops::Add(scope.WithOpName("while/mul"), identity_y, two); auto retval0 = ops::_Retval(scope.WithOpName("retval0_RetVal"), add, 0); auto retval1 = ops::_Retval(scope.WithOpName("retval1_RetVal"), mul, 1); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(body_fn.name(), library, &result)); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32}), result.arg_types); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32}), result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } } } class ComplexTestFixture : public ::testing::TestWithParam<std::tuple<bool, bool, bool>> { protected: void SetUp() override { restrict_to_tpu_nodes_ = std::get<0>(GetParam()); mark_inner_loop_tpu_ = std::get<1>(GetParam()); mark_outer_loop_tpu_ = std::get<2>(GetParam()); } void RunTest(); private: void CheckOuterNodesFunctionalized(const GraphDef& graph_def, const FunctionLibraryDefinition& library, NameAttrList& inner_cond_fn, NameAttrList& inner_body_fn); void CheckInnerNodesFunctionalized(const GraphDef& graph_def, const FunctionLibraryDefinition& library, const NameAttrList& inner_cond_fn, const NameAttrList& inner_body_fn); bool restrict_to_tpu_nodes_ = false; bool mark_inner_loop_tpu_ = false; bool mark_outer_loop_tpu_ = false; }; TEST_P(ComplexTestFixture, ComplexTests) { RunTest(); } INSTANTIATE_TEST_SUITE_P( FunctionalizeControlFlow, ComplexTestFixture, ::testing::Combine(::testing::Bool(), ::testing::Bool(), ::testing::Bool()), [](const ::testing::TestParamInfo<ComplexTestFixture::ParamType>& info) { bool restrict_to_tpu_nodes = std::get<0>(info.param); bool mark_inner_loop_tpu = std::get<1>(info.param); bool mark_outer_loop_tpu = std::get<2>(info.param); string node_string; if (mark_inner_loop_tpu && mark_outer_loop_tpu) node_string = "both_loops_tpu"; else if (!mark_inner_loop_tpu && !mark_outer_loop_tpu) node_string = "no_loop_tpu"; else node_string = mark_inner_loop_tpu ? "inner_loop_tpu" : "outer_loop_tpu"; string name = absl::StrCat( restrict_to_tpu_nodes ? "restricted_" : "unrestricted_", node_string); return name; }); void ComplexTestFixture::RunTest() { Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto dummy = ops::Placeholder(scope.WithOpName("Dummy"), DT_INT32); auto x = ops::Placeholder(scope.WithOpName("x"), DT_INT32); auto three = ops::Const<int32>(scope.WithOpName("three"), 3); auto y = ops::Add(scope.WithOpName("y"), x, three); auto var = ops::VarHandleOp(scope.WithOpName("Variable"), DT_INT32, TensorShape({})); auto zero = ops::Const<int32>(scope.WithOpName("outer/Const"), 0); auto enter_i = ops::internal::Enter(scope.WithOpName("outer/Enter_i"), zero, "outer"); auto merge_i = ops::Merge(scope.WithOpName("outer/Merge_i"), std::initializer_list<Input>{enter_i, dummy}); auto ten = ops::Const<int32>(scope.WithOpName("outer/Less/y") .WithControlDependencies(merge_i.output), 10); auto less_i = ops::Less(scope.WithOpName("outer/Less_i"), merge_i.output, ten); auto outer_loop_cond = ops::LoopCond(scope.WithOpName("outer/LoopCond"), less_i); auto switch_i = ops::Switch(scope.WithOpName("outer/Switch"), merge_i.output, outer_loop_cond); auto exit_i = ops::internal::Exit(scope.WithOpName("outer/Exit"), switch_i.output_false); auto identity_i = ops::Identity(scope.WithOpName("outer/Identity"), switch_i.output_true); auto enter_x_outer = ops::internal::Enter(scope.WithOpName("outer/Enter_x"), x, "outer", ops::internal::Enter::Attrs().IsConstant(true)); auto enter_k_outer = ops::internal::Enter(scope.WithOpName("outer/Enter_k"), y, "outer", ops::internal::Enter::Attrs().IsConstant(true)); auto enter_var_outer = ops::internal::Enter(scope.WithOpName("outer/Enter_var"), var, "outer", ops::internal::Enter::Attrs().IsConstant(true)); auto one_j = ops::Const<int32>( scope.WithOpName("outer/j").WithControlDependencies(identity_i), 1); auto enter_j = ops::internal::Enter(scope.WithOpName("outer/inner/Enter_j"), one_j, "inner"); auto enter_k = ops::internal::Enter(scope.WithOpName("outer/inner/Enter_k") .WithControlDependencies(identity_i), enter_k_outer, "inner"); auto enter_x = ops::internal::Enter( scope.WithOpName("outer/inner/Enter_x"), enter_x_outer, "inner", ops::internal::Enter::Attrs().IsConstant(true)); auto enter_var = ops::internal::Enter( scope.WithOpName("outer/inner/Enter_var"), enter_var_outer, "inner", ops::internal::Enter::Attrs().IsConstant(true)); auto merge_j = ops::Merge(scope.WithOpName("outer/inner/Merge_j"), std::initializer_list<Input>{enter_j, dummy}); auto merge_k = ops::Merge(scope.WithOpName("outer/inner/Merge_k"), std::initializer_list<Input>{enter_k, dummy}); auto five = ops::Const<int32>(scope.WithOpName("outer/inner/Five") .WithControlDependencies(merge_j.output), 5); auto less_j = ops::Less(scope.WithOpName("outer/inner/Less_j"), merge_j.output, five); auto loop_cond = ops::LoopCond(scope.WithOpName("outer/inner/LoopCond"), less_j); auto switch_j = ops::Switch(scope.WithOpName("outer/inner/Switch_j"), merge_j.output, loop_cond); auto switch_k = ops::Switch(scope.WithOpName("outer/inner/Switch_k"), merge_k.output, loop_cond); auto exit_j = ops::internal::Exit(scope.WithOpName("outer/inner/Exit_j"), switch_j.output_false); auto exit_k = ops::internal::Exit(scope.WithOpName("outer/inner/Exit_k"), switch_k.output_false); auto identity_j = ops::Identity(scope.WithOpName("outer/inner/Identity_j"), switch_j.output_true); auto identity_k = ops::Identity(scope.WithOpName("outer/inner/Identity_k"), switch_k.output_true); auto mul_jk = ops::Mul(scope.WithOpName("outer/inner/mul"), identity_j, identity_k); auto add_jkx = ops::Add(scope.WithOpName("outer/inner/add"), mul_jk, enter_x); auto assign = ops::AssignAddVariableOp( scope.WithOpName("outer/inner/assign_add"), enter_var, add_jkx); auto one = ops::Const<int32>( scope.WithOpName("outer/inner/One") .WithControlDependencies( absl::Span<const Operation>{assign.operation}), 1); auto add_j = ops::Add(scope.WithOpName("outer/inner/add_j"), identity_j, one); auto next_iteration_j = ops::NextIteration( scope.WithOpName("outer/inner/NextIteration_j"), add_j); auto next_iteration_k = ops::NextIteration( scope.WithOpName("outer/inner/NextIteration_k"), identity_k); auto one_outer = ops::Const<int32>( scope.WithOpName("outer/add/y").WithControlDependencies(identity_i), 1); auto add_i = ops::Add(scope.WithOpName("outer/add") .WithControlDependencies(absl::Span<const Operation>{ exit_j.output.op(), exit_k.output.op()}), identity_i, one_outer); auto next_iteration_i = ops::NextIteration(scope.WithOpName("outer/NextIteration"), add_i); auto sink = ops::Identity(scope.WithOpName("sink"), exit_i); scope.graph()->RemoveNode(dummy.node()); scope.graph()->AddEdge(next_iteration_i.node(), 0, merge_i.output.node(), 1); scope.graph()->AddEdge(next_iteration_j.node(), 0, merge_j.output.node(), 1); scope.graph()->AddEdge(next_iteration_k.node(), 0, merge_k.output.node(), 1); TF_EXPECT_OK(scope.ToGraph(&graph)); } for (Node* n : graph.nodes()) { string name = n->name(); bool is_inner_node = name.find("outer/inner/") != string::npos; bool is_outer_node = !is_inner_node && name.find("outer/") != string::npos; if ((is_inner_node && mark_inner_loop_tpu_) || (is_outer_node && mark_outer_loop_tpu_)) { n->AddAttr("_tpu_replicate", "cluster"); } } FunctionLibraryDefinition library(OpRegistry::Global(), FunctionDefLibrary()); GraphDef orig_graph_def, optimized_graph_def; graph.ToGraphDef(&orig_graph_def); optimized_graph_def = orig_graph_def; NodeFilter node_filter = restrict_to_tpu_nodes_ ? [](const Node* n) { return n->attrs().Find("_tpu_replicate"); } : NodeFilter{}; Status status1 = FunctionalizeControlFlowForGraphDef(&optimized_graph_def, &library, node_filter); Status status2 = FunctionalizeControlFlow(&graph, &library, node_filter); ASSERT_EQ(status1, status2); if (restrict_to_tpu_nodes_ && mark_outer_loop_tpu_ && !mark_inner_loop_tpu_) { ASSERT_EQ(errors::IsInternal(status1), true); return; } else { TF_ASSERT_OK(status1); } GraphDef optimized_converted_graph_def; graph.ToGraphDef(&optimized_converted_graph_def); for (const GraphDef& graph_def : {optimized_graph_def, optimized_converted_graph_def}) { NameAttrList inner_cond_fn, inner_body_fn; if (!restrict_to_tpu_nodes_ || (restrict_to_tpu_nodes_ && mark_outer_loop_tpu_ && mark_inner_loop_tpu_)) { CheckOuterNodesFunctionalized(graph_def, library, inner_cond_fn, inner_body_fn); CheckInnerNodesFunctionalized(graph_def, library, inner_cond_fn, inner_body_fn); } else { if (!mark_outer_loop_tpu_ && !mark_inner_loop_tpu_) { TF_EXPECT_GRAPH_EQ(orig_graph_def, graph_def); } else if (!mark_outer_loop_tpu_ && mark_inner_loop_tpu_) { TF_EXPECT_OK( FindWhileCondAndBody(graph_def, &inner_cond_fn, &inner_body_fn)); CheckInnerNodesFunctionalized(graph_def, library, inner_cond_fn, inner_body_fn); } } } } void ComplexTestFixture::CheckOuterNodesFunctionalized( const GraphDef& graph_def, const FunctionLibraryDefinition& library, NameAttrList& inner_cond_fn, NameAttrList& inner_body_fn) { NameAttrList outer_cond_fn, outer_body_fn; TF_EXPECT_OK(FindWhileCondAndBody(graph_def, &outer_cond_fn, &outer_body_fn)); { Scope scope = Scope::NewRootScope().ExitOnError(); auto x = ops::Placeholder(scope.WithOpName("x"), DT_INT32); auto three = ops::Const<int32>(scope.WithOpName("three"), 3); auto y = ops::Add(scope.WithOpName("y"), x, three); auto var = ops::VarHandleOp(scope.WithOpName("Variable"), DT_INT32, TensorShape({})); auto zero = ops::Const<int32>(scope.WithOpName("outer/Const"), 0); auto while_op = ops::While(scope.WithOpName("outer/LoopCond"), std::initializer_list<Input>{zero, y, x, var}, outer_cond_fn, outer_body_fn); auto sink = ops::Identity(scope.WithOpName("sink"), while_op[0]); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); TF_EXPECT_GRAPH_EQ(expected, graph_def); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_INT32, 2); auto arg3 = ops::_Arg(scope.WithOpName("arg3"), DT_RESOURCE, 3); auto ten = ops::Const<int32>( scope.WithOpName("outer/Less/y").WithControlDependencies(arg0.output), 10); auto less = ops::Less(scope.WithOpName("outer/Less_i"), arg0, ten); auto retval = ops::_Retval(scope.WithOpName("retval0_RetVal"), less, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(outer_cond_fn.name(), library, &result)); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}), result.arg_types); EXPECT_EQ(DataTypeVector{DT_BOOL}, result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } { InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(outer_body_fn.name(), library, &result)); TF_EXPECT_OK( FindWhileCondAndBody(result.gdef, &inner_cond_fn, &inner_body_fn)); Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_INT32, 2); auto arg3 = ops::_Arg(scope.WithOpName("arg3"), DT_RESOURCE, 3); auto identity_i = ops::Identity(scope.WithOpName("outer/Identity"), arg0); auto one_j = ops::Const<int32>( scope.WithOpName("outer/j").WithControlDependencies(identity_i), 1); auto while_op = ops::While(scope.WithOpName("outer/inner/LoopCond"), std::initializer_list<Input>{one_j, arg1, arg2, arg3}, inner_cond_fn, inner_body_fn); auto one_outer = ops::Const<int32>( scope.WithOpName("outer/add/y").WithControlDependencies(identity_i), 1); auto add_i = ops::Add(scope.WithOpName("outer/add") .WithControlDependencies(absl::Span<const Operation>{ while_op[0].op(), while_op[1].op()}), identity_i, one_outer); auto retval0 = ops::_Retval(scope.WithOpName("retval0_RetVal"), add_i, 0); auto retval1 = ops::_Retval(scope.WithOpName("retval1_RetVal"), arg1, 1); auto retval2 = ops::_Retval(scope.WithOpName("retval2_RetVal"), arg2, 2); auto retval3 = ops::_Retval(scope.WithOpName("retval3_RetVal"), arg3, 3); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}), result.arg_types); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}), result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } } void ComplexTestFixture::CheckInnerNodesFunctionalized( const GraphDef& graph_def, const FunctionLibraryDefinition& library, const NameAttrList& inner_cond_fn, const NameAttrList& inner_body_fn) { { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_INT32, 2); auto arg3 = ops::_Arg(scope.WithOpName("arg3"), DT_RESOURCE, 3); auto five = ops::Const<int32>( scope.WithOpName("outer/inner/Five").WithControlDependencies(arg0), 5); auto less_j = ops::Less(scope.WithOpName("outer/inner/Less_j"), arg0, five); auto retval = ops::_Retval(scope.WithOpName("retval0_RetVal"), less_j, 0); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(inner_cond_fn.name(), library, &result)); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}), result.arg_types); EXPECT_EQ(DataTypeVector{DT_BOOL}, result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_INT32, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_INT32, 2); auto arg3 = ops::_Arg(scope.WithOpName("arg3"), DT_RESOURCE, 3); auto identity_j = ops::Identity(scope.WithOpName("outer/inner/Identity_j"), arg0); auto identity_k = ops::Identity(scope.WithOpName("outer/inner/Identity_k"), arg1); auto mul_jk = ops::Mul(scope.WithOpName("outer/inner/mul"), identity_j, identity_k); auto add_jkx = ops::Add(scope.WithOpName("outer/inner/add"), mul_jk, arg2); auto assign = ops::AssignAddVariableOp( scope.WithOpName("outer/inner/assign_add"), arg3, add_jkx); auto one = ops::Const<int32>( scope.WithOpName("outer/inner/One") .WithControlDependencies( absl::Span<const Operation>{assign.operation}), 1); auto add_j = ops::Add(scope.WithOpName("outer/inner/add_j"), identity_j, one); auto retval0 = ops::_Retval(scope.WithOpName("retval0_RetVal"), add_j, 0); auto retval1 = ops::_Retval(scope.WithOpName("retval1_RetVal"), identity_k, 1); auto retval2 = ops::_Retval(scope.WithOpName("retval2_RetVal"), arg2, 2); auto retval3 = ops::_Retval(scope.WithOpName("retval3_RetVal"), arg3, 3); GraphDef expected; TF_EXPECT_OK(scope.ToGraphDef(&expected)); InstantiationResultForTest result; TF_EXPECT_OK( InstantiateFunctionForTest(inner_body_fn.name(), library, &result)); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}), result.arg_types); EXPECT_EQ((DataTypeVector{DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}), result.ret_types); TF_EXPECT_GRAPH_EQ(expected, result.gdef); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/functionalize_control_flow.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/functionalize_control_flow_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1ebc940d-e527-4074-8f1f-bd379b98050d
cpp
tensorflow/tensorflow
hlo_matchers
tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.cc
third_party/xla/xla/hlo/utils/hlo_matchers_test.cc
#include "tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.h" #include <cassert> #include <cstddef> #include <cstdint> #include <cstdlib> #include <optional> #include <utility> #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributeInterfaces.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/DialectConversion.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir { namespace odml { namespace { class StridedArrayViewBase { protected: StridedArrayViewBase(ArrayRef<int64_t> shape, ArrayRef<int64_t> index, int64_t axis) { assert(shape.size() == index.size()); assert(axis < shape.size()); assert(axis >= 0); assert(index[axis] == 0); offset_ = IndexToOffset(shape, index); stride_ = StrideForAxis(shape, axis); size_ = shape[axis]; } int64_t size() const { return size_; } static std::optional<SmallVector<int64_t>> NextTensorIndex( SmallVector<int64_t> index, ArrayRef<int64_t> shape, int64_t fixed_axis) { #ifndef NDEBUG assert(shape.size() == index.size()); assert(fixed_axis < shape.size()); assert(fixed_axis >= 0); assert(index[fixed_axis] == 0); for (size_t i = 0; i < shape.size(); ++i) { assert(index[i] < shape[i]); assert(index[i] >= 0); } #endif for (int64_t dim = shape.size() - 1; dim >= 0; --dim) { if (dim == fixed_axis) continue; ++index[dim]; if (index[dim] < shape[dim]) return std::move(index); index[dim] = 0; } return std::nullopt; } protected: int64_t OffsetForIndex(int64_t i) const { return offset_ + i * stride_; } private: static int64_t StrideForAxis(ArrayRef<int64_t> shape, int64_t axis) { int64_t stride = 1; for (int64_t dim = shape.size() - 1; dim > axis; --dim) { stride *= shape[dim]; } return stride; } static int64_t IndexToOffset(ArrayRef<int64_t> shape, ArrayRef<int64_t> index) { #ifndef NDEBUG assert(shape.size() == index.size()); for (size_t i = 0; i < shape.size(); ++i) { assert(index[i] < shape[i]); assert(index[i] >= 0); } #endif int64_t offset = 0; int64_t stride = 1; for (int64_t dim = shape.size() - 1; dim >= 0; --dim) { offset += index[dim] * stride; stride *= shape[dim]; } return offset; } int64_t offset_; int64_t stride_; int64_t size_; }; template <typename T> class StridedArrayView; template <> class StridedArrayView<DenseIntElementsAttr> : StridedArrayViewBase { public: StridedArrayView(const DenseIntElementsAttr& data, ArrayRef<int64_t> shape, ArrayRef<int64_t> index, int64_t axis) : StridedArrayViewBase(shape, index, axis), data_(data) { int64_t element_count = 1; for (int64_t i = 0, e = shape.size(); i < e; ++i) { element_count *= shape[i]; } assert(data.getNumElements() == element_count); } using StridedArrayViewBase::NextTensorIndex; using StridedArrayViewBase::size; int64_t operator[](int64_t i) const { return data_.getValues<APInt>()[OffsetForIndex(i)].getSExtValue(); } private: const DenseIntElementsAttr& data_; }; bool MatchIotaBroadCastInDim(DenseIntElementsAttr dimensions, Value iota) { auto iota_broadcast = dyn_cast_or_null<mhlo::BroadcastInDimOp>(iota.getDefiningOp()); if (!iota_broadcast || iota_broadcast.getBroadcastDimensions() != dimensions) return false; if (!isa_and_nonnull<mhlo::IotaOp>( iota_broadcast.getOperand().getDefiningOp())) return false; return true; } bool MatchIotaConst(DenseIntElementsAttr dimensions, Value iota) { DenseIntElementsAttr iota_const_attr; if (!matchPattern(iota, m_Constant(&iota_const_attr))) return false; auto iota_type = iota_const_attr.getType(); auto iota_shape = iota_type.getShape(); auto reduce_dim = (*dimensions.value_begin<APInt>()).getSExtValue(); if (reduce_dim < 0) reduce_dim += iota_type.getRank(); auto index = std::optional<SmallVector<int64_t>>(std::in_place, iota_type.getRank()); while (index.has_value()) { StridedArrayView<DenseIntElementsAttr> array_view( iota_const_attr, iota_shape, *index, reduce_dim); for (int64_t i = 0; i < array_view.size(); ++i) { if (array_view[i] != i) return false; } index = StridedArrayView<DenseIntElementsAttr>::NextTensorIndex( std::move(*index), iota_shape, reduce_dim); } return true; } bool MatchReshapedIota(DenseIntElementsAttr dimensions, Value iota) { if (dimensions.getNumElements() != 1) return false; auto reshape_op = dyn_cast_or_null<mhlo::ReshapeOp>(iota.getDefiningOp()); if (!reshape_op) return false; auto operand_type = mlir::dyn_cast<RankedTensorType>(reshape_op.getOperand().getType()); if (!operand_type || !operand_type.hasStaticShape()) return false; auto reshape_type = mlir::cast<RankedTensorType>(reshape_op.getType()); if (operand_type.getRank() != 1) return false; if (!dyn_cast_or_null<mhlo::IotaOp>(reshape_op.getOperand().getDefiningOp())) return false; int64_t iota_dim = (*dimensions.value_begin<APInt>()).getSExtValue(); for (int64_t i = 0, e = reshape_type.getRank(); i < e; ++i) { if (i == iota_dim) { if (reshape_type.getDimSize(i) != operand_type.getDimSize(0)) return false; } else if (reshape_type.getDimSize(i) != 1) { return false; } } return true; } bool MatchSingleIota(DenseIntElementsAttr dimensions, Value iota) { auto iota_op = dyn_cast_or_null<mhlo::IotaOp>(iota.getDefiningOp()); if (!iota_op || dimensions.getNumElements() != 1) return false; auto dim = *dimensions.value_begin<APInt>(); return dim == iota_op.getIotaDimension(); } bool MatchConstIotaBroadCastInDim(DenseIntElementsAttr dimensions, Value iota) { if (dimensions.getNumElements() != 1) return false; auto iota_broadcast = dyn_cast_or_null<mhlo::BroadcastInDimOp>(iota.getDefiningOp()); if (!iota_broadcast || iota_broadcast.getBroadcastDimensions() != dimensions) return false; DenseElementsAttr range_const; if (!matchPattern(iota_broadcast.getOperand(), m_Constant(&range_const))) return false; int index = 0; for (auto value : range_const.getValues<APInt>()) { if (value != index++) return false; } return true; } } bool MatchIota(DenseIntElementsAttr dimensions, Value iota) { return MatchSingleIota(dimensions, iota) || MatchIotaBroadCastInDim(dimensions, iota) || MatchReshapedIota(dimensions, iota) || MatchConstIotaBroadCastInDim(dimensions, iota) || MatchIotaConst(dimensions, iota); } } }
#include "xla/hlo/utils/hlo_matchers.h" #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace op = xla::testing::opcode_matchers; using ::testing::_; using ::testing::Eq; using ::testing::HasSubstr; namespace xla { namespace { using HloMatchersTest = HloTestBase; std::string DescribeHloMatcher( const ::testing::Matcher<const HloInstruction*>& m) { std::stringstream ss; m.DescribeTo(&ss); return ss.str(); } template <typename M, typename T> std::string Explain(const T& t, const M& m) { ::testing::StringMatchResultListener listener; EXPECT_THAT(t, ::testing::Not(m)); EXPECT_FALSE(m.MatchAndExplain(t, &listener)); return listener.str(); } TEST_F(HloMatchersTest, Test) { auto shape = ShapeUtil::MakeShape(F32, {1}); auto param = HloInstruction::CreateParameter(0, shape, "param"); auto mul = HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, param.get(), param.get()); auto add = HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param.get(), mul.get()); EXPECT_THAT(add.get(), op::Add()); EXPECT_THAT(add.get(), op::Add(op::Parameter(), op::Multiply())); EXPECT_THAT(add.get(), op::Add(op::Parameter(), op::Multiply(_, op::Parameter()))); EXPECT_THAT( Explain(add.get(), op::Parameter()), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply))")); EXPECT_THAT( Explain(add.get(), op::Add(op::Parameter())), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply)) " "has too many operands (got 2, want 1)")); EXPECT_THAT( Explain(add.get(), op::Add(op::Parameter(), op::Parameter())), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply))" "\noperand 1:\n\t" "%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} %param)\n" "doesn't match expected:\n\t" "parameter" ", (%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} " "%param))")); EXPECT_THAT( Explain(add.get(), op::Add(op::Parameter(), op::Multiply(op::Add(), op::Add()))), Eq("(%add = f32[1]{0} add(f32[1]{0} %param, f32[1]{0} %multiply))" "\noperand 1:\n\t" "%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} %param)\n" "doesn't match expected:\n\t" "multiply(add, add)" ", (%multiply = f32[1]{0} multiply(f32[1]{0} %param, f32[1]{0} " "%param))\n" "operand 0:\n\t" "%param = f32[1]{0} parameter(0)\n" "doesn't match expected:\n\t" "add, (%param = f32[1]{0} parameter(0))")); } TEST_F(HloMatchersTest, CustomCallMatcher) { auto c1 = HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>({1, 2, 3})); auto c2 = HloInstruction::CreateConstant(LiteralUtil::CreateR1<int32_t>({1, 2, 3})); auto call = HloInstruction::CreateCustomCall( ShapeUtil::MakeShape(F32, {1}), {c1.get(), c2.get()}, "foo_target"); EXPECT_THAT(call.get(), op::CustomCall()); EXPECT_THAT(call.get(), op::CustomCall(c1.get(), c2.get())); EXPECT_THAT(call.get(), op::CustomCall("foo_target")); EXPECT_THAT(call.get(), op::CustomCall("foo_target", c1.get(), c2.get())); EXPECT_THAT(call.get(), op::CustomCall(::testing::StartsWith("foo"))); EXPECT_THAT(call.get(), op::CustomCall(::testing::Not(::testing::StartsWith("bar")))); EXPECT_THAT(call.get(), ::testing::Not(op::CustomCall(c1.get()))); EXPECT_THAT(call.get(), ::testing::Not(op::CustomCall(::testing::StartsWith("bar")))); EXPECT_THAT(Explain(call.get(), op::CustomCall("bar")), "(%custom-call = f32[1]{0} custom-call(f32[3]{0} %constant, " "s32[3]{0} %constant), custom_call_target=\"foo_target\") " "custom-call with call target that isn't equal to \"bar\""); EXPECT_THAT(DescribeHloMatcher(op::CustomCall("foo_target")), R"(custom-call with call target that is equal to "foo_target")"); } TEST_F(HloMatchersTest, ShapeMatcher) { auto p0 = HloInstruction::CreateParameter( 0, ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 7}, {0, 1}), "param"); EXPECT_THAT(p0.get(), op::Shape(ShapeUtil::MakeShape(F32, {5, 7}))); EXPECT_THAT(p0.get(), op::Shape("f32[5,7]")); EXPECT_THAT( p0.get(), ::testing::Not(op::ShapeWithLayout(ShapeUtil::MakeShape(F32, {5, 7})))); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout("f32[5,7]"))); EXPECT_THAT(p0.get(), ::testing::Not(op::Shape(ShapeUtil::MakeShape(F32, {7, 5})))); EXPECT_THAT(p0.get(), ::testing::Not(op::Shape("f32[7,5]"))); EXPECT_THAT( p0.get(), ::testing::Not(op::ShapeWithLayout(ShapeUtil::MakeShape(F32, {7, 5})))); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout("f32[7,5]"))); EXPECT_THAT(p0.get(), op::Shape(ShapeUtil::MakeShapeWithDenseLayout( F32, {5, 7}, {0, 1}))); EXPECT_THAT(p0.get(), op::Shape("f32[5,7]{0,1}")); EXPECT_THAT(p0.get(), op::ShapeWithLayout(ShapeUtil::MakeShapeWithDenseLayout( F32, {5, 7}, {0, 1}))); EXPECT_THAT(p0.get(), op::ShapeWithLayout("f32[5,7]{0,1}")); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 7}, {1, 0})))); EXPECT_THAT(p0.get(), ::testing::Not(op::ShapeWithLayout("f32[5,7]{1,0}"))); EXPECT_THAT(Explain(p0.get(), op::Shape(ShapeUtil::MakeShape(F32, {7, 5}))), "%param = f32[5,7]{0,1} parameter(0) has incorrect shape " "(expected: f32[7,5])"); EXPECT_THAT( Explain(p0.get(), op::ShapeWithLayout(ShapeUtil::MakeShapeWithDenseLayout( F32, {7, 5}, {1, 0}))), "%param = f32[5,7]{0,1} parameter(0) has incorrect shape " "(expected: f32[7,5]{1,0})"); } TEST_F(HloMatchersTest, ShardingMatcher) { auto p0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {5}), "param.0"); p0->clear_sharding(); auto p1 = HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {7}), "param.1"); p1->set_sharding(HloSharding::AssignDevice(1)); auto tuple_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {7}), ShapeUtil::MakeShape(S32, {9}), ShapeUtil::MakeShape(F32, {11})}); auto p2 = HloInstruction::CreateParameter(1, tuple_shape, "param.2"); Array<int64_t> assignment({2}); assignment.SetValues({0, 1}); auto sharding = HloSharding::Tuple( tuple_shape, {HloSharding::Tile(assignment), HloSharding::AssignDevice(1), HloSharding::Replicate()}); p2->set_sharding(sharding); EXPECT_THAT(p0.get(), op::NoSharding()); EXPECT_THAT(p0.get(), ::testing::Not(op::Sharding(HloSharding::AssignDevice(1)))); EXPECT_THAT(p1.get(), ::testing::Not(op::NoSharding())); EXPECT_THAT(p1.get(), ::testing::Not(op::Sharding(HloSharding::AssignDevice(0)))); EXPECT_THAT(p1.get(), op::Sharding(HloSharding::AssignDevice(1))); EXPECT_THAT( p2.get(), op::Sharding("{{devices=[2]0,1}, {maximal device=1}, {replicated}}")); EXPECT_THAT(Explain(p0.get(), op::Sharding(HloSharding::AssignDevice(1))), "%param.0 = f32[5]{0} parameter(0) has no sharding (expected: " "{maximal device=1})"); EXPECT_THAT(Explain(p1.get(), op::NoSharding()), "%param.1 = f32[7]{0} parameter(1), sharding={maximal device=1} " "expected to have no sharding."); EXPECT_THAT(Explain(p1.get(), op::Sharding(HloSharding::AssignDevice(0))), "%param.1 = f32[7]{0} parameter(1), sharding={maximal device=1} " "has incorrect sharding (expected: {maximal device=0})"); } TEST_F(HloMatchersTest, DotMatcher) { std::string hlo_string = R"( HloModule DotOperationFusion_TransposeFusion ENTRY DotOperationFusion_TransposeFusion { arg0 = f32[1,256] parameter(0) arg1 = f32[256,1024] parameter(1) ROOT dot = f32[1,1024] dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Dot(op::Parameter(0), op::Parameter(1), 1, 0)); EXPECT_THAT( Explain(root, op::Dot(op::Parameter(0), op::Parameter(1), 0, 0)), "(%dot = f32[1,1024]{1,0} dot(f32[1,256]{1,0} %arg0, f32[256,1024]{1,0} " "%arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0}) has wrong " "lhs_contracting_dimensions (got {1} want {0})"); EXPECT_THAT( Explain(root, op::Dot(op::Parameter(0), op::Parameter(1), 1, 1)), "(%dot = f32[1,1024]{1,0} dot(f32[1,256]{1,0} %arg0, f32[256,1024]{1,0} " "%arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0}) has wrong " "rhs_contracting_dimensions (got {0} want {1})"); } TEST_F(HloMatchersTest, ComparisonMatcher) { auto shape = ShapeUtil::MakeShape(F32, {1}); auto p0 = HloInstruction::CreateParameter(0, shape, "param.0"); auto p1 = HloInstruction::CreateParameter(1, shape, "param.1"); auto eq = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kEq); auto ne = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kNe); auto add = HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0.get(), p1.get()); auto le = HloInstruction::CreateCompare(shape, p0.get(), add.get(), ComparisonDirection::kLe); EXPECT_THAT(eq.get(), op::Compare()); EXPECT_THAT(eq.get(), op::Eq()); EXPECT_THAT(ne.get(), op::Compare()); EXPECT_THAT(ne.get(), op::Ne()); EXPECT_THAT(le.get(), op::Compare(op::Parameter(0), op::Add(op::Parameter(0), op::Parameter(1)))); EXPECT_THAT(le.get(), op::Le(op::Parameter(0), op::Add(op::Parameter(0), op::Parameter(1)))); EXPECT_THAT(Explain(eq.get(), op::Add()), Eq("(%compare = f32[1]{0} compare(f32[1]{0} %param.0, " "f32[1]{0} %param.1), direction=EQ)")); EXPECT_THAT(Explain(eq.get(), op::Ne()), Eq("(%compare = f32[1]{0} compare(f32[1]{0} %param.0, " "f32[1]{0} %param.1), direction=EQ) " "has wrong comparison direction (got EQ, want NE)")); } TEST_F(HloMatchersTest, AsyncCopyMatcher) { Shape shape_memspace1 = ShapeUtil::MakeShapeWithDenseLayout( F32, {16}, {0}, {}, 1, 0, 1); Shape shape_memspace2 = ShapeUtil::MakeShapeWithDenseLayout( F32, {16}, {0}, {}, 1, 0, 2); auto p0 = HloInstruction::CreateParameter(0, shape_memspace1, "p0"); auto copy_start = HloInstruction::CreateCopyStart( ShapeUtil::MakeTupleShape( {shape_memspace2, shape_memspace1, ShapeUtil::MakeShape(U32, {})}), p0.get()); auto copy_done = HloInstruction::CreateUnary( shape_memspace2, HloOpcode::kCopyDone, copy_start.get()); EXPECT_THAT(copy_done.get(), op::AsyncCopy(2, 1, op::Parameter(0))); EXPECT_THAT(Explain(copy_start.get(), op::AsyncCopy(2, 1, op::Parameter(0))), Eq("(%copy-start = (f32[16]{0:S(2)}, f32[16]{0:S(1)}, u32[]) " "copy-start(f32[16]{0:S(1)} %p0))")); EXPECT_THAT(Explain(copy_done.get(), op::AsyncCopy(3, 1, op::Parameter(0))), "(%copy-done = f32[16]{0:S(2)} copy-done((f32[16]{0:S(2)}, " "f32[16]{0:S(1)}, u32[]) " "%copy-start)) " "copies to memory space 2, expected 3"); EXPECT_THAT(Explain(copy_done.get(), op::AsyncCopy(2, 3, op::Parameter(0))), "(%copy-done = f32[16]{0:S(2)} copy-done((f32[16]{0:S(2)}, " "f32[16]{0:S(1)}, u32[]) " "%copy-start)) " "is in the memory space 1, expected 3"); } TEST_F(HloMatchersTest, ConstantMatcher) { std::string hlo_string = R"( HloModule Constant ENTRY main { ROOT x = u32[2] constant({1, 2}) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Constant()); EXPECT_THAT(root, op::Constant(LiteralUtil::CreateR1<uint32_t>({1, 2}))); EXPECT_THAT(root, ::testing::Not( op::Constant(LiteralUtil::CreateR1<uint32_t>({1, 1})))); EXPECT_THAT(Explain(root, op::Constant(LiteralUtil::CreateR0<uint32_t>(1))), "(%x = u32[2]{0} constant({1, 2})) has wrong value (got u32[2] " "{1, 2}, want u32[] 1)"); } TEST_F(HloMatchersTest, ReplicaGroupsMatcher) { Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); std::unique_ptr<HloInstruction> p0 = HloInstruction::CreateParameter(0, shape, "param"); std::vector<ReplicaGroup> replica_groups(2); replica_groups[0].add_replica_ids(0); replica_groups[0].add_replica_ids(2); replica_groups[1].add_replica_ids(1); replica_groups[1].add_replica_ids(3); std::unique_ptr<HloInstruction> all_to_all = HloInstruction::CreateAllToAll( shape, {p0.get()}, CollectiveDeviceList(replica_groups), false, std::nullopt); EXPECT_THAT(Explain(p0.get(), op::ReplicaGroups({})), "%param = f32[5,7]{1,0} parameter(0) not a collective op"); EXPECT_THAT(Explain(all_to_all.get(), op::ReplicaGroups({{0, 1}, {2, 3}})), "%all-to-all = f32[5,7]{1,0} all-to-all(f32[5,7]{1,0} %param), " "replica_groups={{0,2},{1,3}} has incorrect replica_groups " "(expected: {{0,1},{2,3}})"); EXPECT_THAT(all_to_all.get(), op::ReplicaGroups({{0, 2}, {1, 3}})); } TEST_F(HloMatchersTest, SourceTargetPairsMatcher) { Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); std::unique_ptr<HloInstruction> p0 = HloInstruction::CreateParameter(0, shape, "param"); std::vector<std::pair<int64_t, int64_t>> source_target_pairs = { {0, 1}, {2, 3}, {1, 2}}; std::unique_ptr<HloInstruction> cp = HloInstruction::CreateCollectivePermute( shape, p0.get(), source_target_pairs, std::nullopt); EXPECT_THAT(Explain(p0.get(), op::SourceTargetPairs({{0, 1}})), HasSubstr("not a collective permute")); EXPECT_THAT(Explain(cp.get(), op::SourceTargetPairs({{0, 1}, {2, 3}})), HasSubstr("source_target_pairs (expected: {{0,1},{2,3}}")); EXPECT_THAT(cp.get(), op::SourceTargetPairs({{0, 1}, {2, 3}, {1, 2}})); } TEST_F(HloMatchersTest, MetadataMatcher) { Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); std::unique_ptr<HloInstruction> p0 = HloInstruction::CreateParameter(0, shape, "param"); OpMetadata metadata; metadata.set_op_type("op_type1"); metadata.set_op_name("op_name1"); p0->set_metadata(metadata); OpMetadata actual_opname; actual_opname.set_op_type("op_type1"); actual_opname.set_op_name("op_name2"); OpMetadata actual_source_file; actual_source_file.set_op_type("op_type1"); actual_source_file.set_op_name("op_name1"); actual_source_file.set_source_file("source_file"); OpMetadata actual_optype; actual_optype.set_op_type("op_type2"); actual_optype.set_op_name("op_name1"); OpMetadata actual_source_line; actual_source_line.set_op_type("op_type1"); actual_source_line.set_op_name("op_name1"); actual_source_line.set_source_line(1); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_opname)), HasSubstr("has wrong metadata (got op_name1, want op_name2)")); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_source_file)), HasSubstr("has wrong metadata (got " ", want source_file)")); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_optype)), HasSubstr("has wrong metadata (got" " op_type1, want op_type2)")); EXPECT_THAT(Explain(p0.get(), op::Metadata(actual_source_line)), HasSubstr("has wrong metadata (got 0" ", want 1)")); EXPECT_THAT(DescribeHloMatcher(op::Metadata(p0->metadata())), R"( (metadata: op_type1 op_name1 0))"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/utils/hlo_matchers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2daed6fc-9200-44fa-9d04-a8857c2e409c
cpp
tensorflow/tensorflow
cpu_utils
third_party/xla/third_party/tsl/tsl/platform/profile_utils/cpu_utils.cc
third_party/xla/third_party/tsl/tsl/platform/profile_utils/cpu_utils_test.cc
#include "tsl/platform/profile_utils/cpu_utils.h" #include <fstream> #include <limits> #include <mutex> #if defined(_WIN32) #include <windows.h> #endif #if defined(__APPLE__) #include <sys/sysctl.h> #endif #include "absl/base/call_once.h" #include "tsl/platform/logging.h" #include "tsl/platform/profile_utils/android_armv7a_cpu_utils_helper.h" namespace tsl { namespace profile_utils { constexpr int64_t CpuUtils::INVALID_FREQUENCY; static ICpuUtilsHelper* cpu_utils_helper_instance_ = nullptr; #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \ (defined(__s390x__)) uint64 CpuUtils::GetCycleCounterFrequency() { static const uint64 cpu_frequency = GetCycleCounterFrequencyImpl(); return cpu_frequency; } #else int64_t CpuUtils::GetCycleCounterFrequency() { static const int64_t cpu_frequency = GetCycleCounterFrequencyImpl(); return cpu_frequency; } #endif double CpuUtils::GetMicroSecPerClock() { static const double micro_sec_per_clock = (1000.0 * 1000.0) / static_cast<double>(GetCycleCounterFrequency()); return micro_sec_per_clock; } void CpuUtils::ResetClockCycle() { GetCpuUtilsHelperSingletonInstance().ResetClockCycle(); } void CpuUtils::EnableClockCycleProfiling() { GetCpuUtilsHelperSingletonInstance().EnableClockCycleProfiling(); } void CpuUtils::DisableClockCycleProfiling() { GetCpuUtilsHelperSingletonInstance().DisableClockCycleProfiling(); } std::chrono::duration<double> CpuUtils::ConvertClockCycleToTime( const int64_t clock_cycle) { return std::chrono::duration<double>(static_cast<double>(clock_cycle) / GetCycleCounterFrequency()); } int64_t CpuUtils::GetCycleCounterFrequencyImpl() { #if defined(__ANDROID__) return GetCpuUtilsHelperSingletonInstance().CalculateCpuFrequency(); #elif defined(__linux__) std::ifstream cpuinfo("/proc/cpuinfo"); if (!cpuinfo) { LOG(WARNING) << "Failed to open /proc/cpuinfo"; return INVALID_FREQUENCY; } string line; while (std::getline(cpuinfo, line)) { double cpu_freq = 0.0; int retval = 0; double freq_factor = 2.0; #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) retval = sscanf(line.c_str(), "clock : %lfMHz", &cpu_freq); freq_factor = 1.0; #elif defined(__s390x__) retval = sscanf(line.c_str(), "bogomips per cpu: %lf", &cpu_freq); #elif defined(__aarch64__) retval = sscanf(line.c_str(), "BogoMIPS : %lf", &cpu_freq); #else retval = sscanf(line.c_str(), "bogomips : %lf", &cpu_freq); #endif if (retval > 0) { const double freq_ghz = cpu_freq / 1000.0 / freq_factor; if (retval != 1 || freq_ghz < 0.01) { LOG(WARNING) << "Failed to get CPU frequency: " << freq_ghz << " GHz"; return INVALID_FREQUENCY; } const int64_t freq_n = static_cast<int64_t>(freq_ghz * 1000.0 * 1000.0 * 1000.0); VLOG(1) << "CPU Frequency: " << freq_n << " Hz"; return freq_n; } } LOG(WARNING) << "Failed to find bogomips or clock in /proc/cpuinfo; cannot determine " "CPU frequency"; return INVALID_FREQUENCY; #elif defined(__APPLE__) int64_t freq_hz = 0; size_t freq_hz_size = sizeof(freq_hz); int retval = sysctlbyname("hw.cpufrequency_max", &freq_hz, &freq_hz_size, NULL, 0); if (retval != 0 || freq_hz < 1e6) { int64_t tbfrequency = 0; size_t tbfrequency_size = sizeof(tbfrequency); retval = sysctlbyname("hw.tbfrequency", &tbfrequency, &tbfrequency_size, NULL, 0); if (retval == 0) { clockinfo clock_info; size_t clock_info_size = sizeof(clock_info); retval = sysctlbyname("kern.clockrate", &clock_info, &clock_info_size, NULL, 0); if (retval == 0) { freq_hz = clock_info.hz * tbfrequency; } } if (retval != 0 || freq_hz < 1e6) { LOG(WARNING) << "Failed to get CPU frequency: " << freq_hz << " Hz"; return INVALID_FREQUENCY; } } return freq_hz; #elif defined(_WIN32) LARGE_INTEGER freq; QueryPerformanceFrequency(&freq); return freq.QuadPart; #else return INVALID_FREQUENCY; #endif } ICpuUtilsHelper& CpuUtils::GetCpuUtilsHelperSingletonInstance() { static absl::once_flag flag; absl::call_once(flag, []() { if (cpu_utils_helper_instance_ != nullptr) { LOG(FATAL) << "cpu_utils_helper_instance_ is already instantiated."; } #if defined(__ANDROID__) && (__ANDROID_API__ >= 21) && \ (defined(__ARM_ARCH_7A__) || defined(__aarch64__)) cpu_utils_helper_instance_ = new AndroidArmV7ACpuUtilsHelper(); #else cpu_utils_helper_instance_ = new DefaultCpuUtilsHelper(); #endif }); return *cpu_utils_helper_instance_; } } }
#include "tsl/platform/profile_utils/cpu_utils.h" #include "tsl/platform/logging.h" #include "tsl/platform/profile_utils/clock_cycle_profiler.h" #include "tsl/platform/test.h" namespace tsl { namespace profile_utils { static constexpr bool DBG = false; class CpuUtilsTest : public ::testing::Test { protected: void SetUp() override { CpuUtils::EnableClockCycleProfiling(); } }; TEST_F(CpuUtilsTest, SetUpTestCase) {} TEST_F(CpuUtilsTest, TearDownTestCase) {} TEST_F(CpuUtilsTest, CheckGetCurrentClockCycle) { static constexpr int LOOP_COUNT = 10; const uint64 start_clock_count = CpuUtils::GetCurrentClockCycle(); CHECK_GT(start_clock_count, 0); uint64 prev_clock_count = start_clock_count; for (int i = 0; i < LOOP_COUNT; ++i) { const uint64 clock_count = CpuUtils::GetCurrentClockCycle(); CHECK_GE(clock_count, prev_clock_count); prev_clock_count = clock_count; } const uint64 end_clock_count = CpuUtils::GetCurrentClockCycle(); if (DBG) { LOG(INFO) << "start clock = " << start_clock_count; LOG(INFO) << "end clock = " << end_clock_count; LOG(INFO) << "average clock = " << ((end_clock_count - start_clock_count) / LOOP_COUNT); } } TEST_F(CpuUtilsTest, CheckCycleCounterFrequency) { #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \ (defined(__s390x__)) const uint64 cpu_frequency = CpuUtils::GetCycleCounterFrequency(); CHECK_GT(cpu_frequency, 0); CHECK_NE(cpu_frequency, unsigned(CpuUtils::INVALID_FREQUENCY)); #else const int64_t cpu_frequency = CpuUtils::GetCycleCounterFrequency(); CHECK_GT(cpu_frequency, 0); CHECK_NE(cpu_frequency, CpuUtils::INVALID_FREQUENCY); #endif if (DBG) { LOG(INFO) << "Cpu frequency = " << cpu_frequency; } } TEST_F(CpuUtilsTest, CheckMicroSecPerClock) { const double micro_sec_per_clock = CpuUtils::GetMicroSecPerClock(); CHECK_GT(micro_sec_per_clock, 0.0); if (DBG) { LOG(INFO) << "Micro sec per clock = " << micro_sec_per_clock; } } TEST_F(CpuUtilsTest, SimpleUsageOfClockCycleProfiler) { static constexpr int LOOP_COUNT = 10; ClockCycleProfiler prof; for (int i = 0; i < LOOP_COUNT; ++i) { prof.Start(); prof.Stop(); } EXPECT_EQ(LOOP_COUNT, static_cast<int>(prof.GetCount() + 0.5)); if (DBG) { prof.DumpStatistics("CpuUtilsTest"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/profile_utils/cpu_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/profile_utils/cpu_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
10851145-94d4-4428-b846-ace1c1731762
cpp
google/tensorstore
alignment
tensorstore/index_space/alignment.cc
tensorstore/index_space/alignment_test.cc
#include "tensorstore/index_space/alignment.h" #include <algorithm> #include <numeric> #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { absl::Status AlignDimensionsTo(IndexDomainView<> source, IndexDomainView<> target, span<DimensionIndex> source_matches, DomainAlignmentOptions options) { assert(source.valid()); assert(target.valid()); const DimensionIndex source_rank = source.rank(); const DimensionIndex target_rank = target.rank(); if (!(options & DomainAlignmentOptions::broadcast) && source_rank != target_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Aligning source domain of rank ", source_rank, " to target domain of rank ", target_rank, " requires broadcasting")); } assert(source_matches.size() == source_rank); const auto source_labels = source.labels(); const auto target_labels = target.labels(); if (!(options & DomainAlignmentOptions::permute) || internal_index_space::IsUnlabeled(source_labels) || internal_index_space::IsUnlabeled(target_labels)) { const DimensionIndex match_rank = std::min(source_rank, target_rank); const DimensionIndex source_match_start = source_rank - match_rank; const DimensionIndex target_match_start = target_rank - match_rank; std::fill_n(source_matches.begin(), source_match_start, DimensionIndex(-1)); std::iota(source_matches.begin() + source_match_start, source_matches.end(), target_match_start); } else { DimensionIndex next_potentially_unlabeled_target = target_rank - 1; for (DimensionIndex i = source_rank - 1; i >= 0; --i) { std::string_view source_label = source_labels[i]; DimensionIndex j; if (source_label.empty()) { while (true) { if (next_potentially_unlabeled_target < 0) { j = -1; break; } if (target_labels[next_potentially_unlabeled_target].empty()) { j = next_potentially_unlabeled_target--; break; } --next_potentially_unlabeled_target; } } else { for (j = target_rank - 1; j >= 0; --j) { if (target_labels[j] == source_label) break; } } source_matches[i] = j; } } std::string mismatch_error; const auto source_shape = source.shape(); const auto target_shape = target.shape(); for (DimensionIndex i = 0; i < source_rank; ++i) { DimensionIndex& j = source_matches[i]; const DimensionIndex source_size = source_shape[i]; if (j != -1) { if (!(options & DomainAlignmentOptions::translate) ? source[i] != target[j] : source_size != target_shape[j]) { if (!(options & DomainAlignmentOptions::broadcast) || source_size != 1) { tensorstore::StrAppend(&mismatch_error, "source dimension ", i, " ", source[i], " mismatch with target dimension ", j, " ", target[j], ", "); } j = -1; } } else { if (!(options & DomainAlignmentOptions::broadcast)) { tensorstore::StrAppend(&mismatch_error, "unmatched source dimension ", i, " ", source[i], ", "); } if (source_size != 1) { tensorstore::StrAppend(&mismatch_error, "unmatched source dimension ", i, " ", source[i], " does not have a size of 1, "); } } } if (!mismatch_error.empty()) { mismatch_error.resize(mismatch_error.size() - 2); return absl::InvalidArgumentError( tensorstore::StrCat("Error aligning dimensions: ", mismatch_error)); } return absl::OkStatus(); } Result<IndexTransform<>> AlignDomainTo(IndexDomainView<> source, IndexDomainView<> target, DomainAlignmentOptions options) { using internal_index_space::TransformAccess; assert(source.valid()); assert(target.valid()); const DimensionIndex source_rank = source.rank(); DimensionIndex source_matches[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(AlignDimensionsTo( source, target, span(source_matches).first(source_rank), options)); const DimensionIndex target_rank = target.rank(); auto alignment = internal_index_space::TransformRep::Allocate(target_rank, source_rank); CopyTransformRepDomain(TransformAccess::rep(target), alignment.get()); alignment->output_rank = source_rank; const auto maps = alignment->output_index_maps(); span<const Index> source_origin = source.origin(); span<const Index> target_origin = target.origin(); for (DimensionIndex i = 0; i < source_rank; ++i) { auto& map = maps[i]; const DimensionIndex j = source_matches[i]; const Index source_origin_value = source_origin[i]; if (j == -1) { map.SetConstant(); map.offset() = source_origin_value; map.stride() = 0; } else { map.SetSingleInputDimension(j); map.offset() = source_origin_value - target_origin[j]; map.stride() = 1; } } internal_index_space::DebugCheckInvariants(alignment.get()); return TransformAccess::Make<IndexTransform<>>(std::move(alignment)); } Result<IndexTransform<>> AlignTransformTo(IndexTransform<> source_transform, IndexDomainView<> target, DomainAlignmentOptions options) { TENSORSTORE_ASSIGN_OR_RETURN( auto alignment, AlignDomainTo(source_transform.domain(), target, options)); return ComposeTransforms(source_transform, alignment); } }
#include "tensorstore/index_space/alignment.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MatchesStatus; using Dao = tensorstore::DomainAlignmentOptions; TEST(AlignDimensionsToTest, AllUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({2, 0, 6}) .exclusive_max({6, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, source, source_matches, Dao::none)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, 1, 2)); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, Dao::translate), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \\[5, 6\\) mismatch with target " "dimension 1 \\[0, 4\\)")); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, Dao::broadcast), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 0 \\[3, 7\\) mismatch with target " "dimension 0 \\[2, 6\\), " "source dimension 2 \\[4, 10\\) mismatch with target " "dimension 2 \\[6, 12\\)")); } } TEST(AlignDimensionsToTest, MismatchedLabelsNoPermute) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"a", "b", "c"}) .origin({2, 0, 6}) .exclusive_max({6, 4, 12}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, Dao::translate | Dao::broadcast)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, Dao::all), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 0 \"x\": \\[3, 7\\) " "does not have a size of 1, " "unmatched source dimension 2 \"z\": \\[4, 10\\) " "does not have a size of 1")); } TEST(AlignDimensionsToTest, SourceUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .labels({"x", "y", "z"}) .exclusive_max({8, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } } TEST(AlignDimensionsToTest, TargetUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .labels({"x", "y", "z"}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .exclusive_max({8, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } } TEST(AlignDimensionsToTest, AllLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, -1, 0)); } TEST(AlignDimensionsToTest, AllLabeledPermuteOnly) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({4, 3, 5}) .exclusive_max({10, 7, 6}) .Finalize() .value(); for (auto options : {Dao::permute, Dao::permute | Dao::translate, Dao::permute | Dao::broadcast, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, 0)); } for (auto options : {Dao::none, Dao::translate, Dao::broadcast, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: .*")); } } TEST(AlignDimensionsToTest, AllLabeledPermuteTranslateOnly) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 9, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, 0)); } TEST(AlignDimensionsToTest, PartiallyLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", ""}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(4) .labels({"", "", "x", "y"}) .origin({0, 6, 4, 0}) .exclusive_max({10, 12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(2, -1, 1)); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, Dao::none), MatchesStatus(absl::StatusCode::kInvalidArgument, "Aligning source domain of rank 3 to target " "domain of rank 4 requires broadcasting")); } TEST(AlignDomainToTest, PartiallyLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", ""}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(4) .labels({"", "", "x", "y"}) .origin({0, 6, 4, 0}) .exclusive_max({10, 12, 8, 4}) .Finalize() .value(); IndexTransform<> alignment = IndexTransformBuilder<>(4, 3) .input_domain(target) .output_single_input_dimension(0, -1, 1, 2) .output_constant(1, 5) .output_single_input_dimension(2, -2, 1, 1) .Finalize() .value(); EXPECT_EQ(alignment, AlignDomainTo(source, target)); } TEST(AlignDimensionsToTest, BroadcastOnly) { auto source = IndexDomainBuilder(2) .origin({2, 3}) .exclusive_max({5, 6}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({1, 2, 3}) .exclusive_max({4, 5, 6}) .Finalize() .value(); for (auto options : {Dao::broadcast, Dao::broadcast | Dao::translate, Dao::broadcast | Dao::permute, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2)); } for (auto options : {Dao::none, Dao::permute, Dao::translate, Dao::permute | Dao::translate}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Aligning source domain of rank 2 to target " "domain of rank 3 requires broadcasting")); } } TEST(AlignDimensionsToTest, PermuteAndBroadcast) { auto source = IndexDomainBuilder(2) .origin({2, 3}) .exclusive_max({5, 4}) .labels({"x", "y"}) .Finalize() .value(); auto target = IndexDomainBuilder(2) .origin({2, 5}) .exclusive_max({5, 10}) .labels({"x", "z"}) .Finalize() .value(); for (auto options : {Dao::permute | Dao::broadcast, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1)); } for (auto options : {Dao::permute, Dao::permute | Dao::translate}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 1 \"y\": \\[3, 4\\)")); } } TEST(AlignDimensionsToTest, UnmatchedUnlabeledSourceDimension) { auto source = IndexDomainBuilder(4) .labels({"x", "y", "", ""}) .origin({3, 5, 7, 4}) .exclusive_max({7, 9, 8, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"", "x", "y"}) .origin({0, 4, 0}) .exclusive_max({6, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, -1, 0)); } TEST(AlignDimensionsToTest, MismatchedLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "w", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 0 \"x\": \\[3, 7\\) " "does not have a size of 1")); } TEST(AlignDomainToTest, MismatchedLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "w", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); EXPECT_THAT(AlignDomainTo(source, target), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(AlignDimensionsToTest, MismatchedSizeLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 7, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \"y\": \\[5, 7\\) mismatch " "with target dimension 2 \"y\": \\[0, 4\\)")); } TEST(AlignDimensionsToTest, MismatchedSizeUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 7, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .exclusive_max({8, 4, 12}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \\[5, 7\\) mismatch with " "target dimension 1 \\[0, 4\\)")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/alignment.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/alignment_test.cc
4f887a6430414cd6088e1743555015b10f116d50
625b1169-0fd7-4eea-9250-58d3f1528a04
cpp
tensorflow/tensorflow
string_ngrams_op
tensorflow/core/kernels/string_ngrams_op.cc
tensorflow/core/kernels/string_ngrams_op_test.cc
#include <algorithm> #include <locale> #include <string> #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace text { namespace { template <typename SPLITS_TYPE> class StringNGramsOp : public tensorflow::OpKernel { public: explicit StringNGramsOp(tensorflow::OpKernelConstruction* context) : tensorflow::OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("separator", &separator_)); OP_REQUIRES_OK(context, context->GetAttr("ngram_widths", &ngram_widths_)); OP_REQUIRES_OK(context, context->GetAttr("left_pad", &left_pad_)); OP_REQUIRES_OK(context, context->GetAttr("right_pad", &right_pad_)); OP_REQUIRES_OK(context, context->GetAttr("pad_width", &pad_width_)); OP_REQUIRES_OK(context, context->GetAttr("preserve_short_sequences", &preserve_short_)); } int get_pad_width(const int ngram_width) const { return std::min(pad_width_ < 0 ? ngram_width - 1 : pad_width_, ngram_width - 1); } absl::StatusOr<int> get_num_ngrams(const int length, const int ngram_width) const { int64 limit = kint32max; int pad_width = get_pad_width(ngram_width); if (pad_width > limit / 2 - length) { return errors::InvalidArgument( "Pad width could lead to integer overflow, got pad_width = ", pad_width); } return std::max(0, ((length + 2 * pad_width) - ngram_width) + 1); } void Compute(tensorflow::OpKernelContext* context) override { for (int ngram_width : ngram_widths_) { OP_REQUIRES( context, ngram_width > 0, errors::InvalidArgument("ngram_widths must contain positive values")); } const tensorflow::Tensor* data; OP_REQUIRES_OK(context, context->input("data", &data)); const auto& input_data = data->flat<tstring>().data(); const tensorflow::Tensor* splits; OP_REQUIRES_OK(context, context->input("data_splits", &splits)); const auto& splits_vec = splits->flat<SPLITS_TYPE>(); const int input_data_size = data->flat<tstring>().size(); const int splits_vec_size = splits_vec.size(); if (splits_vec_size > 0) { int prev_split = splits_vec(0); OP_REQUIRES(context, prev_split == 0, errors::InvalidArgument("First split value must be 0, got ", prev_split)); for (int i = 1; i < splits_vec_size; ++i) { bool valid_splits = splits_vec(i) >= prev_split; valid_splits = valid_splits && (splits_vec(i) <= input_data_size); OP_REQUIRES(context, valid_splits, errors::InvalidArgument( "Invalid split value ", splits_vec(i), ", must be in [", prev_split, ", ", input_data_size, "]")); prev_split = splits_vec(i); } OP_REQUIRES(context, prev_split == input_data_size, errors::InvalidArgument( "Last split value must be data size. Expected ", input_data_size, ", got ", prev_split)); } int num_batch_items = splits_vec.size() - 1; tensorflow::Tensor* ngrams_splits; OP_REQUIRES_OK( context, context->allocate_output(1, splits->shape(), &ngrams_splits)); auto ngrams_splits_data = ngrams_splits->flat<SPLITS_TYPE>().data(); if (data->flat<tstring>().size() == 0 || splits_vec.size() == 0) { tensorflow::Tensor* empty; OP_REQUIRES_OK(context, context->allocate_output(0, data->shape(), &empty)); for (int i = 0; i <= num_batch_items; ++i) { ngrams_splits_data[i] = 0; } return; } ngrams_splits_data[0] = 0; for (int i = 1; i <= num_batch_items; ++i) { int length = splits_vec(i) - splits_vec(i - 1); int num_ngrams = 0; for (int ngram_width : ngram_widths_) { auto ngrams_or = get_num_ngrams(length, ngram_width); OP_REQUIRES_OK(context, ngrams_or.status()); num_ngrams += ngrams_or.value(); } if (preserve_short_ && length > 0 && num_ngrams == 0) { num_ngrams = 1; } ngrams_splits_data[i] = ngrams_splits_data[i - 1] + num_ngrams; } tensorflow::Tensor* ngrams; OP_REQUIRES_OK( context, context->allocate_output( 0, TensorShape({ngrams_splits_data[num_batch_items]}), &ngrams)); auto ngrams_data = ngrams->flat<tstring>().data(); for (int i = 0; i < num_batch_items; ++i) { auto data_start = &input_data[splits_vec(i)]; int output_start_idx = ngrams_splits_data[i]; for (int ngram_width : ngram_widths_) { auto output_start = &ngrams_data[output_start_idx]; int length = splits_vec(i + 1) - splits_vec(i); auto ngrams_or = get_num_ngrams(length, ngram_width); OP_REQUIRES_OK(context, ngrams_or.status()); int num_ngrams = ngrams_or.value(); CreateNgrams(data_start, output_start, num_ngrams, ngram_width); output_start_idx += num_ngrams; } if (preserve_short_ && output_start_idx == ngrams_splits_data[i]) { int data_length = splits_vec(i + 1) - splits_vec(i); if (data_length == 0) { continue; } OP_REQUIRES( context, pad_width_ >= 0, errors::InvalidArgument("Pad width should be >= 0 when " "preserve_short_sequences is True and " "ngram_widths are not provided, got ", pad_width_)); int ngram_width = data_length + 2 * pad_width_; auto output_start = &ngrams_data[output_start_idx]; int num_ngrams = 1; CreateNgrams(data_start, output_start, num_ngrams, ngram_width); } } } void CreateNgrams(const tstring* data, tstring* output, int num_ngrams, int ngram_width) const { for (int ngram_index = 0; ngram_index < num_ngrams; ++ngram_index) { int pad_width = get_pad_width(ngram_width); int left_padding = std::max(0, pad_width - ngram_index); int right_padding = std::max(0, pad_width - (num_ngrams - (ngram_index + 1))); int num_tokens = ngram_width - (left_padding + right_padding); int data_start_index = left_padding > 0 ? 0 : ngram_index - pad_width; int ngram_size = 0; ngram_size += left_padding * left_pad_.length(); for (int n = 0; n < num_tokens; ++n) { ngram_size += data[data_start_index + n].length(); } ngram_size += right_padding * right_pad_.length(); int num_separators = left_padding + right_padding + num_tokens - 1; ngram_size += num_separators * separator_.length(); tstring* ngram = &output[ngram_index]; ngram->reserve(ngram_size); for (int n = 0; n < left_padding; ++n) { ngram->append(left_pad_); ngram->append(separator_); } for (int n = 0; n < num_tokens - 1; ++n) { ngram->append(data[data_start_index + n]); ngram->append(separator_); } if (num_tokens > 0) { ngram->append(data[data_start_index + num_tokens - 1]); for (int n = 0; n < right_padding; ++n) { ngram->append(separator_); ngram->append(right_pad_); } } else { for (int n = 0; n < right_padding - 1; ++n) { ngram->append(right_pad_); ngram->append(separator_); } ngram->append(right_pad_); } DCHECK_EQ(ngram_size, ngram->size()); } } string separator_; string left_pad_; string right_pad_; bool use_pad_; bool extend_pad_; bool preserve_short_; std::vector<int> ngram_widths_; int pad_width_; }; } REGISTER_KERNEL_BUILDER(Name("StringNGrams") .Device(tensorflow::DEVICE_CPU) .TypeConstraint<int32>("Tsplits"), StringNGramsOp<int32>); REGISTER_KERNEL_BUILDER(Name("StringNGrams") .Device(tensorflow::DEVICE_CPU) .TypeConstraint<int64_t>("Tsplits"), StringNGramsOp<int64_t>); } }
#include <vector> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { namespace text { using tensorflow::FakeInput; using tensorflow::NodeDefBuilder; using tensorflow::Status; using tensorflow::TensorShape; class NgramKernelTest : public tensorflow::OpsTestBase { public: void MakeOp(string separator, std::vector<int> ngram_width, string left_pad, string right_pad, int pad_width, bool preserve) { TF_ASSERT_OK(NodeDefBuilder("tested_op", "StringNGrams") .Attr("separator", separator) .Attr("ngram_widths", ngram_width) .Attr("left_pad", left_pad) .Attr("right_pad", right_pad) .Attr("pad_width", pad_width) .Attr("preserve_short_sequences", preserve) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } void assert_string_equal(const std::vector<tstring> &expected, const Tensor &value) { Tensor expected_tensor( allocator(), DT_STRING, TensorShape({static_cast<int64_t>(expected.size())})); test::FillValues<tstring>(&expected_tensor, expected); test::ExpectTensorEqual<tstring>(expected_tensor, value); } void assert_int64_equal(const std::vector<int64_t> &expected, const Tensor &value) { Tensor expected_tensor( allocator(), DT_INT64, TensorShape({static_cast<int64_t>(expected.size())})); test::FillValues<int64_t>(&expected_tensor, expected); test::ExpectTensorEqual<int64_t>(expected_tensor, value); } }; TEST_F(NgramKernelTest, TestPaddedTrigrams) { MakeOp("|", {3}, "LP", "RP", -1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|LP|a", "LP|a|b", "a|b|c", "b|c|d", "c|d|RP", "d|RP|RP", "LP|LP|e", "LP|e|f", "e|f|RP", "f|RP|RP"}); std::vector<int64_t> expected_splits({0, 6, 10}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestPaddedBigramsAndTrigrams) { MakeOp("|", {2, 3}, "LP", "RP", -1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|a", "a|b", "b|c", "c|d", "d|RP", "LP|LP|a", "LP|a|b", "a|b|c", "b|c|d", "c|d|RP", "d|RP|RP", "LP|e", "e|f", "f|RP", "LP|LP|e", "LP|e|f", "e|f|RP", "f|RP|RP"}); std::vector<int64_t> expected_splits({0, 11, 18}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestPaddedBigrams) { MakeOp("|", {2}, "LP", "RP", -1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|a", "a|b", "b|c", "c|d", "d|RP", "LP|e", "e|f", "f|RP"}); std::vector<int64_t> expected_splits({0, 5, 8}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestPaddingIsAtMostNGramSizeMinus1) { MakeOp("|", {2}, "LP", "RP", 4, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|a", "a|b", "b|c", "c|d", "d|RP", "LP|e", "e|f", "f|RP"}); std::vector<int64_t> expected_splits({0, 5, 8}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestPaddedUnigramAndBigrams) { MakeOp("|", {1, 2}, "LP", "RP", -1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"a", "b", "c", "d", "LP|a", "a|b", "b|c", "c|d", "d|RP", "e", "f", "LP|e", "e|f", "f|RP"}); std::vector<int64_t> expected_splits({0, 9, 14}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestOverlappingPaddedNGrams) { MakeOp("|", {3}, "LP", "RP", -1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 1, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|LP|a", "LP|a|RP", "a|RP|RP", "LP|LP|b", "LP|b|c", "b|c|d", "c|d|RP", "d|RP|RP", "LP|LP|e", "LP|e|f", "e|f|RP", "f|RP|RP"}); std::vector<int64_t> expected_splits({0, 3, 8, 12}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestOverlappingPaddedMultiCharNGrams) { MakeOp("|", {3}, "LP", "RP", -1, false); AddInputFromArray<tstring>(TensorShape({6}), {"aa", "bb", "cc", "dd", "ee", "ff"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 1, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|LP|aa", "LP|aa|RP", "aa|RP|RP", "LP|LP|bb", "LP|bb|cc", "bb|cc|dd", "cc|dd|RP", "dd|RP|RP", "LP|LP|ee", "LP|ee|ff", "ee|ff|RP", "ff|RP|RP"}); std::vector<int64_t> expected_splits({0, 3, 8, 12}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestMultiOverlappingPaddedNGrams) { MakeOp("|", {5}, "LP", "RP", -1, false); AddInputFromArray<tstring>(TensorShape({1}), {"a"}); AddInputFromArray<int64_t>(TensorShape({2}), {0, 1}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"LP|LP|LP|LP|a", "LP|LP|LP|a|RP", "LP|LP|a|RP|RP", "LP|a|RP|RP|RP", "a|RP|RP|RP|RP"}); std::vector<int64_t> expected_splits({0, 5}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedTrigrams) { MakeOp("|", {3}, "", "", 0, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"a|b|c", "b|c|d"}); std::vector<int64_t> expected_splits({0, 2, 2}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedTrigramsWithEmptySequence) { MakeOp("|", {3}, "", "", 0, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 4, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"a|b|c", "b|c|d"}); std::vector<int64_t> expected_splits({0, 2, 2, 2}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedTrigramsWithPreserveShort) { MakeOp("|", {3}, "", "", 0, true); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"a|b|c", "b|c|d", "e|f"}); std::vector<int64_t> expected_splits({0, 2, 3}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedTrigramsWithPreserveShortAndEmptySequence) { MakeOp("|", {3}, "", "", 0, true); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 4, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"a|b|c", "b|c|d", "e|f"}); std::vector<int64_t> expected_splits({0, 2, 2, 3}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedTrigramsAndQuadgramsWithPreserveShort) { MakeOp("|", {4, 3}, "", "", 0, true); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"a|b|c|d", "a|b|c", "b|c|d", "e|f"}); std::vector<int64_t> expected_splits({0, 3, 4}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedBigramsAndTrigrams) { MakeOp("|", {2, 3}, "", "", 0, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"a|b", "b|c", "c|d", "a|b|c", "b|c|d", "e|f"}); std::vector<int64_t> expected_splits({0, 5, 6}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedBigramsAndTrigramsWithPreserveShort) { MakeOp("|", {2, 3}, "", "", 0, true); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"a|b", "b|c", "c|d", "a|b|c", "b|c|d", "e|f"}); std::vector<int64_t> expected_splits({0, 5, 6}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedTrigramsAndBigramsWithPreserveShort) { MakeOp("|", {3, 2}, "", "", 0, true); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"a|b|c", "b|c|d", "a|b", "b|c", "c|d", "e|f"}); std::vector<int64_t> expected_splits({0, 5, 6}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestUnpaddedBigrams) { MakeOp("|", {2}, "", "", 0, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"a|b", "b|c", "c|d", "e|f"}); std::vector<int64_t> expected_splits({0, 3, 4}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestOverlappingUnpaddedNGrams) { MakeOp("|", {3}, "", "", 0, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 1, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"b|c|d"}); std::vector<int64_t> expected_splits({0, 0, 1, 1}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestOverlappingUnpaddedNGramsNoOutput) { MakeOp("|", {5}, "", "", 0, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 1, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({}); std::vector<int64_t> expected_splits({0, 0, 0, 0}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestSinglyPaddedTrigrams) { MakeOp("|", {3}, "LP", "RP", 1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"LP|a|b", "a|b|c", "b|c|d", "c|d|RP", "LP|e|f", "e|f|RP"}); std::vector<int64_t> expected_splits({0, 4, 6}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestSinglyPaddedBigrams) { MakeOp("|", {2}, "LP", "RP", 1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"LP|a", "a|b", "b|c", "c|d", "d|RP", "LP|e", "e|f", "f|RP"}); std::vector<int64_t> expected_splits({0, 5, 8}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestSinglyPaddedBigramsAnd5grams) { MakeOp("|", {2, 5}, "LP", "RP", 1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|a", "a|b", "b|c", "c|d", "d|RP", "LP|a|b|c|d", "a|b|c|d|RP", "LP|e", "e|f", "f|RP"}); std::vector<int64_t> expected_splits({0, 7, 10}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestSinglyPadded5gramsWithPreserveShort) { MakeOp("|", {5}, "LP", "RP", 1, true); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|a|b|c|d", "a|b|c|d|RP", "LP|e|f|RP"}); std::vector<int64_t> expected_splits({0, 2, 3}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestOverlappingSinglyPaddedNGrams) { MakeOp("|", {3}, "LP", "RP", 1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 1, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"LP|a|RP", "LP|b|c", "b|c|d", "c|d|RP", "LP|e|f", "e|f|RP"}); std::vector<int64_t> expected_splits({0, 1, 4, 6}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestOverlappingSinglyPaddedNGramsNoOutput) { MakeOp("|", {5}, "LP", "RP", 1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({4}), {0, 1, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"LP|b|c|d|RP"}); std::vector<int64_t> expected_splits({0, 0, 1, 1}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestSinglyPaddedUnigrams) { MakeOp("|", {1}, "LP", "RP", 1, false); AddInputFromArray<tstring>(TensorShape({6}), {"a", "b", "c", "d", "e", "f"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 4, 6}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({"a", "b", "c", "d", "e", "f"}); std::vector<int64_t> expected_splits({0, 4, 6}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestEmptyInput) { MakeOp("|", {1}, "LP", "RP", 3, false); AddInputFromArray<tstring>(TensorShape({0}), {}); AddInputFromArray<int64_t>(TensorShape({0}), {}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({}); std::vector<int64_t> expected_splits({}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestNoTokens) { MakeOp("|", {3}, "L", "R", -1, false); AddInputFromArray<tstring>(TensorShape({1}), {"a"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 0, 1}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values( {"L|L|R", "L|R|R", "L|L|a", "L|a|R", "a|R|R"}); std::vector<int64_t> expected_splits({0, 2, 5}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, TestNoTokensNoPad) { MakeOp("|", {3}, "", "", 0, false); AddInputFromArray<tstring>(TensorShape({1}), {"a"}); AddInputFromArray<int64_t>(TensorShape({3}), {0, 0, 1}); TF_ASSERT_OK(RunOpKernel()); std::vector<tstring> expected_values({}); std::vector<int64_t> expected_splits({0, 0, 0}); assert_string_equal(expected_values, *GetOutput(0)); assert_int64_equal(expected_splits, *GetOutput(1)); } TEST_F(NgramKernelTest, ShapeFn) { ShapeInferenceTestOp op("StringNGrams"); INFER_OK(op, "?;?", "[?];[?]"); INFER_OK(op, "[1];?", "[?];[?]"); INFER_OK(op, "[1];[2]", "[?];in1"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/string_ngrams_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/string_ngrams_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1ce618e4-f93e-4209-bb33-5fcea4ce081e
cpp
tensorflow/tensorflow
worker_client
tensorflow/core/data/service/worker_client.cc
tensorflow/core/data/service/worker_client_test.cc
#include "tensorflow/core/data/service/worker_client.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "absl/container/flat_hash_set.h" #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/worker.grpc.pb.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" #include "tsl/platform/host_info.h" namespace tensorflow { namespace data { absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateDataServiceWorkerClient( const std::string& dispatcher_protocol, const DataTransferServerInfo& info, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) { auto client = std::make_unique<DataServiceWorkerClient>( info.address(), dispatcher_protocol, info.protocol(), accelerator_device_info, allocator); TF_RETURN_IF_ERROR(client->Initialize()); TF_RETURN_WITH_CONTEXT_IF_ERROR( client->CheckCompatibility(info.compatibility_info()), "for data transfer protocol '", client->GetDataTransferProtocol(), "', the compatibility check between the trainer worker and the ", "tf.data service worker at ", info.address(), "failed"); return client; } Status DataServiceWorkerClient::GetElement(const GetElementRequest& req, GetElementResult& result) { TF_RETURN_IF_ERROR(EnsureInitialized()); return client_->GetElement(req, result); } Status DataServiceWorkerClient::EnsureInitialized() { mutex_lock l(mu_); if (client_) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(DataTransferClient::Build( GetDataTransferProtocol(), {protocol_, address_, accelerator_device_info_, allocator_}, &client_)); return absl::OkStatus(); } std::string DataServiceWorkerClient::GetDataTransferProtocol() const { if (ForceLocalProtocol(address_)) { return kLocalTransferProtocol; } return transfer_protocol_; } void DataServiceWorkerClient::TryCancel() { client_->TryCancel(); } class GrpcDataTransferClient : public DataTransferClient { public: GrpcDataTransferClient(std::shared_ptr<grpc::ChannelCredentials> credentials, std::string address, Allocator* allocator) : allocator_(allocator) { VLOG(2) << "Create GrpcDataTransferClient for worker " << address << "."; grpc::ChannelArguments args; args.SetMaxReceiveMessageSize(-1); auto channel = grpc::CreateCustomChannel(address, credentials, args); stub_ = WorkerService::NewStub(channel); } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from gRPC worker " << "server."; { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("Client was cancelled."); } } grpc::ClientContext ctx; gtl::Cleanup<std::function<void()>> cleanup; { mutex_lock l(mu_); active_contexts_.insert(&ctx); cleanup = gtl::MakeCleanup([this, &ctx] { mutex_lock l(mu_); active_contexts_.erase(&ctx); }); } GetElementResponse resp; int64_t start_time_us = env_->NowMicros(); grpc::Status s = stub_->GetElement(&ctx, req, &resp); int64_t end_time_us = env_->NowMicros(); if (!s.ok()) { return grpc_util::WrapError("Failed to get element", s); } metrics::RecordTFDataServiceGetElementDuration(kGrpcTransferProtocol, end_time_us - start_time_us); result.end_of_sequence = resp.end_of_sequence(); result.skip = resp.skip_task(); switch (resp.element_case()) { case GetElementResponse::kCompressed: { Tensor tensor(DT_VARIANT, TensorShape{}); tensor.scalar<Variant>()() = std::move(resp.compressed()); result.components.push_back(tensor); break; } case GetElementResponse::kUncompressed: for (const auto& component : resp.uncompressed().components()) { result.components.emplace_back(); bool success = allocator_ != nullptr ? result.components.back().FromProto(allocator_, component) : result.components.back().FromProto(component); if (!success) { return errors::Internal("Failed to parse tensor."); } } break; case GetElementResponse::ELEMENT_NOT_SET: break; } return absl::OkStatus(); } void TryCancel() override { VLOG(2) << "Cancel GrpcDataTransferClient."; mutex_lock l(mu_); cancelled_ = true; for (const auto& ctx : active_contexts_) { ctx->TryCancel(); } } private: Allocator* const allocator_; mutex mu_; std::unique_ptr<WorkerService::Stub> stub_; absl::flat_hash_set<::grpc::ClientContext*> active_contexts_ TF_GUARDED_BY(mu_); bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class GrpcTransferClientRegistrar { public: GrpcTransferClientRegistrar() { DataTransferClient::Register( kGrpcTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { std::shared_ptr<grpc::ChannelCredentials> credentials; TF_RETURN_IF_ERROR(CredentialsFactory::CreateClientCredentials( config.protocol, &credentials)); *out = std::make_unique<GrpcDataTransferClient>( credentials, config.address, config.allocator); return absl::OkStatus(); }); } }; static GrpcTransferClientRegistrar gprc_client_registrar; class LocalDataTransferClient : public DataTransferClient { public: explicit LocalDataTransferClient(absl::string_view worker_address) : worker_address_(worker_address) { VLOG(2) << "Create LocalDataTransferClient for worker " << worker_address_ << "."; } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from local worker."; TF_RETURN_IF_ERROR(VerifyClientIsNotCancelled()); TF_ASSIGN_OR_RETURN(std::shared_ptr<DataServiceWorkerImpl> worker, GetWorker(req)); int64_t start_time_us = env_->NowMicros(); Status s = worker->GetElementResult(&req, &result); int64_t end_time_us = env_->NowMicros(); TF_RETURN_IF_ERROR(s); metrics::RecordTFDataServiceGetElementDuration(kLocalTransferProtocol, end_time_us - start_time_us); return s; } void TryCancel() override { VLOG(2) << "Cancel LocalDataTransferClient for worker " << worker_address_ << "."; mutex_lock l(mu_); cancelled_ = true; } private: Status VerifyClientIsNotCancelled() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled(absl::Substitute( "Client for worker $0 has been cancelled.", worker_address_)); } return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<DataServiceWorkerImpl>> GetWorker( const GetElementRequest& req) const { std::shared_ptr<DataServiceWorkerImpl> worker = LocalWorkers::Get(worker_address_); if (!worker) { return errors::Cancelled(absl::Substitute( "Local worker at address $0 is no longer available; cancel request " "for task $1.", worker_address_, req.task_id())); } return worker; } const std::string worker_address_; mutex mu_; bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class LocalTransferClientRegistrar { public: LocalTransferClientRegistrar() { DataTransferClient::Register( kLocalTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { *out = std::make_unique<LocalDataTransferClient>(config.address); return absl::OkStatus(); }); } }; static LocalTransferClientRegistrar local_client_registrar; bool ForceLocalProtocol(const std::string& worker_address) { if (tsl::port::JobUid() == -1) { return false; } return LocalWorkers::Get(worker_address) != nullptr; } } }
#include "tensorflow/core/data/service/worker_client.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/substitute.h" #include "absl/types/optional.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::RangeSquareDataset; using ::tensorflow::testing::StatusIs; using ::testing::MatchesRegex; constexpr const char kProtocol[] = "grpc"; constexpr const char kAltTransferProtocol[] = "alt"; class WorkerClientTest : public ::testing::TestWithParam<std::string> { protected: void SetUp() override { InitializeTestCluster(); } void InitializeTestCluster( std::optional<std::string> data_transfer_protocol = std::nullopt) { test_cluster_ = std::make_unique<TestCluster>(1, data_transfer_protocol); TF_ASSERT_OK(test_cluster_->Initialize()); dispatcher_client_ = std::make_unique<DataServiceDispatcherClient>( test_cluster_->DispatcherAddress(), kProtocol); } absl::StatusOr<std::string> RegisterDataset(const int64_t range) { const auto dataset_def = RangeSquareDataset(range); std::string dataset_id; TF_RETURN_IF_ERROR(dispatcher_client_->RegisterDataset( dataset_def, DataServiceMetadata(), std::nullopt, dataset_id)); return dataset_id; } absl::StatusOr<int64_t> CreateIteration(const std::string& dataset_id) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); int64_t job_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, std::nullopt, std::nullopt, false, TARGET_WORKERS_AUTO, job_id)); int64_t iteration_client_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateIteration( job_id, 0, iteration_client_id)); return iteration_client_id; } absl::StatusOr<int64_t> GetTaskToRead(const int64_t iteration_client_id) { ClientHeartbeatRequest request; ClientHeartbeatResponse response; request.set_iteration_client_id(iteration_client_id); TF_RETURN_IF_ERROR(dispatcher_client_->ClientHeartbeat(request, response)); if (response.task_info().empty()) { return errors::NotFound(absl::Substitute( "No task found for iteration $0.", iteration_client_id)); } return response.task_info(0).task_id(); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> GetWorkerClient( const std::string& data_transfer_protocol) { DataTransferServerInfo info; info.set_address(GetWorkerAddress()); info.set_protocol(data_transfer_protocol); return CreateDataServiceWorkerClient(kProtocol, info, nullptr, nullptr); } absl::StatusOr<GetElementResult> GetElement(DataServiceWorkerClient& client, const int64_t task_id) { GetElementRequest request; GetElementResult result; request.set_task_id(task_id); TF_RETURN_IF_ERROR(client.GetElement(request, result)); return result; } std::string GetDispatcherAddress() const { return test_cluster_->DispatcherAddress(); } std::string GetWorkerAddress() const { return test_cluster_->WorkerAddress(0); } std::unique_ptr<TestCluster> test_cluster_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_client_; }; class AltDataTransferServer : public DataTransferServer { public: explicit AltDataTransferServer(DataTransferServer::GetElementT get_element) : get_element_(get_element) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) { return get_element_(&req, &result); } absl::Status Start(const experimental::WorkerConfig& config) override { return absl::OkStatus(); } int Port() const override { return -1; } private: DataTransferServer::GetElementT get_element_; }; class AltDataTransferClient : public DataTransferClient { public: explicit AltDataTransferClient(std::shared_ptr<AltDataTransferServer> server) : server_(server) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) override { return server_->GetElement(req, result); } void TryCancel() override {} private: std::shared_ptr<AltDataTransferServer> server_; }; class AltDataTransferRegistrar { public: AltDataTransferRegistrar() { DataTransferServer::Register( kAltTransferProtocol, [this](DataTransferServer::GetElementT get_element, std::shared_ptr<DataTransferServer>* server) { server_ = std::make_shared<AltDataTransferServer>(get_element); *server = server_; return absl::OkStatus(); }); DataTransferClient::Register( kAltTransferProtocol, [this](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* client) { *client = std::make_unique<AltDataTransferClient>(server_); return absl::OkStatus(); }); } private: std::shared_ptr<AltDataTransferServer> server_ = nullptr; }; static AltDataTransferRegistrar alt_data_transfer_registrar; class DataTransferProtocolWorkerClientTest : public WorkerClientTest { protected: void SetUp() override { std::string data_transfer_protocol = GetParam(); InitializeTestCluster(data_transfer_protocol); } }; TEST_F(WorkerClientTest, LocalRead) { const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, LocalReadEmptyDataset) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(0)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); EXPECT_TRUE(result.end_of_sequence); LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_P(DataTransferProtocolWorkerClientTest, NetworkRead) { std::string data_transfer_protocol = GetParam(); LocalWorkers::Remove(GetWorkerAddress()); const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(data_transfer_protocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } } INSTANTIATE_TEST_SUITE_P( NetworkProtocols, DataTransferProtocolWorkerClientTest, ::testing::Values(kGrpcTransferProtocol, kAltTransferProtocol), [](const ::testing::TestParamInfo< DataTransferProtocolWorkerClientTest::ParamType>& info) { return info.param; }); TEST_F(WorkerClientTest, LocalServerShutsDown) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); test_cluster_->StopWorkers(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, CancelClient) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); client->TryCancel(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Client for worker.*has been cancelled."))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4b72f2e1-377f-44c8-8739-38c4935bd9a9
cpp
tensorflow/tensorflow
preemption_notifier
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier.cc
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier_test.cc
#include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include <atomic> #include <csignal> #include <functional> #include <memory> #include <utility> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" #if defined(PLATFORM_GOOGLE) #include "thread/executor.h" #include "thread/signal.h" #endif namespace tsl { namespace { constexpr absl::Duration kListenInterval = absl::Seconds(1); constexpr absl::Time kUnsetDeathTime = absl::InfinitePast(); static std::atomic_bool sigterm_received(false); class SigtermNotifier : public PreemptionNotifier { public: explicit SigtermNotifier(Env* env); ~SigtermNotifier() override { shutdown_notification_.Notify(); } private: void StartListenerThread(); absl::Notification shutdown_notification_; std::unique_ptr<Thread> preempt_listener_thread_; }; SigtermNotifier::SigtermNotifier(Env* env) : PreemptionNotifier(env) { sigterm_received.store(false); StartListenerThread(); #if defined(PLATFORM_GOOGLE) thread::signal::Token unused_token; thread::signal::AddHandler( SIGTERM, thread::Executor::DefaultExecutor(), []() { sigterm_received.store(true); }, 0, &unused_token); #else std::signal(SIGTERM, [](int signal) { sigterm_received.store(true); }); #endif } void SigtermNotifier::StartListenerThread() { preempt_listener_thread_.reset( GetEnv()->StartThread({}, "PreemptionNotifier_Listen", [this]() { while (!sigterm_received.load()) { if (shutdown_notification_.WaitForNotificationWithTimeout( kListenInterval)) { NotifyRegisteredListeners( errors::Cancelled("Preemption notifier is being deleted.")); return; } } const absl::Time death_time = absl::Now(); LOG(WARNING) << "SIGTERM caught at " << death_time; NotifyRegisteredListeners(death_time); })); } } absl::StatusOr<absl::Time> PreemptionNotifier::WillBePreemptedAt() { absl::Notification n; absl::StatusOr<absl::Time> result; WillBePreemptedAtAsync( [&n, &result](absl::StatusOr<absl::Time> async_result) { result = async_result; n.Notify(); }); n.WaitForNotification(); return result; } void PreemptionNotifier::WillBePreemptedAtAsync(PreemptTimeCallback callback) { mutex_lock l(mu_); if (death_time_ == kUnsetDeathTime) { callbacks_.push_back(std::move(callback)); } else { callback(death_time_); } } void PreemptionNotifier::NotifyRegisteredListeners( absl::StatusOr<absl::Time> death_time) { mutex_lock l(mu_); if (death_time.ok()) { death_time_ = death_time.value(); } for (const auto& callback : callbacks_) { callback(death_time); } callbacks_.clear(); } REGISTER_PREEMPTION_NOTIFIER( "sigterm", [](Env* env) -> std::unique_ptr<PreemptionNotifier> { return std::make_unique<SigtermNotifier>(env); }); }
#include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include <csignal> #include <functional> #include <memory> #include <utility> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #if defined(PLATFORM_GOOGLE) #include "thread/executor.h" #include "thread/signal.h" #endif namespace tsl { namespace { class PreemptNotifierTest : public ::testing::Test { public: PreemptNotifierTest() { #if defined(PLATFORM_GOOGLE) thread::signal::Token unused_token; thread::signal::AddHandler( SIGTERM, thread::Executor::DefaultExecutor(), []() {}, thread::signal::kOverrideDefault, &unused_token); #endif } }; TEST_F(PreemptNotifierTest, WillBePreemptedAt) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::Time start_time = absl::Now(); env->SchedClosureAfter(absl::ToInt64Microseconds(absl::Seconds(1)), []() { std::raise(SIGTERM); }); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); absl::Duration time_diff = preempt_time - start_time; EXPECT_GT(time_diff, absl::Seconds(1.0)); EXPECT_LT(time_diff, absl::Seconds(3)); } TEST_F(PreemptNotifierTest, WillBePreemptedAt_AlreadyPreempted_ReturnsImmediately) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::Time start_time = absl::Now(); std::raise(SIGTERM); env->SleepForMicroseconds(absl::ToInt64Microseconds(absl::Seconds(2))); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); absl::Duration time_diff = preempt_time - start_time; EXPECT_GT(time_diff, absl::ZeroDuration()); EXPECT_LT(time_diff, absl::Seconds(2)); } TEST_F(PreemptNotifierTest, WillBePreemptedAtAsync_SameResultForAllCallbacks) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); env->SchedClosureAfter(absl::ToInt64Microseconds(absl::Seconds(1)), []() { std::raise(SIGTERM); }); absl::StatusOr<absl::Time> preempt_time; absl::StatusOr<absl::Time> preempt_time_2; absl::Notification n; absl::Notification n_2; preempt_notifier->WillBePreemptedAtAsync( [&preempt_time, &n](absl::StatusOr<absl::Time> result) { preempt_time = result; n.Notify(); }); preempt_notifier->WillBePreemptedAtAsync( [&preempt_time_2, &n_2](absl::StatusOr<absl::Time> result) { preempt_time_2 = result; n_2.Notify(); }); n.WaitForNotification(); n_2.WaitForNotification(); TF_CHECK_OK(preempt_time.status()); TF_CHECK_OK(preempt_time_2.status()); EXPECT_EQ(preempt_time.value(), preempt_time_2.value()); } TEST_F(PreemptNotifierTest, Reset_TwoDifferentPreemptTimesRecorded) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); std::raise(SIGTERM); absl::StatusOr<absl::Time> result = preempt_notifier->WillBePreemptedAt(); TF_CHECK_OK(result.status()); absl::Time preempt_time = result.value(); preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); std::raise(SIGTERM); absl::Time preempt_time_2 = preempt_notifier->WillBePreemptedAt().value(); EXPECT_NE(preempt_time, preempt_time_2); } TEST_F(PreemptNotifierTest, DestructorCancelsPendingCalls) { auto env = Env::Default(); std::unique_ptr<PreemptionNotifier> preempt_notifier = PreemptionNotifier::CreatePreemptionNotifier("sigterm", env); absl::StatusOr<absl::Time> result; absl::Notification n; preempt_notifier->WillBePreemptedAtAsync( [&result, &n](absl::StatusOr<absl::Time> status_or_time) { result = status_or_time; n.Notify(); }); preempt_notifier = nullptr; n.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(result.status())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_notifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f5697065-59c0-4051-9bd7-069f12d245b5
cpp
google/cel-cpp
cel_function_adapter
eval/public/cel_function_adapter.h
eval/public/cel_function_adapter_test.cc
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CEL_FUNCTION_ADAPTER_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CEL_FUNCTION_ADAPTER_H_ #include <cstdint> #include <functional> #include <optional> #include <type_traits> #include <utility> #include "google/protobuf/message.h" #include "absl/status/status.h" #include "eval/public/cel_function_adapter_impl.h" #include "eval/public/cel_value.h" #include "eval/public/structs/cel_proto_wrapper.h" namespace google::api::expr::runtime { namespace internal { struct ProtoAdapterTypeCodeMatcher { template <typename T> constexpr static std::optional<CelValue::Type> type_code() { if constexpr (std::is_same_v<T, const google::protobuf::Message*>) { return CelValue::Type::kMessage; } else { return internal::TypeCodeMatcher().type_code<T>(); } } }; struct ProtoAdapterValueConverter : public internal::ValueConverterBase<ProtoAdapterValueConverter> { using BaseType = internal::ValueConverterBase<ProtoAdapterValueConverter>; using BaseType::NativeToValue; using BaseType::ValueToNative; absl::Status NativeToValue(const ::google::protobuf::Message* value, ::google::protobuf::Arena* arena, CelValue* result) { if (value == nullptr) { return absl::Status(absl::StatusCode::kInvalidArgument, "Null Message pointer returned"); } *result = CelProtoWrapper::CreateMessage(value, arena); return absl::OkStatus(); } }; } template <typename ReturnType, typename... Arguments> using FunctionAdapter = internal::FunctionAdapterImpl<internal::ProtoAdapterTypeCodeMatcher, internal::ProtoAdapterValueConverter>:: FunctionAdapter<ReturnType, Arguments...>; template <typename ReturnType, typename T> using UnaryFunctionAdapter = internal::FunctionAdapterImpl< internal::ProtoAdapterTypeCodeMatcher, internal::ProtoAdapterValueConverter>::UnaryFunction<ReturnType, T>; template <typename ReturnType, typename T, typename U> using BinaryFunctionAdapter = internal::FunctionAdapterImpl< internal::ProtoAdapterTypeCodeMatcher, internal::ProtoAdapterValueConverter>::BinaryFunction<ReturnType, T, U>; } #endif
#include "eval/public/cel_function_adapter.h" #include <functional> #include <string> #include <utility> #include <vector> #include "internal/status_macros.h" #include "internal/testing.h" namespace google { namespace api { namespace expr { namespace runtime { namespace { TEST(CelFunctionAdapterTest, TestAdapterNoArg) { auto func = [](google::protobuf::Arena*) -> int64_t { return 100; }; ASSERT_OK_AND_ASSIGN( auto cel_func, (FunctionAdapter<int64_t>::Create("const", false, func))); absl::Span<CelValue> args; CelValue result = CelValue::CreateNull(); google::protobuf::Arena arena; ASSERT_OK(cel_func->Evaluate(args, &result, &arena)); ASSERT_TRUE(result.IsInt64()); } TEST(CelFunctionAdapterTest, TestAdapterOneArg) { std::function<int64_t(google::protobuf::Arena*, int64_t)> func = [](google::protobuf::Arena* arena, int64_t i) -> int64_t { return i + 1; }; ASSERT_OK_AND_ASSIGN( auto cel_func, (FunctionAdapter<int64_t, int64_t>::Create("_++_", false, func))); std::vector<CelValue> args_vec; args_vec.push_back(CelValue::CreateInt64(99)); CelValue result = CelValue::CreateNull(); google::protobuf::Arena arena; absl::Span<CelValue> args(&args_vec[0], args_vec.size()); ASSERT_OK(cel_func->Evaluate(args, &result, &arena)); ASSERT_TRUE(result.IsInt64()); EXPECT_EQ(result.Int64OrDie(), 100); } TEST(CelFunctionAdapterTest, TestAdapterTwoArgs) { auto func = [](google::protobuf::Arena* arena, int64_t i, int64_t j) -> int64_t { return i + j; }; ASSERT_OK_AND_ASSIGN(auto cel_func, (FunctionAdapter<int64_t, int64_t, int64_t>::Create( "_++_", false, func))); std::vector<CelValue> args_vec; args_vec.push_back(CelValue::CreateInt64(20)); args_vec.push_back(CelValue::CreateInt64(22)); CelValue result = CelValue::CreateNull(); google::protobuf::Arena arena; absl::Span<CelValue> args(&args_vec[0], args_vec.size()); ASSERT_OK(cel_func->Evaluate(args, &result, &arena)); ASSERT_TRUE(result.IsInt64()); EXPECT_EQ(result.Int64OrDie(), 42); } using StringHolder = CelValue::StringHolder; TEST(CelFunctionAdapterTest, TestAdapterThreeArgs) { auto func = [](google::protobuf::Arena* arena, StringHolder s1, StringHolder s2, StringHolder s3) -> StringHolder { std::string value = absl::StrCat(s1.value(), s2.value(), s3.value()); return StringHolder( google::protobuf::Arena::Create<std::string>(arena, std::move(value))); }; ASSERT_OK_AND_ASSIGN( auto cel_func, (FunctionAdapter<StringHolder, StringHolder, StringHolder, StringHolder>::Create("concat", false, func))); std::string test1 = "1"; std::string test2 = "2"; std::string test3 = "3"; std::vector<CelValue> args_vec; args_vec.push_back(CelValue::CreateString(&test1)); args_vec.push_back(CelValue::CreateString(&test2)); args_vec.push_back(CelValue::CreateString(&test3)); CelValue result = CelValue::CreateNull(); google::protobuf::Arena arena; absl::Span<CelValue> args(&args_vec[0], args_vec.size()); ASSERT_OK(cel_func->Evaluate(args, &result, &arena)); ASSERT_TRUE(result.IsString()); EXPECT_EQ(result.StringOrDie().value(), "123"); } TEST(CelFunctionAdapterTest, TestTypeDeductionForCelValueBasicTypes) { auto func = [](google::protobuf::Arena* arena, bool, int64_t, uint64_t, double, CelValue::StringHolder, CelValue::BytesHolder, const google::protobuf::Message*, absl::Duration, absl::Time, const CelList*, const CelMap*, const CelError*) -> bool { return false; }; ASSERT_OK_AND_ASSIGN( auto cel_func, (FunctionAdapter<bool, bool, int64_t, uint64_t, double, CelValue::StringHolder, CelValue::BytesHolder, const google::protobuf::Message*, absl::Duration, absl::Time, const CelList*, const CelMap*, const CelError*>::Create("dummy_func", false, func))); auto descriptor = cel_func->descriptor(); EXPECT_EQ(descriptor.receiver_style(), false); EXPECT_EQ(descriptor.name(), "dummy_func"); int pos = 0; ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kBool); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kInt64); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kUint64); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kDouble); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kString); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kBytes); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kMessage); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kDuration); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kTimestamp); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kList); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kMap); ASSERT_EQ(descriptor.types()[pos++], CelValue::Type::kError); } TEST(CelFunctionAdapterTest, TestAdapterStatusOrMessage) { auto func = [](google::protobuf::Arena* arena) -> absl::StatusOr<const google::protobuf::Message*> { auto* ret = google::protobuf::Arena::Create<google::protobuf::Timestamp>(arena); ret->set_seconds(123); return ret; }; ASSERT_OK_AND_ASSIGN( auto cel_func, (FunctionAdapter<absl::StatusOr<const google::protobuf::Message*>>::Create( "const", false, func))); absl::Span<CelValue> args; CelValue result = CelValue::CreateNull(); google::protobuf::Arena arena; ASSERT_OK(cel_func->Evaluate(args, &result, &arena)); ASSERT_TRUE(result.IsTimestamp()); EXPECT_EQ(result.TimestampOrDie(), absl::FromUnixSeconds(123)); } } } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/cel_function_adapter.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/cel_function_adapter_test.cc
4552db5798fb0853b131b783d8875794334fae7f
bfb29bf7-6eab-4ad7-a819-b0a239d934ec
cpp
tensorflow/tensorflow
auto_sharding_solver
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver_test.cc
#include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/container/btree_set.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding.pb.h" #ifdef PLATFORM_GOOGLE #include "file/base/options.h" #endif #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/hash.h" #include "tsl/platform/types.h" #include "ortools/linear_solver/linear_solver.h" #include "ortools/linear_solver/linear_solver.pb.h" #ifdef PLATFORM_GOOGLE #include "file/base/helpers.h" #include "util/task/status.pb.h" #endif namespace xla { namespace spmd { using ::operations_research::MPConstraint; using ::operations_research::MPSolver; using ::operations_research::MPVariable; constexpr double kMaxCostEpsilon = 1.0001; constexpr double kMemoryMultiplier = 1e6; constexpr double kMaxCostValue = 1e18; bool AutoShardingSolverOutput::operator==( const AutoShardingSolverOutput& other) const { return s_val == other.s_val && cost == other.cost && is_optimal == other.is_optimal && peak_times == other.peak_times; } void PrintLargestInstructions( const std::vector<NodeStrategyIdx>& chosen_strategy, const AutoShardingSolverRequest& request) { if (!request.node_intervals().empty()) return; std::vector<std::pair<LivenessIdx, double>> time_memory_usage; for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { double mem = 0.0; for (NodeIdx node_idx : request.live(time_idx).nodes()) { mem += request.memory_costs(node_idx).costs(chosen_strategy[node_idx]); } time_memory_usage.push_back({time_idx, mem}); } struct { bool operator()(std::pair<LivenessIdx, double> a, std::pair<LivenessIdx, double> b) const { return a.second > b.second; } } MemLarger; std::sort(time_memory_usage.begin(), time_memory_usage.end(), MemLarger); LOG(INFO) << "using m[] and L[], max memory usage: " << time_memory_usage.front().second / (1024 * 1024 * 1024) << " GB at time " << time_memory_usage.front().first; size_t k = 3; k = std::min(k, time_memory_usage.size()); std::vector<std::pair<NodeIdx, double>> instruction_mem; absl::flat_hash_set<NodeIdx> instruction_set; for (auto usage_idx = 0; usage_idx < k; ++usage_idx) { LivenessIdx time_idx = time_memory_usage.at(usage_idx).first; for (NodeIdx node_idx : request.live(time_idx).nodes()) { double mem = request.memory_costs(node_idx).costs(chosen_strategy[node_idx]); if (mem > 100 * 1024 * 1024 && instruction_set.find(node_idx) == instruction_set.end()) { instruction_mem.push_back({node_idx, mem}); instruction_set.insert(node_idx); } } } std::sort(instruction_mem.begin(), instruction_mem.end(), MemLarger); size_t top_tensors = 10; top_tensors = std::min(top_tensors, instruction_mem.size()); VLOG(1) << "Top " << top_tensors << " largest tensors:"; for (size_t i = 0; i < top_tensors; ++i) { VLOG(1) << "instruction name: " << request.instruction_names(instruction_mem.at(i).first) << " memory usage: " << instruction_mem.at(i).second / (1024 * 1024 * 1024) << "GB"; } } absl::StatusOr<AutoShardingSolverOutput> SolveAndExtractSolution( const AutoShardingSolverRequest& request, const std::vector<std::vector<MPVariable*>>& s, const std::vector<std::vector<MPVariable*>>& e, const MPVariable* overbudget_var, const MPVariable* makespan_var, MPSolver& solver); double MinimumMemoryBudgetRequired(const AutoShardingSolverRequest& request) { double min_memory_budget_required_estimate = 0.0; for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { double min_memory_budget_required_estimate_local = 0.0; for (NodeIdx node_idx : request.live(time_idx).nodes()) { const auto& m = request.memory_costs(node_idx).costs(); const double fixed_memory_cost = *std::min_element(m.begin(), m.end()); min_memory_budget_required_estimate_local += fixed_memory_cost; } min_memory_budget_required_estimate = std::max(min_memory_budget_required_estimate, min_memory_budget_required_estimate_local); } return min_memory_budget_required_estimate; } double MaxCoeff( const tsl::protobuf::RepeatedPtrField<AutoShardingSolverRequest_Costs>& cost_mat) { double max_coeff = 0.0; for (auto& costs : cost_mat) { for (auto& cost : costs.costs()) { if (cost < kInfinityCost) { max_coeff = std::max(max_coeff, cost); } } } return max_coeff; } void ScaleCoeffs( double scaling_factor, tsl::protobuf::RepeatedPtrField<AutoShardingSolverRequest_Costs>* cost_mat) { for (auto& costs : *cost_mat) { for (auto& cost : *costs.mutable_costs()) { if (cost < kInfinityCost) { cost = floor(cost * scaling_factor); } } } } AutoShardingSolverRequest ScaleRequest( const AutoShardingSolverRequest& request) { if (!request.has_coeff_limit()) return request; VLOG(0) << "Scaling request by coefficient limit: " << request.coeff_limit().coeff(); double max_coeff = 0.0; max_coeff = std::max(max_coeff, MaxCoeff(request.communication_costs())); max_coeff = std::max(max_coeff, MaxCoeff(request.computation_costs())); max_coeff = std::max(max_coeff, MaxCoeff(request.resharding_costs())); if (max_coeff <= request.coeff_limit().coeff()) return request; const double scaling_factor = request.coeff_limit().coeff() / max_coeff; AutoShardingSolverRequest scaled_request = request; ScaleCoeffs(scaling_factor, scaled_request.mutable_communication_costs()); ScaleCoeffs(scaling_factor, scaled_request.mutable_computation_costs()); ScaleCoeffs(scaling_factor, scaled_request.mutable_resharding_costs()); return scaled_request; } std::optional<std::pair<int64_t, int64_t>> ReduceMemoryTerms( const AutoShardingSolverRequest& request, MPSolver& solver, int64_t num_lives, int64_t num_primitives, const std::function< tsl::protobuf::RepeatedField<int64_t>(int64_t)>& live, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Pair>& intervals, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Group>& groups, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Costs>& memory_costs, std::string_view prim_type, std::vector<std::vector<MPVariable*>>& prim_vars, std::vector<std::pair<int64_t, int64_t>>& reduced_intervals, std::vector<MPVariable*>& group_vars, absl::flat_hash_set<int64_t>& reduced_times) { const absl::Time term_reduction_start_time = absl::Now(); std::optional<std::pair<int64_t, int64_t>> num_terms = std::nullopt; std::vector<absl::btree_set<int64_t>> reduced_groups; if (groups.empty()) { for (const auto& interval : intervals) { if (interval.first() > interval.second()) continue; num_lives = std::max(num_lives, interval.second() + 1); } auto Intervals = [intervals](int64_t prim_idx) -> std::pair<int64_t, int64_t> { return {intervals.at(prim_idx).first(), intervals.at(prim_idx).second()}; }; MemoryTermReducer reducer; num_terms = intervals.empty() ? reducer.Reduce(num_lives, num_primitives, live) : reducer.Reduce(num_lives, num_primitives, std::move(Intervals)); reduced_intervals = reducer.GetReducedIntervals(); reduced_groups = reducer.GetReducedGroups(); } else { for (const auto& interval : intervals) { reduced_intervals.push_back({interval.first(), interval.second()}); } for (const auto& group : groups) { reduced_groups.push_back({group.prims().begin(), group.prims().end()}); } } solver.MakeNumVarArray(reduced_groups.size(), 0.0, MPSolver::infinity(), absl::StrCat("group_", prim_type), &group_vars); for (int64_t group_idx = 0; group_idx < group_vars.size(); ++group_idx) { MPConstraint* constraint = solver.MakeRowConstraint( -MPSolver::infinity(), 0.0, absl::StrCat("group_", prim_type, "[", group_idx, "]")); constraint->SetCoefficient(group_vars[group_idx], -1.0); for (const int64_t prim_idx : reduced_groups[group_idx]) { for (int64_t j = 0; j < prim_vars[prim_idx].size(); ++j) { double memory_cost = memory_costs.at(prim_idx).costs(j); memory_cost /= request.memory_budget() / kMemoryMultiplier; const double accumulated_coefficient = constraint->GetCoefficient(prim_vars[prim_idx][j]); constraint->SetCoefficient(prim_vars[prim_idx][j], accumulated_coefficient + memory_cost); } } } const absl::flat_hash_set<int64_t> times = MemoryTermReducer::GetReducedTimes( num_primitives, reduced_intervals, reduced_groups); reduced_times.insert(times.begin(), times.end()); const absl::Time term_reduction_end_time = absl::Now(); if (num_terms) { const auto term_reduction_duration = term_reduction_end_time - term_reduction_start_time; LOG(INFO) << "Memory Term Reducer for " << prim_type << "s took " << absl::ToInt64Milliseconds(term_reduction_duration) << " ms and reduced the number of terms from " << num_terms->first << " to " << num_terms->second; } return num_terms; } void AddMemoryTerms( const AutoShardingSolverRequest& request, MPSolver& solver, int64_t num_primitives, const std::vector<std::pair<int64_t, int64_t>>& intervals, const tsl::protobuf::RepeatedPtrField< AutoShardingSolverRequest_Costs>& memory_costs, const MPVariable* overbudget_var, const absl::flat_hash_set<int64_t>& reduced_times, std::vector<std::vector<MPVariable*>>& prim_vars, std::vector<MPVariable*>& group_vars, absl::flat_hash_map<LivenessIdx, MPConstraint*>& constraints) { for (int64_t prim_idx = 0; prim_idx < intervals.size(); ++prim_idx) { for (int64_t time_idx = intervals[prim_idx].first; time_idx <= intervals[prim_idx].second; ++time_idx) { if (!reduced_times.contains(time_idx)) continue; if (!constraints.contains(time_idx)) { MPConstraint* constraint = solver.MakeRowConstraint(-MPSolver::infinity(), kMemoryMultiplier, absl::StrCat("mem[", time_idx, "]")); if (overbudget_var) { constraint->SetCoefficient(overbudget_var, -kMemoryMultiplier); } constraints[time_idx] = constraint; } MPConstraint* constraint = constraints[time_idx]; if (prim_idx >= num_primitives) { constraint->SetCoefficient(group_vars[prim_idx - num_primitives], 1.0); continue; } for (int64_t j = 0; j < prim_vars[prim_idx].size(); ++j) { double memory_cost = memory_costs.at(prim_idx).costs(j); memory_cost /= request.memory_budget() / kMemoryMultiplier; const double accumulated_coefficient = constraint->GetCoefficient(prim_vars[prim_idx][j]); constraint->SetCoefficient(prim_vars[prim_idx][j], accumulated_coefficient + memory_cost); } } } } absl::StatusOr<AutoShardingSolverOutput> FormulateAndSolveMIPFromSolverRequest( const AutoShardingSolverRequest& unscaled_request) { const absl::Time start_time = absl::Now(); const AutoShardingSolverRequest& request = ScaleRequest(unscaled_request); const size_t num_edges = request.edges_size(); const int num_workers = 32; #ifdef PLATFORM_GOOGLE std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SAT")); #else std::unique_ptr<MPSolver> solver( std::make_unique<MPSolver>("", MPSolver::SAT_INTEGER_PROGRAMMING)); #endif CHECK(solver); solver->MutableObjective()->SetMinimization(); std::string solver_parameter_str; if (solver->ProblemType() == operations_research::MPSolver::SAT_INTEGER_PROGRAMMING) { solver_parameter_str = absl::StrCat("num_workers:", num_workers); if (request.deterministic_mode()) { absl::StrAppend( &solver_parameter_str, ",share_binary_clauses:false,random_seed:1,interleave_search:true"); } if (request.has_solver_timeout()) { absl::StrAppend(&solver_parameter_str, ",max_deterministic_time:", request.solver_timeout().solver_timeout_in_seconds()); } solver->SetSolverSpecificParametersAsString(solver_parameter_str); } std::vector<std::vector<MPVariable*>> s(request.num_nodes()); std::vector<std::vector<MPVariable*>> e(num_edges); MPVariable* overbudget_var = nullptr; MPVariable* makespan_var = nullptr; size_t unique_nodes = 0; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) < 0) { unique_nodes += 1; solver->MakeBoolVarArray(request.s_len(node_idx), absl::StrCat("s[", node_idx, "]"), &s[node_idx]); } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) { CHECK_EQ(request.s_len(node_idx), request.s_len(request.s_follow(node_idx))); s[node_idx] = s[request.s_follow(node_idx)]; } } size_t unique_edges = 0; std::vector<EdgeIdx> e_follow(num_edges, -1); absl::flat_hash_map<std::pair<NodeIdx, NodeIdx>, EdgeIdx> edge_map; for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { const auto& raw_edge = request.edges(edge_idx); const std::pair<NodeIdx, NodeIdx> edge(raw_edge.first(), raw_edge.second()); auto followed_edge = edge; if (int f = request.s_follow(edge.first); f >= 0) followed_edge.first = f; if (int f = request.s_follow(edge.second); f >= 0) followed_edge.second = f; if (const auto& it = edge_map.find(followed_edge); it != edge_map.end()) { e[edge_idx] = e[it->second]; e_follow[edge_idx] = it->second; continue; } unique_edges += 1; solver->MakeBoolVarArray( request.s_len(edge.first) * request.s_len(edge.second), absl::StrCat("e[", edge.first, ",", edge.second, "]"), &e[edge_idx]); edge_map.insert({followed_edge, edge_idx}); } if (request.memory_budget() > 0 && request.has_overbudget_coeff()) { overbudget_var = solver->MakeNumVar(0.0, MPSolver::infinity(), "overbudget"); } if (request.has_makespan_coeff()) { makespan_var = CreateMakespanVar(request, e, *solver); } absl::flat_hash_set<MPVariable*> infinity_vars; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double coefficient = request.computation_costs(node_idx).costs(j) + request.communication_costs(node_idx).costs(j); if (coefficient >= kInfinityCost) { infinity_vars.insert(s[node_idx][j]); continue; } if (request.minimize_departures()) continue; double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(s[node_idx][j]); solver->MutableObjective()->SetCoefficient( s[node_idx][j], accumulated_coefficient + coefficient); } } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { for (EdgeStrategyIdx j = 0; j < e[edge_idx].size(); ++j) { double coefficient = request.resharding_costs(edge_idx).costs(j); if (coefficient >= kInfinityCost) { infinity_vars.insert(e[edge_idx][j]); continue; } if (request.minimize_departures()) continue; double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(e[edge_idx][j]); solver->MutableObjective()->SetCoefficient( e[edge_idx][j], accumulated_coefficient + coefficient); } } LOG(INFO) << "Number of infinity terms: " << infinity_vars.size(); const NodeStrategies shaved_strategies = StrategyShaver(request).FindShavedStrategies(); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (s[node_idx].empty() || request.s_follow(node_idx) >= 0) continue; bool all_infinity = true; for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { if (infinity_vars.contains(s[node_idx][j]) || shaved_strategies.contains({node_idx, j})) { MPConstraint* constraint = solver->MakeRowConstraint( 0.0, 0.0, absl::StrCat("infinitycost: s[", node_idx, "][", j, "] = 0")); constraint->SetCoefficient(s[node_idx][j], 1.0); } else { all_infinity = false; } } if (all_infinity) { LOG(FATAL) << "All of s[" << node_idx << "][*] have infinity costs"; } } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { if (e[edge_idx].empty() || e_follow[edge_idx] >= 0) continue; bool all_infinity = true; for (EdgeStrategyIdx j = 0; j < e[edge_idx].size(); ++j) { if (infinity_vars.contains(e[edge_idx][j])) { MPConstraint* constraint = solver->MakeRowConstraint( 0.0, 0.0, absl::StrCat("infinitycost: e[", edge_idx, "][", j, "] = 0")); constraint->SetCoefficient(e[edge_idx][j], 1.0); } else { all_infinity = false; } } if (all_infinity) { auto err_msg = absl::StrCat("All of e[", request.edges(edge_idx).first(), "][", request.edges(edge_idx).second(), "][*] have infinity costs"); if (request.crash_at_infinity_costs_check()) { LOG(FATAL) << err_msg; } else { LOG(WARNING) << err_msg; return absl::InternalError(err_msg); } } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) continue; MPConstraint* constraint = solver->MakeRowConstraint( 1.0, 1.0, absl::StrCat("sum(s[", node_idx, "][j] for j = [0 .. ", s[node_idx].size(), ")) = 1")); for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { constraint->SetCoefficient(s[node_idx][j], 1.0); } } if (request.memory_budget() > 0) { auto LiveNodes = [request](int64_t live_idx) -> tsl::protobuf::RepeatedField<int64_t> { return request.live(live_idx).nodes(); }; auto LiveEdges = [request](int64_t live_idx) -> tsl::protobuf::RepeatedField<int64_t> { return request.live_edges(live_idx).edges(); }; std::vector<std::pair<int64_t, int64_t>> reduced_intervals_nodes, reduced_intervals_edges; absl::flat_hash_set<int64_t> reduced_times; std::vector<MPVariable*> group_node_vars, group_edge_vars; std::optional<std::pair<int64_t, int64_t>> num_node_terms, num_edge_terms; num_node_terms = ReduceMemoryTerms( request, *solver, request.live_size(), request.num_nodes(), std::move(LiveNodes), request.node_intervals(), request.node_groups(), request.memory_costs(), "node", s, reduced_intervals_nodes, group_node_vars, reduced_times); if (request.enable_memory_edge_costs()) { num_edge_terms = ReduceMemoryTerms( request, *solver, request.live_edges_size(), request.edges_size(), std::move(LiveEdges), request.edge_intervals(), request.edge_groups(), request.memory_edge_costs(), "edge", e, reduced_intervals_edges, group_edge_vars, reduced_times); } absl::flat_hash_map<LivenessIdx, MPConstraint*> constraints; AddMemoryTerms(request, *solver, request.num_nodes(), reduced_intervals_nodes, request.memory_costs(), overbudget_var, reduced_times, s, group_node_vars, constraints); if (request.enable_memory_edge_costs()) { AddMemoryTerms(request, *solver, request.edges_size(), reduced_intervals_edges, request.memory_edge_costs(), overbudget_var, reduced_times, e, group_edge_vars, constraints); } if (overbudget_var && !request.minimize_departures()) { solver->MutableObjective()->SetCoefficient( overbudget_var, request.overbudget_coeff().coeff() * request.memory_budget()); } LOG(INFO) << "Minimum memory budget estimate: " << MinimumMemoryBudgetRequired(request); LOG(INFO) << "Using memory budget: " << static_cast<double>(request.memory_budget()); } for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { if (e_follow[edge_idx] >= 0) continue; const auto& edge = request.edges(edge_idx); for (NodeStrategyIdx p = 0; p < s[edge.first()].size(); ++p) { for (NodeStrategyIdx q = 0; q < s[edge.second()].size(); ++q) { const EdgeStrategyIdx j = p * s[edge.second()].size() + q; MPConstraint* constraint = solver->MakeRowConstraint( -1.0, MPSolver::infinity(), absl::StrCat("edge[", edge_idx, "][", j, "]")); double coeff = (s[edge.first()][p] == s[edge.second()][q]) ? 2.0 : 1.0; constraint->SetCoefficient(s[edge.first()][p], -coeff); constraint->SetCoefficient(s[edge.second()][q], -coeff); constraint->SetCoefficient(e[edge_idx][j], 1.0); } } } absl::flat_hash_set<std::pair<NodeIdx, NodeIdx>> alias_set; for (auto alias_idx = 0; alias_idx < request.aliases_size(); ++alias_idx) { const auto& raw_alias = request.aliases(alias_idx); const std::pair<NodeIdx, NodeIdx> alias(raw_alias.first(), raw_alias.second()); if (alias_set.contains(alias)) continue; alias_set.insert(alias); const auto& value_costs = request.value_costs(alias_idx).costs(); for (NodeStrategyIdx p = 0; p < s[alias.first].size(); ++p) { for (NodeStrategyIdx q = 0; q < s[alias.second].size(); ++q) { if (value_costs[p * s[alias.second].size() + q] > 0.5) { MPConstraint* constraint = solver->MakeRowConstraint( -MPSolver::infinity(), 1, absl::StrCat("s[", alias.first, "][", p, "] + s[", alias.second, "][", q, "] <= 1")); constraint->SetCoefficient(s[alias.first][p], 1.0); constraint->SetCoefficient(s[alias.second][q], 1.0); } } } } if (request.has_max_departures()) { MPConstraint* constraint = solver->MakeRowConstraint( 0, request.max_departures().coeff(), absl::StrCat("departures <= ", request.max_departures().coeff())); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double accumulated_coefficient = constraint->GetCoefficient(s[node_idx][j]); double departure_cost = request.departure_costs(node_idx).costs(j); constraint->SetCoefficient(s[node_idx][j], accumulated_coefficient + departure_cost); } } } if (request.minimize_departures()) { for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double accumulated_coefficient = solver->MutableObjective()->GetCoefficient(s[node_idx][j]); double departure_cost = request.departure_costs(node_idx).costs(j); solver->MutableObjective()->SetCoefficient( s[node_idx][j], accumulated_coefficient + departure_cost); } } } if (request.has_max_cost() && request.max_cost().coeff() < kMaxCostValue) { double max_cost = kMaxCostEpsilon * request.max_cost().coeff(); max_cost -= solver->Objective().offset(); MPConstraint* cost_constraint = solver->MakeRowConstraint( -MPSolver::infinity(), max_cost, "cost_constraint"); for (const auto [var, coeff] : solver->Objective().terms()) { cost_constraint->SetCoefficient(var, coeff); } } if (!request.s_hint().empty() && !request.deterministic_mode() && (!request.has_max_cost() || request.max_cost().coeff() < kMaxCostValue)) { std::vector<std::pair<const MPVariable*, double>> hint; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { if (request.s_follow(node_idx) >= 0) continue; for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { double hint_val = (request.s_hint(node_idx) == j) ? 1.0 : 0.0; hint.push_back({s[node_idx][j], hint_val}); } } solver->SetHint(hint); } #ifdef PLATFORM_GOOGLE bool dump_model = false; if (dump_model) { operations_research::MPModelProto model_proto; solver->ExportModelToProto(&model_proto); auto write_status = file::SetTextProto( absl::StrCat("/tmp/model_", solver->NumVariables(), ".proto"), model_proto, file::Defaults()); if (!write_status.ok()) { LOG(ERROR) << write_status.message(); } } bool dump_solver_request = false; if (dump_solver_request) { uint64_t solver_request_fprint = tsl::Fingerprint64(unscaled_request.SerializeAsString()); std::string request_dump_path = absl::StrCat("/tmp/solver_request_", unscaled_request.request_name(), "_", solver_request_fprint, ".proto"); auto write_status = file::SetBinaryProto( request_dump_path, unscaled_request, file::Defaults()); VLOG(5) << "Dumped solver request to " << request_dump_path; if (!write_status.ok()) { LOG(ERROR) << write_status.message(); } } #endif if (request.enable_output()) { solver->EnableOutput(); } VLOG(0) << "Starting solver " << solver->ProblemType() << "\n" << "Solver parameter string: " << solver_parameter_str << "\n" << "Number of workers: " << num_workers << "\n" << "Number of threads: " << solver->GetNumThreads() << "\n" << "Time limit: " << solver->time_limit() << "\n" << "Request valid: " << ValidateRequest(request).ok() << "\n" << "Aliases: " << request.aliases_size() << "\n" << "Unique nodes: " << unique_nodes << "\n" << "Unique edges: " << unique_edges << "\n" << "Total instructions: " << request.num_nodes() << "\n" << "Total edges: " << request.edges_size() << "\n" << "Memory budget: " << request.memory_budget() / (1024 * 1024 * 1024) << "GB\n" << "Number variables for ILP: " << solver->NumVariables() << "\n" << "Number of ILP constraints: " << solver->NumConstraints() << "\n" << "Deterministic mode: " << request.deterministic_mode() << "\n" << "Module name: " << request.module_name(); if (request.has_max_cost()) { VLOG(0) << "Max cost: " << request.max_cost().coeff(); } auto result = SolveAndExtractSolution(request, s, e, overbudget_var, makespan_var, *solver); if (result.ok()) { const AutoShardingEvaluation evaluation = Evaluate(unscaled_request, *result); LOG(INFO) << "*** Total costs for the (unscaled) solver request ***"; LOG(INFO) << "Total Communication Cost: " << evaluation.total.communication_cost << " (lower bound: " << evaluation.lower_bound.communication_cost << ")"; LOG(INFO) << "Total Computation Cost: " << evaluation.total.computation_cost << " (lower bound: " << evaluation.lower_bound.computation_cost << ")"; LOG(INFO) << "Total Resharding Cost: " << evaluation.total.resharding_cost << " (lower bound: " << evaluation.lower_bound.resharding_cost << ")"; LOG(INFO) << "Total Overbudget Cost: " << evaluation.total.overbudget_cost << " (lower bound: " << evaluation.lower_bound.overbudget_cost << ")"; LOG(INFO) << "Total Makespan Cost: " << evaluation.total.makespan_cost << " (lower bound: " << evaluation.lower_bound.makespan_cost << ")"; LOG(INFO) << "Total Cost: " << evaluation.total.cost() << " (lower bound: " << evaluation.lower_bound.cost() << ")"; LOG(INFO) << "Total Departures: " << evaluation.total_departures; LOG(INFO) << "Total Makespan: " << evaluation.total_makespan; LOG(INFO) << "Total Violations: " << evaluation.violation_codes.size(); } const absl::Time end_time = absl::Now(); const auto duration = end_time - start_time; LOG(INFO) << "Solver took " << absl::ToInt64Milliseconds(duration) << " ms"; return result; } std::vector<NodeStrategyIdx> GetChosenNodeStrategy( const AutoShardingSolverRequest& request, const std::vector<std::vector<MPVariable*>>& s) { std::vector<NodeStrategyIdx> chosen_node_strategy(request.num_nodes(), -1); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { for (NodeStrategyIdx j = 0; j < s[node_idx].size(); ++j) { if (s[node_idx][j]->solution_value() > 0.5) { chosen_node_strategy[node_idx] = j; break; } } } return chosen_node_strategy; } absl::StatusOr<AutoShardingSolverOutput> SolveAndExtractSolution( const AutoShardingSolverRequest& request, const std::vector<std::vector<MPVariable*>>& s, const std::vector<std::vector<MPVariable*>>& e, const MPVariable* overbudget_var, const MPVariable* makespan_var, MPSolver& solver) { auto status = solver.Solve(); LOG(INFO) << "Solver absl::Status: " << status; bool is_optimal = false; if (status == operations_research::MPSolver::INFEASIBLE) { LOG(ERROR) << "MPSolver could not find any feasible solution."; #ifdef PLATFORM_GOOGLE if (request.compute_iis()) { operations_research::MPModelRequest model_request; solver.ExportModelToProto(model_request.mutable_model()); if (solver.ProblemType() == operations_research::MPSolver::SAT_INTEGER_PROGRAMMING) { model_request.set_solver_type( operations_research::MPModelRequest::SAT_INTEGER_PROGRAMMING); } else if (solver.ProblemType() == operations_research::MPSolver:: SCIP_MIXED_INTEGER_PROGRAMMING) { model_request.set_solver_type(operations_research::MPModelRequest:: SCIP_MIXED_INTEGER_PROGRAMMING); } model_request.set_solver_time_limit_seconds(100); auto iis = MPSolver::ComputeIrreducibleInfeasibleSubset(model_request); LOG(INFO) << iis.status().DebugString(); LOG(INFO) << "Infeasible constraints: "; for (int index : iis.constraint_index()) { LOG(INFO) << " - " << model_request.model().constraint(index).name(); } for (int index : iis.general_constraint_index()) { LOG(INFO) << " - " << model_request.model().general_constraint(index).DebugString(); } } #endif return absl::InternalError( "MPSolver could not find any feasible solution."); } else if (status == operations_research::MPSolver::MODEL_INVALID) { LOG(FATAL) << "The MIP fed to the solver is invalid. This is most likely a " "bug and should be reported."; return absl::InternalError("Invalid MIP."); } else if (status == operations_research::MPSolver::NOT_SOLVED) { LOG(WARNING) << "Solver timeout; no solution was produced"; return absl::InternalError("Solver timed out."); } else if (status != operations_research::MPSolver::OPTIMAL) { LOG(WARNING) << "Solver timeout; moving forward with a suboptimal solution"; } else { is_optimal = true; } operations_research::MPModelProto model_proto; solver.ExportModelToProto(&model_proto); uint64_t model_fprint = tsl::Fingerprint64(model_proto.SerializeAsString()); operations_research::MPSolutionResponse response; solver.FillSolutionResponseProto(&response); response.clear_solve_info(); uint64_t solution_fprint = tsl::Fingerprint64(response.SerializeAsString()); LOG(INFO) << "Objective value: " << solver.Objective().Value() << " Model fingerprint: " << model_fprint << " Solution fingerprint: " << solution_fprint; if (solver.Objective().Value() >= kInfinityCost) { LOG(WARNING) << "Objective (" << solver.Objective().Value() << ") is larger than kInfinityCost. It means the solver " "chooses a solution with kInfinityCost and there may be " "numerical issues when the solver considering other costs."; } if (VLOG_IS_ON(10)) { VLOG(10) << "MODEL:"; XLA_VLOG_LINES(10, model_proto.DebugString()); VLOG(10) << "RESPONSE:"; XLA_VLOG_LINES(10, response.DebugString()); } size_t num_edges = request.edges_size(); double unsalted_objective = 0.0; const std::vector<NodeStrategyIdx> chosen_node_strategy = GetChosenNodeStrategy(request, s); for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { const NodeStrategyIdx j = chosen_node_strategy[node_idx]; unsalted_objective += request.computation_costs(node_idx).costs(j) + request.communication_costs(node_idx).costs(j); } const auto chosen_edge_strategy = [&](EdgeIdx edge_idx) { const auto& edge = request.edges(edge_idx); return chosen_node_strategy[edge.first()] * request.s_len(edge.second()) + chosen_node_strategy[edge.second()]; }; for (EdgeIdx edge_idx = 0; edge_idx < num_edges; ++edge_idx) { const EdgeStrategyIdx j = chosen_edge_strategy(edge_idx); unsalted_objective += request.resharding_costs(edge_idx).costs(j); } if (overbudget_var) { unsalted_objective += request.overbudget_coeff().coeff() * overbudget_var->solution_value() * request.memory_budget(); } if (makespan_var) { unsalted_objective += request.makespan_coeff().coeff() * makespan_var->solution_value(); } LOG(INFO) << "Unsalted objective value: " << unsalted_objective; LOG(INFO) << "N = " << request.num_nodes(); if (request.memory_budget() < 0) { LOG(INFO) << "memory budget: -1"; } else { LOG(INFO) << "memory budget: " << request.memory_budget() / (1024 * 1024 * 1024) << " GB"; } PrintLargestInstructions(chosen_node_strategy, request); return AutoShardingSolverOutput{.s_val = std::move(chosen_node_strategy), .cost = solver.Objective().Value(), .is_optimal = is_optimal}; } bool CostComponents::operator==(const CostComponents& other) const { return communication_cost == other.communication_cost && computation_cost == other.computation_cost && resharding_cost == other.resharding_cost && overbudget_cost == other.overbudget_cost && makespan_cost == other.makespan_cost; } double CostComponents::cost() const { return communication_cost + computation_cost + resharding_cost + overbudget_cost + makespan_cost; } bool AutoShardingEvaluation::operator==( const AutoShardingEvaluation& other) const { return violation_codes == other.violation_codes && total == other.total && lower_bound == other.lower_bound && total_departures == other.total_departures; } AutoShardingEvaluation Evaluate(const AutoShardingSolverRequest& request, const AutoShardingSolverOutput& result) { const auto& c = request.computation_costs(); const auto& d = request.communication_costs(); const auto& r = request.resharding_costs(); const auto& v = request.value_costs(); const auto& p = request.departure_costs(); const std::vector<NodeStrategyIdx>& s_val = result.s_val; const auto e_val = [&](EdgeIdx edge_idx) { const auto& edge = request.edges(edge_idx); return s_val[edge.first()] * request.s_len(edge.second()) + s_val[edge.second()]; }; AutoShardingEvaluation evaluation; for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { NodeIdx s_follow = request.s_follow(node_idx); if (s_follow >= 0 && s_val[node_idx] != s_val[s_follow]) { evaluation.violation_codes.insert(kFollowerViolationCode); } } for (auto alias_idx = 0; alias_idx < request.aliases_size(); ++alias_idx) { const auto& alias = request.aliases(alias_idx); NodeStrategyIdx p = s_val[alias.first()], q = s_val[alias.second()]; if (v.at(alias_idx).costs(p * request.s_len(alias.second()) + q) > 0.5) { evaluation.violation_codes.insert(kAliasViolationCode); } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { NodeStrategyIdx strat_idx = s_val[node_idx]; const double node_cost = c.at(node_idx).costs(strat_idx) + d.at(node_idx).costs(strat_idx); if (node_cost >= kInfinityCost) { evaluation.violation_codes.insert(kInfiniteCostViolationCode); } } for (EdgeIdx edge_idx = 0; edge_idx < request.edges_size(); ++edge_idx) { if (r.at(edge_idx).costs(e_val(edge_idx)) >= kInfinityCost) { evaluation.violation_codes.insert(kInfiniteCostViolationCode); } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { evaluation.total_departures += p.at(node_idx).costs(s_val[node_idx]); if (request.has_max_departures() && evaluation.total_departures > request.max_departures().coeff()) { evaluation.violation_codes.insert(kMaxDeparturesViolationCode); } } if (request.memory_budget() > 0) { double total_overbudget = 0.0; double lower_bound_overbudget = 0.0; std::vector<double> total_memory_costs, lower_bound_memory_costs; if (request.node_intervals().empty()) { total_memory_costs.resize(request.live_size(), 0.0); lower_bound_memory_costs.resize(request.live_size(), 0.0); for (LivenessIdx time_idx = 0; time_idx < request.live_size(); ++time_idx) { for (NodeIdx node_idx : request.live(time_idx).nodes()) { const auto& m = request.memory_costs(node_idx).costs(); total_memory_costs[time_idx] += m[s_val[node_idx]]; lower_bound_memory_costs[time_idx] += *std::min_element(m.begin(), m.end()); } if (!request.live_edges().empty() && request.enable_memory_edge_costs()) { for (EdgeIdx edge_idx : request.live_edges(time_idx).edges()) { const auto& m = request.memory_edge_costs(edge_idx).costs(); total_memory_costs[time_idx] += m[e_val(edge_idx)]; lower_bound_memory_costs[time_idx] += *std::min_element(m.begin(), m.end()); } } } } else { std::vector<double> total_node_group_costs, total_edge_group_costs, lower_bound_node_group_costs, lower_bound_edge_group_costs; for (const auto& group : request.node_groups()) { double total_group_cost = 0.0; double lower_bound_group_cost = 0.0; for (const NodeIdx node_idx : group.prims()) { const auto& m = request.memory_costs(node_idx).costs(); total_group_cost += m[s_val[node_idx]]; lower_bound_group_cost += *std::min_element(m.begin(), m.end()); } total_node_group_costs.push_back(total_group_cost); lower_bound_node_group_costs.push_back(lower_bound_group_cost); } for (const auto& group : request.edge_groups()) { double total_group_cost = 0.0; double lower_bound_group_cost = 0.0; for (const EdgeIdx edge_idx : group.prims()) { const auto& m = request.memory_edge_costs(edge_idx).costs(); total_group_cost += m[e_val(edge_idx)]; lower_bound_group_cost += *std::min_element(m.begin(), m.end()); } total_edge_group_costs.push_back(total_group_cost); lower_bound_edge_group_costs.push_back(lower_bound_group_cost); } for (NodeIdx node_idx = 0; node_idx < request.node_intervals_size(); ++node_idx) { const auto& interval = request.node_intervals(node_idx); if (interval.first() > interval.second()) continue; while (total_memory_costs.size() <= interval.second()) { total_memory_costs.push_back(0.0); lower_bound_memory_costs.push_back(0.0); } double total_memory_cost = 0.0, lower_bound_memory_cost = 0.0; if (node_idx < request.num_nodes()) { const auto& m = request.memory_costs(node_idx).costs(); total_memory_cost = m[s_val[node_idx]]; lower_bound_memory_cost = *std::min_element(m.begin(), m.end()); } else { int64_t group_idx = node_idx - request.num_nodes(); total_memory_cost = total_node_group_costs[group_idx]; lower_bound_memory_cost = lower_bound_node_group_costs[group_idx]; } for (LivenessIdx time_idx = interval.first(); time_idx <= interval.second(); ++time_idx) { total_memory_costs[time_idx] += total_memory_cost; lower_bound_memory_costs[time_idx] += lower_bound_memory_cost; } } if (request.enable_memory_edge_costs()) { for (EdgeIdx edge_idx = 0; edge_idx < request.edge_intervals_size(); ++edge_idx) { const auto& interval = request.edge_intervals(edge_idx); if (interval.first() > interval.second()) continue; while (total_memory_costs.size() <= interval.second()) { total_memory_costs.push_back(0.0); lower_bound_memory_costs.push_back(0.0); } double total_memory_cost = 0.0, lower_bound_memory_cost = 0.0; if (edge_idx < request.edges_size()) { const auto& m = request.memory_edge_costs(edge_idx).costs(); total_memory_cost = m[e_val(edge_idx)]; lower_bound_memory_cost = *std::min_element(m.begin(), m.end()); } else { int64_t group_idx = edge_idx - request.edges_size(); total_memory_cost = total_edge_group_costs[group_idx]; lower_bound_memory_cost = lower_bound_edge_group_costs[group_idx]; } for (LivenessIdx time_idx = interval.first(); time_idx <= interval.second(); ++time_idx) { total_memory_costs[time_idx] += total_memory_cost; lower_bound_memory_costs[time_idx] += lower_bound_memory_cost; } } } } for (LivenessIdx time_idx = 0; time_idx < total_memory_costs.size(); ++time_idx) { if (request.has_overbudget_coeff()) { total_overbudget = std::max(total_overbudget, total_memory_costs[time_idx] - request.memory_budget()); lower_bound_overbudget = std::max( lower_bound_overbudget, lower_bound_memory_costs[time_idx] - request.memory_budget()); } else if (total_memory_costs[time_idx] > request.memory_budget()) { evaluation.violation_codes.insert(kMemoryViolationCode); } } if (request.has_overbudget_coeff()) { evaluation.total.overbudget_cost = request.overbudget_coeff().coeff() * total_overbudget; evaluation.lower_bound.overbudget_cost = request.overbudget_coeff().coeff() * lower_bound_overbudget; } } for (NodeIdx node_idx = 0; node_idx < request.num_nodes(); ++node_idx) { evaluation.total.communication_cost += d.at(node_idx).costs(s_val[node_idx]); evaluation.total.computation_cost += c.at(node_idx).costs(s_val[node_idx]); evaluation.lower_bound.communication_cost += *std::min_element( d.at(node_idx).costs().begin(), d.at(node_idx).costs().end()); evaluation.lower_bound.computation_cost += *std::min_element( c.at(node_idx).costs().begin(), c.at(node_idx).costs().end()); } for (EdgeIdx edge_idx = 0; edge_idx < request.edges_size(); ++edge_idx) { evaluation.total.resharding_cost += r.at(edge_idx).costs(e_val(edge_idx)); evaluation.lower_bound.resharding_cost += *std::min_element( r.at(edge_idx).costs().begin(), r.at(edge_idx).costs().end()); } evaluation.total_makespan = EvaluateMakespan(request, result, evaluation); return evaluation; } absl::Status ValidateRequest(const AutoShardingSolverRequest& request) { const int num_nodes = request.num_nodes(); const int num_edges = request.edges_size(); TF_RET_CHECK(num_nodes == request.computation_costs_size()); TF_RET_CHECK(num_nodes == request.communication_costs_size()); TF_RET_CHECK(num_nodes == request.memory_costs_size()); TF_RET_CHECK(num_edges == request.resharding_costs_size()); for (NodeIdx u = 0; u < num_nodes; ++u) { const int num_strategies = request.computation_costs(u).costs_size(); TF_RET_CHECK(num_strategies >= 1); TF_RET_CHECK(num_strategies == request.communication_costs(u).costs_size()); TF_RET_CHECK(num_strategies == request.memory_costs(u).costs_size()); for (NodeStrategyIdx strategy = 0; strategy < num_strategies; ++strategy) { TF_RET_CHECK(request.computation_costs(u).costs(strategy) >= 0.0); TF_RET_CHECK(request.communication_costs(u).costs(strategy) >= 0.0); TF_RET_CHECK(request.memory_costs(u).costs(strategy) >= 0.0); } } absl::btree_set<std::pair<int, int>> edges_seen; for (EdgeIdx e = 0; e < num_edges; ++e) { const int u = request.edges(e).first(); const int v = request.edges(e).second(); TF_RET_CHECK(u >= 0); TF_RET_CHECK(u < num_nodes); TF_RET_CHECK(v >= 0); TF_RET_CHECK(v < num_nodes); TF_RET_CHECK(u < v); TF_RET_CHECK(edges_seen.count({u, v}) == 0); edges_seen.insert({u, v}); const int num_strategies = request.resharding_costs(e).costs_size(); const int num_u_strategies = request.computation_costs(u).costs_size(); const int num_v_strategies = request.computation_costs(v).costs_size(); CHECK_EQ(num_strategies, num_u_strategies * num_v_strategies); } return absl::OkStatus(); } } }
#include "xla/hlo/experimental/auto_sharding/auto_sharding_solver.h" #include <cstdint> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding.pb.h" #include "xla/hlo/experimental/auto_sharding/auto_sharding_strategy.h" #include "tsl/platform/platform.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { using CostMatrix = std::vector<std::vector<double>>; using NodeMatrix = std::vector<std::vector<int64_t>>; using EdgeMatrix = std::vector<std::vector<int64_t>>; void AddCosts(proto2::RepeatedPtrField<AutoShardingSolverRequest_Costs>* costs, const CostMatrix& cost_matrix) { for (const auto& cost_row : cost_matrix) { AutoShardingSolverRequest_Costs cost; cost.mutable_costs()->Add(cost_row.begin(), cost_row.end()); costs->Add(std::move(cost)); } } void AddNodes(proto2::RepeatedPtrField<AutoShardingSolverRequest_Nodes>* nodes, const NodeMatrix& node_matrix) { for (const auto& node_row : node_matrix) { AutoShardingSolverRequest_Nodes node; node.mutable_nodes()->Add(node_row.begin(), node_row.end()); nodes->Add(std::move(node)); } } void AddEdges(proto2::RepeatedPtrField<AutoShardingSolverRequest_Edges>* edges, const EdgeMatrix& edge_matrix) { for (const auto& edge_row : edge_matrix) { AutoShardingSolverRequest_Edges edge; edge.mutable_edges()->Add(edge_row.begin(), edge_row.end()); edges->Add(std::move(edge)); } } void AddIntervals( proto2::RepeatedPtrField<AutoShardingSolverRequest_Pair>* pairs, const std::vector<std::pair<int64_t, int64_t>>& intervals) { for (const auto& interval : intervals) { AutoShardingSolverRequest_Pair pair; pair.set_first(interval.first); pair.set_second(interval.second); pairs->Add(std::move(pair)); } } void AddGroups( proto2::RepeatedPtrField<AutoShardingSolverRequest_Group>* groups, const std::vector<std::vector<int64_t>>& reduced_groups) { for (const auto& reduced_group : reduced_groups) { AutoShardingSolverRequest_Group group; group.mutable_prims()->Add(reduced_group.begin(), reduced_group.end()); groups->Add(std::move(group)); } } AutoShardingSolverRequest DefaultAutoShardingSolverRequest() { const auto s_len = {4, 3, 4, 4, 3}; const auto s_follow = {-1, -1, -1, 2, -1}; AutoShardingSolverRequest_Pair edge1, edge2; edge1.set_first(0); edge1.set_second(2); edge2.set_first(1); edge2.set_second(2); const auto edges = {edge1, edge2}; const NodeMatrix live = {{1, 0}, {1, 0}, {1, 2, 0}, {1, 2, 3, 0}, {1, 3, 0}}; const CostMatrix c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52}}; const CostMatrix d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix m = {{100000, 110000, 990000, 130000}, {200000, 210000, 220000}, {300000, 310000, 320000, 330000}, {400000, 410000, 420000, 430000}, {500000, 510000, 520000}}; const CostMatrix p = {{1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}}; const CostMatrix r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; const CostMatrix t = {{73000, 72000, 71000, 70000, 63000, 62000, 61000, 60000, 53000, 52000, 51000, 50000, 43000, 42000, 41000, 40000}, {33000, 32000, 31000, 30000, 23000, 22000, 21000, 20000, 13000, 12000, 11000, 10000}}; AutoShardingSolverRequest_Pair alias; alias.set_first(1); alias.set_second(4); const auto aliases = {alias}; const CostMatrix v = {{0, 1, 1, 1, 0, 1, 1, 1, 0}}; const std::vector<std::string> instruction_names = {"A", "B", "C", "D", "E"}; const std::vector<std::string> metadata_source_files = {"attention.py", "convolution.py", "layers.py", "logits.py", "pipeline.py"}; AutoShardingSolverRequest request; request.set_num_nodes(5); request.set_memory_budget(1500000); request.mutable_s_len()->Add(s_len.begin(), s_len.end()); request.mutable_s_follow()->Add(s_follow.begin(), s_follow.end()); request.mutable_edges()->Add(edges.begin(), edges.end()); AddNodes(request.mutable_live(), live); AddCosts(request.mutable_computation_costs(), c); AddCosts(request.mutable_communication_costs(), d); AddCosts(request.mutable_memory_costs(), m); AddCosts(request.mutable_departure_costs(), p); AddCosts(request.mutable_resharding_costs(), r); AddCosts(request.mutable_duration_costs(), t); request.mutable_aliases()->Add(aliases.begin(), aliases.end()); AddCosts(request.mutable_value_costs(), v); request.mutable_instruction_names()->Add(instruction_names.begin(), instruction_names.end()); request.mutable_metadata_source_files()->Add(metadata_source_files.begin(), metadata_source_files.end()); return request; } AutoShardingSolverRequest AutoShardingSolverRequestWithEquivalences() { const auto s_len = {4, 3, 7, 7, 3}; const auto s_follow = {-1, -1, -1, 2, -1}; AutoShardingSolverRequest_Pair edge1, edge2; edge1.set_first(0); edge1.set_second(2); edge2.set_first(1); edge2.set_second(2); const auto edges = {edge1, edge2}; const NodeMatrix live = {{1, 0}, {1, 0}, {1, 2, 0}, {1, 2, 3, 0}, {1, 3, 0}}; const CostMatrix c = {{10, 10, 10, 10}, {20, 20, 20}, {30, 30, 31, 30, 30, 30, 30}, {40, 40, 40, 40, 40, 40, 40}, {50, 50, 50}}; const CostMatrix d = {{100, 100, 100, 100}, {200, 200, 200}, {300, 300, 300, 300, 300, 300, 300}, {400, 400, 400, 400, 400, 400, 410}, {500, 500, 500}}; const CostMatrix m = {{10000, 10000, 10000, 10000}, {20000, 20000, 20000}, {30000, 30000, 30000, 31000, 30000, 30000, 30000}, {40000, 40000, 40000, 40000, 40000, 40000, 40000}, {50000, 50000, 50000}}; const CostMatrix p = {{1.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0}}; const CostMatrix r = {{1000, 1000, 1000, 1000, 1000, 1000, 1000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 3000, 3000, 3000, 3000, 3100, 3000, 3000, 4000, 4000, 4000, 4000, 4000, 4000, 4000}, {5000, 5000, 5000, 5000, 5000, 5000, 5000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 7000, 7000, 7000, 7000, 7000, 7000, 7000}}; const CostMatrix t = {{70000, 70000, 70000, 70000, 70000, 70000, 70000, 60000, 60000, 60000, 60000, 60000, 60000, 60000, 50000, 50000, 50000, 50000, 50000, 50000, 50000, 40000, 40000, 40000, 40000, 40000, 40000, 40000}, {30000, 30000, 30000, 30000, 30000, 30000, 30000, 20000, 20000, 20000, 20000, 20000, 20000, 20000, 10000, 10000, 10000, 10000, 10000, 10000, 10000}}; AutoShardingSolverRequest_Pair alias; alias.set_first(2); alias.set_second(4); const auto aliases = {alias}; const CostMatrix v = {{0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0}}; const std::vector<std::string> instruction_names = {"A", "B", "C", "D", "E"}; AutoShardingSolverRequest request; request.set_num_nodes(5); request.set_memory_budget(1500000); request.mutable_s_len()->Add(s_len.begin(), s_len.end()); request.mutable_s_follow()->Add(s_follow.begin(), s_follow.end()); request.mutable_edges()->Add(edges.begin(), edges.end()); AddNodes(request.mutable_live(), live); AddCosts(request.mutable_computation_costs(), c); AddCosts(request.mutable_communication_costs(), d); AddCosts(request.mutable_memory_costs(), m); AddCosts(request.mutable_departure_costs(), p); AddCosts(request.mutable_resharding_costs(), r); AddCosts(request.mutable_duration_costs(), t); request.mutable_aliases()->Add(aliases.begin(), aliases.end()); AddCosts(request.mutable_value_costs(), v); request.mutable_instruction_names()->Add(instruction_names.begin(), instruction_names.end()); return request; } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesOptimally) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesOverbudget) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 9007650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesMaxDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_departures()->set_coeff(3.0); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, MinimizesDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_minimize_departures(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 1, 0, 0, 1}; const double objective_value = 3.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, AvoidsInfiniteNodeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_computation_costs(0)->set_costs(0, kInfinityCost); request.mutable_computation_costs(0)->set_costs(1, kInfinityCost); request.mutable_computation_costs(0)->set_costs(2, kInfinityCost); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {3, 0, 0, 0, 0}; const double objective_value = 10683.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, AvoidsInfiniteEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_resharding_costs(0)->set_costs(0, kInfinityCost); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesFollowedEdges) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); AutoShardingSolverRequest_Pair edge; edge.set_first(1); edge.set_second(3); *request.mutable_edges()->Add() = edge; const CostMatrix r = {{5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; AddCosts(request.mutable_resharding_costs(), r); const CostMatrix t = {{50000, 51000, 52000, 53000, 60000, 61000, 62000, 63000, 70000, 71000, 72000, 73000}}; AddCosts(request.mutable_duration_costs(), t); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 12650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesCollapsedEdge) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); AutoShardingSolverRequest_Pair edge; edge.set_first(2); edge.set_second(3); *request.mutable_edges()->Add() = edge; const CostMatrix r = {{9000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300, 8000, 8100, 8200, 8300}}; AddCosts(request.mutable_resharding_costs(), r); const CostMatrix t = {{50000, 51000, 52000, 53000, 60000, 61000, 62000, 63000, 70000, 71000, 72000, 73000, 80000, 81000, 82000, 83000}}; AddCosts(request.mutable_duration_costs(), t); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 13972.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, UsesHint) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const auto s_hint = {1, 0, 0, 0, 0}; request.mutable_s_hint()->Add(s_hint.begin(), s_hint.end()); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HonorsMaxCost) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_cost()->set_coeff(7600.0); const absl::StatusOr<AutoShardingSolverOutput> result = FormulateAndSolveMIPFromSolverRequest(request); EXPECT_TRUE(absl::IsInternal(result.status())); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesExtremelyHighMaxCost) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_cost()->set_coeff(1e19); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesMemoryEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const EdgeMatrix live_edges = {{}, {0}, {0, 1}, {1}, {}}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; AddEdges(request.mutable_live_edges(), live_edges); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesIntervals) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{0, 4}, {0, 4}, {2, 3}, {3, 4}, {100, -1}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesReducedIntervalsAndGroups) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; const std::vector<std::vector<int64_t>> edge_groups = {}; const CostMatrix memory_edge_costs = {{1000000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 7300}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddGroups(request.mutable_node_groups(), node_groups); AddGroups(request.mutable_edge_groups(), edge_groups); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 1, 1, 0}; const double objective_value = 7872.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesReducedIntervalsAndGroupsNoMemoryEdgeCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddGroups(request.mutable_node_groups(), node_groups); request.set_enable_memory_edge_costs(false); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, HandlesGroupsWithTinyMemoryCosts) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::pair<int64_t, int64_t>> edge_intervals = {{1, 2}, {2, 3}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; const std::vector<std::vector<int64_t>> edge_groups = {}; const CostMatrix memory_costs = {{1, 1, 1, 1}, {2, 2, 2}, {300, 300, 300, 300, 300, 300, 300}, {4000, 4000, 4000, 4000, 4000, 4000, 4000}, {50000, 50000, 50000}}; const CostMatrix memory_edge_costs = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; request.clear_live(); request.clear_memory_costs(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddIntervals(request.mutable_edge_intervals(), edge_intervals); AddGroups(request.mutable_node_groups(), node_groups); AddGroups(request.mutable_edge_groups(), edge_groups); AddCosts(request.mutable_memory_costs(), memory_costs); AddCosts(request.mutable_memory_edge_costs(), memory_edge_costs); request.set_enable_memory_edge_costs(true); request.set_memory_budget(4321); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 0, 0, 0}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(FormulateAndSolveMIPFromSolverRequestTest, SolvesWithEquivalences) { const AutoShardingSolverRequest request = AutoShardingSolverRequestWithEquivalences(); TF_ASSERT_OK_AND_ASSIGN(const AutoShardingSolverOutput result, FormulateAndSolveMIPFromSolverRequest(request)); const std::vector<NodeStrategyIdx> s_val = {0, 0, 5, 5, 1}; const double objective_value = 7650.0; const AutoShardingSolverOutput expected_output = {s_val, objective_value}; EXPECT_EQ(result, expected_output); } TEST(AutoShardingEvaluatorTest, NoViolations) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 1}; const double objective_value = 12149.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 159.0; expected_evaluation.total.communication_cost = 1590.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudget) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudgetWithIntervals) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{0, 4}, {0, 4}, {2, 3}, {3, 4}, {100, -1}}; request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, EvaluatesOverbudgetWithReducedIntervalsAndGroups) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<std::pair<int64_t, int64_t>> node_intervals = {{5, -1}, {5, -1}, {2, 3}, {3, 4}, {100, -1}, {0, 4}}; const std::vector<std::vector<int64_t>> node_groups = {{0, 1}}; request.set_memory_budget(100000); request.mutable_overbudget_coeff()->set_coeff(10.0); request.clear_live(); AddIntervals(request.mutable_node_intervals(), node_intervals); AddGroups(request.mutable_node_groups(), node_groups); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.total.overbudget_cost = 18400000.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.lower_bound.overbudget_cost = 9000000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesFollower) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 1 , 1}; const double objective_value = 12138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kFollowerViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 2.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesAlias) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 0 }; const double objective_value = 12138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kAliasViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 4.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesMemory) { const AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); const std::vector<NodeStrategyIdx> s_val = {2 , 1, 2, 2, 1}; const double objective_value = 11138.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kMemoryViolationCode}; expected_evaluation.total.computation_cost = 158.0; expected_evaluation.total.communication_cost = 1580.0; expected_evaluation.total.resharding_cost = 9400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesInfiniteCostForNode) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_computation_costs(0)->set_costs(0, kInfinityCost); request.mutable_computation_costs(0)->set_costs(1, kInfinityCost); request.mutable_computation_costs(0)->set_costs(2, kInfinityCost); const std::vector<NodeStrategyIdx> s_val = {0 , 1, 2, 2, 1}; const double objective_value = 1e+20; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kInfiniteCostViolationCode}; expected_evaluation.total.computation_cost = 1e+20; expected_evaluation.total.communication_cost = 1560.0; expected_evaluation.total.resharding_cost = 7400.0; expected_evaluation.lower_bound.computation_cost = 153.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesInfiniteCostForEdge) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_resharding_costs(0)->set_costs(2, kInfinityCost); const std::vector<NodeStrategyIdx> s_val = {0, 1, 2, 2, 1}; const double objective_value = 1e+20; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kInfiniteCostViolationCode}; expected_evaluation.total.computation_cost = 156.0; expected_evaluation.total.communication_cost = 1560.0; expected_evaluation.total.resharding_cost = 1e+20; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(AutoShardingEvaluatorTest, ViolatesMaxDepartures) { AutoShardingSolverRequest request = DefaultAutoShardingSolverRequest(); request.mutable_max_departures()->set_coeff(2.0); const std::vector<NodeStrategyIdx> s_val = {3, 1, 2, 2, 1}; const double objective_value = 12149.0; const AutoShardingSolverOutput output = {s_val, objective_value}; const AutoShardingEvaluation evaluation = Evaluate(request, output); AutoShardingEvaluation expected_evaluation; expected_evaluation.violation_codes = {kMaxDeparturesViolationCode}; expected_evaluation.total.computation_cost = 159.0; expected_evaluation.total.communication_cost = 1590.0; expected_evaluation.total.resharding_cost = 10400.0; expected_evaluation.lower_bound.computation_cost = 150.0; expected_evaluation.lower_bound.communication_cost = 1500.0; expected_evaluation.lower_bound.resharding_cost = 6000.0; expected_evaluation.total_departures = 3.0; EXPECT_EQ(evaluation, expected_evaluation); } TEST(ScaleRequest, ScalesProperly) { AutoShardingSolverRequest unscaled_request; const CostMatrix c = {{10000000, 11000000, 12000000, 13000000}, {20000000, 21000000, 22000000}, {30000000, 31000000, 32000000, 33000000}, {40000000, 41000000, 42000000, 43000000}, {50000000, 51000000, 52000000, 53000000}}; const CostMatrix d = {{100000000, 110000000, 120000000, 130000000}, {200000000, 210000000, 220000000}, {300000000, 310000000, 320000000, 330000000}, {400000000, 410000000, 420000000, 430000000}, {500000000, 510000000, 520000000}}; const CostMatrix r = {{1000000000, 1100000000, 1200000000, 1300000000, 2000000000, 2100000000, 2200000000, 2300000000, 3000000000, 3100000000, 3200000000, 3300000000, 4000000000, 4100000000, 4200000000, 4300000000}, {5000000000, 5100000000, 5200000000, 5300000000, 6000000000, 6100000000, 6200000000, 6300000000, 7000000000, 7100000000, 7200000000, 10000000000000}}; AddCosts(unscaled_request.mutable_computation_costs(), c); AddCosts(unscaled_request.mutable_communication_costs(), d); AddCosts(unscaled_request.mutable_resharding_costs(), r); unscaled_request.mutable_coeff_limit()->set_coeff(1e7); AutoShardingSolverRequest request = ScaleRequest(unscaled_request); AutoShardingSolverRequest expected_request; const CostMatrix expected_c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52, 53}}; const CostMatrix expected_d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix expected_r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 10000000}}; AddCosts(expected_request.mutable_computation_costs(), expected_c); AddCosts(expected_request.mutable_communication_costs(), expected_d); AddCosts(expected_request.mutable_resharding_costs(), expected_r); expected_request.mutable_coeff_limit()->set_coeff(1e7); EXPECT_THAT(request, ::testing::EqualsProto(expected_request)); } TEST(ScaleRequest, SkipsScaling) { AutoShardingSolverRequest unscaled_request; const CostMatrix c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52, 53}}; const CostMatrix d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 10000000}}; AddCosts(unscaled_request.mutable_computation_costs(), c); AddCosts(unscaled_request.mutable_communication_costs(), d); AddCosts(unscaled_request.mutable_resharding_costs(), r); unscaled_request.mutable_coeff_limit()->set_coeff(1e7); AutoShardingSolverRequest request = ScaleRequest(unscaled_request); AutoShardingSolverRequest expected_request; const CostMatrix expected_c = {{10, 11, 12, 13}, {20, 21, 22}, {30, 31, 32, 33}, {40, 41, 42, 43}, {50, 51, 52, 53}}; const CostMatrix expected_d = {{100, 110, 120, 130}, {200, 210, 220}, {300, 310, 320, 330}, {400, 410, 420, 430}, {500, 510, 520}}; const CostMatrix expected_r = {{1000, 1100, 1200, 1300, 2000, 2100, 2200, 2300, 3000, 3100, 3200, 3300, 4000, 4100, 4200, 4300}, {5000, 5100, 5200, 5300, 6000, 6100, 6200, 6300, 7000, 7100, 7200, 10000000}}; AddCosts(expected_request.mutable_computation_costs(), expected_c); AddCosts(expected_request.mutable_communication_costs(), expected_d); AddCosts(expected_request.mutable_resharding_costs(), expected_r); expected_request.mutable_coeff_limit()->set_coeff(1e7); EXPECT_THAT(request, ::testing::EqualsProto(expected_request)); } TEST(StableMap, IterationOrderDeterminism){ StableMap<int, int> map; std::vector<int> insertion_order = {6, 3, 1, 2, 4, 5, 10, 0, 7, 9, 8}; for (int key : insertion_order) { map[key] = key; } std::vector<int> iteration_order; for (const auto& [key, value] : map) { iteration_order.push_back(key); } EXPECT_THAT(iteration_order, ::testing::ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); } TEST(ValidateRequest, AcceptsAutoShardingSolverRequest) { CHECK_OK(ValidateRequest(DefaultAutoShardingSolverRequest())); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_solver_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0db15f84-b317-42b6-b4e2-ea434fdcf309
cpp
google/quiche
uber_loss_algorithm
quiche/quic/core/congestion_control/uber_loss_algorithm.cc
quiche/quic/core/congestion_control/uber_loss_algorithm_test.cc
#include "quiche/quic/core/congestion_control/uber_loss_algorithm.h" #include <algorithm> #include <memory> #include <utility> #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" namespace quic { UberLossAlgorithm::UberLossAlgorithm() { for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { general_loss_algorithms_[i].Initialize(static_cast<PacketNumberSpace>(i), this); } } void UberLossAlgorithm::SetFromConfig(const QuicConfig& config, Perspective perspective) { if (config.HasClientRequestedIndependentOption(kELDT, perspective) && tuner_ != nullptr) { tuning_configured_ = true; MaybeStartTuning(); } } LossDetectionInterface::DetectionStats UberLossAlgorithm::DetectLosses( const QuicUnackedPacketMap& unacked_packets, QuicTime time, const RttStats& rtt_stats, QuicPacketNumber , const AckedPacketVector& packets_acked, LostPacketVector* packets_lost) { DetectionStats overall_stats; for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { const QuicPacketNumber largest_acked = unacked_packets.GetLargestAckedOfPacketNumberSpace( static_cast<PacketNumberSpace>(i)); if (!largest_acked.IsInitialized() || unacked_packets.GetLeastUnacked() > largest_acked) { continue; } DetectionStats stats = general_loss_algorithms_[i].DetectLosses( unacked_packets, time, rtt_stats, largest_acked, packets_acked, packets_lost); overall_stats.sent_packets_max_sequence_reordering = std::max(overall_stats.sent_packets_max_sequence_reordering, stats.sent_packets_max_sequence_reordering); overall_stats.sent_packets_num_borderline_time_reorderings += stats.sent_packets_num_borderline_time_reorderings; overall_stats.total_loss_detection_response_time += stats.total_loss_detection_response_time; } return overall_stats; } QuicTime UberLossAlgorithm::GetLossTimeout() const { QuicTime loss_timeout = QuicTime::Zero(); for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { const QuicTime timeout = general_loss_algorithms_[i].GetLossTimeout(); if (!loss_timeout.IsInitialized()) { loss_timeout = timeout; continue; } if (timeout.IsInitialized()) { loss_timeout = std::min(loss_timeout, timeout); } } return loss_timeout; } void UberLossAlgorithm::SpuriousLossDetected( const QuicUnackedPacketMap& unacked_packets, const RttStats& rtt_stats, QuicTime ack_receive_time, QuicPacketNumber packet_number, QuicPacketNumber previous_largest_acked) { general_loss_algorithms_[unacked_packets.GetPacketNumberSpace(packet_number)] .SpuriousLossDetected(unacked_packets, rtt_stats, ack_receive_time, packet_number, previous_largest_acked); } void UberLossAlgorithm::SetLossDetectionTuner( std::unique_ptr<LossDetectionTunerInterface> tuner) { if (tuner_ != nullptr) { QUIC_BUG(quic_bug_10469_1) << "LossDetectionTuner can only be set once when session begins."; return; } tuner_ = std::move(tuner); } void UberLossAlgorithm::MaybeStartTuning() { if (tuner_started_ || !tuning_configured_ || !min_rtt_available_ || !user_agent_known_ || !reorder_happened_) { return; } tuner_started_ = tuner_->Start(&tuned_parameters_); if (!tuner_started_) { return; } if (tuned_parameters_.reordering_shift.has_value() && tuned_parameters_.reordering_threshold.has_value()) { QUIC_DLOG(INFO) << "Setting reordering shift to " << *tuned_parameters_.reordering_shift << ", and reordering threshold to " << *tuned_parameters_.reordering_threshold; SetReorderingShift(*tuned_parameters_.reordering_shift); SetReorderingThreshold(*tuned_parameters_.reordering_threshold); } else { QUIC_BUG(quic_bug_10469_2) << "Tuner started but some parameters are missing"; } } void UberLossAlgorithm::OnConfigNegotiated() {} void UberLossAlgorithm::OnMinRttAvailable() { min_rtt_available_ = true; MaybeStartTuning(); } void UberLossAlgorithm::OnUserAgentIdKnown() { user_agent_known_ = true; MaybeStartTuning(); } void UberLossAlgorithm::OnConnectionClosed() { if (tuner_ != nullptr && tuner_started_) { tuner_->Finish(tuned_parameters_); } } void UberLossAlgorithm::OnReorderingDetected() { const bool tuner_started_before = tuner_started_; const bool reorder_happened_before = reorder_happened_; reorder_happened_ = true; MaybeStartTuning(); if (!tuner_started_before && tuner_started_) { if (reorder_happened_before) { QUIC_CODE_COUNT(quic_loss_tuner_started_after_first_reorder); } else { QUIC_CODE_COUNT(quic_loss_tuner_started_on_first_reorder); } } } void UberLossAlgorithm::SetReorderingShift(int reordering_shift) { for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { general_loss_algorithms_[i].set_reordering_shift(reordering_shift); } } void UberLossAlgorithm::SetReorderingThreshold( QuicPacketCount reordering_threshold) { for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { general_loss_algorithms_[i].set_reordering_threshold(reordering_threshold); } } void UberLossAlgorithm::EnableAdaptiveReorderingThreshold() { for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { general_loss_algorithms_[i].set_use_adaptive_reordering_threshold(true); } } void UberLossAlgorithm::DisableAdaptiveReorderingThreshold() { for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { general_loss_algorithms_[i].set_use_adaptive_reordering_threshold(false); } } void UberLossAlgorithm::EnableAdaptiveTimeThreshold() { for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { general_loss_algorithms_[i].enable_adaptive_time_threshold(); } } QuicPacketCount UberLossAlgorithm::GetPacketReorderingThreshold() const { return general_loss_algorithms_[APPLICATION_DATA].reordering_threshold(); } int UberLossAlgorithm::GetPacketReorderingShift() const { return general_loss_algorithms_[APPLICATION_DATA].reordering_shift(); } void UberLossAlgorithm::DisablePacketThresholdForRuntPackets() { for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { general_loss_algorithms_[i].disable_packet_threshold_for_runt_packets(); } } void UberLossAlgorithm::ResetLossDetection(PacketNumberSpace space) { if (space >= NUM_PACKET_NUMBER_SPACES) { QUIC_BUG(quic_bug_10469_3) << "Invalid packet number space: " << space; return; } general_loss_algorithms_[space].Reset(); } }
#include "quiche/quic/core/congestion_control/uber_loss_algorithm.h" #include <memory> #include <optional> #include <utility> #include <vector> #include "quiche/quic/core/congestion_control/rtt_stats.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/quic/test_tools/quic_unacked_packet_map_peer.h" namespace quic { namespace test { namespace { const uint32_t kDefaultLength = 1000; class UberLossAlgorithmTest : public QuicTest { protected: UberLossAlgorithmTest() { unacked_packets_ = std::make_unique<QuicUnackedPacketMap>(Perspective::IS_CLIENT); rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(100), QuicTime::Delta::Zero(), clock_.Now()); EXPECT_LT(0, rtt_stats_.smoothed_rtt().ToMicroseconds()); } void SendPacket(uint64_t packet_number, EncryptionLevel encryption_level) { QuicStreamFrame frame; QuicTransportVersion version = CurrentSupportedVersions()[0].transport_version; frame.stream_id = QuicUtils::GetFirstBidirectionalStreamId( version, Perspective::IS_CLIENT); if (encryption_level == ENCRYPTION_INITIAL) { if (QuicVersionUsesCryptoFrames(version)) { frame.stream_id = QuicUtils::GetFirstBidirectionalStreamId( version, Perspective::IS_CLIENT); } else { frame.stream_id = QuicUtils::GetCryptoStreamId(version); } } SerializedPacket packet(QuicPacketNumber(packet_number), PACKET_1BYTE_PACKET_NUMBER, nullptr, kDefaultLength, false, false); packet.encryption_level = encryption_level; packet.retransmittable_frames.push_back(QuicFrame(frame)); unacked_packets_->AddSentPacket(&packet, NOT_RETRANSMISSION, clock_.Now(), true, true, ECN_NOT_ECT); } void AckPackets(const std::vector<uint64_t>& packets_acked) { packets_acked_.clear(); for (uint64_t acked : packets_acked) { unacked_packets_->RemoveFromInFlight(QuicPacketNumber(acked)); packets_acked_.push_back(AckedPacket( QuicPacketNumber(acked), kMaxOutgoingPacketSize, QuicTime::Zero())); } } void VerifyLosses(uint64_t largest_newly_acked, const AckedPacketVector& packets_acked, const std::vector<uint64_t>& losses_expected) { return VerifyLosses(largest_newly_acked, packets_acked, losses_expected, std::nullopt); } void VerifyLosses( uint64_t largest_newly_acked, const AckedPacketVector& packets_acked, const std::vector<uint64_t>& losses_expected, std::optional<QuicPacketCount> max_sequence_reordering_expected) { LostPacketVector lost_packets; LossDetectionInterface::DetectionStats stats = loss_algorithm_.DetectLosses( *unacked_packets_, clock_.Now(), rtt_stats_, QuicPacketNumber(largest_newly_acked), packets_acked, &lost_packets); if (max_sequence_reordering_expected.has_value()) { EXPECT_EQ(stats.sent_packets_max_sequence_reordering, max_sequence_reordering_expected.value()); } ASSERT_EQ(losses_expected.size(), lost_packets.size()); for (size_t i = 0; i < losses_expected.size(); ++i) { EXPECT_EQ(lost_packets[i].packet_number, QuicPacketNumber(losses_expected[i])); } } MockClock clock_; std::unique_ptr<QuicUnackedPacketMap> unacked_packets_; RttStats rtt_stats_; UberLossAlgorithm loss_algorithm_; AckedPacketVector packets_acked_; }; TEST_F(UberLossAlgorithmTest, ScenarioA) { SendPacket(1, ENCRYPTION_INITIAL); SendPacket(2, ENCRYPTION_ZERO_RTT); SendPacket(3, ENCRYPTION_ZERO_RTT); unacked_packets_->RemoveFromInFlight(QuicPacketNumber(1)); SendPacket(4, ENCRYPTION_INITIAL); AckPackets({1, 4}); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( HANDSHAKE_DATA, QuicPacketNumber(4)); VerifyLosses(4, packets_acked_, std::vector<uint64_t>{}, 0); EXPECT_EQ(QuicTime::Zero(), loss_algorithm_.GetLossTimeout()); } TEST_F(UberLossAlgorithmTest, ScenarioB) { SendPacket(3, ENCRYPTION_ZERO_RTT); SendPacket(4, ENCRYPTION_ZERO_RTT); SendPacket(5, ENCRYPTION_FORWARD_SECURE); SendPacket(6, ENCRYPTION_FORWARD_SECURE); AckPackets({4}); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( APPLICATION_DATA, QuicPacketNumber(4)); VerifyLosses(4, packets_acked_, std::vector<uint64_t>{}, 1); EXPECT_EQ(clock_.Now() + 1.25 * rtt_stats_.smoothed_rtt(), loss_algorithm_.GetLossTimeout()); AckPackets({6}); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( APPLICATION_DATA, QuicPacketNumber(6)); VerifyLosses(6, packets_acked_, std::vector<uint64_t>{3}, 3); EXPECT_EQ(clock_.Now() + 1.25 * rtt_stats_.smoothed_rtt(), loss_algorithm_.GetLossTimeout()); packets_acked_.clear(); clock_.AdvanceTime(1.25 * rtt_stats_.latest_rtt()); VerifyLosses(6, packets_acked_, {5}, 1); } TEST_F(UberLossAlgorithmTest, ScenarioC) { QuicUnackedPacketMapPeer::SetPerspective(unacked_packets_.get(), Perspective::IS_SERVER); SendPacket(1, ENCRYPTION_ZERO_RTT); SendPacket(2, ENCRYPTION_FORWARD_SECURE); SendPacket(3, ENCRYPTION_FORWARD_SECURE); SendPacket(4, ENCRYPTION_FORWARD_SECURE); unacked_packets_->RemoveFromInFlight(QuicPacketNumber(1)); SendPacket(5, ENCRYPTION_ZERO_RTT); AckPackets({4, 5}); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( APPLICATION_DATA, QuicPacketNumber(4)); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( HANDSHAKE_DATA, QuicPacketNumber(5)); VerifyLosses(5, packets_acked_, std::vector<uint64_t>{}, 2); EXPECT_EQ(clock_.Now() + 1.25 * rtt_stats_.smoothed_rtt(), loss_algorithm_.GetLossTimeout()); packets_acked_.clear(); clock_.AdvanceTime(1.25 * rtt_stats_.latest_rtt()); VerifyLosses(5, packets_acked_, std::vector<uint64_t>{2, 3}, 2); } TEST_F(UberLossAlgorithmTest, PacketInLimbo) { QuicUnackedPacketMapPeer::SetPerspective(unacked_packets_.get(), Perspective::IS_SERVER); SendPacket(1, ENCRYPTION_ZERO_RTT); SendPacket(2, ENCRYPTION_FORWARD_SECURE); SendPacket(3, ENCRYPTION_FORWARD_SECURE); SendPacket(4, ENCRYPTION_ZERO_RTT); SendPacket(5, ENCRYPTION_FORWARD_SECURE); AckPackets({1, 3, 4}); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( APPLICATION_DATA, QuicPacketNumber(3)); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( HANDSHAKE_DATA, QuicPacketNumber(4)); VerifyLosses(4, packets_acked_, std::vector<uint64_t>{}); SendPacket(6, ENCRYPTION_FORWARD_SECURE); AckPackets({5, 6}); unacked_packets_->MaybeUpdateLargestAckedOfPacketNumberSpace( APPLICATION_DATA, QuicPacketNumber(6)); VerifyLosses(6, packets_acked_, std::vector<uint64_t>{2}); } class TestLossTuner : public LossDetectionTunerInterface { public: TestLossTuner(bool forced_start_result, LossDetectionParameters forced_parameters) : forced_start_result_(forced_start_result), forced_parameters_(std::move(forced_parameters)) {} ~TestLossTuner() override = default; bool Start(LossDetectionParameters* params) override { start_called_ = true; *params = forced_parameters_; return forced_start_result_; } void Finish(const LossDetectionParameters& ) override {} bool start_called() const { return start_called_; } private: bool forced_start_result_; LossDetectionParameters forced_parameters_; bool start_called_ = false; }; TEST_F(UberLossAlgorithmTest, LossDetectionTuning_SetFromConfigFirst) { const int old_reordering_shift = loss_algorithm_.GetPacketReorderingShift(); const QuicPacketCount old_reordering_threshold = loss_algorithm_.GetPacketReorderingThreshold(); loss_algorithm_.OnUserAgentIdKnown(); TestLossTuner* test_tuner = new TestLossTuner( true, LossDetectionParameters{ old_reordering_shift + 1, old_reordering_threshold * 2}); loss_algorithm_.SetLossDetectionTuner( std::unique_ptr<LossDetectionTunerInterface>(test_tuner)); QuicConfig config; QuicTagVector connection_options; connection_options.push_back(kELDT); config.SetInitialReceivedConnectionOptions(connection_options); loss_algorithm_.SetFromConfig(config, Perspective::IS_SERVER); EXPECT_FALSE(test_tuner->start_called()); EXPECT_EQ(old_reordering_shift, loss_algorithm_.GetPacketReorderingShift()); EXPECT_EQ(old_reordering_threshold, loss_algorithm_.GetPacketReorderingThreshold()); loss_algorithm_.OnMinRttAvailable(); EXPECT_FALSE(test_tuner->start_called()); loss_algorithm_.OnReorderingDetected(); EXPECT_TRUE(test_tuner->start_called()); EXPECT_NE(old_reordering_shift, loss_algorithm_.GetPacketReorderingShift()); EXPECT_NE(old_reordering_threshold, loss_algorithm_.GetPacketReorderingThreshold()); } TEST_F(UberLossAlgorithmTest, LossDetectionTuning_OnMinRttAvailableFirst) { const int old_reordering_shift = loss_algorithm_.GetPacketReorderingShift(); const QuicPacketCount old_reordering_threshold = loss_algorithm_.GetPacketReorderingThreshold(); loss_algorithm_.OnUserAgentIdKnown(); TestLossTuner* test_tuner = new TestLossTuner( true, LossDetectionParameters{ old_reordering_shift + 1, old_reordering_threshold * 2}); loss_algorithm_.SetLossDetectionTuner( std::unique_ptr<LossDetectionTunerInterface>(test_tuner)); loss_algorithm_.OnMinRttAvailable(); EXPECT_FALSE(test_tuner->start_called()); EXPECT_EQ(old_reordering_shift, loss_algorithm_.GetPacketReorderingShift()); EXPECT_EQ(old_reordering_threshold, loss_algorithm_.GetPacketReorderingThreshold()); loss_algorithm_.OnReorderingDetected(); EXPECT_FALSE(test_tuner->start_called()); QuicConfig config; QuicTagVector connection_options; connection_options.push_back(kELDT); config.SetInitialReceivedConnectionOptions(connection_options); loss_algorithm_.SetFromConfig(config, Perspective::IS_SERVER); EXPECT_TRUE(test_tuner->start_called()); EXPECT_NE(old_reordering_shift, loss_algorithm_.GetPacketReorderingShift()); EXPECT_NE(old_reordering_threshold, loss_algorithm_.GetPacketReorderingThreshold()); } TEST_F(UberLossAlgorithmTest, LossDetectionTuning_StartFailed) { const int old_reordering_shift = loss_algorithm_.GetPacketReorderingShift(); const QuicPacketCount old_reordering_threshold = loss_algorithm_.GetPacketReorderingThreshold(); loss_algorithm_.OnUserAgentIdKnown(); TestLossTuner* test_tuner = new TestLossTuner( false, LossDetectionParameters{ old_reordering_shift + 1, old_reordering_threshold * 2}); loss_algorithm_.SetLossDetectionTuner( std::unique_ptr<LossDetectionTunerInterface>(test_tuner)); QuicConfig config; QuicTagVector connection_options; connection_options.push_back(kELDT); config.SetInitialReceivedConnectionOptions(connection_options); loss_algorithm_.SetFromConfig(config, Perspective::IS_SERVER); EXPECT_FALSE(test_tuner->start_called()); EXPECT_EQ(old_reordering_shift, loss_algorithm_.GetPacketReorderingShift()); EXPECT_EQ(old_reordering_threshold, loss_algorithm_.GetPacketReorderingThreshold()); loss_algorithm_.OnReorderingDetected(); EXPECT_FALSE(test_tuner->start_called()); loss_algorithm_.OnMinRttAvailable(); EXPECT_TRUE(test_tuner->start_called()); EXPECT_EQ(old_reordering_shift, loss_algorithm_.GetPacketReorderingShift()); EXPECT_EQ(old_reordering_threshold, loss_algorithm_.GetPacketReorderingThreshold()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/congestion_control/uber_loss_algorithm.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/congestion_control/uber_loss_algorithm_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
16a28cdd-9ae5-45f7-b5be-371ad5429024
cpp
tensorflow/tensorflow
runtime_topk
third_party/xla/xla/service/cpu/runtime_topk.cc
third_party/xla/xla/tests/runtime_topk_test.cc
#include "xla/service/cpu/runtime_topk.h" #include <algorithm> #include <cstdint> #include <cstring> #include <limits> #include <numeric> #include <vector> #include "absl/base/casts.h" #include "absl/base/dynamic_annotations.h" template <typename T> static void TopK(int64_t batch_size, int64_t input_size, int64_t k, const T* values, T* out_values, int32_t* out_indices) { ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(values, input_size * batch_size * sizeof(T)); static constexpr auto convert_to_int = [](T value) { uint32_t x = absl::bit_cast<uint32_t>(value); return static_cast<int32_t>(x) < 0 ? std::numeric_limits<int32_t>::max() - x : x; }; std::vector<int32_t> temp_indices(input_size); for (int64_t batch = 0; batch != batch_size; ++batch) { std::iota(temp_indices.begin(), temp_indices.end(), 0); const T* values_batch = values + batch * input_size; auto kth_element = temp_indices.begin() + k; std::partial_sort(temp_indices.begin(), kth_element, temp_indices.end(), [values_batch](size_t i1, size_t i2) { int32_t v1 = convert_to_int(values_batch[i1]); int32_t v2 = convert_to_int(values_batch[i2]); if (v1 == v2) { return i1 < i2; } return v1 > v2; }); T* out_values_batch = out_values + batch * k; int32_t* out_indices_batch = out_indices + batch * k; std::copy(temp_indices.begin(), kth_element, out_indices_batch); for (int64_t i = 0; i < k; i++) { out_values_batch[i] = values_batch[temp_indices[i]]; } } } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_TopKF32( int64_t batch_size, int64_t input_size, int64_t k, const float* values, float* out_values, int32_t* out_indices) { TopK(batch_size, input_size, k, values, out_values, out_indices); }
#include <string_view> #include <utility> #include <vector> #include <gtest/gtest.h> #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "tsl/platform/statusor.h" namespace xla::cpu { namespace { class TopkTest : public HloTestBase {}; XLA_TEST_F(TopkTest, CustomCallTarget) { std::string_view hlo_text_module = R"( HloModule topk ENTRY TopK { x = f32[10,10] parameter(0) ROOT topk = (f32[10,3], s32[10,3]) custom-call(x), custom_call_target="TopK" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text_module)); auto input = LiteralUtil::CreateR2<float>({{98, 21, 67, 27, 54, 67, 98, 84, 9, 62}, {65, 68, 49, 3, 9, 0, 52, 78, 36, 96}, {44, 50, 35, 62, 33, 19, 37, 26, 23, 90}, {34, 55, 10, 98, 19, 35, 11, 77, 25, 1}, {87, 19, 15, 98, 35, 90, 64, 60, 80, 12}, {8, 11, 77, 52, 76, 33, 39, 55, 74, 96}, {75, 69, 2, 85, 85, 65, 48, 29, 91, 25}, {26, 4, 76, 48, 88, 96, 71, 2, 58, 68}, {42, 90, 38, 86, 18, 0, 22, 28, 1, 39}, {90, 34, 63, 92, 30, 54, 3, 98, 85, 4}}); TF_ASSERT_OK_AND_ASSIGN(auto result, Execute(std::move(module), {&input})); std::vector<Literal> results = result.DecomposeTuple(); ASSERT_EQ(results.size(), 2); LiteralTestUtil::ExpectR2Equal<float>({{98, 98, 84}, {96, 78, 68}, {90, 62, 50}, {98, 77, 55}, {98, 90, 87}, {96, 77, 76}, {91, 85, 85}, {96, 88, 76}, {90, 86, 42}, {98, 92, 90}}, results[0]); LiteralTestUtil::ExpectR2Equal({{0, 6, 7}, {9, 7, 1}, {9, 3, 1}, {3, 7, 1}, {3, 5, 0}, {9, 2, 4}, {8, 3, 4}, {5, 4, 2}, {1, 3, 0}, {7, 3, 0}}, results[1]); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/runtime_topk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/runtime_topk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4d1c1e7d-aee8-4526-8ad0-2a8d3a0803f6
cpp
tensorflow/tensorflow
list_reserve
tensorflow/lite/kernels/variants/list_kernels/list_reserve.cc
tensorflow/lite/kernels/variants/list_kernels/list_reserve_test.cc
#include <cstring> #include <utility> #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/kernels/variants/list_ops_util.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { namespace ops { namespace list_reserve { namespace { using ::tflite::variants::TensorArray; using ::tflite::variants::detail::ListReserveOptions; TfLiteType ConvertTensorType(TensorType src) { switch (src) { case TensorType_INT32: return kTfLiteInt32; case TensorType_FLOAT32: return kTfLiteFloat32; case TensorType_BOOL: return kTfLiteBool; case TensorType_INT64: return kTfLiteInt64; default: return kTfLiteNoType; } } constexpr int kListOut = 0; struct SemanticOutType { TfLiteType element_type; IntArrayUniquePtr element_shape; int num_elements; }; class ReserveSemantic { public: ReserveSemantic(TfLiteContext* context, TfLiteNode* node) : context_(context), node_(node) {} constexpr static int kElementShapeInput = 0; constexpr static int kNumElementsInput = 1; TfLiteStatus CheckInputs() const { TF_LITE_ENSURE_EQ(context_, NumInputs(node_), 2); const TfLiteTensor* element_shape; TF_LITE_ENSURE_OK( context_, GetInputSafe(context_, node_, kElementShapeInput, &element_shape)); TF_LITE_ENSURE(context_, element_shape->type == kTfLiteInt32); const TfLiteTensor* num_elements; TF_LITE_ENSURE_OK(context_, GetInputSafe(context_, node_, kNumElementsInput, &num_elements)); TF_LITE_ENSURE_TYPES_EQ(context_, num_elements->type, kTfLiteInt32); return kTfLiteOk; } TfLiteStatus Compute(SemanticOutType& result) const { auto* options = reinterpret_cast<const ListReserveOptions*>(node_->custom_initial_data); TfLiteType element_type = ConvertTensorType(options->element_type); TF_LITE_ENSURE(context_, element_type != kTfLiteNoType); const TfLiteTensor* num_elements; TF_LITE_ENSURE_OK(context_, GetInputSafe(context_, node_, kNumElementsInput, &num_elements)); TF_LITE_ENSURE_TYPES_EQ(context_, num_elements->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context_, num_elements->dims->size, 0); const int num_elements_value = num_elements->data.i32[0]; TF_LITE_ENSURE(context_, num_elements_value >= 0); const TfLiteTensor* element_shape_tensor; TF_LITE_ENSURE_OK(context_, GetInputSafe(context_, node_, kElementShapeInput, &element_shape_tensor)); IntArrayUniquePtr element_shape = TensorAsShape(*element_shape_tensor); result = SemanticOutType{element_type, std::move(element_shape), num_elements_value}; return kTfLiteOk; } TfLiteStatus PopulateOutput(TensorArray* const output) const { return kTfLiteOk; } private: TfLiteContext* const context_; TfLiteNode* const node_; }; class ZerosLikeSemantic { public: ZerosLikeSemantic(TfLiteContext* context, TfLiteNode* node) : context_(context), node_(node) {} constexpr static int kListInput = 0; TfLiteStatus CheckInputs() const { TF_LITE_ENSURE_EQ(context_, NumInputs(node_), 1); const TfLiteTensor* list_input; TF_LITE_ENSURE_OK(context_, GetInputSafe(context_, node_, kListInput, &list_input)); TF_LITE_ENSURE(context_, list_input->type == kTfLiteVariant); return kTfLiteOk; } TfLiteStatus Compute(SemanticOutType& result) const { const TfLiteTensor* list_input; TF_LITE_ENSURE_OK(context_, GetInputSafe(context_, node_, kListInput, &list_input)); const TensorArray* const input = reinterpret_cast<const TensorArray*>(list_input->data.data); result = SemanticOutType{input->ElementType(), BuildTfLiteArray(*input->ElementShape()), input->NumElements()}; return kTfLiteOk; } TfLiteStatus PopulateOutput(TensorArray* const output) const { const TfLiteTensor* list_input; TF_LITE_ENSURE_OK(context_, GetInputSafe(context_, node_, kListInput, &list_input)); const TensorArray* const input = reinterpret_cast<const TensorArray*>(list_input->data.data); for (int i = 0; i < input->NumElements(); ++i) { const TfLiteTensor* const at = input->At(i); if (at == nullptr) continue; TensorUniquePtr output_at = BuildTfLiteTensor( at->type, BuildTfLiteArray(*at->dims), kTfLiteDynamic); memset(output_at->data.data, 0, output_at->bytes); TF_LITE_ENSURE(context_, output->Set(i, std::move(output_at))); } return kTfLiteOk; } private: TfLiteContext* const context_; TfLiteNode* const node_; }; template <class Semantic> TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const Semantic sem(context, node); TF_LITE_ENSURE_OK(context, sem.CheckInputs()); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kListOut, &output)); TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteVariant); output->allocation_type = kTfLiteVariantObject; return kTfLiteOk; } template <class Semantic> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const Semantic sem(context, node); SemanticOutType data; TF_LITE_ENSURE_OK(context, sem.Compute(data)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kListOut, &output)); TfLiteStatus stat = TfLiteTensorVariantRealloc<TensorArray>( output, data.element_type, std::move(data.element_shape)); TF_LITE_ENSURE_OK(context, stat); TensorArray* const arr = static_cast<TensorArray*>(static_cast<VariantData*>(output->data.data)); arr->Resize(data.num_elements); TF_LITE_ENSURE_OK(context, sem.PopulateOutput(arr)); return kTfLiteOk; } } } TfLiteRegistration* Register_LIST_RESERVE() { static TfLiteRegistration r = { nullptr, nullptr, list_reserve::Prepare<list_reserve::ReserveSemantic>, list_reserve::Eval<list_reserve::ReserveSemantic>}; return &r; } TfLiteRegistration* Register_VARIANT_ZEROS_LIKE() { static TfLiteRegistration r = { nullptr, nullptr, list_reserve::Prepare<list_reserve::ZerosLikeSemantic>, list_reserve::Eval<list_reserve::ZerosLikeSemantic>}; return &r; } } } }
#include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace variants { namespace ops { namespace { using ::tflite::variants::TensorArray; std::vector<uint8_t> CustomOptionsToRaw(const std::vector<int32_t>& options) { std::vector<uint8_t> raw(options.size() * sizeof(int32_t)); std::memcpy(raw.data(), options.data(), raw.size()); return raw; } class ListReserveModel : public SingleOpModel { public: explicit ListReserveModel(TensorType element_type) { element_shape_input_ = AddInput({TensorType_INT32, {1}}); list_len_input_ = AddInput({TensorType_INT32, {}}); reserve_output_ = AddOutput({TensorType_VARIANT, {}}); SetCustomOp("ListReserve", CustomOptionsToRaw({element_type}), Register_LIST_RESERVE); BuildInterpreter({{1}, {}}); } const TfLiteTensor* GetOutputTensor(int index) { return interpreter_->tensor(index); } int list_len_input_; int reserve_output_; int element_shape_input_; }; TEST(ListReserveTest, NonZeroNumElements_StaticShape) { ListReserveModel m(TensorType_INT32); m.PopulateTensor(m.list_len_input_, {5}); m.PopulateTensor(m.element_shape_input_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* tensor = m.GetOutputTensor(m.reserve_output_); EXPECT_EQ(tensor->type, kTfLiteVariant); EXPECT_EQ(tensor->allocation_type, kTfLiteVariantObject); TensorArray* arr = reinterpret_cast<TensorArray*>(tensor->data.data); EXPECT_EQ(arr->ElementType(), kTfLiteInt32); EXPECT_EQ(arr->ElementShape()->size, 1); ASSERT_EQ(arr->ElementShape()->data[0], 2); ASSERT_EQ(arr->NumElements(), 5); for (int i = 0; i < 5; ++i) { ASSERT_EQ(arr->At(i), nullptr); } } TEST(ListReserveTest, NegativeNumElements_Fails) { ListReserveModel m(TensorType_INT32); m.PopulateTensor(m.list_len_input_, {-1}); m.PopulateTensor(m.element_shape_input_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteError); } TEST(ListReserveTest, NumElements0_StaticShape_Succeeds) { ListReserveModel m(TensorType_INT32); m.PopulateTensor(m.list_len_input_, {0}); m.PopulateTensor(m.element_shape_input_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* tensor = m.GetOutputTensor(m.reserve_output_); TensorArray* arr = reinterpret_cast<TensorArray*>(tensor->data.data); EXPECT_EQ(arr->NumElements(), 0); EXPECT_EQ(arr->ElementType(), kTfLiteInt32); } TEST(ListReserveTest, NumElements0_StaticShape_FloatType) { ListReserveModel m(TensorType_FLOAT32); m.PopulateTensor(m.list_len_input_, {0}); m.PopulateTensor(m.element_shape_input_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* tensor = m.GetOutputTensor(m.reserve_output_); TensorArray* arr = reinterpret_cast<TensorArray*>(tensor->data.data); EXPECT_EQ(arr->NumElements(), 0); EXPECT_EQ(arr->ElementType(), kTfLiteFloat32); } TEST(ListReserveTest, UnsupportedDataType_Fails) { ListReserveModel m(TensorType_COMPLEX64); m.PopulateTensor(m.list_len_input_, {0}); m.PopulateTensor(m.element_shape_input_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteError); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_reserve.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_reserve_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a6800de3-849c-48b0-9041-0987170573d6
cpp
abseil/abseil-cpp
bind
absl/strings/internal/str_format/bind.cc
absl/strings/internal/str_format/bind_test.cc
#include "absl/strings/internal/str_format/bind.h" #include <algorithm> #include <cassert> #include <cerrno> #include <cstddef> #include <cstdio> #include <ios> #include <limits> #include <ostream> #include <sstream> #include <string> #include "absl/base/config.h" #include "absl/base/optimization.h" #include "absl/strings/internal/str_format/arg.h" #include "absl/strings/internal/str_format/constexpr_parser.h" #include "absl/strings/internal/str_format/extension.h" #include "absl/strings/internal/str_format/output.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace str_format_internal { namespace { inline bool BindFromPosition(int position, int* value, absl::Span<const FormatArgImpl> pack) { assert(position > 0); if (static_cast<size_t>(position) > pack.size()) { return false; } return FormatArgImplFriend::ToInt(pack[static_cast<size_t>(position) - 1], value); } class ArgContext { public: explicit ArgContext(absl::Span<const FormatArgImpl> pack) : pack_(pack) {} bool Bind(const UnboundConversion* unbound, BoundConversion* bound); private: absl::Span<const FormatArgImpl> pack_; }; inline bool ArgContext::Bind(const UnboundConversion* unbound, BoundConversion* bound) { const FormatArgImpl* arg = nullptr; int arg_position = unbound->arg_position; if (static_cast<size_t>(arg_position - 1) >= pack_.size()) return false; arg = &pack_[static_cast<size_t>(arg_position - 1)]; if (unbound->flags != Flags::kBasic) { int width = unbound->width.value(); bool force_left = false; if (unbound->width.is_from_arg()) { if (!BindFromPosition(unbound->width.get_from_arg(), &width, pack_)) return false; if (width < 0) { force_left = true; width = -std::max(width, -std::numeric_limits<int>::max()); } } int precision = unbound->precision.value(); if (unbound->precision.is_from_arg()) { if (!BindFromPosition(unbound->precision.get_from_arg(), &precision, pack_)) return false; } FormatConversionSpecImplFriend::SetWidth(width, bound); FormatConversionSpecImplFriend::SetPrecision(precision, bound); if (force_left) { FormatConversionSpecImplFriend::SetFlags(unbound->flags | Flags::kLeft, bound); } else { FormatConversionSpecImplFriend::SetFlags(unbound->flags, bound); } FormatConversionSpecImplFriend::SetLengthMod(unbound->length_mod, bound); } else { FormatConversionSpecImplFriend::SetFlags(unbound->flags, bound); FormatConversionSpecImplFriend::SetWidth(-1, bound); FormatConversionSpecImplFriend::SetPrecision(-1, bound); } FormatConversionSpecImplFriend::SetConversionChar(unbound->conv, bound); bound->set_arg(arg); return true; } template <typename Converter> class ConverterConsumer { public: ConverterConsumer(Converter converter, absl::Span<const FormatArgImpl> pack) : converter_(converter), arg_context_(pack) {} bool Append(string_view s) { converter_.Append(s); return true; } bool ConvertOne(const UnboundConversion& conv, string_view conv_string) { BoundConversion bound; if (!arg_context_.Bind(&conv, &bound)) return false; return converter_.ConvertOne(bound, conv_string); } private: Converter converter_; ArgContext arg_context_; }; template <typename Converter> bool ConvertAll(const UntypedFormatSpecImpl format, absl::Span<const FormatArgImpl> args, Converter converter) { if (format.has_parsed_conversion()) { return format.parsed_conversion()->ProcessFormat( ConverterConsumer<Converter>(converter, args)); } else { return ParseFormatString(format.str(), ConverterConsumer<Converter>(converter, args)); } } class DefaultConverter { public: explicit DefaultConverter(FormatSinkImpl* sink) : sink_(sink) {} void Append(string_view s) const { sink_->Append(s); } bool ConvertOne(const BoundConversion& bound, string_view ) const { return FormatArgImplFriend::Convert(*bound.arg(), bound, sink_); } private: FormatSinkImpl* sink_; }; class SummarizingConverter { public: explicit SummarizingConverter(FormatSinkImpl* sink) : sink_(sink) {} void Append(string_view s) const { sink_->Append(s); } bool ConvertOne(const BoundConversion& bound, string_view ) const { UntypedFormatSpecImpl spec("%d"); std::ostringstream ss; ss << "{" << Streamable(spec, {*bound.arg()}) << ":" << FormatConversionSpecImplFriend::FlagsToString(bound); if (bound.width() >= 0) ss << bound.width(); if (bound.precision() >= 0) ss << "." << bound.precision(); ss << bound.conversion_char() << "}"; Append(ss.str()); return true; } private: FormatSinkImpl* sink_; }; } bool BindWithPack(const UnboundConversion* props, absl::Span<const FormatArgImpl> pack, BoundConversion* bound) { return ArgContext(pack).Bind(props, bound); } std::string Summarize(const UntypedFormatSpecImpl format, absl::Span<const FormatArgImpl> args) { typedef SummarizingConverter Converter; std::string out; { FormatSinkImpl sink(&out); if (!ConvertAll(format, args, Converter(&sink))) { return ""; } } return out; } bool FormatUntyped(FormatRawSinkImpl raw_sink, const UntypedFormatSpecImpl format, absl::Span<const FormatArgImpl> args) { FormatSinkImpl sink(raw_sink); using Converter = DefaultConverter; return ConvertAll(format, args, Converter(&sink)); } std::ostream& Streamable::Print(std::ostream& os) const { if (!FormatUntyped(&os, format_, args_)) os.setstate(std::ios::failbit); return os; } std::string& AppendPack(std::string* out, const UntypedFormatSpecImpl format, absl::Span<const FormatArgImpl> args) { size_t orig = out->size(); if (ABSL_PREDICT_FALSE(!FormatUntyped(out, format, args))) { out->erase(orig); } return *out; } std::string FormatPack(UntypedFormatSpecImpl format, absl::Span<const FormatArgImpl> args) { std::string out; if (ABSL_PREDICT_FALSE(!FormatUntyped(&out, format, args))) { out.clear(); } return out; } int FprintF(std::FILE* output, const UntypedFormatSpecImpl format, absl::Span<const FormatArgImpl> args) { FILERawSink sink(output); if (!FormatUntyped(&sink, format, args)) { errno = EINVAL; return -1; } if (sink.error()) { errno = sink.error(); return -1; } if (sink.count() > static_cast<size_t>(std::numeric_limits<int>::max())) { errno = EFBIG; return -1; } return static_cast<int>(sink.count()); } int SnprintF(char* output, size_t size, const UntypedFormatSpecImpl format, absl::Span<const FormatArgImpl> args) { BufferRawSink sink(output, size ? size - 1 : 0); if (!FormatUntyped(&sink, format, args)) { errno = EINVAL; return -1; } size_t total = sink.total_written(); if (size) output[std::min(total, size - 1)] = 0; return static_cast<int>(total); } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/str_format/bind.h" #include <string.h> #include <limits> #include "gtest/gtest.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace str_format_internal { namespace { class FormatBindTest : public ::testing::Test { public: bool Extract(const char *s, UnboundConversion *props, int *next) const { return ConsumeUnboundConversion(s, s + strlen(s), props, next) == s + strlen(s); } }; TEST_F(FormatBindTest, BindSingle) { struct Expectation { int line; const char *fmt; int ok_phases; const FormatArgImpl *arg; int width; int precision; int next_arg; }; const int no = -1; const int ia[] = { 10, 20, 30, 40}; const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]), FormatArgImpl(ia[2]), FormatArgImpl(ia[3])}; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmissing-field-initializers" const Expectation kExpect[] = { {__LINE__, "d", 2, &args[0], no, no, 2}, {__LINE__, "4d", 2, &args[0], 4, no, 2}, {__LINE__, ".5d", 2, &args[0], no, 5, 2}, {__LINE__, "4.5d", 2, &args[0], 4, 5, 2}, {__LINE__, "*d", 2, &args[1], 10, no, 3}, {__LINE__, ".*d", 2, &args[1], no, 10, 3}, {__LINE__, "*.*d", 2, &args[2], 10, 20, 4}, {__LINE__, "1$d", 2, &args[0], no, no, 0}, {__LINE__, "2$d", 2, &args[1], no, no, 0}, {__LINE__, "3$d", 2, &args[2], no, no, 0}, {__LINE__, "4$d", 2, &args[3], no, no, 0}, {__LINE__, "2$*1$d", 2, &args[1], 10, no, 0}, {__LINE__, "2$*2$d", 2, &args[1], 20, no, 0}, {__LINE__, "2$*3$d", 2, &args[1], 30, no, 0}, {__LINE__, "2$.*1$d", 2, &args[1], no, 10, 0}, {__LINE__, "2$.*2$d", 2, &args[1], no, 20, 0}, {__LINE__, "2$.*3$d", 2, &args[1], no, 30, 0}, {__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0}, {__LINE__, "2$*2$.*2$d", 2, &args[1], 20, 20, 0}, {__LINE__, "2$*1$.*3$d", 2, &args[1], 10, 30, 0}, {__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0}, {__LINE__, "1$*d", 0}, {__LINE__, "*2$d", 0}, {__LINE__, "6$d", 1}, {__LINE__, "1$6$d", 0}, {__LINE__, "1$.6$d", 0}, {__LINE__, "1$*6$d", 1}, {__LINE__, "1$.*6$d", 1}, }; #pragma GCC diagnostic pop for (const Expectation &e : kExpect) { SCOPED_TRACE(e.line); SCOPED_TRACE(e.fmt); UnboundConversion props; BoundConversion bound; int ok_phases = 0; int next = 0; if (Extract(e.fmt, &props, &next)) { ++ok_phases; if (BindWithPack(&props, args, &bound)) { ++ok_phases; } } EXPECT_EQ(e.ok_phases, ok_phases); if (e.ok_phases < 2) continue; if (e.arg != nullptr) { EXPECT_EQ(e.arg, bound.arg()); } EXPECT_EQ(e.width, bound.width()); EXPECT_EQ(e.precision, bound.precision()); } } TEST_F(FormatBindTest, WidthUnderflowRegression) { UnboundConversion props; BoundConversion bound; int next = 0; const int args_i[] = {std::numeric_limits<int>::min(), 17}; const FormatArgImpl args[] = {FormatArgImpl(args_i[0]), FormatArgImpl(args_i[1])}; ASSERT_TRUE(Extract("*d", &props, &next)); ASSERT_TRUE(BindWithPack(&props, args, &bound)); EXPECT_EQ(bound.width(), std::numeric_limits<int>::max()); EXPECT_EQ(bound.arg(), args + 1); } TEST_F(FormatBindTest, FormatPack) { struct Expectation { int line; const char *fmt; const char *summary; }; const int ia[] = { 10, 20, 30, 40, -10 }; const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]), FormatArgImpl(ia[2]), FormatArgImpl(ia[3]), FormatArgImpl(ia[4])}; const Expectation kExpect[] = { {__LINE__, "a%4db%dc", "a{10:4d}b{20:d}c"}, {__LINE__, "a%.4db%dc", "a{10:.4d}b{20:d}c"}, {__LINE__, "a%4.5db%dc", "a{10:4.5d}b{20:d}c"}, {__LINE__, "a%db%4.5dc", "a{10:d}b{20:4.5d}c"}, {__LINE__, "a%db%*.*dc", "a{10:d}b{40:20.30d}c"}, {__LINE__, "a%.*fb", "a{20:.10f}b"}, {__LINE__, "a%1$db%2$*3$.*4$dc", "a{10:d}b{20:30.40d}c"}, {__LINE__, "a%4$db%3$*2$.*1$dc", "a{40:d}b{30:20.10d}c"}, {__LINE__, "a%04ldb", "a{10:04d}b"}, {__LINE__, "a%-#04lldb", "a{10:-#04d}b"}, {__LINE__, "a%1$*5$db", "a{10:-10d}b"}, {__LINE__, "a%1$.*5$db", "a{10:d}b"}, }; for (const Expectation &e : kExpect) { absl::string_view fmt = e.fmt; SCOPED_TRACE(e.line); SCOPED_TRACE(e.fmt); UntypedFormatSpecImpl format(fmt); EXPECT_EQ(e.summary, str_format_internal::Summarize(format, absl::MakeSpan(args))) << "line:" << e.line; } } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/str_format/bind.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/str_format/bind_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
96eac068-aee0-4173-954e-e2d2797caf66
cpp
google/tensorstore
single_producer_queue
tensorstore/internal/container/single_producer_queue.h
tensorstore/internal/container/single_producer_queue_test.cc
#ifndef TENSORSTORE_INTERNAL_THREAD_SINGLE_PRODUCER_QUEUE_H_ #define TENSORSTORE_INTERNAL_THREAD_SINGLE_PRODUCER_QUEUE_H_ #include <stdint.h> #include <algorithm> #include <atomic> #include <cassert> #include <cstddef> #include <memory> #include <optional> #include <type_traits> #include "absl/base/attributes.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" namespace tensorstore { namespace internal_container { template <typename T, bool kCanResize = true, typename Allocator = std::allocator<T>> class SingleProducerQueue; template <typename T, typename Allocator> class SPQArray { private: static_assert(std::is_trivially_destructible_v<T>); using ArrayAllocator = typename std::allocator_traits< Allocator>::template rebind_alloc<SPQArray>; using ByteAllocator = typename std::allocator_traits<Allocator>::template rebind_alloc<char>; constexpr static ptrdiff_t start_offset() { struct X { SPQArray array; std::atomic<T> item[1]; }; return offsetof(X, item); } constexpr static size_t alloc_size(int64_t c) { struct X { SPQArray array; std::atomic<T> item[1]; }; return sizeof(X) + (c - 1) * sizeof(std::atomic<T>); } struct private_t { private: friend class SPQArray; private_t() = default; }; public: static SPQArray* New(int64_t c, SPQArray* retired, Allocator* alloc) { size_t allocation_bytes = alloc_size(c); ByteAllocator byte_alloc(*alloc); void* mem = std::allocator_traits<ByteAllocator>::allocate( byte_alloc, allocation_bytes); auto* as_array = static_cast<SPQArray*>(mem); ArrayAllocator array_alloc(*alloc); std::allocator_traits<ArrayAllocator>::construct(array_alloc, as_array, private_t{}, c, retired); return as_array; } static void Delete(SPQArray* ptr, Allocator* alloc) { const size_t allocation_bytes = alloc_size(ptr->capacity); void* mem = ptr; ByteAllocator byte_alloc(*alloc); std::allocator_traits<ByteAllocator>::deallocate( byte_alloc, static_cast<char*>(mem), allocation_bytes); } SPQArray(private_t, int64_t c, SPQArray* retired) : capacity(c), mask(c - 1), retired(retired) {} SPQArray* resize(int64_t b, int64_t t, Allocator* alloc) { auto* a = SPQArray::New(2 * capacity, this, alloc); for (int64_t i = t; i != b; ++i) { a->item(i).store( item(i).load(std::memory_order_relaxed), std::memory_order_relaxed); } return a; } std::atomic<T>* buffer() { return reinterpret_cast<std::atomic<T>*>(reinterpret_cast<char*>(this) + start_offset()); } std::atomic<T>& item(int64_t i) { return buffer()[i & mask]; } int64_t capacity; int64_t mask; SPQArray* retired; }; template <typename T, bool kCanResize, typename Allocator> class SingleProducerQueue { static_assert(std::is_trivially_destructible_v<T>); std::nullopt_t missing(std::false_type) { return std::nullopt; } std::nullptr_t missing(std::true_type) { return nullptr; } using Array = SPQArray<T, Allocator>; public: using optional_t = std::conditional_t<std::is_pointer_v<T>, T, std::optional<T>>; SingleProducerQueue(int64_t n, Allocator alloc) : top_(0), bottom_(0), allocator_(alloc), array_(Array::New(n, nullptr, &allocator_)) { ABSL_CHECK_EQ(n & (n - 1), 0); } explicit SingleProducerQueue(int64_t n) : SingleProducerQueue(n, Allocator()) {} ~SingleProducerQueue() { Array* a = array_.load(std::memory_order_relaxed); while (a) { Array* b = a->retired; a->retired = nullptr; Array::Delete(a, &allocator_); a = b; } } int64_t capacity() const { return array_.load(std::memory_order_relaxed)->capacity; } size_t size() const { int64_t b = bottom_.load(std::memory_order_relaxed); int64_t t = top_.load(std::memory_order_relaxed); return static_cast<size_t>(b > t ? b - t : 0); } bool empty() const { return !size(); } bool push(T x) { auto b = bottom_.load(std::memory_order_relaxed); auto t = top_.load(std::memory_order_acquire); Array* a = array_.load(std::memory_order_relaxed); if (a->capacity < (b - t) + 1) { if (!kCanResize) return false; a = a->resize(b, t, &allocator_); array_.store(a, std::memory_order_release); } a->item(b).store(std::move(x), std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_release); bottom_.store(b + 1, std::memory_order_relaxed); return true; } optional_t try_pop() { auto b = bottom_.load(std::memory_order_relaxed) - 1; Array* a = array_.load(std::memory_order_relaxed); bottom_.store(b, std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_seq_cst); auto t = top_.load(std::memory_order_relaxed); if (t > b) { bottom_.store(b + 1, std::memory_order_relaxed); return missing(std::is_pointer<T>{}); } if (t == b) { if (!top_.compare_exchange_strong(t, t + 1, std::memory_order_seq_cst, std::memory_order_relaxed)) { bottom_.store(b + 1, std::memory_order_relaxed); return missing(std::is_pointer<T>{}); } bottom_.store(b + 1, std::memory_order_relaxed); } return a->item(b).load(std::memory_order_relaxed); } optional_t try_steal() { auto t = top_.load(std::memory_order_acquire); std::atomic_thread_fence(std::memory_order_seq_cst); auto b = bottom_.load(std::memory_order_acquire); if (t >= b) { return missing(std::is_pointer<T>{}); } Array* a = array_.load(std::memory_order_consume); T x = a->item(t).load(std::memory_order_relaxed); if (!top_.compare_exchange_strong(t, t + 1, std::memory_order_seq_cst, std::memory_order_relaxed)) { return missing(std::is_pointer<T>{}); } return x; } private: ABSL_CACHELINE_ALIGNED std::atomic<int64_t> top_; std::atomic<int64_t> bottom_; ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Allocator allocator_; std::atomic<Array*> array_; }; } } #endif
#include "tensorstore/internal/container/single_producer_queue.h" #include <stddef.h> #include <atomic> #include <optional> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_check.h" #include "tensorstore/internal/thread/thread.h" using ::tensorstore::internal_container::SingleProducerQueue; using ::testing::Eq; using ::testing::Optional; namespace { TEST(SingleProducerQueueTest, Basic) { SingleProducerQueue<int> q(32); EXPECT_THAT(q.capacity(), Eq(32)); EXPECT_THAT(q.empty(), true); EXPECT_THAT(q.size(), Eq(0)); q.push(1); EXPECT_THAT(q.capacity(), Eq(32)); EXPECT_THAT(q.empty(), false); EXPECT_THAT(q.size(), Eq(1)); EXPECT_THAT(q.try_pop(), Optional(1)); EXPECT_THAT(q.try_pop(), Eq(std::nullopt)); q.push(2); EXPECT_THAT(q.try_steal(), Optional(2)); EXPECT_THAT(q.try_pop(), Eq(std::nullopt)); } TEST(SingleProducerQueueTest, BasicPtr) { SingleProducerQueue<int*> q(32); int a[2]; EXPECT_THAT(q.capacity(), Eq(32)); EXPECT_THAT(q.empty(), true); EXPECT_THAT(q.size(), Eq(0)); q.push(&a[0]); EXPECT_THAT(q.capacity(), Eq(32)); EXPECT_THAT(q.empty(), false); EXPECT_THAT(q.size(), Eq(1)); EXPECT_THAT(q.try_pop(), Eq(a)); EXPECT_THAT(q.try_pop(), Eq(nullptr)); q.push(&a[1]); EXPECT_THAT(q.try_steal(), Eq(a + 1)); EXPECT_THAT(q.try_pop(), Eq(nullptr)); } TEST(SimpleQueue, PushPop) { SingleProducerQueue<int, false> q(1); for (int i = 0; i < 4096; i++) { if (!q.push(i)) { q.try_pop(); q.push(i); if (i & 0x2) q.try_pop(); } } } TEST(SingleProducerQueueTest, ConcurrentSteal) { static constexpr size_t kNumThreads = 4; static constexpr int kSize = 10000; SingleProducerQueue<int> q(32); std::atomic<int> remaining(kSize); std::vector<tensorstore::internal::Thread> threads; threads.reserve(kNumThreads + 1); for (size_t thread_i = 0; thread_i < kNumThreads; ++thread_i) { bool c = thread_i & 1; threads.emplace_back( tensorstore::internal::Thread({"steal"}, [c, &remaining, &q]() { while (remaining.load(std::memory_order_seq_cst) > 0) { if (auto v = q.try_steal(); v.has_value()) { ABSL_CHECK_EQ(*v, 1); remaining.fetch_sub(1); } if (c) { q.capacity(); } else { q.size(); } } })); } threads.emplace_back(tensorstore::internal::Thread({"create"}, [&q]() { for (int i = 0; i < kSize; ++i) q.push(1); })); for (auto& t : threads) t.Join(); EXPECT_THAT(remaining.load(std::memory_order_seq_cst), 0); EXPECT_THAT(q.try_steal(), Eq(std::nullopt)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/container/single_producer_queue.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/container/single_producer_queue_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b8debb4c-34f9-42e0-8dc5-dcfb180414bb
cpp
tensorflow/tensorflow
flatset
tensorflow/core/lib/gtl/flatset.h
third_party/xla/xla/tsl/lib/gtl/flatset_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_FLATSET_H_ #define TENSORFLOW_CORE_LIB_GTL_FLATSET_H_ #include "xla/tsl/lib/gtl/flatset.h" namespace tensorflow { namespace gtl { using tsl::gtl::FlatSet; } } #endif
#include "xla/tsl/lib/gtl/flatset.h" #include <algorithm> #include <memory> #include <string> #include <vector> #include "tsl/platform/hash.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace gtl { namespace { typedef FlatSet<int64_t> NumSet; bool Has(const NumSet& set, int64_t k) { auto iter = set.find(k); if (iter == set.end()) { EXPECT_EQ(set.count(k), 0); return false; } else { EXPECT_EQ(set.count(k), 1); EXPECT_EQ(*iter, k); return true; } } typedef std::vector<int64_t> NumSetContents; NumSetContents Contents(const NumSet& set) { NumSetContents result(set.begin(), set.end()); std::sort(result.begin(), result.end()); return result; } void Fill(NumSet* set, int64_t start, int64_t limit) { for (int64_t i = start; i < limit; i++) { set->insert(i); } } TEST(FlatSetTest, Find) { NumSet set; EXPECT_FALSE(Has(set, 1)); set.insert(1); set.insert(2); EXPECT_TRUE(Has(set, 1)); EXPECT_TRUE(Has(set, 2)); EXPECT_FALSE(Has(set, 3)); } TEST(FlatSetTest, Insert) { NumSet set; EXPECT_FALSE(Has(set, 1)); auto result = set.insert(1); EXPECT_TRUE(result.second); EXPECT_EQ(*result.first, 1); EXPECT_TRUE(Has(set, 1)); result = set.insert(1); EXPECT_FALSE(result.second); EXPECT_EQ(*result.first, 1); EXPECT_TRUE(Has(set, 1)); } TEST(FlatSetTest, InsertGrowth) { NumSet set; const int n = 100; Fill(&set, 0, 100); EXPECT_EQ(set.size(), n); for (int i = 0; i < n; i++) { EXPECT_TRUE(Has(set, i)) << i; } } TEST(FlatSetTest, Emplace) { NumSet set; auto result = set.emplace(73); EXPECT_TRUE(result.second); EXPECT_EQ(*result.first, 73); EXPECT_TRUE(Has(set, 73)); result = set.emplace(73); EXPECT_FALSE(result.second); EXPECT_EQ(*result.first, 73); EXPECT_TRUE(Has(set, 73)); result = set.emplace(103); EXPECT_TRUE(result.second); EXPECT_EQ(*result.first, 103); EXPECT_TRUE(Has(set, 103)); } TEST(FlatSetTest, Size) { NumSet set; EXPECT_EQ(set.size(), 0); set.insert(1); set.insert(2); EXPECT_EQ(set.size(), 2); } TEST(FlatSetTest, Empty) { NumSet set; EXPECT_TRUE(set.empty()); set.insert(1); set.insert(2); EXPECT_FALSE(set.empty()); } TEST(FlatSetTest, Count) { NumSet set; EXPECT_EQ(set.count(1), 0); EXPECT_EQ(set.count(2), 0); set.insert(1); EXPECT_EQ(set.count(1), 1); EXPECT_EQ(set.count(2), 0); set.insert(2); EXPECT_EQ(set.count(1), 1); EXPECT_EQ(set.count(2), 1); } TEST(FlatSetTest, Iter) { NumSet set; EXPECT_EQ(Contents(set), NumSetContents()); set.insert(1); set.insert(2); EXPECT_EQ(Contents(set), NumSetContents({1, 2})); } TEST(FlatSetTest, Erase) { NumSet set; EXPECT_EQ(set.erase(1), 0); set.insert(1); set.insert(2); EXPECT_EQ(set.erase(3), 0); EXPECT_EQ(set.erase(1), 1); EXPECT_EQ(set.size(), 1); EXPECT_TRUE(Has(set, 2)); EXPECT_EQ(Contents(set), NumSetContents({2})); EXPECT_EQ(set.erase(2), 1); EXPECT_EQ(Contents(set), NumSetContents()); } TEST(FlatSetTest, EraseIter) { NumSet set; Fill(&set, 1, 11); size_t size = 10; for (auto iter = set.begin(); iter != set.end();) { iter = set.erase(iter); size--; EXPECT_EQ(set.size(), size); } EXPECT_EQ(Contents(set), NumSetContents()); } TEST(FlatSetTest, EraseIterPair) { NumSet set; Fill(&set, 1, 11); NumSet expected; auto p1 = set.begin(); expected.insert(*p1); ++p1; expected.insert(*p1); ++p1; auto p2 = set.end(); EXPECT_EQ(set.erase(p1, p2), set.end()); EXPECT_EQ(set.size(), 2); EXPECT_EQ(Contents(set), Contents(expected)); } TEST(FlatSetTest, EraseLongChains) { NumSet set; const int num = 128; Fill(&set, 0, num); for (int i = 0; i < num; i += 3) { EXPECT_EQ(set.erase(i), 1); } for (int i = 0; i < num; i++) { EXPECT_EQ(Has(set, i), ((i % 3) != 0)) << i; } const size_t orig_buckets = set.bucket_count(); for (int i = 0; i < num; i++) { set.erase(i); } EXPECT_TRUE(set.empty()); EXPECT_EQ(set.bucket_count(), orig_buckets); set.insert(1); EXPECT_LT(set.bucket_count(), orig_buckets); } TEST(FlatSet, ClearNoResize) { NumSet set; Fill(&set, 0, 100); const size_t orig = set.bucket_count(); set.clear_no_resize(); EXPECT_EQ(set.size(), 0); EXPECT_EQ(Contents(set), NumSetContents()); EXPECT_EQ(set.bucket_count(), orig); } TEST(FlatSet, Clear) { NumSet set; Fill(&set, 0, 100); const size_t orig = set.bucket_count(); set.clear(); EXPECT_EQ(set.size(), 0); EXPECT_EQ(Contents(set), NumSetContents()); EXPECT_LT(set.bucket_count(), orig); } TEST(FlatSet, Copy) { for (int n = 0; n < 10; n++) { NumSet src; Fill(&src, 0, n); NumSet copy = src; EXPECT_EQ(Contents(src), Contents(copy)); NumSet copy2; copy2 = src; EXPECT_EQ(Contents(src), Contents(copy2)); copy2 = *&copy2; EXPECT_EQ(Contents(src), Contents(copy2)); } } TEST(FlatSet, InitFromIter) { for (int n = 0; n < 10; n++) { NumSet src; Fill(&src, 0, n); auto vec = Contents(src); NumSet dst(vec.begin(), vec.end()); EXPECT_EQ(Contents(dst), vec); } } TEST(FlatSet, InitializerList) { NumSet a{1, 2, 3}; NumSet b({1, 2, 3}); NumSet c = {1, 2, 3}; for (NumSet* set : std::vector<NumSet*>({&a, &b, &c})) { EXPECT_TRUE(Has(*set, 1)); EXPECT_TRUE(Has(*set, 2)); EXPECT_TRUE(Has(*set, 3)); EXPECT_EQ(Contents(*set), NumSetContents({1, 2, 3})); } } TEST(FlatSet, InsertIter) { NumSet a, b; Fill(&a, 1, 10); Fill(&b, 8, 20); b.insert(9); a.insert(b.begin(), b.end()); NumSet expected; Fill(&expected, 1, 20); EXPECT_EQ(Contents(a), Contents(expected)); } TEST(FlatSet, Eq) { NumSet empty; NumSet elems; Fill(&elems, 0, 5); EXPECT_FALSE(empty == elems); EXPECT_TRUE(empty != elems); NumSet copy = elems; EXPECT_TRUE(copy == elems); EXPECT_FALSE(copy != elems); NumSet changed = elems; changed.insert(7); EXPECT_FALSE(changed == elems); EXPECT_TRUE(changed != elems); NumSet changed2 = elems; changed2.erase(3); EXPECT_FALSE(changed2 == elems); EXPECT_TRUE(changed2 != elems); } TEST(FlatSet, Swap) { NumSet a, b; Fill(&a, 1, 5); Fill(&b, 100, 200); NumSet c = a; NumSet d = b; EXPECT_EQ(c, a); EXPECT_EQ(d, b); c.swap(d); EXPECT_EQ(c, b); EXPECT_EQ(d, a); } TEST(FlatSet, Reserve) { NumSet src; Fill(&src, 1, 100); NumSet a = src; a.reserve(10); EXPECT_EQ(a, src); NumSet b = src; b.rehash(1000); EXPECT_EQ(b, src); } TEST(FlatSet, EqualRangeMutable) { NumSet set; Fill(&set, 1, 10); auto p1 = set.equal_range(3); EXPECT_TRUE(p1.first != p1.second); EXPECT_EQ(*p1.first, 3); ++p1.first; EXPECT_TRUE(p1.first == p1.second); auto p2 = set.equal_range(100); EXPECT_TRUE(p2.first == p2.second); } TEST(FlatSet, EqualRangeConst) { NumSet tmp; Fill(&tmp, 1, 10); const NumSet set = tmp; auto p1 = set.equal_range(3); EXPECT_TRUE(p1.first != p1.second); EXPECT_EQ(*p1.first, 3); ++p1.first; EXPECT_TRUE(p1.first == p1.second); auto p2 = set.equal_range(100); EXPECT_TRUE(p2.first == p2.second); } TEST(FlatSet, Prefetch) { NumSet set; Fill(&set, 0, 1000); for (int i = 0; i < 2000; i++) { set.prefetch_value(i); } } struct NA { int64_t value; NA() : value(-1) {} explicit NA(int64_t v) : value(v) {} NA(const NA& x) : value(x.value) {} bool operator==(const NA& x) const { return value == x.value; } }; struct HashNA { size_t operator()(NA x) const { return x.value; } }; TEST(FlatSet, NonAssignable) { FlatSet<NA, HashNA> set; for (int i = 0; i < 100; i++) { set.insert(NA(i)); } for (int i = 0; i < 100; i++) { EXPECT_EQ(set.count(NA(i)), 1); auto iter = set.find(NA(i)); EXPECT_NE(iter, set.end()); EXPECT_EQ(*iter, NA(i)); } set.erase(NA(10)); EXPECT_EQ(set.count(NA(10)), 0); } TEST(FlatSet, ForwardIterator) { typedef FlatSet<NA, HashNA> NASet; NASet set({NA(1), NA(2)}); NASet::iterator it1 = set.find(NA(1)); NASet::iterator it2 = set.find(NA(2)); EXPECT_TRUE(it1 != set.end()); EXPECT_TRUE(it2 != set.end()); EXPECT_FALSE(it1 == set.end()); EXPECT_FALSE(it2 == set.end()); EXPECT_TRUE(it1 != it2); EXPECT_FALSE(it1 == it2); EXPECT_EQ(*it1, NA(1)); EXPECT_EQ(*it2, NA(2)); EXPECT_EQ(it1->value, 1); EXPECT_EQ(it2->value, 2); NASet::iterator copy_it1 = it1; NASet::iterator copy_it2 = it2; EXPECT_EQ(*copy_it1, NA(1)); EXPECT_EQ(*copy_it2, NA(2)); NASet::iterator& pp_copy_it1 = ++copy_it1; NASet::iterator& pp_copy_it2 = ++copy_it2; EXPECT_TRUE(pp_copy_it1 == copy_it1); EXPECT_TRUE(pp_copy_it2 == copy_it2); EXPECT_TRUE(copy_it1 != it1); EXPECT_TRUE(copy_it2 != it2); if (copy_it1 == set.end()) { EXPECT_TRUE(copy_it2 != set.end()); EXPECT_EQ(*copy_it2, NA(1)); EXPECT_EQ(*pp_copy_it2, NA(1)); } else { EXPECT_TRUE(copy_it2 == set.end()); EXPECT_EQ(*copy_it1, NA(2)); EXPECT_EQ(*pp_copy_it1, NA(2)); } EXPECT_EQ(*it1, NA(1)); EXPECT_EQ(*it2, NA(2)); copy_it1 = it1; copy_it2 = it2; EXPECT_EQ(*copy_it1, NA(1)); EXPECT_EQ(*copy_it2, NA(2)); NASet::iterator copy_it1_pp = copy_it1++; NASet::iterator copy_it2_pp = copy_it2++; EXPECT_TRUE(copy_it1_pp != copy_it1); EXPECT_TRUE(copy_it2_pp != copy_it2); EXPECT_TRUE(copy_it1_pp == it1); EXPECT_TRUE(copy_it2_pp == it2); EXPECT_EQ(*copy_it1_pp, NA(1)); EXPECT_EQ(*copy_it2_pp, NA(2)); EXPECT_TRUE(copy_it1 != it1); EXPECT_TRUE(copy_it2 != it2); if (copy_it1 == set.end()) { EXPECT_TRUE(copy_it2 != set.end()); EXPECT_EQ(*copy_it2, NA(1)); } else { EXPECT_TRUE(copy_it2 == set.end()); EXPECT_EQ(*copy_it1, NA(2)); } EXPECT_EQ(*it1, NA(1)); EXPECT_EQ(*it2, NA(2)); } TEST(FlatSet, ConstructDestruct) { FlatSet<string> set; string k1 = "the quick brown fox jumped over the lazy dog"; string k2 = k1 + k1; string k3 = k1 + k2; set.insert(k1); set.insert(k3); EXPECT_EQ(set.count(k1), 1); EXPECT_EQ(set.count(k2), 0); EXPECT_EQ(set.count(k3), 1); set.erase(k3); EXPECT_EQ(set.count(k3), 0); set.clear(); set.insert(k1); EXPECT_EQ(set.count(k1), 1); EXPECT_EQ(set.count(k3), 0); set.reserve(100); EXPECT_EQ(set.count(k1), 1); EXPECT_EQ(set.count(k3), 0); } struct CustomCmpKey { int64_t a; int64_t b; CustomCmpKey(int64_t v1, int64_t v2) : a(v1), b(v2) {} bool operator==(const CustomCmpKey& x) const { return a == x.a && b == x.b; } }; struct HashA { size_t operator()(CustomCmpKey x) const { return x.a; } }; struct EqA { bool operator()(CustomCmpKey x, CustomCmpKey y) const { return x.a == y.a; } }; TEST(FlatSet, CustomCmp) { FlatSet<CustomCmpKey, HashA, EqA> set; set.insert(CustomCmpKey(100, 200)); EXPECT_EQ(set.count(CustomCmpKey(100, 200)), 1); EXPECT_EQ(set.count(CustomCmpKey(100, 500)), 1); } typedef std::unique_ptr<int> UniqInt; static UniqInt MakeUniq(int i) { return std::make_unique<int>(i); } struct HashUniq { size_t operator()(const UniqInt& p) const { return *p; } }; struct EqUniq { bool operator()(const UniqInt& a, const UniqInt& b) const { return *a == *b; } }; typedef FlatSet<UniqInt, HashUniq, EqUniq> UniqSet; TEST(FlatSet, UniqueSet) { UniqSet set; const int N = 10; for (int i = 0; i < N; i++) { set.emplace(MakeUniq(i)); } EXPECT_EQ(set.size(), N); UniqSet set2(std::move(set)); for (int i = 0; i < N; i++) { EXPECT_EQ(set2.count(MakeUniq(i)), 1); } UniqSet set3; set3 = std::move(set2); set3.erase(MakeUniq(2)); EXPECT_EQ(set3.count(MakeUniq(2)), 0); set.clear(); EXPECT_EQ(set.size(), 0); EXPECT_GE(set.size(), 0); EXPECT_GE(set2.size(), 0); EXPECT_TRUE(set.emplace(MakeUniq(-1)).second); } TEST(FlatSet, UniqueSetIter) { UniqSet set; const int kCount = 10; for (int i = 1; i <= kCount; i++) { set.emplace(MakeUniq(i)); } int sum = 0; for (const auto& p : set) { sum += *p; } EXPECT_EQ(sum, (kCount * (kCount + 1)) / 2); } TEST(FlatSet, InsertUncopyable) { UniqSet set; EXPECT_TRUE(set.insert(MakeUniq(0)).second); EXPECT_EQ(set.size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/flatset.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/flatset_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8086529a-480b-40f5-ae84-ebac1bbb68bd
cpp
abseil/abseil-cpp
status
absl/status/status.cc
absl/status/status_test.cc
#include "absl/status/status.h" #include <errno.h> #include <atomic> #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <ostream> #include <string> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/strerror.h" #include "absl/base/macros.h" #include "absl/base/no_destructor.h" #include "absl/base/nullability.h" #include "absl/debugging/stacktrace.h" #include "absl/debugging/symbolize.h" #include "absl/status/internal/status_internal.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" namespace absl { ABSL_NAMESPACE_BEGIN static_assert( alignof(status_internal::StatusRep) >= 4, "absl::Status assumes it can use the bottom 2 bits of a StatusRep*."); std::string StatusCodeToString(StatusCode code) { switch (code) { case StatusCode::kOk: return "OK"; case StatusCode::kCancelled: return "CANCELLED"; case StatusCode::kUnknown: return "UNKNOWN"; case StatusCode::kInvalidArgument: return "INVALID_ARGUMENT"; case StatusCode::kDeadlineExceeded: return "DEADLINE_EXCEEDED"; case StatusCode::kNotFound: return "NOT_FOUND"; case StatusCode::kAlreadyExists: return "ALREADY_EXISTS"; case StatusCode::kPermissionDenied: return "PERMISSION_DENIED"; case StatusCode::kUnauthenticated: return "UNAUTHENTICATED"; case StatusCode::kResourceExhausted: return "RESOURCE_EXHAUSTED"; case StatusCode::kFailedPrecondition: return "FAILED_PRECONDITION"; case StatusCode::kAborted: return "ABORTED"; case StatusCode::kOutOfRange: return "OUT_OF_RANGE"; case StatusCode::kUnimplemented: return "UNIMPLEMENTED"; case StatusCode::kInternal: return "INTERNAL"; case StatusCode::kUnavailable: return "UNAVAILABLE"; case StatusCode::kDataLoss: return "DATA_LOSS"; default: return ""; } } std::ostream& operator<<(std::ostream& os, StatusCode code) { return os << StatusCodeToString(code); } absl::Nonnull<const std::string*> Status::EmptyString() { static const absl::NoDestructor<std::string> kEmpty; return kEmpty.get(); } #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr const char Status::kMovedFromString[]; #endif absl::Nonnull<const std::string*> Status::MovedFromString() { static const absl::NoDestructor<std::string> kMovedFrom(kMovedFromString); return kMovedFrom.get(); } Status::Status(absl::StatusCode code, absl::string_view msg) : rep_(CodeToInlinedRep(code)) { if (code != absl::StatusCode::kOk && !msg.empty()) { rep_ = PointerToRep(new status_internal::StatusRep(code, msg, nullptr)); } } absl::Nonnull<status_internal::StatusRep*> Status::PrepareToModify( uintptr_t rep) { if (IsInlined(rep)) { return new status_internal::StatusRep(InlinedRepToCode(rep), absl::string_view(), nullptr); } return RepToPointer(rep)->CloneAndUnref(); } std::string Status::ToStringSlow(uintptr_t rep, StatusToStringMode mode) { if (IsInlined(rep)) { return absl::StrCat(absl::StatusCodeToString(InlinedRepToCode(rep)), ": "); } return RepToPointer(rep)->ToString(mode); } std::ostream& operator<<(std::ostream& os, const Status& x) { os << x.ToString(StatusToStringMode::kWithEverything); return os; } Status AbortedError(absl::string_view message) { return Status(absl::StatusCode::kAborted, message); } Status AlreadyExistsError(absl::string_view message) { return Status(absl::StatusCode::kAlreadyExists, message); } Status CancelledError(absl::string_view message) { return Status(absl::StatusCode::kCancelled, message); } Status DataLossError(absl::string_view message) { return Status(absl::StatusCode::kDataLoss, message); } Status DeadlineExceededError(absl::string_view message) { return Status(absl::StatusCode::kDeadlineExceeded, message); } Status FailedPreconditionError(absl::string_view message) { return Status(absl::StatusCode::kFailedPrecondition, message); } Status InternalError(absl::string_view message) { return Status(absl::StatusCode::kInternal, message); } Status InvalidArgumentError(absl::string_view message) { return Status(absl::StatusCode::kInvalidArgument, message); } Status NotFoundError(absl::string_view message) { return Status(absl::StatusCode::kNotFound, message); } Status OutOfRangeError(absl::string_view message) { return Status(absl::StatusCode::kOutOfRange, message); } Status PermissionDeniedError(absl::string_view message) { return Status(absl::StatusCode::kPermissionDenied, message); } Status ResourceExhaustedError(absl::string_view message) { return Status(absl::StatusCode::kResourceExhausted, message); } Status UnauthenticatedError(absl::string_view message) { return Status(absl::StatusCode::kUnauthenticated, message); } Status UnavailableError(absl::string_view message) { return Status(absl::StatusCode::kUnavailable, message); } Status UnimplementedError(absl::string_view message) { return Status(absl::StatusCode::kUnimplemented, message); } Status UnknownError(absl::string_view message) { return Status(absl::StatusCode::kUnknown, message); } bool IsAborted(const Status& status) { return status.code() == absl::StatusCode::kAborted; } bool IsAlreadyExists(const Status& status) { return status.code() == absl::StatusCode::kAlreadyExists; } bool IsCancelled(const Status& status) { return status.code() == absl::StatusCode::kCancelled; } bool IsDataLoss(const Status& status) { return status.code() == absl::StatusCode::kDataLoss; } bool IsDeadlineExceeded(const Status& status) { return status.code() == absl::StatusCode::kDeadlineExceeded; } bool IsFailedPrecondition(const Status& status) { return status.code() == absl::StatusCode::kFailedPrecondition; } bool IsInternal(const Status& status) { return status.code() == absl::StatusCode::kInternal; } bool IsInvalidArgument(const Status& status) { return status.code() == absl::StatusCode::kInvalidArgument; } bool IsNotFound(const Status& status) { return status.code() == absl::StatusCode::kNotFound; } bool IsOutOfRange(const Status& status) { return status.code() == absl::StatusCode::kOutOfRange; } bool IsPermissionDenied(const Status& status) { return status.code() == absl::StatusCode::kPermissionDenied; } bool IsResourceExhausted(const Status& status) { return status.code() == absl::StatusCode::kResourceExhausted; } bool IsUnauthenticated(const Status& status) { return status.code() == absl::StatusCode::kUnauthenticated; } bool IsUnavailable(const Status& status) { return status.code() == absl::StatusCode::kUnavailable; } bool IsUnimplemented(const Status& status) { return status.code() == absl::StatusCode::kUnimplemented; } bool IsUnknown(const Status& status) { return status.code() == absl::StatusCode::kUnknown; } StatusCode ErrnoToStatusCode(int error_number) { switch (error_number) { case 0: return StatusCode::kOk; case EINVAL: case ENAMETOOLONG: case E2BIG: case EDESTADDRREQ: case EDOM: case EFAULT: case EILSEQ: case ENOPROTOOPT: case ENOTSOCK: case ENOTTY: case EPROTOTYPE: case ESPIPE: return StatusCode::kInvalidArgument; case ETIMEDOUT: return StatusCode::kDeadlineExceeded; case ENODEV: case ENOENT: #ifdef ENOMEDIUM case ENOMEDIUM: #endif case ENXIO: case ESRCH: return StatusCode::kNotFound; case EEXIST: case EADDRNOTAVAIL: case EALREADY: #ifdef ENOTUNIQ case ENOTUNIQ: #endif return StatusCode::kAlreadyExists; case EPERM: case EACCES: #ifdef ENOKEY case ENOKEY: #endif case EROFS: return StatusCode::kPermissionDenied; case ENOTEMPTY: case EISDIR: case ENOTDIR: case EADDRINUSE: case EBADF: #ifdef EBADFD case EBADFD: #endif case EBUSY: case ECHILD: case EISCONN: #ifdef EISNAM case EISNAM: #endif #ifdef ENOTBLK case ENOTBLK: #endif case ENOTCONN: case EPIPE: #ifdef ESHUTDOWN case ESHUTDOWN: #endif case ETXTBSY: #ifdef EUNATCH case EUNATCH: #endif return StatusCode::kFailedPrecondition; case ENOSPC: #ifdef EDQUOT case EDQUOT: #endif case EMFILE: case EMLINK: case ENFILE: case ENOBUFS: case ENOMEM: #ifdef EUSERS case EUSERS: #endif return StatusCode::kResourceExhausted; #ifdef ECHRNG case ECHRNG: #endif case EFBIG: case EOVERFLOW: case ERANGE: return StatusCode::kOutOfRange; #ifdef ENOPKG case ENOPKG: #endif case ENOSYS: case ENOTSUP: case EAFNOSUPPORT: #ifdef EPFNOSUPPORT case EPFNOSUPPORT: #endif case EPROTONOSUPPORT: #ifdef ESOCKTNOSUPPORT case ESOCKTNOSUPPORT: #endif case EXDEV: return StatusCode::kUnimplemented; case EAGAIN: #ifdef ECOMM case ECOMM: #endif case ECONNREFUSED: case ECONNABORTED: case ECONNRESET: case EINTR: #ifdef EHOSTDOWN case EHOSTDOWN: #endif case EHOSTUNREACH: case ENETDOWN: case ENETRESET: case ENETUNREACH: case ENOLCK: case ENOLINK: #ifdef ENONET case ENONET: #endif return StatusCode::kUnavailable; case EDEADLK: #ifdef ESTALE case ESTALE: #endif return StatusCode::kAborted; case ECANCELED: return StatusCode::kCancelled; default: return StatusCode::kUnknown; } } namespace { std::string MessageForErrnoToStatus(int error_number, absl::string_view message) { return absl::StrCat(message, ": ", absl::base_internal::StrError(error_number)); } } Status ErrnoToStatus(int error_number, absl::string_view message) { return Status(ErrnoToStatusCode(error_number), MessageForErrnoToStatus(error_number, message)); } absl::Nonnull<const char*> StatusMessageAsCStr(const Status& status) { auto sv_message = status.message(); return sv_message.empty() ? "" : sv_message.data(); } ABSL_NAMESPACE_END }
#include "absl/status/status.h" #include <errno.h> #include <array> #include <cstddef> #include <sstream> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" namespace { using ::testing::Eq; using ::testing::HasSubstr; using ::testing::Optional; using ::testing::UnorderedElementsAreArray; TEST(StatusCode, InsertionOperator) { const absl::StatusCode code = absl::StatusCode::kUnknown; std::ostringstream oss; oss << code; EXPECT_EQ(oss.str(), absl::StatusCodeToString(code)); } struct ErrorTest { absl::StatusCode code; using Creator = absl::Status (*)( absl::string_view ); using Classifier = bool (*)(const absl::Status&); Creator creator; Classifier classifier; }; constexpr ErrorTest kErrorTests[]{ {absl::StatusCode::kCancelled, absl::CancelledError, absl::IsCancelled}, {absl::StatusCode::kUnknown, absl::UnknownError, absl::IsUnknown}, {absl::StatusCode::kInvalidArgument, absl::InvalidArgumentError, absl::IsInvalidArgument}, {absl::StatusCode::kDeadlineExceeded, absl::DeadlineExceededError, absl::IsDeadlineExceeded}, {absl::StatusCode::kNotFound, absl::NotFoundError, absl::IsNotFound}, {absl::StatusCode::kAlreadyExists, absl::AlreadyExistsError, absl::IsAlreadyExists}, {absl::StatusCode::kPermissionDenied, absl::PermissionDeniedError, absl::IsPermissionDenied}, {absl::StatusCode::kResourceExhausted, absl::ResourceExhaustedError, absl::IsResourceExhausted}, {absl::StatusCode::kFailedPrecondition, absl::FailedPreconditionError, absl::IsFailedPrecondition}, {absl::StatusCode::kAborted, absl::AbortedError, absl::IsAborted}, {absl::StatusCode::kOutOfRange, absl::OutOfRangeError, absl::IsOutOfRange}, {absl::StatusCode::kUnimplemented, absl::UnimplementedError, absl::IsUnimplemented}, {absl::StatusCode::kInternal, absl::InternalError, absl::IsInternal}, {absl::StatusCode::kUnavailable, absl::UnavailableError, absl::IsUnavailable}, {absl::StatusCode::kDataLoss, absl::DataLossError, absl::IsDataLoss}, {absl::StatusCode::kUnauthenticated, absl::UnauthenticatedError, absl::IsUnauthenticated}, }; TEST(Status, CreateAndClassify) { for (const auto& test : kErrorTests) { SCOPED_TRACE(absl::StatusCodeToString(test.code)); std::string message = absl::StrCat("error code ", test.code, " test message"); absl::Status status = test.creator( message ); EXPECT_EQ(test.code, status.code()); EXPECT_EQ(message, status.message()); EXPECT_TRUE(test.classifier(status)); for (const auto& other : kErrorTests) { if (other.code != test.code) { EXPECT_FALSE(test.classifier(absl::Status(other.code, ""))) << " other.code = " << other.code; } } } } TEST(Status, DefaultConstructor) { absl::Status status; EXPECT_TRUE(status.ok()); EXPECT_EQ(absl::StatusCode::kOk, status.code()); EXPECT_EQ("", status.message()); } TEST(Status, OkStatus) { absl::Status status = absl::OkStatus(); EXPECT_TRUE(status.ok()); EXPECT_EQ(absl::StatusCode::kOk, status.code()); EXPECT_EQ("", status.message()); } TEST(Status, ConstructorWithCodeMessage) { { absl::Status status(absl::StatusCode::kCancelled, ""); EXPECT_FALSE(status.ok()); EXPECT_EQ(absl::StatusCode::kCancelled, status.code()); EXPECT_EQ("", status.message()); } { absl::Status status(absl::StatusCode::kInternal, "message"); EXPECT_FALSE(status.ok()); EXPECT_EQ(absl::StatusCode::kInternal, status.code()); EXPECT_EQ("message", status.message()); } } TEST(Status, StatusMessageCStringTest) { { absl::Status status = absl::OkStatus(); EXPECT_EQ(status.message(), ""); EXPECT_STREQ(absl::StatusMessageAsCStr(status), ""); EXPECT_EQ(status.message(), absl::StatusMessageAsCStr(status)); EXPECT_NE(absl::StatusMessageAsCStr(status), nullptr); } { absl::Status status; EXPECT_EQ(status.message(), ""); EXPECT_NE(absl::StatusMessageAsCStr(status), nullptr); EXPECT_STREQ(absl::StatusMessageAsCStr(status), ""); } { absl::Status status(absl::StatusCode::kInternal, "message"); EXPECT_FALSE(status.ok()); EXPECT_EQ(absl::StatusCode::kInternal, status.code()); EXPECT_EQ("message", status.message()); EXPECT_STREQ("message", absl::StatusMessageAsCStr(status)); } } TEST(Status, ConstructOutOfRangeCode) { const int kRawCode = 9999; absl::Status status(static_cast<absl::StatusCode>(kRawCode), ""); EXPECT_EQ(absl::StatusCode::kUnknown, status.code()); EXPECT_EQ(kRawCode, status.raw_code()); } constexpr char kUrl1[] = "url.payload.1"; constexpr char kUrl2[] = "url.payload.2"; constexpr char kUrl3[] = "url.payload.3"; constexpr char kUrl4[] = "url.payload.xx"; constexpr char kPayload1[] = "aaaaa"; constexpr char kPayload2[] = "bbbbb"; constexpr char kPayload3[] = "ccccc"; using PayloadsVec = std::vector<std::pair<std::string, absl::Cord>>; TEST(Status, TestGetSetPayload) { absl::Status ok_status = absl::OkStatus(); ok_status.SetPayload(kUrl1, absl::Cord(kPayload1)); ok_status.SetPayload(kUrl2, absl::Cord(kPayload2)); EXPECT_FALSE(ok_status.GetPayload(kUrl1)); EXPECT_FALSE(ok_status.GetPayload(kUrl2)); absl::Status bad_status(absl::StatusCode::kInternal, "fail"); bad_status.SetPayload(kUrl1, absl::Cord(kPayload1)); bad_status.SetPayload(kUrl2, absl::Cord(kPayload2)); EXPECT_THAT(bad_status.GetPayload(kUrl1), Optional(Eq(kPayload1))); EXPECT_THAT(bad_status.GetPayload(kUrl2), Optional(Eq(kPayload2))); EXPECT_FALSE(bad_status.GetPayload(kUrl3)); bad_status.SetPayload(kUrl1, absl::Cord(kPayload3)); EXPECT_THAT(bad_status.GetPayload(kUrl1), Optional(Eq(kPayload3))); bad_status.SetPayload(absl::StrCat(kUrl1, ".1"), absl::Cord(kPayload1)); EXPECT_THAT(bad_status.GetPayload(absl::StrCat(kUrl1, ".1")), Optional(Eq(kPayload1))); } TEST(Status, TestErasePayload) { absl::Status bad_status(absl::StatusCode::kInternal, "fail"); bad_status.SetPayload(kUrl1, absl::Cord(kPayload1)); bad_status.SetPayload(kUrl2, absl::Cord(kPayload2)); bad_status.SetPayload(kUrl3, absl::Cord(kPayload3)); EXPECT_FALSE(bad_status.ErasePayload(kUrl4)); EXPECT_TRUE(bad_status.GetPayload(kUrl2)); EXPECT_TRUE(bad_status.ErasePayload(kUrl2)); EXPECT_FALSE(bad_status.GetPayload(kUrl2)); EXPECT_FALSE(bad_status.ErasePayload(kUrl2)); EXPECT_TRUE(bad_status.ErasePayload(kUrl1)); EXPECT_TRUE(bad_status.ErasePayload(kUrl3)); bad_status.SetPayload(kUrl1, absl::Cord(kPayload1)); EXPECT_TRUE(bad_status.ErasePayload(kUrl1)); } TEST(Status, TestComparePayloads) { absl::Status bad_status1(absl::StatusCode::kInternal, "fail"); bad_status1.SetPayload(kUrl1, absl::Cord(kPayload1)); bad_status1.SetPayload(kUrl2, absl::Cord(kPayload2)); bad_status1.SetPayload(kUrl3, absl::Cord(kPayload3)); absl::Status bad_status2(absl::StatusCode::kInternal, "fail"); bad_status2.SetPayload(kUrl2, absl::Cord(kPayload2)); bad_status2.SetPayload(kUrl3, absl::Cord(kPayload3)); bad_status2.SetPayload(kUrl1, absl::Cord(kPayload1)); EXPECT_EQ(bad_status1, bad_status2); } TEST(Status, TestComparePayloadsAfterErase) { absl::Status payload_status(absl::StatusCode::kInternal, ""); payload_status.SetPayload(kUrl1, absl::Cord(kPayload1)); payload_status.SetPayload(kUrl2, absl::Cord(kPayload2)); absl::Status empty_status(absl::StatusCode::kInternal, ""); EXPECT_NE(payload_status, empty_status); EXPECT_TRUE(payload_status.ErasePayload(kUrl1)); EXPECT_NE(payload_status, empty_status); EXPECT_TRUE(payload_status.ErasePayload(kUrl2)); EXPECT_EQ(payload_status, empty_status); } PayloadsVec AllVisitedPayloads(const absl::Status& s) { PayloadsVec result; s.ForEachPayload([&](absl::string_view type_url, const absl::Cord& payload) { result.push_back(std::make_pair(std::string(type_url), payload)); }); return result; } TEST(Status, TestForEachPayload) { absl::Status bad_status(absl::StatusCode::kInternal, "fail"); bad_status.SetPayload(kUrl1, absl::Cord(kPayload1)); bad_status.SetPayload(kUrl2, absl::Cord(kPayload2)); bad_status.SetPayload(kUrl3, absl::Cord(kPayload3)); int count = 0; bad_status.ForEachPayload( [&count](absl::string_view, const absl::Cord&) { ++count; }); EXPECT_EQ(count, 3); PayloadsVec expected_payloads = {{kUrl1, absl::Cord(kPayload1)}, {kUrl2, absl::Cord(kPayload2)}, {kUrl3, absl::Cord(kPayload3)}}; PayloadsVec visited_payloads = AllVisitedPayloads(bad_status); EXPECT_THAT(visited_payloads, UnorderedElementsAreArray(expected_payloads)); std::vector<absl::Status> scratch; while (true) { scratch.emplace_back(absl::StatusCode::kInternal, "fail"); scratch.back().SetPayload(kUrl1, absl::Cord(kPayload1)); scratch.back().SetPayload(kUrl2, absl::Cord(kPayload2)); scratch.back().SetPayload(kUrl3, absl::Cord(kPayload3)); if (AllVisitedPayloads(scratch.back()) != visited_payloads) { break; } } } TEST(Status, ToString) { absl::Status status(absl::StatusCode::kInternal, "fail"); EXPECT_EQ("INTERNAL: fail", status.ToString()); status.SetPayload("foo", absl::Cord("bar")); EXPECT_EQ("INTERNAL: fail [foo='bar']", status.ToString()); status.SetPayload("bar", absl::Cord("\377")); EXPECT_THAT(status.ToString(), AllOf(HasSubstr("INTERNAL: fail"), HasSubstr("[foo='bar']"), HasSubstr("[bar='\\xff']"))); } TEST(Status, ToStringMode) { absl::Status status(absl::StatusCode::kInternal, "fail"); status.SetPayload("foo", absl::Cord("bar")); status.SetPayload("bar", absl::Cord("\377")); EXPECT_EQ("INTERNAL: fail", status.ToString(absl::StatusToStringMode::kWithNoExtraData)); EXPECT_THAT(status.ToString(absl::StatusToStringMode::kWithPayload), AllOf(HasSubstr("INTERNAL: fail"), HasSubstr("[foo='bar']"), HasSubstr("[bar='\\xff']"))); EXPECT_THAT(status.ToString(absl::StatusToStringMode::kWithEverything), AllOf(HasSubstr("INTERNAL: fail"), HasSubstr("[foo='bar']"), HasSubstr("[bar='\\xff']"))); EXPECT_THAT(status.ToString(~absl::StatusToStringMode::kWithPayload), AllOf(HasSubstr("INTERNAL: fail"), Not(HasSubstr("[foo='bar']")), Not(HasSubstr("[bar='\\xff']")))); } TEST(Status, OstreamOperator) { absl::Status status(absl::StatusCode::kInternal, "fail"); { std::stringstream stream; stream << status; EXPECT_EQ("INTERNAL: fail", stream.str()); } status.SetPayload("foo", absl::Cord("bar")); { std::stringstream stream; stream << status; EXPECT_EQ("INTERNAL: fail [foo='bar']", stream.str()); } status.SetPayload("bar", absl::Cord("\377")); { std::stringstream stream; stream << status; EXPECT_THAT(stream.str(), AllOf(HasSubstr("INTERNAL: fail"), HasSubstr("[foo='bar']"), HasSubstr("[bar='\\xff']"))); } } TEST(Status, AbslStringify) { absl::Status status(absl::StatusCode::kInternal, "fail"); EXPECT_EQ("INTERNAL: fail", absl::StrCat(status)); EXPECT_EQ("INTERNAL: fail", absl::StrFormat("%v", status)); status.SetPayload("foo", absl::Cord("bar")); EXPECT_EQ("INTERNAL: fail [foo='bar']", absl::StrCat(status)); status.SetPayload("bar", absl::Cord("\377")); EXPECT_THAT(absl::StrCat(status), AllOf(HasSubstr("INTERNAL: fail"), HasSubstr("[foo='bar']"), HasSubstr("[bar='\\xff']"))); } TEST(Status, OstreamEqStringify) { absl::Status status(absl::StatusCode::kUnknown, "fail"); status.SetPayload("foo", absl::Cord("bar")); std::stringstream stream; stream << status; EXPECT_EQ(stream.str(), absl::StrCat(status)); } absl::Status EraseAndReturn(const absl::Status& base) { absl::Status copy = base; EXPECT_TRUE(copy.ErasePayload(kUrl1)); return copy; } TEST(Status, CopyOnWriteForErasePayload) { { absl::Status base(absl::StatusCode::kInvalidArgument, "fail"); base.SetPayload(kUrl1, absl::Cord(kPayload1)); EXPECT_TRUE(base.GetPayload(kUrl1).has_value()); absl::Status copy = EraseAndReturn(base); EXPECT_TRUE(base.GetPayload(kUrl1).has_value()); EXPECT_FALSE(copy.GetPayload(kUrl1).has_value()); } { absl::Status base(absl::StatusCode::kInvalidArgument, "fail"); base.SetPayload(kUrl1, absl::Cord(kPayload1)); absl::Status copy = base; EXPECT_TRUE(base.GetPayload(kUrl1).has_value()); EXPECT_TRUE(copy.GetPayload(kUrl1).has_value()); EXPECT_TRUE(base.ErasePayload(kUrl1)); EXPECT_FALSE(base.GetPayload(kUrl1).has_value()); EXPECT_TRUE(copy.GetPayload(kUrl1).has_value()); } } TEST(Status, CopyConstructor) { { absl::Status status; absl::Status copy(status); EXPECT_EQ(copy, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); absl::Status copy(status); EXPECT_EQ(copy, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); status.SetPayload(kUrl1, absl::Cord(kPayload1)); absl::Status copy(status); EXPECT_EQ(copy, status); } } TEST(Status, CopyAssignment) { absl::Status assignee; { absl::Status status; assignee = status; EXPECT_EQ(assignee, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); assignee = status; EXPECT_EQ(assignee, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); status.SetPayload(kUrl1, absl::Cord(kPayload1)); assignee = status; EXPECT_EQ(assignee, status); } } TEST(Status, CopyAssignmentIsNotRef) { const absl::Status status_orig(absl::StatusCode::kInvalidArgument, "message"); absl::Status status_copy = status_orig; EXPECT_EQ(status_orig, status_copy); status_copy.SetPayload(kUrl1, absl::Cord(kPayload1)); EXPECT_NE(status_orig, status_copy); } TEST(Status, MoveConstructor) { { absl::Status status; absl::Status copy(absl::Status{}); EXPECT_EQ(copy, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); absl::Status copy( absl::Status(absl::StatusCode::kInvalidArgument, "message")); EXPECT_EQ(copy, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); status.SetPayload(kUrl1, absl::Cord(kPayload1)); absl::Status copy1(status); absl::Status copy2(std::move(status)); EXPECT_EQ(copy1, copy2); } } TEST(Status, MoveAssignment) { absl::Status assignee; { absl::Status status; assignee = absl::Status(); EXPECT_EQ(assignee, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); assignee = absl::Status(absl::StatusCode::kInvalidArgument, "message"); EXPECT_EQ(assignee, status); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); status.SetPayload(kUrl1, absl::Cord(kPayload1)); absl::Status copy(status); assignee = std::move(status); EXPECT_EQ(assignee, copy); } { absl::Status status(absl::StatusCode::kInvalidArgument, "message"); absl::Status copy(status); assignee = static_cast<absl::Status&&>(status); EXPECT_EQ(assignee, copy); } } TEST(Status, Update) { absl::Status s; s.Update(absl::OkStatus()); EXPECT_TRUE(s.ok()); const absl::Status a(absl::StatusCode::kCancelled, "message"); s.Update(a); EXPECT_EQ(s, a); const absl::Status b(absl::StatusCode::kInternal, "other message"); s.Update(b); EXPECT_EQ(s, a); s.Update(absl::OkStatus()); EXPECT_EQ(s, a); EXPECT_FALSE(s.ok()); } TEST(Status, Equality) { absl::Status ok; absl::Status no_payload = absl::CancelledError("no payload"); absl::Status one_payload = absl::InvalidArgumentError("one payload"); one_payload.SetPayload(kUrl1, absl::Cord(kPayload1)); absl::Status two_payloads = one_payload; two_payloads.SetPayload(kUrl2, absl::Cord(kPayload2)); const std::array<absl::Status, 4> status_arr = {ok, no_payload, one_payload, two_payloads}; for (int i = 0; i < status_arr.size(); i++) { for (int j = 0; j < status_arr.size(); j++) { if (i == j) { EXPECT_TRUE(status_arr[i] == status_arr[j]); EXPECT_FALSE(status_arr[i] != status_arr[j]); } else { EXPECT_TRUE(status_arr[i] != status_arr[j]); EXPECT_FALSE(status_arr[i] == status_arr[j]); } } } } TEST(Status, Swap) { auto test_swap = [](const absl::Status& s1, const absl::Status& s2) { absl::Status copy1 = s1, copy2 = s2; swap(copy1, copy2); EXPECT_EQ(copy1, s2); EXPECT_EQ(copy2, s1); }; const absl::Status ok; const absl::Status no_payload(absl::StatusCode::kAlreadyExists, "no payload"); absl::Status with_payload(absl::StatusCode::kInternal, "with payload"); with_payload.SetPayload(kUrl1, absl::Cord(kPayload1)); test_swap(ok, no_payload); test_swap(no_payload, ok); test_swap(ok, with_payload); test_swap(with_payload, ok); test_swap(no_payload, with_payload); test_swap(with_payload, no_payload); } TEST(StatusErrno, ErrnoToStatusCode) { EXPECT_EQ(absl::ErrnoToStatusCode(0), absl::StatusCode::kOk); EXPECT_EQ(absl::ErrnoToStatusCode(EINVAL), absl::StatusCode::kInvalidArgument); EXPECT_EQ(absl::ErrnoToStatusCode(ENOENT), absl::StatusCode::kNotFound); EXPECT_EQ(absl::ErrnoToStatusCode(19980927), absl::StatusCode::kUnknown); } TEST(StatusErrno, ErrnoToStatus) { absl::Status status = absl::ErrnoToStatus(ENOENT, "Cannot open 'path'"); EXPECT_EQ(status.code(), absl::StatusCode::kNotFound); EXPECT_EQ(status.message(), "Cannot open 'path': No such file or directory"); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/status/status.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/status/status_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
cc9e35f1-f6de-45a6-a527-4712b67254ca
cpp
google/arolla
expr_operator_signature
arolla/expr/expr_operator_signature.cc
arolla/expr/expr_operator_signature_test.cc
#include "arolla/expr/expr_operator_signature.h" #include <algorithm> #include <cstddef> #include <optional> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/fingerprint.h" #include "arolla/util/string.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { using Param = ExprOperatorSignature::Parameter; absl::Status ValidateSignatureParameterNames( const ExprOperatorSignature& signature) { for (const auto& param : signature.parameters) { if (!IsIdentifier(param.name)) { return absl::InvalidArgumentError(absl::StrCat( "illegal parameter name: '", absl::CEscape(param.name), "'")); } } absl::flat_hash_set<absl::string_view> param_names; param_names.reserve(signature.parameters.size()); for (const auto& param : signature.parameters) { if (!param_names.insert(param.name).second) { return absl::InvalidArgumentError( absl::StrCat("non-unique parameter name: '", param.name, "'")); } } return absl::OkStatus(); } absl::Status ValidateSignatureParameterKinds( const ExprOperatorSignature& signature) { for (const auto& param : signature.parameters) { if (param.kind != Param::Kind::kPositionalOrKeyword && param.kind != Param::Kind::kVariadicPositional) { return absl::InvalidArgumentError( absl::StrCat("parameter '", param.name, "' has illegal kind: ", static_cast<int>(param.kind))); } } return absl::OkStatus(); } absl::Status ValidateSignaturePositionalOrKeywordParameters( const ExprOperatorSignature& signature) { bool had_default_value = false; for (const auto& param : signature.parameters) { if (param.kind != Param::Kind::kPositionalOrKeyword) { break; } if (!param.default_value.has_value()) { if (had_default_value) { return absl::InvalidArgumentError( "parameter without a default value goes after a parameter with " "a default value"); } } else { had_default_value = true; } } return absl::OkStatus(); } absl::Status ValidateSignatureVariadicParameters( const ExprOperatorSignature& signature) { for (size_t i = 0; i + 1 < signature.parameters.size(); ++i) { if (signature.parameters[i].kind == Param::Kind::kVariadicPositional) { return absl::InvalidArgumentError("variadic parameter must be the last"); } } if (!signature.parameters.empty() && signature.parameters.back().kind == Param::Kind::kVariadicPositional && signature.parameters.back().default_value.has_value()) { return absl::InvalidArgumentError( "variadic parameter cannot have a default value"); } return absl::OkStatus(); } } absl::Status ValidateSignature(const ExprOperatorSignature& signature) { RETURN_IF_ERROR(ValidateSignatureParameterNames(signature)); RETURN_IF_ERROR(ValidateSignatureParameterKinds(signature)); RETURN_IF_ERROR(ValidateSignaturePositionalOrKeywordParameters(signature)); RETURN_IF_ERROR(ValidateSignatureVariadicParameters(signature)); return absl::OkStatus(); } bool HasVariadicParameter(const ExprOperatorSignature& signature) { return !signature.parameters.empty() && signature.parameters.back().kind == Param::Kind::kVariadicPositional; } namespace { absl::Status MultipleValuesForArgumentError(absl::string_view name) { return absl::InvalidArgumentError( absl::StrCat("multiple values for argument: '", name, "'")); } absl::Status UnexpectedParameterKindError(Param::Kind kind) { return absl::InternalError( absl::StrCat("unexpected parameter kind: ", static_cast<int>(kind))); } absl::Status UnexpectedKeywordArgumentsError( std::vector<absl::string_view> unexpected_keyword_arguments) { if (unexpected_keyword_arguments.size() == 1) { return absl::InvalidArgumentError( absl::StrCat("unexpected keyword argument: '", unexpected_keyword_arguments[0], "'")); } std::sort(unexpected_keyword_arguments.begin(), unexpected_keyword_arguments.end()); return absl::InvalidArgumentError( absl::StrCat("unexpected keyword arguments: '", absl::StrJoin(unexpected_keyword_arguments, "', '"), "'")); } absl::Status MissingArgumentsError( absl::Span<const absl::string_view> missing_arguments) { if (missing_arguments.size() == 1) { return absl::InvalidArgumentError(absl::StrCat( "missing 1 required argument: '", missing_arguments[0], "'")); } return absl::InvalidArgumentError(absl::StrCat( "missing ", missing_arguments.size(), " required arguments: '", absl::StrJoin(missing_arguments, "', '"), "'")); } } absl::Status ValidateDepsCount(const ExprOperatorSignature& signature, size_t deps_count, absl::StatusCode error_code) { const bool has_variadic_param = HasVariadicParameter(signature); size_t count_required_params = has_variadic_param ? signature.parameters.size() - 1 : signature.parameters.size(); if (deps_count < count_required_params || (!has_variadic_param && deps_count > count_required_params)) { return absl::Status( error_code, absl::StrFormat("incorrect number of dependencies passed to an " "operator node: expected %d but got %d", count_required_params, deps_count)); } return absl::OkStatus(); } absl::StatusOr<std::vector<ExprNodePtr>> BindArguments( const ExprOperatorSignature& signature, absl::Span<const ExprNodePtr> args, const absl::flat_hash_map<std::string, ExprNodePtr>& kwargs) { DCHECK_OK(ValidateSignature(signature)); std::vector<ExprNodePtr> result; result.reserve(args.size() + kwargs.size()); size_t paramIdx = 0; size_t argIdx = 0; for (; paramIdx < signature.parameters.size() && argIdx < args.size(); ++paramIdx) { const auto& param = signature.parameters[paramIdx]; if (param.kind == Param::Kind::kPositionalOrKeyword) { if (kwargs.count(param.name) != 0) { return MultipleValuesForArgumentError(param.name); } result.push_back(args[argIdx++]); } else if (param.kind == Param::Kind::kVariadicPositional) { result.insert(result.end(), args.begin() + argIdx, args.end()); argIdx = args.size(); } else { return UnexpectedParameterKindError(param.kind); } } if (argIdx < args.size()) { return absl::InvalidArgumentError(absl::StrCat( "too many positional arguments passed: expected maximumum is ", result.size(), " but got ", args.size())); } std::vector<absl::string_view> missing_arguments; absl::flat_hash_set<absl::string_view> used_kwargs; used_kwargs.reserve(args.size() + kwargs.size()); for (; paramIdx < signature.parameters.size(); ++paramIdx) { const auto& param = signature.parameters[paramIdx]; if (param.kind == Param::Kind::kPositionalOrKeyword) { if (const auto it = kwargs.find(param.name); it != kwargs.end()) { used_kwargs.insert(param.name); result.push_back(it->second); } else if (param.default_value.has_value()) { result.push_back(Literal(*param.default_value)); } else { missing_arguments.push_back(param.name); } } else if (param.kind != Param::Kind::kVariadicPositional) { return UnexpectedParameterKindError(param.kind); } } std::vector<absl::string_view> unexpected_keyword_arguments; for (const auto& kv : kwargs) { if (!used_kwargs.contains(kv.first)) { unexpected_keyword_arguments.push_back(kv.first); } } if (!unexpected_keyword_arguments.empty()) { return UnexpectedKeywordArgumentsError( std::move(unexpected_keyword_arguments)); } if (!missing_arguments.empty()) { return MissingArgumentsError(missing_arguments); } return result; } ExprOperatorSignature ExprOperatorSignature::MakeArgsN(size_t n) { ExprOperatorSignature result; if (n == 1) { result.parameters.push_back({absl::StrCat("arg")}); } else { for (size_t i = 0; i < n; ++i) { result.parameters.push_back({absl::StrCat("arg", i + 1)}); } } return result; } ExprOperatorSignature ExprOperatorSignature::MakeVariadicArgs() { return ExprOperatorSignature{ {"args", std::nullopt, ExprOperatorSignature::Parameter::Kind::kVariadicPositional}}; } absl::StatusOr<ExprOperatorSignature> ExprOperatorSignature::Make( absl::string_view signature_spec, absl::Span<const TypedValue> default_values) { ExprOperatorSignature result; signature_spec = absl::StripAsciiWhitespace(signature_spec); if (auto pos = signature_spec.rfind('|'); pos < signature_spec.size()) { result.aux_policy = std::string(absl::StripAsciiWhitespace(signature_spec.substr(pos + 1))); signature_spec = absl::StripAsciiWhitespace(signature_spec.substr(0, pos)); } std::vector<absl::string_view> param_defs; if (!signature_spec.empty()) { param_defs = absl::StrSplit(signature_spec, ','); } size_t i = 0; for (auto param_def : param_defs) { Param param; param_def = absl::StripAsciiWhitespace(param_def); if (absl::StartsWith(param_def, "*")) { param_def = absl::StripLeadingAsciiWhitespace(param_def.substr(1)); param.kind = Param::Kind::kVariadicPositional; } else { param.kind = Param::Kind::kPositionalOrKeyword; } if (absl::EndsWith(param_def, "=")) { param_def = absl::StripTrailingAsciiWhitespace( param_def.substr(0, param_def.size() - 1)); if (i >= default_values.size()) { return absl::InvalidArgumentError(absl::StrCat( "default value expected, but not provided for parameter: '", param_def, "'")); } param.default_value = default_values[i]; i += 1; } param.name = std::string(param_def); result.parameters.push_back(std::move(param)); } if (i != default_values.size()) { return absl::InvalidArgumentError( "some of the provided default values left unused"); } RETURN_IF_ERROR(ValidateSignature(result)); return result; } std::string GetExprOperatorSignatureSpec( const ExprOperatorSignature& signature) { std::ostringstream result; bool first = true; for (const auto& param : signature.parameters) { result << NonFirstComma(first); switch (param.kind) { case Param::Kind::kPositionalOrKeyword: break; case Param::Kind::kVariadicPositional: result << '*'; } result << param.name; if (param.default_value.has_value()) { result << '='; } } if (!signature.aux_policy.empty()) { result << "|" << signature.aux_policy; } return std::move(result).str(); } } namespace arolla { void FingerprintHasherTraits<expr::ExprOperatorSignature>::operator()( FingerprintHasher* hasher, const expr::ExprOperatorSignature& signature) const { hasher->Combine(signature.parameters.size()); for (const auto& param : signature.parameters) { hasher->Combine(param.name, param.kind); hasher->Combine(param.default_value ? param.default_value->GetFingerprint() : Fingerprint{}); } hasher->Combine(signature.aux_policy); } }
#include "arolla/expr/expr_operator_signature.h" #include <cstddef> #include <optional> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/testing/qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::testing::TypedValueWith; using ::testing::HasSubstr; using ::testing::Optional; TEST(ExprOperatorSignature, HasVariadicParameter) { ExprOperatorSignature sig; EXPECT_FALSE(HasVariadicParameter(sig)); sig.parameters.push_back({"arg"}); EXPECT_FALSE(HasVariadicParameter(sig)); sig.parameters.push_back( {"*args", std::nullopt, ExprOperatorSignature::Parameter::Kind::kVariadicPositional}); EXPECT_TRUE(HasVariadicParameter(sig)); } TEST(ExprOperatorSignature, ExprOperatorSignature_MakeArgsN) { using Kind = ExprOperatorSignature::Parameter::Kind; { const auto sig = ExprOperatorSignature::MakeArgsN(0); EXPECT_TRUE(sig.parameters.empty()); EXPECT_TRUE(sig.aux_policy.empty()); } { const auto sig = ExprOperatorSignature::MakeArgsN(1); EXPECT_EQ(sig.parameters.size(), 1); EXPECT_EQ(sig.parameters[0].name, "arg"); EXPECT_EQ(sig.parameters[0].default_value, std::nullopt); EXPECT_EQ(sig.parameters[0].kind, Kind::kPositionalOrKeyword); EXPECT_TRUE(sig.aux_policy.empty()); } { const auto sig = ExprOperatorSignature::MakeArgsN(3); EXPECT_EQ(sig.parameters.size(), 3); EXPECT_EQ(sig.parameters[0].name, "arg1"); EXPECT_EQ(sig.parameters[0].default_value, std::nullopt); EXPECT_EQ(sig.parameters[0].kind, Kind::kPositionalOrKeyword); EXPECT_EQ(sig.parameters[1].name, "arg2"); EXPECT_EQ(sig.parameters[1].default_value, std::nullopt); EXPECT_EQ(sig.parameters[1].kind, Kind::kPositionalOrKeyword); EXPECT_EQ(sig.parameters[2].name, "arg3"); EXPECT_EQ(sig.parameters[2].default_value, std::nullopt); EXPECT_EQ(sig.parameters[2].kind, Kind::kPositionalOrKeyword); EXPECT_TRUE(sig.aux_policy.empty()); } } TEST(ExprOperatorSignature, ExprOperatorSignature_MakeVariadicArgs) { using Kind = ExprOperatorSignature::Parameter::Kind; const auto sig = ExprOperatorSignature::MakeVariadicArgs(); EXPECT_EQ(sig.parameters.size(), 1); EXPECT_EQ(sig.parameters[0].name, "args"); EXPECT_EQ(sig.parameters[0].default_value, std::nullopt); EXPECT_EQ(sig.parameters[0].kind, Kind::kVariadicPositional); EXPECT_TRUE(sig.aux_policy.empty()); } TEST(ExprOperatorSignature, ExprOperatorSignature_Make) { using Sig = ExprOperatorSignature; using Kind = ExprOperatorSignature::Parameter::Kind; { ASSERT_OK_AND_ASSIGN(const auto sig, Sig::Make("")); EXPECT_TRUE(sig.parameters.empty()); EXPECT_TRUE(sig.aux_policy.empty()); } { ASSERT_OK_AND_ASSIGN(const auto sig, Sig::Make("arg")); EXPECT_EQ(sig.parameters.size(), 1); EXPECT_EQ(sig.parameters[0].name, "arg"); EXPECT_EQ(sig.parameters[0].default_value, std::nullopt); EXPECT_EQ(sig.parameters[0].kind, Kind::kPositionalOrKeyword); EXPECT_TRUE(sig.aux_policy.empty()); } { ASSERT_OK_AND_ASSIGN(const auto sig, Sig::Make("arg=", kUnit)); EXPECT_EQ(sig.parameters.size(), 1); EXPECT_EQ(sig.parameters[0].name, "arg"); EXPECT_THAT(*sig.parameters[0].default_value, TypedValueWith<Unit>(kUnit)); EXPECT_EQ(sig.parameters[0].kind, Kind::kPositionalOrKeyword); EXPECT_TRUE(sig.aux_policy.empty()); } { ASSERT_OK_AND_ASSIGN(const auto sig, Sig::Make("*args")); EXPECT_EQ(sig.parameters.size(), 1); EXPECT_EQ(sig.parameters[0].name, "args"); EXPECT_EQ(sig.parameters[0].default_value, std::nullopt); EXPECT_EQ(sig.parameters[0].kind, Kind::kVariadicPositional); EXPECT_TRUE(sig.aux_policy.empty()); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make( "arg1, arg2=, *args", kUnit)); EXPECT_EQ(sig.parameters.size(), 3); EXPECT_EQ(sig.parameters[0].name, "arg1"); EXPECT_EQ(sig.parameters[0].default_value, std::nullopt); EXPECT_EQ(sig.parameters[0].kind, Kind::kPositionalOrKeyword); EXPECT_EQ(sig.parameters[1].name, "arg2"); EXPECT_THAT(sig.parameters[1].default_value, Optional(TypedValueWith<Unit>(kUnit))); EXPECT_EQ(sig.parameters[1].kind, Kind::kPositionalOrKeyword); EXPECT_EQ(sig.parameters[2].name, "args"); EXPECT_EQ(sig.parameters[2].default_value, std::nullopt); EXPECT_EQ(sig.parameters[2].kind, Kind::kVariadicPositional); EXPECT_TRUE(sig.aux_policy.empty()); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("|")); EXPECT_TRUE(sig.parameters.empty()); EXPECT_TRUE(sig.aux_policy.empty()); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("|policy")); EXPECT_TRUE(sig.parameters.empty()); EXPECT_EQ(sig.aux_policy, "policy"); } { ASSERT_OK_AND_ASSIGN( const auto sig, ExprOperatorSignature::Make("arg1, arg2=, *args|policy", kUnit)); EXPECT_EQ(sig.parameters.size(), 3); EXPECT_EQ(sig.parameters[0].name, "arg1"); EXPECT_EQ(sig.parameters[0].default_value, std::nullopt); EXPECT_EQ(sig.parameters[0].kind, Kind::kPositionalOrKeyword); EXPECT_EQ(sig.parameters[1].name, "arg2"); EXPECT_THAT(sig.parameters[1].default_value, Optional(TypedValueWith<Unit>(kUnit))); EXPECT_EQ(sig.parameters[1].kind, Kind::kPositionalOrKeyword); EXPECT_EQ(sig.parameters[2].name, "args"); EXPECT_EQ(sig.parameters[2].default_value, std::nullopt); EXPECT_EQ(sig.parameters[2].kind, Kind::kVariadicPositional); EXPECT_EQ(sig.aux_policy, "policy"); } EXPECT_THAT( ExprOperatorSignature::Make("arg1, arg2="), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("'arg2'"))); EXPECT_THAT( ExprOperatorSignature::Make("arg1, arg2=", kUnit, kUnit), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("unused"))); { ASSERT_OK_AND_ASSIGN(const auto sig, Sig::Make("|policy")); EXPECT_TRUE(sig.parameters.empty()); EXPECT_EQ(sig.aux_policy, "policy"); } } TEST(ExprOperatorSignature, ValidateSignature_IsValidParamName) { constexpr auto validate_param_name = [](absl::string_view name) { return ValidateSignature(ExprOperatorSignature{{std::string(name)}}); }; EXPECT_THAT(validate_param_name(""), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_OK(validate_param_name("_")); EXPECT_OK(validate_param_name("A")); EXPECT_OK(validate_param_name("Z")); EXPECT_OK(validate_param_name("a")); EXPECT_OK(validate_param_name("z")); EXPECT_THAT(validate_param_name("0"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_param_name("$"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_param_name("/"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_param_name("*"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_OK(validate_param_name("_AZaz_09")); EXPECT_THAT(validate_param_name("_$"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_param_name("_/"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_param_name("_*"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_param_name("*_"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_param_name("**_"), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExprOperatorSignature, Make_ValidateSignature) { constexpr auto validate_signature = [](absl::string_view signature, auto&&... defaultValues) { return ExprOperatorSignature::Make(signature, defaultValues...); }; EXPECT_OK(validate_signature("")); EXPECT_OK(validate_signature("arg")); EXPECT_OK(validate_signature("arg=", kUnit)); EXPECT_OK(validate_signature("arg0, arg1=", kUnit)); EXPECT_OK(validate_signature("arg0=, arg1=", kUnit, kUnit)); EXPECT_OK(validate_signature("*args")); EXPECT_OK(validate_signature("arg, *args")); EXPECT_OK(validate_signature("arg=, *args", kUnit)); EXPECT_OK(validate_signature("arg0, arg1=, *args", kUnit)); EXPECT_OK(validate_signature("arg0=, arg1=, *args", kUnit, kUnit)); EXPECT_OK(validate_signature("|policy")); EXPECT_OK(validate_signature("arg0=, arg1=, *args|policy", kUnit, kUnit)); EXPECT_THAT(validate_signature("arg0=, arg1", kUnit), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_signature("*args=", kUnit), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_signature("arg, arg"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_signature("arg, *arg"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_signature("*args, arg"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(validate_signature("*args0, *args1"), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ExprOperatorSignature, ValidateSignature_FormattedErrorMessages) { EXPECT_THAT(ExprOperatorSignature::Make("$"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("illegal parameter name: '$'"))); EXPECT_THAT(ExprOperatorSignature::Make("x, x"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("non-unique parameter name: 'x'"))); } TEST(ExprOperatorSignature, BindArguments) { constexpr auto bind_arguments = [](const ExprOperatorSignature& signature, absl::string_view args_def) -> absl::StatusOr<std::string> { std::vector<ExprNodePtr> args; absl::flat_hash_map<std::string, ExprNodePtr> kwargs; for (absl::string_view arg : absl::StrSplit(args_def, ' ', absl::SkipEmpty())) { if (size_t pos = arg.find('='); pos == absl::string_view::npos) { args.push_back(Leaf(arg)); } else { std::string kw(arg.substr(0, pos)); kwargs[kw] = Leaf(arg.substr(pos + 1)); } } ASSIGN_OR_RETURN(auto bound_args, BindArguments(signature, args, kwargs)); std::vector<std::string> result; result.reserve(bound_args.size()); for (const auto& node : bound_args) { if (node->is_leaf()) { result.push_back(node->leaf_key()); } else { result.push_back(ToDebugString(node)); } } return absl::StrJoin(result, " "); }; const auto x = Leaf("x"); { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make( "arg0, arg1=, *args", kUnit)); EXPECT_THAT(bind_arguments(sig, ""), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u"), IsOkAndHolds("u unit")); EXPECT_THAT(bind_arguments(sig, "u v"), IsOkAndHolds("u v")); EXPECT_THAT(bind_arguments(sig, "u v w"), IsOkAndHolds("u v w")); EXPECT_THAT(bind_arguments(sig, "u v w y"), IsOkAndHolds("u v w y")); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("arg=, *args", kUnit)); EXPECT_THAT(bind_arguments(sig, ""), IsOkAndHolds("unit")); EXPECT_THAT(bind_arguments(sig, "u"), IsOkAndHolds("u")); EXPECT_THAT(bind_arguments(sig, "u v"), IsOkAndHolds("u v")); EXPECT_THAT(bind_arguments(sig, "u v w"), IsOkAndHolds("u v w")); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("arg, *args")); EXPECT_THAT(bind_arguments(sig, ""), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u"), IsOkAndHolds("u")); EXPECT_THAT(bind_arguments(sig, "u v"), IsOkAndHolds("u v")); EXPECT_THAT(bind_arguments(sig, "u v w"), IsOkAndHolds("u v w")); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("arg0, arg1=", kUnit)); EXPECT_THAT(bind_arguments(sig, ""), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u"), IsOkAndHolds("u unit")); EXPECT_THAT(bind_arguments(sig, "u v"), IsOkAndHolds("u v")); EXPECT_THAT(bind_arguments(sig, "u v w"), StatusIs(absl::StatusCode::kInvalidArgument)); } { ASSERT_OK_AND_ASSIGN( const auto sig, ExprOperatorSignature::Make("arg0, arg1=, arg2=", kUnit, kUnit)); EXPECT_THAT(bind_arguments(sig, ""), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u"), IsOkAndHolds("u unit unit")); EXPECT_THAT(bind_arguments(sig, "arg0=u"), IsOkAndHolds("u unit unit")); EXPECT_THAT(bind_arguments(sig, "arg1=v"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "arg2=w"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u v"), IsOkAndHolds("u v unit")); EXPECT_THAT(bind_arguments(sig, "v arg0=u"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u arg1=v"), IsOkAndHolds("u v unit")); EXPECT_THAT(bind_arguments(sig, "u arg2=w"), IsOkAndHolds("u unit w")); EXPECT_THAT(bind_arguments(sig, "arg0=u arg1=v"), IsOkAndHolds("u v unit")); EXPECT_THAT(bind_arguments(sig, "arg0=u arg2=w"), IsOkAndHolds("u unit w")); EXPECT_THAT(bind_arguments(sig, "arg1=v arg2=w"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u v w"), IsOkAndHolds("u v w")); EXPECT_THAT(bind_arguments(sig, "v w arg0=u"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u w arg1=v"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u v arg2=w"), IsOkAndHolds("u v w")); EXPECT_THAT(bind_arguments(sig, "w arg0=u arg1=v"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "v arg0=u arg2=w"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "u arg1=v arg2=w"), IsOkAndHolds("u v w")); EXPECT_THAT(bind_arguments(sig, "arg0=u arg1=v arg2=w"), IsOkAndHolds("u v w")); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("arg0, *args")); EXPECT_THAT(bind_arguments(sig, "arg0=u"), IsOkAndHolds("u")); EXPECT_THAT(bind_arguments(sig, "arg0=u, args=v"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(bind_arguments(sig, "v arg0=u"), StatusIs(absl::StatusCode::kInvalidArgument)); } } TEST(ExprOperatorSignature, BindArguments_FormattedErrorMessages) { const auto x = Leaf("x"); { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make( "arg0, arg1, arg2, arg3=", kUnit)); EXPECT_THAT(BindArguments(sig, {}, {}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("missing 3 required arguments: " "'arg0', 'arg1', 'arg2'"))); EXPECT_THAT( BindArguments(sig, {x}, {}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("missing 2 required arguments: 'arg1', 'arg2'"))); EXPECT_THAT(BindArguments(sig, {x, x}, {}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("missing 1 required argument: 'arg2'"))); EXPECT_THAT(BindArguments(sig, {x, x, x, x, x}, {}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("too many positional arguments passed: " "expected maximumum is 4 but got 5"))); } { ASSERT_OK_AND_ASSIGN(const auto sig, ExprOperatorSignature::Make("arg0, *args")); EXPECT_THAT(BindArguments(sig, {x}, {{"arg0", x}}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("multiple values for argument: 'arg0'"))); EXPECT_THAT(BindArguments(sig, {x}, {{"args", x}}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("unexpected keyword argument: 'args'"))); EXPECT_THAT( BindArguments(sig, {x}, {{"args", x}, {"arg1", x}}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("unexpected keyword arguments: 'arg1', 'args'"))); } } TEST(ExprOperatorSignature, GetExprOperatorSignatureSpec) { EXPECT_EQ(GetExprOperatorSignatureSpec(ExprOperatorSignature{}), ""); { ASSERT_OK_AND_ASSIGN( const auto sig, ExprOperatorSignature::Make("arg0, arg1=, *args|policy", kUnit)); EXPECT_EQ(GetExprOperatorSignatureSpec(sig), "arg0, arg1=, *args|policy"); } } TEST(ExprOperatorSignature, Fingerprint) { constexpr auto fgpt = [](absl::StatusOr<ExprOperatorSignature> sig) -> Fingerprint { return FingerprintHasher("dummy-salt").Combine(*sig).Finish(); }; const auto signatures = { ExprOperatorSignature::Make(""), ExprOperatorSignature::Make("x"), ExprOperatorSignature::Make("*x"), ExprOperatorSignature::Make("x|policy"), ExprOperatorSignature::Make("y"), ExprOperatorSignature::Make("x, y"), ExprOperatorSignature::Make("x=", kUnit), ExprOperatorSignature::Make("x=", GetQTypeQType()), }; for (auto& sig1 : signatures) { for (auto& sig2 : signatures) { if (&sig1 == &sig2) { EXPECT_EQ(fgpt(sig1), fgpt(sig2)); } else { EXPECT_NE(fgpt(sig1), fgpt(sig2)); } } } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_operator_signature.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_operator_signature_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
d46120d8-760a-4260-9f54-29cb14e1086c
cpp
tensorflow/tensorflow
copy_thunk
third_party/xla/xla/service/gpu/runtime/copy_thunk.cc
third_party/xla/xla/backends/cpu/runtime/copy_thunk_test.cc
#include "xla/service/gpu/runtime/copy_thunk.h" #include <cstdint> #include <memory> #include <utility> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { DeviceToDeviceCopyThunk::DeviceToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status DeviceToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination_buffer_); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source_buffer_); VLOG(3) << "Memcpy D2D of size " << mem_size_ << " from " << source_data.opaque() << " to " << destination_data.opaque(); return params.stream->Memcpy(&destination_data, source_data, mem_size_); } CopyThunk::CopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status CopyThunk::ExecuteOnStream(const ExecuteParams& params) { return absl::OkStatus(); } absl::Status CopyThunk::AsyncEvents::Emplace(se::StreamExecutor* executor, const HloInstruction* instr, std::unique_ptr<se::Event> event) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); VLOG(3) << "Emplace event " << event.get(); if (auto [it, inserted] = events_.try_emplace(key, std::move(event)); inserted) { return absl::OkStatus(); } return absl::InternalError("Async copy event already exists!"); } absl::StatusOr<std::unique_ptr<se::Event>> CopyThunk::AsyncEvents::Extract( se::StreamExecutor* executor, const HloInstruction* instr) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); if (auto event = events_.extract(key)) { VLOG(3) << "Extract event " << event.mapped().get(); return std::move(event.mapped()); } return absl::InternalError("Async copy event was not found!"); } DeviceToHostCopyThunk::DeviceToHostCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status DeviceToHostCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_dst = destination_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(cpu_dst, source_data, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy D2H from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy D2H from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } HostToDeviceCopyThunk::HostToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status HostToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_src = source_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(&destination_data, cpu_src, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy H2D from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy H2D from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } CopyDoneThunk::CopyDoneThunk( Thunk::Kind kind, ThunkInfo thunk_info, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* copy_start_instr) : Thunk(kind, std::move(thunk_info)), async_events_(std::move(async_events)), copy_start_instr_(copy_start_instr) {} absl::Status CopyDoneThunk::ExecuteOnStream(const ExecuteParams& params) { VLOG(3) << "CopyDone thunk between a host and a device for: " << copy_start_instr_->ToString(); se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Event> event, async_events_->Extract(executor, copy_start_instr_)); return params.stream->WaitFor(event.get()); } } }
#include "xla/backends/cpu/runtime/copy_thunk.h" #include <cstddef> #include <vector> #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/layout_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(CopyThunkTest, CopyEmptyShape) { std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, 100, 0); BufferAllocation dst_alloc(1, 100, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, 0); BufferAllocation::Slice dst_slice(&dst_alloc, 0, 0); Shape shape = ShapeUtil::MakeShape(F32, {0, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, shape, dst_slice, shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); } TEST(CopyThunkTest, CopySameShape) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, shape, dst_slice, shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(src, dst); } TEST(CopyThunkTest, CopyTransposed) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape src_shape = ShapeUtil::MakeShape(F32, {2, 2}); *src_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape dst_shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, src_shape, dst_slice, dst_shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected = {1.0, 3.0, 2.0, 4.0}; EXPECT_EQ(expected, dst); } TEST(CopyThunkTest, CopyTransposedEmptyShape) { std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); buffers.emplace_back(se::DeviceMemoryBase(nullptr, 0)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, 100, 0); BufferAllocation dst_alloc(1, 100, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, 0); BufferAllocation::Slice dst_slice(&dst_alloc, 0, 0); Shape src_shape = ShapeUtil::MakeShape(F32, {0, 2}); *src_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape dst_shape = ShapeUtil::MakeShape(F32, {0, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, src_shape, dst_slice, dst_shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/copy_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/copy_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
da86d2eb-96f5-4b19-ab4a-2a58a81896a6
cpp
google/quiche
bandwidth_sampler
quiche/quic/core/congestion_control/bandwidth_sampler.cc
quiche/quic/core/congestion_control/bandwidth_sampler_test.cc
#include "quiche/quic/core/congestion_control/bandwidth_sampler.h" #include <algorithm> #include <ostream> #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { std::ostream& operator<<(std::ostream& os, const SendTimeState& s) { os << "{valid:" << s.is_valid << ", app_limited:" << s.is_app_limited << ", total_sent:" << s.total_bytes_sent << ", total_acked:" << s.total_bytes_acked << ", total_lost:" << s.total_bytes_lost << ", inflight:" << s.bytes_in_flight << "}"; return os; } QuicByteCount MaxAckHeightTracker::Update( QuicBandwidth bandwidth_estimate, bool is_new_max_bandwidth, QuicRoundTripCount round_trip_count, QuicPacketNumber last_sent_packet_number, QuicPacketNumber last_acked_packet_number, QuicTime ack_time, QuicByteCount bytes_acked) { bool force_new_epoch = false; if (reduce_extra_acked_on_bandwidth_increase_ && is_new_max_bandwidth) { ExtraAckedEvent best = max_ack_height_filter_.GetBest(); ExtraAckedEvent second_best = max_ack_height_filter_.GetSecondBest(); ExtraAckedEvent third_best = max_ack_height_filter_.GetThirdBest(); max_ack_height_filter_.Clear(); QuicByteCount expected_bytes_acked = bandwidth_estimate * best.time_delta; if (expected_bytes_acked < best.bytes_acked) { best.extra_acked = best.bytes_acked - expected_bytes_acked; max_ack_height_filter_.Update(best, best.round); } expected_bytes_acked = bandwidth_estimate * second_best.time_delta; if (expected_bytes_acked < second_best.bytes_acked) { QUICHE_DCHECK_LE(best.round, second_best.round); second_best.extra_acked = second_best.bytes_acked - expected_bytes_acked; max_ack_height_filter_.Update(second_best, second_best.round); } expected_bytes_acked = bandwidth_estimate * third_best.time_delta; if (expected_bytes_acked < third_best.bytes_acked) { QUICHE_DCHECK_LE(second_best.round, third_best.round); third_best.extra_acked = third_best.bytes_acked - expected_bytes_acked; max_ack_height_filter_.Update(third_best, third_best.round); } } if (start_new_aggregation_epoch_after_full_round_ && last_sent_packet_number_before_epoch_.IsInitialized() && last_acked_packet_number.IsInitialized() && last_acked_packet_number > last_sent_packet_number_before_epoch_) { QUIC_DVLOG(3) << "Force starting a new aggregation epoch. " "last_sent_packet_number_before_epoch_:" << last_sent_packet_number_before_epoch_ << ", last_acked_packet_number:" << last_acked_packet_number; if (reduce_extra_acked_on_bandwidth_increase_) { QUIC_BUG(quic_bwsampler_46) << "A full round of aggregation should never " << "pass with startup_include_extra_acked(B204) enabled."; } force_new_epoch = true; } if (aggregation_epoch_start_time_ == QuicTime::Zero() || force_new_epoch) { aggregation_epoch_bytes_ = bytes_acked; aggregation_epoch_start_time_ = ack_time; last_sent_packet_number_before_epoch_ = last_sent_packet_number; ++num_ack_aggregation_epochs_; return 0; } QuicTime::Delta aggregation_delta = ack_time - aggregation_epoch_start_time_; QuicByteCount expected_bytes_acked = bandwidth_estimate * aggregation_delta; if (aggregation_epoch_bytes_ <= ack_aggregation_bandwidth_threshold_ * expected_bytes_acked) { QUIC_DVLOG(3) << "Starting a new aggregation epoch because " "aggregation_epoch_bytes_ " << aggregation_epoch_bytes_ << " is smaller than expected. " "ack_aggregation_bandwidth_threshold_:" << ack_aggregation_bandwidth_threshold_ << ", expected_bytes_acked:" << expected_bytes_acked << ", bandwidth_estimate:" << bandwidth_estimate << ", aggregation_duration:" << aggregation_delta << ", new_aggregation_epoch:" << ack_time << ", new_aggregation_bytes_acked:" << bytes_acked; aggregation_epoch_bytes_ = bytes_acked; aggregation_epoch_start_time_ = ack_time; last_sent_packet_number_before_epoch_ = last_sent_packet_number; ++num_ack_aggregation_epochs_; return 0; } aggregation_epoch_bytes_ += bytes_acked; QuicByteCount extra_bytes_acked = aggregation_epoch_bytes_ - expected_bytes_acked; QUIC_DVLOG(3) << "Updating MaxAckHeight. ack_time:" << ack_time << ", last sent packet:" << last_sent_packet_number << ", bandwidth_estimate:" << bandwidth_estimate << ", bytes_acked:" << bytes_acked << ", expected_bytes_acked:" << expected_bytes_acked << ", aggregation_epoch_bytes_:" << aggregation_epoch_bytes_ << ", extra_bytes_acked:" << extra_bytes_acked; ExtraAckedEvent new_event; new_event.extra_acked = extra_bytes_acked; new_event.bytes_acked = aggregation_epoch_bytes_; new_event.time_delta = aggregation_delta; max_ack_height_filter_.Update(new_event, round_trip_count); return extra_bytes_acked; } BandwidthSampler::BandwidthSampler( const QuicUnackedPacketMap* unacked_packet_map, QuicRoundTripCount max_height_tracker_window_length) : total_bytes_sent_(0), total_bytes_acked_(0), total_bytes_lost_(0), total_bytes_neutered_(0), total_bytes_sent_at_last_acked_packet_(0), last_acked_packet_sent_time_(QuicTime::Zero()), last_acked_packet_ack_time_(QuicTime::Zero()), is_app_limited_(true), connection_state_map_(), max_tracked_packets_(GetQuicFlag(quic_max_tracked_packet_count)), unacked_packet_map_(unacked_packet_map), max_ack_height_tracker_(max_height_tracker_window_length), total_bytes_acked_after_last_ack_event_(0), overestimate_avoidance_(false), limit_max_ack_height_tracker_by_send_rate_(false) {} BandwidthSampler::BandwidthSampler(const BandwidthSampler& other) : total_bytes_sent_(other.total_bytes_sent_), total_bytes_acked_(other.total_bytes_acked_), total_bytes_lost_(other.total_bytes_lost_), total_bytes_neutered_(other.total_bytes_neutered_), total_bytes_sent_at_last_acked_packet_( other.total_bytes_sent_at_last_acked_packet_), last_acked_packet_sent_time_(other.last_acked_packet_sent_time_), last_acked_packet_ack_time_(other.last_acked_packet_ack_time_), last_sent_packet_(other.last_sent_packet_), last_acked_packet_(other.last_acked_packet_), is_app_limited_(other.is_app_limited_), end_of_app_limited_phase_(other.end_of_app_limited_phase_), connection_state_map_(other.connection_state_map_), recent_ack_points_(other.recent_ack_points_), a0_candidates_(other.a0_candidates_), max_tracked_packets_(other.max_tracked_packets_), unacked_packet_map_(other.unacked_packet_map_), max_ack_height_tracker_(other.max_ack_height_tracker_), total_bytes_acked_after_last_ack_event_( other.total_bytes_acked_after_last_ack_event_), overestimate_avoidance_(other.overestimate_avoidance_), limit_max_ack_height_tracker_by_send_rate_( other.limit_max_ack_height_tracker_by_send_rate_) {} void BandwidthSampler::EnableOverestimateAvoidance() { if (overestimate_avoidance_) { return; } overestimate_avoidance_ = true; max_ack_height_tracker_.SetAckAggregationBandwidthThreshold(2.0); } BandwidthSampler::~BandwidthSampler() {} void BandwidthSampler::OnPacketSent( QuicTime sent_time, QuicPacketNumber packet_number, QuicByteCount bytes, QuicByteCount bytes_in_flight, HasRetransmittableData has_retransmittable_data) { last_sent_packet_ = packet_number; if (has_retransmittable_data != HAS_RETRANSMITTABLE_DATA) { return; } total_bytes_sent_ += bytes; if (bytes_in_flight == 0) { last_acked_packet_ack_time_ = sent_time; if (overestimate_avoidance_) { recent_ack_points_.Clear(); recent_ack_points_.Update(sent_time, total_bytes_acked_); a0_candidates_.clear(); a0_candidates_.push_back(recent_ack_points_.MostRecentPoint()); } total_bytes_sent_at_last_acked_packet_ = total_bytes_sent_; last_acked_packet_sent_time_ = sent_time; } if (!connection_state_map_.IsEmpty() && packet_number > connection_state_map_.last_packet() + max_tracked_packets_) { if (unacked_packet_map_ != nullptr && !unacked_packet_map_->empty()) { QuicPacketNumber maybe_least_unacked = unacked_packet_map_->GetLeastUnacked(); QUIC_BUG(quic_bug_10437_1) << "BandwidthSampler in-flight packet map has exceeded maximum " "number of tracked packets(" << max_tracked_packets_ << "). First tracked: " << connection_state_map_.first_packet() << "; last tracked: " << connection_state_map_.last_packet() << "; entry_slots_used: " << connection_state_map_.entry_slots_used() << "; number_of_present_entries: " << connection_state_map_.number_of_present_entries() << "; packet number: " << packet_number << "; unacked_map: " << unacked_packet_map_->DebugString() << "; total_bytes_sent: " << total_bytes_sent_ << "; total_bytes_acked: " << total_bytes_acked_ << "; total_bytes_lost: " << total_bytes_lost_ << "; total_bytes_neutered: " << total_bytes_neutered_ << "; last_acked_packet_sent_time: " << last_acked_packet_sent_time_ << "; total_bytes_sent_at_last_acked_packet: " << total_bytes_sent_at_last_acked_packet_ << "; least_unacked_packet_info: " << (unacked_packet_map_->IsUnacked(maybe_least_unacked) ? unacked_packet_map_ ->GetTransmissionInfo(maybe_least_unacked) .DebugString() : "n/a"); } else { QUIC_BUG(quic_bug_10437_2) << "BandwidthSampler in-flight packet map has exceeded maximum " "number of tracked packets."; } } bool success = connection_state_map_.Emplace(packet_number, sent_time, bytes, bytes_in_flight + bytes, *this); QUIC_BUG_IF(quic_bug_10437_3, !success) << "BandwidthSampler failed to insert the packet " "into the map, most likely because it's already " "in it."; } void BandwidthSampler::OnPacketNeutered(QuicPacketNumber packet_number) { connection_state_map_.Remove( packet_number, [&](const ConnectionStateOnSentPacket& sent_packet) { QUIC_CODE_COUNT(quic_bandwidth_sampler_packet_neutered); total_bytes_neutered_ += sent_packet.size(); }); } BandwidthSamplerInterface::CongestionEventSample BandwidthSampler::OnCongestionEvent(QuicTime ack_time, const AckedPacketVector& acked_packets, const LostPacketVector& lost_packets, QuicBandwidth max_bandwidth, QuicBandwidth est_bandwidth_upper_bound, QuicRoundTripCount round_trip_count) { CongestionEventSample event_sample; SendTimeState last_lost_packet_send_state; for (const LostPacket& packet : lost_packets) { SendTimeState send_state = OnPacketLost(packet.packet_number, packet.bytes_lost); if (send_state.is_valid) { last_lost_packet_send_state = send_state; } } if (acked_packets.empty()) { event_sample.last_packet_send_state = last_lost_packet_send_state; return event_sample; } SendTimeState last_acked_packet_send_state; QuicBandwidth max_send_rate = QuicBandwidth::Zero(); for (const auto& packet : acked_packets) { if (packet.spurious_loss) { QUICHE_DCHECK_EQ(packet.bytes_acked, 0); continue; } BandwidthSample sample = OnPacketAcknowledged(ack_time, packet.packet_number); if (!sample.state_at_send.is_valid) { continue; } last_acked_packet_send_state = sample.state_at_send; if (!sample.rtt.IsZero()) { event_sample.sample_rtt = std::min(event_sample.sample_rtt, sample.rtt); } if (sample.bandwidth > event_sample.sample_max_bandwidth) { event_sample.sample_max_bandwidth = sample.bandwidth; event_sample.sample_is_app_limited = sample.state_at_send.is_app_limited; } if (!sample.send_rate.IsInfinite()) { max_send_rate = std::max(max_send_rate, sample.send_rate); } const QuicByteCount inflight_sample = total_bytes_acked() - last_acked_packet_send_state.total_bytes_acked; if (inflight_sample > event_sample.sample_max_inflight) { event_sample.sample_max_inflight = inflight_sample; } } if (!last_lost_packet_send_state.is_valid) { event_sample.last_packet_send_state = last_acked_packet_send_state; } else if (!last_acked_packet_send_state.is_valid) { event_sample.last_packet_send_state = last_lost_packet_send_state; } else { event_sample.last_packet_send_state = lost_packets.back().packet_number > acked_packets.back().packet_number ? last_lost_packet_send_state : last_acked_packet_send_state; } bool is_new_max_bandwidth = event_sample.sample_max_bandwidth > max_bandwidth; max_bandwidth = std::max(max_bandwidth, event_sample.sample_max_bandwidth); if (limit_max_ack_height_tracker_by_send_rate_) { max_bandwidth = std::max(max_bandwidth, max_send_rate); } event_sample.extra_acked = OnAckEventEnd(std::min(est_bandwidth_upper_bound, max_bandwidth), is_new_max_bandwidth, round_trip_count); return event_sample; } QuicByteCount BandwidthSampler::OnAckEventEnd( QuicBandwidth bandwidth_estimate, bool is_new_max_bandwidth, QuicRoundTripCount round_trip_count) { const QuicByteCount newly_acked_bytes = total_bytes_acked_ - total_bytes_acked_after_last_ack_event_; if (newly_acked_bytes == 0) { return 0; } total_bytes_acked_after_last_ack_event_ = total_bytes_acked_; QuicByteCount extra_acked = max_ack_height_tracker_.Update( bandwidth_estimate, is_new_max_bandwidth, round_trip_count, last_sent_packet_, last_acked_packet_, last_acked_packet_ack_time_, newly_acked_bytes); if (overestimate_avoidance_ && extra_acked == 0) { a0_candidates_.push_back(recent_ack_points_.LessRecentPoint()); QUIC_DVLOG(1) << "New a0_candidate:" << a0_candidates_.back(); } return extra_acked; } BandwidthSample BandwidthSampler::OnPacketAcknowledged( QuicTime ack_time, QuicPacketNumber packet_number) { last_acked_packet_ = packet_number; ConnectionStateOnSentPacket* sent_packet_pointer = connection_state_map_.GetEntry(packet_number); if (sent_packet_pointer == nullptr) { return BandwidthSample(); } BandwidthSample sample = OnPacketAcknowledgedInner(ack_time, packet_number, *sent_packet_pointer); return sample; } BandwidthSample BandwidthSampler::OnPacketAcknowledgedInner( QuicTime ack_time, QuicPacketNumber packet_number, const ConnectionStateOnSentPacket& sent_packet) { total_bytes_acked_ += sent_packet.size(); total_bytes_sent_at_last_acked_packet_ = sent_packet.send_time_state().total_bytes_sent; last_acked_packet_sent_time_ = sent_packet.sent_time(); last_acked_packet_ack_time_ = ack_time; if (overestimate_avoidance_) { recent_ack_points_.Update(ack_time, total_bytes_acked_); } if (is_app_limited_) { if (!end_of_app_limited_phase_.IsInitialized() || packet_number > end_of_app_limited_phase_) { is_app_limited_ = false; } } if (sent_packet.last_acked_packet_sent_time() == QuicTime::Zero()) { QUIC_BUG(quic_bug_10437_4) << "sent_packet.last_acked_packet_sent_time is zero"; return BandwidthSample(); } QuicBandwidth send_rate = QuicBandwidth::Infinite(); if (sent_packet.sent_time() > sent_packet.last_acked_packet_sent_time()) { send_rate = QuicBandwidth::FromBytesAndTimeDelta( sent_packet.send_time_state().total_bytes_sent - sent_packet.total_bytes_sent_at_last_acked_packet(), sent_packet.sent_time() - sent_packet.last_acked_packet_sent_time()); } AckPoint a0; if (overestimate_avoidance_ && ChooseA0Point(sent_packet.send_time_state().total_bytes_acked, &a0)) { QUIC_DVLOG(2) << "Using a0 point: " << a0; } else { a0.ack_time = sent_packet.last_acked_packet_ack_time(), a0.total_bytes_acked = sent_packet.send_time_state().total_bytes_acked; } if (ack_time <= a0.ack_time) { if (a0.ack_time == sent_packet.sent_time()) { QUIC_CODE_COUNT_N(quic_prev_ack_time_larger_than_current_ack_time, 1, 2); } else { QUIC_CODE_COUNT_N(quic_prev_ack_time_larger_than_current_ack_time, 2, 2); } QUIC_LOG_EVERY_N_SEC(ERROR, 60) << "Time of the previously acked packet:" << a0.ack_time.ToDebuggingValue() << " is larger than the ack time of the current packet:" << ack_time.ToDebuggingValue() << ". acked packet number:" << packet_number << ", total_bytes_acked_:" << total_bytes_acked_ << ", overestimate_avoidance_:" << overestimate_avoidance_ << ", sent_packet:" << sent_packet; return BandwidthSample(); } QuicBandwidth ack_rate = QuicBandwidth::FromBytesAndTimeDelta( total_bytes_acked_ - a0.total_bytes_acked, ack_time - a0.ack_time); BandwidthSample sample; sample.bandwidth = std::min(send_rate, ack_rate); sample.rtt = ack_time - sent_packet.sent_time(); sample.send_rate = send_rate; SentPacketToSendTimeState(sent_packet, &sample.state_at_send); if (sample.bandwidth.IsZero()) { QUIC_LOG_EVERY_N_SEC(ERROR, 60) << "ack_rate: " << ack_rate << ", send_rate: " << send_rate << ". acked packet number:" << packet_number << ", overestimate_avoidance_:" << overestimate_avoidance_ << "a1:{" << total_bytes_acked_ << "@" << ack_time << "}, a0:{" << a0.total_bytes_acked << "@" << a0.ack_time << "}, sent_packet:" << sent_packet; } return sample; } bool BandwidthSampler::ChooseA0Point(QuicByteCount total_bytes_acked, AckPoint* a0) { if (a0_candidates_.empty()) { QUIC_BUG(quic_bug_10437_5) << "No A0 point candicates. total_bytes_acked:" << total_bytes_acked; return false; } if (a0_candidates_.size() == 1) { *a0 = a0_candidates_.front(); return true; } for (size_t i = 1; i < a0_candidates_.size(); ++i) { if (a0_candidates_[i].total_bytes_acked > total_bytes_acked) { *a0 = a0_candidates_[i - 1]; if (i > 1) { a0_candidates_.pop_front_n(i - 1); } return true; } } *a0 = a0_candidates_.back(); a0_candidates_.pop_front_n(a0_candidates_.size() - 1); return true; } SendTimeState BandwidthSampler::OnPacketLost(QuicPacketNumber packet_number, QuicPacketLength bytes_lost) { SendTimeState send_time_state; total_bytes_lost_ += bytes_lost; ConnectionStateOnSentPacket* sent_packet_pointer = connection_state_map_.GetEntry(packet_number); if (sent_packet_pointer != nullptr) { SentPacketToSendTimeState(*sent_packet_pointer, &send_time_state); } return send_time_state; } void BandwidthSampler::SentPacketToSendTimeState( const ConnectionStateOnSentPacket& sent_packet, SendTimeState* send_time_state) const { *send_time_state = sent_packet.send_time_state(); send_time_state->is_valid = true; } void BandwidthSampler::OnAppLimited() { is_app_limited_ = true; end_of_app_limited_phase_ = last_sent_packet_; } void BandwidthSampler::RemoveObsoletePackets(QuicPacketNumber least_unacked) { connection_state_map_.RemoveUpTo(least_unacked); } QuicByteCount BandwidthSampler::total_bytes_sent() const { return total_bytes_sent_; } QuicByteCount BandwidthSampler::total_bytes_acked() const { return total_bytes_acked_; } QuicByteCount BandwidthSampler::total_bytes_lost() const { return total_bytes_lost_; } QuicByteCount BandwidthSampler::total_bytes_neutered() const { return total_bytes_neutered_; } bool BandwidthSampler::is_app_limited() const { return is_app_limited_; } QuicPacketNumber BandwidthSampler::end_of_app_limited_phase() const { return end_of_app_limited_phase_; } }
#include "quiche/quic/core/congestion_control/bandwidth_sampler.h" #include <algorithm> #include <cstdint> #include <set> #include <string> #include "quiche/quic/core/quic_bandwidth.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" namespace quic { namespace test { class BandwidthSamplerPeer { public: static size_t GetNumberOfTrackedPackets(const BandwidthSampler& sampler) { return sampler.connection_state_map_.number_of_present_entries(); } static QuicByteCount GetPacketSize(const BandwidthSampler& sampler, QuicPacketNumber packet_number) { return sampler.connection_state_map_.GetEntry(packet_number)->size(); } }; const QuicByteCount kRegularPacketSize = 1280; static_assert((kRegularPacketSize & 31) == 0, "kRegularPacketSize has to be five times divisible by 2"); struct TestParameters { bool overestimate_avoidance; }; std::string PrintToString(const TestParameters& p) { return p.overestimate_avoidance ? "enable_overestimate_avoidance" : "no_enable_overestimate_avoidance"; } class BandwidthSamplerTest : public QuicTestWithParam<TestParameters> { protected: BandwidthSamplerTest() : sampler_(nullptr, 0), sampler_app_limited_at_start_(sampler_.is_app_limited()), bytes_in_flight_(0), max_bandwidth_(QuicBandwidth::Zero()), est_bandwidth_upper_bound_(QuicBandwidth::Infinite()), round_trip_count_(0) { clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); if (GetParam().overestimate_avoidance) { sampler_.EnableOverestimateAvoidance(); } } MockClock clock_; BandwidthSampler sampler_; bool sampler_app_limited_at_start_; QuicByteCount bytes_in_flight_; QuicBandwidth max_bandwidth_; QuicBandwidth est_bandwidth_upper_bound_; QuicRoundTripCount round_trip_count_; QuicByteCount PacketsToBytes(QuicPacketCount packet_count) { return packet_count * kRegularPacketSize; } void SendPacketInner(uint64_t packet_number, QuicByteCount bytes, HasRetransmittableData has_retransmittable_data) { sampler_.OnPacketSent(clock_.Now(), QuicPacketNumber(packet_number), bytes, bytes_in_flight_, has_retransmittable_data); if (has_retransmittable_data == HAS_RETRANSMITTABLE_DATA) { bytes_in_flight_ += bytes; } } void SendPacket(uint64_t packet_number) { SendPacketInner(packet_number, kRegularPacketSize, HAS_RETRANSMITTABLE_DATA); } BandwidthSample AckPacketInner(uint64_t packet_number) { QuicByteCount size = BandwidthSamplerPeer::GetPacketSize( sampler_, QuicPacketNumber(packet_number)); bytes_in_flight_ -= size; BandwidthSampler::CongestionEventSample sample = sampler_.OnCongestionEvent( clock_.Now(), {MakeAckedPacket(packet_number)}, {}, max_bandwidth_, est_bandwidth_upper_bound_, round_trip_count_); max_bandwidth_ = std::max(max_bandwidth_, sample.sample_max_bandwidth); BandwidthSample bandwidth_sample; bandwidth_sample.bandwidth = sample.sample_max_bandwidth; bandwidth_sample.rtt = sample.sample_rtt; bandwidth_sample.state_at_send = sample.last_packet_send_state; EXPECT_TRUE(bandwidth_sample.state_at_send.is_valid); return bandwidth_sample; } AckedPacket MakeAckedPacket(uint64_t packet_number) const { QuicByteCount size = BandwidthSamplerPeer::GetPacketSize( sampler_, QuicPacketNumber(packet_number)); return AckedPacket(QuicPacketNumber(packet_number), size, clock_.Now()); } LostPacket MakeLostPacket(uint64_t packet_number) const { return LostPacket(QuicPacketNumber(packet_number), BandwidthSamplerPeer::GetPacketSize( sampler_, QuicPacketNumber(packet_number))); } QuicBandwidth AckPacket(uint64_t packet_number) { BandwidthSample sample = AckPacketInner(packet_number); return sample.bandwidth; } BandwidthSampler::CongestionEventSample OnCongestionEvent( std::set<uint64_t> acked_packet_numbers, std::set<uint64_t> lost_packet_numbers) { AckedPacketVector acked_packets; for (auto it = acked_packet_numbers.begin(); it != acked_packet_numbers.end(); ++it) { acked_packets.push_back(MakeAckedPacket(*it)); bytes_in_flight_ -= acked_packets.back().bytes_acked; } LostPacketVector lost_packets; for (auto it = lost_packet_numbers.begin(); it != lost_packet_numbers.end(); ++it) { lost_packets.push_back(MakeLostPacket(*it)); bytes_in_flight_ -= lost_packets.back().bytes_lost; } BandwidthSampler::CongestionEventSample sample = sampler_.OnCongestionEvent( clock_.Now(), acked_packets, lost_packets, max_bandwidth_, est_bandwidth_upper_bound_, round_trip_count_); max_bandwidth_ = std::max(max_bandwidth_, sample.sample_max_bandwidth); return sample; } SendTimeState LosePacket(uint64_t packet_number) { QuicByteCount size = BandwidthSamplerPeer::GetPacketSize( sampler_, QuicPacketNumber(packet_number)); bytes_in_flight_ -= size; LostPacket lost_packet(QuicPacketNumber(packet_number), size); BandwidthSampler::CongestionEventSample sample = sampler_.OnCongestionEvent( clock_.Now(), {}, {lost_packet}, max_bandwidth_, est_bandwidth_upper_bound_, round_trip_count_); EXPECT_TRUE(sample.last_packet_send_state.is_valid); EXPECT_EQ(sample.sample_max_bandwidth, QuicBandwidth::Zero()); EXPECT_EQ(sample.sample_rtt, QuicTime::Delta::Infinite()); return sample.last_packet_send_state; } void Send40PacketsAndAckFirst20(QuicTime::Delta time_between_packets) { for (int i = 1; i <= 20; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); } for (int i = 1; i <= 20; i++) { AckPacket(i); SendPacket(i + 20); clock_.AdvanceTime(time_between_packets); } } }; INSTANTIATE_TEST_SUITE_P( BandwidthSamplerTests, BandwidthSamplerTest, testing::Values(TestParameters{false}, TestParameters{true}), testing::PrintToStringParamName()); TEST_P(BandwidthSamplerTest, SendAndWait) { QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(10); QuicBandwidth expected_bandwidth = QuicBandwidth::FromBytesPerSecond(kRegularPacketSize * 100); for (int i = 1; i < 20; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); QuicBandwidth current_sample = AckPacket(i); EXPECT_EQ(expected_bandwidth, current_sample); } for (int i = 20; i < 25; i++) { time_between_packets = time_between_packets * 2; expected_bandwidth = expected_bandwidth * 0.5; SendPacket(i); clock_.AdvanceTime(time_between_packets); QuicBandwidth current_sample = AckPacket(i); EXPECT_EQ(expected_bandwidth, current_sample); } sampler_.RemoveObsoletePackets(QuicPacketNumber(25)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); EXPECT_EQ(0u, bytes_in_flight_); } TEST_P(BandwidthSamplerTest, SendTimeState) { QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(10); for (int i = 1; i <= 5; i++) { SendPacket(i); EXPECT_EQ(PacketsToBytes(i), sampler_.total_bytes_sent()); clock_.AdvanceTime(time_between_packets); } SendTimeState send_time_state = AckPacketInner(1).state_at_send; EXPECT_EQ(PacketsToBytes(1), send_time_state.total_bytes_sent); EXPECT_EQ(0u, send_time_state.total_bytes_acked); EXPECT_EQ(0u, send_time_state.total_bytes_lost); EXPECT_EQ(PacketsToBytes(1), sampler_.total_bytes_acked()); send_time_state = LosePacket(2); EXPECT_EQ(PacketsToBytes(2), send_time_state.total_bytes_sent); EXPECT_EQ(0u, send_time_state.total_bytes_acked); EXPECT_EQ(0u, send_time_state.total_bytes_lost); EXPECT_EQ(PacketsToBytes(1), sampler_.total_bytes_lost()); send_time_state = LosePacket(3); EXPECT_EQ(PacketsToBytes(3), send_time_state.total_bytes_sent); EXPECT_EQ(0u, send_time_state.total_bytes_acked); EXPECT_EQ(0u, send_time_state.total_bytes_lost); EXPECT_EQ(PacketsToBytes(2), sampler_.total_bytes_lost()); for (int i = 6; i <= 10; i++) { SendPacket(i); EXPECT_EQ(PacketsToBytes(i), sampler_.total_bytes_sent()); clock_.AdvanceTime(time_between_packets); } QuicPacketCount acked_packet_count = 1; EXPECT_EQ(PacketsToBytes(acked_packet_count), sampler_.total_bytes_acked()); for (int i = 4; i <= 10; i++) { send_time_state = AckPacketInner(i).state_at_send; ++acked_packet_count; EXPECT_EQ(PacketsToBytes(acked_packet_count), sampler_.total_bytes_acked()); EXPECT_EQ(PacketsToBytes(i), send_time_state.total_bytes_sent); if (i <= 5) { EXPECT_EQ(0u, send_time_state.total_bytes_acked); EXPECT_EQ(0u, send_time_state.total_bytes_lost); } else { EXPECT_EQ(PacketsToBytes(1), send_time_state.total_bytes_acked); EXPECT_EQ(PacketsToBytes(2), send_time_state.total_bytes_lost); } EXPECT_EQ(send_time_state.total_bytes_sent - send_time_state.total_bytes_acked - send_time_state.total_bytes_lost, send_time_state.bytes_in_flight); clock_.AdvanceTime(time_between_packets); } } TEST_P(BandwidthSamplerTest, SendPaced) { const QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(1); QuicBandwidth expected_bandwidth = QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize); Send40PacketsAndAckFirst20(time_between_packets); QuicBandwidth last_bandwidth = QuicBandwidth::Zero(); for (int i = 21; i <= 40; i++) { last_bandwidth = AckPacket(i); EXPECT_EQ(expected_bandwidth, last_bandwidth) << "i is " << i; clock_.AdvanceTime(time_between_packets); } sampler_.RemoveObsoletePackets(QuicPacketNumber(41)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); EXPECT_EQ(0u, bytes_in_flight_); } TEST_P(BandwidthSamplerTest, SendWithLosses) { const QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(1); QuicBandwidth expected_bandwidth = QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize) * 0.5; for (int i = 1; i <= 20; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); } for (int i = 1; i <= 20; i++) { if (i % 2 == 0) { AckPacket(i); } else { LosePacket(i); } SendPacket(i + 20); clock_.AdvanceTime(time_between_packets); } QuicBandwidth last_bandwidth = QuicBandwidth::Zero(); for (int i = 21; i <= 40; i++) { if (i % 2 == 0) { last_bandwidth = AckPacket(i); EXPECT_EQ(expected_bandwidth, last_bandwidth); } else { LosePacket(i); } clock_.AdvanceTime(time_between_packets); } sampler_.RemoveObsoletePackets(QuicPacketNumber(41)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); EXPECT_EQ(0u, bytes_in_flight_); } TEST_P(BandwidthSamplerTest, NotCongestionControlled) { const QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(1); QuicBandwidth expected_bandwidth = QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize) * 0.5; for (int i = 1; i <= 20; i++) { SendPacketInner( i, kRegularPacketSize, i % 2 == 0 ? HAS_RETRANSMITTABLE_DATA : NO_RETRANSMITTABLE_DATA); clock_.AdvanceTime(time_between_packets); } EXPECT_EQ(10u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); for (int i = 1; i <= 20; i++) { if (i % 2 == 0) { AckPacket(i); } SendPacketInner( i + 20, kRegularPacketSize, i % 2 == 0 ? HAS_RETRANSMITTABLE_DATA : NO_RETRANSMITTABLE_DATA); clock_.AdvanceTime(time_between_packets); } QuicBandwidth last_bandwidth = QuicBandwidth::Zero(); for (int i = 21; i <= 40; i++) { if (i % 2 == 0) { last_bandwidth = AckPacket(i); EXPECT_EQ(expected_bandwidth, last_bandwidth); } clock_.AdvanceTime(time_between_packets); } sampler_.RemoveObsoletePackets(QuicPacketNumber(41)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); EXPECT_EQ(0u, bytes_in_flight_); } TEST_P(BandwidthSamplerTest, CompressedAck) { const QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(1); QuicBandwidth expected_bandwidth = QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize); Send40PacketsAndAckFirst20(time_between_packets); clock_.AdvanceTime(time_between_packets * 15); QuicBandwidth last_bandwidth = QuicBandwidth::Zero(); QuicTime::Delta ridiculously_small_time_delta = QuicTime::Delta::FromMicroseconds(20); for (int i = 21; i <= 40; i++) { last_bandwidth = AckPacket(i); clock_.AdvanceTime(ridiculously_small_time_delta); } EXPECT_EQ(expected_bandwidth, last_bandwidth); sampler_.RemoveObsoletePackets(QuicPacketNumber(41)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); EXPECT_EQ(0u, bytes_in_flight_); } TEST_P(BandwidthSamplerTest, ReorderedAck) { const QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(1); QuicBandwidth expected_bandwidth = QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize); Send40PacketsAndAckFirst20(time_between_packets); QuicBandwidth last_bandwidth = QuicBandwidth::Zero(); for (int i = 0; i < 20; i++) { last_bandwidth = AckPacket(40 - i); EXPECT_EQ(expected_bandwidth, last_bandwidth); SendPacket(41 + i); clock_.AdvanceTime(time_between_packets); } for (int i = 41; i <= 60; i++) { last_bandwidth = AckPacket(i); EXPECT_EQ(expected_bandwidth, last_bandwidth); clock_.AdvanceTime(time_between_packets); } sampler_.RemoveObsoletePackets(QuicPacketNumber(61)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); EXPECT_EQ(0u, bytes_in_flight_); } TEST_P(BandwidthSamplerTest, AppLimited) { const QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(1); QuicBandwidth expected_bandwidth = QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize); for (int i = 1; i <= 20; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); } for (int i = 1; i <= 20; i++) { BandwidthSample sample = AckPacketInner(i); EXPECT_EQ(sample.state_at_send.is_app_limited, sampler_app_limited_at_start_); SendPacket(i + 20); clock_.AdvanceTime(time_between_packets); } sampler_.OnAppLimited(); for (int i = 21; i <= 40; i++) { BandwidthSample sample = AckPacketInner(i); EXPECT_FALSE(sample.state_at_send.is_app_limited); EXPECT_EQ(expected_bandwidth, sample.bandwidth); clock_.AdvanceTime(time_between_packets); } clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); for (int i = 41; i <= 60; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); } for (int i = 41; i <= 60; i++) { BandwidthSample sample = AckPacketInner(i); EXPECT_TRUE(sample.state_at_send.is_app_limited); EXPECT_LT(sample.bandwidth, 0.7f * expected_bandwidth); SendPacket(i + 20); clock_.AdvanceTime(time_between_packets); } for (int i = 61; i <= 80; i++) { BandwidthSample sample = AckPacketInner(i); EXPECT_FALSE(sample.state_at_send.is_app_limited); EXPECT_EQ(sample.bandwidth, expected_bandwidth); clock_.AdvanceTime(time_between_packets); } sampler_.RemoveObsoletePackets(QuicPacketNumber(81)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); EXPECT_EQ(0u, bytes_in_flight_); } TEST_P(BandwidthSamplerTest, FirstRoundTrip) { const QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(1); const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(800); const int num_packets = 10; const QuicByteCount num_bytes = kRegularPacketSize * num_packets; const QuicBandwidth real_bandwidth = QuicBandwidth::FromBytesAndTimeDelta(num_bytes, rtt); for (int i = 1; i <= 10; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); } clock_.AdvanceTime(rtt - num_packets * time_between_packets); QuicBandwidth last_sample = QuicBandwidth::Zero(); for (int i = 1; i <= 10; i++) { QuicBandwidth sample = AckPacket(i); EXPECT_GT(sample, last_sample); last_sample = sample; clock_.AdvanceTime(time_between_packets); } EXPECT_LT(last_sample, real_bandwidth); EXPECT_GT(last_sample, 0.9f * real_bandwidth); } TEST_P(BandwidthSamplerTest, RemoveObsoletePackets) { SendPacket(1); SendPacket(2); SendPacket(3); SendPacket(4); SendPacket(5); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100)); EXPECT_EQ(5u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); sampler_.RemoveObsoletePackets(QuicPacketNumber(4)); EXPECT_EQ(2u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); LosePacket(4); sampler_.RemoveObsoletePackets(QuicPacketNumber(5)); EXPECT_EQ(1u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); AckPacket(5); sampler_.RemoveObsoletePackets(QuicPacketNumber(6)); EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_)); } TEST_P(BandwidthSamplerTest, NeuterPacket) { SendPacket(1); EXPECT_EQ(0u, sampler_.total_bytes_neutered()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); sampler_.OnPacketNeutered(QuicPacketNumber(1)); EXPECT_LT(0u, sampler_.total_bytes_neutered()); EXPECT_EQ(0u, sampler_.total_bytes_acked()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); BandwidthSampler::CongestionEventSample sample = sampler_.OnCongestionEvent( clock_.Now(), {AckedPacket(QuicPacketNumber(1), kRegularPacketSize, clock_.Now())}, {}, max_bandwidth_, est_bandwidth_upper_bound_, round_trip_count_); EXPECT_EQ(0u, sampler_.total_bytes_acked()); EXPECT_EQ(QuicBandwidth::Zero(), sample.sample_max_bandwidth); EXPECT_FALSE(sample.sample_is_app_limited); EXPECT_EQ(QuicTime::Delta::Infinite(), sample.sample_rtt); EXPECT_EQ(0u, sample.sample_max_inflight); EXPECT_EQ(0u, sample.extra_acked); } TEST_P(BandwidthSamplerTest, CongestionEventSampleDefaultValues) { BandwidthSampler::CongestionEventSample sample; EXPECT_EQ(QuicBandwidth::Zero(), sample.sample_max_bandwidth); EXPECT_FALSE(sample.sample_is_app_limited); EXPECT_EQ(QuicTime::Delta::Infinite(), sample.sample_rtt); EXPECT_EQ(0u, sample.sample_max_inflight); EXPECT_EQ(0u, sample.extra_acked); } TEST_P(BandwidthSamplerTest, TwoAckedPacketsPerEvent) { QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(10); QuicBandwidth sending_rate = QuicBandwidth::FromBytesAndTimeDelta( kRegularPacketSize, time_between_packets); for (uint64_t i = 1; i < 21; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); if (i % 2 != 0) { continue; } BandwidthSampler::CongestionEventSample sample = OnCongestionEvent({i - 1, i}, {}); EXPECT_EQ(sending_rate, sample.sample_max_bandwidth); EXPECT_EQ(time_between_packets, sample.sample_rtt); EXPECT_EQ(2 * kRegularPacketSize, sample.sample_max_inflight); EXPECT_TRUE(sample.last_packet_send_state.is_valid); EXPECT_EQ(2 * kRegularPacketSize, sample.last_packet_send_state.bytes_in_flight); EXPECT_EQ(i * kRegularPacketSize, sample.last_packet_send_state.total_bytes_sent); EXPECT_EQ((i - 2) * kRegularPacketSize, sample.last_packet_send_state.total_bytes_acked); EXPECT_EQ(0u, sample.last_packet_send_state.total_bytes_lost); sampler_.RemoveObsoletePackets(QuicPacketNumber(i - 2)); } } TEST_P(BandwidthSamplerTest, LoseEveryOtherPacket) { QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(10); QuicBandwidth sending_rate = QuicBandwidth::FromBytesAndTimeDelta( kRegularPacketSize, time_between_packets); for (uint64_t i = 1; i < 21; i++) { SendPacket(i); clock_.AdvanceTime(time_between_packets); if (i % 2 != 0) { continue; } BandwidthSampler::CongestionEventSample sample = OnCongestionEvent({i}, {i - 1}); EXPECT_EQ(sending_rate, sample.sample_max_bandwidth * 2); EXPECT_EQ(time_between_packets, sample.sample_rtt); EXPECT_EQ(kRegularPacketSize, sample.sample_max_inflight); EXPECT_TRUE(sample.last_packet_send_state.is_valid); EXPECT_EQ(2 * kRegularPacketSize, sample.last_packet_send_state.bytes_in_flight); EXPECT_EQ(i * kRegularPacketSize, sample.last_packet_send_state.total_bytes_sent); EXPECT_EQ((i - 2) * kRegularPacketSize / 2, sample.last_packet_send_state.total_bytes_acked); EXPECT_EQ((i - 2) * kRegularPacketSize / 2, sample.last_packet_send_state.total_bytes_lost); sampler_.RemoveObsoletePackets(QuicPacketNumber(i - 2)); } } TEST_P(BandwidthSamplerTest, AckHeightRespectBandwidthEstimateUpperBound) { QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(10); QuicBandwidth first_packet_sending_rate = QuicBandwidth::FromBytesAndTimeDelta(kRegularPacketSize, time_between_packets); SendPacket(1); clock_.AdvanceTime(time_between_packets); SendPacket(2); SendPacket(3); SendPacket(4); BandwidthSampler::CongestionEventSample sample = OnCongestionEvent({1}, {}); EXPECT_EQ(first_packet_sending_rate, sample.sample_max_bandwidth); EXPECT_EQ(first_packet_sending_rate, max_bandwidth_); round_trip_count_++; est_bandwidth_upper_bound_ = first_packet_sending_rate * 0.3; clock_.AdvanceTime(time_between_packets); sample = OnCongestionEvent({2, 3, 4}, {}); EXPECT_EQ(first_packet_sending_rate * 2, sample.sample_max_bandwidth); EXPECT_EQ(max_bandwidth_, sample.sample_max_bandwidth); EXPECT_LT(2 * kRegularPacketSize, sample.extra_acked); } class MaxAckHeightTrackerTest : public QuicTest { protected: MaxAckHeightTrackerTest() : tracker_(10) { tracker_.SetAckAggregationBandwidthThreshold(1.8); tracker_.SetStartNewAggregationEpochAfterFullRound(true); } void AggregationEpisode(QuicBandwidth aggregation_bandwidth, QuicTime::Delta aggregation_duration, QuicByteCount bytes_per_ack, bool expect_new_aggregation_epoch) { ASSERT_GE(aggregation_bandwidth, bandwidth_); const QuicTime start_time = now_; const QuicByteCount aggregation_bytes = aggregation_bandwidth * aggregation_duration; const int num_acks = aggregation_bytes / bytes_per_ack; ASSERT_EQ(aggregation_bytes, num_acks * bytes_per_ack) << "aggregation_bytes: " << aggregation_bytes << " [" << aggregation_bandwidth << " in " << aggregation_duration << "], bytes_per_ack: " << bytes_per_ack; const QuicTime::Delta time_between_acks = QuicTime::Delta::FromMicroseconds( aggregation_duration.ToMicroseconds() / num_acks); ASSERT_EQ(aggregation_duration, num_acks * time_between_acks) << "aggregation_bytes: " << aggregation_bytes << ", num_acks: " << num_acks << ", time_between_acks: " << time_between_acks; const QuicTime::Delta total_duration = QuicTime::Delta::FromMicroseconds( aggregation_bytes * 8 * 1000000 / bandwidth_.ToBitsPerSecond()); ASSERT_EQ(aggregation_bytes, total_duration * bandwidth_) << "total_duration: " << total_duration << ", bandwidth_: " << bandwidth_; QuicByteCount last_extra_acked = 0; for (QuicByteCount bytes = 0; bytes < aggregation_bytes; bytes += bytes_per_ack) { QuicByteCount extra_acked = tracker_.Update( bandwidth_, true, RoundTripCount(), last_sent_packet_number_, last_acked_packet_number_, now_, bytes_per_ack); QUIC_VLOG(1) << "T" << now_ << ": Update after " << bytes_per_ack << " bytes acked, " << extra_acked << " extra bytes acked"; if ((bytes == 0 && expect_new_aggregation_epoch) || (aggregation_bandwidth == bandwidth_)) { EXPECT_EQ(0u, extra_acked); } else { EXPECT_LT(last_extra_acked, extra_acked); } now_ = now_ + time_between_acks; last_extra_acked = extra_acked; } const QuicTime time_after_aggregation = now_; now_ = start_time + total_duration; QUIC_VLOG(1) << "Advanced time from " << time_after_aggregation << " to " << now_ << ". Aggregation time[" << (time_after_aggregation - start_time) << "], Quiet time[" << (now_ - time_after_aggregation) << "]."; } QuicRoundTripCount RoundTripCount() const { return (now_ - QuicTime::Zero()).ToMicroseconds() / rtt_.ToMicroseconds(); } MaxAckHeightTracker tracker_; QuicBandwidth bandwidth_ = QuicBandwidth::FromBytesPerSecond(10 * 1000); QuicTime now_ = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1); QuicTime::Delta rtt_ = QuicTime::Delta::FromMilliseconds(60); QuicPacketNumber last_sent_packet_number_; QuicPacketNumber last_acked_packet_number_; }; TEST_F(MaxAckHeightTrackerTest, VeryAggregatedLargeAck) { AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 1200, true); AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 1200, true); now_ = now_ - QuicTime::Delta::FromMilliseconds(1); if (tracker_.ack_aggregation_bandwidth_threshold() > 1.1) { AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 1200, true); EXPECT_EQ(3u, tracker_.num_ack_aggregation_epochs()); } else { AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 1200, false); EXPECT_EQ(2u, tracker_.num_ack_aggregation_epochs()); } } TEST_F(MaxAckHeightTrackerTest, VeryAggregatedSmallAcks) { AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 300, true); AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 300, true); now_ = now_ - QuicTime::Delta::FromMilliseconds(1); if (tracker_.ack_aggregation_bandwidth_threshold() > 1.1) { AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 300, true); EXPECT_EQ(3u, tracker_.num_ack_aggregation_epochs()); } else { AggregationEpisode(bandwidth_ * 20, QuicTime::Delta::FromMilliseconds(6), 300, false); EXPECT_EQ(2u, tracker_.num_ack_aggregation_epochs()); } } TEST_F(MaxAckHeightTrackerTest, SomewhatAggregatedLargeAck) { AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 1000, true); AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 1000, true); now_ = now_ - QuicTime::Delta::FromMilliseconds(1); if (tracker_.ack_aggregation_bandwidth_threshold() > 1.1) { AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 1000, true); EXPECT_EQ(3u, tracker_.num_ack_aggregation_epochs()); } else { AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 1000, false); EXPECT_EQ(2u, tracker_.num_ack_aggregation_epochs()); } } TEST_F(MaxAckHeightTrackerTest, SomewhatAggregatedSmallAcks) { AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 100, true); AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 100, true); now_ = now_ - QuicTime::Delta::FromMilliseconds(1); if (tracker_.ack_aggregation_bandwidth_threshold() > 1.1) { AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 100, true); EXPECT_EQ(3u, tracker_.num_ack_aggregation_epochs()); } else { AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 100, false); EXPECT_EQ(2u, tracker_.num_ack_aggregation_epochs()); } } TEST_F(MaxAckHeightTrackerTest, NotAggregated) { AggregationEpisode(bandwidth_, QuicTime::Delta::FromMilliseconds(100), 100, true); EXPECT_LT(2u, tracker_.num_ack_aggregation_epochs()); } TEST_F(MaxAckHeightTrackerTest, StartNewEpochAfterAFullRound) { last_sent_packet_number_ = QuicPacketNumber(10); AggregationEpisode(bandwidth_ * 2, QuicTime::Delta::FromMilliseconds(50), 100, true); last_acked_packet_number_ = QuicPacketNumber(11); tracker_.Update(bandwidth_ * 0.1, true, RoundTripCount(), last_sent_packet_number_, last_acked_packet_number_, now_, 100); EXPECT_EQ(2u, tracker_.num_ack_aggregation_epochs()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/congestion_control/bandwidth_sampler.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/congestion_control/bandwidth_sampler_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
212ea646-6de4-4c3e-ac79-06511b9ea44b
cpp
google/arolla
equals_proto
arolla/util/testing/equals_proto.h
arolla/util/testing/equals_proto_test.cc
#ifndef AROLLA_UTIL_TESTING_EQUALS_PROTO_H_ #define AROLLA_UTIL_TESTING_EQUALS_PROTO_H_ #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/string_view.h" #include "google/protobuf/text_format.h" #include "google/protobuf/util/message_differencer.h" namespace arolla::testing { template <typename TypeProto> ::testing::AssertionResult EqualsProto(const TypeProto& actual_proto, absl::string_view expected_proto_text) { using ::google::protobuf::TextFormat; using ::google::protobuf::util::MessageDifferencer; TypeProto expected_proto; if (!TextFormat::ParseFromString(std::string(expected_proto_text), &expected_proto)) { return ::testing::AssertionFailure() << "could not parse proto: " << expected_proto_text; } MessageDifferencer differencer; std::string differences; differencer.ReportDifferencesToString(&differences); if (!differencer.Compare(expected_proto, actual_proto)) { return ::testing::AssertionFailure() << "the protos are different:\n" << differences; } return ::testing::AssertionSuccess(); } inline auto EqualsProto(absl::string_view expected_proto_text) { return ::testing::Truly([expected_proto_text = std::string( expected_proto_text)](const auto& actual_proto) { return EqualsProto(actual_proto, expected_proto_text); }); } } #endif
#include "arolla/util/testing/equals_proto.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/util/testing/test.pb.h" namespace arolla::testing { namespace { using ::testing::Not; TEST(EqualsProtoTest, Predicate) { { TestProto test_proto; EXPECT_TRUE(EqualsProto(test_proto, R"pb()pb")); EXPECT_FALSE(EqualsProto(test_proto, R"pb(field: 0)pb")); EXPECT_FALSE(EqualsProto(test_proto, R"pb(field: 100)pb")); } { TestProto test_proto; test_proto.set_field(0); EXPECT_FALSE(EqualsProto(test_proto, R"pb()pb")); EXPECT_TRUE(EqualsProto(test_proto, R"pb(field: 0)pb")); EXPECT_FALSE(EqualsProto(test_proto, R"pb(field: 100)pb")); } { TestProto test_proto; test_proto.set_field(100); EXPECT_FALSE(EqualsProto(test_proto, R"pb()pb")); EXPECT_FALSE(EqualsProto(test_proto, R"pb(field: 0)pb")); EXPECT_TRUE(EqualsProto(test_proto, R"pb(field: 100)pb")); } { TestProto test_proto; EXPECT_FALSE(EqualsProto(test_proto, R"pb(unknown_field: 0)pb")); } { TestProto test_proto; EXPECT_FALSE(EqualsProto(test_proto, "invalid text proto literal")); } } TEST(EqualsProtoTest, Matcher) { { TestProto test_proto; EXPECT_THAT(test_proto, EqualsProto(R"pb()pb")); EXPECT_THAT(test_proto, Not(EqualsProto(R"pb(field: 0)pb"))); EXPECT_THAT(test_proto, Not(EqualsProto(R"pb(field: 100)pb"))); } { TestProto test_proto; test_proto.set_field(0); EXPECT_THAT(test_proto, Not(EqualsProto(R"pb()pb"))); EXPECT_THAT(test_proto, EqualsProto(R"pb(field: 0)pb")); EXPECT_THAT(test_proto, Not(EqualsProto(R"pb(field: 100)pb"))); } { TestProto test_proto; test_proto.set_field(100); EXPECT_THAT(test_proto, Not(EqualsProto(R"pb()pb"))); EXPECT_THAT(test_proto, Not(EqualsProto(R"pb(field: 0)pb"))); EXPECT_THAT(test_proto, EqualsProto(R"pb(field: 100)pb")); } { TestProto test_proto; EXPECT_THAT(test_proto, Not(EqualsProto(R"pb(unknown_field: 0)pb"))); } { TestProto test_proto; EXPECT_THAT(test_proto, Not(EqualsProto("invalid text proto literal"))); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/testing/equals_proto.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/testing/equals_proto_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
68d21ad5-0373-4de2-8fba-27046bfbf55d
cpp
tensorflow/tensorflow
conv_2d
tensorflow/core/kernels/conv_2d.h
tensorflow/lite/delegates/xnnpack/conv_2d_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_CONV_2D_H_ #define TENSORFLOW_CORE_KERNELS_CONV_2D_H_ #include "absl/strings/string_view.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/tsl/framework/convolution/eigen_spatial_convolutions.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/kernels/eigen_backward_spatial_convolutions.h" #include "tensorflow/core/util/tensor_format.h" static bool Conv2dUseFp16Accumulate() { static bool use_fp16_accumulate = []() { const char* env = std::getenv("TF_CONV2D_USE_FP16_ACCUMULATE"); return (env != nullptr) && (absl::string_view(env) == "1"); }(); return use_fp16_accumulate; } namespace tensorflow { namespace functor { template <typename Device, typename Input, typename Filter, typename Output, typename OutputKernel> void SpatialConvolutionFunc(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel, int padding_top = 0, int padding_bottom = 0, int padding_left = 0, int padding_right = 0) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom); } template <typename Device, typename T, typename OutputKernel = const Eigen::NoOpOutputKernel> struct SpatialConvolution { void operator()(const Device& d, typename TTypes<T, 4>::Tensor output, typename TTypes<T, 4>::ConstTensor input, typename TTypes<T, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc(d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, padding, output_kernel); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc(d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, padding, output_kernel); } void operator()(const Device& d, typename TTypes<T, 4>::Tensor output, typename TTypes<T, 4>::ConstTensor input, typename TTypes<T, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc( d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, Eigen::PaddingType::PADDING_VALID, output_kernel, padding_top, padding_bottom, padding_left, padding_right); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { SpatialConvolutionFunc( d, output, input, filter, row_stride, col_stride, row_dilation, col_dilation, Eigen::PaddingType::PADDING_VALID, output_kernel, padding_top, padding_bottom, padding_left, padding_right); } }; template <typename Device, typename OutputKernel> struct SpatialConvolution<Device, Eigen::half, OutputKernel> { void operator()(const Device& d, typename TTypes<Eigen::half, 4>::Tensor output, typename TTypes<Eigen::half, 4>::ConstTensor input, typename TTypes<Eigen::half, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel); } else { output.device(d) = Eigen::SpatialConvolution(input.cast<float>(), filter.cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::half>(); } } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel); } else { output.device(d) = Eigen::SpatialConvolution(input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::half>(); } } void operator()(const Device& d, typename TTypes<Eigen::half, 4>::Tensor output, typename TTypes<Eigen::half, 4>::ConstTensor input, typename TTypes<Eigen::half, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom); } else { output.device(d) = Eigen::SpatialConvolution( input.cast<float>(), filter.cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::half>(); } } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { output.device(d) = Eigen::SpatialConvolution( input, filter, col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom); } else { output.device(d) = Eigen::SpatialConvolution( input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::half>(); } } }; template <typename Device, typename OutputKernel> struct SpatialConvolution<Device, Eigen::bfloat16, OutputKernel> { void operator()(const Device& d, typename TTypes<Eigen::bfloat16, 4>::Tensor output, typename TTypes<Eigen::bfloat16, 4>::ConstTensor input, typename TTypes<Eigen::bfloat16, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution(input.cast<float>(), filter.cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::bfloat16>(); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, const Eigen::PaddingType& padding, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution(input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, padding, col_dilation, row_dilation, output_kernel) .template cast<Eigen::bfloat16>(); } void operator()(const Device& d, typename TTypes<Eigen::bfloat16, 4>::Tensor output, typename TTypes<Eigen::bfloat16, 4>::ConstTensor input, typename TTypes<Eigen::bfloat16, 4>::ConstTensor filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution( input.cast<float>(), filter.cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::bfloat16>(); } template <typename Input, typename Filter, typename Output> void operator()(const Device& d, Output output, Input input, Filter filter, int row_stride, int col_stride, int row_dilation, int col_dilation, int padding_top, int padding_bottom, int padding_left, int padding_right, const OutputKernel& output_kernel = OutputKernel()) { output.device(d) = Eigen::SpatialConvolution( input.template cast<float>(), filter.template cast<float>(), col_stride, row_stride, Eigen::PaddingType::PADDING_VALID, col_dilation, row_dilation, output_kernel, padding_left, padding_right, padding_top, padding_bottom) .template cast<Eigen::bfloat16>(); } }; template <typename Device, typename T> struct SpatialConvolutionBackwardInputFunc { void operator()(const Device& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation) { input_backward.device(d) = Eigen::SpatialConvolutionBackwardInput( filter, output_backward, input_backward.dimension(2), input_backward.dimension(1), col_stride, row_stride, col_dilation, row_dilation); } }; template <typename T> struct SpatialConvolutionBackwardInputFunc<Eigen::GpuDevice, T> { void operator()(const Eigen::GpuDevice& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation) { To32Bit(input_backward).device(d) = Eigen::SpatialConvolutionBackwardInput( To32Bit(filter), To32Bit(output_backward), input_backward.dimension(2), input_backward.dimension(1), col_stride, row_stride, col_dilation, row_dilation); } }; template <typename Device, typename T> struct SpatialConvolutionBackwardInputWithExplicitPaddingFunc { void operator()(const Device& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex padded_cols, Eigen::DenseIndex padded_rows, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation, Eigen::DenseIndex pad_left, Eigen::DenseIndex pad_top) { input_backward.device(d) = Eigen::SpatialConvolutionBackwardInput( filter, output_backward, padded_cols, padded_rows, col_stride, row_stride, col_dilation, row_dilation) .eval() .slice(Eigen::DSizes<Eigen::DenseIndex, 4>{0, pad_left, pad_top, 0}, input_backward.dimensions()); } }; template <typename T> struct SpatialConvolutionBackwardInputWithExplicitPaddingFunc<Eigen::GpuDevice, T> { void operator()(const Eigen::GpuDevice& d, typename TTypes<T, 4>::Tensor input_backward, typename TTypes<T, 4>::ConstTensor filter, typename TTypes<T, 4>::ConstTensor output_backward, Eigen::DenseIndex padded_cols, Eigen::DenseIndex padded_rows, Eigen::DenseIndex col_stride, Eigen::DenseIndex row_stride, Eigen::DenseIndex col_dilation, Eigen::DenseIndex row_dilation, Eigen::DenseIndex pad_left, Eigen::DenseIndex pad_top) { To32Bit(input_backward).device(d) = Eigen::SpatialConvolutionBackwardInput( To32Bit(filter), To32Bit(output_backward), padded_cols, padded_rows, col_stride, row_stride, col_dilation, row_dilation) .eval() .slice(Eigen::DSizes<Eigen::DenseIndex, 4>{0, pad_left, pad_top, 0}, input_backward.dimensions()); } }; template <typename Device, typename T, typename OutputKernel = const Eigen::NoOpOutputKernel> struct MatMulConvFunctor { void operator()( const Device& d, typename TTypes<T, 2>::Tensor out, typename TTypes<T, 2>::ConstTensor in0, typename TTypes<T, 2>::ConstTensor in1, const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair, const OutputKernel& output_kernel = OutputKernel()) { out.device(d) = in0.contract(in1, dim_pair, output_kernel); } }; template <typename Device, typename OutputKernel> struct MatMulConvFunctor<Device, Eigen::half, OutputKernel> { void operator()( const Device& d, typename TTypes<Eigen::half, 2>::Tensor out, typename TTypes<Eigen::half, 2>::ConstTensor in0, typename TTypes<Eigen::half, 2>::ConstTensor in1, const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair, const OutputKernel& output_kernel = OutputKernel()) { if (Conv2dUseFp16Accumulate()) { out.device(d) = in0.contract(in1, dim_pair, output_kernel); } else { out.device(d) = in0.cast<float>() .contract(in1.template cast<float>(), dim_pair, output_kernel) .template cast<Eigen::half>(); } } }; template <typename Device, typename OutputKernel> struct MatMulConvFunctor<Device, Eigen::bfloat16, OutputKernel> { void operator()( const Device& d, typename TTypes<Eigen::bfloat16, 2>::Tensor out, typename TTypes<Eigen::bfloat16, 2>::ConstTensor in0, typename TTypes<Eigen::bfloat16, 2>::ConstTensor in1, const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair, const OutputKernel& output_kernel = OutputKernel()) { out.device(d) = in0.cast<float>() .contract(in1.cast<float>(), dim_pair, output_kernel) .template cast<Eigen::bfloat16>(); } }; template <typename Device, typename T, typename IndexType, int NDIMS> struct TransformFilter { void operator()(const Device& d, FilterTensorFormat dst_filter_format, typename TTypes<T, NDIMS, IndexType>::ConstTensor in, typename TTypes<T, NDIMS, IndexType>::Tensor out) { Eigen::DSizes<IndexType, NDIMS - 2> spatial_dims; for (int i = 0; i < spatial_dims.rank(); ++i) { spatial_dims[i] = in.dimension(i); } Eigen::DSizes<IndexType, 3> merged_dims; merged_dims[0] = spatial_dims.TotalSize(); merged_dims[1] = in.dimension(NDIMS - 2); merged_dims[2] = in.dimension(NDIMS - 1); Eigen::DSizes<IndexType, 3> shuffling_perm; Eigen::DSizes<IndexType, NDIMS> expanded_dims; if (dst_filter_format == FORMAT_OIHW) { shuffling_perm = Eigen::DSizes<IndexType, 3>(2, 1, 0); expanded_dims[0] = merged_dims[2]; expanded_dims[1] = merged_dims[1]; for (int i = 0; i < spatial_dims.rank(); ++i) { expanded_dims[2 + i] = spatial_dims[i]; } } else if (dst_filter_format == FORMAT_OHWI) { shuffling_perm = Eigen::DSizes<IndexType, 3>(2, 0, 1); expanded_dims[0] = merged_dims[2]; expanded_dims[NDIMS - 1] = merged_dims[1]; for (int i = 0; i < spatial_dims.rank(); ++i) { expanded_dims[1 + i] = spatial_dims[i]; } } else { DCHECK(false) << "Unsupported destination filter format: " << ToString(dst_filter_format); } out.device(d) = in.reshape(merged_dims).shuffle(shuffling_perm).reshape(expanded_dims); } }; template <typename Device, typename T, typename IndexType> struct TransformDepth { void operator()(const Device& d, typename TTypes<T, 4, IndexType>::ConstTensor in, const Eigen::DSizes<IndexType, 4>& shuffle, typename TTypes<T, 4, IndexType>::Tensor out) { Eigen::DSizes<IndexType, 3> merged_dims; Eigen::DSizes<IndexType, 4> expanded_dims; Eigen::DSizes<IndexType, 3> new_shuffle; if (shuffle[1] == 2 && shuffle[2] == 3) { merged_dims[0] = in.dimension(0); merged_dims[1] = in.dimension(1); merged_dims[2] = in.dimension(2) * in.dimension(3); new_shuffle[0] = shuffle[0]; new_shuffle[1] = 2; new_shuffle[2] = shuffle[3]; expanded_dims[0] = in.dimension(shuffle[0]); expanded_dims[1] = in.dimension(2); expanded_dims[2] = in.dimension(3); expanded_dims[3] = in.dimension(shuffle[3]); } else if (shuffle[0] == 2 && shuffle[1] == 3) { merged_dims[0] = in.dimension(0); merged_dims[1] = in.dimension(1); merged_dims[2] = in.dimension(2) * in.dimension(3); new_shuffle[0] = 2; new_shuffle[1] = shuffle[2]; new_shuffle[2] = shuffle[3]; expanded_dims[0] = in.dimension(2); expanded_dims[1] = in.dimension(3); expanded_dims[2] = in.dimension(shuffle[2]); expanded_dims[3] = in.dimension(shuffle[3]); } else if (shuffle[0] == 0 && shuffle[1] == 3 && shuffle[2] == 1 && shuffle[3] == 2) { merged_dims[0] = in.dimension(0); merged_dims[1] = in.dimension(1) * in.dimension(2); merged_dims[2] = in.dimension(3); new_shuffle[0] = 0; new_shuffle[1] = 2; new_shuffle[2] = 1; expanded_dims[0] = in.dimension(0); expanded_dims[1] = in.dimension(3); expanded_dims[2] = in.dimension(1); expanded_dims[3] = in.dimension(2); } else { assert(false && "unexpected shuffle"); } out.device(d) = in.reshape(merged_dims).shuffle(new_shuffle).reshape(expanded_dims); } }; template <typename Device, typename T, typename IndexType, int NDIMS> struct PadInput { void operator()(const Device& d, typename TTypes<T, NDIMS, IndexType>::ConstTensor in, const std::array<int, NDIMS - 2>& padding_left, const std::array<int, NDIMS - 2>& padding_right, typename TTypes<T, NDIMS, IndexType>::Tensor out, TensorFormat format, const T& padding_value) { Eigen::array<Eigen::IndexPair<IndexType>, NDIMS> padding; padding[GetTensorDimIndex<NDIMS - 2>(format, 'N')] = {0, 0}; for (int i = 0; i < NDIMS - 2; ++i) { padding[GetTensorDimIndex<NDIMS - 2>(format, '0' + i)] = { padding_left[i], padding_right[i]}; } padding[GetTensorDimIndex<NDIMS - 2>(format, 'C')] = {0, 0}; out.device(d) = in.pad(padding, padding_value); } }; template <typename Device, typename T, int NDIMS> struct NHWCToNCHW { void operator()(const Device& d, typename TTypes<T, NDIMS>::ConstTensor in, typename TTypes<T, NDIMS>::Tensor out); }; template <typename Device, typename T, int NDIMS> struct NCHWToNHWC { void operator()(const Device& d, typename TTypes<T, NDIMS>::ConstTensor in, typename TTypes<T, NDIMS>::Tensor out); }; template <typename Device, typename T, bool conjugate = false> struct SwapDimension1And2InTensor3 { void operator()(const Device& d, const T* in, const absl::Span<const int64_t>& input_dims, T* out); }; template <typename Device, typename T, bool conjugate = false> struct SwapDimension0And2InTensor3 { void operator()(const Device& d, const T* in, const absl::Span<const int64_t>& input_dims, T* out); }; template <typename Device, typename T, int NDIMS> struct ReverseTransformFilter { void operator()(const Device& d, FilterTensorFormat src_filter_format, typename TTypes<T, NDIMS>::ConstTensor in, typename TTypes<T, NDIMS>::Tensor out); }; } template <class T> class ConvAlgorithmMap; template <> class ConvAlgorithmMap<Eigen::ThreadPoolDevice> {}; } #endif
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/conv_2d_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Conv2D, 1x1) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(1) .KernelWidth(1) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, 3x3) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(3) .KernelWidth(3) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, 3x3Stride2) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(3) .KernelWidth(3) .StrideHeight(2) .StrideWidth(2) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, Grouped) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_per_group_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); auto groups_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 8), std::ref(rng)); auto groups = groups_rng(); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(groups * channel_per_group_rng()) .OutputChannels(groups * channel_per_group_rng()) .Groups(groups) .KernelHeight(3) .KernelWidth(3) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SmallKernelWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SmallKernelWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, StrideWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, StrideWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DilationWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto dilation_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .DilationHeight(dilation_rng()) .DilationWidth(dilation_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DilationWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto dilation_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .DilationHeight(dilation_rng()) .DilationWidth(dilation_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(Conv2D, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .FP16Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, TensorWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .TensorWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, ChannelWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ChannelWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseFP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .FP16Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseTensorWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .TensorWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, SparseChannelWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SparseWeights() .ChannelWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(Conv2D, ReluActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ReluActivation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, Relu6Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .Relu6Activation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, ReluMinus1To1Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ReluMinus1To1Activation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DISABLED_TanhActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .TanhActivation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, DISABLED_SignBitActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SignBitActivation() .Test(xnnpack_delegate.get()); } TEST(Conv2D, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .Test(xnnpack_delegate.get()); } TEST(Conv2D, WeightsCache) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); std::unique_ptr<TfLiteXNNPackDelegateWeightsCache, decltype(&TfLiteXNNPackDelegateWeightsCacheDelete)> weights_cache(TfLiteXNNPackDelegateWeightsCacheCreate(), TfLiteXNNPackDelegateWeightsCacheDelete); delegate_options.weights_cache = weights_cache.get(); std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(1, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .WeightsCache(weights_cache.get()) .Test(xnnpack_delegate.get()); } TEST(Conv2D, TransientIndirectionBuffer) { TfLiteXNNPackDelegateOptions xnnpack_options = TfLiteXNNPackDelegateOptionsDefault(); xnnpack_options.num_threads = 2; xnnpack_options.flags |= TFLITE_XNNPACK_DELEGATE_FLAG_TRANSIENT_INDIRECTION_BUFFER; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&xnnpack_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto input_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); Conv2DTester() .BatchSize(batch_rng()) .InputHeight(input_rng()) .InputWidth(input_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .Test(xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/conv_2d.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/conv_2d_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6aadb0b1-e600-47f6-ac26-d99cf7ea00cd
cpp
tensorflow/tensorflow
histogram
third_party/xla/xla/tsl/lib/histogram/histogram.cc
third_party/xla/xla/tsl/lib/histogram/histogram_test.cc
#include "xla/tsl/lib/histogram/histogram.h" #include <float.h> #include <math.h> #include <vector> #include "xla/tsl/protobuf/histogram.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" namespace tsl { namespace histogram { static std::vector<double>* InitDefaultBucketsInner() { std::vector<double> buckets; std::vector<double> neg_buckets; double v = 1.0e-12; while (v < 1.0e20) { buckets.push_back(v); neg_buckets.push_back(-v); v *= 1.1; } buckets.push_back(DBL_MAX); neg_buckets.push_back(-DBL_MAX); std::reverse(neg_buckets.begin(), neg_buckets.end()); std::vector<double>* result = new std::vector<double>; result->insert(result->end(), neg_buckets.begin(), neg_buckets.end()); result->push_back(0.0); result->insert(result->end(), buckets.begin(), buckets.end()); return result; } static absl::Span<const double> InitDefaultBuckets() { static std::vector<double>* default_bucket_limits = InitDefaultBucketsInner(); return *default_bucket_limits; } Histogram::Histogram() : bucket_limits_(InitDefaultBuckets()) { Clear(); } Histogram::Histogram(absl::Span<const double> custom_bucket_limits) : custom_bucket_limits_(custom_bucket_limits.begin(), custom_bucket_limits.end()), bucket_limits_(custom_bucket_limits_) { #ifndef NDEBUG DCHECK_GT(bucket_limits_.size(), size_t{0}); for (size_t i = 1; i < bucket_limits_.size(); i++) { DCHECK_GT(bucket_limits_[i], bucket_limits_[i - 1]); } #endif Clear(); } bool Histogram::DecodeFromProto(const HistogramProto& proto) { if ((proto.bucket_size() != proto.bucket_limit_size()) || (proto.bucket_size() == 0)) { return false; } min_ = proto.min(); max_ = proto.max(); num_ = proto.num(); sum_ = proto.sum(); sum_squares_ = proto.sum_squares(); custom_bucket_limits_.clear(); custom_bucket_limits_.insert(custom_bucket_limits_.end(), proto.bucket_limit().begin(), proto.bucket_limit().end()); bucket_limits_ = custom_bucket_limits_; buckets_.clear(); buckets_.insert(buckets_.end(), proto.bucket().begin(), proto.bucket().end()); return true; } void Histogram::Clear() { min_ = bucket_limits_[bucket_limits_.size() - 1]; max_ = -DBL_MAX; num_ = 0; sum_ = 0; sum_squares_ = 0; buckets_.resize(bucket_limits_.size()); for (size_t i = 0; i < bucket_limits_.size(); i++) { buckets_[i] = 0; } } void Histogram::Add(double value) { int b = std::upper_bound(bucket_limits_.begin(), bucket_limits_.end(), value) - bucket_limits_.begin(); buckets_[b] += 1.0; if (min_ > value) min_ = value; if (max_ < value) max_ = value; num_++; sum_ += value; sum_squares_ += (value * value); } double Histogram::Median() const { return Percentile(50.0); } double Histogram::Remap(double x, double x0, double x1, double y0, double y1) const { return y0 + (x - x0) / (x1 - x0) * (y1 - y0); } double Histogram::Percentile(double p) const { if (num_ == 0.0) return 0.0; double threshold = num_ * (p / 100.0); double cumsum_prev = 0; for (size_t i = 0; i < buckets_.size(); i++) { double cumsum = cumsum_prev + buckets_[i]; if (cumsum >= threshold) { if (cumsum == cumsum_prev) { continue; } double lhs = (i == 0 || cumsum_prev == 0) ? min_ : bucket_limits_[i - 1]; lhs = std::max(lhs, min_); double rhs = bucket_limits_[i]; rhs = std::min(rhs, max_); double weight = Remap(threshold, cumsum_prev, cumsum, lhs, rhs); return weight; } cumsum_prev = cumsum; } return max_; } double Histogram::Average() const { if (num_ == 0.0) return 0; return sum_ / num_; } double Histogram::StandardDeviation() const { if (num_ == 0.0) return 0; double variance = (sum_squares_ * num_ - sum_ * sum_) / (num_ * num_); return sqrt(variance); } std::string Histogram::ToString() const { std::string r; char buf[200]; snprintf(buf, sizeof(buf), "Count: %.0f Average: %.4f StdDev: %.2f\n", num_, Average(), StandardDeviation()); r.append(buf); snprintf(buf, sizeof(buf), "Min: %.4f Median: %.4f Max: %.4f\n", (num_ == 0.0 ? 0.0 : min_), Median(), max_); r.append(buf); r.append("------------------------------------------------------\n"); const double mult = num_ > 0 ? 100.0 / num_ : 0.0; double sum = 0; for (size_t b = 0; b < buckets_.size(); b++) { if (buckets_[b] <= 0.0) continue; sum += buckets_[b]; snprintf(buf, sizeof(buf), "[ %10.2g, %10.2g ) %7.0f %7.3f%% %7.3f%% ", ((b == 0) ? -DBL_MAX : bucket_limits_[b - 1]), bucket_limits_[b], buckets_[b], mult * buckets_[b], mult * sum); r.append(buf); int marks = static_cast<int>(20 * (buckets_[b] / num_) + 0.5); r.append(marks, '#'); r.push_back('\n'); } return r; } void Histogram::EncodeToProto(HistogramProto* proto, bool preserve_zero_buckets) const { proto->Clear(); proto->set_min(min_); proto->set_max(max_); proto->set_num(num_); proto->set_sum(sum_); proto->set_sum_squares(sum_squares_); for (size_t i = 0; i < buckets_.size();) { double end = bucket_limits_[i]; double count = buckets_[i]; i++; if (!preserve_zero_buckets && count <= 0.0) { while (i < buckets_.size() && buckets_[i] <= 0.0) { end = bucket_limits_[i]; count = buckets_[i]; i++; } } proto->add_bucket_limit(end); proto->add_bucket(count); } if (proto->bucket_size() == 0.0) { proto->add_bucket_limit(DBL_MAX); proto->add_bucket(0.0); } } bool ThreadSafeHistogram::DecodeFromProto(const HistogramProto& proto) { mutex_lock l(mu_); return histogram_.DecodeFromProto(proto); } void ThreadSafeHistogram::Clear() { mutex_lock l(mu_); histogram_.Clear(); } void ThreadSafeHistogram::Add(double value) { mutex_lock l(mu_); histogram_.Add(value); } void ThreadSafeHistogram::EncodeToProto(HistogramProto* proto, bool preserve_zero_buckets) const { mutex_lock l(mu_); histogram_.EncodeToProto(proto, preserve_zero_buckets); } double ThreadSafeHistogram::Median() const { mutex_lock l(mu_); return histogram_.Median(); } double ThreadSafeHistogram::Percentile(double p) const { mutex_lock l(mu_); return histogram_.Percentile(p); } double ThreadSafeHistogram::Average() const { mutex_lock l(mu_); return histogram_.Average(); } double ThreadSafeHistogram::StandardDeviation() const { mutex_lock l(mu_); return histogram_.StandardDeviation(); } std::string ThreadSafeHistogram::ToString() const { mutex_lock l(mu_); return histogram_.ToString(); } } }
#include "xla/tsl/lib/histogram/histogram.h" #include <float.h> #include "xla/tsl/protobuf/histogram.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace tsl { namespace histogram { static void Validate(const Histogram& h) { string s1 = h.ToString(); LOG(ERROR) << s1; HistogramProto proto_with_zeroes; h.EncodeToProto(&proto_with_zeroes, true); Histogram h2; EXPECT_TRUE(h2.DecodeFromProto(proto_with_zeroes)); string s2 = h2.ToString(); LOG(ERROR) << s2; EXPECT_EQ(s1, s2); HistogramProto proto_no_zeroes; h.EncodeToProto(&proto_no_zeroes, false); LOG(ERROR) << proto_no_zeroes.DebugString(); Histogram h3; EXPECT_TRUE(h3.DecodeFromProto(proto_no_zeroes)); string s3 = h3.ToString(); LOG(ERROR) << s3; EXPECT_EQ(s1, s3); } TEST(Histogram, Empty) { Histogram h; Validate(h); } TEST(Histogram, SingleValue) { Histogram h; h.Add(-3.0); Validate(h); } TEST(Histogram, CustomBuckets) { Histogram h({-10, -5, 0, 5, 10, 100, 1000, 10000, DBL_MAX}); h.Add(-3.0); h.Add(4.99); h.Add(5.0); h.Add(1000.0); Validate(h); } TEST(Histogram, Median) { Histogram h({0, 10, 100, DBL_MAX}); h.Add(-2); h.Add(-2); h.Add(0); double median = h.Median(); EXPECT_EQ(median, -0.5); } TEST(Histogram, Percentile) { Histogram h({1, 2, 3, 4}); h.Add(-1.0); h.Add(1.5); h.Add(1.5); h.Add(1.5); h.Add(2.5); h.Add(2.5); h.Add(2.5); h.Add(2.5); h.Add(3.5); h.Add(3.9); EXPECT_EQ(h.Percentile(0), -1.0); EXPECT_EQ(h.Percentile(25), 1.5); EXPECT_EQ(h.Percentile(50), 2.25); EXPECT_EQ(h.Percentile(75), 2.875); EXPECT_EQ(h.Percentile(90), 3.45); EXPECT_EQ(h.Percentile(100), 3.9); } TEST(Histogram, Basic) { Histogram h; for (int i = 0; i < 100; i++) { h.Add(i); } for (int i = 1000; i < 100000; i += 1000) { h.Add(i); } Validate(h); } TEST(ThreadSafeHistogram, Basic) { Histogram h; for (int i = 0; i < 100; i++) { h.Add(i); } ThreadSafeHistogram tsh; for (int i = 0; i < 100; i++) { tsh.Add(i); } for (int i = 0; i < 2; ++i) { bool preserve_zero_buckets = (i == 0); HistogramProto h_proto; h.EncodeToProto(&h_proto, preserve_zero_buckets); HistogramProto tsh_proto; tsh.EncodeToProto(&tsh_proto, preserve_zero_buckets); Histogram h2; EXPECT_TRUE(h2.DecodeFromProto(tsh_proto)); ThreadSafeHistogram tsh2; EXPECT_TRUE(tsh2.DecodeFromProto(h_proto)); EXPECT_EQ(h2.ToString(), tsh2.ToString()); } EXPECT_EQ(h.Median(), tsh.Median()); EXPECT_EQ(h.Percentile(40.0), tsh.Percentile(40.0)); EXPECT_EQ(h.Average(), tsh.Average()); EXPECT_EQ(h.StandardDeviation(), tsh.StandardDeviation()); EXPECT_EQ(h.ToString(), tsh.ToString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/histogram/histogram.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/histogram/histogram_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94ed2b30-ae08-4f42-b4db-a5d14276453a
cpp
tensorflow/tensorflow
file_lock
tensorflow/lite/experimental/acceleration/mini_benchmark/file_lock.cc
tensorflow/lite/experimental/acceleration/mini_benchmark/file_lock_test.cc
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/file_lock.h" #ifndef _WIN32 #include <fcntl.h> #include <sys/file.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #endif #include <string> namespace tflite { namespace acceleration { bool FileLock::TryLock() { #ifndef _WIN32 if (fd_ < 0) { fd_ = open(path_.c_str(), O_WRONLY | O_CREAT | O_CLOEXEC, 0600); } if (fd_ < 0) { return false; } if (flock(fd_, LOCK_EX | LOCK_NB) == 0) { return true; } #endif return false; } } }
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/file_lock.h" #include <csignal> #include <iostream> #include <string> #include <utility> #include <gtest/gtest.h> namespace tflite { namespace acceleration { namespace { class FileLockTest : public ::testing::Test { protected: void SetUp() override { file_path_ = ::testing::TempDir() + "/file_lock"; } std::string file_path_; }; TEST_F(FileLockTest, CanLock) { EXPECT_TRUE(FileLock(file_path_).TryLock()); } TEST_F(FileLockTest, FailIfLockMoreThanOnce) { FileLock lock_one(file_path_); FileLock lock_two(file_path_); ASSERT_TRUE(lock_one.TryLock()); EXPECT_FALSE(lock_two.TryLock()); } TEST_F(FileLockTest, LockReleasedWhenThreadCrash) { pid_t pid = fork(); if (pid == 0) { FileLock lock(file_path_); if (!lock.TryLock()) { _exit(1); } std::cout << "Lock acquired successfully."; kill(getpid(), SIGKILL); } int wstatus; int w = waitpid(pid, &wstatus, WUNTRACED); ASSERT_NE(w, -1); FileLock lock_two(file_path_); EXPECT_TRUE(lock_two.TryLock()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/file_lock.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/file_lock_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
95e96d4b-b827-4843-9abd-3d2159c0edd0
cpp
tensorflow/tensorflow
shape_ops
tensorflow/core/kernels/shape_ops.cc
tensorflow/core/kernels/shape_ops_test.cc
#include "tensorflow/core/kernels/shape_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/register_types.h" namespace tensorflow { REGISTER_KERNEL_BUILDER(Name("Shape") .Device(DEVICE_CPU) .HostMemory("output") .TypeConstraint<int32>("out_type"), ShapeOp<int32>); REGISTER_KERNEL_BUILDER(Name("Shape") .Device(DEVICE_CPU) .HostMemory("output") .TypeConstraint<int64_t>("out_type"), ShapeOp<int64_t>); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("Shape") \ .Device(DEVICE_GPU) \ .HostMemory("output") \ .TypeConstraint<int32>("out_type") \ .TypeConstraint<type>("T"), \ ShapeOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("Shape") \ .Device(DEVICE_GPU) \ .HostMemory("output") \ .TypeConstraint<int64_t>("out_type") \ .TypeConstraint<type>("T"), \ ShapeOp<int64_t>); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL); TF_CALL_bool(REGISTER_GPU_KERNEL); TF_CALL_variant(REGISTER_GPU_KERNEL); TF_CALL_tstring(REGISTER_GPU_KERNEL); #undef REGISTER_GPU_KERNEL REGISTER_KERNEL_BUILDER(Name("Shape") .Device(DEVICE_GPU) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int32>("out_type"), ShapeOp<int32>); REGISTER_KERNEL_BUILDER(Name("Shape") .Device(DEVICE_GPU) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("out_type"), ShapeOp<int64_t>); #endif #define REGISTER_DEFAULT_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("Shape") \ .Device(DEVICE_DEFAULT) \ .HostMemory("output") \ .TypeConstraint<int32>("out_type") \ .TypeConstraint<type>("T"), \ ShapeOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("Shape") \ .Device(DEVICE_DEFAULT) \ .HostMemory("output") \ .TypeConstraint<int64_t>("out_type") \ .TypeConstraint<type>("T"), \ ShapeOp<int64_t>); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_DEFAULT_KERNEL); TF_CALL_bool(REGISTER_DEFAULT_KERNEL); TF_CALL_variant(REGISTER_DEFAULT_KERNEL); #undef REGISTER_DEFAULT_KERNEL REGISTER_KERNEL_BUILDER(Name("Shape") .Device(DEVICE_DEFAULT) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int32>("out_type"), ShapeOp<int32>); REGISTER_KERNEL_BUILDER(Name("Shape") .Device(DEVICE_DEFAULT) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("out_type"), ShapeOp<int64_t>); REGISTER_KERNEL_BUILDER(Name("ShapeN") .Device(DEVICE_CPU) .HostMemory("output") .TypeConstraint<int32>("out_type"), ShapeNOp<int32>); REGISTER_KERNEL_BUILDER(Name("ShapeN") .Device(DEVICE_CPU) .HostMemory("output") .TypeConstraint<int64_t>("out_type"), ShapeNOp<int64_t>); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("ShapeN") \ .Device(DEVICE_GPU) \ .HostMemory("output") \ .TypeConstraint<int32>("out_type") \ .TypeConstraint<type>("T"), \ ShapeNOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("ShapeN") \ .Device(DEVICE_GPU) \ .HostMemory("output") \ .TypeConstraint<int64_t>("out_type") \ .TypeConstraint<type>("T"), \ ShapeNOp<int64_t>) TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL); TF_CALL_bool(REGISTER_GPU_KERNEL); #undef REGISTER_GPU_KERNEL REGISTER_KERNEL_BUILDER(Name("ShapeN") .Device(DEVICE_GPU) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int32>("out_type"), ShapeNOp<int32>); REGISTER_KERNEL_BUILDER(Name("ShapeN") .Device(DEVICE_GPU) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("out_type"), ShapeNOp<int64_t>); #endif #define REGISTER_DEFAULT_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("ShapeN") \ .Device(DEVICE_DEFAULT) \ .HostMemory("output") \ .TypeConstraint<int32>("out_type") \ .TypeConstraint<type>("T"), \ ShapeNOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("ShapeN") \ .Device(DEVICE_DEFAULT) \ .HostMemory("output") \ .TypeConstraint<int64_t>("out_type") \ .TypeConstraint<type>("T"), \ ShapeNOp<int64_t>) TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_DEFAULT_KERNEL); TF_CALL_bool(REGISTER_DEFAULT_KERNEL); #undef REGISTER_DEFAULT_KERNEL REGISTER_KERNEL_BUILDER(Name("ShapeN") .Device(DEVICE_DEFAULT) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int32>("out_type"), ShapeNOp<int32>); REGISTER_KERNEL_BUILDER(Name("ShapeN") .Device(DEVICE_DEFAULT) .HostMemory("input") .HostMemory("output") .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("out_type"), ShapeNOp<int64_t>); REGISTER_KERNEL_BUILDER(Name("Rank").Device(DEVICE_CPU).HostMemory("output"), RankOp); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("Rank") \ .Device(DEVICE_GPU) \ .TypeConstraint<type>("T") \ .HostMemory("output"), \ RankOp); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL); TF_CALL_variant(REGISTER_GPU_KERNEL); #undef REGISTER_GPU_KERNEL REGISTER_KERNEL_BUILDER(Name("Rank") .Device(DEVICE_GPU) .TypeConstraint<int32>("T") .HostMemory("input") .HostMemory("output"), RankOp); REGISTER_KERNEL_BUILDER(Name("Rank") .Device(DEVICE_GPU) .TypeConstraint<bool>("T") .HostMemory("input") .HostMemory("output"), RankOp); #endif #define REGISTER_DEFAULT_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("Rank") \ .Device(DEVICE_DEFAULT) \ .TypeConstraint<type>("T") \ .HostMemory("output"), \ RankOp); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_DEFAULT_KERNEL); TF_CALL_variant(REGISTER_DEFAULT_KERNEL); #undef REGISTER_DEFAULT_KERNEL REGISTER_KERNEL_BUILDER(Name("Rank") .Device(DEVICE_DEFAULT) .TypeConstraint<int32>("T") .HostMemory("input") .HostMemory("output"), RankOp); REGISTER_KERNEL_BUILDER(Name("Rank") .Device(DEVICE_DEFAULT) .TypeConstraint<bool>("T") .HostMemory("input") .HostMemory("output"), RankOp); REGISTER_KERNEL_BUILDER(Name("Size") .Device(DEVICE_CPU) .HostMemory("output") .TypeConstraint<int32>("out_type"), SizeOp<int32>); REGISTER_KERNEL_BUILDER(Name("Size") .Device(DEVICE_CPU) .HostMemory("output") .TypeConstraint<int64_t>("out_type"), SizeOp<int64_t>); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("Size") \ .Device(DEVICE_GPU) \ .TypeConstraint<type>("T") \ .TypeConstraint<int32>("out_type") \ .HostMemory("output"), \ SizeOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("Size") \ .Device(DEVICE_GPU) \ .TypeConstraint<type>("T") \ .TypeConstraint<int64_t>("out_type") \ .HostMemory("output"), \ SizeOp<int64_t>); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL); TF_CALL_bool(REGISTER_GPU_KERNEL); TF_CALL_variant(REGISTER_GPU_KERNEL); #undef REGISTER_GPU_KERNEL REGISTER_KERNEL_BUILDER(Name("Size") .Device(DEVICE_GPU) .TypeConstraint<int32>("T") .TypeConstraint<int32>("out_type") .HostMemory("input") .HostMemory("output"), SizeOp<int32>); REGISTER_KERNEL_BUILDER(Name("Size") .Device(DEVICE_GPU) .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("out_type") .HostMemory("input") .HostMemory("output"), SizeOp<int64_t>); #endif #define REGISTER_DEFAULT_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("Size") \ .Device(DEVICE_DEFAULT) \ .TypeConstraint<type>("T") \ .TypeConstraint<int32>("out_type") \ .HostMemory("output"), \ SizeOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("Size") \ .Device(DEVICE_DEFAULT) \ .TypeConstraint<type>("T") \ .TypeConstraint<int64_t>("out_type") \ .HostMemory("output"), \ SizeOp<int64_t>); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_DEFAULT_KERNEL); TF_CALL_bool(REGISTER_DEFAULT_KERNEL); TF_CALL_variant(REGISTER_DEFAULT_KERNEL); #undef REGISTER_DEFAULT_KERNEL REGISTER_KERNEL_BUILDER(Name("Size") .Device(DEVICE_DEFAULT) .TypeConstraint<int32>("T") .TypeConstraint<int32>("out_type") .HostMemory("input") .HostMemory("output"), SizeOp<int32>); REGISTER_KERNEL_BUILDER(Name("Size") .Device(DEVICE_DEFAULT) .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("out_type") .HostMemory("input") .HostMemory("output"), SizeOp<int64_t>); REGISTER_KERNEL_BUILDER(Name("ExpandDims") .Device(DEVICE_CPU) .HostMemory("dim") .TypeConstraint<int32>("Tdim"), ExpandDimsOp<int32>); REGISTER_KERNEL_BUILDER(Name("ExpandDims") .Device(DEVICE_CPU) .HostMemory("dim") .TypeConstraint<int64_t>("Tdim"), ExpandDimsOp<int64_t>); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("ExpandDims") \ .Device(DEVICE_GPU) \ .TypeConstraint<type>("T") \ .TypeConstraint<int32>("Tdim") \ .HostMemory("dim"), \ ExpandDimsOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("ExpandDims") \ .Device(DEVICE_GPU) \ .TypeConstraint<type>("T") \ .TypeConstraint<int64_t>("Tdim") \ .HostMemory("dim"), \ ExpandDimsOp<int64_t>); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL); TF_CALL_bool(REGISTER_GPU_KERNEL); #undef REGISTER_GPU_KERNEL REGISTER_KERNEL_BUILDER(Name("ExpandDims") .Device(DEVICE_GPU) .TypeConstraint<int32>("T") .TypeConstraint<int32>("Tdim") .HostMemory("input") .HostMemory("dim") .HostMemory("output"), ExpandDimsOp<int32>); REGISTER_KERNEL_BUILDER(Name("ExpandDims") .Device(DEVICE_GPU) .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("Tdim") .HostMemory("input") .HostMemory("dim") .HostMemory("output"), ExpandDimsOp<int64_t>); #endif #define REGISTER_DEFAULT_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("ExpandDims") \ .Device(DEVICE_DEFAULT) \ .TypeConstraint<type>("T") \ .TypeConstraint<int32>("Tdim") \ .HostMemory("dim"), \ ExpandDimsOp<int32>); \ REGISTER_KERNEL_BUILDER(Name("ExpandDims") \ .Device(DEVICE_DEFAULT) \ .TypeConstraint<type>("T") \ .TypeConstraint<int64_t>("Tdim") \ .HostMemory("dim"), \ ExpandDimsOp<int64_t>); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_DEFAULT_KERNEL); TF_CALL_bool(REGISTER_DEFAULT_KERNEL); #undef REGISTER_DEFAULT_KERNEL REGISTER_KERNEL_BUILDER(Name("ExpandDims") .Device(DEVICE_DEFAULT) .TypeConstraint<int32>("T") .TypeConstraint<int32>("Tdim") .HostMemory("input") .HostMemory("dim") .HostMemory("output"), ExpandDimsOp<int32>); REGISTER_KERNEL_BUILDER(Name("ExpandDims") .Device(DEVICE_DEFAULT) .TypeConstraint<int32>("T") .TypeConstraint<int64_t>("Tdim") .HostMemory("input") .HostMemory("dim") .HostMemory("output"), ExpandDimsOp<int64_t>); REGISTER_KERNEL_BUILDER(Name("Squeeze").Device(DEVICE_CPU), SqueezeOp); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNEL(type) \ REGISTER_KERNEL_BUILDER( \ Name("Squeeze").Device(DEVICE_GPU).TypeConstraint<type>("T"), \ SqueezeOp); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL); TF_CALL_bool(REGISTER_GPU_KERNEL); #undef REGISTER_GPU_KERNEL REGISTER_KERNEL_BUILDER(Name("Squeeze") .Device(DEVICE_GPU) .TypeConstraint<int32>("T") .HostMemory("input") .HostMemory("output"), SqueezeOp); #endif #define REGISTER_DEFAULT_KERNEL(type) \ REGISTER_KERNEL_BUILDER( \ Name("Squeeze").Device(DEVICE_DEFAULT).TypeConstraint<type>("T"), \ SqueezeOp); TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_DEFAULT_KERNEL); TF_CALL_bool(REGISTER_DEFAULT_KERNEL); #undef REGISTER_DEFAULT_KERNEL REGISTER_KERNEL_BUILDER(Name("Squeeze") .Device(DEVICE_DEFAULT) .TypeConstraint<int32>("T") .HostMemory("input") .HostMemory("output"), SqueezeOp); class EnsureShapeOp : public OpKernel { public: explicit EnsureShapeOp(OpKernelConstruction* ctx) : OpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("shape", &expected_shape_)); } void Compute(OpKernelContext* ctx) override { TensorShape shape; OP_REQUIRES_OK(ctx, shape_op_helpers::GetShape(ctx, 0, &shape)); if (!expected_shape_.IsCompatibleWith(shape)) { ctx->SetStatus(errors::InvalidArgument( "Shape of tensor ", this->def().input(0), " ", shape.DebugString(), " is not compatible with expected shape ", expected_shape_.DebugString(), ".")); } if (IsRefType(ctx->input_dtype(0))) { ctx->forward_ref_input_to_ref_output(0, 0); } else { ctx->set_output(0, ctx->input(0)); } } bool IsExpensive() override { return false; } private: PartialTensorShape expected_shape_; }; REGISTER_KERNEL_BUILDER(Name("EnsureShape").Device(DEVICE_CPU), EnsureShapeOp); #define REGISTER_DEVICE_KERNEL(type) \ REGISTER_KERNEL_BUILDER( \ Name("EnsureShape").Device(DEVICE_DEFAULT).TypeConstraint<type>("T"), \ EnsureShapeOp) TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_DEVICE_KERNEL); REGISTER_DEVICE_KERNEL(Variant); #undef REGISTER_DEVICE_KERNEL #define REGISTER_DEVICE_HOST_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("EnsureShape") \ .Device(DEVICE_DEFAULT) \ .HostMemory("input") \ .HostMemory("output") \ .TypeConstraint<type>("T"), \ EnsureShapeOp) REGISTER_DEVICE_HOST_KERNEL(int32); REGISTER_DEVICE_HOST_KERNEL(bool); REGISTER_DEVICE_HOST_KERNEL(tstring); REGISTER_DEVICE_HOST_KERNEL(ResourceHandle); #undef REGISTER_DEVICE_HOST_KERNEL }
#include <functional> #include <memory> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { static void BM_ExpandDims(::testing::benchmark::State& state) { Graph* g = new Graph(OpRegistry::Global()); Tensor input(DT_INT32, TensorShape({1, 1, 1, 1})); input.flat<int32>()(0) = 10; Tensor axis(DT_INT32, TensorShape({})); axis.flat<int32>()(0) = 2; Node* node; TF_CHECK_OK(NodeBuilder(g->NewName("n"), "ExpandDims") .Input(test::graph::Constant(g, input)) .Input(test::graph::Constant(g, axis)) .Attr("T", DT_INT32) .Attr("Tdim", DT_INT32) .Finalize(g, &node)); FixupSourceAndSinkEdges(g); test::Benchmark("cpu", g, nullptr, nullptr, nullptr, "SINGLE_THREADED_EXECUTOR", false) .Run(state); } BENCHMARK(BM_ExpandDims)->UseRealTime(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/shape_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/shape_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5167545a-1fdc-49e1-b624-b69e33f648e6
cpp
google/arolla
presence
arolla/expr/optimization/peephole_optimizations/presence.cc
arolla/expr/optimization/peephole_optimizations/presence_test.cc
#include "arolla/expr/optimization/peephole_optimizations/presence.h" #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/optimization/peephole_optimizer.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/standard_type_properties/properties.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace presence_impl { bool IsPresenceType(const ExprNodePtr& expr) { QTypePtr qtype = expr->qtype(); return qtype != nullptr && qtype == GetPresenceQType(qtype).value_or(nullptr); } bool IsAlwaysPresentType(const ExprNodePtr& expr) { return IsScalarQType(expr->qtype()); } bool IsAlwaysPresentOptionalValue(const ExprNodePtr& expr) { const auto& optional_qvalue = expr->qvalue(); return optional_qvalue.has_value() && IsOptionalQType(optional_qvalue->GetType()) && UnsafeIsPresent(optional_qvalue->AsRef()); } bool IsAlwaysPresent(const ExprNodePtr& expr) { return IsAlwaysPresentType(expr) || IsAlwaysPresentOptionalValue(expr); } bool IsAlwaysAbsentOptionalValue(const ExprNodePtr& expr) { const auto& optional_qvalue = expr->qvalue(); return optional_qvalue.has_value() && IsOptionalQType(optional_qvalue->GetType()) && !UnsafeIsPresent(optional_qvalue->AsRef()); } } namespace { using ::arolla::expr::presence_impl::IsAlwaysAbsentOptionalValue; using ::arolla::expr::presence_impl::IsAlwaysPresent; using ::arolla::expr::presence_impl::IsAlwaysPresentOptionalValue; using ::arolla::expr::presence_impl::IsAlwaysPresentType; using ::arolla::expr::presence_impl::IsPresenceType; bool IsLiteral(const ExprNodePtr& node) { return node->is_literal(); } bool IsOptionalLikeNode(const ExprNodePtr& node) { QTypePtr qtype = node->qtype(); return qtype != nullptr && IsOptionalLikeQType(qtype); } bool IsBaseQType(const ExprNodePtr& node) { return IsScalarQType(DecayOptionalQType(node->qtype())); } absl::Status HasRemovalOptimizations(PeepholeOptimizationPack& optimizations) { { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.has._optional", {Placeholder("a")})); ExprNodePtr to = Literal(kPresent); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", IsAlwaysPresentOptionalValue}})); } { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.presence_not._builtin", {CallOpReference("core.has._optional", {Placeholder("a")})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_not", {Placeholder("a")})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.presence_not._builtin", {CallOpReference("core.has._array", {Placeholder("a")})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_not", {Placeholder("a")})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference( "core.has._optional", {CallOpReference("core.to_optional._scalar", {Placeholder("a")})})); ExprNodePtr to = Literal(kPresent); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", IsAlwaysPresentType}})); } return absl::OkStatus(); } absl::Status PresenceAndRemovalOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.presence_and", {a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, a, {{"b", IsAlwaysPresentType}})); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("core.presence_not._builtin", {CallOpReference("core.presence_and", {a, b})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_not", {b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", IsAlwaysPresent}})); } { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.presence_and", {a, b})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.to_optional", {a})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"b", IsAlwaysPresentOptionalValue}})); } { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.presence_and", {a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, b, {{"a", [](const ExprNodePtr& expr) { return IsAlwaysPresent(expr) && IsPresenceType(expr); }}})); } return absl::OkStatus(); } absl::Status PresenceOrRemovalOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.presence_or", {a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, a, {{"a", IsAlwaysPresentType}})); return absl::OkStatus(); } absl::Status HasPropagationOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); auto is_literal_or_presence = [](const ExprNodePtr& expr) { return IsLiteral(expr) || IsPresenceType(expr); }; for (const char* op_has : {"core.has._optional", "core.has._array"}) { for (const auto& op : {"core.presence_or", "core.presence_and"}) { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference(op_has, {CallOpReference(op, {a, b})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference(op, {CallOpReference("core.has", {a}), CallOpReference("core.has", {b})})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", is_literal_or_presence}})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"b", is_literal_or_presence}})); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference( op_has, {CallOpReference("core._presence_and_or", {a, c, b})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core._presence_and_or", {CallOpReference("core.has", {a}), c, CallOpReference("core.has", {b})})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", is_literal_or_presence}})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"b", is_literal_or_presence}})); } } return absl::OkStatus(); } absl::Status ToOptionalPropagationOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("core.to_optional._scalar", {CallOpReference("core.presence_or", {a, b})})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference("core.presence_or", {a, CallOpReference("core.to_optional", {b})})); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", IsOptionalLikeNode}, {"b", IsLiteral}})); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("core.to_optional._scalar", {CallOpReference("core._presence_and_or", {a, c, b})})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference("core._presence_and_or", {CallOpReference("core.to_optional", {a}), c, CallOpReference("core.to_optional", {b})})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", IsLiteral}})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"b", IsLiteral}})); } return absl::OkStatus(); } absl::Status PresenceAndOptionalOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr c = Placeholder("c"); { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("core.presence_and", {CallOpReference("core.to_optional._scalar", {a}), c})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_and", {a, c})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } return absl::OkStatus(); } absl::Status PresenceAndOrCombinationOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); ExprNodePtr d = Placeholder("d"); { ASSIGN_OR_RETURN( ExprNodePtr from1, CallOpReference("core.presence_or", {CallOpReference("core.presence_and", {c, a}), CallOpReference("core.presence_and", {c, b})})); ASSIGN_OR_RETURN( ExprNodePtr from2, CallOpReference("core._presence_and_or", {c, a, CallOpReference("core.presence_and", {c, b})})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference("core.presence_and", {c, CallOpReference("core.presence_or", {a, b})})); for (const auto& from : {from1, from2}) { ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference( "core.presence_or", {CallOpReference("core.presence_or", { d, CallOpReference("core.presence_and", {c, a}), }), CallOpReference("core.presence_and", {c, b})})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference( "core.presence_or", {d, CallOpReference( "core.presence_and", {c, CallOpReference("core.presence_or", {a, b})})})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } return absl::OkStatus(); } absl::Status WhereOptimizations(PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference( "core.presence_or", {CallOpReference("core.presence_and", {a, c}), CallOpReference( "core.presence_and", {b, CallOpReference("core.presence_not._builtin", {c})})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.to_optional", { CallOpReference("core.where", {c, a, b})})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"c", IsOptionalLikeNode}})); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference( "core._presence_and_or", {a, c, CallOpReference( "core.presence_and", {b, CallOpReference("core.presence_not._builtin", {c})})})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.where", {c, a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(from, to)); } { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference("core.presence_or", {CallOpReference("core.presence_and", {a, c}), b})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core._presence_and_or", {a, c, b})); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", IsBaseQType}, {"b", IsBaseQType}, {"c", IsBaseQType}})); } { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.where", {c, a, b})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, a, {{"c", IsAlwaysPresent}, {"a", IsAlwaysPresentType}, {"b", IsAlwaysPresentType}})); } return absl::OkStatus(); } absl::Status WhereToPresenceAndOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core.where", {c, a, b})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_and", {a, c})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"b", IsAlwaysAbsentOptionalValue}})); } return absl::OkStatus(); } absl::Status PresenceAndOrOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core._presence_and_or", {a, b, c})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_or", {a, c})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"b", IsAlwaysPresent}})); } { ASSIGN_OR_RETURN(ExprNodePtr from, CallOpReference("core._presence_and_or", {a, b, c})); ASSIGN_OR_RETURN(ExprNodePtr to, CallOpReference("core.presence_or", {b, c})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", [](const ExprNodePtr& expr) { return IsAlwaysPresent(expr) && IsPresenceType(expr); }}})); } return absl::OkStatus(); } absl::Status InsideWherePropagationOptimizations( PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); for (const auto& [op_from, op_to] : std::vector<std::pair<std::string, std::string>>{ {"core.to_optional._scalar", "core.to_optional"}, {"core.has._optional", "core.has"}, {"core.has._array", "core.has"}, }) { ASSIGN_OR_RETURN( ExprNodePtr from, CallOpReference(op_from, {CallOpReference("core.where", {c, a, b})})); ASSIGN_OR_RETURN( ExprNodePtr to, CallOpReference("core.where", {c, CallOpReference(op_to, {a}), CallOpReference(op_to, {b})})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"a", IsLiteral}})); ASSIGN_OR_RETURN(optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization( from, to, {{"b", IsLiteral}})); } return absl::OkStatus(); } } absl::StatusOr<PeepholeOptimizationPack> PresenceOptimizations() { PeepholeOptimizationPack optimizations; RETURN_IF_ERROR(HasRemovalOptimizations(optimizations)); RETURN_IF_ERROR(PresenceAndRemovalOptimizations(optimizations)); RETURN_IF_ERROR(PresenceOrRemovalOptimizations(optimizations)); RETURN_IF_ERROR(HasPropagationOptimizations(optimizations)); RETURN_IF_ERROR(ToOptionalPropagationOptimizations(optimizations)); RETURN_IF_ERROR(PresenceAndOptionalOptimizations(optimizations)); RETURN_IF_ERROR(PresenceAndOrCombinationOptimizations(optimizations)); RETURN_IF_ERROR(WhereOptimizations(optimizations)); RETURN_IF_ERROR(InsideWherePropagationOptimizations(optimizations)); RETURN_IF_ERROR(PresenceAndOrOptimizations(optimizations)); return optimizations; } absl::StatusOr<PeepholeOptimizationPack> CodegenPresenceOptimizations() { PeepholeOptimizationPack optimizations; RETURN_IF_ERROR(WhereToPresenceAndOptimizations(optimizations)); return optimizations; } }
#include "arolla/expr/optimization/peephole_optimizations/presence.h" #include <cstdint> #include <memory> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/statusor.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/optimization/peephole_optimizer.h" #include "arolla/expr/testing/testing.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { using ::arolla::expr::presence_impl::IsAlwaysPresent; using ::arolla::expr::presence_impl::IsPresenceType; using ::arolla::testing::EqualsExpr; using ::arolla::testing::WithQTypeAnnotation; class PresenceOptimizationsTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK_AND_ASSIGN(optimizer_, CreatePeepholeOptimizer({PresenceOptimizations})); ASSERT_OK_AND_ASSIGN( codegen_optimizer_, CreatePeepholeOptimizer( {PresenceOptimizations, CodegenPresenceOptimizations})); } absl::StatusOr<ExprNodePtr> ApplyOptimizer( absl::StatusOr<ExprNodePtr> status_or_expr) const { ASSIGN_OR_RETURN(auto expr, ToLowest(status_or_expr)); return ToLowest(optimizer_->ApplyToNode(expr)); } absl::StatusOr<ExprNodePtr> ApplyCodegenOptimizer( absl::StatusOr<ExprNodePtr> status_or_expr) const { ASSIGN_OR_RETURN(auto expr, ToLowest(status_or_expr)); return ToLowest(codegen_optimizer_->ApplyToNode(expr)); } absl::StatusOr<ExprNodePtr> ToLowest( const absl::StatusOr<ExprNodePtr>& status_or_expr) const { if (!status_or_expr.ok()) { return std::move(status_or_expr).status(); } return ::arolla::expr::ToLowest(*status_or_expr); } std::unique_ptr<PeepholeOptimizer> optimizer_; std::unique_ptr<PeepholeOptimizer> codegen_optimizer_; }; TEST_F(PresenceOptimizationsTest, IsPresenceType) { for (QTypePtr tpe : {GetQType<int>(), GetOptionalQType<int>(), GetDenseArrayQType<int>()}) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), tpe)); EXPECT_FALSE(IsPresenceType(x)) << tpe->name(); } for (QTypePtr tpe : {GetQType<Unit>(), GetOptionalQType<Unit>(), GetDenseArrayQType<Unit>()}) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), tpe)); EXPECT_TRUE(IsPresenceType(x)) << tpe->name(); } } TEST_F(PresenceOptimizationsTest, IsAlwaysPresent) { for (QTypePtr tpe : {GetQType<int>(), GetQType<Unit>()}) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), tpe)); EXPECT_TRUE(IsAlwaysPresent(x)) << tpe->name(); } for (QTypePtr tpe : {GetOptionalQType<int>(), GetDenseArrayQType<Unit>()}) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), tpe)); EXPECT_FALSE(IsAlwaysPresent(x)) << tpe->name(); } for (auto x : {Literal(1.), Literal(MakeOptionalValue(1.)), Literal(kPresent)}) { EXPECT_TRUE(IsAlwaysPresent(x)) << x->qvalue()->Repr(); } for (auto x : {Literal(OptionalValue<int>()), Literal(kMissing)}) { EXPECT_FALSE(IsAlwaysPresent(x)) << x->qvalue()->Repr(); } } TEST_F(PresenceOptimizationsTest, HasRemoval) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), GetQType<int>())); ASSERT_OK_AND_ASSIGN(auto y, WithQTypeAnnotation(Leaf("y"), GetQType<Unit>())); ASSERT_OK_AND_ASSIGN(auto x_opt, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<int>())); ASSERT_OK_AND_ASSIGN( auto y_opt, WithQTypeAnnotation(Leaf("y"), GetOptionalQType<Unit>())); auto unit = Literal(Unit{}); auto present = Literal(kPresent); auto present_float32 = Literal(MakeOptionalValue(1.0f)); for (const auto& arg : {x, y}) { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("core.has", {arg}))); EXPECT_THAT(actual_expr, EqualsExpr(unit)); } for (const auto& arg : {present, present_float32}) { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("core.has", {arg}))); EXPECT_THAT(actual_expr, EqualsExpr(present)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("core.has", {x_opt}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.has", {x_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("core.has", {y_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(y_opt)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.has", {CallOp("core.presence_not", {x_opt})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_not", {x_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("core.presence_not", {CallOp("core.has", {x_opt})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_not", {x_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.has", {CallOp("core.to_optional", {x})}))); EXPECT_THAT(actual_expr, EqualsExpr(present)); } } TEST_F(PresenceOptimizationsTest, AndRemoval) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), GetQType<int>())); ASSERT_OK_AND_ASSIGN(auto y, WithQTypeAnnotation(Leaf("y"), GetQType<Unit>())); ASSERT_OK_AND_ASSIGN(auto x_opt, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<int>())); ASSERT_OK_AND_ASSIGN( auto y_opt, WithQTypeAnnotation(Leaf("y"), GetOptionalQType<Unit>())); auto present = Literal(kPresent); auto present_int32 = Literal(MakeOptionalValue(1)); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_and", {x_opt, present}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.to_optional", {x_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_and", {present, y_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(y_opt)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_and", {present_int32, y_opt}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.presence_and", {present_int32, y_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_and", {x_opt, y_opt}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_and", {x_opt, y_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, OrRemoval) { ASSERT_OK_AND_ASSIGN(ExprNodePtr x, WithQTypeAnnotation(Leaf("x"), GetQType<int>())); ASSERT_OK_AND_ASSIGN(ExprNodePtr y, WithQTypeAnnotation(Leaf("y"), GetQType<Unit>())); ASSERT_OK_AND_ASSIGN(ExprNodePtr x_opt, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<int>())); ASSERT_OK_AND_ASSIGN( ExprNodePtr y_opt, WithQTypeAnnotation(Leaf("y"), GetOptionalQType<Unit>())); ExprNodePtr present = Literal(kUnit); ExprNodePtr present_int32 = Literal(1); for (const auto& arg : {x, present_int32}) { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_or", {arg, x_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(arg)); } for (const auto& arg : {y, present}) { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_or", {arg, y_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(arg)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_or", {y_opt, y_opt}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_or", {y_opt, y_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_or", {y_opt, present}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.presence_or", {y_opt, present}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, HasPropagation) { ASSERT_OK_AND_ASSIGN(auto x, WithQTypeAnnotation(Leaf("x"), GetQType<int>())); ASSERT_OK_AND_ASSIGN(auto y, WithQTypeAnnotation(Leaf("y"), GetQType<Unit>())); ASSERT_OK_AND_ASSIGN(auto x_opt, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<int>())); ASSERT_OK_AND_ASSIGN( auto y_opt, WithQTypeAnnotation(Leaf("y"), GetOptionalQType<Unit>())); ASSERT_OK_AND_ASSIGN( auto z_opt, WithQTypeAnnotation(Leaf("z"), GetOptionalQType<Unit>())); auto present = Literal(kPresent); auto present_int = Literal(MakeOptionalValue(1)); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.has", {CallOp("core.presence_or", {x_opt, x_opt})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest( CallOp("core.has", {CallOp("core.presence_or", {x_opt, x_opt})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.has", {CallOp("core.presence_and", {x_opt, y_opt})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.presence_and", {CallOp("core.has", {x_opt}), CallOp("core.has", {y_opt})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp( "core.has", {CallOp("core.presence_or", {x_opt, present_int})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_or", {CallOp("core.has", {x_opt}), CallOp("core.has", {present_int})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.has", {CallOp("core.presence_or", {y_opt, z_opt})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_or", {y_opt, z_opt}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp( "core.has", {CallOp("core._presence_and_or", {present_int, y_opt, x_opt})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core._presence_and_or", {CallOp("core.has", {present_int}), y_opt, CallOp("core.has", {x_opt})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp( "core.has", {CallOp("core._presence_and_or", {x_opt, y_opt, present_int})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core._presence_and_or", {CallOp("core.has", {x_opt}), y_opt, CallOp("core.has", {present_int})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, ToOptionalPropagation) { ASSERT_OK_AND_ASSIGN( auto x, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<int32_t>())); ASSERT_OK_AND_ASSIGN( auto y, WithQTypeAnnotation(Leaf("y"), GetOptionalQType<int32_t>())); ASSERT_OK_AND_ASSIGN(auto z, WithQTypeAnnotation(Leaf("z"), GetQType<int32_t>())); ASSERT_OK_AND_ASSIGN( auto w, WithQTypeAnnotation(Leaf("w"), GetOptionalQType<Unit>())); auto present = Literal(kPresent); auto present_scalar_int = Literal(1); auto present_int = Literal(MakeOptionalValue(1)); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.to_optional", {CallOp("core.presence_or", {x, y})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest( CallOp("core.to_optional", {CallOp("core.presence_or", {x, y})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.to_optional", {CallOp("core.presence_or", {z, y})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest( CallOp("core.to_optional", {CallOp("core.presence_or", {z, y})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.to_optional", {CallOp("core.presence_or", {y, present_int})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.to_optional", {CallOp("core.presence_or", {y, present_int})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.to_optional", {CallOp("core.presence_or", {x, present_scalar_int})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_or", {x, CallOp("core.to_optional", {present_scalar_int})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp( "core.to_optional", {CallOp("core._presence_and_or", {present_scalar_int, w, z})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core._presence_and_or", {CallOp("core.to_optional", {present_scalar_int}), w, CallOp("core.to_optional", {z})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp( "core.to_optional", {CallOp("core._presence_and_or", {z, w, present_scalar_int})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core._presence_and_or", {CallOp("core.to_optional", {z}), w, CallOp("core.to_optional", {present_scalar_int})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, InsideWherePropagationOptimizations) { ASSERT_OK_AND_ASSIGN( auto x, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<int32_t>())); ASSERT_OK_AND_ASSIGN( auto y, WithQTypeAnnotation(Leaf("y"), GetOptionalQType<int32_t>())); ASSERT_OK_AND_ASSIGN( auto z, WithQTypeAnnotation(Leaf("z"), GetOptionalQType<Unit>())); auto present = Literal(kPresent); auto present_int = Literal(MakeOptionalValue(1)); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.has", {CallOp("core.where", {z, x, y})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.has", {CallOp("core.where", {z, x, y})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.to_optional", {CallOp("core.where", {z, present_int, x})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest( CallOp("core.where", {z, CallOp("core.to_optional", {present_int}), CallOp("core.to_optional", {x})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.has", {CallOp("core.where", {z, x, present_int})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.where", {z, CallOp("core.has", {x}), CallOp("core.has", {present_int})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, WhereOptimization) { ASSERT_OK_AND_ASSIGN( auto cond, WithQTypeAnnotation(Leaf("cond"), GetOptionalQType<Unit>())); ASSERT_OK_AND_ASSIGN( auto x, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<float>())); ASSERT_OK_AND_ASSIGN( auto y, WithQTypeAnnotation(Leaf("y"), GetOptionalQType<float>())); ASSERT_OK_AND_ASSIGN(auto x_full, WithQTypeAnnotation(Leaf("x"), GetQType<float>())); ASSERT_OK_AND_ASSIGN(auto y_full, WithQTypeAnnotation(Leaf("y"), GetQType<float>())); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.where", {Literal(kPresent), x_full, y_full}))); EXPECT_THAT(actual_expr, EqualsExpr(x_full)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.where", {Literal(kPresent), x_full, y}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.where", {Literal(kPresent), x_full, y}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.presence_or", {CallOp("core.presence_and", {x, cond}), CallOp("core.presence_and", {y, CallOp("core.presence_not", {cond})})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.where", {cond, x, y}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto scalar_x, WithQTypeAnnotation(Leaf("x"), GetQType<float>())); ASSERT_OK_AND_ASSIGN(auto scalar_y, WithQTypeAnnotation(Leaf("y"), GetQType<float>())); ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.presence_or", {CallOp("core.presence_and", {scalar_x, cond}), CallOp("core.presence_and", {scalar_y, CallOp("core.presence_not", {cond})})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.to_optional", {CallOp("core.where", {cond, scalar_x, scalar_y})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core._presence_and_or", {x, cond, CallOp("core.presence_and", {y, CallOp("core.presence_not", {cond})})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.where", {cond, x, y}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.presence_or", {CallOp("core.presence_and", {x, CallOp("core.presence_not", {cond})}), CallOp("core.presence_and", {y, CallOp("core.presence_not", {cond})})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core._presence_and_or", {x, CallOp("core.presence_not", {cond}), CallOp("core.presence_and", {y, CallOp("core.presence_not", {cond})})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto y_present, WithQTypeAnnotation(Leaf("y"), GetQType<float>())); ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.presence_or", {CallOp("core.presence_and", {x, cond}), y_present}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core._presence_and_or", {x, cond, y_present}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto cond_da, WithQTypeAnnotation(Leaf("cond"), GetDenseArrayQType<Unit>())); ASSERT_OK_AND_ASSIGN( auto x_da, WithQTypeAnnotation(Leaf("x"), GetDenseArrayQType<float>())); ASSERT_OK_AND_ASSIGN( auto y_da, WithQTypeAnnotation(Leaf("y"), GetDenseArrayQType<float>())); ASSERT_OK_AND_ASSIGN( auto expr, CallOp("core.presence_or", {CallOp("core.presence_and", {x_da, CallOp("core.presence_not", {cond_da})}), CallOp("core.presence_and", {y_da, CallOp("core.presence_not", {cond_da})})})); ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(expr)); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(expr)); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, CodegenWhereOptimization) { ASSERT_OK_AND_ASSIGN( auto cond, WithQTypeAnnotation(Leaf("cond"), GetOptionalQType<Unit>())); ASSERT_OK_AND_ASSIGN( auto x, WithQTypeAnnotation(Leaf("x"), GetOptionalQType<float>())); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyCodegenOptimizer( CallOp("core.where", {cond, x, Literal(OptionalValue<float>())}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_and", {x, cond}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, PresenceAndOrSimplifications) { ASSERT_OK_AND_ASSIGN( auto cond, WithQTypeAnnotation(Leaf("cond"), GetOptionalQType<Unit>())); auto x = Leaf("x"); auto y = Leaf("y"); { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("core._presence_and_or", {x, Literal(kPresent), y}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_or", {x, y}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp("core._presence_and_or", {Literal(kPresent), cond, y}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_or", {cond, y}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, PresenceAndOptionalOptimizations) { ASSERT_OK_AND_ASSIGN(auto a, WithQTypeAnnotation(Leaf("a"), GetQType<int>())); auto c = Leaf("c"); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_and", {CallOp("core.to_optional._scalar", {a}), c}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_and", {a, c}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, PresenceNotWithAndOptimizations) { ASSERT_OK_AND_ASSIGN( auto c, WithQTypeAnnotation(Leaf("c"), GetOptionalQType<Unit>())); { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_not", {Literal(3.)}))); auto expected_expr = Literal(kMissing); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN(auto actual_expr, ApplyOptimizer(CallOp( "core.presence_not", {CallOp("core.presence_and", {Literal(3.), c})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_not", {c}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer( CallOp("core.presence_not", {CallOp("core.presence_and", {Literal(OptionalValue<float>(3.)), c})}))); ASSERT_OK_AND_ASSIGN(auto expected_expr, ToLowest(CallOp("core.presence_not", {c}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } TEST_F(PresenceOptimizationsTest, PresenceAndOrCombinationSimplifications) { auto a = Leaf("a"); auto b = Leaf("b"); auto c = Leaf("c"); auto d = Leaf("d"); { ASSERT_OK_AND_ASSIGN( auto actual_expr1, ApplyOptimizer(CallOp("core._presence_and_or", {c, a, CallOp("core.presence_and", {c, b})}))); ASSERT_OK_AND_ASSIGN( auto actual_expr2, ApplyOptimizer( CallOp("core.presence_or", {CallOp("core.presence_and", {c, a}), CallOp("core.presence_and", {c, b})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.presence_and", {c, CallOp("core.presence_or", {a, b})}))); EXPECT_THAT(actual_expr1, EqualsExpr(expected_expr)); EXPECT_THAT(actual_expr2, EqualsExpr(expected_expr)); } { ASSERT_OK_AND_ASSIGN( auto actual_expr, ApplyOptimizer(CallOp("core.presence_or", {CallOp("core.presence_or", {d, CallOp("core.presence_and", {c, a})}), CallOp("core.presence_and", {c, b})}))); ASSERT_OK_AND_ASSIGN( auto expected_expr, ToLowest(CallOp("core.presence_or", {d, CallOp("core.presence_and", {c, CallOp("core.presence_or", {a, b})})}))); EXPECT_THAT(actual_expr, EqualsExpr(expected_expr)); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/optimization/peephole_optimizations/presence.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/optimization/peephole_optimizations/presence_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
e8a55d3f-1b98-427c-b0aa-d6b46c411ffd
cpp
google/quiche
quiche_linked_hash_map
quiche/common/quiche_linked_hash_map.h
quiche/common/quiche_linked_hash_map_test.cc
#ifndef QUICHE_COMMON_QUICHE_LINKED_HASH_MAP_H_ #define QUICHE_COMMON_QUICHE_LINKED_HASH_MAP_H_ #include <functional> #include <list> #include <tuple> #include <type_traits> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/hash/hash.h" #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/platform/api/quiche_logging.h" namespace quiche { template <class Key, class Value, class Hash = absl::Hash<Key>, class Eq = std::equal_to<Key>> class QuicheLinkedHashMap { private: typedef std::list<std::pair<Key, Value>> ListType; typedef absl::flat_hash_map<Key, typename ListType::iterator, Hash, Eq> MapType; public: typedef typename ListType::iterator iterator; typedef typename ListType::reverse_iterator reverse_iterator; typedef typename ListType::const_iterator const_iterator; typedef typename ListType::const_reverse_iterator const_reverse_iterator; typedef typename MapType::key_type key_type; typedef typename ListType::value_type value_type; typedef typename ListType::size_type size_type; QuicheLinkedHashMap() = default; explicit QuicheLinkedHashMap(size_type bucket_count) : map_(bucket_count) {} QuicheLinkedHashMap(const QuicheLinkedHashMap& other) = delete; QuicheLinkedHashMap& operator=(const QuicheLinkedHashMap& other) = delete; QuicheLinkedHashMap(QuicheLinkedHashMap&& other) = default; QuicheLinkedHashMap& operator=(QuicheLinkedHashMap&& other) = default; iterator begin() { return list_.begin(); } const_iterator begin() const { return list_.begin(); } iterator end() { return list_.end(); } const_iterator end() const { return list_.end(); } reverse_iterator rbegin() { return list_.rbegin(); } const_reverse_iterator rbegin() const { return list_.rbegin(); } reverse_iterator rend() { return list_.rend(); } const_reverse_iterator rend() const { return list_.rend(); } const value_type& front() const { return list_.front(); } value_type& front() { return list_.front(); } const value_type& back() const { return list_.back(); } value_type& back() { return list_.back(); } void clear() { map_.clear(); list_.clear(); } bool empty() const { return list_.empty(); } void pop_front() { erase(begin()); } size_type erase(const Key& key) { typename MapType::iterator found = map_.find(key); if (found == map_.end()) { return 0; } list_.erase(found->second); map_.erase(found); return 1; } iterator erase(iterator position) { typename MapType::iterator found = map_.find(position->first); QUICHE_CHECK(found->second == position) << "Inconsistent iterator for map and list, or the iterator is " "invalid."; map_.erase(found); return list_.erase(position); } iterator erase(iterator first, iterator last) { while (first != last && first != end()) { first = erase(first); } return first; } iterator find(const Key& key) { typename MapType::iterator found = map_.find(key); if (found == map_.end()) { return end(); } return found->second; } const_iterator find(const Key& key) const { typename MapType::const_iterator found = map_.find(key); if (found == map_.end()) { return end(); } return found->second; } bool contains(const Key& key) const { return find(key) != end(); } Value& operator[](const key_type& key) { return (*((this->insert(std::make_pair(key, Value()))).first)).second; } std::pair<iterator, bool> insert(const std::pair<Key, Value>& pair) { return InsertInternal(pair); } std::pair<iterator, bool> insert(std::pair<Key, Value>&& pair) { return InsertInternal(std::move(pair)); } size_type size() const { return map_.size(); } template <typename... Args> std::pair<iterator, bool> emplace(Args&&... args) { ListType node_donor; auto node_pos = node_donor.emplace(node_donor.end(), std::forward<Args>(args)...); const auto& k = node_pos->first; auto ins = map_.insert({k, node_pos}); if (!ins.second) { return {ins.first->second, false}; } list_.splice(list_.end(), node_donor, node_pos); return {ins.first->second, true}; } void swap(QuicheLinkedHashMap& other) { map_.swap(other.map_); list_.swap(other.list_); } private: template <typename U> std::pair<iterator, bool> InsertInternal(U&& pair) { auto insert_result = map_.try_emplace(pair.first); auto map_iter = insert_result.first; if (!insert_result.second) { return {map_iter->second, false}; } auto list_iter = list_.insert(list_.end(), std::forward<U>(pair)); map_iter->second = list_iter; return {list_iter, true}; } MapType map_; ListType list_; }; } #endif
#include "quiche/common/quiche_linked_hash_map.h" #include <memory> #include <tuple> #include <utility> #include "quiche/common/platform/api/quiche_test.h" using testing::Pair; using testing::Pointee; using testing::UnorderedElementsAre; namespace quiche { namespace test { TEST(LinkedHashMapTest, Move) { QuicheLinkedHashMap<int, std::unique_ptr<int>> m; m[2] = std::make_unique<int>(12); m[3] = std::make_unique<int>(13); QuicheLinkedHashMap<int, std::unique_ptr<int>> n = std::move(m); EXPECT_THAT(n, UnorderedElementsAre(Pair(2, Pointee(12)), Pair(3, Pointee(13)))); } TEST(LinkedHashMapTest, CanEmplaceMoveOnly) { QuicheLinkedHashMap<int, std::unique_ptr<int>> m; struct Data { int k, v; }; const Data data[] = {{1, 123}, {3, 345}, {2, 234}, {4, 456}}; for (const auto& kv : data) { m.emplace(std::piecewise_construct, std::make_tuple(kv.k), std::make_tuple(new int{kv.v})); } EXPECT_TRUE(m.contains(2)); auto found = m.find(2); ASSERT_TRUE(found != m.end()); EXPECT_EQ(234, *found->second); } struct NoCopy { explicit NoCopy(int x) : x(x) {} NoCopy(const NoCopy&) = delete; NoCopy& operator=(const NoCopy&) = delete; NoCopy(NoCopy&&) = delete; NoCopy& operator=(NoCopy&&) = delete; int x; }; TEST(LinkedHashMapTest, CanEmplaceNoMoveNoCopy) { QuicheLinkedHashMap<int, NoCopy> m; struct Data { int k, v; }; const Data data[] = {{1, 123}, {3, 345}, {2, 234}, {4, 456}}; for (const auto& kv : data) { m.emplace(std::piecewise_construct, std::make_tuple(kv.k), std::make_tuple(kv.v)); } EXPECT_TRUE(m.contains(2)); auto found = m.find(2); ASSERT_TRUE(found != m.end()); EXPECT_EQ(234, found->second.x); } TEST(LinkedHashMapTest, ConstKeys) { QuicheLinkedHashMap<int, int> m; m.insert(std::make_pair(1, 2)); std::pair<int, int>& p = *m.begin(); EXPECT_EQ(1, p.first); } TEST(LinkedHashMapTest, Iteration) { QuicheLinkedHashMap<int, int> m; EXPECT_TRUE(m.begin() == m.end()); m.insert(std::make_pair(2, 12)); m.insert(std::make_pair(1, 11)); m.insert(std::make_pair(3, 13)); QuicheLinkedHashMap<int, int>::iterator i = m.begin(); ASSERT_TRUE(m.begin() == i); ASSERT_TRUE(m.end() != i); EXPECT_EQ(2, i->first); EXPECT_EQ(12, i->second); ++i; ASSERT_TRUE(m.end() != i); EXPECT_EQ(1, i->first); EXPECT_EQ(11, i->second); ++i; ASSERT_TRUE(m.end() != i); EXPECT_EQ(3, i->first); EXPECT_EQ(13, i->second); ++i; ASSERT_TRUE(m.end() == i); } TEST(LinkedHashMapTest, ReverseIteration) { QuicheLinkedHashMap<int, int> m; EXPECT_TRUE(m.rbegin() == m.rend()); m.insert(std::make_pair(2, 12)); m.insert(std::make_pair(1, 11)); m.insert(std::make_pair(3, 13)); QuicheLinkedHashMap<int, int>::reverse_iterator i = m.rbegin(); ASSERT_TRUE(m.rbegin() == i); ASSERT_TRUE(m.rend() != i); EXPECT_EQ(3, i->first); EXPECT_EQ(13, i->second); ++i; ASSERT_TRUE(m.rend() != i); EXPECT_EQ(1, i->first); EXPECT_EQ(11, i->second); ++i; ASSERT_TRUE(m.rend() != i); EXPECT_EQ(2, i->first); EXPECT_EQ(12, i->second); ++i; ASSERT_TRUE(m.rend() == i); } TEST(LinkedHashMapTest, Clear) { QuicheLinkedHashMap<int, int> m; m.insert(std::make_pair(2, 12)); m.insert(std::make_pair(1, 11)); m.insert(std::make_pair(3, 13)); ASSERT_EQ(3u, m.size()); m.clear(); EXPECT_EQ(0u, m.size()); m.clear(); EXPECT_EQ(0u, m.size()); } TEST(LinkedHashMapTest, Size) { QuicheLinkedHashMap<int, int> m; EXPECT_EQ(0u, m.size()); m.insert(std::make_pair(2, 12)); EXPECT_EQ(1u, m.size()); m.insert(std::make_pair(1, 11)); EXPECT_EQ(2u, m.size()); m.insert(std::make_pair(3, 13)); EXPECT_EQ(3u, m.size()); m.clear(); EXPECT_EQ(0u, m.size()); } TEST(LinkedHashMapTest, Empty) { QuicheLinkedHashMap<int, int> m; ASSERT_TRUE(m.empty()); m.insert(std::make_pair(2, 12)); ASSERT_FALSE(m.empty()); m.clear(); ASSERT_TRUE(m.empty()); } TEST(LinkedHashMapTest, Erase) { QuicheLinkedHashMap<int, int> m; ASSERT_EQ(0u, m.size()); EXPECT_EQ(0u, m.erase(2)); m.insert(std::make_pair(2, 12)); ASSERT_EQ(1u, m.size()); EXPECT_EQ(1u, m.erase(2)); EXPECT_EQ(0u, m.size()); EXPECT_EQ(0u, m.erase(2)); EXPECT_EQ(0u, m.size()); } TEST(LinkedHashMapTest, Erase2) { QuicheLinkedHashMap<int, int> m; ASSERT_EQ(0u, m.size()); EXPECT_EQ(0u, m.erase(2)); m.insert(std::make_pair(2, 12)); m.insert(std::make_pair(1, 11)); m.insert(std::make_pair(3, 13)); m.insert(std::make_pair(4, 14)); ASSERT_EQ(4u, m.size()); EXPECT_EQ(1u, m.erase(1)); EXPECT_EQ(1u, m.erase(3)); EXPECT_EQ(2u, m.size()); QuicheLinkedHashMap<int, int>::iterator it = m.begin(); ASSERT_TRUE(it != m.end()); EXPECT_EQ(12, it->second); ++it; ASSERT_TRUE(it != m.end()); EXPECT_EQ(14, it->second); ++it; ASSERT_TRUE(it == m.end()); EXPECT_EQ(0u, m.erase(1)); ASSERT_EQ(2u, m.size()); EXPECT_EQ(1u, m.erase(2)); EXPECT_EQ(1u, m.erase(4)); ASSERT_EQ(0u, m.size()); EXPECT_EQ(0u, m.erase(1)); ASSERT_EQ(0u, m.size()); } TEST(LinkedHashMapTest, Erase3) { QuicheLinkedHashMap<int, int> m; m.insert(std::make_pair(1, 11)); m.insert(std::make_pair(2, 12)); m.insert(std::make_pair(3, 13)); m.insert(std::make_pair(4, 14)); QuicheLinkedHashMap<int, int>::iterator it2 = m.find(2); QuicheLinkedHashMap<int, int>::iterator it4 = m.find(4); EXPECT_EQ(m.erase(it2, it4), m.find(4)); EXPECT_EQ(2u, m.size()); QuicheLinkedHashMap<int, int>::iterator it = m.begin(); ASSERT_TRUE(it != m.end()); EXPECT_EQ(11, it->second); ++it; ASSERT_TRUE(it != m.end()); EXPECT_EQ(14, it->second); ++it; ASSERT_TRUE(it == m.end()); EXPECT_EQ(m.erase(m.begin()), m.find(4)); it = m.begin(); ASSERT_TRUE(it != m.end()); EXPECT_EQ(14, it->second); ++it; ASSERT_TRUE(it == m.end()); } TEST(LinkedHashMapTest, Insertion) { QuicheLinkedHashMap<int, int> m; ASSERT_EQ(0u, m.size()); std::pair<QuicheLinkedHashMap<int, int>::iterator, bool> result; result = m.insert(std::make_pair(2, 12)); ASSERT_EQ(1u, m.size()); EXPECT_TRUE(result.second); EXPECT_EQ(2, result.first->first); EXPECT_EQ(12, result.first->second); result = m.insert(std::make_pair(1, 11)); ASSERT_EQ(2u, m.size()); EXPECT_TRUE(result.second); EXPECT_EQ(1, result.first->first); EXPECT_EQ(11, result.first->second); result = m.insert(std::make_pair(3, 13)); QuicheLinkedHashMap<int, int>::iterator result_iterator = result.first; ASSERT_EQ(3u, m.size()); EXPECT_TRUE(result.second); EXPECT_EQ(3, result.first->first); EXPECT_EQ(13, result.first->second); result = m.insert(std::make_pair(3, 13)); EXPECT_EQ(3u, m.size()); EXPECT_FALSE(result.second) << "No insertion should have occurred."; EXPECT_TRUE(result_iterator == result.first) << "Duplicate insertion should have given us the original iterator."; } static std::pair<int, int> Pair(int i, int j) { return {i, j}; } TEST(LinkedHashMapTest, Front) { QuicheLinkedHashMap<int, int> m; m.insert(std::make_pair(2, 12)); m.insert(std::make_pair(1, 11)); m.insert(std::make_pair(3, 13)); EXPECT_EQ(3u, m.size()); EXPECT_EQ(Pair(2, 12), m.front()); m.pop_front(); EXPECT_EQ(2u, m.size()); EXPECT_EQ(Pair(1, 11), m.front()); m.pop_front(); EXPECT_EQ(1u, m.size()); EXPECT_EQ(Pair(3, 13), m.front()); m.pop_front(); EXPECT_TRUE(m.empty()); } TEST(LinkedHashMapTest, Find) { QuicheLinkedHashMap<int, int> m; EXPECT_TRUE(m.end() == m.find(1)) << "We shouldn't find anything in an empty map."; m.insert(std::make_pair(2, 12)); EXPECT_TRUE(m.end() == m.find(1)) << "We shouldn't find an element that doesn't exist in the map."; std::pair<QuicheLinkedHashMap<int, int>::iterator, bool> result = m.insert(std::make_pair(1, 11)); ASSERT_TRUE(result.second); ASSERT_TRUE(m.end() != result.first); EXPECT_TRUE(result.first == m.find(1)) << "We should have found an element we know exists in the map."; EXPECT_EQ(11, result.first->second); m.insert(std::make_pair(3, 13)); QuicheLinkedHashMap<int, int>::iterator it = m.find(1); ASSERT_TRUE(m.end() != it); EXPECT_EQ(11, it->second); m.clear(); EXPECT_TRUE(m.end() == m.find(1)) << "We shouldn't find anything in a map that we've cleared."; } TEST(LinkedHashMapTest, Contains) { QuicheLinkedHashMap<int, int> m; EXPECT_FALSE(m.contains(1)) << "An empty map shouldn't contain anything."; m.insert(std::make_pair(2, 12)); EXPECT_FALSE(m.contains(1)) << "The map shouldn't contain an element that doesn't exist."; m.insert(std::make_pair(1, 11)); EXPECT_TRUE(m.contains(1)) << "The map should contain an element that we know exists."; m.clear(); EXPECT_FALSE(m.contains(1)) << "A map that we've cleared shouldn't contain anything."; } TEST(LinkedHashMapTest, Swap) { QuicheLinkedHashMap<int, int> m1; QuicheLinkedHashMap<int, int> m2; m1.insert(std::make_pair(1, 1)); m1.insert(std::make_pair(2, 2)); m2.insert(std::make_pair(3, 3)); ASSERT_EQ(2u, m1.size()); ASSERT_EQ(1u, m2.size()); m1.swap(m2); ASSERT_EQ(1u, m1.size()); ASSERT_EQ(2u, m2.size()); } TEST(LinkedHashMapTest, CustomHashAndEquality) { struct CustomIntHash { size_t operator()(int x) const { return x; } }; QuicheLinkedHashMap<int, int, CustomIntHash> m; m.insert(std::make_pair(1, 1)); EXPECT_TRUE(m.contains(1)); EXPECT_EQ(1, m[1]); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_linked_hash_map.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_linked_hash_map_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
8f2bbdb6-1130-4e57-b10d-d60bc7696f0b
cpp
tensorflow/tensorflow
tstring
tensorflow/core/platform/tstring.h
third_party/xla/third_party/tsl/tsl/platform/tstring_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_TSTRING_H_ #define TENSORFLOW_CORE_PLATFORM_TSTRING_H_ #include "tensorflow/core/platform/cord.h" #include "tensorflow/core/platform/ctstring.h" #include "tensorflow/core/platform/stringpiece.h" #include "tsl/platform/tstring.h" namespace tensorflow { using tstring = tsl::tstring; } #endif
#include "tsl/platform/tstring.h" #include <memory> #include <string> #include "tsl/platform/cord.h" #include "tsl/platform/platform.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/test.h" using ::tsl::tstring; static const char kLongString[] = "abcdefghij" "klmnopqrst" "uvwxyz0123" "456789ABCD" "EFGHIKLMNO"; const size_t kLongStringLen = sizeof(kLongString) / sizeof(char) - sizeof(char); TEST(TF_TStringTest, Construction) { tstring s10; tstring s11("a\0a", 3); tstring s12(kLongString); tstring s13(3, 'b'); tstring s14(absl::string_view("hi")); tstring s15(std::string("bye")); EXPECT_EQ("", s10); EXPECT_TRUE(s10.empty()); EXPECT_EQ(tstring::Type::SMALL, s10.type()); EXPECT_EQ(0, s10.size()); EXPECT_EQ(0, s10.length()); EXPECT_EQ(TF_TString_SmallCapacity, s10.capacity()); EXPECT_EQ(std::string("a\0a", 3), s11); EXPECT_FALSE(s11.empty()); EXPECT_EQ(3, s11.size()); EXPECT_EQ(3, s11.length()); EXPECT_EQ(kLongString, s12); EXPECT_EQ(kLongStringLen, s12.size()); EXPECT_EQ(tstring::Type::LARGE, s12.type()); EXPECT_LT(TF_TString_SmallCapacity, s12.capacity()); EXPECT_EQ("bbb", s13); EXPECT_EQ("hi", s14); EXPECT_EQ(tstring::Type::SMALL, s14.type()); EXPECT_EQ("bye", s15); } TEST(TF_TStringTest, CopyMove) { tstring s20(kLongString); tstring s21(s20); tstring s22; EXPECT_EQ(s20, s21); s22 = std::move(s21); EXPECT_EQ(s20, s22); EXPECT_EQ("", s21); EXPECT_EQ(tstring::Type::SMALL, s21.type()); } TEST(TF_TStringTest, Assignment) { tstring s30("123456789012345678901234567890"); tstring s31; tstring s32; s31 = s30; EXPECT_EQ(s30, s31); EXPECT_EQ(tstring::Type::LARGE, s31.type()); EXPECT_EQ(s30.size(), s31.size()); s32 = std::move(s30); EXPECT_EQ(s31, s32); EXPECT_EQ("", s30); EXPECT_EQ(tstring::Type::SMALL, s30.type()); EXPECT_EQ(tstring::Type::LARGE, s32.type()); s32 = tstring::view(kLongString); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); EXPECT_EQ(0, s32.capacity()); tstring s33(std::move(s32)); EXPECT_EQ(kLongString, s33); EXPECT_EQ(tstring::Type::VIEW, s33.type()); EXPECT_EQ(kLongStringLen, s33.size()); s32 = std::string(kLongString); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::LARGE, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); s32 = "hello"; EXPECT_EQ("hello", s32); EXPECT_EQ(tstring::Type::SMALL, s32.type()); EXPECT_EQ(5, s32.size()); s33 = 'a'; EXPECT_EQ("a", s33); EXPECT_EQ(tstring::Type::SMALL, s33.type()); EXPECT_EQ(1, s33.size()); s32 = absl::string_view(kLongString); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::LARGE, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); s32.resize(TF_TString_SmallCapacity * 2); EXPECT_EQ(absl::string_view(kLongString, TF_TString_SmallCapacity * 2), s32); EXPECT_EQ(tstring::Type::LARGE, s32.type()); EXPECT_EQ(TF_TString_SmallCapacity * 2, s32.size()); s32 = tstring::view(kLongString, kLongStringLen); EXPECT_EQ(kLongString, s32); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_EQ(kLongStringLen, s32.size()); s32.assign("hello1"); EXPECT_EQ("hello1", s32); s32.assign("hello2", 5); EXPECT_EQ("hello", s32); s30.assign_as_view(kLongString); EXPECT_EQ(tstring::Type::VIEW, s30.type()); s31.assign_as_view(s30); EXPECT_EQ(tstring::Type::VIEW, s31.type()); EXPECT_EQ(kLongString, s30.c_str()); EXPECT_EQ(kLongString, s31.c_str()); std::string tmp(kLongString); s32.assign_as_view(tmp); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_STREQ(kLongString, s32.c_str()); s33.assign_as_view(kLongString, 2); EXPECT_EQ(2, s33.size()); s32.assign_as_view(absl::string_view(kLongString)); EXPECT_EQ(tstring::Type::VIEW, s32.type()); EXPECT_EQ(kLongString, s32.c_str()); #ifdef PLATFORM_GOOGLE s33 = absl::Cord(kLongString); EXPECT_EQ(kLongString, s33); EXPECT_EQ(tstring::Type::LARGE, s33.type()); EXPECT_EQ(kLongStringLen, s33.size()); tstring s34((absl::Cord(kLongString))); EXPECT_EQ(kLongString, s34); EXPECT_EQ(tstring::Type::LARGE, s34.type()); EXPECT_EQ(kLongStringLen, s34.size()); #endif } TEST(TF_TStringTest, Comparison) { tstring empty(""); tstring a("a"); tstring aa("aa"); tstring a_("a"); tstring b("b"); const char c[] = "c"; tstring nulla("\0a", 2); tstring nullb("\0b", 2); tstring nullaa("\0aa", 3); EXPECT_TRUE(a < b); EXPECT_TRUE(a != b); EXPECT_FALSE(a > b); EXPECT_FALSE(a == b); EXPECT_TRUE(a < aa); EXPECT_TRUE(a != aa); EXPECT_FALSE(a > aa); EXPECT_FALSE(a == aa); EXPECT_TRUE(b > a); EXPECT_TRUE(b != a); EXPECT_FALSE(b < a); EXPECT_FALSE(b == a); EXPECT_FALSE(a == b); EXPECT_FALSE(b == c); EXPECT_TRUE(b != c); EXPECT_TRUE(empty < a); EXPECT_TRUE(empty != a); EXPECT_FALSE(empty > a); EXPECT_FALSE(empty == a); EXPECT_TRUE(a > empty); EXPECT_TRUE(a != empty); EXPECT_FALSE(a < empty); EXPECT_FALSE(a == empty); EXPECT_FALSE(a < a_); EXPECT_FALSE(a != a_); EXPECT_FALSE(a > a_); EXPECT_TRUE(a == a_); EXPECT_TRUE(nulla < nullaa); EXPECT_TRUE(nulla != nullaa); EXPECT_FALSE(nulla > nullaa); EXPECT_FALSE(nulla == nullaa); EXPECT_TRUE(nulla < nullb); EXPECT_TRUE(nullaa > nulla); EXPECT_TRUE(nullaa != nulla); EXPECT_FALSE(nullaa < nulla); EXPECT_FALSE(nullaa == nulla); } TEST(TF_TStringTest, Conversion) { tstring s50(kLongString); std::string s51(s50); absl::string_view s52(s50); EXPECT_EQ(kLongString, s51); EXPECT_EQ(kLongStringLen, s51.size()); EXPECT_EQ(kLongString, s52); EXPECT_EQ(kLongStringLen, s52.size()); #ifdef PLATFORM_GOOGLE absl::AlphaNum s53(s50); EXPECT_STREQ(kLongString, s53.data()); EXPECT_EQ(kLongStringLen, s53.size()); #endif } TEST(TF_TStringTest, Allocation) { tstring s60; s60.resize(2); EXPECT_EQ(std::string("\0\0", 2), s60); EXPECT_EQ(2, s60.size()); EXPECT_EQ(2, s60.length()); s60.resize(6, 'a'); EXPECT_EQ(std::string("\0\0aaaa", 6), s60); EXPECT_EQ(6, s60.size()); EXPECT_EQ(6, s60.length()); s60.resize(3, 'b'); EXPECT_EQ(std::string("\0\0a", 3), s60); EXPECT_EQ(3, s60.size()); EXPECT_EQ(3, s60.length()); s60.clear(); EXPECT_EQ("", s60); EXPECT_TRUE(s60.empty()); EXPECT_EQ(0, s60.size()); EXPECT_EQ(0, s60.length()); s60.reserve(100); EXPECT_EQ(111, s60.capacity()); s60.reserve(100); } TEST(TF_TStringTest, ElementAccess) { tstring s70(kLongString); EXPECT_STREQ(kLongString, s70.data()); EXPECT_EQ(s70.data(), s70.c_str()); for (size_t i = 0; i < s70.size(); i++) { EXPECT_EQ(kLongString[i], s70.data()[i]); } tstring::const_iterator i = s70.begin(); const char* j = kLongString; for (; *j != '\0'; i++, j++) { EXPECT_EQ(*j, *i); } EXPECT_EQ('\0', *s70.end()); EXPECT_EQ(*i, *s70.end()); EXPECT_EQ(*(i - 1), s70.back()); } TEST(TF_TStringTest, Modifiers) { tstring s80("ba"); tstring s81; tstring s82(kLongString); s81.append(s80); EXPECT_EQ("ba", s81); s81.append(s80); EXPECT_EQ("baba", s81); s81.append("\0c", 2); EXPECT_EQ(std::string("baba\0c", 6), s81); s81.append("dd"); EXPECT_EQ(std::string("baba\0cdd", 8), s81); s81.append(3, 'z'); EXPECT_EQ(tstring("baba\0cddzzz", 11), s81); s81.append(0, 'z'); s81.append("dd", 0); s81.append(""); s81.append(tstring()); EXPECT_EQ(std::string("baba\0cddzzz", 11), s81); s81.erase(0, 1); EXPECT_EQ(std::string("aba\0cddzzz", 10), s81); s81.erase(4, 6); EXPECT_EQ(std::string("aba\0", 4), s81); s81.insert(1, tstring("\0moo\0", 5), 1, 4); EXPECT_EQ(std::string("amoo\0ba\0", 8), s81); s81.insert(0, 2, '\0'); s81.insert(s81.size() - 1, 1, 'q'); EXPECT_EQ(std::string("\0\0amoo\0baq\0", 11), s81); s81.erase(0, s81.size()); EXPECT_EQ(tstring(), s81); s80.swap(s82); EXPECT_EQ(kLongString, s80); EXPECT_EQ("ba", s82); s82.push_back('\0'); s82.push_back('q'); EXPECT_EQ(std::string("ba\0q", 4), s82); } TEST(TF_TStringTest, Friends) { tstring s90("b"); tstring s91("\0a\0", 3); tstring s92; EXPECT_EQ("b", s90 + s92); EXPECT_EQ("b", s92 + s90); EXPECT_EQ(std::string("\0a\0", 3), s92 + s91); EXPECT_EQ(std::string("\0a\0", 3), s91 + s92); EXPECT_EQ(std::string("b\0a\0", 4), s90 + s91); EXPECT_EQ(std::string("\0a\0b", 4), s91 + s90); std::stringstream ss; ss << s91; EXPECT_EQ(std::string("\0a\0", 3), ss.str()); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/tstring.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/tstring_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0c2807a6-9de3-4dea-b2ce-9f085bb68d10
cpp
tensorflow/tensorflow
coordination_service_error_util
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util.cc
third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util_test.cc
#include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include <optional> #include <string> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "tsl/platform/regexp.h" namespace tsl { absl::Status TrimCoordinationErrorMessage(const absl::Status& s) { if (s.ok()) { return s; } auto status_message = std::string(s.message()); auto additional_info_index = status_message.find("Additional GRPC"); if (additional_info_index == std::string::npos) { return s; } std::optional<absl::Cord> payload = s.GetPayload(CoordinationErrorPayloadKey()); if (!payload.has_value() && absl::IsUnavailable(s)) { auto prefix_message = "Failed to send RPC to coordination service. Either the leader task " "died/restarted unexpectedly or this task is experiencing network " "issues. Check earlier logs from this task and the " "leader (usually slice 0 process/task/worker 0) to debug further.\n"; status_message = absl::StrCat( prefix_message, status_message.substr(additional_info_index)); } else { std::string rpc_name; RE2::PartialMatch(status_message, "(/tensorflow.CoordinationService/(\\w+))", &rpc_name); status_message = status_message.substr(0, additional_info_index); absl::StrAppend(&status_message, "\nRPC: ", rpc_name); } auto trimmed_status = absl::Status(s.code(), status_message); if (payload.has_value()) { trimmed_status.SetPayload(CoordinationErrorPayloadKey(), *payload); } #if defined(PLATFORM_GOOGLE) for (const auto& source_location : s.GetSourceLocations()) { trimmed_status.AddSourceLocation(source_location); } #endif return trimmed_status; } }
#include "xla/tsl/distributed_runtime/coordination/coordination_service_error_util.h" #include <string> #include "absl/status/status.h" #include "absl/strings/match.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tsl/platform/test.h" namespace tsl { namespace { using ::tensorflow::CoordinatedTask; using ::tensorflow::CoordinationServiceError; TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithEmptyPayload) { absl::Status error = absl::InternalError("Test Error"); absl::Status coordination_error = MakeCoordinationError(error); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); EXPECT_EQ( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value(), ""); } TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithErrorOrigin) { absl::Status error = absl::InternalError("Test Error"); CoordinatedTask source_task; source_task.set_job_name("test_worker"); source_task.set_task_id(7); absl::Status coordination_error = MakeCoordinationError(error, source_task); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); CoordinationServiceError payload; payload.ParseFromString(std::string( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value())); EXPECT_EQ(payload.source_task().job_name(), source_task.job_name()); EXPECT_EQ(payload.source_task().task_id(), source_task.task_id()); EXPECT_EQ(payload.is_reported_error(), false); } TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithUserReportedError) { absl::Status error = absl::InternalError("Test Error"); CoordinatedTask source_task; source_task.set_job_name("test_worker"); source_task.set_task_id(7); absl::Status coordination_error = MakeCoordinationError(error, source_task, true); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); CoordinationServiceError payload; payload.ParseFromString(std::string( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value())); EXPECT_EQ(payload.source_task().job_name(), source_task.job_name()); EXPECT_EQ(payload.source_task().task_id(), source_task.task_id()); EXPECT_EQ(payload.is_reported_error(), true); } TEST(CoordinationServiceErrorUtil, MakeCoordinationErrorWithPayload) { absl::Status error = absl::InternalError("Test Error"); CoordinationServiceError payload; CoordinatedTask* source_task = payload.mutable_source_task(); source_task->set_job_name("test_worker"); source_task->set_task_id(7); payload.set_is_reported_error(true); absl::Status coordination_error = MakeCoordinationError(error, payload); EXPECT_EQ(coordination_error.code(), error.code()); EXPECT_EQ(coordination_error.message(), error.message()); CoordinationServiceError actual_payload; actual_payload.ParseFromString(std::string( coordination_error.GetPayload(CoordinationErrorPayloadKey()).value())); EXPECT_EQ(actual_payload.source_task().job_name(), payload.source_task().job_name()); EXPECT_EQ(actual_payload.source_task().task_id(), payload.source_task().task_id()); EXPECT_EQ(actual_payload.is_reported_error(), payload.is_reported_error()); } TEST(CoordinationServiceErrorUtil, TrimCoordinationErrorMessage_CoordinationError) { absl::Status error = MakeCoordinationError(absl::InternalError( "Coordination service has stopped. RecordHeartbeat() from task: " "/job:jax_worker/replica:0/task:2 failed. Additional GRPC error " "information from remote target coordination_service while calling " "/tensorflow.CoordinationService/Heartbeat::UNKNOWN:Error received from " "peer " "{file:'third_party/grpc/src/core/lib/surface/filter_stack_call.cc', " "file_line:464, created_time:'2024-08-05T13:57:51.331198242-07:00', " "grpc_status:13, grpc_message:'Coordination service has stopped. " "RecordHeartbeat() from task: /job:jax_worker/replica:0/task:2 failed. " "'} ")); absl::Status trimmed_error = TrimCoordinationErrorMessage(error); EXPECT_EQ(trimmed_error.code(), error.code()); EXPECT_EQ(trimmed_error.message(), "Coordination service has stopped. RecordHeartbeat() from task: " "/job:jax_worker/replica:0/task:2 failed. \nRPC: " "/tensorflow.CoordinationService/Heartbeat"); EXPECT_EQ(trimmed_error.GetPayload(CoordinationErrorPayloadKey()).value(), ""); } TEST(CoordinationServiceErrorUtil, TrimCoordinationErrorMessage_NetworkError) { absl::Status error = absl::UnavailableError( "failed to connect to all addresses; last error: UNKNOWN: " "ipv4:127.0.0.1:10001: Failed to connect to remote host: Connection " "refused. Additional GRPC error information from remote target " "coordination_service while calling " "/tensorflow.CoordinationService/Heartbeat::UNKNOWN:Error received from " "peer " "{file:'third_party/grpc/src/core/lib/surface/filter_stack_call.cc', " "file_line:464, created_time:'2024-08-05T13:57:53.123562608-07:00', " "grpc_status:14, grpc_message:'failed to connect to all addresses; last " "error: UNKNOWN: ipv4:127.0.0.1:10001: Failed to connect to remote host: " "Connection refused'} "); absl::Status trimmed_error = TrimCoordinationErrorMessage(error); auto message = trimmed_error.message(); EXPECT_EQ(trimmed_error.code(), error.code()); EXPECT_TRUE(absl::StrContains(message, "Check earlier logs")); EXPECT_EQ(message.find("failed to connect"), message.rfind("failed to connect")) << trimmed_error; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/coordination/coordination_service_error_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
38927dfd-d806-4ded-8fdd-5adb64b435d7
cpp
google/arolla
pointwise_op
arolla/array/pointwise_op.h
arolla/array/pointwise_op_test.cc
#ifndef AROLLA_ARRAY_POINTWISE_OP_H_ #define AROLLA_ARRAY_POINTWISE_OP_H_ #include <cstdint> #include <optional> #include <utility> #include "absl/status/statusor.h" #include "arolla/array/array.h" #include "arolla/array/id_filter.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/ops/dense_ops.h" #include "arolla/memory/optional_value.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/util/meta.h" #include "arolla/util/status_macros_backport.h" namespace arolla { template <class ResT, class DenseArrayOp, class PointwiseFn, class ArgList> class ArrayPointwiseOp; template <class ResT, class DenseArrayOp, class PointwiseFn, class... Args> class ArrayPointwiseOp<ResT, DenseArrayOp, PointwiseFn, meta::type_list<Args...>> { public: explicit ArrayPointwiseOp(DenseArrayOp dense_op, PointwiseFn pointwise_fn, RawBufferFactory* buf_factory) : dense_op_(std::move(dense_op)), pointwise_fn_(std::move(pointwise_fn)), buf_factory_(std::move(buf_factory)) {} template <class... As> absl::StatusOr<Array<ResT>> operator()(const As&... args) const { ASSIGN_OR_RETURN(int64_t size, GetCommonSize(args...)); if ((((!is_optional_v<Args> && args.IsAllMissingForm())) || ...)) { return Array<ResT>(size, std::nullopt); } IdFilter id_filter(IdFilter::kEmpty); DenseArray<ResT> data; if (IsSameIdFilter(args...)) { id_filter = First(args...).id_filter(); if (id_filter.type() != IdFilter::kEmpty) { ASSIGN_OR_RETURN(data, ApplyDenseOp(args...)); } } else { if ((CanBeIntersected<Args>(args) || ...)) { IdFilter full(IdFilter::kFull); id_filter = IdFilter::UpperBoundIntersect( (CanBeIntersected<Args>(args) ? args.id_filter() : full)...); } else { id_filter = IdFilter::UpperBoundMerge(size, buf_factory_, args.id_filter()...); } ASSIGN_OR_RETURN(data, ApplyDenseOp(args.WithIds( id_filter, args.missing_id_value())...)); } auto missing_id_value = pointwise_fn_(args.missing_id_value()...); RETURN_IF_ERROR(GetStatusOrOk(missing_id_value)); return Array<ResT>( size, std::move(id_filter), std::move(data), OptionalValue<ResT>(UnStatus(std::move(missing_id_value)))); } private: template <class... As> absl::StatusOr<DenseArray<ResT>> ApplyDenseOp(const As&... args) const { return dense_op_(args.dense_data()...); } template <class Arg, class A> static bool CanBeIntersected(const A& arg) { return !is_optional_v<Arg> && !arg.HasMissingIdValue(); } template <class A, class... As> static absl::StatusOr<int64_t> GetCommonSize(const A& a, const As&... as) { if (!((a.size() == as.size()) && ...)) { return SizeMismatchError({a.size(), as.size()...}); } else { return a.size(); } } template <class A, class... As> static bool IsSameIdFilter(const A& a, const As&... as) { return ((a.id_filter().IsSame(as.id_filter()) && ...)); } template <class A, class... As> static const A& First(const A& a, const As&...) { return a; } DenseArrayOp dense_op_; PointwiseFn pointwise_fn_; RawBufferFactory* buf_factory_; }; template <int flags, class Fn, class ResT = dense_ops_internal::result_base_t<Fn>> auto CreateArrayOp(Fn fn, RawBufferFactory* buf_factory = GetHeapBufferFactory()) { auto dense_op = CreateDenseOp<flags | DenseOpFlags::kNoSizeValidation, decltype(fn), ResT>(fn, buf_factory); auto optional_fn = WrapFnToAcceptOptionalArgs(fn); using Op = ArrayPointwiseOp<ResT, decltype(dense_op), decltype(optional_fn), typename meta::function_traits<Fn>::arg_types>; return Op(dense_op, optional_fn, buf_factory); } template <class Fn, class ResT = dense_ops_internal::result_base_t<Fn>> auto CreateArrayOp(Fn fn, RawBufferFactory* buf_factory = GetHeapBufferFactory()) { return CreateArrayOp<0, decltype(fn), ResT>(fn, buf_factory); } } #endif
#include "arolla/array/pointwise_op.h" #include <cstdint> #include <optional> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/array/array.h" #include "arolla/array/id_filter.h" #include "arolla/dense_array/dense_array.h" #include "arolla/memory/buffer.h" #include "arolla/memory/optional_value.h" namespace arolla { namespace { using ::testing::ElementsAre; template <typename T> struct UnionAddFn { OptionalValue<T> operator()(OptionalValue<T> a, OptionalValue<T> b) const { return {a.present || b.present, (a.present ? a.value : 0) + (b.present ? b.value : 0)}; } }; TEST(OpAddTest, WithConst) { auto op = CreateArrayOp([](int a, int b) { return a + b; }); { ASSERT_OK_AND_ASSIGN(Array<int> block, op(Array<int>(10, 2), Array<int>(10, 3))); EXPECT_TRUE(block.IsConstForm()); EXPECT_EQ(block.missing_id_value(), OptionalValue<int>(5)); } { ASSERT_OK_AND_ASSIGN(Array<int> block, op(Array<int>(10, 2), Array<int>(10, std::nullopt))); EXPECT_TRUE(block.IsAllMissingForm()); } { ASSERT_OK_AND_ASSIGN( Array<int> block, op(CreateArray<int>({1, std::nullopt, 2}), Array<int>(3, 5))); EXPECT_TRUE(block.IsDenseForm()); EXPECT_THAT(block, ElementsAre(6, std::nullopt, 7)); } { ASSERT_OK_AND_ASSIGN( Array<int> block, op(CreateArray<int>({1, std::nullopt, 2}).ToSparseForm(), Array<int>(3, 5))); EXPECT_TRUE(block.IsSparseForm()); EXPECT_THAT(block, ElementsAre(6, std::nullopt, 7)); } { ASSERT_OK_AND_ASSIGN(Array<int> block, op(CreateArray<int>({1, std::nullopt, 2}), Array<int>(3, std::nullopt))); EXPECT_TRUE(block.IsAllMissingForm()); } } TEST(OpAddTest, SameIdFilter) { auto op = CreateArrayOp([](int a, int b) { return a + b; }); IdFilter ids(10, CreateBuffer<int64_t>({1, 2, 5, 9})); Array<int> arg1(10, ids, CreateDenseArray<int>({1, 2, std::nullopt, 3}), 2); Array<int> arg2(10, ids, CreateDenseArray<int>({7, 5, 3, 0}), 3); ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg1, arg2)); EXPECT_EQ(res.size(), arg1.size()); EXPECT_TRUE(res.id_filter().IsSame(arg1.id_filter())); EXPECT_EQ(res.missing_id_value(), OptionalValue<int>(5)); EXPECT_THAT(res.dense_data(), ElementsAre(8, 7, std::nullopt, 3)); } TEST(OpAddTest, DensePlusSparse) { auto op = CreateArrayOp([](int a, int b) { return a + b; }); auto arg1 = CreateArray<int>({1, 2, 3, 0, 0, 3, 2, 1}); { auto arg2 = CreateArray<int>( {4, 7, 3, std::nullopt, 3, 6, std::nullopt, std::nullopt}) .ToSparseForm(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg1, arg2)); EXPECT_EQ(res.size(), arg1.size()); EXPECT_TRUE(res.id_filter().IsSame(arg2.id_filter())); EXPECT_FALSE(res.HasMissingIdValue()); EXPECT_THAT(res.dense_data(), ElementsAre(5, 9, 6, 3, 9)); } { auto arg2 = CreateArray<int>({4, 7, 3, 1, 3, 6, 1, 1}).ToSparseForm(1); ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg1, arg2)); EXPECT_EQ(res.size(), arg1.size()); EXPECT_TRUE(res.IsDenseForm()); EXPECT_TRUE(arg2.IsSparseForm()); EXPECT_TRUE(res.dense_data().bitmap.empty()); EXPECT_THAT(res.dense_data().values, ElementsAre(5, 9, 6, 1, 3, 9, 3, 2)); } } TEST(OpAddTest, SparsePlusSparse) { auto op = CreateArrayOp([](int a, int b) { return a + b; }); auto arg1 = CreateArray<int>({3, std::nullopt, std::nullopt, std::nullopt, std::nullopt, 3, 4, 5}) .ToSparseForm(); auto arg2 = CreateArray<int>( {4, 7, 3, std::nullopt, 3, 6, std::nullopt, std::nullopt}) .ToSparseForm(); { ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg1, arg2)); EXPECT_EQ(res.size(), arg1.size()); EXPECT_TRUE(res.IsSparseForm()); EXPECT_FALSE(res.HasMissingIdValue()); EXPECT_TRUE(res.id_filter().IsSame(arg1.id_filter())); EXPECT_THAT(res, ElementsAre(7, std::nullopt, std::nullopt, std::nullopt, std::nullopt, 9, std::nullopt, std::nullopt)); } { ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg2, arg1)); EXPECT_EQ(res.size(), arg1.size()); EXPECT_TRUE(res.IsSparseForm()); EXPECT_FALSE(res.HasMissingIdValue()); EXPECT_TRUE(res.id_filter().IsSame(arg1.id_filter())); EXPECT_THAT(res, ElementsAre(7, std::nullopt, std::nullopt, std::nullopt, std::nullopt, 9, std::nullopt, std::nullopt)); } } TEST(OpUnionAddTest, WithConst) { auto op = CreateArrayOp(UnionAddFn<int>()); { ASSERT_OK_AND_ASSIGN(Array<int> block, op(Array<int>(10, 2), Array<int>(10, 3))); EXPECT_TRUE(block.IsConstForm()); EXPECT_EQ(block.missing_id_value(), OptionalValue<int>(5)); } { ASSERT_OK_AND_ASSIGN(Array<int> block, op(Array<int>(10, 2), Array<int>(10, std::nullopt))); EXPECT_TRUE(block.IsConstForm()); EXPECT_EQ(block.missing_id_value(), OptionalValue<int>(2)); } { ASSERT_OK_AND_ASSIGN( Array<int> block, op(CreateArray<int>({1, std::nullopt, 2}), Array<int>(3, 5))); EXPECT_TRUE(block.IsDenseForm()); EXPECT_THAT(block, ElementsAre(6, 5, 7)); } { ASSERT_OK_AND_ASSIGN( Array<int> block, op(CreateArray<int>({1, std::nullopt, 2}).ToSparseForm(), Array<int>(3, 5))); EXPECT_TRUE(block.IsSparseForm()); EXPECT_THAT(block, ElementsAre(6, 5, 7)); } { ASSERT_OK_AND_ASSIGN(Array<int> block, op(CreateArray<int>({1, std::nullopt, 2}), Array<int>(3, std::nullopt))); EXPECT_THAT(block, ElementsAre(1, std::nullopt, 2)); } } TEST(OpUnionAddTest, DensePlusSparse) { auto op = CreateArrayOp(UnionAddFn<int>()); Array<int> arg1(DenseArray<int>{CreateBuffer<int>({1, 2, 3, 0, 0, 3, 2, 1})}); { auto arg2 = CreateArray<int>( {4, 7, 3, std::nullopt, 3, 6, std::nullopt, std::nullopt}) .ToSparseForm(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg1, arg2)); EXPECT_TRUE(res.IsFullForm()); EXPECT_THAT(res, ElementsAre(5, 9, 6, 0, 3, 9, 2, 1)); } { auto arg2 = CreateArray<int>({4, 7, 3, 1, 3, 6, 1, 1}).ToSparseForm(1); ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg1, arg2)); EXPECT_TRUE(res.IsFullForm()); EXPECT_THAT(res, ElementsAre(5, 9, 6, 1, 3, 9, 3, 2)); } } TEST(OpUnionAddTest, SparsePlusSparse) { auto op = CreateArrayOp(UnionAddFn<int>()); auto arg1 = CreateArray<int>({3, std::nullopt, std::nullopt, std::nullopt, std::nullopt, 3, 4, 5}) .ToSparseForm(); auto arg2 = CreateArray<int>( {4, 7, 3, std::nullopt, 3, 6, std::nullopt, std::nullopt}) .ToSparseForm(); { ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg1, arg2)); EXPECT_THAT(res, ElementsAre(7, 7, 3, std::nullopt, 3, 9, 4, 5)); } { ASSERT_OK_AND_ASSIGN(Array<int> res, op(arg2, arg1)); EXPECT_THAT(res, ElementsAre(7, 7, 3, std::nullopt, 3, 9, 4, 5)); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/array/pointwise_op.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/array/pointwise_op_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
68fb818f-c069-4546-9b9c-dcb7b2294c41
cpp
tensorflow/tensorflow
seq_interleave_prefetch
tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.cc
tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch_test.cc
#include "tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.h" #include <functional> #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace grappler { namespace { constexpr char kInterleaveDatasetOpName[] = "InterleaveDataset"; constexpr char kParallelInterleaveDatasetV2OpName[] = "ParallelInterleaveDatasetV2"; constexpr char kParallelInterleaveDatasetV3OpName[] = "ParallelInterleaveDatasetV3"; constexpr char kParallelInterleaveDatasetV4OpName[] = "ParallelInterleaveDatasetV4"; constexpr char kParallelInterleaveDatasetOpName[] = "ParallelInterleaveDataset"; constexpr char kPrefetchDatasetOpName[] = "PrefetchDataset"; constexpr char kDatasetStr[] = "Dataset"; constexpr char kConstOpName[] = "Const"; constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kConstNodeOutputSuffix[] = ":output:0"; constexpr char kDatasetNodeOutputSuffix[] = ":handle:0"; constexpr char kDeterministicAttr[] = "deterministic"; constexpr char kFunctionAttr[] = "f"; constexpr char kDTypeAttr[] = "dtype"; constexpr char kValueAttr[] = "value"; constexpr char kTArgumentsAttr[] = "Targuments"; constexpr char kOutputTypesAttr[] = "output_types"; constexpr char kMetadataAttr[] = "metadata"; constexpr char kOutputShapesAttr[] = "output_shapes"; constexpr char kTOutputTypesAttr[] = "Toutput_types"; constexpr char kSeqInterleavePrefetchRewritePrefix[] = "inject/seq_interleave_prefetch_rewrite_"; bool IsParallelInterleave(const std::string& op) { return data::MatchesAnyVersion(kParallelInterleaveDatasetOpName, op); } int GetNumInputsForParallelInterleaveOp(const std::string& op) { if (op == kParallelInterleaveDatasetV2OpName) { return 4; } else if (op == kParallelInterleaveDatasetV3OpName) { return 4; } else if (op == kParallelInterleaveDatasetV4OpName) { return 6; } return 0; } bool NodeOpHasDatasetSuffix(const NodeDef& node) { return absl::EndsWith(node.op(), kDatasetStr); } bool DatasetOpInFunction(const NodeDef& node, const FunctionDef* fn) { for (const auto& node : fn->node_def()) { if (NodeOpHasDatasetSuffix(node)) { return true; } } return false; } bool RewritePossibleForNode(const NodeDef& node, const FunctionLibraryDefinition& fld) { auto is_deterministic_parallel_interleave_node = [&]() -> bool { if (!IsParallelInterleave(node.op())) return false; auto determinism_value = node.attr().find(kDeterministicAttr); return (determinism_value != node.attr().end()) && (determinism_value->second.s() == "true"); }; if (node.attr().count(kFunctionAttr) == 0) return false; const FunctionDef* fn = fld.Find(node.attr().at(kFunctionAttr).func().name()); if (fn == nullptr) return false; if (fn->signature().output_arg_size() != 1) return false; if (is_deterministic_parallel_interleave_node()) { return DatasetOpInFunction(node, fn); } return false; } NodeDef CreateBufferSizeNode(DataType dtype, const std::function<void(TensorProto*)>& add_value, MutableGraphView* graph, FunctionDef& fdef) { NodeDef node; node.set_op(kConstOpName); function_utils::SetUniqueFunctionNodeName( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, "buffer_size"), &fdef, &node); (*node.mutable_attr())[kDTypeAttr].set_type(dtype); auto tensor = std::make_unique<tensorflow::TensorProto>(); auto tensor_shape = std::make_unique<tensorflow::TensorShapeProto>(); tensor->set_allocated_tensor_shape(tensor_shape.release()); tensor->set_dtype(dtype); add_value(tensor.get()); (*node.mutable_attr())[kValueAttr].set_allocated_tensor(tensor.release()); return node; } Status CreateAndAppendPrefetchNode(MutableGraphView* graph, FunctionDef& fdef) { auto get_last_dataset_op_node = [&]() -> const NodeDef* { const auto& output_arg = fdef.signature().output_arg(0).name(); const auto& ret_val = fdef.ret().at(output_arg); auto input = function_utils::FunctionDefTensorDesc(ret_val); const NodeDef* dataset_op_node = nullptr; while ( function_utils::ContainsFunctionNodeWithName(input.node_name, fdef)) { int idx = function_utils::FindFunctionNodeWithName(input.node_name, fdef); const NodeDef& node = fdef.node_def(idx); if (NodeOpHasDatasetSuffix(node)) { dataset_op_node = &node; break; } input = function_utils::FunctionDefTensorDesc(node.input(0)); } return dataset_op_node; }; const NodeDef* add_after = get_last_dataset_op_node(); if (add_after == nullptr) { return errors::NotFound( "Could not find any dataset node to append `Prefetch` at its output in " "`seq_interleave_prefetch` rewrite"); } NodeDef prefetch_node; prefetch_node.set_op(kPrefetchDatasetOpName); function_utils::SetUniqueFunctionNodeName( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, fdef.signature().name()), &fdef, &prefetch_node); const auto input_dataset = absl::StrCat(add_after->name(), kDatasetNodeOutputSuffix); NodeDef buffer_size_node = CreateBufferSizeNode( DT_INT64, [](TensorProto* proto) { proto->add_int64_val(data::model::kAutotune); }, graph, fdef); prefetch_node.add_input(input_dataset); prefetch_node.add_input( absl::StrCat(buffer_size_node.name(), kConstNodeOutputSuffix)); if (add_after->attr().count(kOutputShapes) > 0) { graph_utils::CopyAttribute(kOutputShapes, *add_after, &prefetch_node); } else { tensorflow::TensorShapeProto* shape = (*(prefetch_node.mutable_attr()))[kOutputShapes] .mutable_list() ->add_shape(); shape->set_unknown_rank(true); } if (add_after->attr().count(kOutputTypes) > 0) { graph_utils::CopyAttribute(kOutputTypes, *add_after, &prefetch_node); } else if (add_after->attr().count(kTOutputTypesAttr) > 0) { (*(prefetch_node.mutable_attr()))[kOutputTypes] = add_after->attr().at(kTOutputTypesAttr); } else { (*(prefetch_node.mutable_attr()))[kOutputTypes].mutable_list()->add_type( tensorflow::DataType::DT_STRING); } std::string old_input = input_dataset; std::string new_input = absl::StrCat(prefetch_node.name(), kDatasetNodeOutputSuffix); function_utils::ReplaceReferences(old_input, new_input, &fdef); *fdef.add_node_def() = std::move(prefetch_node); *fdef.add_node_def() = std::move(buffer_size_node); return absl::OkStatus(); } Status AddInterleaveNode(MutableGraphView* graph, const NodeDef& parallel_interleave_node, const std::string& interleave_map_func_name, absl::flat_hash_set<string>& nodes_to_delete) { NodeDef interleave_node; interleave_node.set_op(kInterleaveDatasetOpName); graph_utils::SetUniqueGraphNodeName( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, parallel_interleave_node.name()), graph->graph(), &interleave_node); int num_other_args = parallel_interleave_node.input_size() - GetNumInputsForParallelInterleaveOp(parallel_interleave_node.op()); int inputs_from_parallel_interleave = 1 + num_other_args + 1 + 1 ; for (int i = 0; i < inputs_from_parallel_interleave; ++i) { interleave_node.add_input(parallel_interleave_node.input(i)); } if (parallel_interleave_node.attr().contains(kTArgumentsAttr)) { graph_utils::CopyAttribute(kTArgumentsAttr, parallel_interleave_node, &interleave_node); } if (parallel_interleave_node.attr().contains(kOutputTypesAttr)) { graph_utils::CopyAttribute(kOutputTypesAttr, parallel_interleave_node, &interleave_node); } if (parallel_interleave_node.attr().contains(kOutputShapesAttr)) { graph_utils::CopyAttribute(kOutputShapesAttr, parallel_interleave_node, &interleave_node); } if (parallel_interleave_node.attr().contains(kMetadataAttr)) { graph_utils::CopyAttribute(kMetadataAttr, parallel_interleave_node, &interleave_node); } const auto& parallel_interleave_fn_attr = parallel_interleave_node.attr().at(kFunctionAttr); (*interleave_node.mutable_attr())[kFunctionAttr] = parallel_interleave_fn_attr; (*interleave_node.mutable_attr())[kFunctionAttr].mutable_func()->set_name( interleave_map_func_name); graph_utils::CopyShapesAndTypesAttrs(parallel_interleave_node, &interleave_node); *interleave_node.mutable_experimental_type() = parallel_interleave_node.experimental_type(); NodeDef* new_node_graph = graph->AddNode(std::move(interleave_node)); TF_RETURN_IF_ERROR(graph->UpdateFanouts(parallel_interleave_node.name(), new_node_graph->name())); nodes_to_delete.insert(parallel_interleave_node.name()); return absl::OkStatus(); } } Status SeqInterleavePrefetch::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition fld(OpRegistry::Global(), item.graph.library()); for (const NodeDef& node : item.graph.node()) { if (!RewritePossibleForNode(node, fld)) continue; const FunctionDef* parallel_interleave_fn = fld.Find(node.attr().at("f").func().name()); FunctionDef interleave_fn(*parallel_interleave_fn); interleave_fn.mutable_signature()->set_name( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, parallel_interleave_fn->signature().name())); TF_RETURN_IF_ERROR(AddInterleaveNode( &graph, node, interleave_fn.signature().name(), nodes_to_delete)); TF_RETURN_IF_ERROR(CreateAndAppendPrefetchNode(&graph, interleave_fn)); TF_RETURN_IF_ERROR(fld.ReplaceFunction( parallel_interleave_fn->signature().name(), interleave_fn)); stats->num_changes++; } *output->mutable_library() = fld.ToProto(); TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(SeqInterleavePrefetch, "seq_interleave_prefetch"); } }
#include "tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.h" #include <string> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace grappler { namespace { using test::function::GDef; using test::function::NDef; constexpr char kPrefetchDatasetOpName[] = "PrefetchDataset"; constexpr char kInterleaveDatasetOpName[] = "InterleaveDataset"; constexpr char kParallelInterleaveDatasetOpName[] = "ParallelInterleaveDatasetV4"; constexpr char kSeqInterleavePrefetchRewritePrefix[] = "inject/seq_interleave_prefetch_rewrite_"; constexpr char kFdefProtoStr[] = R"pb(signature { name: "parallel_interleave_fdef" input_arg { name: "args_0" type: DT_STRING } output_arg { name: "identity" type: DT_VARIANT } is_stateful: true control_output: "SSTableDataset" } node_def { name: "key_prefix" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "" } } } } node_def { name: "start_key" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "" } } } } node_def { name: "stop_key" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "" } } } } node_def { name: "SSTableDataset" op: "SSTableDataset" input: "args_0" input: "key_prefix:output:0" input: "start_key:output:0" input: "stop_key:output:0" attr { key: "metadata" value { s: "" } } attr { key: "split_size" value { i: 0 } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_TENSOR args { type_id: TFT_STRING } } } } } node_def { name: "Identity" op: "Identity" input: "SSTableDataset:handle:0" input: "^NoOp" attr { key: "T" value { type: DT_VARIANT } } } node_def { name: "NoOp" op: "NoOp" input: "^SSTableDataset" } ret { key: "identity" value: "Identity:output:0" } attr { key: "_construction_context" value { s: "kEagerRuntime" } } attr { key: "_tf_data_function" value { b: true } } control_ret { key: "SSTableDataset" value: "SSTableDataset" } arg_attr { key: 0 value { attr { key: "_output_shapes" value { list { shape {} } } } attr { key: "_user_specified_name" value { s: "args_0" } } } })pb"; GraphDef ParallelInterleaveCase(bool deterministic) { FunctionDef fdef; protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef); return GDef( {NDef("stop", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"stop"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV4Node( "parallel_interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "parallel_interleave_fdef", deterministic ? "true" : "false")}, { fdef, }); } GraphDef MultipleParallelInterleaveCase(bool deterministic) { FunctionDef fdef_1, fdef_2, fdef_3; protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef_1); fdef_1.mutable_signature()->set_name("parallel_interleave_fdef_1"); protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef_2); fdef_2.mutable_signature()->set_name("parallel_interleave_fdef_2"); protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef_3); fdef_3.mutable_signature()->set_name("parallel_interleave_fdef_3"); auto make_parallel_interleave_node = [&deterministic](const int node_num, const FunctionDef &fdef) { return graph_tests_utils::MakeParallelInterleaveV4Node( absl::StrCat("parallel_interleave_", node_num), "range", "cycle_length", "block_length", "num_parallel_calls", fdef.signature().name(), deterministic ? "true" : "false"); }; return GDef( {NDef("stop", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"stop"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), make_parallel_interleave_node(1, fdef_1), make_parallel_interleave_node(2, fdef_2), make_parallel_interleave_node(3, fdef_3)}, { fdef_1, fdef_2, fdef_3, }); } GraphDef InterleaveCase(bool deterministic) { FunctionDef fdef; protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef); return GDef( {NDef("stop", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"stop"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeInterleaveNode( "sequential_interleave", "range", "cycle_length", "block_length", "parallel_interleave_fdef", deterministic ? "true" : "false")}, { fdef, }); } bool PrefetchInFunction(const NodeDef &node, const FunctionLibraryDefinition &flib) { auto f_attr_it = node.attr().find("f"); if (f_attr_it == node.attr().end()) return false; const FunctionDef *func = flib.Find(f_attr_it->second.func().name()); if (func == nullptr) { return false; } for (int i = 0; i < func->node_def_size(); i++) { NodeDef node_in_func = func->node_def(i); if (tensorflow::data::MatchesAnyVersion( kPrefetchDatasetOpName, node_in_func.op())) { return true; } } return false; } bool IsInterleaveNode(const NodeDef &node) { return (node.op() == kInterleaveDatasetOpName); } } Status OptimizeWithInjectInterleavePrefetch(const GrapplerItem &item, GraphDef *output) { SeqInterleavePrefetch optimizer; return optimizer.Optimize(nullptr, item, output); } class SeqInterleavePrefetchParameterizedTest : public ::testing::TestWithParam<bool> {}; TEST_P(SeqInterleavePrefetchParameterizedTest, ParallelInterleaveHasConditionalInjection) { GrapplerItem item; bool deterministic = GetParam(); item.graph = ParallelInterleaveCase(deterministic); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectInterleavePrefetch(item, &output)); FunctionLibraryDefinition lib_def(OpRegistry::Global(), output.library()); const std::string &parallel_interleave_fdef_name = "parallel_interleave_fdef"; const std::string &interleave_fdef_name = absl::StrCat( kSeqInterleavePrefetchRewritePrefix, parallel_interleave_fdef_name); if (deterministic) { EXPECT_TRUE( !graph_utils::ContainsGraphNodeWithName("parallel_interleave", output)); EXPECT_TRUE(!graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); for (auto node : output.node()) { if (!IsInterleaveNode(node)) continue; EXPECT_TRUE(PrefetchInFunction(node, lib_def)); } const FunctionDef *parallel_interleave_fdef = lib_def.Find(parallel_interleave_fdef_name); const FunctionDef *interleave_fdef = lib_def.Find(interleave_fdef_name); EXPECT_EQ(parallel_interleave_fdef, nullptr); EXPECT_NE(interleave_fdef, nullptr); EXPECT_EQ(lib_def.ListFunctionNames().at(0), interleave_fdef_name); EXPECT_TRUE(function_utils::FindFunctionNodeWithOp(kPrefetchDatasetOpName, *interleave_fdef)); } else { EXPECT_TRUE(graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( !graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsGraphNodeWithName("parallel_interleave", output)); EXPECT_NE(lib_def.Find(parallel_interleave_fdef_name), nullptr); } EXPECT_EQ(lib_def.num_functions(), 1); } TEST_P(SeqInterleavePrefetchParameterizedTest, MultipleParallelInterleavesHaveConditionalInjection) { GrapplerItem item; bool deterministic = GetParam(); item.graph = MultipleParallelInterleaveCase(deterministic); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectInterleavePrefetch(item, &output)); FunctionLibraryDefinition lib_def(OpRegistry::Global(), output.library()); if (deterministic) { EXPECT_TRUE(!graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); for (int i = 1; i <= 3; ++i) { EXPECT_TRUE(!graph_utils::ContainsGraphNodeWithName( absl::StrCat("parallel_interleave_", std::to_string(i)), output)); } for (auto node : output.node()) { if (!IsInterleaveNode(node)) continue; EXPECT_TRUE(PrefetchInFunction(node, lib_def)); } } else { EXPECT_TRUE(graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( !graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); for (int i = 1; i <= 3; ++i) { EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName( absl::StrCat("parallel_interleave_", std::to_string(i)), output)); } } } TEST_P(SeqInterleavePrefetchParameterizedTest, SequentialInterleaveHasNoInjection) { GrapplerItem item; item.graph = InterleaveCase(GetParam()); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectInterleavePrefetch(item, &output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsGraphNodeWithName("sequential_interleave", output)); FunctionLibraryDefinition lib_def(OpRegistry::Global(), output.library()); for (auto node : output.node()) { if (!IsInterleaveNode(node)) continue; EXPECT_FALSE(PrefetchInFunction(node, lib_def)); } } INSTANTIATE_TEST_SUITE_P(Determinism, SeqInterleavePrefetchParameterizedTest, ::testing::Values(false, true)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
818c848f-fc2a-436f-9cfd-302b0d2cda6a
cpp
abseil/abseil-cpp
hash_policy_testing
absl/container/internal/hash_policy_testing.h
absl/container/internal/hash_policy_testing_test.cc
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_ #define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_ #include <cstdlib> #include <limits> #include <memory> #include <ostream> #include <type_traits> #include <utility> #include <vector> #include "absl/hash/hash.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { namespace hash_testing_internal { template <class Derived> struct WithId { WithId() : id_(next_id<Derived>()) {} WithId(const WithId& that) : id_(that.id_) {} WithId(WithId&& that) : id_(that.id_) { that.id_ = 0; } WithId& operator=(const WithId& that) { id_ = that.id_; return *this; } WithId& operator=(WithId&& that) { id_ = that.id_; that.id_ = 0; return *this; } size_t id() const { return id_; } friend bool operator==(const WithId& a, const WithId& b) { return a.id_ == b.id_; } friend bool operator!=(const WithId& a, const WithId& b) { return !(a == b); } protected: explicit WithId(size_t id) : id_(id) {} private: size_t id_; template <class T> static size_t next_id() { static size_t gId = 1; return gId++; } }; } struct NonStandardLayout { NonStandardLayout() {} explicit NonStandardLayout(std::string s) : value(std::move(s)) {} virtual ~NonStandardLayout() {} friend bool operator==(const NonStandardLayout& a, const NonStandardLayout& b) { return a.value == b.value; } friend bool operator!=(const NonStandardLayout& a, const NonStandardLayout& b) { return a.value != b.value; } template <typename H> friend H AbslHashValue(H h, const NonStandardLayout& v) { return H::combine(std::move(h), v.value); } std::string value; }; struct StatefulTestingHash : absl::container_internal::hash_testing_internal::WithId< StatefulTestingHash> { template <class T> size_t operator()(const T& t) const { return absl::Hash<T>{}(t); } }; struct StatefulTestingEqual : absl::container_internal::hash_testing_internal::WithId< StatefulTestingEqual> { template <class T, class U> bool operator()(const T& t, const U& u) const { return t == u; } }; template <class T = int> struct Alloc : std::allocator<T> { using propagate_on_container_swap = std::true_type; explicit Alloc(size_t id = 0) : id_(id) {} Alloc(const Alloc&) = default; Alloc& operator=(const Alloc&) = default; template <class U> Alloc(const Alloc<U>& that) : std::allocator<T>(that), id_(that.id()) {} template <class U> struct rebind { using other = Alloc<U>; }; size_t id() const { return id_; } friend bool operator==(const Alloc& a, const Alloc& b) { return a.id_ == b.id_; } friend bool operator!=(const Alloc& a, const Alloc& b) { return !(a == b); } private: size_t id_ = (std::numeric_limits<size_t>::max)(); }; template <class Map> auto items(const Map& m) -> std::vector< std::pair<typename Map::key_type, typename Map::mapped_type>> { using std::get; std::vector<std::pair<typename Map::key_type, typename Map::mapped_type>> res; res.reserve(m.size()); for (const auto& v : m) res.emplace_back(get<0>(v), get<1>(v)); return res; } template <class Set> auto keys(const Set& s) -> std::vector<typename std::decay<typename Set::key_type>::type> { std::vector<typename std::decay<typename Set::key_type>::type> res; res.reserve(s.size()); for (const auto& v : s) res.emplace_back(v); return res; } } ABSL_NAMESPACE_END } #if defined(__GLIBCXX__) && __GLIBCXX__ <= 20140425 #define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 0 #else #define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 1 #endif #endif
#include "absl/container/internal/hash_policy_testing.h" #include "gtest/gtest.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { namespace { TEST(_, Hash) { StatefulTestingHash h1; EXPECT_EQ(1, h1.id()); StatefulTestingHash h2; EXPECT_EQ(2, h2.id()); StatefulTestingHash h1c(h1); EXPECT_EQ(1, h1c.id()); StatefulTestingHash h2m(std::move(h2)); EXPECT_EQ(2, h2m.id()); EXPECT_EQ(0, h2.id()); StatefulTestingHash h3; EXPECT_EQ(3, h3.id()); h3 = StatefulTestingHash(); EXPECT_EQ(4, h3.id()); h3 = std::move(h1); EXPECT_EQ(1, h3.id()); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/hash_policy_testing.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/hash_policy_testing_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
bb987976-7a50-4c17-970f-4192c7c8ad98
cpp
google/quiche
connect_tunnel
quiche/quic/tools/connect_tunnel.cc
quiche/quic/tools/connect_tunnel_test.cc
#include "quiche/quic/tools/connect_tunnel.h" #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_server_id.h" #include "quiche/quic/core/socket_factory.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/tools/quic_backend_response.h" #include "quiche/quic/tools/quic_name_lookup.h" #include "quiche/quic/tools/quic_simple_server_backend.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_mem_slice.h" namespace quic { namespace { constexpr size_t kReadSize = 4 * 1024; std::optional<QuicServerId> ValidateHeadersAndGetAuthority( const quiche::HttpHeaderBlock& request_headers) { QUICHE_DCHECK(request_headers.contains(":method")); QUICHE_DCHECK(request_headers.find(":method")->second == "CONNECT"); QUICHE_DCHECK(!request_headers.contains(":protocol")); auto scheme_it = request_headers.find(":scheme"); if (scheme_it != request_headers.end()) { QUICHE_DVLOG(1) << "CONNECT request contains unexpected scheme: " << scheme_it->second; return std::nullopt; } auto path_it = request_headers.find(":path"); if (path_it != request_headers.end()) { QUICHE_DVLOG(1) << "CONNECT request contains unexpected path: " << path_it->second; return std::nullopt; } auto authority_it = request_headers.find(":authority"); if (authority_it == request_headers.end() || authority_it->second.empty()) { QUICHE_DVLOG(1) << "CONNECT request missing authority"; return std::nullopt; } std::optional<QuicServerId> server_id = QuicServerId::ParseFromHostPortString(authority_it->second); if (!server_id.has_value()) { QUICHE_DVLOG(1) << "CONNECT request authority is malformed: " << authority_it->second; return std::nullopt; } return server_id; } bool ValidateAuthority( const QuicServerId& authority, const absl::flat_hash_set<QuicServerId>& acceptable_destinations) { if (acceptable_destinations.contains(authority)) { return true; } QUICHE_DVLOG(1) << "CONNECT request authority: " << authority.ToHostPortString() << " is not an acceptable allow-listed destiation "; return false; } } ConnectTunnel::ConnectTunnel( QuicSimpleServerBackend::RequestHandler* client_stream_request_handler, SocketFactory* socket_factory, absl::flat_hash_set<QuicServerId> acceptable_destinations) : acceptable_destinations_(std::move(acceptable_destinations)), socket_factory_(socket_factory), client_stream_request_handler_(client_stream_request_handler) { QUICHE_DCHECK(client_stream_request_handler_); QUICHE_DCHECK(socket_factory_); } ConnectTunnel::~ConnectTunnel() { QUICHE_DCHECK_EQ(client_stream_request_handler_, nullptr); QUICHE_DCHECK(!IsConnectedToDestination()); QUICHE_DCHECK(!receive_started_); } void ConnectTunnel::OpenTunnel(const quiche::HttpHeaderBlock& request_headers) { QUICHE_DCHECK(!IsConnectedToDestination()); std::optional<QuicServerId> authority = ValidateHeadersAndGetAuthority(request_headers); if (!authority.has_value()) { TerminateClientStream( "invalid request headers", QuicResetStreamError::FromIetf(QuicHttp3ErrorCode::MESSAGE_ERROR)); return; } if (!ValidateAuthority(authority.value(), acceptable_destinations_)) { TerminateClientStream( "disallowed request authority", QuicResetStreamError::FromIetf(QuicHttp3ErrorCode::REQUEST_REJECTED)); return; } QuicSocketAddress address = tools::LookupAddress(AF_UNSPEC, authority.value()); if (!address.IsInitialized()) { TerminateClientStream("host resolution error"); return; } destination_socket_ = socket_factory_->CreateTcpClientSocket(address, 0, 0, this); QUICHE_DCHECK(destination_socket_); absl::Status connect_result = destination_socket_->ConnectBlocking(); if (!connect_result.ok()) { TerminateClientStream( "error connecting TCP socket to destination server: " + connect_result.ToString()); return; } QUICHE_DVLOG(1) << "CONNECT tunnel opened from stream " << client_stream_request_handler_->stream_id() << " to " << authority.value().ToHostPortString(); SendConnectResponse(); BeginAsyncReadFromDestination(); } bool ConnectTunnel::IsConnectedToDestination() const { return !!destination_socket_; } void ConnectTunnel::SendDataToDestination(absl::string_view data) { QUICHE_DCHECK(IsConnectedToDestination()); QUICHE_DCHECK(!data.empty()); absl::Status send_result = destination_socket_->SendBlocking(std::string(data)); if (!send_result.ok()) { TerminateClientStream("TCP error sending data to destination server: " + send_result.ToString()); } } void ConnectTunnel::OnClientStreamClose() { QUICHE_DCHECK(client_stream_request_handler_); QUICHE_DVLOG(1) << "CONNECT stream " << client_stream_request_handler_->stream_id() << " closed"; client_stream_request_handler_ = nullptr; if (IsConnectedToDestination()) { destination_socket_->Disconnect(); } destination_socket_.reset(); } void ConnectTunnel::ConnectComplete(absl::Status ) { QUICHE_NOTREACHED(); } void ConnectTunnel::ReceiveComplete( absl::StatusOr<quiche::QuicheMemSlice> data) { QUICHE_DCHECK(IsConnectedToDestination()); QUICHE_DCHECK(receive_started_); receive_started_ = false; if (!data.ok()) { if (client_stream_request_handler_) { TerminateClientStream("TCP error receiving data from destination server"); } else { QUICHE_DVLOG(1) << "TCP error receiving data from destination server " "after stream already closed."; } return; } else if (data.value().empty()) { OnDestinationConnectionClosed(); return; } QUICHE_DCHECK(client_stream_request_handler_); client_stream_request_handler_->SendStreamData(data.value().AsStringView(), false); BeginAsyncReadFromDestination(); } void ConnectTunnel::SendComplete(absl::Status ) { QUICHE_NOTREACHED(); } void ConnectTunnel::BeginAsyncReadFromDestination() { QUICHE_DCHECK(IsConnectedToDestination()); QUICHE_DCHECK(client_stream_request_handler_); QUICHE_DCHECK(!receive_started_); receive_started_ = true; destination_socket_->ReceiveAsync(kReadSize); } void ConnectTunnel::OnDestinationConnectionClosed() { QUICHE_DCHECK(IsConnectedToDestination()); QUICHE_DCHECK(client_stream_request_handler_); QUICHE_DVLOG(1) << "CONNECT stream " << client_stream_request_handler_->stream_id() << " destination connection closed"; destination_socket_->Disconnect(); destination_socket_.reset(); QUICHE_DCHECK(client_stream_request_handler_); client_stream_request_handler_->SendStreamData("", true); } void ConnectTunnel::SendConnectResponse() { QUICHE_DCHECK(IsConnectedToDestination()); QUICHE_DCHECK(client_stream_request_handler_); quiche::HttpHeaderBlock response_headers; response_headers[":status"] = "200"; QuicBackendResponse response; response.set_headers(std::move(response_headers)); response.set_response_type(QuicBackendResponse::INCOMPLETE_RESPONSE); client_stream_request_handler_->OnResponseBackendComplete(&response); } void ConnectTunnel::TerminateClientStream(absl::string_view error_description, QuicResetStreamError error_code) { QUICHE_DCHECK(client_stream_request_handler_); std::string error_description_str = error_description.empty() ? "" : absl::StrCat(" due to ", error_description); QUICHE_DVLOG(1) << "Terminating CONNECT stream " << client_stream_request_handler_->stream_id() << " with error code " << error_code.ietf_application_code() << error_description_str; client_stream_request_handler_->TerminateStreamWithError(error_code); } }
#include "quiche/quic/tools/connect_tunnel.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/connecting_client_socket.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/socket_factory.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test_loopback.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/tools/quic_backend_response.h" #include "quiche/quic/tools/quic_simple_server_backend.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/platform/api/quiche_mem_slice.h" #include "quiche/common/platform/api/quiche_test.h" namespace quic::test { namespace { using ::testing::_; using ::testing::AllOf; using ::testing::AnyOf; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Ge; using ::testing::Gt; using ::testing::InvokeWithoutArgs; using ::testing::IsEmpty; using ::testing::Matcher; using ::testing::NiceMock; using ::testing::Pair; using ::testing::Property; using ::testing::Return; using ::testing::StrictMock; class MockRequestHandler : public QuicSimpleServerBackend::RequestHandler { public: QuicConnectionId connection_id() const override { return TestConnectionId(41212); } QuicStreamId stream_id() const override { return 100; } std::string peer_host() const override { return "127.0.0.1"; } MOCK_METHOD(QuicSpdyStream*, GetStream, (), (override)); MOCK_METHOD(void, OnResponseBackendComplete, (const QuicBackendResponse* response), (override)); MOCK_METHOD(void, SendStreamData, (absl::string_view data, bool close_stream), (override)); MOCK_METHOD(void, TerminateStreamWithError, (QuicResetStreamError error), (override)); }; class MockSocketFactory : public SocketFactory { public: MOCK_METHOD(std::unique_ptr<ConnectingClientSocket>, CreateTcpClientSocket, (const quic::QuicSocketAddress& peer_address, QuicByteCount receive_buffer_size, QuicByteCount send_buffer_size, ConnectingClientSocket::AsyncVisitor* async_visitor), (override)); MOCK_METHOD(std::unique_ptr<ConnectingClientSocket>, CreateConnectingUdpClientSocket, (const quic::QuicSocketAddress& peer_address, QuicByteCount receive_buffer_size, QuicByteCount send_buffer_size, ConnectingClientSocket::AsyncVisitor* async_visitor), (override)); }; class MockSocket : public ConnectingClientSocket { public: MOCK_METHOD(absl::Status, ConnectBlocking, (), (override)); MOCK_METHOD(void, ConnectAsync, (), (override)); MOCK_METHOD(void, Disconnect, (), (override)); MOCK_METHOD(absl::StatusOr<QuicSocketAddress>, GetLocalAddress, (), (override)); MOCK_METHOD(absl::StatusOr<quiche::QuicheMemSlice>, ReceiveBlocking, (QuicByteCount max_size), (override)); MOCK_METHOD(void, ReceiveAsync, (QuicByteCount max_size), (override)); MOCK_METHOD(absl::Status, SendBlocking, (std::string data), (override)); MOCK_METHOD(absl::Status, SendBlocking, (quiche::QuicheMemSlice data), (override)); MOCK_METHOD(void, SendAsync, (std::string data), (override)); MOCK_METHOD(void, SendAsync, (quiche::QuicheMemSlice data), (override)); }; class ConnectTunnelTest : public quiche::test::QuicheTest { public: void SetUp() override { #if defined(_WIN32) WSADATA wsa_data; const WORD version_required = MAKEWORD(2, 2); ASSERT_EQ(WSAStartup(version_required, &wsa_data), 0); #endif auto socket = std::make_unique<StrictMock<MockSocket>>(); socket_ = socket.get(); ON_CALL(socket_factory_, CreateTcpClientSocket( AnyOf(QuicSocketAddress(TestLoopback4(), kAcceptablePort), QuicSocketAddress(TestLoopback6(), kAcceptablePort)), _, _, &tunnel_)) .WillByDefault(Return(ByMove(std::move(socket)))); } protected: static constexpr absl::string_view kAcceptableDestination = "localhost"; static constexpr uint16_t kAcceptablePort = 977; StrictMock<MockRequestHandler> request_handler_; NiceMock<MockSocketFactory> socket_factory_; StrictMock<MockSocket>* socket_; ConnectTunnel tunnel_{ &request_handler_, &socket_factory_, {{std::string(kAcceptableDestination), kAcceptablePort}, {TestLoopback4().ToString(), kAcceptablePort}, {absl::StrCat("[", TestLoopback6().ToString(), "]"), kAcceptablePort}}}; }; TEST_F(ConnectTunnelTest, OpenTunnel) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); quiche::HttpHeaderBlock expected_response_headers; expected_response_headers[":status"] = "200"; QuicBackendResponse expected_response; expected_response.set_headers(std::move(expected_response_headers)); expected_response.set_response_type(QuicBackendResponse::INCOMPLETE_RESPONSE); EXPECT_CALL(request_handler_, OnResponseBackendComplete( AllOf(Property(&QuicBackendResponse::response_type, QuicBackendResponse::INCOMPLETE_RESPONSE), Property(&QuicBackendResponse::headers, ElementsAre(Pair(":status", "200"))), Property(&QuicBackendResponse::trailers, IsEmpty()), Property(&QuicBackendResponse::body, IsEmpty())))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = absl::StrCat(kAcceptableDestination, ":", kAcceptablePort); tunnel_.OpenTunnel(request_headers); EXPECT_TRUE(tunnel_.IsConnectedToDestination()); tunnel_.OnClientStreamClose(); EXPECT_FALSE(tunnel_.IsConnectedToDestination()); } TEST_F(ConnectTunnelTest, OpenTunnelToIpv4LiteralDestination) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); quiche::HttpHeaderBlock expected_response_headers; expected_response_headers[":status"] = "200"; QuicBackendResponse expected_response; expected_response.set_headers(std::move(expected_response_headers)); expected_response.set_response_type(QuicBackendResponse::INCOMPLETE_RESPONSE); EXPECT_CALL(request_handler_, OnResponseBackendComplete( AllOf(Property(&QuicBackendResponse::response_type, QuicBackendResponse::INCOMPLETE_RESPONSE), Property(&QuicBackendResponse::headers, ElementsAre(Pair(":status", "200"))), Property(&QuicBackendResponse::trailers, IsEmpty()), Property(&QuicBackendResponse::body, IsEmpty())))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = absl::StrCat(TestLoopback4().ToString(), ":", kAcceptablePort); tunnel_.OpenTunnel(request_headers); EXPECT_TRUE(tunnel_.IsConnectedToDestination()); tunnel_.OnClientStreamClose(); EXPECT_FALSE(tunnel_.IsConnectedToDestination()); } TEST_F(ConnectTunnelTest, OpenTunnelToIpv6LiteralDestination) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); quiche::HttpHeaderBlock expected_response_headers; expected_response_headers[":status"] = "200"; QuicBackendResponse expected_response; expected_response.set_headers(std::move(expected_response_headers)); expected_response.set_response_type(QuicBackendResponse::INCOMPLETE_RESPONSE); EXPECT_CALL(request_handler_, OnResponseBackendComplete( AllOf(Property(&QuicBackendResponse::response_type, QuicBackendResponse::INCOMPLETE_RESPONSE), Property(&QuicBackendResponse::headers, ElementsAre(Pair(":status", "200"))), Property(&QuicBackendResponse::trailers, IsEmpty()), Property(&QuicBackendResponse::body, IsEmpty())))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = absl::StrCat("[", TestLoopback6().ToString(), "]:", kAcceptablePort); tunnel_.OpenTunnel(request_headers); EXPECT_TRUE(tunnel_.IsConnectedToDestination()); tunnel_.OnClientStreamClose(); EXPECT_FALSE(tunnel_.IsConnectedToDestination()); } TEST_F(ConnectTunnelTest, OpenTunnelWithMalformedRequest) { EXPECT_CALL(request_handler_, TerminateStreamWithError(Property( &QuicResetStreamError::ietf_application_code, static_cast<uint64_t>(QuicHttp3ErrorCode::MESSAGE_ERROR)))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; tunnel_.OpenTunnel(request_headers); EXPECT_FALSE(tunnel_.IsConnectedToDestination()); tunnel_.OnClientStreamClose(); } TEST_F(ConnectTunnelTest, OpenTunnelWithUnacceptableDestination) { EXPECT_CALL( request_handler_, TerminateStreamWithError(Property( &QuicResetStreamError::ietf_application_code, static_cast<uint64_t>(QuicHttp3ErrorCode::REQUEST_REJECTED)))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = "unacceptable.test:100"; tunnel_.OpenTunnel(request_headers); EXPECT_FALSE(tunnel_.IsConnectedToDestination()); tunnel_.OnClientStreamClose(); } TEST_F(ConnectTunnelTest, ReceiveFromDestination) { static constexpr absl::string_view kData = "\x11\x22\x33\x44\x55"; EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Ge(kData.size()))).Times(2); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); EXPECT_CALL(request_handler_, OnResponseBackendComplete(_)); EXPECT_CALL(request_handler_, SendStreamData(kData, false)); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = absl::StrCat(kAcceptableDestination, ":", kAcceptablePort); tunnel_.OpenTunnel(request_headers); tunnel_.ReceiveComplete(MemSliceFromString(kData)); tunnel_.OnClientStreamClose(); } TEST_F(ConnectTunnelTest, SendToDestination) { static constexpr absl::string_view kData = "\x11\x22\x33\x44\x55"; EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, SendBlocking(Matcher<std::string>(Eq(kData)))) .WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); EXPECT_CALL(request_handler_, OnResponseBackendComplete(_)); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = absl::StrCat(kAcceptableDestination, ":", kAcceptablePort); tunnel_.OpenTunnel(request_headers); tunnel_.SendDataToDestination(kData); tunnel_.OnClientStreamClose(); } TEST_F(ConnectTunnelTest, DestinationDisconnect) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()); EXPECT_CALL(request_handler_, OnResponseBackendComplete(_)); EXPECT_CALL(request_handler_, SendStreamData("", true)); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = absl::StrCat(kAcceptableDestination, ":", kAcceptablePort); tunnel_.OpenTunnel(request_headers); tunnel_.ReceiveComplete(quiche::QuicheMemSlice()); EXPECT_FALSE(tunnel_.IsConnectedToDestination()); tunnel_.OnClientStreamClose(); } TEST_F(ConnectTunnelTest, DestinationTcpConnectionError) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()); EXPECT_CALL(request_handler_, OnResponseBackendComplete(_)); EXPECT_CALL(request_handler_, TerminateStreamWithError(Property( &QuicResetStreamError::ietf_application_code, static_cast<uint64_t>(QuicHttp3ErrorCode::CONNECT_ERROR)))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":authority"] = absl::StrCat(kAcceptableDestination, ":", kAcceptablePort); tunnel_.OpenTunnel(request_headers); tunnel_.ReceiveComplete(absl::UnknownError("error")); tunnel_.OnClientStreamClose(); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/tools/connect_tunnel.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/tools/connect_tunnel_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
038207ec-d0ae-40ec-acc6-a8a7e593e33f
cpp
tensorflow/tensorflow
xplane_to_kernel_stats_db
tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.cc
tensorflow/core/profiler/convert/xplane_to_kernel_stats_db_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.h" #include <functional> #include <ostream> #include <string> #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/gpu_event_stats.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { void ConvertDeviceTraceXPlaneToKernelReports( const XPlane& device_trace, const std::function<void(const GpuEventStats&, KernelReport*)>& on_kernel_fn, KernelReportMap* reports) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&device_trace); plane.ForEachLine([&](const XLineVisitor& line) { if (IsDerivedThreadId(line.Id())) { return; } line.ForEachEvent([&](const XEventVisitor& event) { if (event.DurationNs() == 0) return; KernelReport kernel; GpuEventStats stats(&event); if (!stats.IsKernel()) return; kernel.set_name(std::string(event.Name())); kernel.set_is_kernel_using_tensor_core( IsKernelUsingTensorCore(event.Name())); kernel.set_total_duration_ns(event.DurationNs()); kernel.set_min_duration_ns(event.DurationNs()); kernel.set_max_duration_ns(event.DurationNs()); ParseKernelLaunchParams(stats.kernel_details, &kernel); if (stats.IsTfOp()) { tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(stats.tf_op_fullname); kernel.set_op_name(std::string(tf_op.name)); bool tensor_core_eligible = IsEinsumTensorCoreEligible(stats.equation) || IsOpTensorCoreEligible(kernel.op_name()); if (!tensor_core_eligible && kernel.is_kernel_using_tensor_core()) { VLOG(1) << "Detected new Op using TensorCores: " << kernel.op_name() << std::endl; tensor_core_eligible = true; } kernel.set_is_op_tensor_core_eligible(tensor_core_eligible); } if (on_kernel_fn) { on_kernel_fn(stats, &kernel); } KernelReportValue value; value.total_duration_ns = event.DurationNs(); value.min_duration_ns = event.DurationNs(); value.max_duration_ns = event.DurationNs(); value.occurrences = 1; InsertOrUpdateKernelReport(kernel, value, reports); }); }); } } }
#include "tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { TEST(ConvertXplaneToKernelStats, MultiKernels) { XSpace space; XPlane* device_trace = space.add_planes(); XPlaneBuilder device_trace_builder(device_trace); device_trace_builder.GetOrCreateLine(0); XLineBuilder line_builder = device_trace_builder.GetOrCreateLine(0); CreateXEvent(&device_trace_builder, &line_builder, "kernel_name_shortest", 10000, 1000, {{StatType::kTfOp, "mul_786"}, {StatType::kKernelDetails, R"MULTI(regs:16 static_shared:0 dynamic_shared:0 grid:1,1,1 block:1,1,1 occ_pct:50.0)MULTI"}, {StatType::kEquation, ""}}); CreateXEvent(&device_trace_builder, &line_builder, "kernel_name_middle", 20000, 2000, {{StatType::kTfOp, "Conv2D"}, {StatType::kKernelDetails, R"MULTI(regs:32 static_shared:0 dynamic_shared:16384 grid:2,1,1 block:32,1,1 occ_pct=13.0)MULTI"}, {StatType::kEquation, ""}}); CreateXEvent(&device_trace_builder, &line_builder, "volta_fp16_s884gemm_fp16_128x128_ldg8_f2f_tn", 30000, 3000, {{StatType::kTfOp, "Einsum_80"}, {StatType::kKernelDetails, R"MULTI(regs:32 static_shared:0 dynamic_shared:16384 grid:3,1,1 block:64,1,1 occ_pct:25.0)MULTI"}, {StatType::kEquation, ""}}); KernelReportMap reports; ConvertDeviceTraceXPlaneToKernelReports(*device_trace, {}, &reports); KernelStatsDb kernel_stats; CopyTopKDurationKernelReportsToDb(reports, &kernel_stats); EXPECT_EQ(kernel_stats.reports_size(), 3); { const auto& kernel = kernel_stats.reports().at(2); EXPECT_EQ(kernel.name(), "kernel_name_shortest"); EXPECT_EQ(kernel.registers_per_thread(), 16); EXPECT_EQ(kernel.static_shmem_bytes(), 0); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 0); EXPECT_EQ(kernel.grid_dim().at(0), 1); EXPECT_EQ(kernel.grid_dim().at(1), 1); EXPECT_EQ(kernel.grid_dim().at(2), 1); EXPECT_EQ(kernel.block_dim().at(0), 1); EXPECT_EQ(kernel.block_dim().at(1), 1); EXPECT_EQ(kernel.block_dim().at(2), 1); EXPECT_EQ(kernel.total_duration_ns(), 1); EXPECT_FALSE(kernel.is_kernel_using_tensor_core()); EXPECT_FALSE(kernel.is_op_tensor_core_eligible()); EXPECT_EQ(kernel.op_name(), "mul_786"); } { const auto& kernel = kernel_stats.reports().at(1); EXPECT_EQ(kernel.name(), "kernel_name_middle"); EXPECT_EQ(kernel.registers_per_thread(), 32); EXPECT_EQ(kernel.static_shmem_bytes(), 0); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 16384); EXPECT_EQ(kernel.grid_dim().at(0), 2); EXPECT_EQ(kernel.grid_dim().at(1), 1); EXPECT_EQ(kernel.grid_dim().at(2), 1); EXPECT_EQ(kernel.block_dim().at(0), 32); EXPECT_EQ(kernel.block_dim().at(1), 1); EXPECT_EQ(kernel.block_dim().at(2), 1); EXPECT_EQ(kernel.total_duration_ns(), 2); EXPECT_FALSE(kernel.is_kernel_using_tensor_core()); EXPECT_TRUE(kernel.is_op_tensor_core_eligible()); EXPECT_EQ(kernel.op_name(), "Conv2D"); } { const auto& kernel = kernel_stats.reports().at(0); EXPECT_EQ(kernel.name(), "volta_fp16_s884gemm_fp16_128x128_ldg8_f2f_tn"); EXPECT_EQ(kernel.registers_per_thread(), 32); EXPECT_EQ(kernel.static_shmem_bytes(), 0); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 16384); EXPECT_EQ(kernel.grid_dim().at(0), 3); EXPECT_EQ(kernel.grid_dim().at(1), 1); EXPECT_EQ(kernel.grid_dim().at(2), 1); EXPECT_EQ(kernel.block_dim().at(0), 64); EXPECT_EQ(kernel.block_dim().at(1), 1); EXPECT_EQ(kernel.block_dim().at(2), 1); EXPECT_EQ(kernel.total_duration_ns(), 3); EXPECT_TRUE(kernel.is_kernel_using_tensor_core()); EXPECT_TRUE(kernel.is_op_tensor_core_eligible()); EXPECT_EQ(kernel.op_name(), "Einsum_80"); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_kernel_stats_db_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f5ee04c2-fce6-4a1e-9a0e-8ccf8a7ee393
cpp
google/tsl
numbers
tsl/platform/numbers.cc
tsl/platform/numbers_test.cc
#include "tsl/platform/numbers.h" #include <ctype.h> #include <float.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <cinttypes> #include <cmath> #include <cstdint> #include <locale> #include <unordered_map> #include "double-conversion/double-conversion.h" #include "tsl/platform/str_util.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/types.h" namespace tsl { namespace { template <typename T> const std::unordered_map<std::string, T>* GetSpecialNumsSingleton() { static const std::unordered_map<std::string, T>* special_nums = CHECK_NOTNULL((new const std::unordered_map<std::string, T>{ {"inf", std::numeric_limits<T>::infinity()}, {"+inf", std::numeric_limits<T>::infinity()}, {"-inf", -std::numeric_limits<T>::infinity()}, {"infinity", std::numeric_limits<T>::infinity()}, {"+infinity", std::numeric_limits<T>::infinity()}, {"-infinity", -std::numeric_limits<T>::infinity()}, {"nan", std::numeric_limits<T>::quiet_NaN()}, {"+nan", std::numeric_limits<T>::quiet_NaN()}, {"-nan", -std::numeric_limits<T>::quiet_NaN()}, })); return special_nums; } template <typename T> T locale_independent_strtonum(const char* str, const char** endptr) { auto special_nums = GetSpecialNumsSingleton<T>(); std::stringstream s(str); std::string special_num_str; s >> special_num_str; for (size_t i = 0; i < special_num_str.length(); ++i) { special_num_str[i] = std::tolower(special_num_str[i], std::locale::classic()); } auto entry = special_nums->find(special_num_str); if (entry != special_nums->end()) { *endptr = str + (s.eof() ? static_cast<std::iostream::pos_type>(strlen(str)) : s.tellg()); return entry->second; } else { if (special_num_str.compare(0, 2, "0x") == 0 || special_num_str.compare(0, 3, "-0x") == 0) { return strtol(str, const_cast<char**>(endptr), 16); } } s.str(str); s.clear(); s.imbue(std::locale::classic()); T result; s >> result; if (s.fail()) { if (result == std::numeric_limits<T>::max() || result == std::numeric_limits<T>::infinity()) { result = std::numeric_limits<T>::infinity(); s.clear(s.rdstate() & ~std::ios::failbit); } else if (result == -std::numeric_limits<T>::max() || result == -std::numeric_limits<T>::infinity()) { result = -std::numeric_limits<T>::infinity(); s.clear(s.rdstate() & ~std::ios::failbit); } } if (endptr) { *endptr = str + (s.fail() ? static_cast<std::iostream::pos_type>(0) : (s.eof() ? static_cast<std::iostream::pos_type>(strlen(str)) : s.tellg())); } return result; } static inline const double_conversion::StringToDoubleConverter& StringToFloatConverter() { static const double_conversion::StringToDoubleConverter converter( double_conversion::StringToDoubleConverter::ALLOW_LEADING_SPACES | double_conversion::StringToDoubleConverter::ALLOW_HEX | double_conversion::StringToDoubleConverter::ALLOW_TRAILING_SPACES | double_conversion::StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY, 0., 0., "inf", "nan"); return converter; } } namespace strings { size_t FastInt32ToBufferLeft(int32_t i, char* buffer) { uint32_t u = i; size_t length = 0; if (i < 0) { *buffer++ = '-'; ++length; u = 0 - u; } length += FastUInt32ToBufferLeft(u, buffer); return length; } size_t FastUInt32ToBufferLeft(uint32_t i, char* buffer) { char* start = buffer; do { *buffer++ = ((i % 10) + '0'); i /= 10; } while (i > 0); *buffer = 0; std::reverse(start, buffer); return buffer - start; } size_t FastInt64ToBufferLeft(int64_t i, char* buffer) { uint64_t u = i; size_t length = 0; if (i < 0) { *buffer++ = '-'; ++length; u = 0 - u; } length += FastUInt64ToBufferLeft(u, buffer); return length; } size_t FastUInt64ToBufferLeft(uint64_t i, char* buffer) { char* start = buffer; do { *buffer++ = ((i % 10) + '0'); i /= 10; } while (i > 0); *buffer = 0; std::reverse(start, buffer); return buffer - start; } static const double kDoublePrecisionCheckMax = DBL_MAX / 1.000000000000001; size_t DoubleToBuffer(double value, char* buffer) { static_assert(DBL_DIG < 20, "DBL_DIG is too big"); if (std::isnan(value)) { int snprintf_result = snprintf(buffer, kFastToBufferSize, "%snan", std::signbit(value) ? "-" : ""); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); return snprintf_result; } if (std::abs(value) <= kDoublePrecisionCheckMax) { int snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", DBL_DIG, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); if (locale_independent_strtonum<double>(buffer, nullptr) == value) { return snprintf_result; } } int snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", DBL_DIG + 2, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); return snprintf_result; } namespace { char SafeFirstChar(absl::string_view str) { if (str.empty()) return '\0'; return str[0]; } void SkipSpaces(absl::string_view* str) { while (isspace(SafeFirstChar(*str))) str->remove_prefix(1); } } bool safe_strto64(absl::string_view str, int64_t* value) { SkipSpaces(&str); int64_t vlimit = kint64max; int sign = 1; if (absl::ConsumePrefix(&str, "-")) { sign = -1; vlimit = kint64min; } if (!isdigit(SafeFirstChar(str))) return false; int64_t result = 0; if (sign == 1) { do { int digit = SafeFirstChar(str) - '0'; if ((vlimit - digit) / 10 < result) { return false; } result = result * 10 + digit; str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); } else { do { int digit = SafeFirstChar(str) - '0'; if ((vlimit + digit) / 10 > result) { return false; } result = result * 10 - digit; str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); } SkipSpaces(&str); if (!str.empty()) return false; *value = result; return true; } bool safe_strtou64(absl::string_view str, uint64_t* value) { SkipSpaces(&str); if (!isdigit(SafeFirstChar(str))) return false; uint64_t result = 0; do { int digit = SafeFirstChar(str) - '0'; if ((kuint64max - digit) / 10 < result) { return false; } result = result * 10 + digit; str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); SkipSpaces(&str); if (!str.empty()) return false; *value = result; return true; } bool safe_strto32(absl::string_view str, int32_t* value) { SkipSpaces(&str); int64_t vmax = kint32max; int sign = 1; if (absl::ConsumePrefix(&str, "-")) { sign = -1; ++vmax; } if (!isdigit(SafeFirstChar(str))) return false; int64_t result = 0; do { result = result * 10 + SafeFirstChar(str) - '0'; if (result > vmax) { return false; } str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); SkipSpaces(&str); if (!str.empty()) return false; *value = static_cast<int32_t>(result * sign); return true; } bool safe_strtou32(absl::string_view str, uint32_t* value) { SkipSpaces(&str); if (!isdigit(SafeFirstChar(str))) return false; int64_t result = 0; do { result = result * 10 + SafeFirstChar(str) - '0'; if (result > kuint32max) { return false; } str.remove_prefix(1); } while (isdigit(SafeFirstChar(str))); SkipSpaces(&str); if (!str.empty()) return false; *value = static_cast<uint32_t>(result); return true; } bool safe_strtof(absl::string_view str, float* value) { int processed_characters_count = -1; auto len = str.size(); if (len >= kFastToBufferSize) return false; if (len > std::numeric_limits<int>::max()) return false; *value = StringToFloatConverter().StringToFloat( str.data(), static_cast<int>(len), &processed_characters_count); return processed_characters_count > 0; } bool safe_strtod(absl::string_view str, double* value) { int processed_characters_count = -1; auto len = str.size(); if (len >= kFastToBufferSize) return false; if (len > std::numeric_limits<int>::max()) return false; *value = StringToFloatConverter().StringToDouble( str.data(), static_cast<int>(len), &processed_characters_count); return processed_characters_count > 0; } size_t FloatToBuffer(float value, char* buffer) { static_assert(FLT_DIG < 10, "FLT_DIG is too big"); if (std::isnan(value)) { int snprintf_result = snprintf(buffer, kFastToBufferSize, "%snan", std::signbit(value) ? "-" : ""); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); return snprintf_result; } int snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); float parsed_value; if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) { snprintf_result = snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG + 3, value); DCHECK(snprintf_result > 0 && snprintf_result < kFastToBufferSize); } return snprintf_result; } std::string FpToString(Fprint fp) { char buf[17]; snprintf(buf, sizeof(buf), "%016llx", static_cast<long long>(fp)); return std::string(buf); } bool StringToFp(const std::string& s, Fprint* fp) { char junk; uint64_t result; if (sscanf(s.c_str(), "%" SCNx64 "%c", &result, &junk) == 1) { *fp = result; return true; } else { return false; } } absl::string_view Uint64ToHexString(uint64_t v, char* buf) { static const char* hexdigits = "0123456789abcdef"; const int num_byte = 16; buf[num_byte] = '\0'; for (int i = num_byte - 1; i >= 0; i--) { buf[i] = hexdigits[v & 0xf]; v >>= 4; } return absl::string_view(buf, num_byte); } bool HexStringToUint64(const absl::string_view& s, uint64_t* result) { uint64_t v = 0; if (s.empty()) { return false; } for (size_t i = 0; i < s.size(); i++) { char c = s[i]; if (c >= '0' && c <= '9') { v = (v << 4) + (c - '0'); } else if (c >= 'a' && c <= 'f') { v = (v << 4) + 10 + (c - 'a'); } else if (c >= 'A' && c <= 'F') { v = (v << 4) + 10 + (c - 'A'); } else { return false; } } *result = v; return true; } std::string HumanReadableNum(int64_t value) { std::string s; if (value < 0) { s += "-"; value = -value; } if (value < 1000) { Appendf(&s, "%lld", static_cast<long long>(value)); } else if (value >= static_cast<int64_t>(1e15)) { Appendf(&s, "%0.3G", static_cast<double>(value)); } else { static const char units[] = "kMBT"; const char* unit = units; while (value >= static_cast<int64_t>(1000000)) { value /= static_cast<int64_t>(1000); ++unit; CHECK(unit < units + TF_ARRAYSIZE(units)); } Appendf(&s, "%.2f%c", value / 1000.0, *unit); } return s; } std::string HumanReadableNumBytes(int64_t num_bytes) { if (num_bytes == kint64min) { return "-8E"; } const char* neg_str = (num_bytes < 0) ? "-" : ""; if (num_bytes < 0) { num_bytes = -num_bytes; } if (num_bytes < 1024) { char buf[8]; snprintf(buf, sizeof(buf), "%s%lldB", neg_str, static_cast<long long>(num_bytes)); return std::string(buf); } static const char units[] = "KMGTPE"; const char* unit = units; while (num_bytes >= static_cast<int64_t>(1024) * 1024) { num_bytes /= 1024; ++unit; CHECK(unit < units + TF_ARRAYSIZE(units)); } char buf[16]; snprintf(buf, sizeof(buf), ((*unit == 'K') ? "%s%.1f%ciB" : "%s%.2f%ciB"), neg_str, num_bytes / 1024.0, *unit); return std::string(buf); } std::string HumanReadableElapsedTime(double seconds) { std::string human_readable; if (seconds < 0) { human_readable = "-"; seconds = -seconds; } const double microseconds = seconds * 1.0e6; if (microseconds < 999.5) { strings::Appendf(&human_readable, "%0.3g us", microseconds); return human_readable; } double milliseconds = seconds * 1e3; if (milliseconds >= .995 && milliseconds < 1) { milliseconds = 1.0; } if (milliseconds < 999.5) { strings::Appendf(&human_readable, "%0.3g ms", milliseconds); return human_readable; } if (seconds < 60.0) { strings::Appendf(&human_readable, "%0.3g s", seconds); return human_readable; } seconds /= 60.0; if (seconds < 60.0) { strings::Appendf(&human_readable, "%0.3g min", seconds); return human_readable; } seconds /= 60.0; if (seconds < 24.0) { strings::Appendf(&human_readable, "%0.3g h", seconds); return human_readable; } seconds /= 24.0; if (seconds < 30.0) { strings::Appendf(&human_readable, "%0.3g days", seconds); return human_readable; } if (seconds < 365.2425) { strings::Appendf(&human_readable, "%0.3g months", seconds / 30.436875); return human_readable; } seconds /= 365.2425; strings::Appendf(&human_readable, "%0.3g years", seconds); return human_readable; } } }
#include "tsl/platform/numbers.h" #include <cmath> #include <string> #include "tsl/platform/test.h" namespace tsl { namespace strings { TEST(FpToString, Ints) { for (int s = 0; s < 64; s++) { for (int delta = -1; delta <= 1; delta++) { uint64 fp = (1ull << s) + delta; string s = FpToString(fp); uint64 fp2; EXPECT_TRUE(StringToFp(s, &fp2)); EXPECT_EQ(fp, fp2); } } Fprint dummy; EXPECT_FALSE(StringToFp("", &dummy)); EXPECT_FALSE(StringToFp("xyz", &dummy)); EXPECT_FALSE(StringToFp("0000000000000000xyz", &dummy)); } TEST(Uint64ToHexString, Ints) { for (int s = 0; s < 64; s++) { for (int delta = -1; delta <= 1; delta++) { uint64 fp = (1ull << s) + delta; char buf[kFastToBufferSize]; absl::string_view s = Uint64ToHexString(fp, buf); uint64 fp2; EXPECT_TRUE(HexStringToUint64(s, &fp2)); EXPECT_EQ(fp, fp2) << s; } } uint64 dummy; EXPECT_FALSE(HexStringToUint64("", &dummy)); EXPECT_FALSE(HexStringToUint64("xyz", &dummy)); EXPECT_FALSE(HexStringToUint64("0000000000000000xyz", &dummy)); } TEST(HumanReadableNum, Basic) { EXPECT_EQ(HumanReadableNum(823), "823"); EXPECT_EQ(HumanReadableNum(1024), "1.02k"); EXPECT_EQ(HumanReadableNum(4000), "4.00k"); EXPECT_EQ(HumanReadableNum(999499), "999.50k"); EXPECT_EQ(HumanReadableNum(1000000), "1.00M"); EXPECT_EQ(HumanReadableNum(1048575), "1.05M"); EXPECT_EQ(HumanReadableNum(1048576), "1.05M"); EXPECT_EQ(HumanReadableNum(23956812342), "23.96B"); EXPECT_EQ(HumanReadableNum(123456789012345678), "1.23E+17"); } TEST(HumanReadableNumBytes, Bytes) { EXPECT_EQ("0B", HumanReadableNumBytes(0)); EXPECT_EQ("4B", HumanReadableNumBytes(4)); EXPECT_EQ("1023B", HumanReadableNumBytes(1023)); EXPECT_EQ("1.0KiB", HumanReadableNumBytes(1024)); EXPECT_EQ("1.0KiB", HumanReadableNumBytes(1025)); EXPECT_EQ("1.5KiB", HumanReadableNumBytes(1500)); EXPECT_EQ("1.9KiB", HumanReadableNumBytes(1927)); EXPECT_EQ("2.0KiB", HumanReadableNumBytes(2048)); EXPECT_EQ("1.00MiB", HumanReadableNumBytes(1 << 20)); EXPECT_EQ("11.77MiB", HumanReadableNumBytes(12345678)); EXPECT_EQ("1.00GiB", HumanReadableNumBytes(1 << 30)); EXPECT_EQ("1.00TiB", HumanReadableNumBytes(1LL << 40)); EXPECT_EQ("1.00PiB", HumanReadableNumBytes(1LL << 50)); EXPECT_EQ("1.00EiB", HumanReadableNumBytes(1LL << 60)); EXPECT_EQ("-1B", HumanReadableNumBytes(-1)); EXPECT_EQ("-4B", HumanReadableNumBytes(-4)); EXPECT_EQ("-1000B", HumanReadableNumBytes(-1000)); EXPECT_EQ("-11.77MiB", HumanReadableNumBytes(-12345678)); EXPECT_EQ("-8E", HumanReadableNumBytes(kint64min)); } TEST(HumanReadableElapsedTime, Basic) { EXPECT_EQ(HumanReadableElapsedTime(-10), "-10 s"); EXPECT_EQ(HumanReadableElapsedTime(-0.001), "-1 ms"); EXPECT_EQ(HumanReadableElapsedTime(-60.0), "-1 min"); EXPECT_EQ(HumanReadableElapsedTime(0.00000001), "0.01 us"); EXPECT_EQ(HumanReadableElapsedTime(0.0000012), "1.2 us"); EXPECT_EQ(HumanReadableElapsedTime(0.0012), "1.2 ms"); EXPECT_EQ(HumanReadableElapsedTime(0.12), "120 ms"); EXPECT_EQ(HumanReadableElapsedTime(1.12), "1.12 s"); EXPECT_EQ(HumanReadableElapsedTime(90.0), "1.5 min"); EXPECT_EQ(HumanReadableElapsedTime(600.0), "10 min"); EXPECT_EQ(HumanReadableElapsedTime(9000.0), "2.5 h"); EXPECT_EQ(HumanReadableElapsedTime(87480.0), "1.01 days"); EXPECT_EQ(HumanReadableElapsedTime(7776000.0), "2.96 months"); EXPECT_EQ(HumanReadableElapsedTime(78840000.0), "2.5 years"); EXPECT_EQ(HumanReadableElapsedTime(382386614.40), "12.1 years"); EXPECT_EQ(HumanReadableElapsedTime(DBL_MAX), "5.7e+300 years"); } TEST(safe_strto32, Int32s) { int32 result; EXPECT_EQ(true, safe_strto32("1", &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto32("123", &result)); EXPECT_EQ(123, result); EXPECT_EQ(true, safe_strto32(" -123 ", &result)); EXPECT_EQ(-123, result); EXPECT_EQ(true, safe_strto32("2147483647", &result)); EXPECT_EQ(2147483647, result); EXPECT_EQ(true, safe_strto32("-2147483648", &result)); EXPECT_EQ(-2147483648, result); EXPECT_EQ(false, safe_strto32(" 132as ", &result)); EXPECT_EQ(false, safe_strto32(" 132.2 ", &result)); EXPECT_EQ(false, safe_strto32(" -", &result)); EXPECT_EQ(false, safe_strto32("", &result)); EXPECT_EQ(false, safe_strto32(" ", &result)); EXPECT_EQ(false, safe_strto32("123 a", &result)); EXPECT_EQ(false, safe_strto32("2147483648", &result)); EXPECT_EQ(false, safe_strto32("-2147483649", &result)); EXPECT_EQ(true, safe_strto32(absl::string_view("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto32(absl::string_view(" -123", 4), &result)); EXPECT_EQ(-12, result); EXPECT_EQ(false, safe_strto32(absl::string_view(nullptr, 0), &result)); } TEST(safe_strtou32, UInt32s) { uint32 result; EXPECT_TRUE(safe_strtou32("0", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtou32("1", &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou32("123", &result)); EXPECT_EQ(123, result); EXPECT_TRUE(safe_strtou32("4294967295", &result)); EXPECT_EQ(4294967295, result); EXPECT_FALSE(safe_strtou32(" 132as ", &result)); EXPECT_FALSE(safe_strtou32(" 132.2 ", &result)); EXPECT_FALSE(safe_strtou32(" -", &result)); EXPECT_FALSE(safe_strtou32("", &result)); EXPECT_FALSE(safe_strtou32(" ", &result)); EXPECT_FALSE(safe_strtou32("123 a", &result)); EXPECT_FALSE(safe_strtou32("123 456", &result)); EXPECT_FALSE(safe_strtou32("4294967296", &result)); EXPECT_FALSE(safe_strtou32("-1", &result)); EXPECT_TRUE(safe_strtou32(absl::string_view("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou32(absl::string_view(" 123", 3), &result)); EXPECT_EQ(12, result); EXPECT_FALSE(safe_strtou32(absl::string_view(nullptr, 0), &result)); } TEST(safe_strto64, Int64s) { int64 result; EXPECT_EQ(true, safe_strto64("1", &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto64("123", &result)); EXPECT_EQ(123, result); EXPECT_EQ(true, safe_strto64(" -123 ", &result)); EXPECT_EQ(-123, result); EXPECT_EQ(true, safe_strto64("9223372036854775807", &result)); EXPECT_EQ(9223372036854775807, result); EXPECT_EQ(true, safe_strto64("-9223372036854775808", &result)); EXPECT_EQ(kint64min, result); EXPECT_EQ(false, safe_strto64(" 132as ", &result)); EXPECT_EQ(false, safe_strto64(" 132.2 ", &result)); EXPECT_EQ(false, safe_strto64(" -", &result)); EXPECT_EQ(false, safe_strto64("", &result)); EXPECT_EQ(false, safe_strto64(" ", &result)); EXPECT_EQ(false, safe_strto64("123 a", &result)); EXPECT_EQ(false, safe_strto64("9223372036854775808", &result)); EXPECT_EQ(false, safe_strto64("-9223372036854775809", &result)); EXPECT_EQ(true, safe_strto64(absl::string_view("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_EQ(true, safe_strto64(absl::string_view(" -123", 4), &result)); EXPECT_EQ(-12, result); EXPECT_EQ(false, safe_strto64(absl::string_view(nullptr, 0), &result)); } TEST(safe_strtou64, UInt64s) { uint64 result; EXPECT_TRUE(safe_strtou64("0", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtou64("1", &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou64("123", &result)); EXPECT_EQ(123, result); EXPECT_TRUE(safe_strtou64(" 345 ", &result)); EXPECT_EQ(345, result); EXPECT_TRUE(safe_strtou64("18446744073709551615", &result)); EXPECT_EQ(18446744073709551615UL, result); EXPECT_FALSE(safe_strtou64(" 132.2 ", &result)); EXPECT_FALSE(safe_strtou64(" 132.2 ", &result)); EXPECT_FALSE(safe_strtou64(" -", &result)); EXPECT_FALSE(safe_strtou64("", &result)); EXPECT_FALSE(safe_strtou64(" ", &result)); EXPECT_FALSE(safe_strtou64("123 a", &result)); EXPECT_FALSE(safe_strtou64("123 456", &result)); EXPECT_FALSE(safe_strtou64("18446744073709551616", &result)); EXPECT_FALSE(safe_strtou64("-1", &result)); EXPECT_TRUE(safe_strtou64(absl::string_view("123", 1), &result)); EXPECT_EQ(1, result); EXPECT_TRUE(safe_strtou64(absl::string_view(" 123", 3), &result)); EXPECT_EQ(12, result); EXPECT_FALSE(safe_strtou64(absl::string_view(nullptr, 0), &result)); } TEST(safe_strtof, Float) { float result = 0; EXPECT_TRUE(safe_strtof("0.123456", &result)); EXPECT_EQ(0.123456f, result); EXPECT_FALSE(safe_strtof("0.12345abc", &result)); EXPECT_TRUE(safe_strtof("1e39", &result)); EXPECT_EQ(std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("-1e39", &result)); EXPECT_EQ(-std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("1e-50", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtof("0xF", &result)); EXPECT_EQ(0xF, result); EXPECT_TRUE(safe_strtof("-0x2A", &result)); EXPECT_EQ(-42.0f, result); EXPECT_TRUE(safe_strtof(" -0x2", &result)); EXPECT_EQ(-2.0f, result); EXPECT_TRUE(safe_strtof("8 \t", &result)); EXPECT_EQ(8.0f, result); EXPECT_TRUE(safe_strtof("\t20.0\t ", &result)); EXPECT_EQ(20.0f, result); EXPECT_FALSE(safe_strtof("-infinity is awesome", &result)); char test_str[2 * kFastToBufferSize]; for (int i = 0; i < 2 * kFastToBufferSize; ++i) test_str[i] = 'a'; test_str[kFastToBufferSize + 1] = '\0'; EXPECT_FALSE(safe_strtof(test_str, &result)); EXPECT_TRUE(safe_strtof("-inf", &result)); EXPECT_EQ(-std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("+inf", &result)); EXPECT_EQ(std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("InF", &result)); EXPECT_EQ(std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("-INF", &result)); EXPECT_EQ(-std::numeric_limits<float>::infinity(), result); EXPECT_TRUE(safe_strtof("nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtof("-nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtof("-NaN", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtof("+NAN", &result)); EXPECT_TRUE(std::isnan(result)); } TEST(safe_strtod, Double) { double result = 0; EXPECT_TRUE(safe_strtod("0.1234567890123", &result)); EXPECT_EQ(0.1234567890123, result); EXPECT_FALSE(safe_strtod("0.1234567890123abc", &result)); char test_str[2 * kFastToBufferSize]; for (int i = 0; i < 2 * kFastToBufferSize; ++i) test_str[i] = 'a'; test_str[kFastToBufferSize + 1] = '\0'; EXPECT_FALSE(safe_strtod(test_str, &result)); EXPECT_TRUE(safe_strtod("1e310", &result)); EXPECT_EQ(std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("-1e310", &result)); EXPECT_EQ(-std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("1e-325", &result)); EXPECT_EQ(0, result); EXPECT_TRUE(safe_strtod(" -0x1c", &result)); EXPECT_EQ(-28.0, result); EXPECT_TRUE(safe_strtod("50 \t", &result)); EXPECT_EQ(50.0, result); EXPECT_TRUE(safe_strtod("\t82.0\t ", &result)); EXPECT_EQ(82.0, result); EXPECT_FALSE(safe_strtod("infinity", &result)); EXPECT_TRUE(safe_strtod("-inf", &result)); EXPECT_EQ(-std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("+inf", &result)); EXPECT_EQ(std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("InF", &result)); EXPECT_EQ(std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("-INF", &result)); EXPECT_EQ(-std::numeric_limits<double>::infinity(), result); EXPECT_TRUE(safe_strtod("nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtod("-nan", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtod("-NaN", &result)); EXPECT_TRUE(std::isnan(result)); EXPECT_TRUE(safe_strtod("+NAN", &result)); EXPECT_TRUE(std::isnan(result)); } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/numbers.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/numbers_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
8ea32162-2193-47e5-a498-0124570cc283
cpp
tensorflow/tensorflow
register_span
tensorflow/core/tfrt/mlrt/interpreter/register_span.h
tensorflow/core/tfrt/mlrt/interpreter/register_span_test.cc
#ifndef TENSORFLOW_CORE_TFRT_MLRT_INTERPRETER_REGISTER_SPAN_H_ #define TENSORFLOW_CORE_TFRT_MLRT_INTERPRETER_REGISTER_SPAN_H_ #include <iterator> #include "absl/types/span.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/span.h" #include "tensorflow/core/tfrt/mlrt/interpreter/iterator.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" namespace mlrt { class RegisterIterator : public iterator_internal::IteratorBase<RegisterIterator, Value, absl::Span<Value>> { public: using IteratorBase<RegisterIterator, Value, absl::Span<Value>>::IteratorBase; }; class ConstRegisterIterator : public iterator_internal::IteratorBase<ConstRegisterIterator, const Value, absl::Span<const Value>> { using IteratorBase<ConstRegisterIterator, const Value, absl::Span<const Value>>::IteratorBase; }; class RegisterSpan { public: using value_type = Value; using size_type = size_t; using difference_type = std::ptrdiff_t; using reference = Value&; using const_reference = const Value&; using pointer = Value*; using const_pointer = const Value*; using iterator = RegisterIterator; using const_iterator = ConstRegisterIterator; RegisterSpan() = default; RegisterSpan(bc::Span<uint32_t> reg_indices, absl::Span<Value> regs) : reg_indices_(reg_indices), regs_(regs) {} Value& operator[](size_t idx) { return regs_[reg_indices_[idx]]; } const Value& operator[](size_t idx) const { return regs_[reg_indices_[idx]]; } Value& back() const { return regs_[reg_indices_.back()]; } size_t size() const { return reg_indices_.size(); } iterator begin() const { return iterator(reg_indices_.begin(), regs_); } iterator end() const { return iterator(reg_indices_.end(), regs_); } RegisterSpan drop_front(int num = 1) { return RegisterSpan(reg_indices_.drop_front(num), regs_); } RegisterSpan drop_back(int num = 1) { return RegisterSpan(reg_indices_.drop_back(num), regs_); } private: bc::Span<uint32_t> reg_indices_; absl::Span<Value> regs_; }; template <typename T> class RegisterValueIterator { using Iter = RegisterValueIterator; public: using difference_type = std::ptrdiff_t; using value_type = T; using pointer = T*; using reference = T&; using iterator_category = std::random_access_iterator_tag; explicit RegisterValueIterator(RegisterIterator reg_iter) : reg_iter_(reg_iter) {} reference operator*() const { return (*reg_iter_).Get<T>(); } pointer operator->() const { return &(*reg_iter_).Get<T>(); } reference operator[](difference_type i) const { return (*(reg_iter_ + i)).Get<T>(); } Iter& operator+=(difference_type d) { reg_iter_ += d; return *this; } Iter& operator-=(difference_type d) { reg_iter_ -= d; return *this; } Iter& operator++() { ++reg_iter_; return *this; } Iter operator++(int) { Iter r = *this; ++reg_iter_; return r; } Iter& operator--() { --reg_iter_; return *this; } Iter operator--(int) { Iter r = *this; --reg_iter_; return r; } Iter operator+(difference_type d) const { Iter r = *this; r += d; return r; } friend Iter operator+(difference_type d, const Iter& i) { return i + d; } Iter operator-(difference_type d) const { Iter r = *this; r -= d; return r; } difference_type operator-(const Iter& other) const { return reg_iter_ - other.reg_iter_; } friend bool operator==(const Iter& a, const Iter& b) { return a.reg_iter_ == b.reg_iter_; } friend bool operator!=(const Iter& a, const Iter& b) { return a.reg_iter_ != b.reg_iter_; } friend bool operator<(const Iter& a, const Iter& b) { return a.reg_iter_ < b.reg_iter_; } friend bool operator<=(const Iter& a, const Iter& b) { return a.reg_iter_ <= b.reg_iter_; } friend bool operator>(const Iter& a, const Iter& b) { return a.reg_iter_ > b.reg_iter_; } friend bool operator>=(const Iter& a, const Iter& b) { return a.reg_iter_ >= b.reg_iter_; } private: RegisterIterator reg_iter_; }; template <typename T> class RegisterValueSpan { public: using value_type = T; using size_type = size_t; using difference_type = std::ptrdiff_t; using reference = T&; using const_reference = const T&; using pointer = T*; using const_pointer = const T*; using iterator = RegisterValueIterator<T>; using const_iterator = RegisterValueIterator<const T>; RegisterValueSpan(bc::Span<uint32_t> reg_indices, absl::Span<Value> regs) : reg_span_(reg_indices, regs) {} RegisterValueSpan(RegisterSpan reg_span) : reg_span_(reg_span) {} T& operator[](size_t idx) { return reg_span_[idx].Get<T>(); } const T& operator[](size_t idx) const { return reg_span_[idx].Get<T>(); } void Destroy(size_t idx) { reg_span_[idx].Destroy<T>(); } size_t size() const { return reg_span_.size(); } iterator begin() const { return iterator(reg_span_.begin()); } iterator end() const { return iterator(reg_span_.end()); } bool empty() const { return size() == 0; } RegisterValueSpan drop_front(int num = 1) { return reg_span_.drop_front(num); } RegisterValueSpan drop_back(int num = 1) { return reg_span_.drop_back(num); } RegisterSpan reg_span() const { return reg_span_; } private: RegisterSpan reg_span_; }; } #endif
#include "tensorflow/core/tfrt/mlrt/interpreter/register_span.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" namespace mlrt { namespace { TEST(RegisterSpan, RegisterSpan) { std::vector<Value> regs(4); regs[0].Set<int>(0); regs[1].Set<int>(1); regs[2].Set<int>(2); regs[3].Set<int>(3); bc::Buffer buffer; bc::Allocator allocator(&buffer); auto reg_indices_ctor = bc::New<bc::Vector<uint32_t>>(&allocator, std::vector<uint32_t>{1, 2}); bc::Vector<uint32_t> reg_indices(buffer.Get(reg_indices_ctor.address())); RegisterSpan reg_span(reg_indices, absl::MakeSpan(regs)); ASSERT_EQ(reg_span.size(), 2); EXPECT_EQ(reg_span[0].Get<int>(), 1); EXPECT_EQ(reg_span[1].Get<int>(), 2); EXPECT_THAT(RegisterValueSpan<int>(reg_span), ::testing::ElementsAreArray({1, 2})); } TEST(RegisterSpan, RegisterSpanToStdVector) { std::vector<Value> regs(4); regs[0].Set<int>(0); regs[1].Set<int>(1); regs[2].Set<int>(2); regs[3].Set<int>(3); bc::Buffer buffer; bc::Allocator allocator(&buffer); auto reg_indices_ctor = bc::New<bc::Vector<uint32_t>>(&allocator, std::vector<uint32_t>{1, 2}); bc::Vector<uint32_t> reg_indices(buffer.Get(reg_indices_ctor.address())); RegisterSpan reg_span(reg_indices, absl::MakeSpan(regs)); std::vector<Value> subset(reg_span.begin(), reg_span.end()); ASSERT_EQ(subset.size(), 2); EXPECT_EQ(subset[0].Get<int>(), 1); EXPECT_EQ(subset[1].Get<int>(), 2); } TEST(RegisterSpan, RegisterValueSpan) { std::vector<Value> regs(4); regs[0].Set<int>(0); regs[1].Set<int>(1); regs[2].Set<int>(2); regs[3].Set<int>(3); bc::Buffer buffer; bc::Allocator allocator(&buffer); auto reg_indices_ctor = bc::New<bc::Vector<uint32_t>>(&allocator, std::vector<uint32_t>{1, 3}); bc::Vector<uint32_t> reg_indices(buffer.Get(reg_indices_ctor.address())); RegisterValueSpan<int> reg_span(reg_indices, absl::MakeSpan(regs)); ASSERT_EQ(reg_span.size(), 2); EXPECT_EQ(reg_span[0], 1); EXPECT_EQ(reg_span[1], 3); EXPECT_THAT(reg_span, ::testing::ElementsAreArray({1, 3})); } TEST(RegisterSpan, Modifiers) { std::vector<Value> regs(4); regs[0].Set<int>(0); regs[1].Set<int>(1); regs[2].Set<int>(2); regs[3].Set<int>(3); bc::Buffer buffer; bc::Allocator allocator(&buffer); auto reg_indices_ctor = bc::New<bc::Vector<uint32_t>>( &allocator, std::vector<uint32_t>{0, 2, 1, 3}); bc::Vector<uint32_t> reg_indices(buffer.Get(reg_indices_ctor.address())); RegisterSpan reg_span(reg_indices, absl::MakeSpan(regs)); RegisterValueSpan<int> reg_value_span(reg_span); EXPECT_THAT(RegisterValueSpan<int>(reg_span.drop_back(2)), ::testing::ElementsAreArray({0, 2})); EXPECT_THAT(reg_value_span.drop_front(2), ::testing::ElementsAreArray({1, 3})); reg_value_span.Destroy(1); EXPECT_FALSE(regs[2].HasValue()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/register_span.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/register_span_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b1ba6c91-c123-4aa3-ad58-8bf8217b1498
cpp
tensorflow/tensorflow
top_n
tensorflow/lite/kernels/ctc/top_n.h
tensorflow/core/lib/gtl/top_n_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_CTC_TOP_N_H_ #define TENSORFLOW_LITE_KERNELS_CTC_TOP_N_H_ #include <stddef.h> #include <algorithm> #include <functional> #include <string> #include <vector> #include "tensorflow/lite/kernels/internal/compatibility.h" namespace tflite { namespace gtl { template <class T, class Cmp = std::greater<T> > class TopN { public: enum State { UNORDERED, BOTTOM_KNOWN, HEAP_SORTED }; using UnsortedIterator = typename std::vector<T>::const_iterator; explicit TopN(size_t limit) : TopN(limit, Cmp()) {} TopN(size_t limit, const Cmp &cmp) : limit_(limit), cmp_(cmp) {} size_t limit() const { return limit_; } size_t size() const { return std::min(elements_.size(), limit_); } bool empty() const { return size() == 0; } void reserve(size_t n) { elements_.reserve(std::min(n, limit_ + 1)); } void push(const T &v) { push(v, nullptr); } void push(const T &v, T *dropped) { PushInternal(v, dropped); } void push(T &&v) { push(std::move(v), nullptr); } void push(T &&v, T *dropped) { PushInternal(std::move(v), dropped); } const T &peek_bottom(); std::vector<T> *Extract(); std::vector<T> *ExtractUnsorted(); std::vector<T> *ExtractNondestructive() const; void ExtractNondestructive(std::vector<T> *output) const; std::vector<T> *ExtractUnsortedNondestructive() const; void ExtractUnsortedNondestructive(std::vector<T> *output) const; UnsortedIterator unsorted_begin() const { return elements_.begin(); } UnsortedIterator unsorted_end() const { return elements_.begin() + size(); } Cmp *comparator() { return &cmp_; } void Reset(); private: template <typename U> void PushInternal(U &&v, T *dropped); std::vector<T> elements_; size_t limit_; Cmp cmp_; State state_ = UNORDERED; }; template <class T, class Cmp> template <typename U> void TopN<T, Cmp>::PushInternal(U &&v, T *dropped) { if (limit_ == 0) { if (dropped) *dropped = std::forward<U>(v); return; } if (state_ != HEAP_SORTED) { elements_.push_back(std::forward<U>(v)); if (state_ == UNORDERED || cmp_(elements_.back(), elements_.front())) { } else { using std::swap; swap(elements_.front(), elements_.back()); } if (elements_.size() == limit_ + 1) { std::make_heap(elements_.begin(), elements_.end(), cmp_); if (dropped) *dropped = std::move(elements_.front()); std::pop_heap(elements_.begin(), elements_.end(), cmp_); state_ = HEAP_SORTED; } } else { if (cmp_(v, elements_.front())) { elements_.back() = std::forward<U>(v); std::push_heap(elements_.begin(), elements_.end(), cmp_); if (dropped) *dropped = std::move(elements_.front()); std::pop_heap(elements_.begin(), elements_.end(), cmp_); } else { if (dropped) *dropped = std::forward<U>(v); } } } template <class T, class Cmp> const T &TopN<T, Cmp>::peek_bottom() { TFLITE_DCHECK(!empty()); if (state_ == UNORDERED) { int min_candidate = 0; for (size_t i = 1; i < elements_.size(); ++i) { if (cmp_(elements_[min_candidate], elements_[i])) { min_candidate = i; } } if (min_candidate != 0) { using std::swap; swap(elements_[0], elements_[min_candidate]); } state_ = BOTTOM_KNOWN; } return elements_.front(); } template <class T, class Cmp> std::vector<T> *TopN<T, Cmp>::Extract() { auto out = new std::vector<T>; out->swap(elements_); if (state_ != HEAP_SORTED) { std::sort(out->begin(), out->end(), cmp_); } else { out->pop_back(); std::sort_heap(out->begin(), out->end(), cmp_); } return out; } template <class T, class Cmp> std::vector<T> *TopN<T, Cmp>::ExtractUnsorted() { auto out = new std::vector<T>; out->swap(elements_); if (state_ == HEAP_SORTED) { out->pop_back(); } return out; } template <class T, class Cmp> std::vector<T> *TopN<T, Cmp>::ExtractNondestructive() const { auto out = new std::vector<T>; ExtractNondestructive(out); return out; } template <class T, class Cmp> void TopN<T, Cmp>::ExtractNondestructive(std::vector<T> *output) const { TFLITE_DCHECK(output); *output = elements_; if (state_ != HEAP_SORTED) { std::sort(output->begin(), output->end(), cmp_); } else { output->pop_back(); std::sort_heap(output->begin(), output->end(), cmp_); } } template <class T, class Cmp> std::vector<T> *TopN<T, Cmp>::ExtractUnsortedNondestructive() const { auto elements = new std::vector<T>; ExtractUnsortedNondestructive(elements); return elements; } template <class T, class Cmp> void TopN<T, Cmp>::ExtractUnsortedNondestructive(std::vector<T> *output) const { TFLITE_DCHECK(output); *output = elements_; if (state_ == HEAP_SORTED) { output->pop_back(); } } template <class T, class Cmp> void TopN<T, Cmp>::Reset() { elements_.clear(); state_ = UNORDERED; } } } #endif
#include "tensorflow/core/lib/gtl/top_n.h" #include <string> #include <vector> #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace { using tensorflow::string; using tensorflow::gtl::TopN; using tensorflow::random::PhiloxRandom; using tensorflow::random::SimplePhilox; template <class T> T ConsumeRawPtr(T *p) { T tmp = std::move(*p); delete p; return tmp; } template <class Cmp> void TestIntTopNHelper(size_t limit, size_t n_elements, const Cmp &cmp, SimplePhilox *random, bool test_peek, bool test_extract_unsorted) { LOG(INFO) << "Testing limit=" << limit << ", n_elements=" << n_elements << ", test_peek=" << test_peek << ", test_extract_unsorted=" << test_extract_unsorted; TopN<int, Cmp> top(limit, cmp); std::vector<int> shadow(n_elements); for (int i = 0; i != n_elements; ++i) shadow[i] = random->Uniform(limit); for (int e : shadow) top.push(e); std::sort(shadow.begin(), shadow.end(), cmp); size_t top_size = std::min(limit, n_elements); EXPECT_EQ(top_size, top.size()); if (test_peek && top_size != 0) { EXPECT_EQ(shadow[top_size - 1], top.peek_bottom()); } std::vector<int> v; if (test_extract_unsorted) { v = ConsumeRawPtr(top.ExtractUnsorted()); std::sort(v.begin(), v.end(), cmp); } else { v = ConsumeRawPtr(top.Extract()); } EXPECT_EQ(top_size, v.size()); for (int i = 0; i != top_size; ++i) { VLOG(1) << "Top element " << v[i]; EXPECT_EQ(shadow[i], v[i]); } } template <class Cmp> void TestIntTopN(size_t limit, size_t n_elements, const Cmp &cmp, SimplePhilox *random) { TestIntTopNHelper(limit, n_elements, cmp, random, true, false); TestIntTopNHelper(limit, n_elements, cmp, random, false, false); TestIntTopNHelper(limit, n_elements, cmp, random, true, true); TestIntTopNHelper(limit, n_elements, cmp, random, false, true); } TEST(TopNTest, Misc) { PhiloxRandom philox(1, 1); SimplePhilox random(&philox); TestIntTopN(0, 5, std::greater<int>(), &random); TestIntTopN(32, 0, std::greater<int>(), &random); TestIntTopN(6, 6, std::greater<int>(), &random); TestIntTopN(6, 6, std::less<int>(), &random); TestIntTopN(1000, 999, std::greater<int>(), &random); TestIntTopN(1000, 1000, std::greater<int>(), &random); TestIntTopN(1000, 1001, std::greater<int>(), &random); TestIntTopN(2300, 28393, std::less<int>(), &random); TestIntTopN(30, 100, std::greater<int>(), &random); TestIntTopN(100, 30, std::less<int>(), &random); TestIntTopN(size_t(-1), 3, std::greater<int>(), &random); TestIntTopN(size_t(-1), 0, std::greater<int>(), &random); TestIntTopN(0, 5, std::greater<int>(), &random); } TEST(TopNTest, String) { LOG(INFO) << "Testing strings"; TopN<string> top(3); EXPECT_TRUE(top.empty()); top.push("abracadabra"); top.push("waldemar"); EXPECT_EQ(2, top.size()); EXPECT_EQ("abracadabra", top.peek_bottom()); top.push(""); EXPECT_EQ(3, top.size()); EXPECT_EQ("", top.peek_bottom()); top.push("top"); EXPECT_EQ(3, top.size()); EXPECT_EQ("abracadabra", top.peek_bottom()); top.push("Google"); top.push("test"); EXPECT_EQ(3, top.size()); EXPECT_EQ("test", top.peek_bottom()); TopN<string> top2(top); TopN<string> top3(5); top3 = top; EXPECT_EQ("test", top3.peek_bottom()); { std::vector<string> s = ConsumeRawPtr(top.Extract()); EXPECT_EQ(s[0], "waldemar"); EXPECT_EQ(s[1], "top"); EXPECT_EQ(s[2], "test"); } top2.push("zero"); EXPECT_EQ(top2.peek_bottom(), "top"); { std::vector<string> s = ConsumeRawPtr(top2.Extract()); EXPECT_EQ(s[0], "zero"); EXPECT_EQ(s[1], "waldemar"); EXPECT_EQ(s[2], "top"); } { std::vector<string> s = ConsumeRawPtr(top3.Extract()); EXPECT_EQ(s[0], "waldemar"); EXPECT_EQ(s[1], "top"); EXPECT_EQ(s[2], "test"); } TopN<string> top4(3); for (int i = 0; i < 2; ++i) { top4.push("abcd"); top4.push("ijkl"); top4.push("efgh"); top4.push("mnop"); std::vector<string> s = ConsumeRawPtr(top4.Extract()); EXPECT_EQ(s[0], "mnop"); EXPECT_EQ(s[1], "ijkl"); EXPECT_EQ(s[2], "efgh"); top4.Reset(); } } TEST(TopNTest, Ptr) { LOG(INFO) << "Testing 2-argument push()"; TopN<string *> topn(3); for (int i = 0; i < 8; ++i) { string *dropped = nullptr; topn.push(new string(std::to_string(i)), &dropped); delete dropped; } for (int i = 8; i > 0; --i) { string *dropped = nullptr; topn.push(new string(std::to_string(i)), &dropped); delete dropped; } std::vector<string *> extract = ConsumeRawPtr(topn.Extract()); for (auto &temp : extract) { delete temp; } extract.clear(); } struct PointeeGreater { template <typename T> bool operator()(const T &a, const T &b) const { return *a > *b; } }; TEST(TopNTest, MoveOnly) { using StrPtr = std::unique_ptr<string>; TopN<StrPtr, PointeeGreater> topn(3); for (int i = 0; i < 8; ++i) topn.push(StrPtr(new string(std::to_string(i)))); for (int i = 8; i > 0; --i) topn.push(StrPtr(new string(std::to_string(i)))); std::vector<StrPtr> extract = ConsumeRawPtr(topn.Extract()); EXPECT_EQ(extract.size(), 3); EXPECT_EQ(*(extract[0]), "8"); EXPECT_EQ(*(extract[1]), "7"); EXPECT_EQ(*(extract[2]), "7"); } TEST(TopNTest, Nondestructive) { LOG(INFO) << "Testing Nondestructive extracts"; TopN<int> top4(4); for (int i = 0; i < 8; ++i) { top4.push(i); std::vector<int> v = ConsumeRawPtr(top4.ExtractNondestructive()); EXPECT_EQ(std::min(i + 1, 4), v.size()); for (size_t j = 0; j < v.size(); ++j) EXPECT_EQ(i - j, v[j]); } TopN<int> top3(3); for (int i = 0; i < 8; ++i) { top3.push(i); std::vector<int> v = ConsumeRawPtr(top3.ExtractUnsortedNondestructive()); std::sort(v.begin(), v.end(), std::greater<int>()); EXPECT_EQ(std::min(i + 1, 3), v.size()); for (size_t j = 0; j < v.size(); ++j) EXPECT_EQ(i - j, v[j]); } } struct ForbiddenCmp { bool operator()(int lhs, int rhs) const { LOG(FATAL) << "ForbiddenCmp called " << lhs << " " << rhs; } }; TEST(TopNTest, ZeroLimit) { TopN<int, ForbiddenCmp> top(0); top.push(1); top.push(2); int dropped = -1; top.push(1, &dropped); top.push(2, &dropped); std::vector<int> v; top.ExtractNondestructive(&v); EXPECT_EQ(0, v.size()); } TEST(TopNTest, Iteration) { TopN<int> top(4); for (int i = 0; i < 8; ++i) top.push(i); std::vector<int> actual(top.unsorted_begin(), top.unsorted_end()); std::sort(actual.begin(), actual.end()); EXPECT_EQ(actual.size(), 4); EXPECT_EQ(actual[0], 4); EXPECT_EQ(actual[1], 5); EXPECT_EQ(actual[2], 6); EXPECT_EQ(actual[3], 7); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/ctc/top_n.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/top_n_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f45d9aec-4168-4cdc-9d17-b4e43a86edd1
cpp
google/cel-cpp
cel_value_equal
eval/internal/cel_value_equal.cc
eval/internal/cel_value_equal_test.cc
#include "eval/internal/cel_value_equal.h" #include <cstdint> #include "absl/time/time.h" #include "absl/types/optional.h" #include "base/kind.h" #include "eval/public/cel_number.h" #include "eval/public/cel_value.h" #include "eval/public/message_wrapper.h" #include "eval/public/structs/legacy_type_adapter.h" #include "eval/public/structs/legacy_type_info_apis.h" #include "internal/number.h" #include "google/protobuf/arena.h" namespace cel::interop_internal { namespace { using ::cel::internal::Number; using ::google::api::expr::runtime::CelList; using ::google::api::expr::runtime::CelMap; using ::google::api::expr::runtime::CelValue; using ::google::api::expr::runtime::GetNumberFromCelValue; using ::google::api::expr::runtime::LegacyTypeAccessApis; using ::google::api::expr::runtime::LegacyTypeInfoApis; struct HeterogeneousEqualProvider { absl::optional<bool> operator()(const CelValue& lhs, const CelValue& rhs) const; }; template <class Type> absl::optional<bool> Inequal(Type lhs, Type rhs) { return lhs != rhs; } template <class Type> absl::optional<bool> Equal(Type lhs, Type rhs) { return lhs == rhs; } template <typename EqualsProvider> absl::optional<bool> ListEqual(const CelList* t1, const CelList* t2) { if (t1 == t2) { return true; } int index_size = t1->size(); if (t2->size() != index_size) { return false; } google::protobuf::Arena arena; for (int i = 0; i < index_size; i++) { CelValue e1 = (*t1).Get(&arena, i); CelValue e2 = (*t2).Get(&arena, i); absl::optional<bool> eq = EqualsProvider()(e1, e2); if (eq.has_value()) { if (!(*eq)) { return false; } } else { return eq; } } return true; } template <typename EqualsProvider> absl::optional<bool> MapEqual(const CelMap* t1, const CelMap* t2) { if (t1 == t2) { return true; } if (t1->size() != t2->size()) { return false; } google::protobuf::Arena arena; auto list_keys = t1->ListKeys(&arena); if (!list_keys.ok()) { return absl::nullopt; } const CelList* keys = *list_keys; for (int i = 0; i < keys->size(); i++) { CelValue key = (*keys).Get(&arena, i); CelValue v1 = (*t1).Get(&arena, key).value(); absl::optional<CelValue> v2 = (*t2).Get(&arena, key); if (!v2.has_value()) { auto number = GetNumberFromCelValue(key); if (!number.has_value()) { return false; } if (!key.IsInt64() && number->LosslessConvertibleToInt()) { CelValue int_key = CelValue::CreateInt64(number->AsInt()); absl::optional<bool> eq = EqualsProvider()(key, int_key); if (eq.has_value() && *eq) { v2 = (*t2).Get(&arena, int_key); } } if (!key.IsUint64() && !v2.has_value() && number->LosslessConvertibleToUint()) { CelValue uint_key = CelValue::CreateUint64(number->AsUint()); absl::optional<bool> eq = EqualsProvider()(key, uint_key); if (eq.has_value() && *eq) { v2 = (*t2).Get(&arena, uint_key); } } } if (!v2.has_value()) { return false; } absl::optional<bool> eq = EqualsProvider()(v1, *v2); if (!eq.has_value() || !*eq) { return eq; } } return true; } bool MessageEqual(const CelValue::MessageWrapper& m1, const CelValue::MessageWrapper& m2) { const LegacyTypeInfoApis* lhs_type_info = m1.legacy_type_info(); const LegacyTypeInfoApis* rhs_type_info = m2.legacy_type_info(); if (lhs_type_info->GetTypename(m1) != rhs_type_info->GetTypename(m2)) { return false; } const LegacyTypeAccessApis* accessor = lhs_type_info->GetAccessApis(m1); if (accessor == nullptr) { return false; } return accessor->IsEqualTo(m1, m2); } template <class EqualityProvider> absl::optional<bool> HomogenousCelValueEqual(const CelValue& t1, const CelValue& t2) { if (t1.type() != t2.type()) { return absl::nullopt; } switch (t1.type()) { case Kind::kNullType: return Equal<CelValue::NullType>(CelValue::NullType(), CelValue::NullType()); case Kind::kBool: return Equal<bool>(t1.BoolOrDie(), t2.BoolOrDie()); case Kind::kInt64: return Equal<int64_t>(t1.Int64OrDie(), t2.Int64OrDie()); case Kind::kUint64: return Equal<uint64_t>(t1.Uint64OrDie(), t2.Uint64OrDie()); case Kind::kDouble: return Equal<double>(t1.DoubleOrDie(), t2.DoubleOrDie()); case Kind::kString: return Equal<CelValue::StringHolder>(t1.StringOrDie(), t2.StringOrDie()); case Kind::kBytes: return Equal<CelValue::BytesHolder>(t1.BytesOrDie(), t2.BytesOrDie()); case Kind::kDuration: return Equal<absl::Duration>(t1.DurationOrDie(), t2.DurationOrDie()); case Kind::kTimestamp: return Equal<absl::Time>(t1.TimestampOrDie(), t2.TimestampOrDie()); case Kind::kList: return ListEqual<EqualityProvider>(t1.ListOrDie(), t2.ListOrDie()); case Kind::kMap: return MapEqual<EqualityProvider>(t1.MapOrDie(), t2.MapOrDie()); case Kind::kCelType: return Equal<CelValue::CelTypeHolder>(t1.CelTypeOrDie(), t2.CelTypeOrDie()); default: break; } return absl::nullopt; } absl::optional<bool> HeterogeneousEqualProvider::operator()( const CelValue& lhs, const CelValue& rhs) const { return CelValueEqualImpl(lhs, rhs); } } absl::optional<bool> CelValueEqualImpl(const CelValue& v1, const CelValue& v2) { if (v1.type() == v2.type()) { if (CelValue::MessageWrapper lhs, rhs; v1.GetValue(&lhs) && v2.GetValue(&rhs)) { return MessageEqual(lhs, rhs); } return HomogenousCelValueEqual<HeterogeneousEqualProvider>(v1, v2); } absl::optional<Number> lhs = GetNumberFromCelValue(v1); absl::optional<Number> rhs = GetNumberFromCelValue(v2); if (rhs.has_value() && lhs.has_value()) { return *lhs == *rhs; } if (v1.IsError() || v1.IsUnknownSet() || v2.IsError() || v2.IsUnknownSet()) { return absl::nullopt; } return false; } }
#include "eval/internal/cel_value_equal.h" #include <array> #include <cmath> #include <cstdint> #include <limits> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "google/protobuf/any.pb.h" #include "google/rpc/context/attribute_context.pb.h" #include "google/protobuf/descriptor.pb.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/dynamic_message.h" #include "google/protobuf/message.h" #include "google/protobuf/text_format.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/message_wrapper.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "eval/public/structs/trivial_legacy_type_info.h" #include "eval/testutil/test_message.pb.h" #include "internal/testing.h" namespace cel::interop_internal { namespace { using ::google::api::expr::runtime::CelList; using ::google::api::expr::runtime::CelMap; using ::google::api::expr::runtime::CelProtoWrapper; using ::google::api::expr::runtime::CelValue; using ::google::api::expr::runtime::ContainerBackedListImpl; using ::google::api::expr::runtime::CreateContainerBackedMap; using ::google::api::expr::runtime::MessageWrapper; using ::google::api::expr::runtime::TestMessage; using ::google::api::expr::runtime::TrivialTypeInfo; using ::testing::_; using ::testing::Combine; using ::testing::Optional; using ::testing::Values; using ::testing::ValuesIn; struct EqualityTestCase { enum class ErrorKind { kMissingOverload, kMissingIdentifier }; absl::string_view expr; absl::variant<bool, ErrorKind> result; CelValue lhs = CelValue::CreateNull(); CelValue rhs = CelValue::CreateNull(); }; bool IsNumeric(CelValue::Type type) { return type == CelValue::Type::kDouble || type == CelValue::Type::kInt64 || type == CelValue::Type::kUint64; } const CelList& CelListExample1() { static ContainerBackedListImpl* example = new ContainerBackedListImpl({CelValue::CreateInt64(1)}); return *example; } const CelList& CelListExample2() { static ContainerBackedListImpl* example = new ContainerBackedListImpl({CelValue::CreateInt64(2)}); return *example; } const CelMap& CelMapExample1() { static CelMap* example = []() { std::vector<std::pair<CelValue, CelValue>> values{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}}; auto map = CreateContainerBackedMap(absl::MakeSpan(values)); return map->release(); }(); return *example; } const CelMap& CelMapExample2() { static CelMap* example = []() { std::vector<std::pair<CelValue, CelValue>> values{ {CelValue::CreateInt64(2), CelValue::CreateInt64(4)}}; auto map = CreateContainerBackedMap(absl::MakeSpan(values)); return map->release(); }(); return *example; } const std::vector<CelValue>& ValueExamples1() { static std::vector<CelValue>* examples = []() { google::protobuf::Arena arena; auto result = std::make_unique<std::vector<CelValue>>(); result->push_back(CelValue::CreateNull()); result->push_back(CelValue::CreateBool(false)); result->push_back(CelValue::CreateInt64(1)); result->push_back(CelValue::CreateUint64(1)); result->push_back(CelValue::CreateDouble(1.0)); result->push_back(CelValue::CreateStringView("string")); result->push_back(CelValue::CreateBytesView("bytes")); result->push_back(CelProtoWrapper::CreateMessage( std::make_unique<TestMessage>().release(), &arena)); result->push_back(CelValue::CreateDuration(absl::Seconds(1))); result->push_back(CelValue::CreateTimestamp(absl::FromUnixSeconds(1))); result->push_back(CelValue::CreateList(&CelListExample1())); result->push_back(CelValue::CreateMap(&CelMapExample1())); result->push_back(CelValue::CreateCelTypeView("type")); return result.release(); }(); return *examples; } const std::vector<CelValue>& ValueExamples2() { static std::vector<CelValue>* examples = []() { google::protobuf::Arena arena; auto result = std::make_unique<std::vector<CelValue>>(); auto message2 = std::make_unique<TestMessage>(); message2->set_int64_value(2); result->push_back(CelValue::CreateNull()); result->push_back(CelValue::CreateBool(true)); result->push_back(CelValue::CreateInt64(2)); result->push_back(CelValue::CreateUint64(2)); result->push_back(CelValue::CreateDouble(2.0)); result->push_back(CelValue::CreateStringView("string2")); result->push_back(CelValue::CreateBytesView("bytes2")); result->push_back( CelProtoWrapper::CreateMessage(message2.release(), &arena)); result->push_back(CelValue::CreateDuration(absl::Seconds(2))); result->push_back(CelValue::CreateTimestamp(absl::FromUnixSeconds(2))); result->push_back(CelValue::CreateList(&CelListExample2())); result->push_back(CelValue::CreateMap(&CelMapExample2())); result->push_back(CelValue::CreateCelTypeView("type2")); return result.release(); }(); return *examples; } class CelValueEqualImplTypesTest : public testing::TestWithParam<std::tuple<CelValue, CelValue, bool>> { public: CelValueEqualImplTypesTest() = default; const CelValue& lhs() { return std::get<0>(GetParam()); } const CelValue& rhs() { return std::get<1>(GetParam()); } bool should_be_equal() { return std::get<2>(GetParam()); } }; std::string CelValueEqualTestName( const testing::TestParamInfo<std::tuple<CelValue, CelValue, bool>>& test_case) { return absl::StrCat(CelValue::TypeName(std::get<0>(test_case.param).type()), CelValue::TypeName(std::get<1>(test_case.param).type()), (std::get<2>(test_case.param)) ? "Equal" : "Inequal"); } TEST_P(CelValueEqualImplTypesTest, Basic) { absl::optional<bool> result = CelValueEqualImpl(lhs(), rhs()); if (lhs().IsNull() || rhs().IsNull()) { if (lhs().IsNull() && rhs().IsNull()) { EXPECT_THAT(result, Optional(true)); } else { EXPECT_THAT(result, Optional(false)); } } else if (lhs().type() == rhs().type() || (IsNumeric(lhs().type()) && IsNumeric(rhs().type()))) { EXPECT_THAT(result, Optional(should_be_equal())); } else { EXPECT_THAT(result, Optional(false)); } } INSTANTIATE_TEST_SUITE_P(EqualityBetweenTypes, CelValueEqualImplTypesTest, Combine(ValuesIn(ValueExamples1()), ValuesIn(ValueExamples1()), Values(true)), &CelValueEqualTestName); INSTANTIATE_TEST_SUITE_P(InequalityBetweenTypes, CelValueEqualImplTypesTest, Combine(ValuesIn(ValueExamples1()), ValuesIn(ValueExamples2()), Values(false)), &CelValueEqualTestName); struct NumericInequalityTestCase { std::string name; CelValue a; CelValue b; }; const std::vector<NumericInequalityTestCase>& NumericValuesNotEqualExample() { static std::vector<NumericInequalityTestCase>* examples = []() { google::protobuf::Arena arena; auto result = std::make_unique<std::vector<NumericInequalityTestCase>>(); result->push_back({"NegativeIntAndUint", CelValue::CreateInt64(-1), CelValue::CreateUint64(2)}); result->push_back( {"IntAndLargeUint", CelValue::CreateInt64(1), CelValue::CreateUint64( static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1)}); result->push_back( {"IntAndLargeDouble", CelValue::CreateInt64(2), CelValue::CreateDouble( static_cast<double>(std::numeric_limits<int64_t>::max()) + 1025)}); result->push_back( {"IntAndSmallDouble", CelValue::CreateInt64(2), CelValue::CreateDouble( static_cast<double>(std::numeric_limits<int64_t>::lowest()) - 1025)}); result->push_back( {"UintAndLargeDouble", CelValue::CreateUint64(2), CelValue::CreateDouble( static_cast<double>(std::numeric_limits<uint64_t>::max()) + 2049)}); result->push_back({"NegativeDoubleAndUint", CelValue::CreateDouble(-2.0), CelValue::CreateUint64(123)}); result->push_back({"NanAndDouble", CelValue::CreateDouble(NAN), CelValue::CreateDouble(1.0)}); result->push_back({"NanAndNan", CelValue::CreateDouble(NAN), CelValue::CreateDouble(NAN)}); result->push_back({"DoubleAndNan", CelValue::CreateDouble(1.0), CelValue::CreateDouble(NAN)}); result->push_back( {"IntAndNan", CelValue::CreateInt64(1), CelValue::CreateDouble(NAN)}); result->push_back( {"NanAndInt", CelValue::CreateDouble(NAN), CelValue::CreateInt64(1)}); result->push_back( {"UintAndNan", CelValue::CreateUint64(1), CelValue::CreateDouble(NAN)}); result->push_back( {"NanAndUint", CelValue::CreateDouble(NAN), CelValue::CreateUint64(1)}); return result.release(); }(); return *examples; } using NumericInequalityTest = testing::TestWithParam<NumericInequalityTestCase>; TEST_P(NumericInequalityTest, NumericValues) { NumericInequalityTestCase test_case = GetParam(); absl::optional<bool> result = CelValueEqualImpl(test_case.a, test_case.b); EXPECT_TRUE(result.has_value()); EXPECT_EQ(*result, false); } INSTANTIATE_TEST_SUITE_P( InequalityBetweenNumericTypesTest, NumericInequalityTest, ValuesIn(NumericValuesNotEqualExample()), [](const testing::TestParamInfo<NumericInequalityTest::ParamType>& info) { return info.param.name; }); TEST(CelValueEqualImplTest, LossyNumericEquality) { absl::optional<bool> result = CelValueEqualImpl( CelValue::CreateDouble( static_cast<double>(std::numeric_limits<int64_t>::max()) - 1), CelValue::CreateInt64(std::numeric_limits<int64_t>::max())); EXPECT_TRUE(result.has_value()); EXPECT_TRUE(*result); } TEST(CelValueEqualImplTest, ListMixedTypesInequal) { ContainerBackedListImpl lhs({CelValue::CreateInt64(1)}); ContainerBackedListImpl rhs({CelValue::CreateStringView("abc")}); EXPECT_THAT( CelValueEqualImpl(CelValue::CreateList(&lhs), CelValue::CreateList(&rhs)), Optional(false)); } TEST(CelValueEqualImplTest, NestedList) { ContainerBackedListImpl inner_lhs({CelValue::CreateInt64(1)}); ContainerBackedListImpl lhs({CelValue::CreateList(&inner_lhs)}); ContainerBackedListImpl inner_rhs({CelValue::CreateNull()}); ContainerBackedListImpl rhs({CelValue::CreateList(&inner_rhs)}); EXPECT_THAT( CelValueEqualImpl(CelValue::CreateList(&lhs), CelValue::CreateList(&rhs)), Optional(false)); } TEST(CelValueEqualImplTest, MapMixedValueTypesInequal) { std::vector<std::pair<CelValue, CelValue>> lhs_data{ {CelValue::CreateInt64(1), CelValue::CreateStringView("abc")}}; std::vector<std::pair<CelValue, CelValue>> rhs_data{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}}; ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs, CreateContainerBackedMap(absl::MakeSpan(lhs_data))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs, CreateContainerBackedMap(absl::MakeSpan(rhs_data))); EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()), CelValue::CreateMap(rhs.get())), Optional(false)); } TEST(CelValueEqualImplTest, MapMixedKeyTypesEqual) { std::vector<std::pair<CelValue, CelValue>> lhs_data{ {CelValue::CreateUint64(1), CelValue::CreateStringView("abc")}}; std::vector<std::pair<CelValue, CelValue>> rhs_data{ {CelValue::CreateInt64(1), CelValue::CreateStringView("abc")}}; ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs, CreateContainerBackedMap(absl::MakeSpan(lhs_data))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs, CreateContainerBackedMap(absl::MakeSpan(rhs_data))); EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()), CelValue::CreateMap(rhs.get())), Optional(true)); } TEST(CelValueEqualImplTest, MapMixedKeyTypesInequal) { std::vector<std::pair<CelValue, CelValue>> lhs_data{ {CelValue::CreateInt64(1), CelValue::CreateStringView("abc")}}; std::vector<std::pair<CelValue, CelValue>> rhs_data{ {CelValue::CreateInt64(2), CelValue::CreateInt64(2)}}; ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs, CreateContainerBackedMap(absl::MakeSpan(lhs_data))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs, CreateContainerBackedMap(absl::MakeSpan(rhs_data))); EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()), CelValue::CreateMap(rhs.get())), Optional(false)); } TEST(CelValueEqualImplTest, NestedMaps) { std::vector<std::pair<CelValue, CelValue>> inner_lhs_data{ {CelValue::CreateInt64(2), CelValue::CreateStringView("abc")}}; ASSERT_OK_AND_ASSIGN( std::unique_ptr<CelMap> inner_lhs, CreateContainerBackedMap(absl::MakeSpan(inner_lhs_data))); std::vector<std::pair<CelValue, CelValue>> lhs_data{ {CelValue::CreateInt64(1), CelValue::CreateMap(inner_lhs.get())}}; std::vector<std::pair<CelValue, CelValue>> inner_rhs_data{ {CelValue::CreateInt64(2), CelValue::CreateNull()}}; ASSERT_OK_AND_ASSIGN( std::unique_ptr<CelMap> inner_rhs, CreateContainerBackedMap(absl::MakeSpan(inner_rhs_data))); std::vector<std::pair<CelValue, CelValue>> rhs_data{ {CelValue::CreateInt64(1), CelValue::CreateMap(inner_rhs.get())}}; ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> lhs, CreateContainerBackedMap(absl::MakeSpan(lhs_data))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<CelMap> rhs, CreateContainerBackedMap(absl::MakeSpan(rhs_data))); EXPECT_THAT(CelValueEqualImpl(CelValue::CreateMap(lhs.get()), CelValue::CreateMap(rhs.get())), Optional(false)); } TEST(CelValueEqualImplTest, ProtoEqualityDifferingTypenameInequal) { google::protobuf::Arena arena; TestMessage example; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(R"( int32_value: 1 uint32_value: 2 string_value: "test" )", &example)); CelValue lhs = CelProtoWrapper::CreateMessage(&example, &arena); CelValue rhs = CelValue::CreateMessageWrapper( MessageWrapper(&example, TrivialTypeInfo::GetInstance())); EXPECT_THAT(CelValueEqualImpl(lhs, rhs), Optional(false)); } TEST(CelValueEqualImplTest, ProtoEqualityNoAccessorInequal) { google::protobuf::Arena arena; TestMessage example; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(R"( int32_value: 1 uint32_value: 2 string_value: "test" )", &example)); CelValue lhs = CelValue::CreateMessageWrapper( MessageWrapper(&example, TrivialTypeInfo::GetInstance())); CelValue rhs = CelValue::CreateMessageWrapper( MessageWrapper(&example, TrivialTypeInfo::GetInstance())); EXPECT_THAT(CelValueEqualImpl(lhs, rhs), Optional(false)); } TEST(CelValueEqualImplTest, ProtoEqualityAny) { google::protobuf::Arena arena; TestMessage packed_value; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(R"( int32_value: 1 uint32_value: 2 string_value: "test" )", &packed_value)); TestMessage lhs; lhs.mutable_any_value()->PackFrom(packed_value); TestMessage rhs; rhs.mutable_any_value()->PackFrom(packed_value); EXPECT_THAT(CelValueEqualImpl(CelProtoWrapper::CreateMessage(&lhs, &arena), CelProtoWrapper::CreateMessage(&rhs, &arena)), Optional(true)); lhs.mutable_any_value()->clear_type_url(); rhs.mutable_any_value()->clear_type_url(); EXPECT_THAT(CelValueEqualImpl(CelProtoWrapper::CreateMessage(&lhs, &arena), CelProtoWrapper::CreateMessage(&rhs, &arena)), Optional(true)); } bool AddDepsToPool(const google::protobuf::FileDescriptor* descriptor, google::protobuf::DescriptorPool& pool) { for (int i = 0; i < descriptor->dependency_count(); i++) { if (!AddDepsToPool(descriptor->dependency(i), pool)) { return false; } } google::protobuf::FileDescriptorProto descriptor_proto; descriptor->CopyTo(&descriptor_proto); return pool.BuildFile(descriptor_proto) != nullptr; } TEST(CelValueEqualImplTest, DynamicDescriptorAndGeneratedInequal) { google::protobuf::DescriptorPool pool; google::protobuf::DynamicMessageFactory factory; google::protobuf::Arena arena; factory.SetDelegateToGeneratedFactory(false); ASSERT_TRUE(AddDepsToPool(TestMessage::descriptor()->file(), pool)); TestMessage example_message; ASSERT_TRUE( google::protobuf::TextFormat::ParseFromString(R"pb( int64_value: 12345 bool_list: false bool_list: true message_value { float_value: 1.0 } )pb", &example_message)); std::unique_ptr<google::protobuf::Message> example_dynamic_message( factory .GetPrototype(pool.FindMessageTypeByName( TestMessage::descriptor()->full_name())) ->New()); ASSERT_TRUE(example_dynamic_message->ParseFromString( example_message.SerializeAsString())); EXPECT_THAT(CelValueEqualImpl( CelProtoWrapper::CreateMessage(&example_message, &arena), CelProtoWrapper::CreateMessage(example_dynamic_message.get(), &arena)), Optional(false)); } TEST(CelValueEqualImplTest, DynamicMessageAndMessageEqual) { google::protobuf::DynamicMessageFactory factory; google::protobuf::Arena arena; factory.SetDelegateToGeneratedFactory(false); TestMessage example_message; ASSERT_TRUE( google::protobuf::TextFormat::ParseFromString(R"pb( int64_value: 12345 bool_list: false bool_list: true message_value { float_value: 1.0 } )pb", &example_message)); std::unique_ptr<google::protobuf::Message> example_dynamic_message( factory.GetPrototype(TestMessage::descriptor())->New()); ASSERT_TRUE(example_dynamic_message->ParseFromString( example_message.SerializeAsString())); EXPECT_THAT(CelValueEqualImpl( CelProtoWrapper::CreateMessage(&example_message, &arena), CelProtoWrapper::CreateMessage(example_dynamic_message.get(), &arena)), Optional(true)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/internal/cel_value_equal.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/internal/cel_value_equal_test.cc
4552db5798fb0853b131b783d8875794334fae7f
34bddcca-fda3-446f-8e5e-0bd32648a7c4
cpp
tensorflow/tensorflow
math_grad
tensorflow/c/experimental/gradients/math_grad.cc
tensorflow/c/experimental/gradients/math_grad_test.cc
#include "tensorflow/c/experimental/gradients/math_grad.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/gradients.h" #include "tensorflow/c/experimental/ops/array_ops.h" #include "tensorflow/c/experimental/ops/math_ops.h" #include "tensorflow/c/experimental/ops/nn_ops.h" using std::vector; using tensorflow::ops::AddV2; using tensorflow::ops::Div; using tensorflow::ops::DivNoNan; using tensorflow::ops::MatMul; using tensorflow::ops::Mul; using tensorflow::ops::Neg; using tensorflow::ops::OnesLike; using tensorflow::ops::SqrtGrad; namespace tensorflow { namespace gradients { namespace { static Status SafeConj(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle** output, const char* name) { auto dtype = input->DataType(); if (DataTypeIsFloating(BaseType(dtype)) || DataTypeIsInteger(BaseType(dtype))) { return tensorflow::ops::Identity(ctx, input, output, name); } else if (!DataTypeIsComplex(BaseType(dtype)) && BaseType(dtype) != DT_VARIANT) { return errors::InvalidArgument( "Expected numeric or variant tensor, got dtype ", dtype); } return tensorflow::ops::Conj(ctx, input, output, name); } class AddGradientFunction : public GradientFunction { public: Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { DCHECK(grad_outputs[0]); grad_inputs[0] = grad_outputs[0]; grad_inputs[1] = grad_outputs[0]; grad_inputs[0]->Ref(); grad_inputs[1]->Ref(); return absl::OkStatus(); } ~AddGradientFunction() override {} }; class ExpGradientFunction : public GradientFunction { public: explicit ExpGradientFunction(AbstractTensorHandle* exp) : exp_(exp) { exp->Ref(); } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* conj_output; std::string name = "Conj_Exp_Grad"; TF_RETURN_IF_ERROR(SafeConj(ctx, exp_.get(), &conj_output, name.c_str())); AbstractTensorHandlePtr conj_output_releaser(conj_output); name = "Mul_Exp_Grad"; TF_RETURN_IF_ERROR( Mul(ctx, conj_output, grad_outputs[0], &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~ExpGradientFunction() override {} private: AbstractTensorHandlePtr exp_; }; class SqrtGradientFunction : public GradientFunction { public: explicit SqrtGradientFunction(AbstractTensorHandle* sqrt) : sqrt_(sqrt) { sqrt->Ref(); } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { std::string name = "Sqrt_Grad"; TF_RETURN_IF_ERROR(SqrtGrad(ctx, sqrt_.get(), grad_outputs[0], &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~SqrtGradientFunction() override {} private: AbstractTensorHandlePtr sqrt_; }; class MatMulGradientFunction : public GradientFunction { public: explicit MatMulGradientFunction(vector<AbstractTensorHandle*> f_inputs, AttrBuilder f_attrs) : forward_inputs_(f_inputs), forward_attrs_(f_attrs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; bool t_a; TF_RETURN_IF_ERROR(forward_attrs_.Get("transpose_a", &t_a)); bool t_b; TF_RETURN_IF_ERROR(forward_attrs_.Get("transpose_b", &t_b)); AbstractTensorHandle* conj_output; std::string name = "Conj_A_MatMul_Grad"; TF_RETURN_IF_ERROR( SafeConj(ctx, forward_inputs_[0], &conj_output, name.c_str())); AbstractTensorHandlePtr A(conj_output); name = "Conj_B_MatMul_Grad"; TF_RETURN_IF_ERROR( SafeConj(ctx, forward_inputs_[1], &conj_output, name.c_str())); AbstractTensorHandlePtr B(conj_output); AbstractTensorHandle* matmul_A_output; AbstractTensorHandle* matmul_B_output; std::string name_grad_A = "MatMul_Grad_A"; std::string name_grad_B = "MatMul_Grad_B"; if (!t_a && !t_b) { TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, B.get(), &matmul_A_output, false, true, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, A.get(), upstream_grad, &matmul_B_output, true, false, name_grad_B.c_str())); } else if (!t_a && t_b) { TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, B.get(), &matmul_A_output, false, false, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, A.get(), &matmul_B_output, true, false, name_grad_B.c_str())); } else if (t_a && !t_b) { TF_RETURN_IF_ERROR(MatMul(ctx, B.get(), upstream_grad, &matmul_A_output, false, true, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, A.get(), upstream_grad, &matmul_B_output, false, false, name_grad_B.c_str())); } else { TF_RETURN_IF_ERROR(MatMul(ctx, B.get(), upstream_grad, &matmul_A_output, true, true, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, A.get(), &matmul_B_output, true, true, name_grad_B.c_str())); } grad_inputs[0] = matmul_A_output; grad_inputs[1] = matmul_B_output; return absl::OkStatus(); } ~MatMulGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; AttrBuilder forward_attrs_; }; class NegGradientFunction : public GradientFunction { public: Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { std::string name = "Neg_Grad"; TF_RETURN_IF_ERROR( ops::Neg(ctx, grad_outputs[0], &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~NegGradientFunction() override {} }; class SubGradientFunction : public GradientFunction { public: Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { DCHECK(grad_outputs[0]); grad_inputs[0] = grad_outputs[0]; grad_inputs[0]->Ref(); std::string name = "Neg_Sub_Grad_B"; TF_RETURN_IF_ERROR( ops::Neg(ctx, grad_outputs[0], &grad_inputs[1], name.c_str())); return absl::OkStatus(); } ~SubGradientFunction() override {} }; class MulGradientFunction : public GradientFunction { public: explicit MulGradientFunction(vector<AbstractTensorHandle*> f_inputs) : forward_inputs_(f_inputs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; std::string name = "Mul_Grad_A"; TF_RETURN_IF_ERROR(Mul(ctx, upstream_grad, forward_inputs_[1], &grad_inputs[0], name.c_str())); name = "Mul_Grad_B"; TF_RETURN_IF_ERROR(Mul(ctx, forward_inputs_[0], upstream_grad, &grad_inputs[1], name.c_str())); return absl::OkStatus(); } ~MulGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; }; class Log1pGradientFunction : public GradientFunction { public: explicit Log1pGradientFunction(vector<AbstractTensorHandle*> f_inputs) : forward_inputs_(f_inputs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; AbstractTensorHandle* X = forward_inputs_[0]; AbstractTensorHandle* temp_output; std::string name = "Conj_Log1p_Grad_X"; TF_RETURN_IF_ERROR(SafeConj(ctx, X, &temp_output, name.c_str())); AbstractTensorHandlePtr Conj_X(temp_output); name = "OnesLike_Log1p_Grad_X"; TF_RETURN_IF_ERROR(OnesLike(ctx, Conj_X.get(), &temp_output, name.c_str())); AbstractTensorHandlePtr Ones_X(temp_output); name = "Add_Log1p_Grad_X"; TF_RETURN_IF_ERROR( AddV2(ctx, Ones_X.get(), Conj_X.get(), &temp_output, name.c_str())); AbstractTensorHandlePtr Conj_XP1(temp_output); name = "Div_Log1p_Grad_X"; TF_RETURN_IF_ERROR( Div(ctx, upstream_grad, Conj_XP1.get(), &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~Log1pGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; }; class DivNoNanGradientFunction : public GradientFunction { public: explicit DivNoNanGradientFunction(vector<AbstractTensorHandle*> f_inputs, vector<AbstractTensorHandle*> f_outputs) : forward_inputs_(f_inputs), forward_outputs_(f_outputs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } for (auto output : forward_outputs_) { if (output) { output->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; AbstractTensorHandle* Y = forward_inputs_[1]; AbstractTensorHandle* Z = forward_outputs_[0]; std::string name = "Div_Grad_X"; TF_RETURN_IF_ERROR( DivNoNan(ctx, upstream_grad, Y, &grad_inputs[0], name.c_str())); AbstractTensorHandle* temp_output; name = "Neg_Div_Grad_Y"; TF_RETURN_IF_ERROR(Neg(ctx, upstream_grad, &temp_output, name.c_str())); AbstractTensorHandlePtr MinusU(temp_output); name = "Mul_Div_Grad_Y"; TF_RETURN_IF_ERROR(Mul(ctx, MinusU.get(), Z, &temp_output, name.c_str())); AbstractTensorHandlePtr UZ(temp_output); name = "Div_Grad_Y"; TF_RETURN_IF_ERROR(DivNoNan(ctx, UZ.get(), Y, &grad_inputs[1], name.c_str())); return absl::OkStatus(); } ~DivNoNanGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } for (auto output : forward_outputs_) { if (output) { output->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; vector<AbstractTensorHandle*> forward_outputs_; }; } GradientFunction* AddRegisterer(const ForwardOperation& op) { return new AddGradientFunction; } GradientFunction* ExpRegisterer(const ForwardOperation& op) { return new ExpGradientFunction(op.outputs[0]); } GradientFunction* MatMulRegisterer(const ForwardOperation& op) { return new MatMulGradientFunction(op.inputs, op.attrs); } GradientFunction* SqrtRegisterer(const ForwardOperation& op) { return new SqrtGradientFunction(op.outputs[0]); } GradientFunction* NegRegisterer(const ForwardOperation& op) { return new NegGradientFunction; } GradientFunction* SubRegisterer(const ForwardOperation& op) { return new SubGradientFunction; } GradientFunction* MulRegisterer(const ForwardOperation& op) { return new MulGradientFunction(op.inputs); } GradientFunction* Log1pRegisterer(const ForwardOperation& op) { return new Log1pGradientFunction(op.inputs); } GradientFunction* DivNoNanRegisterer(const ForwardOperation& op) { return new DivNoNanGradientFunction(op.inputs, op.outputs); } } }
#include "tensorflow/c/experimental/gradients/math_grad.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/c_api_unified_experimental_internal.h" #include "tensorflow/c/eager/unified_api_testutil.h" #include "tensorflow/c/experimental/gradients/grad_test_helper.h" #include "tensorflow/c/experimental/gradients/tape/tape_context.h" #include "tensorflow/c/experimental/ops/math_ops.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/tensor_float_32_utils.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace gradients { namespace internal { namespace { using tensorflow::TF_StatusPtr; Status AddModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::AddV2(ctx, inputs[0], inputs[1], &outputs[0], "Add"); } Status ExpModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Exp(ctx, inputs[0], &outputs[0], "Exp"); } Status SqrtModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Sqrt(ctx, inputs[0], &outputs[0], "Sqrt"); } Status NegModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Neg(ctx, inputs[0], &outputs[0], "Neg"); } Status SubModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Sub(ctx, inputs[0], inputs[1], &outputs[0], "Sub"); } Status MulModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Mul(ctx, inputs[0], inputs[1], &outputs[0], "Mul"); } Status Log1pModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Log1p(ctx, inputs[0], &outputs[0], "Log1p"); } Status DivNoNanModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::DivNoNan(ctx, inputs[0], inputs[1], &outputs[0], "DivNoNan"); } class CppGradients : public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> { protected: void SetUp() override { TF_StatusPtr status(TF_NewStatus()); TF_SetTracingImplementation(std::get<0>(GetParam()), status.get()); status_ = StatusFromTF_Status(status.get()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); { AbstractContext* ctx_raw = nullptr; status_ = BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); immediate_execution_ctx_.reset(ctx_raw); } enable_tensor_float_32_execution(false); } AbstractContextPtr immediate_execution_ctx_; GradientRegistry registry_; Status status_; public: bool UseMlir() const { return strcmp(std::get<0>(GetParam()), "mlir") == 0; } bool UseFunction() const { return std::get<2>(GetParam()); } }; TEST_P(CppGradients, TestAddGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } status_ = registry_.Register("AddV2", AddRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( AddModel, BuildGradModel(AddModel, registry_), immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); } TEST_P(CppGradients, TestExpGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Exp", ExpRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( ExpModel, BuildGradModel(ExpModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestMatMulGrad) { GTEST_SKIP(); float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; int64_t A_dims[] = {3, 3}; AbstractTensorHandlePtr A; { AbstractTensorHandle* A_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), A_vals, A_dims, 2, &A_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); A.reset(A_raw); } float B_vals[] = {9.0f, 8.0f, 7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f}; int64_t B_dims[] = {3, 3}; AbstractTensorHandlePtr B; { AbstractTensorHandle* B_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), B_vals, B_dims, 2, &B_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); B.reset(B_raw); } status_ = registry_.Register("MatMul", MatMulRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); for (bool transpose_a : {false, true}) { for (bool transpose_b : {false, true}) { Model MatMulModel = [transpose_a, transpose_b]( AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) -> Status { return ops::MatMul(ctx, inputs[0], inputs[1], &outputs[0], transpose_a, transpose_b, "MatMul"); }; ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( MatMulModel, BuildGradModel(MatMulModel, registry_), immediate_execution_ctx_.get(), {A.get(), B.get()}, UseFunction())); } } } TEST_P(CppGradients, TestMatMulGradManual) { float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; int64_t A_dims[] = {3, 3}; AbstractTensorHandlePtr A; { AbstractTensorHandle* A_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), A_vals, A_dims, 2, &A_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); A.reset(A_raw); } float B_vals[] = {9.0f, 8.0f, 7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f}; int64_t B_dims[] = {3, 3}; AbstractTensorHandlePtr B; { AbstractTensorHandle* B_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), B_vals, B_dims, 2, &B_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); B.reset(B_raw); } status_ = registry_.Register("MatMul", MatMulRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); bool transpose_a_vals[] = {false, false, true, true}; bool transpose_b_vals[] = {false, true, false, true}; float dA_vals[4][9] = {{24, 15, 6, 24, 15, 6, 24, 15, 6}, {18, 15, 12, 18, 15, 12, 18, 15, 12}, {24, 24, 24, 15, 15, 15, 6, 6, 6}, {18, 18, 18, 15, 15, 15, 12, 12, 12}}; float dB_vals[4][9] = {{12, 12, 12, 15, 15, 15, 18, 18, 18}, {12, 15, 18, 12, 15, 18, 12, 15, 18}, {6, 6, 6, 15, 15, 15, 24, 24, 24}, {6, 15, 24, 6, 15, 24, 6, 15, 24}}; for (int i{}; i < 4; ++i) { bool transpose_a = transpose_a_vals[i]; bool transpose_b = transpose_b_vals[i]; Model MatMulModel = [transpose_a, transpose_b]( AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) -> Status { return ops::MatMul(ctx, inputs[0], inputs[1], &outputs[0], transpose_a, transpose_b, "MatMul"); }; Model MatMulGradModel = BuildGradModel(MatMulModel, registry_); std::vector<AbstractTensorHandle*> outputs(2); status_ = RunModel(MatMulGradModel, immediate_execution_ctx_.get(), {A.get(), B.get()}, absl::MakeSpan(outputs), UseFunction()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[0], dA_vals[i], {3, 3}, 0)); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[1], dB_vals[i], {3, 3}, 0)); outputs[0]->Unref(); outputs[1]->Unref(); } } TEST_P(CppGradients, TestSqrtGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Sqrt", SqrtRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( SqrtModel, BuildGradModel(SqrtModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestNegGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Neg", NegRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( NegModel, BuildGradModel(NegModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestSubGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } status_ = registry_.Register("Sub", SubRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( SubModel, BuildGradModel(SubModel, registry_), immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); } TEST_P(CppGradients, TestMulGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } status_ = registry_.Register("Mul", MulRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( MulModel, BuildGradModel(MulModel, registry_), immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); } TEST_P(CppGradients, TestLog1pGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Log1p", Log1pRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( Log1pModel, BuildGradModel(Log1pModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestDivNoNanGrad) { status_ = registry_.Register("DivNoNan", DivNoNanRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); auto DivNoNanGradModel = BuildGradModel(DivNoNanModel, registry_); AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( DivNoNanModel, DivNoNanGradModel, immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); AbstractTensorHandlePtr z; { AbstractTensorHandle* z_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 0.0f, &z_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); z.reset(z_raw); } std::vector<AbstractTensorHandle*> outputs(2); status_ = RunModel(DivNoNanGradModel, immediate_execution_ctx_.get(), {x.get(), z.get()}, absl::MakeSpan(outputs), UseFunction()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[0], {0.0f}, {}, 0)); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[1], {0.0f}, {}, 0)); outputs[0]->Unref(); outputs[1]->Unref(); } #ifdef PLATFORM_GOOGLE INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #else INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/math_grad.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/math_grad_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b10bbd84-8d23-498a-992f-f9d31a286f23
cpp
tensorflow/tensorflow
zero_sized_hlo_elimination
third_party/xla/xla/service/zero_sized_hlo_elimination.cc
third_party/xla/xla/service/zero_sized_hlo_elimination_test.cc
#include "xla/service/zero_sized_hlo_elimination.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> ZeroSizedHloElimination::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : comp->MakeInstructionPostOrder()) { if (instruction->HasSideEffect() || !instruction->shape().IsArray() || instruction->opcode() == HloOpcode::kConstant) { continue; } if (comp->IsSafelyRemovable(instruction) && ShapeUtil::IsZeroElementArray(instruction->shape()) && instruction->shape().is_static()) { Shape shape = instruction->shape(); if (!LayoutUtil::HasLayout(shape)) { LayoutUtil::SetToDefaultLayout(&shape); } TF_RETURN_IF_ERROR(comp->ReplaceWithNewInstruction( instruction, HloInstruction::CreateConstant(Literal::CreateFromShape(shape)))); changed = true; } } } return changed; } }
#include "xla/service/zero_sized_hlo_elimination.h" #include <memory> #include <vector> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class ZeroSizedHloEliminationTest : public HloTestBase { protected: ZeroSizedHloEliminationTest() : HloTestBase(), builder_("zero_sized_computation"), zero_sized_param_( builder_.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {3, 0}), "zero sized param"))) {} absl::StatusOr<bool> RunZeroSizedElimination() { auto module = CreateNewVerifiedModule("zero_sized_elimination_test_module"); module->AddEntryComputation(builder_.Build()); return ZeroSizedHloElimination{}.Run(module.get()); } HloComputation::Builder builder_; HloInstruction* zero_sized_param_; }; TEST_F(ZeroSizedHloEliminationTest, EliminatedZeroSizedOp) { builder_.AddInstruction(HloInstruction::CreateUnary( zero_sized_param_->shape(), HloOpcode::kTanh, zero_sized_param_)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunZeroSizedElimination()); EXPECT_TRUE(changed); } TEST_F(ZeroSizedHloEliminationTest, DoesNotEliminateParameter) { TF_ASSERT_OK_AND_ASSIGN(bool changed, RunZeroSizedElimination()); EXPECT_FALSE(changed); } TEST_F(ZeroSizedHloEliminationTest, DoesNotEliminateSideEffects) { auto token = builder_.AddInstruction(HloInstruction::CreateToken()); auto send = builder_.AddInstruction( HloInstruction::CreateSend(zero_sized_param_, token, 0)); builder_.AddInstruction(HloInstruction::CreateSendDone(send)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunZeroSizedElimination()); EXPECT_FALSE(changed); } TEST_F(ZeroSizedHloEliminationTest, DoesNotEliminateConstant) { builder_.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1({}))); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunZeroSizedElimination()); EXPECT_FALSE(changed); } TEST_F(ZeroSizedHloEliminationTest, ZeroSizedInstructionWithoutLayoutFolded) { Shape op_shape = ShapeUtil::MakeShape(F32, {4, 0}); op_shape.clear_layout(); HloInstruction* param1 = builder_.AddInstruction( HloInstruction::CreateParameter(1, op_shape, "zero sized param 1")); HloInstruction* param2 = builder_.AddInstruction( HloInstruction::CreateParameter(2, op_shape, "zero sized param 2")); builder_.AddInstruction( HloInstruction::CreateBinary(op_shape, HloOpcode::kAdd, param1, param2)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunZeroSizedElimination()); EXPECT_TRUE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/zero_sized_hlo_elimination.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/zero_sized_hlo_elimination_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b174aca1-29c4-4460-986b-0277ad8a2da7
cpp
tensorflow/tensorflow
dequantize_op
tensorflow/compiler/tf2xla/kernels/dequantize_op.cc
tensorflow/core/kernels/dequantize_op_test.cc
#include <array> #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/matrix.h" #include "xla/hlo/builder/xla_builder.h" #include "tensorflow/core/framework/numeric_types.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.pb.h" namespace tensorflow { namespace { constexpr std::array<DataType, 2> kQuantizedType = {{DT_QINT8, DT_QUINT8}}; template <typename T> float get_fullrange() { return static_cast<float>(std::numeric_limits<T>::max()) - std::numeric_limits<T>::min(); } class DequantizeOp : public XlaOpKernel { public: explicit DequantizeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { string mode_string; int axis; bool narrow_range; OP_REQUIRES_OK(ctx, ctx->GetAttr("mode", &mode_string)); OP_REQUIRES( ctx, (mode_string == "MIN_COMBINED"), errors::InvalidArgument("Mode string must be 'MIN_COMBINED' is " + mode_string + "'")); OP_REQUIRES_OK(ctx, ctx->GetAttr("narrow_range", &narrow_range)); OP_REQUIRES(ctx, narrow_range == false, errors::InvalidArgument("narrow_range must be false")); OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &axis)); OP_REQUIRES(ctx, axis == -1, errors::InvalidArgument("axis must be -1' is ", axis)); OP_REQUIRES_OK(ctx, ctx->GetAttr("dtype", &dtype_)); } ~DequantizeOp() override = default; void Compile(XlaOpKernelContext* ctx) override { DataType input_type = ctx->input_type(0); xla::XlaOp input = ctx->Input(0); xla::XlaOp output = xla::ConvertElementType(input, xla::F32); xla::XlaOp min_range = xla::ConvertElementType(ctx->Input(1), xla::F32); xla::XlaOp max_range = xla::ConvertElementType(ctx->Input(2), xla::F32); xla::XlaOp full_range; xla::XlaOp half_range; if (input_type == DT_QINT8) { full_range = ScalarLike(output, get_fullrange<qint8>()); half_range = (full_range + ScalarLike(output, 1.0f)) / ScalarLike(output, 2.0f); } else { OP_REQUIRES(ctx, input_type == DT_QUINT8, errors::InvalidArgument( "Only support DT_QINT8 or DT_QUINT8, got ", input_type)); full_range = ScalarLike(output, get_fullrange<quint8>()); half_range = ScalarLike(output, 0.0f); } xla::XlaOp scale = (max_range - min_range) / full_range; output = xla::Add(xla::Mul(xla::Add(output, half_range), scale), min_range); if (dtype_ == DT_BFLOAT16) { output = xla::ConvertElementType(output, xla::BF16); } ctx->SetOutput(0, output); } private: DataType dtype_; }; REGISTER_XLA_OP(Name("Dequantize").TypeConstraint("T", kQuantizedType), DequantizeOp); } }
#include <functional> #include <memory> #include <random> #include <vector> #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { class DequantizeOpTest : public OpsTestBase { protected: template <typename T> void ComputeDequantizeMinCombinedUsingEigen(const Tensor& input, float min_range, float max_range, Tensor* output) { float half_range = !std::is_signed<T>::value ? 0.0f : (static_cast<float>(std::numeric_limits<T>::max()) - std::numeric_limits<T>::min() + 1) / 2.0f; const float scale_factor = (max_range - min_range) / (static_cast<float>(std::numeric_limits<T>::max()) - std::numeric_limits<T>::min()); output->flat<float>() = ((input.flat<T>().template cast<int>().template cast<float>() + half_range) * scale_factor) + min_range; } template <typename T> void RunDequantizeMinCombinedTest(float min_range, float max_range, const string& op_name) { TF_ASSERT_OK(NodeDefBuilder("dequantize_op", op_name) .Input(FakeInput(DataTypeToEnum<T>::v())) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<T>::v()) .Attr("mode", "MIN_COMBINED") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); std::vector<T> input; for (int64_t i = std::numeric_limits<T>::min(); i < std::numeric_limits<T>::max(); ++i) { input.push_back(static_cast<T>(i)); } TensorShape shape({static_cast<int64_t>(input.size())}); AddInputFromArray<T>(shape, input); AddInputFromArray<float>(TensorShape({}), {min_range}); AddInputFromArray<float>(TensorShape({}), {max_range}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, shape); ComputeDequantizeMinCombinedUsingEigen<T>(GetInput(0), min_range, max_range, &expected); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } template <typename T> void RunDequantizeBfloat16MinCombinedTest(float min_range, float max_range) { TF_ASSERT_OK(NodeDefBuilder("dequantize_op_bfloat16", "Dequantize") .Input(FakeInput(DataTypeToEnum<T>::v())) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<T>::v()) .Attr("mode", "MIN_COMBINED") .Attr("dtype", DT_BFLOAT16) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); std::vector<T> input; for (int64_t i = std::numeric_limits<T>::min(); i < std::numeric_limits<T>::max(); ++i) { input.push_back(static_cast<T>(i)); } TensorShape shape({static_cast<int64_t>(input.size())}); AddInputFromArray<T>(shape, input); AddInputFromArray<float>(TensorShape({}), {min_range}); AddInputFromArray<float>(TensorShape({}), {max_range}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_float32(allocator(), DT_FLOAT, shape); ComputeDequantizeMinCombinedUsingEigen<T>(GetInput(0), min_range, max_range, &expected_float32); Tensor expected(allocator(), DT_BFLOAT16, shape); expected.flat<bfloat16>() = expected_float32.flat<float>().cast<bfloat16>(); test::ExpectTensorEqual<bfloat16>(expected, *GetOutput(0)); } template <typename T> std::vector<T> ScalePerSliceAlongAxis(std::vector<int64_t> dims, int axis, const std::vector<T>& data) { uint32 seed = 123; std::minstd_rand rng(seed); int64_t out_size = 1; for (int dim : dims) { out_size *= dim; } int minor_size = 1; for (int i = axis + 1; i < dims.size(); ++i) { minor_size *= dims[i]; } std::vector<T> out(out_size); int num_slices = (axis == -1) ? 1 : dims[axis]; for (int out_idx = 0; out_idx < out_size; ++out_idx) { int in_idx = rng() % data.size(); T multiplier = ((out_idx / minor_size) % num_slices) + 1; out[out_idx] = data[in_idx] * multiplier; } return out; } template <typename T> void RunDequantizeScaledTest(float min_range, float max_range, int axis, const std::vector<T>& values, const std::vector<float>& expected) { const std::vector<int64_t> dims = {2, 3, 4, 5}; int num_slices = (axis == -1) ? 1 : dims[axis]; TF_ASSERT_OK(NodeDefBuilder("dequantize_op", "Dequantize") .Input(FakeInput(DataTypeToEnum<T>::v())) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<T>::v()) .Attr("mode", "SCALED") .Attr("axis", axis) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<T>(TensorShape(dims), ScalePerSliceAlongAxis(dims, -1, values)); std::vector<float> min_ranges(num_slices), max_ranges(num_slices); for (int slice_idx = 0; slice_idx < num_slices; ++slice_idx) { min_ranges[slice_idx] = (slice_idx + 1) * min_range; max_ranges[slice_idx] = (slice_idx + 1) * max_range; } AddInputFromArray<float>(TensorShape({num_slices}), min_ranges); AddInputFromArray<float>(TensorShape({num_slices}), max_ranges); TF_ASSERT_OK(RunOpKernel()); Tensor expected_tensor(allocator(), DT_FLOAT, TensorShape(dims)); test::FillValues<float>(&expected_tensor, ScalePerSliceAlongAxis(dims, axis, expected)); test::ExpectClose(expected_tensor, *GetOutput(0)); } }; struct ParameterizedDequantizeOpTest : public OpsTestBase, public ::testing::WithParamInterface<int> {}; TEST_F(DequantizeOpTest, DequantizeMinCombinedQuint8) { RunDequantizeMinCombinedTest<quint8>(0, 255.0f, "Dequantize"); } TEST_F(DequantizeOpTest, DequantizeMinCombinedQint8) { RunDequantizeMinCombinedTest<qint8>(0, 255.0f, "Dequantize"); } TEST_F(DequantizeOpTest, DequantizeMinCombinedQint16) { RunDequantizeMinCombinedTest<qint16>(0, 255.0f, "Dequantize"); } TEST_F(DequantizeOpTest, DequantizeMinCombinedQuint16) { RunDequantizeMinCombinedTest<quint16>(0, 255.0f, "Dequantize"); } TEST_F(DequantizeOpTest, DequantizeBfloat16MinCombinedQuint8) { RunDequantizeBfloat16MinCombinedTest<quint8>(0, 255.0f); } TEST_F(DequantizeOpTest, DequantizeBfloat16MinCombinedQint8) { RunDequantizeBfloat16MinCombinedTest<qint8>(0, 255.0f); } TEST_F(DequantizeOpTest, DequantizeBfloat16MinCombinedQint16) { RunDequantizeBfloat16MinCombinedTest<qint16>(0, 255.0f); } TEST_F(DequantizeOpTest, DequantizeBfloat16MinCombinedQuint16) { RunDequantizeBfloat16MinCombinedTest<quint16>(0, 255.0f); } TEST_F(DequantizeOpTest, DequantizeScaledQuint8Zero) { RunDequantizeScaledTest<quint8>(-255.0f, 127.0f, -1, {0}, {0.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQuint8CheckIgnoresNegative) { RunDequantizeScaledTest<quint8>(-512.0f, 255.0f, -1, {255}, {255.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQuint8ScaleDown) { RunDequantizeScaledTest<quint8>(-1.0f, 2.0f, -1, {255}, {2.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQuint8ScaleUp) { RunDequantizeScaledTest<quint8>(200.0f, 400.0f, -1, {255}, {400.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQint8Zero) { RunDequantizeScaledTest<qint8>(-255.0f, 127.0f, -1, {0}, {0.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQint8ScaleIdentity) { RunDequantizeScaledTest<qint8>(-10.0f, 127.0f, -1, {-127}, {-127.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQint8ScaleDown) { RunDequantizeScaledTest<qint8>(-2.0f, 1.0f, -1, {-128}, {-2.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQint8ScaleUp) { RunDequantizeScaledTest<qint8>(-1.0f, 300.0f, -1, {42}, {99.212601}); } TEST_F(DequantizeOpTest, DequantizeScaledQint8Axis1) { RunDequantizeScaledTest<qint8>(-12.8f, 12.7f, 1, {-20, -10, 0, 1, 10, 20}, {-2.0, -1.0, 0.0, 0.1, 1.0, 2.0}); } TEST_F(DequantizeOpTest, DequantizeScaledQint8Axis3) { RunDequantizeScaledTest<qint8>(-12.8f, 12.7f, 3, {-20, -10, 0, 1, 10, 20}, {-2.0, -1.0, 0.0, 0.1, 1.0, 2.0}); } template <typename T> static void BM_DequantizeMinCombinedCpu(::testing::benchmark::State& state) { auto root = Scope::NewRootScope().ExitOnError(); const int64_t num_values = 1500 * 250; std::vector<T> inputs; inputs.reserve(num_values); for (int i = 0; i < num_values; ++i) inputs.push_back(i); ops::Dequantize give_me_a_name(root, test::AsTensor<T>(inputs), test::AsScalar<float>(-1.5f), test::AsScalar<float>(20.5f), ops::Dequantize::Attrs().Mode("MIN_COMBINED")); TF_CHECK_OK(root.status()); Graph* g = new Graph(OpRegistry::Global()); TF_CHECK_OK(root.ToGraph(g)); test::Benchmark("cpu", g, false).Run(state); state.SetBytesProcessed(state.iterations() * num_values * (sizeof(float) + sizeof(T))); state.SetItemsProcessed(state.iterations()); } void BM_DequantizeMinCombinedCpuQuint16(::testing::benchmark::State& state) { BM_DequantizeMinCombinedCpu<quint16>(state); } void BM_DequantizeMinCombinedCpuQint16(::testing::benchmark::State& state) { BM_DequantizeMinCombinedCpu<qint16>(state); } void BM_DequantizeMinCombinedCpuQuint8(::testing::benchmark::State& state) { BM_DequantizeMinCombinedCpu<quint8>(state); } void BM_DequantizeMinCombinedCpuQint8(::testing::benchmark::State& state) { BM_DequantizeMinCombinedCpu<qint8>(state); } BENCHMARK(BM_DequantizeMinCombinedCpuQuint16); BENCHMARK(BM_DequantizeMinCombinedCpuQint16); BENCHMARK(BM_DequantizeMinCombinedCpuQuint8); BENCHMARK(BM_DequantizeMinCombinedCpuQint8); template <typename T> static void BM_DequantizeBfloat16MinCombinedCpu( ::testing::benchmark::State& state) { auto root = Scope::NewRootScope().ExitOnError(); const int64_t num_values = 1500 * 250; std::vector<T> inputs; inputs.reserve(num_values); for (int i = 0; i < num_values; ++i) inputs.push_back(i); ops::Dequantize give_me_a_name(root, test::AsTensor<T>(inputs), test::AsScalar<float>(-1.5f), test::AsScalar<float>(20.5f), ops::Dequantize::Attrs().Dtype(DT_BFLOAT16)); TF_CHECK_OK(root.status()); Graph* g = new Graph(OpRegistry::Global()); TF_CHECK_OK(root.ToGraph(g)); test::Benchmark("cpu", g, false).Run(state); state.SetBytesProcessed(state.iterations() * num_values * (sizeof(bfloat16) + sizeof(T))); state.SetItemsProcessed(state.iterations()); } void BM_DequantizeBfloat16MinCombinedCpuQuint16( ::testing::benchmark::State& state) { BM_DequantizeBfloat16MinCombinedCpu<quint16>(state); } void BM_DequantizeBfloat16MinCombinedCpuQint16( ::testing::benchmark::State& state) { BM_DequantizeBfloat16MinCombinedCpu<qint16>(state); } void BM_DequantizeBfloat16MinCombinedCpuQuint8( ::testing::benchmark::State& state) { BM_DequantizeBfloat16MinCombinedCpu<quint8>(state); } void BM_DequantizeBfloat16MinCombinedCpuQint8( ::testing::benchmark::State& state) { BM_DequantizeBfloat16MinCombinedCpu<qint8>(state); } BENCHMARK(BM_DequantizeBfloat16MinCombinedCpuQuint16); BENCHMARK(BM_DequantizeBfloat16MinCombinedCpuQint16); BENCHMARK(BM_DequantizeBfloat16MinCombinedCpuQuint8); BENCHMARK(BM_DequantizeBfloat16MinCombinedCpuQint8); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/dequantize_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/dequantize_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ff4abb2c-ab85-4700-8461-1d3ad21f9d18
cpp
tensorflow/tensorflow
xla_compiler
tensorflow/compiler/tf2xla/xla_compiler.cc
tensorflow/compiler/tf2xla/xla_compiler_test.cc
#include "tensorflow/compiler/tf2xla/xla_compiler.h" #include <algorithm> #include <array> #include <map> #include <memory> #include <numeric> #include <optional> #include <set> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/compiler/mlir/tf2xla/mlir_bridge_rollout_policy.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/variant.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/shape_inference.h" #include "tensorflow/compiler/jit/xla_compile_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/attribute_utils.h" #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include "tensorflow/compiler/mlir/utils/array_container_utils.h" #include "tensorflow/compiler/tf2xla/graph_compiler.h" #include "tensorflow/compiler/tf2xla/layout_util.h" #include "tensorflow/compiler/tf2xla/rearrange_function_argument.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/sharding_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_compilation_device.h" #include "tensorflow/compiler/tf2xla/xla_context.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/client_library.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/protobuf_util.h" #include "xla/service/hlo.pb.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/executor.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_optimizer.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/tpu/tpu_defs.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/tensor_float_32_utils.h" namespace tensorflow { namespace { constexpr char kSingleOpComponent[] = "TF2XLA_XLA_COMPILER_COMPILE_SINGLE_OP"; constexpr char kCompileFunctionComponent[] = "TF2XLA_XLA_COMPILER_COMPILE_FUNCTION"; Status CheckSignature(const DataTypeVector& types, absl::Span<const XlaCompiler::Argument> args) { if (args.size() != types.size()) { return errors::Internal("Compilation arguments have ", args.size(), " elements while function has ", types.size()); } for (int i = 0, end = types.size(); i < end; ++i) { if (types[i] != args[i].type && types[i] != DT_RESOURCE && types[i] != DT_VARIANT) { return errors::Internal( "Argument ", i, " has declared type ", DataTypeString(args[i].type), " but function parameter has type ", DataTypeString(types[i])); } } return absl::OkStatus(); } absl::StatusOr< std::pair<std::map<int, xla::OpSharding>, std::map<int, xla::OpSharding>>> ComputeArgAndRetvalShardings(const Graph& graph) { auto get_sharding_for_node = [](const Node* n) -> absl::StatusOr<std::optional<xla::OpSharding>> { TF_ASSIGN_OR_RETURN( auto sharding, ParseShardingFromDevice(*n, std::numeric_limits<int32>::max(), false)); return sharding; }; std::map<int, xla::OpSharding> arg_shardings; std::map<int, xla::OpSharding> retval_shardings; for (const Node* n : graph.nodes()) { if (n->IsArg()) { TF_ASSIGN_OR_RETURN(auto sharding, get_sharding_for_node(n)); if (!sharding.has_value()) continue; int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); TF_RET_CHECK(index >= 0) << "Negative _Arg index"; arg_shardings[index] = std::move(*sharding); } else if (n->IsRetval()) { TF_ASSIGN_OR_RETURN(auto sharding, get_sharding_for_node(n)); if (!sharding.has_value()) continue; int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); TF_RET_CHECK(index >= 0) << "Negative _Retval index"; retval_shardings[index] = std::move(*sharding); } } return std::make_pair(std::move(arg_shardings), std::move(retval_shardings)); } Status ExecuteGraph(XlaContext* xla_context, std::unique_ptr<Graph> graph, XlaCompilationDevice* device, FunctionLibraryRuntime* flib, int64_t step_id) { xla_context->Ref(); Status status; auto step_container = std::make_unique<ScopedStepContainer>( step_id, [&status, device](const string& name) { status = device->resource_manager()->Cleanup(name); }); TF_RETURN_IF_ERROR(step_container->Create(device->resource_manager(), XlaContext::kXlaContextResourceName, xla_context)); GraphCompiler graph_compiler(device, graph.get(), flib, step_container.get()); TF_RETURN_IF_ERROR(graph_compiler.Compile()); step_container.reset(); return status; } Status BuildComputation( const std::vector<XlaCompiler::Argument>& args, const std::vector<XlaExpression>& retvals, const std::map<int, xla::OpSharding>& arg_shardings, const std::map<int, xla::OpSharding>& retval_shardings, const std::vector<std::unique_ptr<XlaResource>>& resources, std::unique_ptr<xla::XlaOp> token_output, const XlaShapeLayoutHelpers::ShapeDeterminationFns& shape_determination_fns, bool is_entry_computation, bool return_updated_values_for_all_resources, bool always_return_tuple, bool use_tuple_arg, bool alias_resource_update, xla::XlaBuilder* builder, xla::XlaComputation* computation, int* num_computation_outputs, int* num_nonconst_outputs, std::vector<XlaCompiler::OutputDescription>* outputs, std::vector<XlaCompiler::ResourceUpdate>* resource_updates, xla::Shape* output_shape, absl::Span<int const> input_mapping) { xla::OpMetadata retval_metadata; retval_metadata.set_op_name("XLA_Retvals"); builder->SetOpMetadata(retval_metadata); VLOG(1) << "Building new computation"; auto cleanup = gtl::MakeCleanup([builder]() { builder->ClearOpMetadata(); }); auto identity_op = [builder](xla::XlaOp op, const std::optional<xla::OpSharding>& sharding) { xla::XlaScopedShardingAssignment assign_sharding(builder, sharding); return xla::Copy(op); }; std::vector<xla::XlaOp> elems; elems.reserve(retvals.size()); std::unordered_map<int, xla::OpSharding> retval_index_and_sharding; for (int i = 0, end = retvals.size(); i < end; ++i) { XlaCompiler::OutputDescription& output = (*outputs)[i]; const XlaExpression& retval = retvals[i]; output.type = retval.dtype(); switch (retval.kind()) { case XlaExpression::Kind::kConstant: output.is_constant = true; output.constant_value = *retval.constant_value(); output.shape = output.constant_value.shape(); break; case XlaExpression::Kind::kTensorList: { output.is_tensor_list = true; xla::XlaOp value = retval.handle(); elems.push_back(value); break; } case XlaExpression::Kind::kXlaOp: { output.is_constant = false; TF_ASSIGN_OR_RETURN(output.shape, retval.GetShape()); xla::XlaOp value = retval.handle(); auto it = retval_shardings.find(i); std::optional<xla::OpSharding> sharding = it == retval_shardings.end() ? std::optional<xla::OpSharding>() : it->second; if (it != retval_shardings.end()) { retval_index_and_sharding[elems.size()] = it->second; } if (shape_determination_fns.shape_representation_fn) { TF_ASSIGN_OR_RETURN(auto original_shape, builder->GetShape(value)); TF_ASSIGN_OR_RETURN(value, ReshapeWithCorrectRepresentationAndSharding( builder, value, original_shape, shape_determination_fns, sharding, false)); } if (it != retval_shardings.end()) { value = identity_op(value, sharding); } elems.push_back(value); break; } case XlaExpression::Kind::kResource: output.is_constant = false; output.input_index = retval.resource()->arg_num(); output.shape = retval.resource()->shape(); break; case XlaExpression::Kind::kInvalid: return errors::InvalidArgument( "Invalid expression returned by computation. " "This probably means a return value was not set."); } } *num_nonconst_outputs = elems.size(); std::vector<const XlaResource*> arg_resources; arg_resources.reserve(resources.size()); for (const auto& resource : resources) { if (resource->arg_num() >= 0) { arg_resources.push_back(resource.get()); } } std::sort(arg_resources.begin(), arg_resources.end(), [](const XlaResource* a, const XlaResource* b) { return a->arg_num() < b->arg_num(); }); absl::flat_hash_map<int, int> argument_to_xla_arg; for (int xla_arg = 0; xla_arg < input_mapping.size(); xla_arg++) { argument_to_xla_arg[input_mapping[xla_arg]] = xla_arg; } std::vector<xla::XlaBuilder::InputOutputAlias> aliases; for (const XlaResource* resource : arg_resources) { DCHECK_LT(resource->arg_num(), args.size()); const XlaCompiler::Argument& arg = args[resource->arg_num()]; auto it = arg_shardings.find(resource->arg_num()); bool modified = !resource->value().IsIdenticalTo(resource->initial_value()); for (const auto& grad : resource->tensor_array_gradients()) { modified = modified || !grad.second->value().IsIdenticalTo(grad.second->initial_value()) || arg.tensor_array_gradients.count(grad.first) == 0; } if (return_updated_values_for_all_resources || modified || arg.requires_broadcast) { resource_updates->emplace_back(); XlaCompiler::ResourceUpdate& update = resource_updates->back(); update.input_index = resource->arg_num(); update.type = resource->type(); update.shape = resource->shape(); update.modified = modified; int param_num = use_tuple_arg ? 0 : update.input_index; if (is_entry_computation && arg.resource_kind != XlaResource::kTensorArray && alias_resource_update && argument_to_xla_arg.count(param_num)) { xla::ShapeIndex param_index = use_tuple_arg ? xla::ShapeIndex({update.input_index}) : xla::ShapeIndex{}; int xla_param_num = argument_to_xla_arg[param_num]; int64_t output_index_num = elems.size(); xla::ShapeIndex output_index = xla::ShapeIndex({output_index_num}); VLOG(3) << "Storing alias: " << output_index.ToString() << ": (" << xla_param_num << ", " << param_index.ToString() << ")"; aliases.push_back({output_index, xla_param_num, param_index}); } for (const auto& grad : resource->tensor_array_gradients()) { update.tensor_array_gradients_accessed.insert(grad.first); } xla::XlaOp handle; TF_RETURN_IF_ERROR(resource->Pack(&handle, builder)); auto sharding = it == arg_shardings.end() ? std::optional<xla::OpSharding>() : it->second; if (shape_determination_fns.layout_preference_fn && shape_determination_fns.shape_representation_fn) { TF_ASSIGN_OR_RETURN(auto original_shape, builder->GetShape(handle)); TF_ASSIGN_OR_RETURN( handle, ReshapeWithCorrectRepresentationAndSharding( builder, handle, original_shape, shape_determination_fns, sharding, arg.fast_mem)); } if (it != arg_shardings.end()) { retval_index_and_sharding[elems.size()] = it->second; } handle = identity_op(handle, sharding); elems.push_back(handle); } } if (token_output) { elems.push_back(*token_output); } *num_computation_outputs = elems.size(); xla::XlaOp tuple; if (retval_index_and_sharding.empty() || !is_entry_computation) { tuple = xla::Tuple(builder, elems); } else { std::vector<xla::Shape> elem_shapes; for (const auto& elem : elems) { TF_ASSIGN_OR_RETURN(xla::Shape elem_shape, elem.builder()->GetShape(elem)); elem_shapes.push_back(elem_shape); } xla::Shape shape = xla::ShapeUtil::MakeTupleShape(elem_shapes); std::vector<xla::HloSharding> sharding_elems; for (int i = 0, end = elems.size(); i < end; i++) { const auto& iter = retval_index_and_sharding.find(i); TF_RET_CHECK(iter != retval_index_and_sharding.end()); const xla::OpSharding& sub_op_sharding = iter->second; TF_ASSIGN_OR_RETURN(xla::HloSharding sub_sharding, xla::HloSharding::FromProto(sub_op_sharding)); if (elem_shapes[i].IsTuple()) { const std::vector<xla::HloSharding> sub_sharding_elems = sub_sharding.tuple_elements(); const int64_t sub_sharding_elems_size = sub_sharding_elems.size(); TF_RET_CHECK(sub_sharding_elems_size == xla::ShapeUtil::GetLeafCount(elem_shapes[i])); for (const auto& sub_sharding_elem : sub_sharding_elems) { sharding_elems.push_back(sub_sharding_elem); } } else { sharding_elems.push_back(sub_sharding); } } xla::HloSharding modified_sharding = xla::HloSharding::Tuple(shape, sharding_elems); xla::OpSharding op_sharding = modified_sharding.ToProto(); xla::XlaScopedShardingAssignment assign_sharding(builder, op_sharding); tuple = xla::Tuple(builder, elems); } bool returns_tuple = always_return_tuple || elems.size() != 1; VLOG(3) << "Computation returns a tuple=" << returns_tuple; if (!returns_tuple) { xla::GetTupleElement(tuple, 0); for (xla::XlaBuilder::InputOutputAlias& alias : aliases) { if (alias.output_index == xla::ShapeIndex({0})) { VLOG(3) << "For aliased parameter " << alias.param_number << ": " << alias.param_index.ToString() << " normalizing output_index from {0} to {}, as a scalar is " "returned from the cluster"; alias.output_index = xla::ShapeIndex({}); } } } for (xla::XlaBuilder::InputOutputAlias& alias : aliases) { builder->SetUpAlias(alias.output_index, alias.param_number, alias.param_index); } TF_ASSIGN_OR_RETURN(*computation, builder->Build()); TF_ASSIGN_OR_RETURN(auto program_shape, computation->GetProgramShape()); *output_shape = program_shape.result(); return absl::OkStatus(); } } string XlaCompiler::Argument::HumanString() const { string common; if (!name.empty()) { common = absl::StrCat(" name=", name); } absl::StrAppend(&common, " type=", DataTypeString(type), " shape=", ShapeHumanString()); absl::StrAppend( &common, " is_same_data_across_replicas=", is_same_data_across_replicas); switch (kind) { case kInvalid: return "invalid"; case kConstant: return absl::StrCat("kind=constant", common, " value=", constant_value.DebugString()); case kConstantResource: return absl::StrCat("kind=constant-resource", common, " value=", constant_value.DebugString()); case kResource: { string output = absl::StrCat( "kind=resource", common, " resource_kind=", XlaResource::KindToString(resource_kind), " initialized=", initialized, " is_fast_mem=", fast_mem); if (max_array_size >= 0) { absl::StrAppend(&output, " max_array_size=", max_array_size); } if (!tensor_array_gradients.empty()) { absl::StrAppend(&output, " tensor_array_gradients=", absl::StrJoin(tensor_array_gradients, ",")); } return output; } case kParameter: return absl::StrCat("kind=parameter", common); case kTensorList: return absl::StrCat("kind=tensorlist", common); case kToken: return absl::StrCat("token", common); } } std::vector<int64_t> XlaCompiler::Argument::DimensionSizes() const { if (absl::holds_alternative<TensorShape>(shape)) { return xla::InlinedVectorToVector(std::get<TensorShape>(shape).dim_sizes()); } else { return xla::SpanToVector(std::get<xla::Shape>(shape).dimensions()); } } absl::InlinedVector<int64_t, 4> XlaCompiler::Argument::DimensionSizesAsInlinedVector() const { if (absl::holds_alternative<TensorShape>(shape)) { return std::get<TensorShape>(shape).dim_sizes(); } else { auto v = std::get<xla::Shape>(shape).dimensions(); return absl::InlinedVector<int64_t, 4>(v.begin(), v.end()); } } string XlaCompiler::Argument::ShapeHumanString() const { if (absl::holds_alternative<TensorShape>(shape)) { return std::get<TensorShape>(shape).DebugString(); } else { return std::get<xla::Shape>(shape).DebugString(); } } XlaCompiler::XlaCompiler(XlaCompiler::Options options) : options_(options), initialization_status_(absl::OkStatus()), next_step_id_(1), device_(new XlaCompilationDevice(SessionOptions(), options_.device_type)), device_mgr_(absl::WrapUnique(device_)) { CHECK(!options_.device_type.type_string().empty()); if (options_.populate_resource_manager) { initialization_status_ = (*options_.populate_resource_manager)(device_->resource_manager()); } local_flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), FunctionDefLibrary())); local_pflr_.reset(new ProcessFunctionLibraryRuntime( &device_mgr_, Env::Default(), nullptr, options.graph_def_version, local_flib_def_.get(), OptimizerOptions())); pflr_.reset(new ProcessFunctionLibraryRuntime( &device_mgr_, Env::Default(), nullptr, options.graph_def_version, options.flib_def, OptimizerOptions())); local_flib_runtime_ = local_pflr_->GetFLR(device_->name()); flib_runtime_ = pflr_->GetFLR(device_->name()); XlaShapeLayoutHelpers::ShapeDeterminationFns& shape_determination_fns = options_.shape_determination_fns; if (!shape_determination_fns.shape_representation_fn) { shape_determination_fns.shape_representation_fn = IdentityShapeRepresentationFn(); } if (!shape_determination_fns.layout_preference_fn) { shape_determination_fns.layout_preference_fn = UseNoPreferenceLayoutFn(); } } XlaCompiler::~XlaCompiler() = default; int64_t XlaCompiler::NextStepId() { return next_step_id_++; } uint64 XlaCompiler::SignatureHash::operator()( const std::pair<string, std::vector<Argument>>& signature) const { return std::hash<string>()(signature.first); } static Status GetFunctionBody(const NameAttrList& function, FunctionLibraryRuntime* flib_runtime, const FunctionBody** fbody) { FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR(flib_runtime->Instantiate( function.name(), AttrSlice(&function.attr()), &handle)); *fbody = flib_runtime->GetFunctionBody(handle); TF_RET_CHECK(*fbody); return absl::OkStatus(); } Status XlaCompiler::FindFunctionBody(const NameAttrList& function, const FunctionBody** fbody, const ConfigProto** config_proto) { auto status = GetFunctionBody(function, local_flib_runtime_, fbody); if (!status.ok()) { if (!absl::IsNotFound(status)) { return status; } TF_RETURN_WITH_CONTEXT_IF_ERROR( GetFunctionBody(function, flib_runtime_, fbody), "Local lookup failed with: ", status.message()); if (config_proto) { *config_proto = flib_runtime_->config_proto(); } VLOG(4) << "Function " << function.name() << " in flib_runtime_"; } else { if (config_proto) { *config_proto = local_flib_runtime_->config_proto(); } VLOG(4) << "Function " << function.name() << " in local_flib_runtime_"; } return absl::OkStatus(); } std::unique_ptr<Graph> XlaCompiler::GetGraph(const FunctionBody* fbody) { std::unique_ptr<Graph> graph(new Graph(options_.flib_def)); CopyGraph(*fbody->graph, graph.get()); bool is_inside_mustcompile = false; TryGetNodeAttr(AttrSlice(&fbody->record->fdef().attr()), kXlaMustCompileAttr, &is_inside_mustcompile); auto flags = GetBuildXlaOpsPassFlags(); OptimizerOptions opts; opts.set_opt_level(OptimizerOptions::L0); opts.set_do_common_subexpression_elimination(false); opts.set_do_function_inlining(true); opts.set_do_constant_folding(!flags->tf_xla_disable_constant_folding); GraphOptimizer optimizer(opts); auto cf_consider_fn = [](const Node* n) { for (const auto& output_arg : n->op_def().output_arg()) { if (output_arg.type() == DT_VARIANT) { return false; } } const auto& ts = n->type_string(); if (ts == "Shape" || ts == "ShapeN" || ts == "Size") { return false; } return true; }; GraphOptimizer::Options graph_optimizer_options; graph_optimizer_options.cf_consider_fn = cf_consider_fn; graph_optimizer_options.inline_multi_device_functions = true; graph_optimizer_options.inline_impl_selection_group_functions = true; graph_optimizer_options.inline_with_single_device_body_placer = true; graph_optimizer_options.ignore_noinline = is_inside_mustcompile; { GraphShapeInfo shape_info; InferShapes(graph.get(), {}, flib_runtime_->GetFunctionLibraryDefinition(), &shape_info) .IgnoreError(); auto node_name_index = graph->BuildNodeNameIndex(); std::unordered_map<string, std::vector<PartialTensorShape>> shape_map; for (const auto& node_shape_info : shape_info) { const string& node_name = node_shape_info.first; const std::vector<InferredShape>& output_shapes = node_shape_info.second; const auto& node_iter = node_name_index.find(node_name); if (node_iter != node_name_index.end()) { auto& partial_shapes = shape_map[node_name]; for (const auto& inferred_shape : output_shapes) { partial_shapes.push_back(inferred_shape.shape); } } } graph_optimizer_options.shape_map = &shape_map; optimizer.Optimize(flib_runtime_, flib_runtime_->env(), nullptr, &graph, graph_optimizer_options); } GraphShapeInfo shape_info; InferShapes(graph.get(), {}, flib_runtime_->GetFunctionLibraryDefinition(), &shape_info) .IgnoreError(); auto node_name_index = graph->BuildNodeNameIndex(); std::unordered_map<string, std::vector<PartialTensorShape>> shape_map; for (const auto& node_shape_info : shape_info) { const string& node_name = node_shape_info.first; const std::vector<InferredShape>& output_shapes = node_shape_info.second; const auto& node_iter = node_name_index.find(node_name); if (node_iter != node_name_index.end()) { auto& partial_shapes = shape_map[node_name]; for (const auto& inferred_shape : output_shapes) { partial_shapes.push_back(inferred_shape.shape); } } } graph_optimizer_options.shape_map = &shape_map; optimizer.Optimize(flib_runtime_, flib_runtime_->env(), nullptr, &graph, graph_optimizer_options); return graph; } std::vector<std::string> GetValidControlRets( absl::Span<Node* const> orig_control_ret_nodes, const Graph& graph) { absl::flat_hash_map<string, int> control_ret_nodes_map; for (int i = 0; i < orig_control_ret_nodes.size(); ++i) { const Node* n = orig_control_ret_nodes[i]; control_ret_nodes_map[n->name()] = i; } std::vector<bool> is_valid_control_ret(orig_control_ret_nodes.size(), false); int num_valid_control_rets = 0; for (const Node* n : graph.nodes()) { auto iter = control_ret_nodes_map.find(n->name()); if (iter != control_ret_nodes_map.end()) { ++num_valid_control_rets; is_valid_control_ret[iter->second] = true; } } std::vector<std::string> valid_control_rets; valid_control_rets.reserve(num_valid_control_rets); for (int i = 0; i < orig_control_ret_nodes.size(); ++i) { if (is_valid_control_ret[i]) { valid_control_rets.push_back(orig_control_ret_nodes[i]->name()); } } return valid_control_rets; } Status XlaCompiler::CompileSingleOp( const XlaCompiler::CompileOptions& compile_options, const XlaCompiler::SingleOpCompileArgument& single_op_compile_argument, absl::Span<const Argument> args, XlaCompiler::CompilationResult* result) { const NodeDef& node_def = single_op_compile_argument.node_def; TF_ASSIGN_OR_RETURN( auto graph, CreateSingleOpGraph(node_def, args, single_op_compile_argument.output_dtypes)); *result = {}; Status status = ADD_SOURCE_LOCATION(CompileGraph( compile_options, node_def.name(), std::move(graph), args, result)); if (status.ok()) { tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileSingleOpXlaBuilderSuccess); } else { tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileSingleOpXlaBuilderFailure); tsl::error_logging::Log(mlir::TF::kBridgeComponent, kSingleOpComponent, status.ToString()) .IgnoreError(); } return status; } Status XlaCompiler::CompileFunction( const XlaCompiler::CompileOptions& options, const NameAttrList& fn_name_attrs, absl::Span<const XlaCompiler::Argument> args, XlaCompiler::CompilationResult* result) { string function_id = Canonicalize(fn_name_attrs.name(), AttrSlice(&fn_name_attrs.attr())); VLOG(1) << "XlaCompiler::CompileFunction " << function_id; const std::vector<XlaCompiler::Argument> arg_vector(args.begin(), args.end()); auto it = cache_.find({function_id, arg_vector}); if (it != cache_.end()) { *result = it->second; return absl::OkStatus(); } const FunctionBody* fbody; const ConfigProto* config = nullptr; TF_RETURN_IF_ERROR(FindFunctionBody(fn_name_attrs, &fbody, &config)); std::optional<ConfigProto> config_proto; if (config) { config_proto = *config; } TF_RETURN_WITH_CONTEXT_IF_ERROR( CheckSignature(fbody->arg_types, args), "Signature check failure while compiling: ", fn_name_attrs.name()); for (int i = 0, end = args.size(); i < end; i++) { DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(fbody->arg_nodes[i]->def(), "T", &dtype)); if (dtype == DT_RESOURCE || dtype == DT_VARIANT) { continue; } if (absl::holds_alternative<xla::Shape>(args[i].shape)) { xla::Shape xla_shape = std::get<xla::Shape>(args[i].shape); TensorShape tensor_shape; if (XLAShapeToTensorShape(xla_shape, &tensor_shape).ok() && xla_shape.is_static()) { fbody->arg_nodes[i]->ClearAttr("_output_shapes"); fbody->arg_nodes[i]->AddAttr("_output_shapes", std::vector<TensorShape>{tensor_shape}); } } else { TensorShape tensor_shape = std::get<TensorShape>(args[i].shape); fbody->arg_nodes[i]->ClearAttr("_output_shapes"); fbody->arg_nodes[i]->AddAttr("_output_shapes", std::vector<TensorShape>{tensor_shape}); } } std::unique_ptr<Graph> graph = GetGraph(fbody); for (Node* n : graph->nodes()) { if (n->IsArg()) { TF_RETURN_IF_ERROR(SetNodeShardingFromNeighbors(n, true)); } } for (Node* n : graph->nodes()) { if (n->IsRetval()) { TF_RETURN_IF_ERROR(SetNodeShardingFromNeighbors(n, false)); } } if (VLOG_IS_ON(2)) { VLOG(2) << "XlaCompiler::CompileFunction: " << DumpGraphToFile( absl::StrCat("xla_compile_function_", function_id), *graph); } VLOG(1) << "===================================================="; VLOG(1) << "CompileFunction with XlaBuilder"; auto status = CompileGraph(options, function_id, std::move(graph), args, result); if (!status.ok()) { tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileFunctionXlaBuilderFailure); ::tsl::errors::AppendToMessage( &status, "tf2xla conversion failed while converting ", std::move(function_id), ". Run with TF_DUMP_GRAPH_PREFIX=/path/to/dump/dir and " "--vmodule=xla_compiler=2 to obtain a dump of the compiled " "functions."); tsl::error_logging::Log(mlir::TF::kBridgeComponent, kCompileFunctionComponent, status.ToString()) .IgnoreError(); return status; } tensorflow::metrics::IncrementPhase2XlaCompilerCounter( tensorflow::metrics::Phase2XlaCompilerMetric:: kCompileFunctionXlaBuilderSuccess); VLOG(1) << "===================================================="; cache_[{function_id, arg_vector}] = *result; return absl::OkStatus(); } Status XlaCompiler::XLAShapeForArgument( const XlaCompiler::Argument& arg, bool is_entry_computation, const std::optional<xla::HloSharding>& arg_sharding, xla::Shape* xla_shape) const { switch (arg.kind) { case XlaCompiler::Argument::kConstant: LOG(FATAL) << "Unreachable case"; case XlaCompiler::Argument::kParameter: { if (is_entry_computation) { TensorShape shape; if (std::holds_alternative<TensorShape>(arg.shape)) { shape = std::get<TensorShape>(arg.shape); } else { TF_RETURN_IF_ERROR( XLAShapeToTensorShape(std::get<xla::Shape>(arg.shape), &shape)); } auto layout_preference = options_.shape_determination_fns.layout_preference_fn( shape, arg.type, arg.kind); TF_ASSIGN_OR_RETURN( *xla_shape, options_.shape_determination_fns.shape_representation_fn( shape, arg.type, false, layout_preference)); TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape( arg_sharding, false, options_.shape_determination_fns, xla_shape)); if (std::holds_alternative<xla::Shape>(arg.shape) && std::get<xla::Shape>(arg.shape).is_dynamic()) { xla::Shape dynamic_shape = std::get<xla::Shape>(arg.shape); for (int i = 0; i < xla_shape->dimensions_size(); ++i) { xla_shape->set_dynamic_dimension( i, dynamic_shape.is_dynamic_dimension(i)); } } } else { if (std::holds_alternative<xla::Shape>(arg.shape)) { *xla_shape = std::get<xla::Shape>(arg.shape); } else { TF_RETURN_IF_ERROR(TensorShapeToXLAShape( arg.type, std::get<TensorShape>(arg.shape), xla_shape)); } } return absl::OkStatus(); } case XlaCompiler::Argument::kTensorList: { TF_RET_CHECK(absl::holds_alternative<xla::Shape>(arg.shape)); *xla_shape = std::get<xla::Shape>(arg.shape); return absl::OkStatus(); } case XlaCompiler::Argument::kConstantResource: case XlaCompiler::Argument::kResource: { TF_RET_CHECK(arg.initialized); switch (arg.resource_kind) { case XlaResource::kVariable: { TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); auto layout_preference = options_.shape_determination_fns.layout_preference_fn( std::get<TensorShape>(arg.shape), arg.type, arg.kind); TF_ASSIGN_OR_RETURN( *xla_shape, options_.shape_determination_fns.shape_representation_fn( std::get<TensorShape>(arg.shape), arg.type, arg.fast_mem, layout_preference)); TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape( arg_sharding, arg.fast_mem, options_.shape_determination_fns, xla_shape)); return absl::OkStatus(); } case XlaResource::kTensorArray: { if (arg.max_array_size < 0) { return errors::InvalidArgument( "Negative max_array_size in XLAShapeForArgument"); } TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); TensorShape shape; TF_RETURN_IF_ERROR(shape.AddDimWithStatus(arg.max_array_size)); shape.AppendShape(std::get<TensorShape>(arg.shape)); TF_RETURN_IF_ERROR(TensorShapeToXLAShape(arg.type, shape, xla_shape)); if (!arg.tensor_array_gradients.empty()) { std::vector<xla::Shape> tuple_shape( arg.tensor_array_gradients.size() + 1, *xla_shape); *xla_shape = xla::ShapeUtil::MakeTupleShape(tuple_shape); } return absl::OkStatus(); } case XlaResource::kStack: { if (arg.max_array_size < 0) { return errors::InvalidArgument( "Negative max_array_size in XLAShapeForArgument"); } TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); TensorShape shape; TF_RETURN_IF_ERROR(shape.AddDimWithStatus(arg.max_array_size)); shape.AppendShape(std::get<TensorShape>(arg.shape)); xla::Shape buffer_shape; TF_RETURN_IF_ERROR( TensorShapeToXLAShape(arg.type, shape, &buffer_shape)); *xla_shape = xla::ShapeUtil::MakeTupleShape( {buffer_shape, xla::ShapeUtil::MakeShape(xla::S32, {})}); return absl::OkStatus(); } case XlaResource::kInvalid: return errors::Internal( "Invalid resource type in XLAShapeForArgument()"); } } case XlaCompiler::Argument::kToken: { *xla_shape = xla::ShapeUtil::MakeTokenShape(); return absl::OkStatus(); } case XlaCompiler::Argument::kInvalid: return errors::Internal("Invalid argument type in XLAShapeForArgument()"); } } void XlaCompiler::PopulateArgumentFromResource(const XlaResource& resource, Argument* arg) { arg->initialized = resource.initialized(); arg->kind = XlaCompiler::Argument::kResource; arg->resource_kind = resource.kind(); arg->type = resource.type(); arg->shape = resource.shape(); arg->max_array_size = resource.max_array_size(); for (const auto& gradient : resource.tensor_array_gradients()) { arg->tensor_array_gradients.insert(gradient.first); } arg->name = resource.name(); } XlaCompiler::SingleOpCompileArgument::SingleOpCompileArgument( const OpKernelContext& ctx) { std::vector<DataType> output_dtypes(ctx.num_outputs()); for (int i = 0; i < output_dtypes.size(); ++i) { output_dtypes[i] = ctx.expected_output_dtype(i); } this->output_dtypes = output_dtypes; this->node_def = ctx.op_kernel().def(); auto* config_proto = ctx.function_library()->config_proto(); if (config_proto != nullptr) { this->config_proto = *config_proto; } } Status XlaCompiler::BuildArguments( const Graph& graph, const std::vector<XlaCompiler::Argument>& args, bool use_tuple_arg, xla::XlaBuilder* builder, XlaContext* context, const std::map<int, xla::OpSharding>& arg_shardings, std::vector<XlaExpression>* arg_expressions, std::vector<int>* input_to_args, std::vector<xla::Shape>* input_shapes, bool is_entry_computation) { arg_expressions->resize(args.size()); input_to_args->clear(); input_to_args->reserve(args.size()); for (std::vector<XlaCompiler::Argument>::size_type i = 0; i < args.size(); ++i) { const XlaCompiler::Argument& arg = args[i]; XlaExpression& arg_expression = (*arg_expressions)[i]; switch (arg.kind) { case XlaCompiler::Argument::kConstantResource: case XlaCompiler::Argument::kResource: { TF_RET_CHECK(arg.resource_kind != XlaResource::kInvalid); TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape)); XlaResource* resource = context->AddResource(std::make_unique<XlaResource>( arg.resource_kind, i, arg.name, arg.type, std::get<TensorShape>(arg.shape), xla::XlaOp(), arg.max_array_size, arg.tensor_array_gradients, true, arg.definition_stack_trace)); arg_expression = arg.kind == XlaCompiler::Argument::kResource ? XlaExpression::Resource(resource) : XlaExpression::ConstantResource(arg.constant_value, resource); if (arg.initialized) { input_to_args->push_back(i); } break; } case XlaCompiler::Argument::kParameter: case XlaCompiler::Argument::kTensorList: case XlaCompiler::Argument::kToken: { input_to_args->push_back(i); break; } case XlaCompiler::Argument::kConstant: arg_expression = XlaExpression::Constant(arg.constant_value); break; case XlaCompiler::Argument::kInvalid: return errors::Internal( "Unreachable case in BuildArguments() while filling constant args"); } } if (input_to_args->empty() && !use_tuple_arg) { return absl::OkStatus(); } std::vector<int> arg_to_inputs(args.size(), -1); for (int i = 0, end = input_to_args->size(); i < end; i++) { arg_to_inputs[input_to_args->at(i)] = i; } std::vector<xla::Shape> arg_shapes(input_to_args->size()); for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { auto arg_sharding = arg_shardings.find((*input_to_args)[i]); std::optional<xla::HloSharding> sharding; if (arg_sharding != arg_shardings.end()) { TF_ASSIGN_OR_RETURN(auto hlo_sharding, xla::HloSharding::FromProto(arg_sharding->second)); sharding = hlo_sharding; } TF_RETURN_IF_ERROR(XLAShapeForArgument(args[(*input_to_args)[i]], is_entry_computation, sharding, &arg_shapes[i])); } if (use_tuple_arg) { input_shapes->push_back(xla::ShapeUtil::MakeTupleShape(arg_shapes)); } else { *input_shapes = arg_shapes; } xla::OpMetadata arg_metadata; arg_metadata.set_op_name("XLA_Args"); builder->SetOpMetadata(arg_metadata); std::vector<xla::XlaOp> arg_handles(input_to_args->size()); if (use_tuple_arg) { xla::XlaOp tuple; if (is_entry_computation) { xla::OpSharding tuple_sharding; tuple_sharding.set_type(xla::OpSharding::TUPLE); for (int64_t parameter : *input_to_args) { auto it = arg_shardings.find(parameter); *tuple_sharding.add_tuple_shardings() = it == arg_shardings.end() ? xla::sharding_builder::AssignDevice(0) : it->second; } std::vector<bool> is_same_across_replicas; for (int i = 0, end = input_to_args->size(); i < end; ++i) { is_same_across_replicas.insert( is_same_across_replicas.end(), xla::ShapeUtil::GetLeafCount(arg_shapes[i]), args[input_to_args->at(i)].is_same_data_across_replicas); } xla::XlaScopedShardingAssignment assign_tuple_sharding( builder, input_to_args->empty() ? std::optional<xla::OpSharding>() : tuple_sharding); tuple = xla::Parameter(builder, 0, (*input_shapes)[0], "arg_tuple", is_same_across_replicas); } else { tuple = xla::Parameter(builder, 0, (*input_shapes)[0], "arg_tuple"); } for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { auto it = arg_shardings.find(i); xla::XlaScopedShardingAssignment assign_sharding( builder, it == arg_shardings.end() ? std::optional<xla::OpSharding>() : it->second); auto& arg = args[input_to_args->at(i)]; xla::OpMetadata arg_metadata; arg_metadata.set_op_name(arg.node_name); builder->SetOneShotOpMetadata(arg_metadata); arg_handles[i] = xla::GetTupleElement(tuple, i); } } else { for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { auto it = arg_shardings.find(i); xla::XlaScopedShardingAssignment assign_sharding( builder, it == arg_shardings.end() ? std::optional<xla::OpSharding>() : it->second); if (is_entry_computation) { std::vector<bool> is_same_across_replicas( xla::ShapeUtil::GetLeafCount((*input_shapes)[i]), args[input_to_args->at(i)].is_same_data_across_replicas); arg_handles[i] = xla::Parameter(builder, i, (*input_shapes)[i], absl::StrCat("arg", i), is_same_across_replicas); } else { arg_handles[i] = xla::Parameter(builder, i, (*input_shapes)[i], absl::StrCat("arg", i)); } } } builder->ClearOpMetadata(); VLOG(2) << "XLA computation inputs:"; for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) { const XlaCompiler::Argument& arg = args[input_to_args->at(i)]; VLOG(2) << " XLA arg " << i << " shape: " << xla::ShapeUtil::HumanString(arg_shapes[i]) << " name: " << arg.name << " TF arg " << input_to_args->at(i) << " node name: " << arg.node_name << (arg_shardings.find(i) == arg_shardings.end() ? "" : absl::StrCat(" sharding: ", arg_shardings.at(i).DebugString())); XlaExpression& arg_expression = (*arg_expressions)[input_to_args->at(i)]; switch (arg.kind) { case XlaCompiler::Argument::kConstantResource: case XlaCompiler::Argument::kResource: { TF_RET_CHECK(arg.initialized); XlaResource* resource = arg_expression.resource(); TF_RETURN_IF_ERROR(resource->SetFromPack(arg.tensor_array_gradients, arg_handles[i], builder)); VLOG(2) << " resource: num_gradients: " << arg.tensor_array_gradients.size(); break; } case XlaCompiler::Argument::kParameter: if (is_entry_computation) { arg_expression = XlaExpression::XlaOp( xla::Reshape(arg_handles[i], arg.DimensionSizes()), arg.type); } else { arg_expression = XlaExpression::XlaOp(arg_handles[i], arg.type); if (arg.value_bound) { TF_RET_CHECK(arg.value_dynamism); arg_expression.set_value_bound(arg.value_bound.value()); arg_expression.set_value_dynamism(arg.value_dynamism.value()); } } break; case XlaCompiler::Argument::kTensorList: { arg_expression = XlaExpression::TensorList(arg_handles[i]); break; } case XlaCompiler::Argument::kToken: { arg_expression = XlaExpression::XlaOp(arg_handles[i], arg.type); break; } case XlaCompiler::Argument::kConstant: case XlaCompiler::Argument::kInvalid: return errors::Internal( "Unreachable case in BuildArguments() while filling handles"); } } return absl::OkStatus(); } namespace { Status ValidateFunctionDef(const FunctionDef* fdef, const FunctionLibraryDefinition& flib_def) { for (const NodeDef& node : fdef->node_def()) { const string& op = node.op(); if (op == FunctionLibraryDefinition::kGradientOp || flib_def.Find(op)) { continue; } const OpDef* op_def; TF_RETURN_IF_ERROR(OpRegistry::Global()->LookUpOpDef(op, &op_def)); } return absl::OkStatus(); } Status GetPotentialFunctionName(const Node& node, const string** name) { if (node.IsPartitionedCall()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR( node.attrs().Find(FunctionLibraryDefinition::kFuncAttr, &attr_value)); if (!attr_value->has_func()) { return errors::InvalidArgument( "The attribute value for attribute 'f' in node ", node.DebugString(), " does not have 'func' field set"); } *name = &attr_value->func().name(); return absl::OkStatus(); } *name = &node.type_string(); return absl::OkStatus(); } Status ValidateGraph(const Graph* graph, const FunctionLibraryDefinition& flib_def, const DeviceType& device_type, const string& name) { XlaOpRegistry::RegisterCompilationKernels(); auto maybe_error = [&](const Node* node, const Status& s) -> Status { if (!s.ok()) { std::string errmsg = absl::StrCat( "Detected unsupported operations when trying to compile graph ", name, " on ", device_type.type_string(), ": ", node->def().op(), " (", s.message(), ")", FormatNodeForError(*node)); if (absl::StrContains(device_type.type_string(), "TPU")) { absl::StrAppend(&errmsg, "\nOne approach is to outside compile the unsupported " "ops to run on CPUs by enabling soft placement " "`tf.config.set_soft_device_placement(True)`." " This has a potential performance penalty.\n"); } if (std::shared_ptr<AbstractStackTrace> stack_trace = node->GetStackTrace()) { absl::StrAppend( &errmsg, "\nThe op is created at: \n", stack_trace->ToString({true, true, true})); } return errors::InvalidArgument(errmsg); } return absl::OkStatus(); }; for (const Node* node : graph->nodes()) { if (node->type_string() == FunctionLibraryDefinition::kGradientOp) { continue; } const string* function_name; TF_RETURN_IF_ERROR(GetPotentialFunctionName(*node, &function_name)); const FunctionDef* fdef = flib_def.Find(*function_name); Status s; if (fdef) { s = ValidateFunctionDef(fdef, flib_def); TF_RETURN_IF_ERROR(maybe_error(node, s)); continue; } const OpDef* op_def; s = OpRegistry::Global()->LookUpOpDef(node->def().op(), &op_def); TF_RETURN_IF_ERROR(maybe_error(node, s)); TF_RETURN_IF_ERROR(ValidateNodeDef(node->def(), *op_def)); s = FindKernelDef(device_type, node->def(), nullptr, nullptr); TF_RETURN_IF_ERROR(maybe_error(node, s)); } return absl::OkStatus(); } void ConvertConstantsToExpressions(xla::XlaBuilder* builder, absl::Span<XlaExpression> expressions) { for (XlaExpression& expression : expressions) { if (expression.kind() == XlaExpression::Kind::kConstant) { expression = XlaExpression::XlaOp(expression.AsXlaOp(builder), expression.dtype()); } } } } class DummyStackTrace : public AbstractStackTrace { absl::Span<StackFrame const> ToFrames() const override { return frames_; } std::vector<StackFrame> ToUncachedFrames() const override { return frames_; } StackFrame LastUserFrame() const override { return frames_.back(); } std::vector<StackFrame> GetUserFrames(int ) const override { return frames_; } std::string ToString(const TracePrintingOptions& opts) const override { auto frame = LastUserFrame(); return absl::StrCat(frame.file_name, ":", frame.line_number, ":", frame.function_name); } std::vector<StackFrame> frames_{ StackFrame({"dummy_file_name", 10, "dummy_function_name"})}; }; namespace { void IncreasePrecisionsToAvoidTF32(xla::HloModuleProto& module) { static constexpr std::array<absl::string_view, 2> kOpsPossiblyUsingTF32 = { "dot", "convolution"}; xla::PrecisionConfig precision_config; precision_config.add_operand_precision(xla::PrecisionConfig::HIGHEST); precision_config.add_operand_precision(xla::PrecisionConfig::HIGHEST); for (xla::HloComputationProto& computation : *module.mutable_computations()) { for (xla::HloInstructionProto& instruction : *computation.mutable_instructions()) { if (absl::c_find(kOpsPossiblyUsingTF32, instruction.opcode()) != kOpsPossiblyUsingTF32.end()) { *instruction.mutable_precision_config() = precision_config; } } } } } Status XlaCompiler::CompileGraph(const XlaCompiler::CompileOptions& options, string const& name, std::unique_ptr<Graph> graph, absl::Span<const XlaCompiler::Argument> args, CompilationResult* result) { VLOG(1) << "Executing graph symbolically to populate XlaBuilder.: " << name; if (VLOG_IS_ON(2) || DEBUG_DATA_DUMPER()->ShouldDump(name, kDebugGroupMain)) { VLOG(2) << "XlaCompiler::CompileGraph: " << DumpGraphToFile(absl::StrCat("xla_compile_graph_", name), *graph, flib_runtime_->GetFunctionLibraryDefinition()); } DummyStackTrace stack_trace; for (auto node : graph->nodes()) { if (node->GetStackTrace() == nullptr) { node->SetStackTrace(std::make_shared<DummyStackTrace>(stack_trace)); } } TF_RETURN_IF_ERROR(PropagateConstIntoFunctionalNodes( graph.get(), options_.flib_def, local_flib_def_.get())); TF_RETURN_IF_ERROR(RearrangeFunctionArguments( [this](const NameAttrList& function, const FunctionBody** fbody) { return FindFunctionBody(function, fbody); }, graph.get(), local_flib_def_.get(), pflr_->GetFunctionLibraryDefinition())); TF_RETURN_IF_ERROR(initialization_status_); TF_RETURN_IF_ERROR(ValidateGraph(graph.get(), *options_.flib_def, options_.device_type, name)); auto builder = std::make_unique<xla::XlaBuilder>(name); XlaContext* context = new XlaContext(this, builder.get(), graph.get()); core::ScopedUnref context_unref(context); std::vector<XlaCompiler::Argument> real_args(args.begin(), args.end()); int token_input_index = -1; std::unique_ptr<xla::XlaOp> token_output; if (options.add_token_input_output) { token_input_index = real_args.size(); XlaCompiler::Argument token_arg; token_arg.kind = XlaCompiler::Argument::kToken; real_args.push_back(token_arg); } std::map<int, xla::OpSharding> arg_shardings; std::map<int, xla::OpSharding> retval_shardings; TF_ASSIGN_OR_RETURN(std::tie(arg_shardings, retval_shardings), ComputeArgAndRetvalShardings(*graph)); std::vector<XlaExpression> arg_expressions; TF_RETURN_IF_ERROR(BuildArguments( *graph, real_args, options.use_tuple_arg, builder.get(), context, arg_shardings, &arg_expressions, &result->input_mapping, &result->xla_input_shapes, options.is_entry_computation)); context->set_args(std::move(arg_expressions)); PushNodeTokenMapping(); std::set<std::string> output_node_token_inputs; if (token_input_index != -1) { auto arg_expression = context->args()[token_input_index]; TF_RETURN_IF_ERROR( SetNodeToken(kXlaTokenArgNodeName, arg_expression.handle())); output_node_token_inputs = CalculateTokenInputsForOutputToken(*graph); if (output_node_token_inputs.empty()) { output_node_token_inputs.insert(kXlaTokenArgNodeName); } } else if (options.is_entry_computation) { if (HasSideEffectingNodes(*graph)) { TF_RETURN_IF_ERROR( SetNodeToken(kXlaTokenArgNodeName, xla::CreateToken(builder.get()))); } } Status execute_status = ExecuteGraph(context, std::move(graph), device_, flib_runtime_, NextStepId()); if (!execute_status.ok()) { VLOG(1) << "Failed executing graph " << name; return execute_status; } if (token_input_index != -1) { std::vector<xla::XlaOp> token_inputs; for (const auto& node_name : output_node_token_inputs) { auto token_or = GetNodeToken(node_name); TF_RETURN_IF_ERROR(token_or.status()); token_inputs.push_back(token_or.value()); } token_output = std::make_unique<xla::XlaOp>( xla::AfterAll(builder.get(), token_inputs)); } TF_RETURN_IF_ERROR(PopNodeTokenMapping()); int num_nonconst_outputs; int num_computation_outputs; result->computation = std::make_shared<xla::XlaComputation>(); result->outputs.resize(context->retvals().size()); std::vector<XlaExpression> retvals = context->retvals(); ConvertConstantsToExpressions(builder.get(), absl::Span<XlaExpression>(retvals)); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns{ UseNoPreferenceLayoutFn(), IdentityShapeRepresentationFn()}; TF_RETURN_IF_ERROR(BuildComputation( real_args, retvals, arg_shardings, retval_shardings, context->resources(), std::move(token_output), options.is_entry_computation ? options_.shape_determination_fns : shape_determination_fns, options.is_entry_computation, options.return_updated_values_for_all_resources, options.always_return_tuple, options.use_tuple_arg, options.alias_resource_update, builder.get(), result->computation.get(), &num_computation_outputs, &num_nonconst_outputs, &result->outputs, &result->resource_updates, &result->xla_output_shape, result->input_mapping)); for (const auto& [key, send] : host_compute_sends_) { auto* d2h = result->host_compute_metadata.add_device_to_host(); *d2h = send; for (int i = 0; i < d2h->metadata_size(); ++i) { const std::string channel_name = GetDeviceToHostChannelName(d2h->key(), i); xla::ChannelHandle handle; TF_RETURN_IF_ERROR(GetDeviceToHostChannelHandle(channel_name, &handle)); d2h->mutable_metadata(i)->set_channel_id(handle.handle()); } } for (const auto& [key, recv] : host_compute_recvs_) { auto* h2d = result->host_compute_metadata.add_host_to_device(); *h2d = recv; for (int i = 0; i < h2d->metadata_size(); ++i) { const std::string channel_name = GetHostToDeviceChannelName(h2d->key(), i); xla::ChannelHandle handle; TF_RETURN_IF_ERROR(GetHostToDeviceChannelHandle(channel_name, &handle)); h2d->mutable_metadata(i)->set_channel_id(handle.handle()); } } if (!tsl::tensor_float_32_execution_enabled()) { IncreasePrecisionsToAvoidTF32(*result->computation->mutable_proto()); } VLOG(2) << "Outputs: total: " << context->retvals().size() << " nonconstant: " << num_nonconst_outputs; VLOG(2) << "XLA output shape: " << xla::ShapeUtil::HumanStringWithLayout(result->xla_output_shape); result->collective_info = context->GetCollectiveInfo(); return absl::OkStatus(); } Status XlaCompiler::GetChannelHandle(const string& key, xla::ChannelHandle* channel) { auto result = channels_.emplace(key, xla::ChannelHandle()); if (result.second) { TF_ASSIGN_OR_RETURN(result.first->second, client()->CreateChannelHandle()); } *channel = result.first->second; VLOG(1) << "Channel: " << key << " " << channel->DebugString(); return absl::OkStatus(); } Status XlaCompiler::GetHostToDeviceChannelHandle(const string& key, xla::ChannelHandle* channel) { auto result = channels_.emplace(key, xla::ChannelHandle()); if (result.second) { TF_ASSIGN_OR_RETURN(result.first->second, client()->CreateHostToDeviceChannelHandle()); } *channel = result.first->second; VLOG(1) << "Host to device channel: " << key << " " << channel->DebugString(); return absl::OkStatus(); } Status XlaCompiler::GetDeviceToHostChannelHandle(const string& key, xla::ChannelHandle* channel) { auto result = channels_.emplace(key, xla::ChannelHandle()); if (result.second) { TF_ASSIGN_OR_RETURN(result.first->second, client()->CreateDeviceToHostChannelHandle()); } *channel = result.first->second; VLOG(1) << "Device to host channel: " << key << " " << channel->DebugString(); return absl::OkStatus(); } namespace { void SetTransfer(const string& key, absl::Span<const DataType> types, absl::Span<const TensorShape> shapes, tf2xla::HostTransferMetadata* transfer) { transfer->set_key(key); CHECK(types.size() == shapes.size()); for (int i = 0, end = types.size(); i < end; ++i) { tf2xla::TensorMetadata* metadata = transfer->add_metadata(); metadata->set_type(types[i]); shapes[i].AsProto(metadata->mutable_shape()); } } } Status XlaCompiler::SetDeviceToHostMetadata( const string& key, absl::Span<const DataType> types, absl::Span<const TensorShape> shapes) { if (host_compute_sends_.find(key) != host_compute_sends_.end()) { tf2xla::HostTransferMetadata& existing_transfer = host_compute_sends_[key]; tf2xla::HostTransferMetadata new_transfer; SetTransfer(key, types, shapes, &new_transfer); if (xla::protobuf_util::ProtobufEquals(existing_transfer, new_transfer)) { return absl::OkStatus(); } else { return errors::InvalidArgument( "Duplicate calls to SetDeviceToHostMetadata with key ", key); } } tf2xla::HostTransferMetadata& transfer = host_compute_sends_[key]; SetTransfer(key, types, shapes, &transfer); return absl::OkStatus(); } Status XlaCompiler::GetDeviceToHostShapes( const string& key, std::vector<TensorShape>* shapes) const { const auto iter = host_compute_sends_.find(key); if (iter == host_compute_sends_.end()) { return errors::InvalidArgument( "No host compute send shapes registered for key ", key); } shapes->clear(); for (int i = 0; i < iter->second.metadata_size(); ++i) { TensorShape shape(iter->second.metadata(i).shape()); shapes->push_back(shape); } return absl::OkStatus(); } Status XlaCompiler::SetHostToDeviceMetadata( const string& key, absl::Span<const DataType> types, absl::Span<const TensorShape> shapes) { if (host_compute_recvs_.find(key) != host_compute_recvs_.end()) { tf2xla::HostTransferMetadata& existing_transfer = host_compute_recvs_[key]; tf2xla::HostTransferMetadata new_transfer; SetTransfer(key, types, shapes, &new_transfer); if (xla::protobuf_util::ProtobufEquals(existing_transfer, new_transfer)) { return absl::OkStatus(); } else { return errors::InvalidArgument( "Duplicate calls to SetHostToDeviceMetadata with key ", key); } } tf2xla::HostTransferMetadata& transfer = host_compute_recvs_[key]; SetTransfer(key, types, shapes, &transfer); return absl::OkStatus(); } Status XlaCompiler::GetHostComputeControlDependency( const string& host_compute_name, xla::XlaOp* handle) { const auto iter = host_compute_control_output_.find(host_compute_name); if (iter == host_compute_control_output_.end()) { return errors::InvalidArgument( "No registered control handle for host compute Op '", host_compute_name, "'"); } else { *handle = iter->second; } return absl::OkStatus(); } Status XlaCompiler::SetHostComputeControlDependency( const string& host_compute_name, const xla::XlaOp handle) { if (host_compute_control_output_.find(host_compute_name) != host_compute_control_output_.end()) { return errors::InvalidArgument( "Duplicate control handles registered for host compute Op ", host_compute_name); } host_compute_control_output_[host_compute_name] = handle; return absl::OkStatus(); } void XlaCompiler::PushNodeTokenMapping() { node_token_mapping_stack_.emplace(std::map<string, xla::XlaOp>{}); } Status XlaCompiler::PopNodeTokenMapping() { if (node_token_mapping_stack_.empty()) { return errors::FailedPrecondition( "Calling PopNodeTokenMapping() when node_token_mapping_stack_ is " "empty."); } node_token_mapping_stack_.pop(); return absl::OkStatus(); } Status XlaCompiler::SetNodeToken(const string& node_name, const xla::XlaOp op) { if (node_token_mapping_stack_.empty()) { return errors::FailedPrecondition( "Calling SetNodeToken() when node_token_mapping_stack_ is " "empty."); } auto insert_result = node_token_mapping_stack_.top().insert({node_name, op}); if (!insert_result.second) { return errors::FailedPrecondition("Token mapping already exists for node ", node_name); } return absl::OkStatus(); } absl::StatusOr<xla::XlaOp> XlaCompiler::GetNodeToken(const string& node_name) { if (node_token_mapping_stack_.empty()) { return errors::FailedPrecondition( "Calling GetNodeToken() when node_token_mapping_stack_ is " "empty."); } auto iter = node_token_mapping_stack_.top().find(node_name); if (iter == node_token_mapping_stack_.top().end()) { return errors::FailedPrecondition("Cannot find token mapping for node ", node_name); } return iter->second; } }
#include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "absl/strings/match.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/data_flow_ops.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/list_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/tf2xla/literal_util.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/client/client_library.h" #include "xla/client/local_client.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_proto_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/literal_test_util.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" #include "tsl/platform/statusor.h" namespace tensorflow { class XlaCompilerTest : public ::testing::Test { protected: void SetUp() override { client_ = xla::ClientLibrary::LocalClientOrDie(); XlaOpRegistry::RegisterCompilationKernels(); FunctionDefLibrary flib; flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), flib)); } XlaCompiler::Options DefaultOptions() { XlaCompiler::Options options; options.device_type = DeviceType(DEVICE_CPU_XLA_JIT); options.client = client_; options.flib_def = flib_def_.get(); return options; } FunctionLibraryDefinition* LocalFlibDef(XlaCompiler* compiler) { return compiler->local_flib_def_.get(); } xla::Client* client_; std::unique_ptr<FunctionLibraryDefinition> flib_def_; }; namespace { class DummyResourceForTest : public ResourceBase { public: string DebugString() const override { return "dummy"; } void Increment() { ++value_; } int Get() { return value_; } private: int value_ = 0; }; class DummyReadResourceOp : public XlaOpKernel { public: explicit DummyReadResourceOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { ResourceMgr* rm = ctx->op_kernel_context()->resource_manager(); OP_REQUIRES(ctx, rm, errors::Internal("No resource manager.")); DummyResourceForTest* dummy; OP_REQUIRES_OK(ctx, rm->Lookup<DummyResourceForTest>( rm->default_container(), "dummy", &dummy)); dummy->Increment(); dummy->Unref(); ctx->SetOutput(0, ctx->Input(0)); ctx->SetOutput(1, ctx->Input(0)); } }; class DummyReadResourceCC { public: DummyReadResourceCC(const Scope& scope, const Input& value) { if (!scope.ok()) return; auto _value = ops::AsNodeOut(scope, value); if (!scope.ok()) return; Node* ret; const auto unique_name = scope.GetUniqueNameForOp("DummyReadResource"); auto builder = NodeBuilder(unique_name, "DummyReadResource").Input(_value); scope.UpdateBuilder(&builder); scope.UpdateStatus(builder.Finalize(scope.graph(), &ret)); if (!scope.ok()) return; scope.UpdateStatus(scope.DoShapeInference(ret)); if (!scope.ok()) return; this->output1_ = Output(ret, 0); this->output2_ = Output(ret, 1); } Output output1_; Output output2_; }; REGISTER_OP("DummyReadResource") .Input("input: int32") .Output("output1: int32") .Output("output2: int32") .SetShapeFn(shape_inference::UnknownShape) .Doc(R"doc( A dummy Op. input: dummy input. output1: dummy output. output2: dummy output. )doc"); REGISTER_XLA_OP(Name("DummyReadResource"), DummyReadResourceOp); class DummyDuplicateOp : public XlaOpKernel { public: explicit DummyDuplicateOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { ctx->SetOutput(0, ctx->Input(0)); } }; REGISTER_OP("DummyDuplicateOp") .Input("input: int32") .Output("output: int32") .Doc(R"doc( A dummy Op. input: dummy input. output: dummy output. )doc"); REGISTER_XLA_OP(Name("DummyDuplicateOp").Device(DEVICE_CPU_XLA_JIT), DummyDuplicateOp); REGISTER_XLA_OP(Name("DummyDuplicateOp").Device(DEVICE_GPU_XLA_JIT), DummyDuplicateOp); TEST_F(XlaCompilerTest, EmptyReturnValues) { XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), {}, &result)); TF_ASSERT_OK(client_->Execute(*result.computation, {}).status()); } TEST_F(XlaCompilerTest, Simple) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Add(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR1<int32>({4, 143}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } absl::StatusOr<std::unique_ptr<xla::HloModule>> LoadModuleFromHloProto( const xla::HloModuleProto& module_proto) { TF_ASSIGN_OR_RETURN(auto module_config, xla::HloModule::CreateModuleConfigFromProto( module_proto, xla::GetDebugOptionsFromFlags())); return xla::CreateModuleFromProto(module_proto, module_config); } TEST_F(XlaCompilerTest, SimpleDynamicShapeParameter) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Add(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = xla::ShapeUtil::MakeShape(xla::S32, {2}, {true}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); auto hlo = result.computation->proto(); TF_ASSERT_OK_AND_ASSIGN(auto module, LoadModuleFromHloProto(hlo)); EXPECT_EQ(module->computation_count(), 1); EXPECT_TRUE(module->mutable_computation(0) ->parameter_instruction(0) ->shape() .is_dynamic()); } TEST_F(XlaCompilerTest, OutOfOrderGraph) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto d = ops::_Retval(scope.WithOpName("D"), a, 0); auto c = ops::Add(scope.WithOpName("C"), a, b); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompileOptions compile_options; compile_options.always_return_tuple = false; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); EXPECT_TRUE(xla::LiteralTestUtil::Equal(param0_literal, actual_literal)); } TEST_F(XlaCompilerTest, HonorShapeRepresentationFnForUnwrittenResource) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 0); auto d = ops::_Retval(scope.WithOpName("D"), var, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType dt, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(dt, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; XlaCompiler::CompileOptions compile_options; compile_options.return_updated_values_for_all_resources = true; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); xla::Shape transposed = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({transposed})); } TEST_F(XlaCompilerTest, HonorShapeRepresentationFnForFastMemVar) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 0); auto d = ops::_Retval(scope.WithOpName("D"), var, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); args[0].fast_mem = true; auto options = DefaultOptions(); int fast_mem_arg_count = 0; XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [&fast_mem_arg_count]( const TensorShape& shape, DataType dt, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(dt, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); if (use_fast_memory) { fast_mem_arg_count++; } return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; XlaCompiler::CompileOptions compile_options; compile_options.return_updated_values_for_all_resources = true; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); EXPECT_EQ(fast_mem_arg_count, 2); } TEST_F(XlaCompilerTest, HonorShapeRepresentationFnForRetVal) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType dt, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(dt, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); xla::Shape transposed = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({transposed, transposed})); EXPECT_EQ(result.computation->GetProgramShape().value().result(), xla::ShapeUtil::MakeTupleShape({transposed, transposed})); } TEST_F(XlaCompilerTest, TransposeVariables) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto transposed_read = ops::Transpose(scope, read, {1, 0}); auto reshape = ops::Reshape(scope, transposed_read, {2, 3}); auto d = ops::_Retval(scope.WithOpName("D"), reshape, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 3}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "transpose", std::move(graph), args, &result)); xla::Shape transposed = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {1, 0}); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({transposed, transposed})); } TEST_F(XlaCompilerTest, UnrankedFakeParam) { Scope scope = Scope::NewRootScope().ExitOnError(); PartialTensorShape shape; auto a = ops::FakeParam(scope, DT_INT32, shape); auto ret = ops::_Retval(scope.WithOpName("D"), a, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "compile", std::move(graph), {}, &result)); EXPECT_EQ(result.xla_output_shape, xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {0})})); } TEST_F(XlaCompilerTest, MixedOrderArguments) { for (bool swap_order : {false, true}) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, swap_order ? 0 : 1); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, swap_order ? 1 : 0); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); if (swap_order) { std::swap(args[0], args[1]); } XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompileOptions compile_options; compile_options.always_return_tuple = false; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); EXPECT_THAT(result.input_mapping, ::testing::ElementsAre(0, 1)); } } TEST_F(XlaCompilerTest, HasSaneErrorOnNonCompileTimeConstantInputToReshape) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Reshape(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kParameter; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; Status status = compiler.CompileGraph(XlaCompiler::CompileOptions(), "reshape", std::move(graph), args, &result); EXPECT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "depends on a parameter")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "{{node C}}")) << status.message(); EXPECT_TRUE( absl::StrContains(status.message(), "must be a compile-time constant")) << status.message(); } TEST_F(XlaCompilerTest, ConstantOutputs) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::Const<int32>(scope.WithOpName("B"), 7); auto c = ops::Neg(scope.WithOpName("C"), a); auto d = ops::_Retval(scope.WithOpName("D"), b, 0); auto e = ops::_Retval(scope.WithOpName("E"), c, 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); XlaCompiler::Options options = DefaultOptions(); XlaCompiler compiler(options); { std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompileOptions compile_options; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "constants", std::move(graph_copy), args, &result)); ASSERT_EQ(2, result.outputs.size()); EXPECT_FALSE(result.outputs[0].is_constant); EXPECT_FALSE(result.outputs[1].is_constant); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_->Execute(*result.computation, {param0_data.get()}).value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR0<int32>(7); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({-7, -42}); xla::Literal expected = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected, actual_literal)); } } TEST_F(XlaCompilerTest, ConstantOutputsOfFunctionalNode) { const Tensor seven = test::AsScalar<int>(7); FunctionDef fdef = FunctionDefHelper::Create( "foo", {"a_0:int32"}, {"const:int32", "a:int32"}, {}, { {{"Const"}, "Const", {}, {{"dtype", DT_INT32}, {"value", seven}}}, }, {{"a", "a_0"}, {"const", "Const:output:0"}}); (*fdef.mutable_attr())["_noinline"].set_b(true); FunctionDefLibrary fdef_lib; *(fdef_lib.add_function()) = fdef; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); TF_EXPECT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); auto arg = ops::_Arg(scope.WithOpName("input_arg"), DT_INT32, 0); NodeDef foo; foo.set_name("foo"); foo.set_op("foo"); *foo.add_input() = "input_arg"; Status status; scope.graph()->AddNode(foo, &status); TF_ASSERT_OK(status); NodeDef retval_1; retval_1.set_name("retval_0"); retval_1.set_op(FunctionLibraryDefinition::kRetOp); *retval_1.add_input() = "foo"; (*retval_1.mutable_attr())["T"].set_type(DT_INT32); (*retval_1.mutable_attr())["index"].set_i(0); scope.graph()->AddNode(retval_1, &status); TF_ASSERT_OK(status); NodeDef retval_2; retval_2.set_name("retval_1"); retval_2.set_op(FunctionLibraryDefinition::kRetOp); *retval_2.add_input() = "foo:1"; (*retval_2.mutable_attr())["T"].set_type(DT_INT32); (*retval_2.mutable_attr())["index"].set_i(1); scope.graph()->AddNode(retval_2, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.ToGraph(graph.get())); } std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({1}); XlaCompiler::Options options = DefaultOptions(); FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); options.flib_def = &flib_def; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "constants", std::move(graph), args, &result)); ASSERT_EQ(2, result.outputs.size()); EXPECT_FALSE(result.outputs[1].is_constant); } TEST_F(XlaCompilerTest, ResourceManager) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = DummyReadResourceCC(scope.WithOpName("B"), a); auto c = ops::Add(scope.WithOpName("C"), b.output2_, b.output1_); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); DummyResourceForTest* resource = new DummyResourceForTest(); auto options = DefaultOptions(); std::function<Status(ResourceMgr*)> populate_function = [resource](ResourceMgr* rm) { resource->Ref(); return rm->Create(rm->default_container(), "dummy", resource); }; options.populate_resource_manager = &populate_function; XlaCompiler compiler(options); EXPECT_EQ(0, resource->Get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "dummy", std::move(graph), args, &result)); EXPECT_EQ(1, resource->Get()); resource->Unref(); } TEST_F(XlaCompilerTest, DeterministicCompilation) { const int64_t test_count = 2; std::vector<XlaCompiler::CompilationResult> results(test_count); for (int64_t i = 0; i < test_count; ++i) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::Neg(scope.WithOpName("B"), a); auto c = ops::Neg(scope.WithOpName("C"), a); auto d = ops::Add(scope.WithOpName("D"), b, c); auto e = ops::_Retval(scope.WithOpName("E"), d, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); auto options = DefaultOptions(); XlaCompiler compiler(options); TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "dummy", std::move(graph), args, &results[i])); } for (int64_t i = 1; i < test_count; ++i) { const auto& m1 = results[i - 1].computation->proto(); const auto& m2 = results[i].computation->proto(); ASSERT_EQ(m1.computations_size(), m2.computations_size()); for (int k = 0; k < m1.computations_size(); k++) { const auto& c1 = m1.computations(k); const auto& c2 = m2.computations(k); ASSERT_EQ(c1.instructions_size(), c2.instructions_size()); for (int j = 0; j < c1.instructions_size(); j++) { auto instr1 = c1.instructions(j); auto instr2 = c2.instructions(j); instr1.clear_name(); instr1.clear_id(); instr1.clear_operand_ids(); instr2.clear_name(); instr2.clear_id(); instr2.clear_operand_ids(); string str1, str2; LOG(INFO) << "instr1 = " << instr1.DebugString(); LOG(INFO) << "instr2 = " << instr2.DebugString(); instr1.AppendPartialToString(&str1); instr2.AppendPartialToString(&str2); EXPECT_EQ(str1, str2); } } } } TEST_F(XlaCompilerTest, CanPassTensorArraysToAndFromComputation) { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_RESOURCE, 0); auto flow = ops::Const<float>(scope, {}); auto grad1 = ops::TensorArrayGrad(scope, arg, flow, "grad1"); auto grad2 = ops::TensorArrayGrad(scope, arg, grad1.flow_out, "grad2"); auto index = ops::Const<int32>(scope, 1); auto write = ops::TensorArrayWrite(scope, grad1.grad_handle, index, index, grad2.flow_out); auto read = ops::TensorArrayRead(scope, arg, index, write.flow_out, DT_INT32); auto retval = ops::_Retval(scope.WithOpName("retval"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kTensorArray; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[0].max_array_size = 2; args[0].tensor_array_gradients = {"grad2"}; XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); ASSERT_EQ(1, result.resource_updates.size()); const XlaCompiler::ResourceUpdate& update = result.resource_updates[0]; EXPECT_EQ(0, update.input_index); EXPECT_EQ(DT_INT32, update.type); EXPECT_EQ((std::set<string>{"grad1", "grad2"}), update.tensor_array_gradients_accessed); xla::Literal input_base = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal input_grad2 = xla::LiteralUtil::CreateR1<int32>({-3, 101}); xla::Literal input = xla::LiteralUtil::MakeTuple({&input_base, &input_grad2}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(input).value(); std::unique_ptr<xla::GlobalData> actual = client_->Execute(*result.computation, {param0_data.get()}).value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal output_read = xla::LiteralUtil::CreateR0<int32>(42); xla::Literal output_base = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal output_grad1 = xla::LiteralUtil::CreateR1<int32>({0, 1}); xla::Literal output_grad2 = xla::LiteralUtil::CreateR1<int32>({-3, 101}); xla::Literal output_resource = xla::LiteralUtil::MakeTuple({&output_base, &output_grad1, &output_grad2}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&output_read, &output_resource}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, UnwrittenTensorArrayGradientsAreNotComputationOutputs) { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_RESOURCE, 0); auto flow = ops::Const<float>(scope, {}); auto grad1 = ops::TensorArrayGrad(scope, arg, flow, "grad1"); auto index = ops::Const<int32>(scope, 1); auto read = ops::TensorArrayRead(scope, arg, index, grad1.flow_out, DT_INT32); auto retval = ops::_Retval(scope.WithOpName("retval"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kTensorArray; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[0].max_array_size = 2; args[0].tensor_array_gradients = {"grad1"}; XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); EXPECT_EQ(0, result.resource_updates.size()); } TEST_F(XlaCompilerTest, NewTensorArrayGradientsAreComputationOutputs) { Scope scope = Scope::NewRootScope().ExitOnError(); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_RESOURCE, 0); auto flow = ops::Const<float>(scope, {}); auto grad1 = ops::TensorArrayGrad(scope, arg, flow, "grad2"); auto index = ops::Const<int32>(scope, 1); auto read = ops::TensorArrayRead(scope, arg, index, grad1.flow_out, DT_INT32); auto retval = ops::_Retval(scope.WithOpName("retval"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kTensorArray; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[0].max_array_size = 2; args[0].tensor_array_gradients = {"grad1"}; XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); EXPECT_EQ(1, result.resource_updates.size()); } TEST_F(XlaCompilerTest, UndefinedFunctionFails) { XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); XlaCompiler::CompilationResult result; NameAttrList name_attr; name_attr.set_name("Function_NotDefined_"); Status status = compiler.CompileFunction(XlaCompiler::CompileOptions(), name_attr, {}, &result); EXPECT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "is not defined.")) << status.message(); } FunctionDef FillFn() { return FunctionDefHelper::Define( "FillFn", {"x: T", "dims: int32"}, {"y: T"}, {"T: {float, double, int32, int64}"}, {{{"y"}, "Fill", {"dims", "x"}, {{"T", "$T"}}}}); } TEST_F(XlaCompilerTest, FunctionCallWithConstants) { XlaCompiler compiler(DefaultOptions()); FunctionDefLibrary flib; *flib.add_function() = FillFn(); TF_ASSERT_OK(flib_def_->AddFunctionDef(FillFn())); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto value = ops::Const<int32>(scope.WithOpName("value"), 1, {}); auto shape = ops::Const<int32>(scope.WithOpName("shape"), {5}, {1}); TF_EXPECT_OK(scope.graph()->AddFunctionLibrary(flib)); NodeDef def; TF_ASSERT_OK(NodeDefBuilder("fill", "FillFn", flib_def_.get()) .Input(value.name(), 0, DT_INT32) .Input(shape.name(), 1, DT_INT32) .Finalize(&def)); Status status; Node* fill = scope.graph()->AddNode(def, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.DoShapeInference(fill)); scope.graph()->AddEdge(value.node(), 0, fill, 0); scope.graph()->AddEdge(shape.node(), 0, fill, 1); auto retval = ops::_Retval(scope.WithOpName("retval"), Output(fill), 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "fill", std::move(graph), args, &result)); } TEST_F(XlaCompilerTest, LocalFunctionWithWrongArgumentsFail) { XlaCompiler compiler(DefaultOptions()); auto local_flib_def = LocalFlibDef(&compiler); TF_ASSERT_OK(local_flib_def->AddFunctionDef(test::function::XTimesTwo())); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); XlaCompiler::CompilationResult result; NameAttrList name_attr; name_attr.set_name("XTimesTwo"); Status status = compiler.CompileFunction(XlaCompiler::CompileOptions(), name_attr, {}, &result); ASSERT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "is not defined.")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "Attr T is not found")) << status.message(); } FunctionDef SliceFn() { return FunctionDefHelper::Define( "SliceFn", {"x: T", "begin: Index", "size: Index"}, {"y: T"}, {"T: {float, double, int32, int64}", "Index: {int32,int64}"}, {{{"y"}, "Slice", {"x", "begin", "size"}, {{"T", "$T"}, {"Index", "$Index"}}}}); } TEST_F(XlaCompilerTest, SliceWithDynamicBegins) { XlaCompiler compiler(DefaultOptions()); FunctionDefLibrary flib; *flib.add_function() = SliceFn(); TF_ASSERT_OK(flib_def_->AddFunctionDef(SliceFn())); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto value = ops::Const<int32>(scope.WithOpName("shape"), {5}, {1}); auto begin = ops::_Arg(scope.WithOpName("arg"), DT_INT32, 0); auto size = ops::Const<int32>(scope.WithOpName("value"), {1}, {1}); TF_EXPECT_OK(scope.graph()->AddFunctionLibrary(flib)); NodeDef def; TF_ASSERT_OK(NodeDefBuilder("slice", "SliceFn", flib_def_.get()) .Input(value.name(), 0, DT_INT32) .Input(begin.node()->name(), 1, DT_INT32) .Input(size.name(), 2, DT_INT32) .Finalize(&def)); Status status; Node* slice = scope.graph()->AddNode(def, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.DoShapeInference(slice)); scope.graph()->AddEdge(value.node(), 0, slice, 0); scope.graph()->AddEdge(begin.node(), 0, slice, 1); scope.graph()->AddEdge(size.node(), 0, slice, 2); auto retval = ops::_Retval(scope.WithOpName("retval"), Output(slice), 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({1}); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "slice", std::move(graph), args, &result)); } void RunAndCheckVariablesComputation( xla::Client* client, const XlaCompiler::CompilationResult& result) { xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({7, 42}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param0_data = client->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR1<int32>({5, 144}); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({4, 143}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, Variables) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); RunAndCheckVariablesComputation(client_, result); } TEST_F(XlaCompilerTest, ResultLayoutSingle) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Retval(scope.WithOpName("RET"), a, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(type, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; auto compile_options = XlaCompiler::CompileOptions(); compile_options.always_return_tuple = false; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "id", std::move(graph), args, &result)); EXPECT_TRUE(xla::ShapeUtil::Equal( result.xla_output_shape, xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}))); EXPECT_EQ(result.computation->GetProgramShape().value().result(), result.xla_output_shape); } TEST_F(XlaCompilerTest, ResultLayoutMultiple) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Retval(scope.WithOpName("RET1"), a, 0); auto c = ops::_Retval(scope.WithOpName("RET2"), a, 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 3}); auto options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_RETURN_IF_ERROR(TensorShapeToXLAShape(type, shape, &xla_shape)); *xla_shape.mutable_layout() = xla::LayoutUtil::MakeLayout({0, 1}); return xla_shape; }; shape_determination_fns.layout_preference_fn = UseNoPreferenceLayoutFn(); options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "id", std::move(graph), args, &result)); xla::Shape result_shape = xla::ShapeUtil::MakeShapeWithDenseLayout(xla::S32, {2, 3}, {0, 1}); EXPECT_TRUE(xla::ShapeUtil::Equal( result.xla_output_shape, xla::ShapeUtil::MakeTupleShape({result_shape, result_shape}))); EXPECT_EQ(result.computation->GetProgramShape().value().result(), result.xla_output_shape); } TEST_F(XlaCompilerTest, ReturnResourceHandleOnly) { Scope scope = Scope::NewRootScope().ExitOnError(); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 0); auto d = ops::_Retval(scope.WithOpName("D"), var, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({-3, 101}); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_->Execute(*result.computation, {param1_data.get()}).value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, ReturnResourceHandle) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto identity = ops::Identity(scope.WithOpName("VIdentity"), var); auto write = ops::AssignAddVariableOp(scope, identity, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto r = ops::_Retval(scope.WithOpName("R"), var, 0); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); RunAndCheckVariablesComputation(client_, result); } absl::StatusOr<std::unique_ptr<Graph>> BuildTestGraph() { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto write = ops::AssignAddVariableOp(scope, var, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto read_plus_one = ops::Add(scope, read, ops::Const<int32>(scope, 1)); auto d = ops::_Retval(scope.WithOpName("D"), read_plus_one, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_RETURN_IF_ERROR(scope.ToGraph(graph.get())); return std::move(graph); } TEST_F(XlaCompilerTest, VariableRepresentationShapeFunction) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<Graph> graph, BuildTestGraph()); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 2}); XlaCompiler::Options options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::PrimitiveType ptype; TF_RETURN_IF_ERROR(DataTypeToPrimitiveType(type, &ptype)); return xla::ShapeUtil::MakeShape(ptype, {shape.num_elements()}); }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options; compile_options.is_entry_computation = false; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::ProgramShape> program_shape, client_->GetComputationShape(*result.computation)); ASSERT_EQ(program_shape->parameters_size(), 2); EXPECT_TRUE( xla::ShapeUtil::Compatible(program_shape->parameters(0), xla::ShapeUtil::MakeShape(xla::S32, {2, 2}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->parameters(1), xla::ShapeUtil::MakeShape(xla::S32, {4}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->result(), xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {2, 2}), xla::ShapeUtil::MakeShape(xla::S32, {4})}))); xla::Literal param0_literal = xla::LiteralUtil::CreateR2<int32>({{4, 55}, {1, -3}}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({22, 11, 33, 404}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR2<int32>({{27, 67}, {35, 402}}); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({26, 66, 34, 401}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, ArgRetvalShapeRepresentationFunction) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<Graph> graph, BuildTestGraph()); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 2}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2, 2}); XlaCompiler::Options options = DefaultOptions(); XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns; shape_determination_fns.shape_representation_fn = [](const TensorShape& shape, DataType type, bool use_fast_memory, XlaLayoutPreference layout_preference) -> absl::StatusOr<xla::Shape> { xla::PrimitiveType ptype; TF_RETURN_IF_ERROR(DataTypeToPrimitiveType(type, &ptype)); return xla::ShapeUtil::MakeShape(ptype, {shape.num_elements()}); }; options.shape_determination_fns = shape_determination_fns; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options; compile_options.is_entry_computation = true; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::ProgramShape> program_shape, client_->GetComputationShape(*result.computation)); ASSERT_EQ(program_shape->parameters_size(), 2); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->parameters(0), xla::ShapeUtil::MakeShape(xla::S32, {4}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->parameters(1), xla::ShapeUtil::MakeShape(xla::S32, {4}))); EXPECT_TRUE(xla::ShapeUtil::Compatible( program_shape->result(), xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {4}), xla::ShapeUtil::MakeShape(xla::S32, {4})}))); xla::Literal param0_literal = xla::LiteralUtil::CreateR1<int32>({4, 55, 1, -3}); xla::Literal param1_literal = xla::LiteralUtil::CreateR1<int32>({22, 11, 33, 404}); std::unique_ptr<xla::GlobalData> param0_data = client_->TransferToServer(param0_literal).value(); std::unique_ptr<xla::GlobalData> param1_data = client_->TransferToServer(param1_literal).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {param0_data.get(), param1_data.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR1<int32>({27, 67, 35, 402}); xla::Literal expected1 = xla::LiteralUtil::CreateR1<int32>({26, 66, 34, 401}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, FunctionWithInvalidOp) { XlaCompiler compiler(DefaultOptions()); FunctionDefLibrary flib; FunctionDef fn = FillFn(); NodeDef* node = fn.add_node_def(); node->set_name("Invalid"); node->set_op("InvalidOp"); node = fn.add_node_def(); node->set_name("Switch"); node->set_op("Switch"); *flib.add_function() = fn; TF_ASSERT_OK(flib_def_->AddFunctionDef(fn)); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto value = ops::Const<int32>(scope.WithOpName("value"), 1, {}); auto shape = ops::Const<int32>(scope.WithOpName("shape"), {5}, {1}); TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(flib)); NodeDef def; TF_ASSERT_OK(NodeDefBuilder("fill_fn", "FillFn", flib_def_.get()) .Input(value.name(), 0, DT_INT32) .Input(shape.name(), 1, DT_INT32) .Finalize(&def)); Status status; Node* fill = scope.graph()->AddNode(def, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(scope.DoShapeInference(fill)); scope.graph()->AddEdge(value.node(), 0, fill, 0); scope.graph()->AddEdge(shape.node(), 0, fill, 1); auto retval = ops::_Retval(scope.WithOpName("retval"), Output(fill), 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args; XlaCompiler::CompilationResult result; status = compiler.CompileGraph(XlaCompiler::CompileOptions(), "fill", std::move(graph), args, &result); ASSERT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "InvalidOp")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "{{node fill_fn}}")) << status.message(); } TEST_F(XlaCompilerTest, NodeWithInvalidDataType) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); NodeDef shape; shape.set_name("Shape"); shape.set_op("Shape"); (*shape.mutable_attr())["T"].set_type(DT_INT32); (*shape.mutable_attr())["out_type"].set_type(DT_BOOL); Status status; Node* shape_node = graph->AddNode(shape, &status); TF_ASSERT_OK(status); graph->AddControlEdge(graph->source_node(), shape_node); std::vector<XlaCompiler::Argument> args; XlaCompiler::CompilationResult result; XlaCompiler compiler(DefaultOptions()); status = compiler.CompileGraph(XlaCompiler::CompileOptions(), "invalid_type", std::move(graph), args, &result); ASSERT_FALSE(status.ok()); EXPECT_TRUE(absl::StrContains(status.message(), "is not in the list of allowed values")) << status.message(); EXPECT_TRUE(absl::StrContains(status.message(), "{{node Shape}}")) << status.message(); } TEST_F(XlaCompilerTest, SingleOpWithoutInputs) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); NodeDef no_op; no_op.set_name("NoOp"); no_op.set_op("NoOp"); Status status; graph->AddNode(no_op, &status); TF_ASSERT_OK(status); std::vector<XlaCompiler::Argument> args; XlaCompiler compiler(DefaultOptions()); { std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "NoOp", std::move(graph_copy), args, &result)); } } class DummySideEffectingOp : public XlaOpKernel { public: explicit DummySideEffectingOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { OP_REQUIRES_OK(ctx, ctx->compiler()->SetNodeToken( name(), xla::CreateToken(ctx->builder()))); } }; REGISTER_OP("DummySideEffectingOp"); REGISTER_XLA_OP(Name("DummySideEffectingOp"), DummySideEffectingOp); TEST_F(XlaCompilerTest, TokenInputAndOutput) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); NodeDef side_effecting_op; side_effecting_op.set_name("DummySideEffectingOp"); side_effecting_op.set_op("DummySideEffectingOp"); AddNodeAttr(kXlaTokenInputNodesAttrName, std::vector<string>{kXlaTokenArgNodeName}, &side_effecting_op); AddNodeAttr(kXlaOriginalOutsideCompilationNodeName, side_effecting_op.name(), &side_effecting_op); Status status; graph->AddNode(side_effecting_op, &status); TF_ASSERT_OK(status); EXPECT_TRUE(FixupSourceAndSinkEdges(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kResource; args[0].resource_kind = XlaResource::kVariable; args[0].initialized = true; args[0].type = DT_INT32; args[0].shape = TensorShape({2, 2}); { XlaCompiler::CompileOptions options; options.is_entry_computation = true; options.add_token_input_output = false; options.return_updated_values_for_all_resources = true; XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(options, "NoOp", std::move(graph_copy), args, &result)); EXPECT_EQ(result.xla_input_shapes.size(), 1); EXPECT_TRUE(result.xla_output_shape.IsTuple()); EXPECT_EQ(xla::ShapeUtil::TupleElementCount(result.xla_output_shape), 1); } { XlaCompiler::CompileOptions options; options.is_entry_computation = false; options.add_token_input_output = true; options.return_updated_values_for_all_resources = true; XlaCompiler compiler(DefaultOptions()); std::unique_ptr<Graph> graph_copy(new Graph(OpRegistry::Global())); CopyGraph(*graph, graph_copy.get()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(options, "NoOp", std::move(graph_copy), args, &result)); EXPECT_EQ(result.xla_input_shapes.size(), 2); EXPECT_TRUE(result.xla_input_shapes[1].IsToken()); EXPECT_TRUE(result.xla_output_shape.IsTuple()); EXPECT_EQ(xla::ShapeUtil::TupleElementCount(result.xla_output_shape), 2); EXPECT_TRUE(xla::ShapeUtil::GetTupleElementShape(result.xla_output_shape, 1) .IsToken()); } } TEST_F(XlaCompilerTest, OpsWithTensorListInput) { FunctionDefLibrary fdef_lib; FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); ops::_Arg(scope.WithOpName("arg"), DT_VARIANT, 0); auto result = ops::Const<bool>(scope, {true}, {}); ops::_Retval(scope.WithOpName("ret"), result, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "cond", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_VARIANT, 0); ops::_Retval(scope.WithOpName("ret"), arg, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "body", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } Scope scope = Scope::NewRootScope().ExitOnError(); auto element_shape = ops::Const<int32>(scope, {1}, {1}); auto max_elements = ops::Const<int32>(scope, {10}, {}); auto arg = ops::_Arg(scope.WithOpName("arg"), DT_VARIANT, 0); std::initializer_list<Output> out = {arg, arg}; auto add_n = ops::AddN(scope, out); NameAttrList cond_fn, body_fn; cond_fn.set_name("cond"); body_fn.set_name("body"); auto while_op = ops::While(scope, std::initializer_list<Input>{arg}, cond_fn, body_fn); auto ret0 = ops::_Retval(scope.WithOpName("ret0"), add_n, 0); auto ret1 = ops::_Retval(scope.WithOpName("ret1"), while_op.output[0], 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kTensorList; xla::Shape tensor_list_element_shape; TF_ASSERT_OK(TensorShapeToXLAShape(DT_INT32, TensorShape{1}, &tensor_list_element_shape)); xla::Shape index_shape; TF_ASSERT_OK(TensorShapeToXLAShape(DT_INT32, TensorShape{}, &index_shape)); std::vector<xla::Shape> shapes{tensor_list_element_shape, index_shape}; xla::Shape arg_shape = xla::ShapeUtil::MakeTupleShape(shapes); args[0].shape = arg_shape; XlaCompiler::Options options = DefaultOptions(); options.flib_def = &flib_def; XlaCompiler compiler(options); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "add", std::move(graph), args, &result)); ASSERT_EQ(result.outputs.size(), 2); const XlaCompiler::OutputDescription& output0 = result.outputs[0]; ASSERT_TRUE(output0.is_tensor_list); const XlaCompiler::OutputDescription& output1 = result.outputs[1]; ASSERT_TRUE(output1.is_tensor_list); } TEST_F(XlaCompilerTest, WhileWithResources) { FunctionDefLibrary fdef_lib; FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_RESOURCE, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_RESOURCE, 2); auto less = ops::Less(scope, arg0, ops::Const<int32>(scope, 10)); (void)ops::_Retval(scope.WithOpName("ret"), less, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "cond", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } { Scope scope = Scope::NewRootScope().ExitOnError(); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_RESOURCE, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_RESOURCE, 2); auto read1 = ops::ReadVariableOp(scope.WithOpName("read1"), arg1, DT_INT32); auto plus_read1 = ops::Add(scope, arg0, read1); auto read2 = ops::ReadVariableOp(scope.WithOpName("read2"), arg2, DT_INT32); auto minus_read2 = ops::Sub(scope, plus_read1, read2); (void)ops::_Retval(scope.WithOpName("ret0"), minus_read2, 0); (void)ops::_Retval(scope.WithOpName("ret1"), arg1, 1); (void)ops::_Retval(scope.WithOpName("ret2"), arg2, 2); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionDef fdef; TF_ASSERT_OK(GraphToFunctionDef(*graph, "body", &fdef)); TF_ASSERT_OK(flib_def.AddFunctionDef(fdef)); } Scope scope = Scope::NewRootScope().ExitOnError(); auto arg0 = ops::_Arg(scope.WithOpName("arg0"), DT_INT32, 0); auto arg1 = ops::_Arg(scope.WithOpName("arg1"), DT_RESOURCE, 1); auto arg2 = ops::_Arg(scope.WithOpName("arg2"), DT_RESOURCE, 2); NameAttrList cond_fn, body_fn; cond_fn.set_name("cond"); body_fn.set_name("body"); auto while_op = ops::While( scope, std::initializer_list<Input>{arg0, arg1, arg2}, cond_fn, body_fn); (void)ops::_Retval(scope.WithOpName("ret0"), while_op.output[0], 0); (void)ops::_Retval(scope.WithOpName("ret1"), while_op.output[1], 1); (void)ops::_Retval(scope.WithOpName("ret2"), while_op.output[2], 2); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(3); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({}); args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({}); args[2].kind = XlaCompiler::Argument::kResource; args[2].resource_kind = XlaResource::kVariable; args[2].initialized = true; args[2].type = DT_INT32; args[2].shape = TensorShape({}); XlaCompiler::Options options = DefaultOptions(); options.flib_def = &flib_def; XlaCompiler compiler(options); XlaCompiler::CompileOptions compile_options = XlaCompiler::CompileOptions(); compile_options.return_updated_values_for_all_resources = true; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "tested_while_with_vars", std::move(graph), args, &result)); ASSERT_EQ(result.outputs.size(), 3); const XlaCompiler::OutputDescription& output1 = result.outputs[1]; ASSERT_EQ(output1.input_index, 1); const XlaCompiler::OutputDescription& output2 = result.outputs[2]; ASSERT_EQ(output2.input_index, 2); xla::Literal literal0 = xla::LiteralUtil::CreateR0<int32>(0); xla::Literal literal1 = xla::LiteralUtil::CreateR0<int32>(2); xla::Literal literal2 = xla::LiteralUtil::CreateR0<int32>(1); std::unique_ptr<xla::GlobalData> data0 = client_->TransferToServer(literal0).value(); std::unique_ptr<xla::GlobalData> data1 = client_->TransferToServer(literal1).value(); std::unique_ptr<xla::GlobalData> data2 = client_->TransferToServer(literal2).value(); std::unique_ptr<xla::GlobalData> actual = client_ ->Execute(*result.computation, {data0.get(), data1.get(), data2.get()}) .value(); xla::Literal actual_literal = client_->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR0<int32>(10); xla::Literal expected1 = xla::LiteralUtil::CreateR0<int32>(2); xla::Literal expected2 = xla::LiteralUtil::CreateR0<int32>(1); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0, &expected1, &expected2}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } TEST_F(XlaCompilerTest, SetShardingForReturnedTuple) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Retval(scope.WithOpName("B"), a, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); auto node_name_index = graph->BuildNodeNameIndex(); Node* ret_node = node_name_index["B"]; ASSERT_NE(ret_node, nullptr); xla::Array<int64_t> tile_assignment({2}); tile_assignment.FillIota(0); xla::HloSharding sharding = xla::HloSharding::Tile(tile_assignment); ret_node->AddAttr("_XlaSharding", sharding.ToProto().SerializeAsString()); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kParameter; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(XlaCompiler::CompileOptions(), "test", std::move(graph), args, &result)); const auto& hlo_module_proto = result.computation->proto(); ASSERT_EQ(hlo_module_proto.computations_size(), 1); const auto& hlo_computation_proto = hlo_module_proto.computations(0); std::optional<xla::HloInstructionProto> root_instruction_proto; for (const auto& inst : hlo_computation_proto.instructions()) { if (inst.id() == hlo_computation_proto.root_id()) { root_instruction_proto = inst; break; } } ASSERT_TRUE(root_instruction_proto); xla::Shape tuple_shape = xla::ShapeUtil::MakeTupleShape( {xla::ShapeUtil::MakeShape(xla::S32, {2})}); xla::HloSharding tuple_sharding = xla::HloSharding::Tuple( tuple_shape, std::vector<xla::HloSharding>{sharding}); EXPECT_EQ(root_instruction_proto->sharding().SerializeAsString(), tuple_sharding.ToProto().SerializeAsString()); } TEST_F(XlaCompilerTest, AliasResourceUpdates) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Const<int32>(scope.WithOpName("A"), {1, 2}); auto var = ops::_Arg(scope.WithOpName("V"), DT_RESOURCE, 1); auto write = ops::AssignAddVariableOp(scope, var, a); auto read = ops::ReadVariableOp( scope.WithControlDependencies(std::vector<Operation>{write}), var, DT_INT32); auto d = ops::_Retval(scope.WithOpName("D"), read, 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_ASSERT_OK(scope.ToGraph(graph.get())); std::vector<XlaCompiler::Argument> args(2); args[0].kind = XlaCompiler::Argument::kConstant; args[0].type = DT_INT32; args[0].shape = TensorShape({2}); args[0].constant_value = Tensor(DT_INT32, {1, 1}); args[0].initialized = true; args[1].kind = XlaCompiler::Argument::kResource; args[1].resource_kind = XlaResource::kVariable; args[1].initialized = true; args[1].type = DT_INT32; args[1].shape = TensorShape({2}); XlaCompiler compiler(DefaultOptions()); XlaCompiler::CompileOptions compile_options; compile_options.alias_resource_update = true; XlaCompiler::CompilationResult result; TF_ASSERT_OK(compiler.CompileGraph(compile_options, "add", std::move(graph), args, &result)); const xla::HloInputOutputAliasProto& alias = result.computation->proto().input_output_alias(); EXPECT_EQ(alias.entries_size(), 1); EXPECT_EQ(alias.entries(0).parameter_number(), 0); } TEST_F(XlaCompilerTest, SetDeviceToHostMetadataExactDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; TF_ASSERT_OK(compiler.SetDeviceToHostMetadata(key, types, shapes)); TF_ASSERT_OK(compiler.SetDeviceToHostMetadata(key, types, shapes)); } TEST_F(XlaCompilerTest, SetDeviceToHostMetadataMismatchedDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; std::vector<DataType> types2{DT_FLOAT}; std::vector<TensorShape> shapes2{TensorShape({1})}; TF_ASSERT_OK(compiler.SetDeviceToHostMetadata(key, types, shapes)); Status status = compiler.SetDeviceToHostMetadata(key, types2, shapes2); EXPECT_EQ(status.code(), error::Code::INVALID_ARGUMENT); } TEST_F(XlaCompilerTest, SetHostToDeviceMetadataExactDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; TF_ASSERT_OK(compiler.SetHostToDeviceMetadata(key, types, shapes)); TF_ASSERT_OK(compiler.SetHostToDeviceMetadata(key, types, shapes)); } TEST_F(XlaCompilerTest, SetHostToDeviceMetadataMismatchedDuplicate) { XlaCompiler compiler(DefaultOptions()); const string& key = "comm_key"; std::vector<DataType> types{DT_INT32}; std::vector<TensorShape> shapes{TensorShape({2})}; std::vector<DataType> types2{DT_FLOAT}; std::vector<TensorShape> shapes2{TensorShape({1})}; TF_ASSERT_OK(compiler.SetHostToDeviceMetadata(key, types, shapes)); Status status = compiler.SetHostToDeviceMetadata(key, types2, shapes2); EXPECT_EQ(status.code(), error::Code::INVALID_ARGUMENT); } TEST_F(OpsTestBase, BuildSingleOpCompileArgument) { TF_EXPECT_OK(NodeDefBuilder("identity_op", "Identity") .Input(FakeInput(DT_FLOAT)) .Attr("T", DT_FLOAT) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 2}), {0, 1}); TF_EXPECT_OK(RunOpKernel()); XlaCompiler::SingleOpCompileArgument arg(*context_); EXPECT_THAT(arg.output_dtypes, ::testing::ElementsAreArray({DT_FLOAT})); EXPECT_EQ(arg.node_def.SerializeAsString(), context_->op_kernel().def().SerializeAsString()); EXPECT_EQ(arg.config_proto.ByteSizeLong(), 0); } TEST_F(OpsTestBase, CompileSingleOp) { TF_EXPECT_OK(NodeDefBuilder("identity_op", "Identity") .Input(FakeInput(DT_FLOAT)) .Attr("T", DT_FLOAT) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 2}), {6.9, 4.2}); TF_EXPECT_OK(RunOpKernel()); XlaCompiler::SingleOpCompileArgument single_op_arg(*context_); xla::Client* client = xla::ClientLibrary::LocalClientOrDie(); XlaOpRegistry::RegisterCompilationKernels(); FunctionDefLibrary flib; std::unique_ptr<FunctionLibraryDefinition> flib_def( new FunctionLibraryDefinition(OpRegistry::Global(), flib)); XlaCompiler::Options options; options.device_type = DeviceType(DEVICE_CPU_XLA_JIT); options.client = client; options.flib_def = flib_def.get(); XlaCompiler compiler(options); std::vector<XlaCompiler::Argument> args(1); args[0].kind = XlaCompiler::Argument::kConstant; args[0].type = DT_FLOAT; args[0].shape = TensorShape({1, 2}); args[0].constant_value = GetInput(0); args[0].initialized = true; XlaCompiler::CompilationResult result; TF_EXPECT_OK(compiler.CompileSingleOp(XlaCompiler::CompileOptions(), single_op_arg, args, &result)); std::unique_ptr<xla::GlobalData> actual = client->Execute(*result.computation, {}).value(); xla::Literal actual_literal = client->Transfer(*actual).value(); xla::Literal expected0 = xla::LiteralUtil::CreateR2<float>({{6.9, 4.2}}); xla::Literal expected_literal = xla::LiteralUtil::MakeTuple({&expected0}); EXPECT_TRUE(xla::LiteralTestUtil::Equal(expected_literal, actual_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/xla_compiler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/xla_compiler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9314abd7-8c5d-42d1-a964-8ca3231083e7
cpp
tensorflow/tensorflow
unidirectional_sequence_rnn
tensorflow/lite/kernels/unidirectional_sequence_rnn.cc
tensorflow/lite/kernels/unidirectional_sequence_rnn_test.cc
#include <cstddef> #include <cstdint> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/kernel_utils.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace unidirectional_sequence_rnn { namespace { struct OpData { int scratch_tensor_index; bool compute_row_sums = false; }; } constexpr int kInputTensor = 0; constexpr int kWeightsTensor = 1; constexpr int kRecurrentWeightsTensor = 2; constexpr int kBiasTensor = 3; constexpr int kHiddenStateTensor = 4; constexpr int kOutputTensor = 0; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); context->AddTensors(context, 6, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, node->inputs->size, 5); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* input_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kWeightsTensor, &input_weights)); const TfLiteTensor* recurrent_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kRecurrentWeightsTensor, &recurrent_weights)); const TfLiteTensor* bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBiasTensor, &bias)); const TfLiteTensor* hidden_state; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kHiddenStateTensor, &hidden_state)); auto* params = reinterpret_cast<TfLiteSequenceRNNParams*>(node->builtin_data); const bool time_major = params->time_major; const int batch_size = (time_major) ? input->dims->data[1] : input->dims->data[0]; const int max_time = (time_major) ? input->dims->data[0] : input->dims->data[1]; const int num_units = input_weights->dims->data[0]; TF_LITE_ENSURE_EQ(context, input->dims->data[2], input_weights->dims->data[1]); TF_LITE_ENSURE_EQ(context, input_weights->dims->data[0], bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, recurrent_weights->dims->data[0], bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, recurrent_weights->dims->data[1], bias->dims->data[0]); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, input_weights->type, recurrent_weights->type); TF_LITE_ENSURE_EQ(context, NumDimensions(hidden_state), 2); TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[0], batch_size); TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TfLiteIntArray* output_size_array = TfLiteIntArrayCreate(3); output_size_array->data[0] = (time_major) ? max_time : batch_size; output_size_array->data[1] = (time_major) ? batch_size : max_time; output_size_array->data[2] = num_units; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output, output_size_array)); const bool is_hybrid = IsHybridOp(input, input_weights); if (is_hybrid) { auto* op_data = reinterpret_cast<OpData*>(node->user_data); op_data->compute_row_sums = true; TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(6); node->temporaries->data[0] = op_data->scratch_tensor_index; TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 0, &input_quantized)); input_quantized->type = input_weights->type; input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) { TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); } node->temporaries->data[1] = op_data->scratch_tensor_index + 1; TfLiteTensor* hidden_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 1, &hidden_state_quantized)); hidden_state_quantized->type = input_weights->type; hidden_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(hidden_state_quantized->dims, hidden_state->dims)) { TfLiteIntArray* hidden_state_quantized_size = TfLiteIntArrayCopy(hidden_state->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, hidden_state_quantized, hidden_state_quantized_size)); } node->temporaries->data[2] = op_data->scratch_tensor_index + 2; TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &scaling_factors)); scaling_factors->type = kTfLiteFloat32; scaling_factors->allocation_type = kTfLiteArenaRw; int scaling_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) { TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1); scaling_factors_size->data[0] = batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors, scaling_factors_size)); } node->temporaries->data[3] = op_data->scratch_tensor_index + 3; TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 3, &accum_scratch)); accum_scratch->type = kTfLiteInt32; accum_scratch->allocation_type = kTfLiteArenaRw; int accum_scratch_dims[2] = {num_units, batch_size}; if (!TfLiteIntArrayEqualsArray(accum_scratch->dims, 2, accum_scratch_dims)) { TfLiteIntArray* accum_scratch_size = TfLiteIntArrayCreate(2); accum_scratch_size->data[0] = accum_scratch_dims[0]; accum_scratch_size->data[1] = accum_scratch_dims[1]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, accum_scratch, accum_scratch_size)); } node->temporaries->data[4] = op_data->scratch_tensor_index + 4; TfLiteTensor* zero_points; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 4, &zero_points)); zero_points->type = kTfLiteInt32; zero_points->allocation_type = kTfLiteArenaRw; int zero_points_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(zero_points->dims, 1, zero_points_dims)) { TfLiteIntArray* zero_points_size = TfLiteIntArrayCreate(1); zero_points_size->data[0] = batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, zero_points, zero_points_size)); } node->temporaries->data[5] = op_data->scratch_tensor_index + 5; TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 5, &row_sums)); row_sums->type = kTfLiteInt32; row_sums->allocation_type = kTfLiteArenaRwPersistent; int row_sums_dims[2] = {2, num_units}; if (!TfLiteIntArrayEqualsArray(row_sums->dims, 2, row_sums_dims)) { TfLiteIntArray* row_sums_size = TfLiteIntArrayCreate(2); row_sums_size->data[0] = row_sums_dims[0]; row_sums_size->data[1] = row_sums_dims[1]; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, row_sums, row_sums_size)); } } return kTfLiteOk; } TfLiteStatus EvalFloat(const TfLiteTensor* input, const TfLiteTensor* input_weights, const TfLiteTensor* recurrent_weights, const TfLiteTensor* bias, const TfLiteSequenceRNNParams* params, TfLiteTensor* hidden_state, TfLiteTensor* output) { const float* bias_ptr = GetTensorData<float>(bias); const bool time_major = params->time_major; const int batch_size = (time_major) ? input->dims->data[1] : input->dims->data[0]; const int max_time = (time_major) ? input->dims->data[0] : input->dims->data[1]; const int num_units = input_weights->dims->data[0]; const int input_size = input->dims->data[2]; const float* input_weights_ptr = GetTensorData<float>(input_weights); const float* recurrent_weights_ptr = GetTensorData<float>(recurrent_weights); if (time_major) { float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state); for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + s * input_size * batch_size; float* output_ptr_batch = GetTensorData<float>(output) + s * num_units * batch_size; kernel_utils::RnnBatchStep( input_ptr_batch, input_weights_ptr, recurrent_weights_ptr, bias_ptr, input_size, num_units, batch_size, num_units, params->activation, hidden_state_ptr_batch, output_ptr_batch); } } else { for (int b = 0; b < batch_size; b++) { float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state) + b * num_units; for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + b * input_size * max_time + s * input_size; float* output_ptr_batch = GetTensorData<float>(output) + b * num_units * max_time + s * num_units; kernel_utils::RnnBatchStep( input_ptr_batch, input_weights_ptr, recurrent_weights_ptr, bias_ptr, input_size, num_units, 1, num_units, params->activation, hidden_state_ptr_batch, output_ptr_batch); } } } return kTfLiteOk; } TfLiteStatus EvalHybrid( const TfLiteTensor* input, const TfLiteTensor* input_weights, const TfLiteTensor* recurrent_weights, const TfLiteTensor* bias, const TfLiteSequenceRNNParams* params, TfLiteTensor* input_scratch, TfLiteTensor* hidden_state_scratch, TfLiteTensor* scaling_factors, TfLiteTensor* hidden_state, TfLiteTensor* output, TfLiteTensor* zero_points, TfLiteTensor* accum_scratch, TfLiteTensor* row_sums, bool* compute_row_sums) { const bool time_major = params->time_major; const int batch_size = (time_major) ? input->dims->data[1] : input->dims->data[0]; const int max_time = (time_major) ? input->dims->data[0] : input->dims->data[1]; const int num_units = input_weights->dims->data[0]; const int input_size = input->dims->data[2]; const float* bias_ptr = GetTensorData<float>(bias); const int8_t* input_weights_ptr = GetTensorData<int8_t>(input_weights); const int8_t* recurrent_weights_ptr = GetTensorData<int8_t>(recurrent_weights); int8_t* quantized_input_ptr = GetTensorData<int8_t>(input_scratch); int8_t* quantized_hidden_state_ptr = GetTensorData<int8_t>(hidden_state_scratch); float input_weights_scale = input_weights->params.scale; float recurrent_weights_scale = recurrent_weights->params.scale; float* scaling_factors_ptr = GetTensorData<float>(scaling_factors); int32_t* accum_scratch_ptr = GetTensorData<int32_t>(accum_scratch); int32_t* zero_points_ptr = nullptr; int32_t* row_sums_ptr = nullptr; if (params->asymmetric_quantize_inputs) { zero_points_ptr = GetTensorData<int32_t>(zero_points); row_sums_ptr = GetTensorData<int32_t>(row_sums); } if (time_major) { float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state); for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + s * input_size * batch_size; float* output_ptr_batch = GetTensorData<float>(output) + s * num_units * batch_size; kernel_utils::RnnBatchStep( input_ptr_batch, input_weights_ptr, input_weights_scale, recurrent_weights_ptr, recurrent_weights_scale, bias_ptr, input_size, num_units, batch_size, num_units, params->activation, quantized_input_ptr, quantized_hidden_state_ptr, scaling_factors_ptr, hidden_state_ptr_batch, output_ptr_batch, params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr, row_sums_ptr, compute_row_sums); } } else { for (int b = 0; b < batch_size; b++) { float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state) + b * num_units; for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + b * input_size * max_time + s * input_size; float* output_ptr_batch = GetTensorData<float>(output) + b * num_units * max_time + s * num_units; kernel_utils::RnnBatchStep( input_ptr_batch, input_weights_ptr, input_weights_scale, recurrent_weights_ptr, recurrent_weights_scale, bias_ptr, input_size, num_units, 1, num_units, params->activation, quantized_input_ptr, quantized_hidden_state_ptr, scaling_factors_ptr, hidden_state_ptr_batch, output_ptr_batch, params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr, row_sums_ptr, compute_row_sums); } } } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteSequenceRNNParams*>(node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* input_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kWeightsTensor, &input_weights)); const TfLiteTensor* recurrent_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kRecurrentWeightsTensor, &recurrent_weights)); const TfLiteTensor* bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBiasTensor, &bias)); TfLiteTensor* hidden_state = GetVariableInput(context, node, kHiddenStateTensor); TF_LITE_ENSURE(context, hidden_state != nullptr); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (input_weights->type) { case kTfLiteFloat32: return EvalFloat(input, input_weights, recurrent_weights, bias, params, hidden_state, output); case kTfLiteUInt8: case kTfLiteInt8: { auto* op_data = reinterpret_cast<OpData*>(node->user_data); TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 0, &input_quantized)); TfLiteTensor* hidden_state_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 1, &hidden_state_quantized)); TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &scaling_factors)); TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 3, &accum_scratch)); TfLiteTensor* zero_points; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 4, &zero_points)); TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 5, &row_sums)); return EvalHybrid(input, input_weights, recurrent_weights, bias, params, input_quantized, hidden_state_quantized, scaling_factors, hidden_state, output, zero_points, accum_scratch, row_sums, &op_data->compute_row_sums); } default: TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", TfLiteTypeGetName(input_weights->type)); return kTfLiteError; } } } TfLiteRegistration* Register_UNIDIRECTIONAL_SEQUENCE_RNN() { static TfLiteRegistration r = { unidirectional_sequence_rnn::Init, unidirectional_sequence_rnn::Free, unidirectional_sequence_rnn::Prepare, unidirectional_sequence_rnn::Eval}; return &r; } } } }
#include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; static float rnn_input[] = { 0.23689353, 0.285385, 0.037029743, -0.19858193, -0.27569133, 0.43773448, 0.60379338, 0.35562468, -0.69424844, -0.93421471, -0.87287879, 0.37144363, -0.62476718, 0.23791671, 0.40060222, 0.1356622, -0.99774903, -0.98858172, -0.38952237, -0.47685933, 0.31073618, 0.71511042, -0.63767755, -0.31729108, 0.33468103, 0.75801885, 0.30660987, -0.37354088, 0.77002847, -0.62747043, -0.68572164, 0.0069220066, 0.65791464, 0.35130811, 0.80834007, -0.61777675, -0.21095741, 0.41213346, 0.73784804, 0.094794154, 0.47791874, 0.86496925, -0.53376222, 0.85315156, 0.10288584, 0.86684, -0.011186242, 0.10513687, 0.87825835, 0.59929144, 0.62827742, 0.18899453, 0.31440187, 0.99059987, 0.87170351, -0.35091716, 0.74861872, 0.17831337, 0.2755419, 0.51864719, 0.55084288, 0.58982027, -0.47443086, 0.20875752, -0.058871567, -0.66609079, 0.59098077, 0.73017097, 0.74604273, 0.32882881, -0.17503482, 0.22396147, 0.19379807, 0.29120302, 0.077113032, -0.70331609, 0.15804303, -0.93407321, 0.40182066, 0.036301374, 0.66521823, 0.0300982, -0.7747041, -0.02038002, 0.020698071, -0.90300065, 0.62870288, -0.23068321, 0.27531278, -0.095755219, -0.712036, -0.17384434, -0.50593495, -0.18646687, -0.96508682, 0.43519354, 0.14744234, 0.62589407, 0.1653645, -0.10651493, -0.045277178, 0.99032974, -0.88255352, -0.85147917, 0.28153265, 0.19455957, -0.55479527, -0.56042433, 0.26048636, 0.84702539, 0.47587705, -0.074295521, -0.12287641, 0.70117295, 0.90532446, 0.89782166, 0.79817224, 0.53402734, -0.33286154, 0.073485017, -0.56172788, -0.044897556, 0.89964068, -0.067662835, 0.76863563, 0.93455386, -0.6324693, -0.083922029}; static float rnn_golden_output[] = { 0.496726, 0, 0.965996, 0, 0.0584254, 0, 0, 0.12315, 0, 0, 0.612266, 0.456601, 0, 0.52286, 1.16099, 0.0291232, 0, 0, 0.524901, 0, 0, 0, 0, 1.02116, 0, 1.35762, 0, 0.356909, 0.436415, 0.0355727, 0, 0, 0, 0, 0, 0.262335, 0, 0, 0, 1.33992, 0, 2.9739, 0, 0, 1.31914, 2.66147, 0, 0, 0.942568, 0, 0, 0, 0.025507, 0, 0, 0, 0.321429, 0.569141, 1.25274, 1.57719, 0.8158, 1.21805, 0.586239, 0.25427, 1.04436, 0, 0.630725, 0, 0.133801, 0.210693, 0.363026, 0, 0.533426, 0, 1.25926, 0.722707, 0, 1.22031, 1.30117, 0.495867, 0.222187, 0, 0.72725, 0, 0.767003, 0, 0, 0.147835, 0, 0, 0, 0.608758, 0.469394, 0.00720298, 0.927537, 0, 0.856974, 0.424257, 0, 0, 0.937329, 0, 0, 0, 0.476425, 0, 0.566017, 0.418462, 0.141911, 0.996214, 1.13063, 0, 0.967899, 0, 0, 0, 0.0831304, 0, 0, 1.00378, 0, 0, 0, 1.44818, 1.01768, 0.943891, 0.502745, 0, 0.940135, 0, 0, 0, 0, 0, 0, 2.13243, 0, 0.71208, 0.123918, 1.53907, 1.30225, 1.59644, 0.70222, 0, 0.804329, 0, 0.430576, 0, 0.505872, 0.509603, 0.343448, 0, 0.107756, 0.614544, 1.44549, 1.52311, 0.0454298, 0.300267, 0.562784, 0.395095, 0.228154, 0, 0.675323, 0, 1.70536, 0.766217, 0, 0, 0, 0.735363, 0.0759267, 1.91017, 0.941888, 0, 0, 0, 0, 0, 1.5909, 0, 0, 0, 0, 0.5755, 0, 0.184687, 0, 1.56296, 0.625285, 0, 0, 0, 0, 0, 0.0857888, 0, 0, 0, 0, 0.488383, 0.252786, 0, 0, 0, 1.02817, 1.85665, 0, 0, 0.00981836, 0, 1.06371, 0, 0, 0, 0, 0, 0, 0.290445, 0.316406, 0, 0.304161, 1.25079, 0.0707152, 0, 0.986264, 0.309201, 0, 0, 0, 0, 0, 1.64896, 0.346248, 0, 0.918175, 0.78884, 0.524981, 1.92076, 2.07013, 0.333244, 0.415153, 0.210318, 0, 0, 0, 0, 0, 2.02616, 0, 0.728256, 0.84183, 0.0907453, 0.628881, 3.58099, 1.49974, 0}; static std::initializer_list<float> rnn_weights = { 0.461459, 0.153381, 0.529743, -0.00371218, 0.676267, -0.211346, 0.317493, 0.969689, -0.343251, 0.186423, 0.398151, 0.152399, 0.448504, 0.317662, 0.523556, -0.323514, 0.480877, 0.333113, -0.757714, -0.674487, -0.643585, 0.217766, -0.0251462, 0.79512, -0.595574, -0.422444, 0.371572, -0.452178, -0.556069, -0.482188, -0.685456, -0.727851, 0.841829, 0.551535, -0.232336, 0.729158, -0.00294906, -0.69754, 0.766073, -0.178424, 0.369513, -0.423241, 0.548547, -0.0152023, -0.757482, -0.85491, 0.251331, -0.989183, 0.306261, -0.340716, 0.886103, -0.0726757, -0.723523, -0.784303, 0.0354295, 0.566564, -0.485469, -0.620498, 0.832546, 0.697884, -0.279115, 0.294415, -0.584313, 0.548772, 0.0648819, 0.968726, 0.723834, -0.0080452, -0.350386, -0.272803, 0.115121, -0.412644, -0.824713, -0.992843, -0.592904, -0.417893, 0.863791, -0.423461, -0.147601, -0.770664, -0.479006, 0.654782, 0.587314, -0.639158, 0.816969, -0.337228, 0.659878, 0.73107, 0.754768, -0.337042, 0.0960841, 0.368357, 0.244191, -0.817703, -0.211223, 0.442012, 0.37225, -0.623598, -0.405423, 0.455101, 0.673656, -0.145345, -0.511346, -0.901675, -0.81252, -0.127006, 0.809865, -0.721884, 0.636255, 0.868989, -0.347973, -0.10179, -0.777449, 0.917274, 0.819286, 0.206218, -0.00785118, 0.167141, 0.45872, 0.972934, -0.276798, 0.837861, 0.747958, -0.0151566, -0.330057, -0.469077, 0.277308, 0.415818}; static std::initializer_list<float> rnn_recurrent_weights = { 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1}; static std::initializer_list<float> rnn_bias = { 0.065691948, -0.69055247, 0.1107955, -0.97084129, -0.23957068, -0.23566568, -0.389184, 0.47481549, -0.4791103, 0.29931796, 0.10463274, 0.83918178, 0.37197268, 0.61957061, 0.3956964, -0.37609905}; class UnidirectionalRNNOpModel : public SingleOpModel { public: UnidirectionalRNNOpModel( int batches, int sequence_len, int units, int size, bool time_major, const TensorType& weights = TensorType_FLOAT32, const TensorType& recurrent_weights = TensorType_FLOAT32, bool asymmetric_quantize_inputs = false) : batches_(batches), sequence_len_(sequence_len), units_(units), input_size_(size) { input_ = AddInput(TensorType_FLOAT32); weights_ = AddInput(weights); recurrent_weights_ = AddInput(recurrent_weights); bias_ = AddInput(TensorType_FLOAT32); hidden_state_ = AddVariableInput(TensorType_FLOAT32); output_ = AddOutput(TensorType_FLOAT32); SetBuiltinOp(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, BuiltinOptions_SequenceRNNOptions, CreateSequenceRNNOptions(builder_, time_major, ActivationFunctionType_RELU, asymmetric_quantize_inputs) .Union()); if (time_major) { BuildInterpreter({{sequence_len_, batches_, input_size_}, {units_, input_size_}, {units_, units_}, {units_}, {batches_, units}}); } else { BuildInterpreter({{batches_, sequence_len_, input_size_}, {units_, input_size_}, {units_, units_}, {units_}, {batches_, units_}}); } } void SetBias(std::initializer_list<float> f) { PopulateTensor(bias_, f); } void SetWeights(std::initializer_list<float> f) { PopulateTensor(weights_, f); } void SetRecurrentWeights(std::initializer_list<float> f) { PopulateTensor(recurrent_weights_, f); } void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } void SetInput(int offset, float* begin, float* end) { PopulateTensor(input_, offset, begin, end); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } int input_size() { return input_size_; } int num_units() { return units_; } int num_batches() { return batches_; } int sequence_len() { return sequence_len_; } protected: int input_; int weights_; int recurrent_weights_; int bias_; int hidden_state_; int output_; int batches_; int sequence_len_; int units_; int input_size_; }; class HybridUnidirectionalRNNOpModel : public UnidirectionalRNNOpModel { public: HybridUnidirectionalRNNOpModel(int batches, int sequence_len, int units, int size, bool time_major, TensorType tensor_type, bool asymmetric_quantize_inputs) : UnidirectionalRNNOpModel(batches, sequence_len, units, size, time_major, tensor_type, tensor_type, asymmetric_quantize_inputs) { tensor_type_ = tensor_type; } void SetWeights(int weights_idx, const std::vector<float>& f) { if (tensor_type_ == TensorType_UINT8) { SymmetricQuantizeAndPopulate(weights_idx, f); } else { SignedSymmetricQuantizeAndPopulate(weights_idx, f); } } void SetWeights(std::initializer_list<float> f) { SetWeights(weights_, f); } void SetRecurrentWeights(std::initializer_list<float> f) { SetWeights(recurrent_weights_, f); } protected: TensorType tensor_type_; }; TEST(UnidirectionalRNNOpTest, BlackBoxTest) { UnidirectionalRNNOpModel rnn(2, 16, 16, 8, false); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_start = rnn_golden_output; float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected))); } class HybridUnidirectionalRNNOpModelOpTest : public ::testing::TestWithParam<bool> {}; TEST_P(HybridUnidirectionalRNNOpModelOpTest, BlackBoxTestUint8) { HybridUnidirectionalRNNOpModel rnn(2, 16, 16, 8, false, TensorType_UINT8, GetParam()); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_start = rnn_golden_output; float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, 0.013))); } TEST_P(HybridUnidirectionalRNNOpModelOpTest, BlackBoxTestInt8) { HybridUnidirectionalRNNOpModel rnn(2, 16, 16, 8, false, TensorType_INT8, GetParam()); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_start = rnn_golden_output; float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, 0.013))); } TEST(UnidirectionalRNNOpTest, TimeMajorBlackBoxTest) { UnidirectionalRNNOpModel rnn(2, 16, 16, 8, true); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); float* golden_batch_end = golden_batch_start + rnn.num_units(); expected.insert(expected.end(), golden_batch_start, golden_batch_end); expected.insert(expected.end(), golden_batch_start, golden_batch_end); } EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected))); } TEST_P(HybridUnidirectionalRNNOpModelOpTest, TimeMajorBlackBoxTestUint8) { HybridUnidirectionalRNNOpModel rnn(2, 16, 16, 8, true, TensorType_UINT8, GetParam()); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); float* golden_batch_end = golden_batch_start + rnn.num_units(); expected.insert(expected.end(), golden_batch_start, golden_batch_end); expected.insert(expected.end(), golden_batch_start, golden_batch_end); } EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, 0.013))); } TEST_P(HybridUnidirectionalRNNOpModelOpTest, TimeMajorBlackBoxTestInt8) { HybridUnidirectionalRNNOpModel rnn(2, 16, 16, 8, true, TensorType_INT8, GetParam()); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); float* golden_batch_end = golden_batch_start + rnn.num_units(); expected.insert(expected.end(), golden_batch_start, golden_batch_end); expected.insert(expected.end(), golden_batch_start, golden_batch_end); } EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, 0.013))); } INSTANTIATE_TEST_SUITE_P(HybridUnidirectionalRNNOpModelOpTest, HybridUnidirectionalRNNOpModelOpTest, ::testing::ValuesIn({true, false})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/unidirectional_sequence_rnn.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/unidirectional_sequence_rnn_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3ebea19d-f62a-4d53-8079-fcaa3d63901f
cpp
tensorflow/tensorflow
bidirectional_sequence_lstm
tensorflow/lite/kernels/bidirectional_sequence_lstm.cc
tensorflow/lite/kernels/bidirectional_sequence_lstm_test.cc
#include <math.h> #include <algorithm> #include <cstddef> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/kernel_utils.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/lstm_eval.h" #include "tensorflow/lite/kernels/op_macros.h" namespace tflite { namespace ops { namespace builtin { namespace bidirectional_sequence_lstm { constexpr int kInputTensor = 0; constexpr int kFwInputToInputWeightsTensor = 1; constexpr int kFwInputToForgetWeightsTensor = 2; constexpr int kFwInputToCellWeightsTensor = 3; constexpr int kFwInputToOutputWeightsTensor = 4; constexpr int kFwRecurrentToInputWeightsTensor = 5; constexpr int kFwRecurrentToForgetWeightsTensor = 6; constexpr int kFwRecurrentToCellWeightsTensor = 7; constexpr int kFwRecurrentToOutputWeightsTensor = 8; constexpr int kFwCellToInputWeightsTensor = 9; constexpr int kFwCellToForgetWeightsTensor = 10; constexpr int kFwCellToOutputWeightsTensor = 11; constexpr int kFwInputGateBiasTensor = 12; constexpr int kFwForgetGateBiasTensor = 13; constexpr int kFwCellGateBiasTensor = 14; constexpr int kFwOutputGateBiasTensor = 15; constexpr int kFwProjectionWeightsTensor = 16; constexpr int kFwProjectionBiasTensor = 17; constexpr int kBwInputToInputWeightsTensor = 18; constexpr int kBwInputToForgetWeightsTensor = 19; constexpr int kBwInputToCellWeightsTensor = 20; constexpr int kBwInputToOutputWeightsTensor = 21; constexpr int kBwRecurrentToInputWeightsTensor = 22; constexpr int kBwRecurrentToForgetWeightsTensor = 23; constexpr int kBwRecurrentToCellWeightsTensor = 24; constexpr int kBwRecurrentToOutputWeightsTensor = 25; constexpr int kBwCellToInputWeightsTensor = 26; constexpr int kBwCellToForgetWeightsTensor = 27; constexpr int kBwCellToOutputWeightsTensor = 28; constexpr int kBwInputGateBiasTensor = 29; constexpr int kBwForgetGateBiasTensor = 30; constexpr int kBwCellGateBiasTensor = 31; constexpr int kBwOutputGateBiasTensor = 32; constexpr int kBwProjectionWeightsTensor = 33; constexpr int kBwProjectionBiasTensor = 34; constexpr int kFwInputActivationStateTensor = 35; constexpr int kFwInputCellStateTensor = 36; constexpr int kBwInputActivationStateTensor = 37; constexpr int kBwInputCellStateTensor = 38; constexpr int kAuxInputTensor = 39; constexpr int kFwAuxInputToInputWeightsTensor = 40; constexpr int kFwAuxInputToForgetWeightsTensor = 41; constexpr int kFwAuxInputToCellWeightsTensor = 42; constexpr int kFwAuxInputToOutputWeightsTensor = 43; constexpr int kBwAuxInputToInputWeightsTensor = 44; constexpr int kBwAuxInputToForgetWeightsTensor = 45; constexpr int kBwAuxInputToCellWeightsTensor = 46; constexpr int kBwAuxInputToOutputWeightsTensor = 47; constexpr int kFwOutputTensor = 0; constexpr int kBwOutputTensor = 1; enum TemporaryTensor { kFwScratchBuffer = 0, kBwScratchBuffer = 1, kInputQuantized = 2, kFwActivationStateQuantized = 3, kBwActivationStateQuantized = 4, kFwCellStateQuantized = 5, kBwCellStateQuantized = 6, kInputScalingFactors = 7, kAuxInputScalingFactors = 8, kOutputStateScalingFactors = 9, kProductScalingFactors = 10, kRecoveredCellWeights = 11, kAccumScratchBuffer = 12, kInputZeroPoints = 13, kAuxInputZeroPoints = 14, kOutputStateZeroPoints = 15, kFwRowSums = 16, kBwRowSums = 17, kAuxInputQuantized = 18, kNumTemporaryTensors = 19, }; struct OpData { int scratch_tensor_index; bool compute_fw_row_sums = false; bool compute_bw_row_sums = false; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); context->AddTensors(context, kNumTemporaryTensors, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus CheckLstmTensorDimensionsAndTypes( TfLiteContext* context, TfLiteNode* node, int n_input, int n_output, int n_cell, int input_to_input_weights_tensor, int input_to_forget_weights_tensor, int input_to_cell_weights_tensor, int input_to_output_weights_tensor, int recurrent_to_input_weights_tensor, int recurrent_to_forget_weights_tensor, int recurrent_to_cell_weights_tensor, int recurrent_to_output_weights_tensor, int cell_to_input_weights_tensor, int cell_to_forget_weights_tensor, int cell_to_output_weights_tensor, int input_gate_bias_tensor, int forget_gate_bias_tensor, int cell_gate_bias_tensor, int output_gate_bias_tensor, int projection_weights_tensor, int projection_bias_tensor) { const auto* params = reinterpret_cast<TfLiteBidirectionalSequenceLSTMParams*>( node->builtin_data); TF_LITE_ENSURE(context, params->cell_clip >= 0); TF_LITE_ENSURE(context, params->proj_clip >= 0); const TfLiteTensor* input_to_forget_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, input_to_forget_weights_tensor, &input_to_forget_weights)); TF_LITE_ENSURE_EQ(context, input_to_forget_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, input_to_forget_weights->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, input_to_forget_weights->dims->data[1], n_input); TF_LITE_ENSURE(context, (input_to_forget_weights->type == kTfLiteFloat32) || (input_to_forget_weights->type == kTfLiteInt8) || (input_to_forget_weights->type == kTfLiteUInt8)); const TfLiteTensor* input_to_input_weights = GetOptionalInputTensor(context, node, input_to_input_weights_tensor); if (input_to_input_weights != nullptr) { TF_LITE_ENSURE_EQ(context, input_to_input_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, input_to_input_weights->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, input_to_input_weights->dims->data[1], n_input); TF_LITE_ENSURE_TYPES_EQ(context, input_to_input_weights->type, input_to_forget_weights->type); } const TfLiteTensor* input_to_cell_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, input_to_cell_weights_tensor, &input_to_cell_weights)); TF_LITE_ENSURE_EQ(context, input_to_cell_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, input_to_cell_weights->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, input_to_cell_weights->dims->data[1], n_input); TF_LITE_ENSURE_TYPES_EQ(context, input_to_cell_weights->type, input_to_forget_weights->type); const TfLiteTensor* input_to_output_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, input_to_output_weights_tensor, &input_to_output_weights)); TF_LITE_ENSURE_EQ(context, input_to_output_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, input_to_output_weights->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, input_to_output_weights->dims->data[1], n_input); TF_LITE_ENSURE_TYPES_EQ(context, input_to_output_weights->type, input_to_forget_weights->type); const TfLiteTensor* recurrent_to_input_weights = GetOptionalInputTensor(context, node, recurrent_to_input_weights_tensor); if (recurrent_to_input_weights != nullptr) { TF_LITE_ENSURE_EQ(context, recurrent_to_input_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, recurrent_to_input_weights->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, recurrent_to_input_weights->dims->data[1], n_output); TF_LITE_ENSURE_TYPES_EQ(context, recurrent_to_input_weights->type, input_to_forget_weights->type); } const TfLiteTensor* recurrent_to_forget_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, recurrent_to_forget_weights_tensor, &recurrent_to_forget_weights)); TF_LITE_ENSURE_EQ(context, recurrent_to_forget_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, recurrent_to_forget_weights->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, recurrent_to_forget_weights->dims->data[1], n_output); TF_LITE_ENSURE_TYPES_EQ(context, recurrent_to_forget_weights->type, input_to_forget_weights->type); const TfLiteTensor* recurrent_to_cell_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, recurrent_to_cell_weights_tensor, &recurrent_to_cell_weights)); TF_LITE_ENSURE_EQ(context, recurrent_to_cell_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, recurrent_to_cell_weights->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, recurrent_to_cell_weights->dims->data[1], n_output); TF_LITE_ENSURE_TYPES_EQ(context, recurrent_to_cell_weights->type, input_to_forget_weights->type); const bool cifg_weights_all_or_none = ((input_to_input_weights != nullptr) && (recurrent_to_input_weights != nullptr)) || ((input_to_input_weights == nullptr) && (recurrent_to_input_weights == nullptr)); TF_LITE_ENSURE(context, cifg_weights_all_or_none == true); const TfLiteTensor* cell_to_input_weights = GetOptionalInputTensor(context, node, cell_to_input_weights_tensor); if (cell_to_input_weights != nullptr) { TF_LITE_ENSURE_EQ(context, cell_to_input_weights->dims->size, 1); TF_LITE_ENSURE_EQ(context, cell_to_input_weights->dims->data[0], n_cell); TF_LITE_ENSURE_TYPES_EQ(context, cell_to_input_weights->type, input_to_forget_weights->type); } const TfLiteTensor* cell_to_forget_weights = GetOptionalInputTensor(context, node, cell_to_forget_weights_tensor); if (cell_to_forget_weights != nullptr) { TF_LITE_ENSURE_EQ(context, cell_to_forget_weights->dims->size, 1); TF_LITE_ENSURE_EQ(context, cell_to_forget_weights->dims->data[0], n_cell); TF_LITE_ENSURE_TYPES_EQ(context, cell_to_forget_weights->type, input_to_forget_weights->type); } const TfLiteTensor* cell_to_output_weights = GetOptionalInputTensor(context, node, cell_to_output_weights_tensor); if (cell_to_output_weights != nullptr) { TF_LITE_ENSURE_EQ(context, cell_to_output_weights->dims->size, 1); TF_LITE_ENSURE_EQ(context, cell_to_output_weights->dims->data[0], n_cell); TF_LITE_ENSURE_TYPES_EQ(context, cell_to_output_weights->type, input_to_forget_weights->type); } const bool use_cifg = (input_to_input_weights == nullptr); const bool peephole_weights_all_or_none = ((cell_to_input_weights != nullptr || use_cifg) && (cell_to_forget_weights != nullptr) && (cell_to_output_weights != nullptr)) || ((cell_to_input_weights == nullptr) && (cell_to_forget_weights == nullptr) && (cell_to_output_weights == nullptr)); TF_LITE_ENSURE(context, peephole_weights_all_or_none == true); const TfLiteTensor* input_gate_bias = GetOptionalInputTensor(context, node, input_gate_bias_tensor); if (use_cifg) { TF_LITE_ENSURE_EQ(context, input_gate_bias, nullptr); } else { TF_LITE_ENSURE_EQ(context, input_gate_bias->dims->size, 1); TF_LITE_ENSURE_EQ(context, input_gate_bias->dims->data[0], n_cell); TF_LITE_ENSURE_TYPES_EQ(context, input_gate_bias->type, kTfLiteFloat32); } const TfLiteTensor* forget_gate_bias; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, forget_gate_bias_tensor, &forget_gate_bias)); TF_LITE_ENSURE_EQ(context, forget_gate_bias->dims->size, 1); TF_LITE_ENSURE_EQ(context, forget_gate_bias->dims->data[0], n_cell); TF_LITE_ENSURE_TYPES_EQ(context, forget_gate_bias->type, kTfLiteFloat32); const TfLiteTensor* cell_gate_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, cell_gate_bias_tensor, &cell_gate_bias)); TF_LITE_ENSURE_EQ(context, cell_gate_bias->dims->size, 1); TF_LITE_ENSURE_EQ(context, cell_gate_bias->dims->data[0], n_cell); TF_LITE_ENSURE_EQ(context, cell_gate_bias->type, kTfLiteFloat32); const TfLiteTensor* output_gate_bias; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, output_gate_bias_tensor, &output_gate_bias)); TF_LITE_ENSURE_EQ(context, output_gate_bias->dims->size, 1); TF_LITE_ENSURE_EQ(context, output_gate_bias->dims->data[0], n_cell); TF_LITE_ENSURE_TYPES_EQ(context, output_gate_bias->type, kTfLiteFloat32); const TfLiteTensor* projection_weights = GetOptionalInputTensor(context, node, projection_weights_tensor); if (projection_weights != nullptr) { TF_LITE_ENSURE_EQ(context, projection_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, projection_weights->dims->data[0], n_output); TF_LITE_ENSURE_EQ(context, projection_weights->dims->data[1], n_cell); TF_LITE_ENSURE_TYPES_EQ(context, projection_weights->type, input_to_forget_weights->type); } const TfLiteTensor* projection_bias = GetOptionalInputTensor(context, node, projection_bias_tensor); if (projection_bias != nullptr) { TF_LITE_ENSURE_EQ(context, projection_bias->dims->size, 1); TF_LITE_ENSURE_EQ(context, projection_bias->dims->data[0], n_output); TF_LITE_ENSURE_TYPES_EQ(context, projection_bias->type, kTfLiteFloat32); } const bool projecton_tensors_consistent = ((projection_weights != nullptr) || (projection_bias == nullptr)); TF_LITE_ENSURE(context, projecton_tensors_consistent == true); return kTfLiteOk; } TfLiteStatus CheckInputTensorDimensions(TfLiteContext* context, TfLiteNode* node, int n_input, int n_output, int n_cell) { TF_LITE_ENSURE_OK( context, CheckLstmTensorDimensionsAndTypes( context, node, n_input, n_output, n_cell, kFwInputToInputWeightsTensor, kFwInputToForgetWeightsTensor, kFwInputToCellWeightsTensor, kFwInputToOutputWeightsTensor, kFwRecurrentToInputWeightsTensor, kFwRecurrentToForgetWeightsTensor, kFwRecurrentToCellWeightsTensor, kFwRecurrentToOutputWeightsTensor, kFwCellToInputWeightsTensor, kFwCellToForgetWeightsTensor, kFwCellToOutputWeightsTensor, kFwInputGateBiasTensor, kFwForgetGateBiasTensor, kFwCellGateBiasTensor, kFwOutputGateBiasTensor, kFwProjectionWeightsTensor, kFwProjectionBiasTensor)); TF_LITE_ENSURE_OK( context, CheckLstmTensorDimensionsAndTypes( context, node, n_input, n_output, n_cell, kBwInputToInputWeightsTensor, kBwInputToForgetWeightsTensor, kBwInputToCellWeightsTensor, kBwInputToOutputWeightsTensor, kBwRecurrentToInputWeightsTensor, kBwRecurrentToForgetWeightsTensor, kBwRecurrentToCellWeightsTensor, kBwRecurrentToOutputWeightsTensor, kBwCellToInputWeightsTensor, kBwCellToForgetWeightsTensor, kBwCellToOutputWeightsTensor, kBwInputGateBiasTensor, kBwForgetGateBiasTensor, kBwCellGateBiasTensor, kBwOutputGateBiasTensor, kBwProjectionWeightsTensor, kBwProjectionBiasTensor)); return kTfLiteOk; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* op_data = reinterpret_cast<OpData*>(node->user_data); const auto* params = reinterpret_cast<TfLiteBidirectionalSequenceLSTMParams*>( node->builtin_data); TF_LITE_ENSURE_EQ(context, node->inputs->size, 48); TF_LITE_ENSURE_EQ(context, node->outputs->size, params->merge_outputs ? 1 : 2); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, input->dims->size, 3); const bool time_major = params->time_major; const int max_time = time_major ? input->dims->data[0] : input->dims->data[1]; const int n_batch = time_major ? input->dims->data[1] : input->dims->data[0]; const int n_input = input->dims->data[2]; const TfLiteTensor* fw_input_to_output_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwInputToOutputWeightsTensor, &fw_input_to_output_weights)); const int n_fw_cell = fw_input_to_output_weights->dims->data[0]; TF_LITE_ENSURE_EQ(context, fw_input_to_output_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, fw_input_to_output_weights->dims->data[1], n_input); const TfLiteTensor* bw_input_to_output_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwInputToOutputWeightsTensor, &bw_input_to_output_weights)); const int n_bw_cell = bw_input_to_output_weights->dims->data[0]; TF_LITE_ENSURE_EQ(context, bw_input_to_output_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, bw_input_to_output_weights->dims->data[1], n_input); TF_LITE_ENSURE_EQ(context, bw_input_to_output_weights->type, fw_input_to_output_weights->type); const TfLiteTensor* fw_recurrent_to_output_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kFwRecurrentToOutputWeightsTensor, &fw_recurrent_to_output_weights)); TF_LITE_ENSURE_EQ(context, fw_recurrent_to_output_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, fw_recurrent_to_output_weights->dims->data[0], n_fw_cell); TF_LITE_ENSURE_EQ(context, fw_recurrent_to_output_weights->type, fw_input_to_output_weights->type); const int n_fw_output = fw_recurrent_to_output_weights->dims->data[1]; const TfLiteTensor* bw_recurrent_to_output_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kBwRecurrentToOutputWeightsTensor, &bw_recurrent_to_output_weights)); TF_LITE_ENSURE_EQ(context, bw_recurrent_to_output_weights->dims->size, 2); TF_LITE_ENSURE_EQ(context, bw_recurrent_to_output_weights->dims->data[0], n_bw_cell); TF_LITE_ENSURE_EQ(context, bw_recurrent_to_output_weights->type, fw_input_to_output_weights->type); const int n_bw_output = bw_recurrent_to_output_weights->dims->data[1]; TF_LITE_ENSURE_OK( context, CheckInputTensorDimensions(context, node, n_input, n_fw_output, n_fw_cell)); const TfLiteTensor* aux_input = GetOptionalInputTensor(context, node, kAuxInputTensor); const TfLiteTensor* fw_aux_input_to_input_weights = GetOptionalInputTensor(context, node, kFwAuxInputToInputWeightsTensor); const TfLiteTensor* fw_aux_input_to_forget_weights = GetOptionalInputTensor(context, node, kFwAuxInputToForgetWeightsTensor); const TfLiteTensor* fw_aux_input_to_cell_weights = GetOptionalInputTensor(context, node, kFwAuxInputToCellWeightsTensor); const TfLiteTensor* fw_aux_input_to_output_weights = GetOptionalInputTensor(context, node, kFwAuxInputToOutputWeightsTensor); const TfLiteTensor* bw_aux_input_to_input_weights = GetOptionalInputTensor(context, node, kBwAuxInputToInputWeightsTensor); const TfLiteTensor* bw_aux_input_to_forget_weights = GetOptionalInputTensor(context, node, kBwAuxInputToForgetWeightsTensor); const TfLiteTensor* bw_aux_input_to_cell_weights = GetOptionalInputTensor(context, node, kBwAuxInputToCellWeightsTensor); const TfLiteTensor* bw_aux_input_to_output_weights = GetOptionalInputTensor(context, node, kBwAuxInputToOutputWeightsTensor); const bool aux_inputs_weights_all_or_none = ((fw_aux_input_to_cell_weights != nullptr) && (fw_aux_input_to_forget_weights != nullptr) && (fw_aux_input_to_output_weights != nullptr) && (bw_aux_input_to_cell_weights != nullptr) && (bw_aux_input_to_forget_weights != nullptr) && (bw_aux_input_to_output_weights != nullptr)) || ((fw_aux_input_to_cell_weights == nullptr) && (fw_aux_input_to_forget_weights == nullptr) && (fw_aux_input_to_output_weights == nullptr) && (bw_aux_input_to_cell_weights == nullptr) && (bw_aux_input_to_forget_weights == nullptr) && (bw_aux_input_to_output_weights == nullptr)); TF_LITE_ENSURE(context, aux_inputs_weights_all_or_none); const bool has_aux_input = (fw_aux_input_to_forget_weights != nullptr); if (has_aux_input) { TF_LITE_ASSERT_EQ(aux_input->dims->data[0], input->dims->data[0]); TF_LITE_ASSERT_EQ(aux_input->dims->data[1], input->dims->data[1]); } TfLiteTensor* fw_output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFwOutputTensor, &fw_output)); TfLiteTensor* fw_activation_state = GetVariableInput(context, node, kFwInputActivationStateTensor); TF_LITE_ENSURE(context, fw_activation_state != nullptr); TfLiteTensor* fw_cell_state = GetVariableInput(context, node, kFwInputCellStateTensor); TF_LITE_ENSURE(context, fw_cell_state != nullptr); TF_LITE_ENSURE_EQ(context, NumElements(fw_activation_state), n_batch * n_fw_output); TF_LITE_ENSURE_EQ(context, NumElements(fw_cell_state), n_batch * n_fw_cell); TfLiteIntArray* fw_output_size = TfLiteIntArrayCreate(3); fw_output_size->data[0] = time_major ? max_time : n_batch; fw_output_size->data[1] = time_major ? n_batch : max_time; fw_output_size->data[2] = params->merge_outputs ? n_bw_output + n_fw_output : n_fw_output; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, fw_output, fw_output_size)); const bool is_hybrid_op = IsHybridOp(input, fw_input_to_output_weights); TfLiteIntArrayFree(node->temporaries); if (is_hybrid_op) { node->temporaries = TfLiteIntArrayCreate( has_aux_input ? kNumTemporaryTensors : kNumTemporaryTensors - 1); } else { node->temporaries = TfLiteIntArrayCreate(2); } node->temporaries->data[kFwScratchBuffer] = op_data->scratch_tensor_index + kFwScratchBuffer; TfLiteTensor* fw_scratch_buffer; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kFwScratchBuffer, &fw_scratch_buffer)); fw_scratch_buffer->type = input->type; fw_scratch_buffer->allocation_type = kTfLiteArenaRw; const TfLiteTensor* fw_input_to_input_weights = GetOptionalInputTensor(context, node, kFwInputToInputWeightsTensor); const bool fw_use_cifg = (fw_input_to_input_weights == nullptr); if (has_aux_input && !fw_use_cifg) { TF_LITE_ENSURE_EQ(context, fw_aux_input_to_input_weights->dims->data[0], fw_input_to_input_weights->dims->data[0]); } TfLiteIntArray* fw_scratch_buffer_size = TfLiteIntArrayCreate(2); fw_scratch_buffer_size->data[0] = n_batch; if (fw_use_cifg) { fw_scratch_buffer_size->data[1] = n_fw_cell * 4 + 16; } else { fw_scratch_buffer_size->data[1] = n_fw_cell * 5 + 16; } TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, fw_scratch_buffer, fw_scratch_buffer_size)); TF_LITE_ENSURE_OK( context, CheckInputTensorDimensions(context, node, n_input, n_bw_output, n_bw_cell)); TfLiteTensor* bw_activation_state = GetVariableInput(context, node, kBwInputActivationStateTensor); TF_LITE_ENSURE(context, bw_activation_state != nullptr); TfLiteTensor* bw_cell_state = GetVariableInput(context, node, kBwInputCellStateTensor); TF_LITE_ENSURE(context, bw_cell_state != nullptr); if (!params->merge_outputs) { TfLiteTensor* bw_output; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kBwOutputTensor, &bw_output)); TfLiteIntArray* bw_output_size = TfLiteIntArrayCreate(3); bw_output_size->data[0] = time_major ? max_time : n_batch; bw_output_size->data[1] = time_major ? n_batch : max_time; bw_output_size->data[2] = n_bw_output; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, bw_output, bw_output_size)); } TF_LITE_ENSURE_EQ(context, NumElements(bw_activation_state), n_batch * n_bw_output); TF_LITE_ENSURE_EQ(context, NumElements(bw_cell_state), n_batch * n_bw_cell); node->temporaries->data[kBwScratchBuffer] = op_data->scratch_tensor_index + kBwScratchBuffer; TfLiteTensor* bw_scratch_buffer; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kBwScratchBuffer, &bw_scratch_buffer)); bw_scratch_buffer->type = input->type; bw_scratch_buffer->allocation_type = kTfLiteArenaRw; const TfLiteTensor* bw_input_to_input_weights = GetOptionalInputTensor(context, node, kBwInputToInputWeightsTensor); const bool bw_use_cifg = (bw_input_to_input_weights == nullptr); if (has_aux_input && !bw_use_cifg) { TF_LITE_ENSURE_EQ(context, bw_aux_input_to_input_weights->dims->data[0], bw_input_to_input_weights->dims->data[0]); } TfLiteIntArray* bw_scratch_buffer_size = TfLiteIntArrayCreate(2); bw_scratch_buffer_size->data[0] = n_batch; if (bw_use_cifg) { bw_scratch_buffer_size->data[1] = n_bw_cell * 4; } else { bw_scratch_buffer_size->data[1] = n_bw_cell * 5; } TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, bw_scratch_buffer, bw_scratch_buffer_size)); if (is_hybrid_op) { op_data->compute_fw_row_sums = true; op_data->compute_bw_row_sums = true; node->temporaries->data[kInputQuantized] = op_data->scratch_tensor_index + kInputQuantized; TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kInputQuantized, &input_quantized)); input_quantized->type = fw_input_to_output_weights->type; input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) { TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); } node->temporaries->data[kFwActivationStateQuantized] = op_data->scratch_tensor_index + kFwActivationStateQuantized; TfLiteTensor* fw_activation_state_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kFwActivationStateQuantized, &fw_activation_state_quantized)); fw_activation_state_quantized->type = fw_input_to_output_weights->type; fw_activation_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(fw_activation_state_quantized->dims, fw_activation_state->dims)) { TfLiteIntArray* fw_activation_state_quantized_size = TfLiteIntArrayCopy(fw_activation_state->dims); TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, fw_activation_state_quantized, fw_activation_state_quantized_size)); } node->temporaries->data[kBwActivationStateQuantized] = op_data->scratch_tensor_index + kBwActivationStateQuantized; TfLiteTensor* bw_activation_state_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kBwActivationStateQuantized, &bw_activation_state_quantized)); bw_activation_state_quantized->type = fw_input_to_output_weights->type; bw_activation_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(bw_activation_state_quantized->dims, bw_activation_state->dims)) { TfLiteIntArray* bw_activation_state_quantized_size = TfLiteIntArrayCopy(bw_activation_state->dims); TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, bw_activation_state_quantized, bw_activation_state_quantized_size)); } node->temporaries->data[kFwCellStateQuantized] = op_data->scratch_tensor_index + kFwCellStateQuantized; TfLiteTensor* fw_cell_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kFwCellStateQuantized, &fw_cell_state_quantized)); fw_cell_state_quantized->type = fw_input_to_output_weights->type; fw_cell_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(fw_cell_state_quantized->dims, fw_cell_state->dims)) { TfLiteIntArray* fw_cell_state_quantized_size = TfLiteIntArrayCopy(fw_cell_state->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, fw_cell_state_quantized, fw_cell_state_quantized_size)); } node->temporaries->data[kBwCellStateQuantized] = op_data->scratch_tensor_index + kBwCellStateQuantized; TfLiteTensor* bw_cell_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kBwCellStateQuantized, &bw_cell_state_quantized)); bw_cell_state_quantized->type = fw_input_to_output_weights->type; bw_cell_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(bw_cell_state_quantized->dims, bw_cell_state->dims)) { TfLiteIntArray* bw_cell_state_quantized_size = TfLiteIntArrayCopy(bw_cell_state->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, bw_cell_state_quantized, bw_cell_state_quantized_size)); } node->temporaries->data[kInputScalingFactors] = op_data->scratch_tensor_index + kInputScalingFactors; TfLiteTensor* input_sf; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kInputScalingFactors, &input_sf)); input_sf->type = kTfLiteFloat32; input_sf->allocation_type = kTfLiteArenaRw; int scaling_dims[1] = {n_batch}; if (!TfLiteIntArrayEqualsArray(input_sf->dims, 1, scaling_dims)) { TfLiteIntArray* input_sf_size = TfLiteIntArrayCreate(1); input_sf_size->data[0] = n_batch; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, input_sf, input_sf_size)); } node->temporaries->data[kAuxInputScalingFactors] = op_data->scratch_tensor_index + kAuxInputScalingFactors; TfLiteTensor* aux_input_sf; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kAuxInputScalingFactors, &aux_input_sf)); aux_input_sf->type = kTfLiteFloat32; aux_input_sf->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(aux_input_sf->dims, 1, scaling_dims)) { TfLiteIntArray* aux_input_sf_size = TfLiteIntArrayCreate(1); aux_input_sf_size->data[0] = n_batch; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, aux_input_sf, aux_input_sf_size)); } node->temporaries->data[kOutputStateScalingFactors] = op_data->scratch_tensor_index + kOutputStateScalingFactors; TfLiteTensor* output_state_sf; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kOutputStateScalingFactors, &output_state_sf)); output_state_sf->type = kTfLiteFloat32; output_state_sf->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(output_state_sf->dims, 1, scaling_dims)) { TfLiteIntArray* output_state_sf_size = TfLiteIntArrayCreate(1); output_state_sf_size->data[0] = n_batch; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output_state_sf, output_state_sf_size)); } node->temporaries->data[kProductScalingFactors] = op_data->scratch_tensor_index + kProductScalingFactors; TfLiteTensor* prod_scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kProductScalingFactors, &prod_scaling_factors)); prod_scaling_factors->type = kTfLiteFloat32; prod_scaling_factors->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(prod_scaling_factors->dims, 1, scaling_dims)) { TfLiteIntArray* prod_scaling_factors_size = TfLiteIntArrayCreate(1); prod_scaling_factors_size->data[0] = n_batch; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, prod_scaling_factors, prod_scaling_factors_size)); } node->temporaries->data[kRecoveredCellWeights] = op_data->scratch_tensor_index + kRecoveredCellWeights; TfLiteTensor* recovered_cell_weights; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kRecoveredCellWeights, &recovered_cell_weights)); recovered_cell_weights->type = kTfLiteFloat32; recovered_cell_weights->allocation_type = kTfLiteArenaRw; int recovered_cell_dims[1] = {n_fw_cell}; if (!TfLiteIntArrayEqualsArray(recovered_cell_weights->dims, 1, recovered_cell_dims)) { TfLiteIntArray* recovered_cell_weights_size = TfLiteIntArrayCreate(1); recovered_cell_weights_size->data[0] = n_fw_cell; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, recovered_cell_weights, recovered_cell_weights_size)); } node->temporaries->data[kAccumScratchBuffer] = op_data->scratch_tensor_index + kAccumScratchBuffer; TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kAccumScratchBuffer, &accum_scratch)); accum_scratch->type = kTfLiteInt32; accum_scratch->allocation_type = kTfLiteArenaRw; int n_cell = std::max(n_fw_cell, n_bw_cell); if (has_aux_input) { n_cell = std::max(n_cell, fw_aux_input_to_output_weights->dims->data[0]); n_cell = std::max(n_cell, bw_aux_input_to_output_weights->dims->data[0]); } int accum_scratch_dims[2] = {n_cell, n_batch}; if (!TfLiteIntArrayEqualsArray(accum_scratch->dims, 2, accum_scratch_dims)) { TfLiteIntArray* accum_size = TfLiteIntArrayCreate(2); accum_size->data[0] = n_cell; accum_size->data[1] = n_batch; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, accum_scratch, accum_size)); } node->temporaries->data[kInputZeroPoints] = op_data->scratch_tensor_index + kInputZeroPoints; TfLiteTensor* input_zp; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kInputZeroPoints, &input_zp)); input_zp->type = kTfLiteFloat32; input_zp->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(input_zp->dims, 1, scaling_dims)) { TfLiteIntArray* input_zp_size = TfLiteIntArrayCreate(1); input_zp_size->data[0] = n_batch; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, input_zp, input_zp_size)); } node->temporaries->data[kAuxInputZeroPoints] = op_data->scratch_tensor_index + kAuxInputZeroPoints; TfLiteTensor* aux_input_zp; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kAuxInputZeroPoints, &aux_input_zp)); aux_input_zp->type = kTfLiteFloat32; aux_input_zp->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(aux_input_zp->dims, 1, scaling_dims)) { TfLiteIntArray* aux_input_zp_size = TfLiteIntArrayCreate(1); aux_input_zp_size->data[0] = n_batch; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, aux_input_zp, aux_input_zp_size)); } node->temporaries->data[kOutputStateZeroPoints] = op_data->scratch_tensor_index + kOutputStateZeroPoints; TfLiteTensor* output_state_zp; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kOutputStateZeroPoints, &output_state_zp)); output_state_zp->type = kTfLiteFloat32; output_state_zp->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(output_state_zp->dims, 1, scaling_dims)) { TfLiteIntArray* output_state_zp_size = TfLiteIntArrayCreate(1); output_state_zp_size->data[0] = n_batch; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output_state_zp, output_state_zp_size)); } int fw_row_sums_rows = fw_use_cifg ? 6 : 8; if (has_aux_input) { fw_row_sums_rows += fw_use_cifg ? 3 : 4; } const TfLiteTensor* fw_projection_weights = GetOptionalInputTensor(context, node, kFwProjectionWeightsTensor); if (fw_projection_weights != nullptr) { fw_row_sums_rows += ceil(static_cast<float>(n_fw_output) / n_fw_cell); } node->temporaries->data[kFwRowSums] = op_data->scratch_tensor_index + kFwRowSums; TfLiteTensor* fw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kFwRowSums, &fw_row_sums)); fw_row_sums->type = kTfLiteInt32; fw_row_sums->allocation_type = kTfLiteArenaRwPersistent; int fw_row_sums_dims[2] = {fw_row_sums_rows, n_fw_cell}; if (!TfLiteIntArrayEqualsArray(fw_row_sums->dims, 2, fw_row_sums_dims)) { TfLiteIntArray* fw_hybrid_scratch_size = TfLiteIntArrayCreate(2); fw_hybrid_scratch_size->data[0] = fw_row_sums_dims[0]; fw_hybrid_scratch_size->data[1] = fw_row_sums_dims[1]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, fw_row_sums, fw_hybrid_scratch_size)); } int bw_row_sums_rows = bw_use_cifg ? 6 : 8; if (has_aux_input) { bw_row_sums_rows += bw_use_cifg ? 3 : 4; } const TfLiteTensor* bw_projection_weights = GetOptionalInputTensor(context, node, kBwProjectionWeightsTensor); if (bw_projection_weights != nullptr) { bw_row_sums_rows += ceil(static_cast<float>(n_bw_output) / n_bw_cell); } node->temporaries->data[kBwRowSums] = op_data->scratch_tensor_index + kBwRowSums; TfLiteTensor* bw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kBwRowSums, &bw_row_sums)); bw_row_sums->type = kTfLiteInt32; bw_row_sums->allocation_type = kTfLiteArenaRwPersistent; int bw_row_sums_dims[2] = {bw_row_sums_rows, n_bw_cell}; if (!TfLiteIntArrayEqualsArray(bw_row_sums->dims, 2, bw_row_sums_dims)) { TfLiteIntArray* bw_row_sums_size = TfLiteIntArrayCreate(2); bw_row_sums_size->data[0] = bw_row_sums_dims[0]; bw_row_sums_size->data[1] = bw_row_sums_dims[1]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, bw_row_sums, bw_row_sums_size)); } if (has_aux_input) { node->temporaries->data[kAuxInputQuantized] = op_data->scratch_tensor_index + kAuxInputQuantized; TfLiteTensor* aux_input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kAuxInputQuantized, &aux_input_quantized)); aux_input_quantized->type = fw_input_to_output_weights->type; aux_input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(aux_input_quantized->dims, aux_input->dims)) { TfLiteIntArray* aux_input_quantized_size = TfLiteIntArrayCopy(aux_input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, aux_input_quantized, aux_input_quantized_size)); } } } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const auto* params = reinterpret_cast<TfLiteBidirectionalSequenceLSTMParams*>( node->builtin_data); auto* op_data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* fw_input_to_input_weights = GetOptionalInputTensor(context, node, kFwInputToInputWeightsTensor); const TfLiteTensor* fw_input_to_forget_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwInputToForgetWeightsTensor, &fw_input_to_forget_weights)); const TfLiteTensor* fw_input_to_cell_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwInputToCellWeightsTensor, &fw_input_to_cell_weights)); const TfLiteTensor* fw_input_to_output_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwInputToOutputWeightsTensor, &fw_input_to_output_weights)); const TfLiteTensor* fw_recurrent_to_input_weights = GetOptionalInputTensor(context, node, kFwRecurrentToInputWeightsTensor); const TfLiteTensor* fw_recurrent_to_forget_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kFwRecurrentToForgetWeightsTensor, &fw_recurrent_to_forget_weights)); const TfLiteTensor* fw_recurrent_to_cell_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwRecurrentToCellWeightsTensor, &fw_recurrent_to_cell_weights)); const TfLiteTensor* fw_recurrent_to_output_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kFwRecurrentToOutputWeightsTensor, &fw_recurrent_to_output_weights)); const TfLiteTensor* fw_cell_to_input_weights = GetOptionalInputTensor(context, node, kFwCellToInputWeightsTensor); const TfLiteTensor* fw_cell_to_forget_weights = GetOptionalInputTensor(context, node, kFwCellToForgetWeightsTensor); const TfLiteTensor* fw_cell_to_output_weights = GetOptionalInputTensor(context, node, kFwCellToOutputWeightsTensor); const TfLiteTensor* fw_input_gate_bias = GetOptionalInputTensor(context, node, kFwInputGateBiasTensor); const TfLiteTensor* fw_forget_gate_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwForgetGateBiasTensor, &fw_forget_gate_bias)); const TfLiteTensor* fw_cell_gate_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwCellGateBiasTensor, &fw_cell_gate_bias)); const TfLiteTensor* fw_output_gate_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwOutputGateBiasTensor, &fw_output_gate_bias)); const TfLiteTensor* fw_projection_weights = GetOptionalInputTensor(context, node, kFwProjectionWeightsTensor); const TfLiteTensor* fw_projection_bias = GetOptionalInputTensor(context, node, kFwProjectionBiasTensor); TfLiteTensor* fw_activation_state = GetVariableInput(context, node, kFwInputActivationStateTensor); TFLITE_DCHECK(fw_activation_state != nullptr); TfLiteTensor* fw_cell_state = GetVariableInput(context, node, kFwInputCellStateTensor); TFLITE_DCHECK(fw_cell_state != nullptr); TfLiteTensor* fw_output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFwOutputTensor, &fw_output)); const TfLiteTensor* bw_input_to_input_weights = GetOptionalInputTensor(context, node, kBwInputToInputWeightsTensor); const TfLiteTensor* bw_input_to_forget_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwInputToForgetWeightsTensor, &bw_input_to_forget_weights)); const TfLiteTensor* bw_input_to_cell_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwInputToCellWeightsTensor, &bw_input_to_cell_weights)); const TfLiteTensor* bw_input_to_output_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwInputToOutputWeightsTensor, &bw_input_to_output_weights)); const TfLiteTensor* bw_recurrent_to_input_weights = GetOptionalInputTensor(context, node, kBwRecurrentToInputWeightsTensor); const TfLiteTensor* bw_recurrent_to_forget_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kBwRecurrentToForgetWeightsTensor, &bw_recurrent_to_forget_weights)); const TfLiteTensor* bw_recurrent_to_cell_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwRecurrentToCellWeightsTensor, &bw_recurrent_to_cell_weights)); const TfLiteTensor* bw_recurrent_to_output_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kBwRecurrentToOutputWeightsTensor, &bw_recurrent_to_output_weights)); const TfLiteTensor* bw_cell_to_input_weights = GetOptionalInputTensor(context, node, kBwCellToInputWeightsTensor); const TfLiteTensor* bw_cell_to_forget_weights = GetOptionalInputTensor(context, node, kBwCellToForgetWeightsTensor); const TfLiteTensor* bw_cell_to_output_weights = GetOptionalInputTensor(context, node, kBwCellToOutputWeightsTensor); const TfLiteTensor* bw_input_gate_bias = GetOptionalInputTensor(context, node, kBwInputGateBiasTensor); const TfLiteTensor* bw_forget_gate_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwForgetGateBiasTensor, &bw_forget_gate_bias)); const TfLiteTensor* bw_cell_gate_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwCellGateBiasTensor, &bw_cell_gate_bias)); const TfLiteTensor* bw_output_gate_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwOutputGateBiasTensor, &bw_output_gate_bias)); const TfLiteTensor* bw_projection_weights = GetOptionalInputTensor(context, node, kBwProjectionWeightsTensor); const TfLiteTensor* bw_projection_bias = GetOptionalInputTensor(context, node, kBwProjectionBiasTensor); TfLiteTensor* bw_activation_state = GetVariableInput(context, node, kBwInputActivationStateTensor); TFLITE_DCHECK(bw_activation_state != nullptr); TfLiteTensor* bw_cell_state = GetVariableInput(context, node, kBwInputCellStateTensor); TFLITE_DCHECK(bw_cell_state != nullptr); TfLiteTensor* bw_output = params->merge_outputs ? nullptr : GetOutput(context, node, kBwOutputTensor); TfLiteTensor* fw_scratch_buffer; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kFwScratchBuffer, &fw_scratch_buffer)); TfLiteTensor* bw_scratch_buffer; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kBwScratchBuffer, &bw_scratch_buffer)); const TfLiteTensor* aux_input = GetOptionalInputTensor(context, node, kAuxInputTensor); const TfLiteTensor* fw_aux_input_to_input_weights = GetOptionalInputTensor(context, node, kFwAuxInputToInputWeightsTensor); const TfLiteTensor* fw_aux_input_to_forget_weights = GetOptionalInputTensor(context, node, kFwAuxInputToForgetWeightsTensor); const TfLiteTensor* fw_aux_input_to_cell_weights = GetOptionalInputTensor(context, node, kFwAuxInputToCellWeightsTensor); const TfLiteTensor* fw_aux_input_to_output_weights = GetOptionalInputTensor(context, node, kFwAuxInputToOutputWeightsTensor); const TfLiteTensor* bw_aux_input_to_input_weights = GetOptionalInputTensor(context, node, kBwAuxInputToInputWeightsTensor); const TfLiteTensor* bw_aux_input_to_forget_weights = GetOptionalInputTensor(context, node, kBwAuxInputToForgetWeightsTensor); const TfLiteTensor* bw_aux_input_to_cell_weights = GetOptionalInputTensor(context, node, kBwAuxInputToCellWeightsTensor); const TfLiteTensor* bw_aux_input_to_output_weights = GetOptionalInputTensor(context, node, kBwAuxInputToOutputWeightsTensor); const bool has_previous_bw_output = (aux_input != nullptr); const bool use_aux_input = (fw_aux_input_to_forget_weights != nullptr); TfLiteLSTMParams lstm_params = {params->activation, params->cell_clip, params->proj_clip, kTfLiteLSTMFullKernel, params->asymmetric_quantize_inputs}; const int bw_output_offset = params->merge_outputs ? fw_recurrent_to_output_weights->dims->data[1] : 0; const auto actual_bw_output = params->merge_outputs ? fw_output : bw_output; const bool time_major = params->time_major; const bool non_stacking_mode = !use_aux_input && has_previous_bw_output; const TfLiteTensor* bw_input = non_stacking_mode ? aux_input : input; const TfLiteTensor* real_aux_input = non_stacking_mode ? nullptr : aux_input; switch (fw_input_to_output_weights->type) { case kTfLiteFloat32: { TfLiteStatus fw_pass_status = lstm_eval::EvalFloat( input, fw_input_to_input_weights, fw_input_to_forget_weights, fw_input_to_cell_weights, fw_input_to_output_weights, fw_recurrent_to_input_weights, fw_recurrent_to_forget_weights, fw_recurrent_to_cell_weights, fw_recurrent_to_output_weights, fw_cell_to_input_weights, fw_cell_to_forget_weights, fw_cell_to_output_weights, nullptr, nullptr, nullptr, nullptr, real_aux_input, fw_aux_input_to_input_weights, fw_aux_input_to_forget_weights, fw_aux_input_to_cell_weights, fw_aux_input_to_output_weights, fw_input_gate_bias, fw_forget_gate_bias, fw_cell_gate_bias, fw_output_gate_bias, fw_projection_weights, fw_projection_bias, &lstm_params, true, time_major, 0, fw_scratch_buffer, fw_activation_state, fw_cell_state, fw_output, false, false, false, false, CpuBackendContext::GetFromContext(context)); TF_LITE_ENSURE_OK(context, fw_pass_status); TfLiteStatus bw_pass_status = lstm_eval::EvalFloat( bw_input, bw_input_to_input_weights, bw_input_to_forget_weights, bw_input_to_cell_weights, bw_input_to_output_weights, bw_recurrent_to_input_weights, bw_recurrent_to_forget_weights, bw_recurrent_to_cell_weights, bw_recurrent_to_output_weights, bw_cell_to_input_weights, bw_cell_to_forget_weights, bw_cell_to_output_weights, nullptr, nullptr, nullptr, nullptr, real_aux_input, bw_aux_input_to_input_weights, bw_aux_input_to_forget_weights, bw_aux_input_to_cell_weights, bw_aux_input_to_output_weights, bw_input_gate_bias, bw_forget_gate_bias, bw_cell_gate_bias, bw_output_gate_bias, bw_projection_weights, bw_projection_bias, &lstm_params, false, time_major, bw_output_offset, bw_scratch_buffer, bw_activation_state, bw_cell_state, actual_bw_output, false, false, false, false, CpuBackendContext::GetFromContext(context)); TF_LITE_ENSURE_OK(context, bw_pass_status); return kTfLiteOk; } case kTfLiteUInt8: case kTfLiteInt8: { TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kInputQuantized, &input_quantized)); TfLiteTensor* fw_activation_state_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kFwActivationStateQuantized, &fw_activation_state_quantized)); TfLiteTensor* bw_activation_state_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kBwActivationStateQuantized, &bw_activation_state_quantized)); TfLiteTensor* fw_cell_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kFwCellStateQuantized, &fw_cell_state_quantized)); TfLiteTensor* bw_cell_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kBwCellStateQuantized, &bw_cell_state_quantized)); TfLiteTensor* prod_scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kProductScalingFactors, &prod_scaling_factors)); TfLiteTensor* recovered_cell_weights; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kRecoveredCellWeights, &recovered_cell_weights)); TfLiteTensor* aux_input_quantized = use_aux_input ? GetTemporary(context, node, kAuxInputQuantized) : nullptr; TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kAccumScratchBuffer, &accum_scratch)); TfLiteTensor* fw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kFwRowSums, &fw_row_sums)); TfLiteTensor* bw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kBwRowSums, &bw_row_sums)); const int fw_row_sums_size = fw_row_sums->dims->data[0]; const int bw_row_sums_size = bw_row_sums->dims->data[0]; TfLiteStatus fw_pass_status = lstm_eval::EvalHybrid( input, fw_input_to_input_weights, nullptr, fw_input_to_forget_weights, nullptr, fw_input_to_cell_weights, nullptr, fw_input_to_output_weights, nullptr, fw_recurrent_to_input_weights, nullptr, fw_recurrent_to_forget_weights, nullptr, fw_recurrent_to_cell_weights, nullptr, fw_recurrent_to_output_weights, nullptr, fw_cell_to_input_weights, fw_cell_to_forget_weights, fw_cell_to_output_weights, nullptr, nullptr, nullptr, nullptr, real_aux_input, fw_aux_input_to_input_weights, fw_aux_input_to_forget_weights, fw_aux_input_to_cell_weights, fw_aux_input_to_output_weights, fw_input_gate_bias, fw_forget_gate_bias, fw_cell_gate_bias, fw_output_gate_bias, fw_projection_weights, nullptr, fw_projection_bias, &lstm_params, true, time_major, 0, fw_scratch_buffer, GetTemporary(context, node, kInputScalingFactors), GetTemporary(context, node, kAuxInputScalingFactors), GetTemporary(context, node, kOutputStateScalingFactors), prod_scaling_factors, recovered_cell_weights, input_quantized, aux_input_quantized, fw_activation_state_quantized, fw_cell_state_quantized, fw_activation_state, fw_cell_state, accum_scratch, fw_output, GetTemporary(context, node, kInputZeroPoints), GetTemporary(context, node, kAuxInputZeroPoints), GetTemporary(context, node, kOutputStateZeroPoints), fw_row_sums, fw_row_sums_size, &op_data->compute_fw_row_sums, false, false, false, false, CpuBackendContext::GetFromContext(context)); TF_LITE_ENSURE_OK(context, fw_pass_status); TfLiteStatus bw_pass_status = lstm_eval::EvalHybrid( bw_input, bw_input_to_input_weights, nullptr, bw_input_to_forget_weights, nullptr, bw_input_to_cell_weights, nullptr, bw_input_to_output_weights, nullptr, bw_recurrent_to_input_weights, nullptr, bw_recurrent_to_forget_weights, nullptr, bw_recurrent_to_cell_weights, nullptr, bw_recurrent_to_output_weights, nullptr, bw_cell_to_input_weights, bw_cell_to_forget_weights, bw_cell_to_output_weights, nullptr, nullptr, nullptr, nullptr, real_aux_input, bw_aux_input_to_input_weights, bw_aux_input_to_forget_weights, bw_aux_input_to_cell_weights, bw_aux_input_to_output_weights, bw_input_gate_bias, bw_forget_gate_bias, bw_cell_gate_bias, bw_output_gate_bias, bw_projection_weights, nullptr, bw_projection_bias, &lstm_params, false, time_major, bw_output_offset, bw_scratch_buffer, GetTemporary(context, node, kInputScalingFactors), GetTemporary(context, node, kAuxInputScalingFactors), GetTemporary(context, node, kOutputStateScalingFactors), prod_scaling_factors, recovered_cell_weights, input_quantized, aux_input_quantized, bw_activation_state_quantized, bw_cell_state_quantized, bw_activation_state, bw_cell_state, accum_scratch, actual_bw_output, GetTemporary(context, node, kInputZeroPoints), GetTemporary(context, node, kAuxInputZeroPoints), GetTemporary(context, node, kOutputStateZeroPoints), bw_row_sums, bw_row_sums_size, &op_data->compute_bw_row_sums, false, false, false, false, CpuBackendContext::GetFromContext(context)); TF_LITE_ENSURE_OK(context, bw_pass_status); return kTfLiteOk; } default: TF_LITE_KERNEL_LOG(context, "Type %s is not currently supported.", TfLiteTypeGetName(fw_input_to_output_weights->type)); return kTfLiteError; } } } TfLiteRegistration* Register_BIDIRECTIONAL_SEQUENCE_LSTM() { static TfLiteRegistration r = { bidirectional_sequence_lstm::Init, bidirectional_sequence_lstm::Free, bidirectional_sequence_lstm::Prepare, bidirectional_sequence_lstm::Eval}; return &r; } } } }
#include <tuple> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class BidirectionalLSTMOpModel : public SingleOpModel { public: BidirectionalLSTMOpModel(int n_batch, int n_input, int n_cell, int n_output, int sequence_length, bool use_cifg, bool use_peephole, bool use_projection_weights, bool use_projection_bias, bool merge_outputs, bool use_aux_input, float cell_clip, float proj_clip, bool quantize_weights, bool time_major, const std::vector<std::vector<int>>& input_shapes, bool asymmetric_quantize_inputs = false) : n_batch_(n_batch), n_input_(n_input), n_fw_cell_(n_cell), n_bw_cell_(n_cell), n_fw_output_(n_output), n_bw_output_(n_output), sequence_length_(sequence_length), quantize_weights_(quantize_weights) { input_ = AddInput(TensorType_FLOAT32); const auto weight_type = quantize_weights_ ? TensorType_UINT8 : TensorType_FLOAT32; if (use_cifg) { fw_input_to_input_weights_ = AddNullInput(); } else { fw_input_to_input_weights_ = AddInput(weight_type); } fw_input_to_forget_weights_ = AddInput(weight_type); fw_input_to_cell_weights_ = AddInput(weight_type); fw_input_to_output_weights_ = AddInput(weight_type); if (use_cifg) { fw_recurrent_to_input_weights_ = AddNullInput(); } else { fw_recurrent_to_input_weights_ = AddInput(weight_type); } fw_recurrent_to_forget_weights_ = AddInput(weight_type); fw_recurrent_to_cell_weights_ = AddInput(weight_type); fw_recurrent_to_output_weights_ = AddInput(weight_type); if (use_peephole) { if (use_cifg) { fw_cell_to_input_weights_ = AddNullInput(); } else { fw_cell_to_input_weights_ = AddInput(weight_type); } fw_cell_to_forget_weights_ = AddInput(weight_type); fw_cell_to_output_weights_ = AddInput(weight_type); } else { fw_cell_to_input_weights_ = AddNullInput(); fw_cell_to_forget_weights_ = AddNullInput(); fw_cell_to_output_weights_ = AddNullInput(); } if (use_cifg) { fw_input_gate_bias_ = AddNullInput(); } else { fw_input_gate_bias_ = AddInput(TensorType_FLOAT32); } fw_forget_gate_bias_ = AddInput(TensorType_FLOAT32); fw_cell_gate_bias_ = AddInput(TensorType_FLOAT32); fw_output_gate_bias_ = AddInput(TensorType_FLOAT32); if (use_projection_weights) { fw_projection_weights_ = AddInput(TensorType_FLOAT32); if (use_projection_bias) { fw_projection_bias_ = AddInput(TensorType_FLOAT32); } else { fw_projection_bias_ = AddNullInput(); } } else { fw_projection_weights_ = AddNullInput(); fw_projection_bias_ = AddNullInput(); } if (use_cifg) { bw_input_to_input_weights_ = AddNullInput(); } else { bw_input_to_input_weights_ = AddInput(weight_type); } bw_input_to_forget_weights_ = AddInput(weight_type); bw_input_to_cell_weights_ = AddInput(weight_type); bw_input_to_output_weights_ = AddInput(weight_type); if (use_cifg) { bw_recurrent_to_input_weights_ = AddNullInput(); } else { bw_recurrent_to_input_weights_ = AddInput(weight_type); } bw_recurrent_to_forget_weights_ = AddInput(weight_type); bw_recurrent_to_cell_weights_ = AddInput(weight_type); bw_recurrent_to_output_weights_ = AddInput(weight_type); if (use_peephole) { if (use_cifg) { bw_cell_to_input_weights_ = AddNullInput(); } else { bw_cell_to_input_weights_ = AddInput(weight_type); } bw_cell_to_forget_weights_ = AddInput(weight_type); bw_cell_to_output_weights_ = AddInput(weight_type); } else { bw_cell_to_input_weights_ = AddNullInput(); bw_cell_to_forget_weights_ = AddNullInput(); bw_cell_to_output_weights_ = AddNullInput(); } if (use_cifg) { bw_input_gate_bias_ = AddNullInput(); } else { bw_input_gate_bias_ = AddInput(TensorType_FLOAT32); } bw_forget_gate_bias_ = AddInput(TensorType_FLOAT32); bw_cell_gate_bias_ = AddInput(TensorType_FLOAT32); bw_output_gate_bias_ = AddInput(TensorType_FLOAT32); if (use_projection_weights) { bw_projection_weights_ = AddInput(weight_type); if (use_projection_bias) { bw_projection_bias_ = AddInput(TensorType_FLOAT32); } else { bw_projection_bias_ = AddNullInput(); } } else { bw_projection_weights_ = AddNullInput(); bw_projection_bias_ = AddNullInput(); } fw_input_activation_state_ = AddVariableInput( TensorData{TensorType_FLOAT32, {n_fw_output_ * n_batch_}}); fw_input_cell_state_ = AddVariableInput( TensorData{TensorType_FLOAT32, {n_fw_cell_ * n_batch_}}); bw_input_activation_state_ = AddVariableInput( TensorData{TensorType_FLOAT32, {n_bw_output_ * n_batch_}}); bw_input_cell_state_ = AddVariableInput( TensorData{TensorType_FLOAT32, {n_bw_cell_ * n_batch_}}); fw_output_ = AddOutput(TensorType_FLOAT32); if (!merge_outputs) { bw_output_ = AddOutput(TensorType_FLOAT32); } if (use_aux_input) { aux_input_ = AddInput(TensorType_FLOAT32); fw_aux_input_to_input_weights_ = AddInput(weight_type); fw_aux_input_to_forget_weights_ = AddInput(weight_type); fw_aux_input_to_cell_weights_ = AddInput(weight_type); fw_aux_input_to_output_weights_ = AddInput(weight_type); bw_aux_input_to_input_weights_ = AddInput(weight_type); bw_aux_input_to_forget_weights_ = AddInput(weight_type); bw_aux_input_to_cell_weights_ = AddInput(weight_type); bw_aux_input_to_output_weights_ = AddInput(weight_type); } else { aux_input_ = AddNullInput(); fw_aux_input_to_input_weights_ = AddNullInput(); fw_aux_input_to_forget_weights_ = AddNullInput(); fw_aux_input_to_cell_weights_ = AddNullInput(); fw_aux_input_to_output_weights_ = AddNullInput(); bw_aux_input_to_input_weights_ = AddNullInput(); bw_aux_input_to_forget_weights_ = AddNullInput(); bw_aux_input_to_cell_weights_ = AddNullInput(); bw_aux_input_to_output_weights_ = AddNullInput(); } SetBuiltinOp( BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, BuiltinOptions_BidirectionalSequenceLSTMOptions, CreateBidirectionalSequenceLSTMOptions( builder_, ActivationFunctionType_TANH, cell_clip, proj_clip, merge_outputs, time_major, asymmetric_quantize_inputs) .Union()); BuildInterpreter(input_shapes); } void PopulateWeightTensor(int tensor_id, const std::vector<float>& f) { if (quantize_weights_) { SymmetricQuantizeAndPopulate(tensor_id, f); } else { PopulateTensor(tensor_id, f); } } void SetInputToInputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_input_to_input_weights_, f); PopulateWeightTensor(bw_input_to_input_weights_, f); } void SetInputToForgetWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_input_to_forget_weights_, f); PopulateWeightTensor(bw_input_to_forget_weights_, f); } void SetInputToCellWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_input_to_cell_weights_, f); PopulateWeightTensor(bw_input_to_cell_weights_, f); } void SetInputToOutputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_input_to_output_weights_, f); PopulateWeightTensor(bw_input_to_output_weights_, f); } void SetRecurrentToInputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_recurrent_to_input_weights_, f); PopulateWeightTensor(bw_recurrent_to_input_weights_, f); } void SetRecurrentToForgetWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_recurrent_to_forget_weights_, f); PopulateWeightTensor(bw_recurrent_to_forget_weights_, f); } void SetRecurrentToCellWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_recurrent_to_cell_weights_, f); PopulateWeightTensor(bw_recurrent_to_cell_weights_, f); } void SetRecurrentToOutputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_recurrent_to_output_weights_, f); PopulateWeightTensor(bw_recurrent_to_output_weights_, f); } void SetCellToInputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_cell_to_input_weights_, f); PopulateWeightTensor(bw_cell_to_input_weights_, f); } void SetCellToForgetWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_cell_to_forget_weights_, f); PopulateWeightTensor(bw_cell_to_forget_weights_, f); } void SetCellToOutputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_cell_to_output_weights_, f); PopulateWeightTensor(bw_cell_to_output_weights_, f); } void SetInputGateBias(const std::vector<float>& f) { PopulateTensor(fw_input_gate_bias_, f); PopulateTensor(bw_input_gate_bias_, f); } void SetForgetGateBias(const std::vector<float>& f) { PopulateTensor(fw_forget_gate_bias_, f); PopulateTensor(bw_forget_gate_bias_, f); } void SetCellBias(const std::vector<float>& f) { PopulateTensor(fw_cell_gate_bias_, f); PopulateTensor(bw_cell_gate_bias_, f); } void SetOutputGateBias(const std::vector<float>& f) { PopulateTensor(fw_output_gate_bias_, f); PopulateTensor(bw_output_gate_bias_, f); } void SetProjectionWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_projection_weights_, f); PopulateWeightTensor(bw_projection_weights_, f); } void SetProjectionBias(const std::vector<float>& f) { PopulateTensor(fw_projection_bias_, f); PopulateTensor(bw_projection_bias_, f); } void SetInput(int offset, float* begin, float* end) { PopulateTensor(input_, offset, begin, end); } void SetAuxInput(int offset, float* begin, float* end) { PopulateTensor(aux_input_, offset, begin, end); } void SetAuxInputToInputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_aux_input_to_input_weights_, f); PopulateWeightTensor(bw_aux_input_to_input_weights_, f); } void SetAuxInputToForgetWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_aux_input_to_forget_weights_, f); PopulateWeightTensor(bw_aux_input_to_forget_weights_, f); } void SetAuxInputToCellWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_aux_input_to_cell_weights_, f); PopulateWeightTensor(bw_aux_input_to_cell_weights_, f); } void SetAuxInputToOutputWeights(const std::vector<float>& f) { PopulateWeightTensor(fw_aux_input_to_output_weights_, f); PopulateWeightTensor(bw_aux_input_to_output_weights_, f); } std::vector<float> GetFwOutput() { return ExtractVector<float>(fw_output_); } std::vector<float> GetBwOutput() { return ExtractVector<float>(bw_output_); } int num_inputs() { return n_input_; } int num_fw_outputs() { return n_fw_output_; } int num_bw_outputs() { return n_bw_output_; } int num_fw_cells() { return n_fw_cell_; } int num_bw_cells() { return n_bw_cell_; } int num_batches() { return n_batch_; } int sequence_length() { return sequence_length_; } private: int input_; int fw_input_to_input_weights_; int fw_input_to_forget_weights_; int fw_input_to_cell_weights_; int fw_input_to_output_weights_; int fw_recurrent_to_input_weights_; int fw_recurrent_to_forget_weights_; int fw_recurrent_to_cell_weights_; int fw_recurrent_to_output_weights_; int fw_cell_to_input_weights_; int fw_cell_to_forget_weights_; int fw_cell_to_output_weights_; int fw_input_gate_bias_; int fw_forget_gate_bias_; int fw_cell_gate_bias_; int fw_output_gate_bias_; int fw_projection_weights_; int fw_projection_bias_; int bw_input_to_input_weights_; int bw_input_to_forget_weights_; int bw_input_to_cell_weights_; int bw_input_to_output_weights_; int bw_recurrent_to_input_weights_; int bw_recurrent_to_forget_weights_; int bw_recurrent_to_cell_weights_; int bw_recurrent_to_output_weights_; int bw_cell_to_input_weights_; int bw_cell_to_forget_weights_; int bw_cell_to_output_weights_; int bw_input_gate_bias_; int bw_forget_gate_bias_; int bw_cell_gate_bias_; int bw_output_gate_bias_; int bw_projection_weights_; int bw_projection_bias_; int fw_input_activation_state_; int fw_input_cell_state_; int bw_input_activation_state_; int bw_input_cell_state_; int fw_output_; int bw_output_; int aux_input_; int fw_aux_input_to_input_weights_; int fw_aux_input_to_forget_weights_; int fw_aux_input_to_cell_weights_; int fw_aux_input_to_output_weights_; int bw_aux_input_to_input_weights_; int bw_aux_input_to_forget_weights_; int bw_aux_input_to_cell_weights_; int bw_aux_input_to_output_weights_; int n_batch_; int n_input_; int n_fw_cell_; int n_bw_cell_; int n_fw_output_; int n_bw_output_; int sequence_length_; bool quantize_weights_; }; class LSTMOpTest : public ::testing::TestWithParam<::testing::tuple<bool, bool>> {}; INSTANTIATE_TEST_SUITE_P(QuantizationOrNot, LSTMOpTest, ::testing::Combine( ::testing::Bool(), ::testing::Bool())); TEST_P(LSTMOpTest, BlackBoxTestNoCifgNoPeepholeNoProjectionNoClipping) { const int n_batch = 1; const int n_input = 2; const int n_cell = 4; const int n_output = 4; const int sequence_length = 3; auto params = GetParam(); const bool quantize_weights = std::get<0>(params); const bool asymmetric_quantize_inputs = std::get<1>(params); BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, false, false, false, false, false, false, 0.0, 0.0, quantize_weights, true, { {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, 0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, }, asymmetric_quantize_inputs); lstm.SetInputToInputWeights({-0.45018822, -0.02338299, -0.0870589, -0.34550029, 0.04266912, -0.15680569, -0.34856534, 0.43890524}); lstm.SetInputToCellWeights({-0.50013041, 0.1370284, 0.11810488, 0.2013163, -0.20583314, 0.44344562, 0.22077113, -0.29909778}); lstm.SetInputToForgetWeights({0.09701663, 0.20334584, -0.50592935, -0.31343272, -0.40032279, 0.44781327, 0.01387155, -0.35593212}); lstm.SetInputToOutputWeights({-0.25065863, -0.28290087, 0.04613829, 0.40525138, 0.44272184, 0.03897077, -0.1556896, 0.19487578}); lstm.SetInputGateBias({0., 0., 0., 0.}); lstm.SetCellBias({0., 0., 0., 0.}); lstm.SetForgetGateBias({1., 1., 1., 1.}); lstm.SetOutputGateBias({0., 0., 0., 0.}); lstm.SetRecurrentToInputWeights( {-0.0063535, -0.2042388, 0.31454784, -0.35746509, 0.28902304, 0.08183324, -0.16555229, 0.02286911, -0.13566875, 0.03034258, 0.48091322, -0.12528998, 0.24077177, -0.51332325, -0.33502164, 0.10629296}); lstm.SetRecurrentToCellWeights( {-0.3407414, 0.24443203, -0.2078532, 0.26320225, 0.05695659, -0.00123841, -0.4744786, -0.35869038, -0.06418842, -0.13502428, -0.501764, 0.22830659, -0.46367589, 0.26016325, -0.03894562, -0.16368064}); lstm.SetRecurrentToForgetWeights( {-0.48684245, -0.06655136, 0.42224967, 0.2112639, 0.27654213, 0.20864892, -0.07646349, 0.45877004, 0.00141793, -0.14609534, 0.36447752, 0.09196436, 0.28053468, 0.01560611, -0.20127171, -0.01140004}); lstm.SetRecurrentToOutputWeights( {0.43385774, -0.17194885, 0.2718237, 0.09215671, 0.24107647, -0.39835793, 0.18212086, 0.01301402, 0.48572797, -0.50656658, 0.20047462, -0.20607421, -0.51818722, -0.15390486, 0.0468148, 0.39922136}); static float lstm_input[] = {2., 3., 3., 4., 1., 1.}; static float lstm_fw_golden_output[] = { -0.02973187, 0.1229473, 0.20885126, -0.15358765, -0.03716109, 0.12507336, 0.41193449, -0.20860538, -0.15053082, 0.09120187, 0.24278517, -0.12222792}; static float lstm_bw_golden_output[] = { -0.0806187, 0.139077, 0.400476, -0.197842, -0.0332076, 0.123838, 0.309777, -0.17621, -0.0490733, 0.0739237, 0.067706, -0.0208124}; float* batch0_start = lstm_input; float* batch0_end = batch0_start + lstm.num_inputs() * lstm.sequence_length(); lstm.SetInput(0, batch0_start, batch0_end); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); float* fw_golden_start = lstm_fw_golden_output; float* fw_golden_end = fw_golden_start + lstm.num_fw_outputs() * lstm.sequence_length(); std::vector<float> fw_expected; fw_expected.insert(fw_expected.end(), fw_golden_start, fw_golden_end); EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray( ArrayFloatNear(fw_expected, quantize_weights ? 1e-2 : 1e-5))); float* bw_golden_start = lstm_bw_golden_output; float* bw_golden_end = bw_golden_start + lstm.num_bw_outputs() * lstm.sequence_length(); std::vector<float> bw_expected; bw_expected.insert(bw_expected.end(), bw_golden_start, bw_golden_end); EXPECT_THAT(lstm.GetBwOutput(), ElementsAreArray( ArrayFloatNear(bw_expected, quantize_weights ? 1e-2 : 1e-5))); } TEST_P(LSTMOpTest, BlackBoxTestMergedOutput) { const int n_batch = 2; const int n_input = 2; const int n_cell = 4; const int n_output = 4; const int sequence_length = 3; auto params = GetParam(); const bool quantize_weights = std::get<0>(params); const bool asymmetric_quantize_inputs = std::get<1>(params); BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, false, false, false, false, true, false, 0.0, 0.0, quantize_weights, true, { {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, 0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, }, asymmetric_quantize_inputs); lstm.SetInputToInputWeights({-0.45018822, -0.02338299, -0.0870589, -0.34550029, 0.04266912, -0.15680569, -0.34856534, 0.43890524}); lstm.SetInputToCellWeights({-0.50013041, 0.1370284, 0.11810488, 0.2013163, -0.20583314, 0.44344562, 0.22077113, -0.29909778}); lstm.SetInputToForgetWeights({0.09701663, 0.20334584, -0.50592935, -0.31343272, -0.40032279, 0.44781327, 0.01387155, -0.35593212}); lstm.SetInputToOutputWeights({-0.25065863, -0.28290087, 0.04613829, 0.40525138, 0.44272184, 0.03897077, -0.1556896, 0.19487578}); lstm.SetInputGateBias({0., 0., 0., 0.}); lstm.SetCellBias({0., 0., 0., 0.}); lstm.SetForgetGateBias({1., 1., 1., 1.}); lstm.SetOutputGateBias({0., 0., 0., 0.}); lstm.SetRecurrentToInputWeights( {-0.0063535, -0.2042388, 0.31454784, -0.35746509, 0.28902304, 0.08183324, -0.16555229, 0.02286911, -0.13566875, 0.03034258, 0.48091322, -0.12528998, 0.24077177, -0.51332325, -0.33502164, 0.10629296}); lstm.SetRecurrentToCellWeights( {-0.3407414, 0.24443203, -0.2078532, 0.26320225, 0.05695659, -0.00123841, -0.4744786, -0.35869038, -0.06418842, -0.13502428, -0.501764, 0.22830659, -0.46367589, 0.26016325, -0.03894562, -0.16368064}); lstm.SetRecurrentToForgetWeights( {-0.48684245, -0.06655136, 0.42224967, 0.2112639, 0.27654213, 0.20864892, -0.07646349, 0.45877004, 0.00141793, -0.14609534, 0.36447752, 0.09196436, 0.28053468, 0.01560611, -0.20127171, -0.01140004}); lstm.SetRecurrentToOutputWeights( {0.43385774, -0.17194885, 0.2718237, 0.09215671, 0.24107647, -0.39835793, 0.18212086, 0.01301402, 0.48572797, -0.50656658, 0.20047462, -0.20607421, -0.51818722, -0.15390486, 0.0468148, 0.39922136}); static float lstm_input[] = {2., 3., 2., 3., 3., 4., 3., 4., 1., 1., 1., 1.}; static float lstm_fw_golden_output[] = { -0.02973187, 0.1229473, 0.20885126, -0.15358765, -0.02973187, 0.1229473, 0.20885126, -0.15358765, -0.03716109, 0.12507336, 0.41193449, -0.20860538, -0.03716109, 0.12507336, 0.41193449, -0.20860538, -0.15053082, 0.09120187, 0.24278517, -0.12222792, -0.15053082, 0.09120187, 0.24278517, -0.12222792}; static float lstm_bw_golden_output[] = { -0.0806187, 0.139077, 0.400476, -0.197842, -0.0806187, 0.139077, 0.400476, -0.197842, -0.0332076, 0.123838, 0.309777, -0.17621, -0.0332076, 0.123838, 0.309777, -0.17621, -0.0490733, 0.0739237, 0.067706, -0.0208124, -0.0490733, 0.0739237, 0.067706, -0.0208124}; float* batch0_start = lstm_input; float* batch0_end = batch0_start + lstm.num_inputs() * lstm.num_batches() * lstm.sequence_length(); lstm.SetInput(0, batch0_start, batch0_end); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); std::vector<float> merged_expected; for (int k = 0; k < lstm.sequence_length() * lstm.num_batches(); k++) { merged_expected.insert( merged_expected.end(), lstm_fw_golden_output + k * lstm.num_fw_outputs(), lstm_fw_golden_output + (k + 1) * lstm.num_fw_outputs()); merged_expected.insert( merged_expected.end(), lstm_bw_golden_output + k * lstm.num_bw_outputs(), lstm_bw_golden_output + (k + 1) * lstm.num_bw_outputs()); } EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray(ArrayFloatNear(merged_expected, quantize_weights ? 1e-2 : 1e-5))); } TEST(LSTMOpTest, BlackBoxTestNoCifgNoPeepholeNoProjectionNoClippingReverse) { const int n_batch = 1; const int n_input = 2; const int n_cell = 4; const int n_output = 4; const int sequence_length = 3; BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, false, false, false, false, false, false, 0.0, 0.0, false, true, { {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, 0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, }); lstm.SetInputToInputWeights({-0.45018822, -0.02338299, -0.0870589, -0.34550029, 0.04266912, -0.15680569, -0.34856534, 0.43890524}); lstm.SetInputToCellWeights({-0.50013041, 0.1370284, 0.11810488, 0.2013163, -0.20583314, 0.44344562, 0.22077113, -0.29909778}); lstm.SetInputToForgetWeights({0.09701663, 0.20334584, -0.50592935, -0.31343272, -0.40032279, 0.44781327, 0.01387155, -0.35593212}); lstm.SetInputToOutputWeights({-0.25065863, -0.28290087, 0.04613829, 0.40525138, 0.44272184, 0.03897077, -0.1556896, 0.19487578}); lstm.SetInputGateBias({0., 0., 0., 0.}); lstm.SetCellBias({0., 0., 0., 0.}); lstm.SetForgetGateBias({1., 1., 1., 1.}); lstm.SetOutputGateBias({0., 0., 0., 0.}); lstm.SetRecurrentToInputWeights( {-0.0063535, -0.2042388, 0.31454784, -0.35746509, 0.28902304, 0.08183324, -0.16555229, 0.02286911, -0.13566875, 0.03034258, 0.48091322, -0.12528998, 0.24077177, -0.51332325, -0.33502164, 0.10629296}); lstm.SetRecurrentToCellWeights( {-0.3407414, 0.24443203, -0.2078532, 0.26320225, 0.05695659, -0.00123841, -0.4744786, -0.35869038, -0.06418842, -0.13502428, -0.501764, 0.22830659, -0.46367589, 0.26016325, -0.03894562, -0.16368064}); lstm.SetRecurrentToForgetWeights( {-0.48684245, -0.06655136, 0.42224967, 0.2112639, 0.27654213, 0.20864892, -0.07646349, 0.45877004, 0.00141793, -0.14609534, 0.36447752, 0.09196436, 0.28053468, 0.01560611, -0.20127171, -0.01140004}); lstm.SetRecurrentToOutputWeights( {0.43385774, -0.17194885, 0.2718237, 0.09215671, 0.24107647, -0.39835793, 0.18212086, 0.01301402, 0.48572797, -0.50656658, 0.20047462, -0.20607421, -0.51818722, -0.15390486, 0.0468148, 0.39922136}); static float lstm_input_reversed[] = {1., 1., 3., 4., 2., 3.}; static float lstm_fw_golden_output[] = { -0.02973187, 0.1229473, 0.20885126, -0.15358765, -0.03716109, 0.12507336, 0.41193449, -0.20860538, -0.15053082, 0.09120187, 0.24278517, -0.12222792}; static float lstm_bw_golden_output[] = { -0.0806187, 0.139077, 0.400476, -0.197842, -0.0332076, 0.123838, 0.309777, -0.17621, -0.0490733, 0.0739237, 0.067706, -0.0208124}; float* batch0_start = lstm_input_reversed; float* batch0_end = batch0_start + lstm.num_inputs() * lstm.sequence_length(); lstm.SetInput(0, batch0_start, batch0_end); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); std::vector<float> fw_expected; for (int s = 0; s < lstm.sequence_length(); s++) { float* fw_golden_start = lstm_fw_golden_output + s * lstm.num_fw_outputs(); float* fw_golden_end = fw_golden_start + lstm.num_fw_outputs(); fw_expected.insert(fw_expected.begin(), fw_golden_start, fw_golden_end); } EXPECT_THAT(lstm.GetBwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); std::vector<float> bw_expected; for (int s = 0; s < lstm.sequence_length(); s++) { float* bw_golden_start = lstm_bw_golden_output + s * lstm.num_bw_outputs(); float* bw_golden_end = bw_golden_start + lstm.num_bw_outputs(); bw_expected.insert(bw_expected.begin(), bw_golden_start, bw_golden_end); } EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(LSTMOpTest, BlackBoxTestWithCifgWithPeepholeNoProjectionNoClipping) { const int n_batch = 1; const int n_input = 2; const int n_cell = 4; const int n_output = 4; const int sequence_length = 3; BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, true, true, false, false, false, false, 0.0, 0.0, false, true, { {sequence_length, n_batch, n_input}, {0, 0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {0, 0}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {n_cell}, {n_cell}, {0}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {0, 0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {0, 0}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {n_cell}, {n_cell}, {0}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, 0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, }); lstm.SetInputToCellWeights({-0.49770179, -0.27711356, -0.09624726, 0.05100781, 0.04717243, 0.48944736, -0.38535351, -0.17212132}); lstm.SetInputToForgetWeights({-0.55291498, -0.42866567, 0.13056988, -0.3633365, -0.22755712, 0.28253698, 0.24407166, 0.33826375}); lstm.SetInputToOutputWeights({0.10725588, -0.02335852, -0.55932593, -0.09426838, -0.44257352, 0.54939759, 0.01533556, 0.42751634}); lstm.SetCellBias({0., 0., 0., 0.}); lstm.SetForgetGateBias({1., 1., 1., 1.}); lstm.SetOutputGateBias({0., 0., 0., 0.}); lstm.SetRecurrentToCellWeights( {0.54066205, -0.32668582, -0.43562764, -0.56094903, 0.42957711, 0.01841056, -0.32764608, -0.33027974, -0.10826075, 0.20675004, 0.19069612, -0.03026325, -0.54532051, 0.33003211, 0.44901288, 0.21193194}); lstm.SetRecurrentToForgetWeights( {-0.13832897, -0.0515101, -0.2359007, -0.16661474, -0.14340827, 0.36986142, 0.23414481, 0.55899, 0.10798943, -0.41174671, 0.17751795, -0.34484994, -0.35874045, -0.11352962, 0.27268326, 0.54058349}); lstm.SetRecurrentToOutputWeights( {0.41613156, 0.42610586, -0.16495961, -0.5663873, 0.30579174, -0.05115908, -0.33941799, 0.23364776, 0.11178309, 0.09481031, -0.26424935, 0.46261835, 0.50248802, 0.26114327, -0.43736315, 0.33149987}); lstm.SetCellToForgetWeights( {0.47485286, -0.51955009, -0.24458408, 0.31544167}); lstm.SetCellToOutputWeights( {-0.17135078, 0.82760304, 0.85573703, -0.77109635}); static float lstm_input[] = {2., 3., 3., 4., 1., 1.}; static float lstm_fw_golden_output[] = { -0.36444446, -0.00352185, 0.12886585, -0.05163646, -0.42312205, -0.01218222, 0.24201041, -0.08124574, -0.358325, -0.04621704, 0.21641694, -0.06471302}; static float lstm_bw_golden_output[] = { -0.401685, -0.0232794, 0.288642, -0.123074, -0.42915, -0.00871577, 0.20912, -0.103567, -0.166398, -0.00486649, 0.0697471, -0.0537578}; float* batch0_start = lstm_input; float* batch0_end = batch0_start + lstm.num_inputs() * lstm.sequence_length(); lstm.SetInput(0, batch0_start, batch0_end); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); float* fw_golden_start = lstm_fw_golden_output; float* fw_golden_end = fw_golden_start + lstm.num_fw_outputs() * lstm.sequence_length(); std::vector<float> fw_expected; fw_expected.insert(fw_expected.end(), fw_golden_start, fw_golden_end); EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); float* bw_golden_start = lstm_bw_golden_output; float* bw_golden_end = bw_golden_start + lstm.num_bw_outputs() * lstm.sequence_length(); std::vector<float> bw_expected; bw_expected.insert(bw_expected.end(), bw_golden_start, bw_golden_end); EXPECT_THAT(lstm.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(LSTMOpTest, BlackBoxTestWithCifgWithPeepholeNoProjectionNoClippingReversed) { const int n_batch = 1; const int n_input = 2; const int n_cell = 4; const int n_output = 4; const int sequence_length = 3; BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, true, true, false, false, false, false, 0.0, 0.0, false, true, { {sequence_length, n_batch, n_input}, {0, 0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {0, 0}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {n_cell}, {n_cell}, {0}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {0, 0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {0, 0}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {n_cell}, {n_cell}, {0}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, 0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, }); lstm.SetInputToCellWeights({-0.49770179, -0.27711356, -0.09624726, 0.05100781, 0.04717243, 0.48944736, -0.38535351, -0.17212132}); lstm.SetInputToForgetWeights({-0.55291498, -0.42866567, 0.13056988, -0.3633365, -0.22755712, 0.28253698, 0.24407166, 0.33826375}); lstm.SetInputToOutputWeights({0.10725588, -0.02335852, -0.55932593, -0.09426838, -0.44257352, 0.54939759, 0.01533556, 0.42751634}); lstm.SetCellBias({0., 0., 0., 0.}); lstm.SetForgetGateBias({1., 1., 1., 1.}); lstm.SetOutputGateBias({0., 0., 0., 0.}); lstm.SetRecurrentToCellWeights( {0.54066205, -0.32668582, -0.43562764, -0.56094903, 0.42957711, 0.01841056, -0.32764608, -0.33027974, -0.10826075, 0.20675004, 0.19069612, -0.03026325, -0.54532051, 0.33003211, 0.44901288, 0.21193194}); lstm.SetRecurrentToForgetWeights( {-0.13832897, -0.0515101, -0.2359007, -0.16661474, -0.14340827, 0.36986142, 0.23414481, 0.55899, 0.10798943, -0.41174671, 0.17751795, -0.34484994, -0.35874045, -0.11352962, 0.27268326, 0.54058349}); lstm.SetRecurrentToOutputWeights( {0.41613156, 0.42610586, -0.16495961, -0.5663873, 0.30579174, -0.05115908, -0.33941799, 0.23364776, 0.11178309, 0.09481031, -0.26424935, 0.46261835, 0.50248802, 0.26114327, -0.43736315, 0.33149987}); lstm.SetCellToForgetWeights( {0.47485286, -0.51955009, -0.24458408, 0.31544167}); lstm.SetCellToOutputWeights( {-0.17135078, 0.82760304, 0.85573703, -0.77109635}); static float lstm_input_reversed[] = {1., 1., 3., 4., 2., 3.}; static float lstm_fw_golden_output[] = { -0.36444446, -0.00352185, 0.12886585, -0.05163646, -0.42312205, -0.01218222, 0.24201041, -0.08124574, -0.358325, -0.04621704, 0.21641694, -0.06471302}; static float lstm_bw_golden_output[] = { -0.401685, -0.0232794, 0.288642, -0.123074, -0.42915, -0.00871577, 0.20912, -0.103567, -0.166398, -0.00486649, 0.0697471, -0.0537578}; float* batch0_start = lstm_input_reversed; float* batch0_end = batch0_start + lstm.num_inputs() * lstm.sequence_length(); lstm.SetInput(0, batch0_start, batch0_end); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); std::vector<float> fw_expected; for (int s = 0; s < lstm.sequence_length(); s++) { float* fw_golden_start = lstm_fw_golden_output + s * lstm.num_fw_outputs(); float* fw_golden_end = fw_golden_start + lstm.num_fw_outputs(); fw_expected.insert(fw_expected.begin(), fw_golden_start, fw_golden_end); } EXPECT_THAT(lstm.GetBwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); std::vector<float> bw_expected; for (int s = 0; s < lstm.sequence_length(); s++) { float* bw_golden_start = lstm_bw_golden_output + s * lstm.num_bw_outputs(); float* bw_golden_end = bw_golden_start + lstm.num_bw_outputs(); bw_expected.insert(bw_expected.begin(), bw_golden_start, bw_golden_end); } EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(LSTMOpTest, BlackBoxTestWithPeepholeWithProjectionNoClipping) { const int n_batch = 2; const int n_input = 5; const int n_cell = 20; const int n_output = 16; const int sequence_length = 4; BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, false, true, true, false, false, false, 0.0, 0.0, false, true, { {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_output, n_cell}, {0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_output, n_cell}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, 0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, }); lstm.SetInputToInputWeights( {0.021393683, 0.06124551, 0.046905167, -0.014657677, -0.03149463, 0.09171803, 0.14647801, 0.10797193, -0.0057968358, 0.0019193048, -0.2726754, 0.10154029, -0.018539885, 0.080349885, -0.10262385, -0.022599787, -0.09121155, -0.008675967, -0.045206103, -0.0821282, -0.008045952, 0.015478081, 0.055217247, 0.038719587, 0.044153627, -0.06453243, 0.05031825, -0.046935108, -0.008164439, 0.014574226, -0.1671009, -0.15519552, -0.16819797, -0.13971269, -0.11953059, 0.25005487, -0.22790983, 0.009855087, -0.028140958, -0.11200698, 0.11295408, -0.0035217577, 0.054485075, 0.05184695, 0.064711206, 0.10989193, 0.11674786, 0.03490607, 0.07727357, 0.11390585, -0.1863375, -0.1034451, -0.13945189, -0.049401227, -0.18767063, 0.042483903, 0.14233552, 0.13832581, 0.18350165, 0.14545603, -0.028545704, 0.024939531, 0.050929718, 0.0076203286, -0.0029723682, -0.042484224, -0.11827596, -0.09171104, -0.10808628, -0.16327988, -0.2273378, -0.0993647, -0.017155107, 0.0023917493, 0.049272764, 0.0038534778, 0.054764505, 0.089753784, 0.06947234, 0.08014476, -0.04544234, -0.0497073, -0.07135631, -0.048929106, -0.004042012, -0.009284026, 0.018042054, 0.0036860977, -0.07427302, -0.11434604, -0.018995456, 0.031487543, 0.012834908, 0.019977754, 0.044256654, -0.39292613, -0.18519334, -0.11651281, -0.06809892, 0.011373677}); lstm.SetInputToForgetWeights( {-0.0018401089, -0.004852237, 0.03698424, 0.014181704, 0.028273236, -0.016726194, -0.05249759, -0.10204261, 0.00861066, -0.040979505, -0.009899187, 0.01923892, -0.028177269, -0.08535103, -0.14585495, 0.10662567, -0.01909731, -0.017883534, -0.0047269356, -0.045103323, 0.0030784295, 0.076784775, 0.07463696, 0.094531395, 0.0814421, -0.12257899, -0.033945758, -0.031303465, 0.045630626, 0.06843887, -0.13492945, -0.012480007, -0.0811829, -0.07224499, -0.09628791, 0.045100946, 0.0012300825, 0.013964662, 0.099372394, 0.02543059, 0.06958324, 0.034257296, 0.0482646, 0.06267997, 0.052625068, 0.12784666, 0.07077897, 0.025725935, 0.04165009, 0.07241905, 0.018668644, -0.037377294, -0.06277783, -0.08833636, -0.040120605, -0.011405586, -0.007808335, -0.010301386, -0.005102167, 0.027717464, 0.05483423, 0.11449111, 0.11289652, 0.10939839, 0.13396506, -0.08402166, -0.01901462, -0.044678304, -0.07720565, 0.014350063, -0.11757958, -0.0652038, -0.08185733, -0.076754324, -0.092614375, 0.10405491, 0.052960336, 0.035755895, 0.035839386, -0.012540553, 0.036881298, 0.02913376, 0.03420159, 0.05448447, -0.054523353, 0.02582715, 0.02327355, -0.011857179, -0.0011980024, -0.034641717, -0.026125094, -0.17582615, -0.15923657, -0.27486774, -0.0006143371, 0.0001771948, -8.470171e-05, 0.02651807, 0.045790765, 0.06956496}); lstm.SetInputToCellWeights( {-0.04580283, -0.09549462, -0.032418985, -0.06454633, -0.043528453, 0.043018587, -0.049152344, -0.12418144, -0.078985475, -0.07596889, 0.019484362, -0.11434962, -0.0074034138, -0.06314844, -0.092981495, 0.0062155537, -0.025034338, -0.0028890965, 0.048929527, 0.06235075, 0.10665918, -0.032036792, -0.08505916, -0.10843358, -0.13002433, -0.036816437, -0.02130134, -0.016518239, 0.0047691227, -0.0025825808, 0.066017866, 0.029991534, -0.10652836, -0.1037554, -0.13056071, -0.03266643, -0.033702414, -0.006473424, -0.04611692, 0.014419339, -0.025174323, 0.0396852, 0.081777506, 0.06157468, 0.10210095, -0.009658194, 0.046511717, 0.03603906, 0.0069369148, 0.015960095, -0.06507666, 0.09551598, 0.053568836, 0.06408714, 0.12835667, -0.008714329, -0.20211966, -0.12093674, 0.029450472, 0.2849013, -0.029227901, 0.1164364, -0.08560263, 0.09941786, -0.036999565, -0.028842626, -0.0033637602, -0.017012902, -0.09720865, -0.11193351, -0.029155117, -0.017936034, -0.009768936, -0.04223324, -0.036159635, 0.06505112, -0.021742892, -0.023377212, -0.07221364, -0.06430552, 0.05453865, 0.091149814, 0.06387331, 0.007518393, 0.055960953, 0.069779344, 0.046411168, 0.10509911, 0.07463894, 0.0075130584, 0.012850982, 0.04555431, 0.056955688, 0.06555285, 0.050801456, -0.009862683, 0.00826772, -0.026555609, -0.0073611983, -0.0014897042}); lstm.SetInputToOutputWeights( {-0.0998932, -0.07201956, -0.052803773, -0.15629593, -0.15001918, -0.07650751, 0.02359855, -0.075155355, -0.08037709, -0.15093534, 0.029517552, -0.04751393, 0.010350531, -0.02664851, -0.016839722, -0.023121163, 0.0077019283, 0.012851257, -0.05040649, -0.0129761, -0.021737747, -0.038305793, -0.06870586, -0.01481247, -0.001285394, 0.10124236, 0.083122835, 0.053313006, -0.062235646, -0.075637154, -0.027833903, 0.029774971, 0.1130802, 0.09218906, 0.09506135, -0.086665764, -0.037162706, -0.038880914, -0.035832845, -0.014481564, -0.09825003, -0.12048569, -0.097665586, -0.05287633, -0.0964047, -0.11366429, 0.035777505, 0.13568819, 0.052451383, 0.050649304, 0.05798951, -0.021852335, -0.099848844, 0.014740475, -0.078897946, 0.04974699, 0.014160473, 0.06973932, 0.04964942, 0.033364646, 0.08190124, 0.025535367, 0.050893165, 0.048514254, 0.06945813, -0.078907564, -0.06707616, -0.11844508, -0.09986688, -0.07509403, 0.06263226, 0.14925587, 0.20188436, 0.12098451, 0.14639415, 0.0015017595, -0.014267382, -0.03417257, 0.012711468, 0.0028300495, -0.024758482, -0.05098548, -0.0821182, 0.014225672, 0.021544158, 0.08949725, 0.07505268, -0.0020780868, 0.04908258, 0.06476295, -0.022907063, 0.027562456, 0.040185735, 0.019567577, -0.015598739, -0.049097303, -0.017121866, -0.083368234, -0.02332002, -0.0840956}); lstm.SetInputGateBias( {0.02234832, 0.14757581, 0.18176508, 0.10380666, 0.053110216, -0.06928846, -0.13942584, -0.11816189, 0.19483899, 0.03652339, -0.10250295, 0.036714908, -0.18426876, 0.036065217, 0.21810818, 0.02383196, -0.043370757, 0.08690144, -0.04444982, 0.00030581196}); lstm.SetForgetGateBias({0.035185695, -0.042891346, -0.03032477, 0.23027696, 0.11098921, 0.15378423, 0.09263801, 0.09790885, 0.09508917, 0.061199076, 0.07665568, -0.015443159, -0.03499149, 0.046190713, 0.08895977, 0.10899629, 0.40694186, 0.06030037, 0.012413437, -0.06108739}); lstm.SetCellBias({-0.024379363, 0.0055531194, 0.23377132, 0.033463873, -0.1483596, -0.10639995, -0.091433935, 0.058573797, -0.06809782, -0.07889636, -0.043246906, -0.09829136, -0.4279842, 0.034901652, 0.18797937, 0.0075234566, 0.016178843, 0.1749513, 0.13975595, 0.92058027}); lstm.SetOutputGateBias( {0.046159424, -0.0012809046, 0.03563469, 0.12648113, 0.027195795, 0.35373217, -0.018957434, 0.008907322, -0.0762701, 0.12018895, 0.04216877, 0.0022856654, 0.040952638, 0.3147856, 0.08225149, -0.057416286, -0.14995944, -0.008040261, 0.13208859, 0.029760877}); lstm.SetRecurrentToInputWeights( {-0.001374326, -0.078856036, 0.10672688, 0.029162422, -0.11585556, 0.02557986, -0.13446963, -0.035785314, -0.01244275, 0.025961924, -0.02337298, -0.044228926, -0.055839065, -0.046598054, -0.010546039, -0.06900766, 0.027239809, 0.022582639, -0.013296484, -0.05459212, 0.08981, -0.045407712, 0.08682226, -0.06867011, -0.14390695, -0.02916037, 0.000996957, 0.091420636, 0.14283475, -0.07390571, -0.06402044, 0.062524505, -0.093129106, 0.04860203, -0.08364217, -0.08119002, 0.009352075, 0.22920375, 0.0016303885, 0.11583097, -0.13732095, 0.012405723, -0.07551853, 0.06343048, 0.12162708, -0.031923793, -0.014335606, 0.01790974, -0.10650317, -0.0724401, 0.08554849, -0.05727212, 0.06556731, -0.042729504, -0.043227166, 0.011683251, -0.013082158, -0.029302018, -0.010899579, -0.062036745, -0.022509435, -0.00964907, -0.01567329, 0.04260106, -0.07787477, -0.11576462, 0.017356863, 0.048673786, -0.017577527, -0.05527947, -0.082487635, -0.040137455, -0.10820036, -0.04666372, 0.022746278, -0.07851417, 0.01068115, 0.032956902, 0.022433773, 0.0026891115, 0.08944216, -0.0685835, 0.010513544, 0.07228705, 0.02032331, -0.059686817, -0.0005566496, -0.086984694, 0.040414046, -0.1380399, 0.094208956, -0.05722982, 0.012092817, -0.04989123, -0.086576, -0.003399834, -0.04696032, -0.045747425, 0.10091314, 0.048676282, -0.029037097, 0.031399418, -0.0040285117, 0.047237843, 0.09504992, 0.041799378, -0.049185462, -0.031518843, -0.10516937, 0.026374253, 0.10058866, -0.0033195973, -0.041975245, 0.0073591834, 0.0033782164, -0.004325073, -0.10167381, 0.042500053, -0.01447153, 0.06464186, -0.017142897, 0.03312627, 0.009205989, 0.024138335, -0.011337001, 0.035530265, -0.010912711, 0.0706555, -0.005894094, 0.051841937, -0.1401738, -0.02351249, 0.0365468, 0.07590991, 0.08838724, 0.021681072, -0.10086113, 0.019608743, -0.06195883, 0.077335775, 0.023646897, -0.095322326, 0.02233014, 0.09756986, -0.048691444, -0.009579111, 0.07595467, 0.11480546, -0.09801813, 0.019894179, 0.08502348, 0.004032281, 0.037211012, 0.068537936, -0.048005626, -0.091520436, -0.028379958, -0.01556313, 0.06554592, -0.045599163, -0.01672207, -0.020169014, -0.011877351, -0.20212261, 0.010889619, 0.0047078193, 0.038385306, 0.08540671, -0.017140968, -0.0035865551, 0.016678626, 0.005633034, 0.015963363, 0.00871737, 0.060130805, 0.028611384, 0.10109069, -0.015060172, -0.07894427, 0.06401885, 0.011584063, -0.024466386, 0.0047652307, -0.09041358, 0.030737216, -0.0046374933, 0.14215417, -0.11823516, 0.019899689, 0.006106124, -0.027092824, 0.0786356, 0.05052217, -0.058925, -0.011402121, -0.024987547, -0.0013661642, -0.06832946, -0.015667673, -0.1083353, -0.00096863037, -0.06988685, -0.053350925, -0.027275559, -0.033664223, -0.07978348, -0.025200296, -0.017207067, -0.058403496, -0.055697463, 0.005798788, 0.12965427, -0.062582195, 0.0013350133, -0.10482091, 0.0379771, 0.072521195, -0.0029455067, -0.13797039, -0.03628521, 0.013806405, -0.017858358, -0.01008298, -0.07700066, -0.017081132, 0.019358726, 0.0027079724, 0.004635139, 0.062634714, -0.02338735, -0.039547626, -0.02050681, 0.03385117, -0.083611414, 0.002862572, -0.09421313, 0.058618143, -0.08598433, 0.00972939, 0.023867095, -0.053934585, -0.023203006, 0.07452513, -0.048767887, -0.07314807, -0.056307215, -0.10433547, -0.06440842, 0.04328182, 0.04389765, -0.020006588, -0.09076438, -0.11652589, -0.021705797, 0.03345259, -0.010329105, -0.025767034, 0.013057034, -0.07316461, -0.10145612, 0.06358255, 0.18531723, 0.07759293, 0.12006465, 0.1305557, 0.058638252, -0.03393652, 0.09622831, -0.16253184, -2.4580743e-06, 0.079869635, -0.070196845, -0.005644518, 0.06857898, -0.12598175, -0.035084512, 0.03156317, -0.12794146, -0.031963028, 0.04692781, 0.030070418, 0.0071660685, -0.095516115, -0.004643372, 0.040170413, -0.062104587, -0.0037324072, 0.0554317, 0.08184801, -0.019164372, 0.06791302, 0.034257166, -0.10307039, 0.021943003, 0.046745934, 0.0790918, -0.0265588, -0.007824208, 0.042546265, -0.00977924, -0.0002440307, -0.017384544, -0.017990116, 0.12252321, -0.014512694, -0.08251313, 0.08861942, 0.13589665, 0.026351685, 0.012641483, 0.07466548, 0.044301085, -0.045414884, -0.051112458, 0.03444247, -0.08502782, -0.04106223, -0.028126027, 0.028473156, 0.10467447}); lstm.SetRecurrentToForgetWeights( {-0.057784554, -0.026057621, -0.068447545, -0.022581743, 0.14811787, 0.10826372, 0.09471067, 0.03987225, -0.0039523416, 0.00030638507, 0.053185795, 0.10572994, 0.08414449, -0.022036452, -0.00066928595, -0.09203576, 0.032950465, -0.10985798, -0.023809856, 0.0021431844, -0.02196096, -0.00326074, 0.00058621005, -0.074678116, -0.06193199, 0.055729095, 0.03736828, 0.020123724, 0.061878487, -0.04729229, 0.034919553, -0.07585433, -0.04421272, -0.044019096, 0.085488975, 0.04058006, -0.06890133, -0.030951202, -0.024628663, -0.07672815, 0.034293607, 0.08556707, -0.05293577, -0.033561368, -0.04899627, 0.0241671, 0.015736353, -0.095442444, -0.029564252, 0.016493602, -0.035026584, 0.022337519, -0.026871363, 0.004780428, 0.0077918363, -0.03601621, 0.016435321, -0.03263031, -0.09543275, -0.047392778, 0.013454138, 0.028934088, 0.01685226, -0.086110644, -0.046250615, -0.01847454, 0.047608484, 0.07339695, 0.034546845, -0.04881143, 0.009128804, -0.08802852, 0.03761666, 0.008096139, -0.014454086, 0.014361001, -0.023502491, -0.0011840804, -0.07607001, 0.001856849, -0.06509276, -0.006021153, -0.08570962, -0.1451793, 0.060212336, 0.055259194, 0.06974018, 0.049454916, -0.027794661, -0.08077226, -0.016179763, 0.1169753, 0.17213494, -0.0056326236, -0.053934924, -0.0124349, -0.11520337, 0.05409887, 0.088759385, 0.0019655675, 0.0042065294, 0.03881498, 0.019844765, 0.041858196, -0.05695512, 0.047233116, 0.038937137, -0.06542224, 0.014429736, -0.09719407, 0.13908425, -0.05379757, 0.012321099, 0.082840554, -0.029899208, 0.044217527, 0.059855383, 0.07711018, -0.045319796, 0.0948846, -0.011724666, -0.0033288454, -0.033542685, -0.04764985, -0.13873616, 0.040668588, 0.034832682, -0.015319203, -0.018715994, 0.046002675, 0.0599172, -0.043107376, 0.0294216, -0.002314414, -0.022424703, 0.0030315618, 0.0014641669, 0.0029166266, -0.11878115, 0.013738511, 0.12375372, -0.0006038222, 0.029104086, 0.087442465, 0.052958444, 0.07558703, 0.04817258, 0.044462286, -0.015213451, -0.08783778, -0.0561384, -0.003008196, 0.047060397, -0.002058388, 0.03429439, -0.018839769, 0.024734668, 0.024614193, -0.042046934, 0.09597743, -0.0043254104, 0.04320769, 0.0064070094, -0.0019131786, -0.02558259, -0.022822596, -0.023273505, -0.02464396, -0.10991725, -0.006240552, 0.0074488563, 0.024044557, 0.04383914, -0.046476185, 0.028658995, 0.060410924, 0.050786525, 0.009452605, -0.0073054377, -0.024810238, 0.0052906186, 0.0066939713, -0.0020913032, 0.014515517, 0.015898481, 0.021362653, -0.030262267, 0.016587038, -0.011442813, 0.041154444, -0.007631438, -0.03423484, -0.010977775, 0.036152758, 0.0066366293, 0.11915515, 0.02318443, -0.041350313, 0.021485701, -0.10906167, -0.028218046, -0.00954771, 0.020531068, -0.11995105, -0.03672871, 0.024019798, 0.014255957, -0.05221243, -0.00661567, -0.04630967, 0.033188973, 0.10107534, -0.014027541, 0.030796422, -0.10270911, -0.035999842, 0.15443139, 0.07684145, 0.036571592, -0.035900835, -0.0034699554, 0.06209149, 0.015920248, -0.031122351, -0.03858649, 0.01849943, 0.13872518, 0.01503974, 0.069941424, -0.06948533, -0.0088794185, 0.061282158, -0.047401894, 0.03100163, -0.041533746, -0.10430945, 0.044574402, -0.01425562, -0.024290353, 0.034563623, 0.05866852, 0.023947537, -0.09445152, 0.035450947, 0.02247216, -0.0042998926, 0.061146557, -0.10250651, 0.020881841, -0.06747029, 0.10062043, -0.0023941975, 0.03532124, -0.016341697, 0.09685456, -0.016764693, 0.051808182, 0.05875331, -0.04536488, 0.001626336, -0.028892258, -0.01048663, -0.009793449, -0.017093895, 0.010987891, 0.02357273, -0.00010856845, 0.0099760275, -0.001845119, -0.03551521, 0.0018358806, 0.05763657, -0.01769146, 0.040995963, 0.02235177, -0.060430344, 0.11475477, -0.023854522, 0.10071741, 0.0686208, -0.014250481, 0.034261297, 0.047418304, 0.08562733, -0.030519066, 0.0060542435, 0.014653856, -0.038836084, 0.04096551, 0.032249358, -0.08355519, -0.026823482, 0.056386515, -0.010401743, -0.028396193, 0.08507674, 0.014410365, 0.020995233, 0.17040324, 0.11511526, 0.02459721, 0.0066619175, 0.025853224, -0.023133837, -0.081302024, 0.017264642, -0.009585969, 0.09491168, -0.051313367, 0.054532815, -0.014298593, 0.10657464, 0.007076659, 0.10964551, 0.0409152, 0.008275321, -0.07283536, 0.07937492, 0.04192024, -0.1075027}); lstm.SetRecurrentToCellWeights( {-0.037322544, 0.018592842, 0.0056175636, -0.06253426, 0.055647098, -0.05713207, -0.05626563, 0.005559383, 0.03375411, -0.025757805, -0.088049285, 0.06017052, -0.06570978, 0.007384076, 0.035123326, -0.07920549, 0.053676967, 0.044480428, -0.07663568, 0.0071805613, 0.08089997, 0.05143358, 0.038261272, 0.03339287, -0.027673481, 0.044746667, 0.028349208, 0.020090483, -0.019443132, -0.030755889, -0.0040000007, 0.04465846, -0.021585021, 0.0031670958, 0.0053199246, -0.056117613, -0.10893326, 0.076739706, -0.08509834, -0.027997585, 0.037871376, 0.01449768, -0.09002357, -0.06111149, -0.046195522, 0.0422062, -0.005683705, -0.1253618, -0.012925729, -0.04890792, 0.06985068, 0.037654128, 0.03398274, -0.004781977, 0.007032333, -0.031787455, 0.010868644, -0.031489216, 0.09525667, 0.013939797, 0.0058680447, 0.0167067, 0.02668468, -0.04797466, -0.048885044, -0.12722108, 0.035304096, 0.06554885, 0.00972396, -0.039238118, -0.05159735, -0.11329045, 0.1613692, -0.03750952, 0.06529313, -0.071974665, -0.11769596, 0.015524369, -0.0013754242, -0.12446318, 0.02786344, -0.014179351, 0.005264273, 0.14376344, 0.015983658, 0.03406988, -0.06939408, 0.040699873, 0.02111075, 0.09669095, 0.041345075, -0.08316494, -0.07684199, -0.045768797, 0.032298047, -0.041805092, 0.0119405, 0.0061010392, 0.12652606, 0.0064572375, -0.024950314, 0.11574242, 0.04508852, -0.04335324, 0.06760663, -0.027437469, 0.07216407, 0.06977076, -0.05438599, 0.034033038, -0.028602652, 0.05346137, 0.043184172, -0.037189785, 0.10420091, 0.00882477, -0.054019816, -0.074273005, -0.030617684, -0.0028467078, 0.024302477, -0.0038869337, 0.005332455, 0.0013399826, 0.04361412, -0.007001822, 0.09631092, -0.06702025, -0.042049985, -0.035070654, -0.04103342, -0.10273396, 0.0544271, 0.037184782, -0.13150354, -0.0058036847, -0.008264958, 0.042035464, 0.05891794, 0.029673764, 0.0063542654, 0.044788733, 0.054816857, 0.062257513, -0.00093483756, 0.048938446, -0.004952862, -0.007730018, -0.04043371, -0.017094059, 0.07229206, -0.023670016, -0.052195564, -0.025616996, -0.01520939, 0.045104615, -0.007376126, 0.003533447, 0.006570588, 0.056037236, 0.12436656, 0.051817212, 0.028532185, -0.08686856, 0.11868599, 0.07663395, -0.07323171, 0.03463402, -0.050708205, -0.04458982, -0.11590894, 0.021273347, 0.1251325, -0.15313013, -0.12224372, 0.17228661, 0.023029093, 0.086124025, 0.006445803, -0.03496501, 0.028332196, 0.04449512, -0.042436164, -0.026587414, -0.006041347, -0.09292539, -0.05678812, 0.03897832, 0.09465633, 0.008115513, -0.02171956, 0.08304309, 0.071401566, 0.019622514, 0.032163795, -0.004167056, 0.02295182, 0.030739572, 0.056506045, 0.004612461, 0.06524936, 0.059999723, 0.046395954, -0.0045512207, -0.1335546, -0.030136576, 0.11584653, -0.014678886, 0.0020118146, -0.09688814, -0.0790206, 0.039770417, -0.0329582, 0.07922767, 0.029322514, 0.026405897, 0.04207835, -0.07073373, 0.063781224, 0.0859677, -0.10925287, -0.07011058, 0.048005477, 0.03438226, -0.09606514, -0.006669445, -0.043381985, 0.04240257, -0.06955775, -0.06769346, 0.043903265, -0.026784198, -0.017840602, 0.024307009, -0.040079936, -0.019946516, 0.045318738, -0.12233574, 0.026170589, 0.0074471775, 0.15978073, 0.10185836, 0.10298046, -0.015476589, -0.039390966, -0.072174534, 0.0739445, -0.1211869, -0.0347889, -0.07943156, 0.014809798, -0.12412325, -0.0030663363, 0.039695457, 0.0647603, -0.08291318, -0.018529687, -0.004423833, 0.0037507233, 0.084633216, -0.01514876, -0.056505352, -0.012800942, -0.06994386, 0.012962922, -0.031234352, 0.07029052, 0.016418684, 0.03618972, 0.055686004, -0.08663945, -0.017404709, -0.054761406, 0.029065743, 0.052404847, 0.020238016, 0.0048197987, -0.0214882, 0.07078733, 0.013016777, 0.06262858, 0.009184685, 0.020785125, -0.043904778, -0.0270329, -0.03299152, -0.060088247, -0.015162964, -0.001828936, 0.12642565, -0.056757294, 0.013586685, 0.09232601, -0.035886683, 0.06000002, 0.05229691, -0.052580316, -0.082029596, -0.010794592, 0.012947712, -0.036429964, -0.085508935, -0.13127148, -0.017744139, 0.031502828, 0.036232427, -0.031581745, 0.023051167, -0.05325106, -0.03421577, 0.028793324, -0.034633752, -0.009881397, -0.043551125, -0.018609839, 0.0019097115, -0.008799762, 0.056595087, 0.0022273948, 0.055752404}); lstm.SetRecurrentToOutputWeights({ 0.025825322, -0.05813119, 0.09495884, -0.045984812, -0.01255415, -0.0026479573, -0.08196161, -0.054914974, -0.0046604523, -0.029587349, -0.044576716, -0.07480124, -0.082868785, 0.023254942, 0.027502948, -0.0039728214, -0.08683098, -0.08116779, -0.014675607, -0.037924774, -0.023314456, -0.007401714, -0.09255757, 0.029460307, -0.08829125, -0.005139627, -0.08989442, -0.0555066, 0.13596267, -0.025062224, -0.048351806, -0.03850004, 0.07266485, -0.022414139, 0.05940088, 0.075114764, 0.09597592, -0.010211725, -0.0049794707, -0.011523867, -0.025980417, 0.072999895, 0.11091378, -0.081685916, 0.014416728, 0.043229222, 0.034178585, -0.07530371, 0.035837382, -0.085607, -0.007721233, -0.03287832, -0.043848954, -0.06404588, -0.06632928, -0.073643476, 0.008214239, -0.045984086, 0.039764922, 0.03474462, 0.060612556, -0.080590084, 0.049127717, 0.04151091, -0.030063879, 0.008801774, -0.023021035, -0.019558564, 0.05158114, -0.010947698, -0.011825728, 0.0075720972, 0.0699727, -0.0039981045, 0.069350146, 0.08799282, 0.016156472, 0.035502106, 0.11695009, 0.006217345, 0.13392477, -0.037875112, 0.025745004, 0.08940699, -0.00924166, 0.0046702605, -0.036598757, -0.08811812, 0.10522024, -0.032441203, 0.008176899, -0.04454919, 0.07058152, 0.0067963637, 0.039206743, 0.03259838, 0.03725492, -0.09515802, 0.013326398, -0.052055415, -0.025676316, 0.03198509, -0.015951829, -0.058556724, 0.036879618, 0.043357447, 0.028362012, -0.05908629, 0.0059240665, -0.04995891, -0.019187413, 0.0276265, -0.01628143, 0.0025863599, 0.08800015, 0.035250366, -0.022165963, -0.07328642, -0.009415526, -0.07455109, 0.11690406, 0.0363299, 0.07411125, 0.042103454, -0.009660886, 0.019076364, 0.018299393, -0.046004917, 0.08891175, 0.0431396, -0.026327137, -0.051502608, 0.08979574, -0.051670972, 0.04940282, -0.07491107, -0.021240504, 0.022596184, -0.034280192, 0.060163025, -0.058211457, -0.051837247, -0.01349775, -0.04639988, -0.035936575, -0.011681591, 0.064818054, 0.0073146066, -0.021745546, -0.043124277, -0.06471268, -0.07053354, -0.029321948, -0.05330136, 0.016933719, -0.053782392, 0.13747959, -0.1361751, -0.11569455, 0.0033329215, 0.05693899, -0.053219706, 0.063698, 0.07977434, -0.07924483, 0.06936997, 0.0034815092, -0.007305279, -0.037325785, -0.07251102, -0.033633437, -0.08677009, 0.091591336, -0.14165086, 0.021752775, 0.019683983, 0.0011612234, -0.058154266, 0.049996935, 0.0288841, -0.0024567875, -0.14345716, 0.010955264, -0.10234828, 0.1183656, -0.0010731248, -0.023590032, -0.072285876, -0.0724771, -0.026382286, -0.0014920527, 0.042667855, 0.0018776858, 0.02986552, 0.009814309, 0.0733756, 0.12289186, 0.018043943, -0.0458958, 0.049412545, 0.033632483, 0.05495232, 0.036686596, -0.013781798, -0.010036754, 0.02576849, -0.08307328, 0.010112348, 0.042521734, -0.05869831, -0.071689695, 0.03876447, -0.13275425, -0.0352966, -0.023077697, 0.10285965, 0.084736146, 0.15568255, -0.00040734606, 0.027835453, -0.10292561, -0.032401145, 0.10053256, -0.026142767, -0.08271222, -0.0030240538, -0.016368777, 0.1070414, 0.042672627, 0.013456989, -0.0437609, -0.022309763, 0.11576483, 0.04108048, 0.061026827, -0.0190714, -0.0869359, 0.037901703, 0.0610107, 0.07202949, 0.01675338, 0.086139716, -0.08795751, -0.014898893, -0.023771819, -0.01965048, 0.007955471, -0.043740474, 0.03346837, -0.10549954, 0.090567775, 0.042013682, -0.03176985, 0.12569028, -0.02421228, -0.029526481, 0.023851605, 0.031539805, 0.05292009, -0.02344001, -0.07811758, -0.08834428, 0.10094801, 0.16594367, -0.06861939, -0.021256343, -0.041093912, -0.06669611, 0.035498552, 0.021757556, -0.09302526, -0.015403468, -0.06614931, -0.051798206, -0.013874718, 0.03630673, 0.010412845, -0.08077351, 0.046185967, 0.0035662893, 0.03541868, -0.094149634, -0.034814864, 0.003128424, -0.020674974, -0.03944324, -0.008110165, -0.11113267, 0.08484226, 0.043586485, 0.040582247, 0.0968012, -0.065249965, -0.028036479, 0.0050708856, 0.0017462453, 0.0326779, 0.041296225, 0.09164146, -0.047743853, -0.015952192, -0.034451712, 0.084197424, -0.05347844, -0.11768019, 0.085926116, -0.08251791, -0.045081906, 0.0948852, 0.068401024, 0.024856757, 0.06978981, -0.057309967, -0.012775832, -0.0032452994, 0.01977615, -0.041040014, -0.024264973, 0.063464895, 0.05431621, }); lstm.SetCellToInputWeights( {0.040369894, 0.030746894, 0.24704495, 0.018586371, -0.037586458, -0.15312155, -0.11812848, -0.11465643, 0.20259799, 0.11418174, -0.10116027, -0.011334949, 0.12411352, -0.076769054, -0.052169047, 0.21198851, -0.38871562, -0.09061183, -0.09683246, -0.21929175}); lstm.SetCellToForgetWeights( {-0.01998659, -0.15568835, -0.24248174, -0.012770197, 0.041331276, -0.072311886, -0.052123554, -0.0066330447, -0.043891653, 0.036225766, -0.047248036, 0.021479502, 0.033189066, 0.11952997, -0.020432774, 0.64658105, -0.06650122, -0.03467612, 0.095340036, 0.23647355}); lstm.SetCellToOutputWeights( {0.08286371, -0.08261836, -0.51210177, 0.002913762, 0.17764764, -0.5495371, -0.08460716, -0.24552552, 0.030037103, 0.04123544, -0.11940523, 0.007358328, 0.1890978, 0.4833202, -0.34441817, 0.36312827, -0.26375428, 0.1457655, -0.19724406, 0.15548733}); lstm.SetProjectionWeights( {-0.009802181, 0.09401916, 0.0717386, -0.13895074, 0.09641832, 0.060420845, 0.08539281, 0.054285463, 0.061395317, 0.034448683, -0.042991187, 0.019801661, -0.16840284, -0.015726732, -0.23041931, -0.024478018, -0.10959692, -0.013875541, 0.18600968, -0.061274476, 0.0138165, -0.08160894, -0.07661644, 0.032372914, 0.16169067, 0.22465782, -0.03993472, -0.004017731, 0.08633481, -0.28869787, 0.08682067, 0.17240396, 0.014975425, 0.056431185, 0.031037588, 0.16702051, 0.0077946745, 0.15140012, 0.29405436, 0.120285, -0.188994, -0.027265169, 0.043389652, -0.022061434, 0.014777949, -0.20203483, 0.094781205, 0.19100232, 0.13987629, -0.036132768, -0.06426278, -0.05108664, 0.13221376, 0.009441198, -0.16715929, 0.15859416, -0.040437475, 0.050779544, -0.022187516, 0.012166504, 0.027685808, -0.07675938, -0.0055694645, -0.09444123, 0.0046453946, 0.050794356, 0.10770313, -0.20790008, -0.07149004, -0.11425117, 0.008225835, -0.035802525, 0.14374903, 0.15262283, 0.048710253, 0.1847461, -0.007487823, 0.11000021, -0.09542012, 0.22619456, -0.029149994, 0.08527916, 0.009043713, 0.0042746216, 0.016261552, 0.022461696, 0.12689082, -0.043589946, -0.12035478, -0.08361797, -0.050666027, -0.1248618, -0.1275799, -0.071875185, 0.07377272, 0.09944291, -0.18897448, -0.1593054, -0.06526116, -0.040107165, -0.004618631, -0.067624845, -0.007576253, 0.10727444, 0.041546922, -0.20424393, 0.06907816, 0.050412357, 0.00724631, 0.039827548, 0.12449835, 0.10747581, 0.13708383, 0.09134148, -0.12617786, -0.06428341, 0.09956831, 0.1208086, -0.14676677, -0.0727722, 0.1126304, 0.010139365, 0.015571211, -0.038128063, 0.022913318, -0.042050496, 0.16842307, -0.060597885, 0.10531834, -0.06411776, -0.07451711, -0.03410368, -0.13393489, 0.06534304, 0.003620307, 0.04490757, 0.05970546, 0.05197996, 0.02839995, 0.10434969, -0.013699693, -0.028353551, -0.07260381, 0.047201227, -0.024575593, -0.036445823, 0.07155557, 0.009672501, -0.02328883, 0.009533515, -0.03606021, -0.07421458, -0.028082801, -0.2678904, -0.13221288, 0.18419984, -0.13012612, -0.014588381, -0.035059117, -0.04824723, 0.07830115, -0.056184657, 0.03277091, 0.025466874, 0.14494097, -0.12522776, -0.098633975, -0.10766018, -0.08317623, 0.08594209, 0.07749552, 0.039474737, 0.1776665, -0.07409566, -0.0477268, 0.29323658, 0.10801441, 0.1154011, 0.013952499, 0.10739139, 0.10708251, -0.051456142, 0.0074137426, -0.10430189, 0.10034707, 0.045594677, 0.0635285, -0.0715442, -0.089667566, -0.10811871, 0.00026344223, 0.08298446, -0.009525053, 0.006585689, -0.24567553, -0.09450807, 0.09648481, 0.026996298, -0.06419476, -0.04752702, -0.11063944, -0.23441927, -0.17608605, -0.052156363, 0.067035615, 0.19271925, -0.0032889997, -0.043264326, 0.09663576, -0.057112187, -0.10100678, 0.0628376, 0.04447668, 0.017961001, -0.10094388, -0.10190601, 0.18335468, 0.10494553, -0.052095775, -0.0026118709, 0.10539724, -0.04383912, -0.042349473, 0.08438151, -0.1947263, 0.02251204, 0.11216432, -0.10307853, 0.17351969, -0.039091777, 0.08066188, -0.00561982, 0.12633002, 0.11335965, -0.0088127935, -0.019777594, 0.06864014, -0.059751723, 0.016233567, -0.06894641, -0.28651384, -0.004228674, 0.019708522, -0.16305895, -0.07468996, -0.0855457, 0.099339016, -0.07580735, -0.13775392, 0.08434318, 0.08330512, -0.12131499, 0.031935584, 0.09180414, -0.08876437, -0.08049874, 0.008753825, 0.03498998, 0.030215185, 0.03907079, 0.089751154, 0.029194152, -0.03337423, -0.019092513, 0.04331237, 0.04299654, -0.036394123, -0.12915532, 0.09793732, 0.07512415, -0.11319543, -0.032502122, 0.15661901, 0.07671967, -0.005491124, -0.19379048, -0.218606, 0.21448623, 0.017840758, 0.1416943, -0.07051762, 0.19488361, 0.02664691, -0.18104725, -0.09334311, 0.15026465, -0.15493552, -0.057762887, -0.11604192, -0.262013, -0.01391798, 0.012185008, 0.11156489, -0.07483202, 0.06693364, -0.26151478, 0.046425626, 0.036540434, -0.16435726, 0.17338543, -0.21401681, -0.11385144, -0.08283257, -0.069031075, 0.030635102, 0.010969227, 0.11109743, 0.010919218, 0.027526086, 0.13519906, 0.01891392, -0.046839405, -0.040167913, 0.017953383, -0.09700955, 0.0061885654, -0.07000971, 0.026893595, -0.038844477, 0.14543656}); static float lstm_input[][20] = { { 0.787926, 0.151646, 0.071352, 0.118426, 0.458058, 0.596268, 0.998386, 0.568695, 0.864524, 0.571277, 0.073204, 0.296072, 0.743333, 0.069199, 0.045348, 0.867394, 0.291279, 0.013714, 0.482521, 0.626339}, { 0.295743, 0.544053, 0.690064, 0.858138, 0.497181, 0.642421, 0.524260, 0.134799, 0.003639, 0.162482, 0.640394, 0.930399, 0.050782, 0.432485, 0.988078, 0.082922, 0.563329, 0.865614, 0.333232, 0.259916}}; static float lstm_fw_golden_output[][64] = { { -0.00396806, 0.029352, -0.00279226, 0.0159977, -0.00835576, -0.0211779, 0.0283512, -0.0114597, 0.00907307, -0.0244004, -0.0152191, -0.0259063, 0.00914318, 0.00415118, 0.017147, 0.0134203, -0.0166936, 0.0381209, 0.000889694, 0.0143363, -0.0328911, -0.0234288, 0.0333051, -0.012229, 0.0110322, -0.0457725, -0.000832209, -0.0202817, 0.0327257, 0.0121308, 0.0155969, 0.0312091, -0.0213783, 0.0350169, 0.000324794, 0.0276012, -0.0263374, -0.0371449, 0.0446149, -0.0205474, 0.0103729, -0.0576349, -0.0150052, -0.0292043, 0.0376827, 0.0136115, 0.0243435, 0.0354492, -0.0189322, 0.0464512, -0.00251373, 0.0225745, -0.0308346, -0.0317124, 0.0460407, -0.0189395, 0.0149363, -0.0530162, -0.0150767, -0.0340193, 0.0286833, 0.00824207, 0.0264887, 0.0305169}, { -0.013869, 0.0287268, -0.00334693, 0.00733398, -0.0287926, -0.0186926, 0.0193662, -0.0115437, 0.00422612, -0.0345232, 0.00223253, -0.00957321, 0.0210624, 0.013331, 0.0150954, 0.02168, -0.0141913, 0.0322082, 0.00227024, 0.0260507, -0.0188721, -0.0296489, 0.0399134, -0.0160509, 0.0116039, -0.0447318, -0.0150515, -0.0277406, 0.0316596, 0.0118233, 0.0214762, 0.0293641, -0.0204549, 0.0450315, -0.00117378, 0.0167673, -0.0375007, -0.0238314, 0.038784, -0.0174034, 0.0131743, -0.0506589, -0.0048447, -0.0240239, 0.0325789, 0.00790065, 0.0220157, 0.0333314, -0.0264787, 0.0387855, -0.000764675, 0.0217599, -0.037537, -0.0335206, 0.0431679, -0.0211424, 0.010203, -0.062785, -0.00832363, -0.025181, 0.0412031, 0.0118723, 0.0239643, 0.0394009}}; static float lstm_combined_golden_output[][64] = { {-0.022014, 0.073544, -0.002235, 0.040068, -0.037136, -0.052788, 0.075325, -0.029378, 0.024298, -0.07733, -0.030674, -0.060229, 0.040599, 0.011608, 0.042005, 0.045977, -0.039225, 0.076294, 0.000735, 0.032852, -0.069869, -0.053312, 0.073527, -0.028136, 0.021585, -0.102679, -0.004327, -0.043304, 0.072861, 0.027077, 0.034558, 0.068292, -0.036292, 0.069832, -0.003032, 0.053829, -0.043821, -0.072713, 0.085029, -0.040374, 0.020014, -0.104521, -0.034504, -0.059759, 0.062569, 0.025652, 0.049306, 0.061189, -0.025146, 0.079643, -0.005188, 0.033080, -0.048079, -0.048082, 0.069369, -0.028900, 0.024572, -0.077547, -0.022517, -0.054477, 0.038857, 0.013336, 0.043234, 0.044788}, {-0.039186, 0.070792, -0.005913, 0.02642, -0.068274, -0.05022, 0.061444, -0.031241, 0.014996, -0.094544, -0.004146, -0.03464, 0.058981, 0.026097, 0.039781, 0.058408, -0.031887, 0.069252, 0.00576, 0.054062, -0.042801, -0.059974, 0.085272, -0.034453, 0.026097, -0.0959, -0.031164, -0.058699, 0.06839, 0.020512, 0.044727, 0.063609, -0.039863, 0.084819, -0.003909, 0.028666, -0.075677, -0.045125, 0.070379, -0.033895, 0.022111, -0.097184, -0.004921, -0.040851, 0.062316, 0.017435, 0.041437, 0.064568, -0.039656, 0.060726, -0.003402, 0.036854, -0.056503, -0.058554, 0.068588, -0.034879, 0.01352, -0.09962, -0.01434, -0.039505, 0.065133, 0.024321, 0.038473, 0.062438}}; for (int i = 0; i < lstm.sequence_length(); i++) { float* batch0_start = lstm_input[0] + i * lstm.num_inputs(); float* batch0_end = batch0_start + lstm.num_inputs(); lstm.SetInput(2 * i * lstm.num_inputs(), batch0_start, batch0_end); float* batch1_start = lstm_input[1] + i * lstm.num_inputs(); float* batch1_end = batch1_start + lstm.num_inputs(); lstm.SetInput((2 * i + 1) * lstm.num_inputs(), batch1_start, batch1_end); } ASSERT_EQ(lstm.Invoke(), kTfLiteOk); std::vector<float> expected; for (int i = 0; i < lstm.sequence_length(); i++) { float* golden_start_batch0 = lstm_fw_golden_output[0] + i * lstm.num_fw_outputs(); float* golden_end_batch0 = golden_start_batch0 + lstm.num_fw_outputs(); float* golden_start_batch1 = lstm_fw_golden_output[1] + i * lstm.num_fw_outputs(); float* golden_end_batch1 = golden_start_batch1 + lstm.num_fw_outputs(); expected.insert(expected.end(), golden_start_batch0, golden_end_batch0); expected.insert(expected.end(), golden_start_batch1, golden_end_batch1); } EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray(ArrayFloatNear(expected))); expected.clear(); for (int i = 0; i < lstm.sequence_length(); i++) { float* golden_start_batch0 = lstm_combined_golden_output[0] + i * lstm.num_fw_outputs(); float* golden_end_batch0 = golden_start_batch0 + lstm.num_fw_outputs(); float* golden_start_batch1 = lstm_combined_golden_output[1] + i * lstm.num_fw_outputs(); float* golden_end_batch1 = golden_start_batch1 + lstm.num_fw_outputs(); expected.insert(expected.end(), golden_start_batch0, golden_end_batch0); expected.insert(expected.end(), golden_start_batch1, golden_end_batch1); } std::vector<float> combined; for (int i = 0; i < lstm.GetFwOutput().size(); ++i) { combined.push_back(lstm.GetFwOutput()[i] + lstm.GetBwOutput()[i]); } EXPECT_THAT(combined, ElementsAreArray(ArrayFloatNear(expected))); } TEST(LSTMOpTest, BlackBoxTestWithPeepholeWithProjectionNoClippingBatchMajor) { const int n_batch = 2; const int n_input = 5; const int n_cell = 20; const int n_output = 16; const int sequence_length = 4; BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, false, true, true, false, false, false, 0.0, 0.0, false, false, { {n_batch, sequence_length, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_output, n_cell}, {0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {n_output, n_cell}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, sequence_length, 0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, }); lstm.SetInputToInputWeights( {0.021393683, 0.06124551, 0.046905167, -0.014657677, -0.03149463, 0.09171803, 0.14647801, 0.10797193, -0.0057968358, 0.0019193048, -0.2726754, 0.10154029, -0.018539885, 0.080349885, -0.10262385, -0.022599787, -0.09121155, -0.008675967, -0.045206103, -0.0821282, -0.008045952, 0.015478081, 0.055217247, 0.038719587, 0.044153627, -0.06453243, 0.05031825, -0.046935108, -0.008164439, 0.014574226, -0.1671009, -0.15519552, -0.16819797, -0.13971269, -0.11953059, 0.25005487, -0.22790983, 0.009855087, -0.028140958, -0.11200698, 0.11295408, -0.0035217577, 0.054485075, 0.05184695, 0.064711206, 0.10989193, 0.11674786, 0.03490607, 0.07727357, 0.11390585, -0.1863375, -0.1034451, -0.13945189, -0.049401227, -0.18767063, 0.042483903, 0.14233552, 0.13832581, 0.18350165, 0.14545603, -0.028545704, 0.024939531, 0.050929718, 0.0076203286, -0.0029723682, -0.042484224, -0.11827596, -0.09171104, -0.10808628, -0.16327988, -0.2273378, -0.0993647, -0.017155107, 0.0023917493, 0.049272764, 0.0038534778, 0.054764505, 0.089753784, 0.06947234, 0.08014476, -0.04544234, -0.0497073, -0.07135631, -0.048929106, -0.004042012, -0.009284026, 0.018042054, 0.0036860977, -0.07427302, -0.11434604, -0.018995456, 0.031487543, 0.012834908, 0.019977754, 0.044256654, -0.39292613, -0.18519334, -0.11651281, -0.06809892, 0.011373677}); lstm.SetInputToForgetWeights( {-0.0018401089, -0.004852237, 0.03698424, 0.014181704, 0.028273236, -0.016726194, -0.05249759, -0.10204261, 0.00861066, -0.040979505, -0.009899187, 0.01923892, -0.028177269, -0.08535103, -0.14585495, 0.10662567, -0.01909731, -0.017883534, -0.0047269356, -0.045103323, 0.0030784295, 0.076784775, 0.07463696, 0.094531395, 0.0814421, -0.12257899, -0.033945758, -0.031303465, 0.045630626, 0.06843887, -0.13492945, -0.012480007, -0.0811829, -0.07224499, -0.09628791, 0.045100946, 0.0012300825, 0.013964662, 0.099372394, 0.02543059, 0.06958324, 0.034257296, 0.0482646, 0.06267997, 0.052625068, 0.12784666, 0.07077897, 0.025725935, 0.04165009, 0.07241905, 0.018668644, -0.037377294, -0.06277783, -0.08833636, -0.040120605, -0.011405586, -0.007808335, -0.010301386, -0.005102167, 0.027717464, 0.05483423, 0.11449111, 0.11289652, 0.10939839, 0.13396506, -0.08402166, -0.01901462, -0.044678304, -0.07720565, 0.014350063, -0.11757958, -0.0652038, -0.08185733, -0.076754324, -0.092614375, 0.10405491, 0.052960336, 0.035755895, 0.035839386, -0.012540553, 0.036881298, 0.02913376, 0.03420159, 0.05448447, -0.054523353, 0.02582715, 0.02327355, -0.011857179, -0.0011980024, -0.034641717, -0.026125094, -0.17582615, -0.15923657, -0.27486774, -0.0006143371, 0.0001771948, -8.470171e-05, 0.02651807, 0.045790765, 0.06956496}); lstm.SetInputToCellWeights( {-0.04580283, -0.09549462, -0.032418985, -0.06454633, -0.043528453, 0.043018587, -0.049152344, -0.12418144, -0.078985475, -0.07596889, 0.019484362, -0.11434962, -0.0074034138, -0.06314844, -0.092981495, 0.0062155537, -0.025034338, -0.0028890965, 0.048929527, 0.06235075, 0.10665918, -0.032036792, -0.08505916, -0.10843358, -0.13002433, -0.036816437, -0.02130134, -0.016518239, 0.0047691227, -0.0025825808, 0.066017866, 0.029991534, -0.10652836, -0.1037554, -0.13056071, -0.03266643, -0.033702414, -0.006473424, -0.04611692, 0.014419339, -0.025174323, 0.0396852, 0.081777506, 0.06157468, 0.10210095, -0.009658194, 0.046511717, 0.03603906, 0.0069369148, 0.015960095, -0.06507666, 0.09551598, 0.053568836, 0.06408714, 0.12835667, -0.008714329, -0.20211966, -0.12093674, 0.029450472, 0.2849013, -0.029227901, 0.1164364, -0.08560263, 0.09941786, -0.036999565, -0.028842626, -0.0033637602, -0.017012902, -0.09720865, -0.11193351, -0.029155117, -0.017936034, -0.009768936, -0.04223324, -0.036159635, 0.06505112, -0.021742892, -0.023377212, -0.07221364, -0.06430552, 0.05453865, 0.091149814, 0.06387331, 0.007518393, 0.055960953, 0.069779344, 0.046411168, 0.10509911, 0.07463894, 0.0075130584, 0.012850982, 0.04555431, 0.056955688, 0.06555285, 0.050801456, -0.009862683, 0.00826772, -0.026555609, -0.0073611983, -0.0014897042}); lstm.SetInputToOutputWeights( {-0.0998932, -0.07201956, -0.052803773, -0.15629593, -0.15001918, -0.07650751, 0.02359855, -0.075155355, -0.08037709, -0.15093534, 0.029517552, -0.04751393, 0.010350531, -0.02664851, -0.016839722, -0.023121163, 0.0077019283, 0.012851257, -0.05040649, -0.0129761, -0.021737747, -0.038305793, -0.06870586, -0.01481247, -0.001285394, 0.10124236, 0.083122835, 0.053313006, -0.062235646, -0.075637154, -0.027833903, 0.029774971, 0.1130802, 0.09218906, 0.09506135, -0.086665764, -0.037162706, -0.038880914, -0.035832845, -0.014481564, -0.09825003, -0.12048569, -0.097665586, -0.05287633, -0.0964047, -0.11366429, 0.035777505, 0.13568819, 0.052451383, 0.050649304, 0.05798951, -0.021852335, -0.099848844, 0.014740475, -0.078897946, 0.04974699, 0.014160473, 0.06973932, 0.04964942, 0.033364646, 0.08190124, 0.025535367, 0.050893165, 0.048514254, 0.06945813, -0.078907564, -0.06707616, -0.11844508, -0.09986688, -0.07509403, 0.06263226, 0.14925587, 0.20188436, 0.12098451, 0.14639415, 0.0015017595, -0.014267382, -0.03417257, 0.012711468, 0.0028300495, -0.024758482, -0.05098548, -0.0821182, 0.014225672, 0.021544158, 0.08949725, 0.07505268, -0.0020780868, 0.04908258, 0.06476295, -0.022907063, 0.027562456, 0.040185735, 0.019567577, -0.015598739, -0.049097303, -0.017121866, -0.083368234, -0.02332002, -0.0840956}); lstm.SetInputGateBias( {0.02234832, 0.14757581, 0.18176508, 0.10380666, 0.053110216, -0.06928846, -0.13942584, -0.11816189, 0.19483899, 0.03652339, -0.10250295, 0.036714908, -0.18426876, 0.036065217, 0.21810818, 0.02383196, -0.043370757, 0.08690144, -0.04444982, 0.00030581196}); lstm.SetForgetGateBias({0.035185695, -0.042891346, -0.03032477, 0.23027696, 0.11098921, 0.15378423, 0.09263801, 0.09790885, 0.09508917, 0.061199076, 0.07665568, -0.015443159, -0.03499149, 0.046190713, 0.08895977, 0.10899629, 0.40694186, 0.06030037, 0.012413437, -0.06108739}); lstm.SetCellBias({-0.024379363, 0.0055531194, 0.23377132, 0.033463873, -0.1483596, -0.10639995, -0.091433935, 0.058573797, -0.06809782, -0.07889636, -0.043246906, -0.09829136, -0.4279842, 0.034901652, 0.18797937, 0.0075234566, 0.016178843, 0.1749513, 0.13975595, 0.92058027}); lstm.SetOutputGateBias( {0.046159424, -0.0012809046, 0.03563469, 0.12648113, 0.027195795, 0.35373217, -0.018957434, 0.008907322, -0.0762701, 0.12018895, 0.04216877, 0.0022856654, 0.040952638, 0.3147856, 0.08225149, -0.057416286, -0.14995944, -0.008040261, 0.13208859, 0.029760877}); lstm.SetRecurrentToInputWeights( {-0.001374326, -0.078856036, 0.10672688, 0.029162422, -0.11585556, 0.02557986, -0.13446963, -0.035785314, -0.01244275, 0.025961924, -0.02337298, -0.044228926, -0.055839065, -0.046598054, -0.010546039, -0.06900766, 0.027239809, 0.022582639, -0.013296484, -0.05459212, 0.08981, -0.045407712, 0.08682226, -0.06867011, -0.14390695, -0.02916037, 0.000996957, 0.091420636, 0.14283475, -0.07390571, -0.06402044, 0.062524505, -0.093129106, 0.04860203, -0.08364217, -0.08119002, 0.009352075, 0.22920375, 0.0016303885, 0.11583097, -0.13732095, 0.012405723, -0.07551853, 0.06343048, 0.12162708, -0.031923793, -0.014335606, 0.01790974, -0.10650317, -0.0724401, 0.08554849, -0.05727212, 0.06556731, -0.042729504, -0.043227166, 0.011683251, -0.013082158, -0.029302018, -0.010899579, -0.062036745, -0.022509435, -0.00964907, -0.01567329, 0.04260106, -0.07787477, -0.11576462, 0.017356863, 0.048673786, -0.017577527, -0.05527947, -0.082487635, -0.040137455, -0.10820036, -0.04666372, 0.022746278, -0.07851417, 0.01068115, 0.032956902, 0.022433773, 0.0026891115, 0.08944216, -0.0685835, 0.010513544, 0.07228705, 0.02032331, -0.059686817, -0.0005566496, -0.086984694, 0.040414046, -0.1380399, 0.094208956, -0.05722982, 0.012092817, -0.04989123, -0.086576, -0.003399834, -0.04696032, -0.045747425, 0.10091314, 0.048676282, -0.029037097, 0.031399418, -0.0040285117, 0.047237843, 0.09504992, 0.041799378, -0.049185462, -0.031518843, -0.10516937, 0.026374253, 0.10058866, -0.0033195973, -0.041975245, 0.0073591834, 0.0033782164, -0.004325073, -0.10167381, 0.042500053, -0.01447153, 0.06464186, -0.017142897, 0.03312627, 0.009205989, 0.024138335, -0.011337001, 0.035530265, -0.010912711, 0.0706555, -0.005894094, 0.051841937, -0.1401738, -0.02351249, 0.0365468, 0.07590991, 0.08838724, 0.021681072, -0.10086113, 0.019608743, -0.06195883, 0.077335775, 0.023646897, -0.095322326, 0.02233014, 0.09756986, -0.048691444, -0.009579111, 0.07595467, 0.11480546, -0.09801813, 0.019894179, 0.08502348, 0.004032281, 0.037211012, 0.068537936, -0.048005626, -0.091520436, -0.028379958, -0.01556313, 0.06554592, -0.045599163, -0.01672207, -0.020169014, -0.011877351, -0.20212261, 0.010889619, 0.0047078193, 0.038385306, 0.08540671, -0.017140968, -0.0035865551, 0.016678626, 0.005633034, 0.015963363, 0.00871737, 0.060130805, 0.028611384, 0.10109069, -0.015060172, -0.07894427, 0.06401885, 0.011584063, -0.024466386, 0.0047652307, -0.09041358, 0.030737216, -0.0046374933, 0.14215417, -0.11823516, 0.019899689, 0.006106124, -0.027092824, 0.0786356, 0.05052217, -0.058925, -0.011402121, -0.024987547, -0.0013661642, -0.06832946, -0.015667673, -0.1083353, -0.00096863037, -0.06988685, -0.053350925, -0.027275559, -0.033664223, -0.07978348, -0.025200296, -0.017207067, -0.058403496, -0.055697463, 0.005798788, 0.12965427, -0.062582195, 0.0013350133, -0.10482091, 0.0379771, 0.072521195, -0.0029455067, -0.13797039, -0.03628521, 0.013806405, -0.017858358, -0.01008298, -0.07700066, -0.017081132, 0.019358726, 0.0027079724, 0.004635139, 0.062634714, -0.02338735, -0.039547626, -0.02050681, 0.03385117, -0.083611414, 0.002862572, -0.09421313, 0.058618143, -0.08598433, 0.00972939, 0.023867095, -0.053934585, -0.023203006, 0.07452513, -0.048767887, -0.07314807, -0.056307215, -0.10433547, -0.06440842, 0.04328182, 0.04389765, -0.020006588, -0.09076438, -0.11652589, -0.021705797, 0.03345259, -0.010329105, -0.025767034, 0.013057034, -0.07316461, -0.10145612, 0.06358255, 0.18531723, 0.07759293, 0.12006465, 0.1305557, 0.058638252, -0.03393652, 0.09622831, -0.16253184, -2.4580743e-06, 0.079869635, -0.070196845, -0.005644518, 0.06857898, -0.12598175, -0.035084512, 0.03156317, -0.12794146, -0.031963028, 0.04692781, 0.030070418, 0.0071660685, -0.095516115, -0.004643372, 0.040170413, -0.062104587, -0.0037324072, 0.0554317, 0.08184801, -0.019164372, 0.06791302, 0.034257166, -0.10307039, 0.021943003, 0.046745934, 0.0790918, -0.0265588, -0.007824208, 0.042546265, -0.00977924, -0.0002440307, -0.017384544, -0.017990116, 0.12252321, -0.014512694, -0.08251313, 0.08861942, 0.13589665, 0.026351685, 0.012641483, 0.07466548, 0.044301085, -0.045414884, -0.051112458, 0.03444247, -0.08502782, -0.04106223, -0.028126027, 0.028473156, 0.10467447}); lstm.SetRecurrentToForgetWeights( {-0.057784554, -0.026057621, -0.068447545, -0.022581743, 0.14811787, 0.10826372, 0.09471067, 0.03987225, -0.0039523416, 0.00030638507, 0.053185795, 0.10572994, 0.08414449, -0.022036452, -0.00066928595, -0.09203576, 0.032950465, -0.10985798, -0.023809856, 0.0021431844, -0.02196096, -0.00326074, 0.00058621005, -0.074678116, -0.06193199, 0.055729095, 0.03736828, 0.020123724, 0.061878487, -0.04729229, 0.034919553, -0.07585433, -0.04421272, -0.044019096, 0.085488975, 0.04058006, -0.06890133, -0.030951202, -0.024628663, -0.07672815, 0.034293607, 0.08556707, -0.05293577, -0.033561368, -0.04899627, 0.0241671, 0.015736353, -0.095442444, -0.029564252, 0.016493602, -0.035026584, 0.022337519, -0.026871363, 0.004780428, 0.0077918363, -0.03601621, 0.016435321, -0.03263031, -0.09543275, -0.047392778, 0.013454138, 0.028934088, 0.01685226, -0.086110644, -0.046250615, -0.01847454, 0.047608484, 0.07339695, 0.034546845, -0.04881143, 0.009128804, -0.08802852, 0.03761666, 0.008096139, -0.014454086, 0.014361001, -0.023502491, -0.0011840804, -0.07607001, 0.001856849, -0.06509276, -0.006021153, -0.08570962, -0.1451793, 0.060212336, 0.055259194, 0.06974018, 0.049454916, -0.027794661, -0.08077226, -0.016179763, 0.1169753, 0.17213494, -0.0056326236, -0.053934924, -0.0124349, -0.11520337, 0.05409887, 0.088759385, 0.0019655675, 0.0042065294, 0.03881498, 0.019844765, 0.041858196, -0.05695512, 0.047233116, 0.038937137, -0.06542224, 0.014429736, -0.09719407, 0.13908425, -0.05379757, 0.012321099, 0.082840554, -0.029899208, 0.044217527, 0.059855383, 0.07711018, -0.045319796, 0.0948846, -0.011724666, -0.0033288454, -0.033542685, -0.04764985, -0.13873616, 0.040668588, 0.034832682, -0.015319203, -0.018715994, 0.046002675, 0.0599172, -0.043107376, 0.0294216, -0.002314414, -0.022424703, 0.0030315618, 0.0014641669, 0.0029166266, -0.11878115, 0.013738511, 0.12375372, -0.0006038222, 0.029104086, 0.087442465, 0.052958444, 0.07558703, 0.04817258, 0.044462286, -0.015213451, -0.08783778, -0.0561384, -0.003008196, 0.047060397, -0.002058388, 0.03429439, -0.018839769, 0.024734668, 0.024614193, -0.042046934, 0.09597743, -0.0043254104, 0.04320769, 0.0064070094, -0.0019131786, -0.02558259, -0.022822596, -0.023273505, -0.02464396, -0.10991725, -0.006240552, 0.0074488563, 0.024044557, 0.04383914, -0.046476185, 0.028658995, 0.060410924, 0.050786525, 0.009452605, -0.0073054377, -0.024810238, 0.0052906186, 0.0066939713, -0.0020913032, 0.014515517, 0.015898481, 0.021362653, -0.030262267, 0.016587038, -0.011442813, 0.041154444, -0.007631438, -0.03423484, -0.010977775, 0.036152758, 0.0066366293, 0.11915515, 0.02318443, -0.041350313, 0.021485701, -0.10906167, -0.028218046, -0.00954771, 0.020531068, -0.11995105, -0.03672871, 0.024019798, 0.014255957, -0.05221243, -0.00661567, -0.04630967, 0.033188973, 0.10107534, -0.014027541, 0.030796422, -0.10270911, -0.035999842, 0.15443139, 0.07684145, 0.036571592, -0.035900835, -0.0034699554, 0.06209149, 0.015920248, -0.031122351, -0.03858649, 0.01849943, 0.13872518, 0.01503974, 0.069941424, -0.06948533, -0.0088794185, 0.061282158, -0.047401894, 0.03100163, -0.041533746, -0.10430945, 0.044574402, -0.01425562, -0.024290353, 0.034563623, 0.05866852, 0.023947537, -0.09445152, 0.035450947, 0.02247216, -0.0042998926, 0.061146557, -0.10250651, 0.020881841, -0.06747029, 0.10062043, -0.0023941975, 0.03532124, -0.016341697, 0.09685456, -0.016764693, 0.051808182, 0.05875331, -0.04536488, 0.001626336, -0.028892258, -0.01048663, -0.009793449, -0.017093895, 0.010987891, 0.02357273, -0.00010856845, 0.0099760275, -0.001845119, -0.03551521, 0.0018358806, 0.05763657, -0.01769146, 0.040995963, 0.02235177, -0.060430344, 0.11475477, -0.023854522, 0.10071741, 0.0686208, -0.014250481, 0.034261297, 0.047418304, 0.08562733, -0.030519066, 0.0060542435, 0.014653856, -0.038836084, 0.04096551, 0.032249358, -0.08355519, -0.026823482, 0.056386515, -0.010401743, -0.028396193, 0.08507674, 0.014410365, 0.020995233, 0.17040324, 0.11511526, 0.02459721, 0.0066619175, 0.025853224, -0.023133837, -0.081302024, 0.017264642, -0.009585969, 0.09491168, -0.051313367, 0.054532815, -0.014298593, 0.10657464, 0.007076659, 0.10964551, 0.0409152, 0.008275321, -0.07283536, 0.07937492, 0.04192024, -0.1075027}); lstm.SetRecurrentToCellWeights( {-0.037322544, 0.018592842, 0.0056175636, -0.06253426, 0.055647098, -0.05713207, -0.05626563, 0.005559383, 0.03375411, -0.025757805, -0.088049285, 0.06017052, -0.06570978, 0.007384076, 0.035123326, -0.07920549, 0.053676967, 0.044480428, -0.07663568, 0.0071805613, 0.08089997, 0.05143358, 0.038261272, 0.03339287, -0.027673481, 0.044746667, 0.028349208, 0.020090483, -0.019443132, -0.030755889, -0.0040000007, 0.04465846, -0.021585021, 0.0031670958, 0.0053199246, -0.056117613, -0.10893326, 0.076739706, -0.08509834, -0.027997585, 0.037871376, 0.01449768, -0.09002357, -0.06111149, -0.046195522, 0.0422062, -0.005683705, -0.1253618, -0.012925729, -0.04890792, 0.06985068, 0.037654128, 0.03398274, -0.004781977, 0.007032333, -0.031787455, 0.010868644, -0.031489216, 0.09525667, 0.013939797, 0.0058680447, 0.0167067, 0.02668468, -0.04797466, -0.048885044, -0.12722108, 0.035304096, 0.06554885, 0.00972396, -0.039238118, -0.05159735, -0.11329045, 0.1613692, -0.03750952, 0.06529313, -0.071974665, -0.11769596, 0.015524369, -0.0013754242, -0.12446318, 0.02786344, -0.014179351, 0.005264273, 0.14376344, 0.015983658, 0.03406988, -0.06939408, 0.040699873, 0.02111075, 0.09669095, 0.041345075, -0.08316494, -0.07684199, -0.045768797, 0.032298047, -0.041805092, 0.0119405, 0.0061010392, 0.12652606, 0.0064572375, -0.024950314, 0.11574242, 0.04508852, -0.04335324, 0.06760663, -0.027437469, 0.07216407, 0.06977076, -0.05438599, 0.034033038, -0.028602652, 0.05346137, 0.043184172, -0.037189785, 0.10420091, 0.00882477, -0.054019816, -0.074273005, -0.030617684, -0.0028467078, 0.024302477, -0.0038869337, 0.005332455, 0.0013399826, 0.04361412, -0.007001822, 0.09631092, -0.06702025, -0.042049985, -0.035070654, -0.04103342, -0.10273396, 0.0544271, 0.037184782, -0.13150354, -0.0058036847, -0.008264958, 0.042035464, 0.05891794, 0.029673764, 0.0063542654, 0.044788733, 0.054816857, 0.062257513, -0.00093483756, 0.048938446, -0.004952862, -0.007730018, -0.04043371, -0.017094059, 0.07229206, -0.023670016, -0.052195564, -0.025616996, -0.01520939, 0.045104615, -0.007376126, 0.003533447, 0.006570588, 0.056037236, 0.12436656, 0.051817212, 0.028532185, -0.08686856, 0.11868599, 0.07663395, -0.07323171, 0.03463402, -0.050708205, -0.04458982, -0.11590894, 0.021273347, 0.1251325, -0.15313013, -0.12224372, 0.17228661, 0.023029093, 0.086124025, 0.006445803, -0.03496501, 0.028332196, 0.04449512, -0.042436164, -0.026587414, -0.006041347, -0.09292539, -0.05678812, 0.03897832, 0.09465633, 0.008115513, -0.02171956, 0.08304309, 0.071401566, 0.019622514, 0.032163795, -0.004167056, 0.02295182, 0.030739572, 0.056506045, 0.004612461, 0.06524936, 0.059999723, 0.046395954, -0.0045512207, -0.1335546, -0.030136576, 0.11584653, -0.014678886, 0.0020118146, -0.09688814, -0.0790206, 0.039770417, -0.0329582, 0.07922767, 0.029322514, 0.026405897, 0.04207835, -0.07073373, 0.063781224, 0.0859677, -0.10925287, -0.07011058, 0.048005477, 0.03438226, -0.09606514, -0.006669445, -0.043381985, 0.04240257, -0.06955775, -0.06769346, 0.043903265, -0.026784198, -0.017840602, 0.024307009, -0.040079936, -0.019946516, 0.045318738, -0.12233574, 0.026170589, 0.0074471775, 0.15978073, 0.10185836, 0.10298046, -0.015476589, -0.039390966, -0.072174534, 0.0739445, -0.1211869, -0.0347889, -0.07943156, 0.014809798, -0.12412325, -0.0030663363, 0.039695457, 0.0647603, -0.08291318, -0.018529687, -0.004423833, 0.0037507233, 0.084633216, -0.01514876, -0.056505352, -0.012800942, -0.06994386, 0.012962922, -0.031234352, 0.07029052, 0.016418684, 0.03618972, 0.055686004, -0.08663945, -0.017404709, -0.054761406, 0.029065743, 0.052404847, 0.020238016, 0.0048197987, -0.0214882, 0.07078733, 0.013016777, 0.06262858, 0.009184685, 0.020785125, -0.043904778, -0.0270329, -0.03299152, -0.060088247, -0.015162964, -0.001828936, 0.12642565, -0.056757294, 0.013586685, 0.09232601, -0.035886683, 0.06000002, 0.05229691, -0.052580316, -0.082029596, -0.010794592, 0.012947712, -0.036429964, -0.085508935, -0.13127148, -0.017744139, 0.031502828, 0.036232427, -0.031581745, 0.023051167, -0.05325106, -0.03421577, 0.028793324, -0.034633752, -0.009881397, -0.043551125, -0.018609839, 0.0019097115, -0.008799762, 0.056595087, 0.0022273948, 0.055752404}); lstm.SetRecurrentToOutputWeights({ 0.025825322, -0.05813119, 0.09495884, -0.045984812, -0.01255415, -0.0026479573, -0.08196161, -0.054914974, -0.0046604523, -0.029587349, -0.044576716, -0.07480124, -0.082868785, 0.023254942, 0.027502948, -0.0039728214, -0.08683098, -0.08116779, -0.014675607, -0.037924774, -0.023314456, -0.007401714, -0.09255757, 0.029460307, -0.08829125, -0.005139627, -0.08989442, -0.0555066, 0.13596267, -0.025062224, -0.048351806, -0.03850004, 0.07266485, -0.022414139, 0.05940088, 0.075114764, 0.09597592, -0.010211725, -0.0049794707, -0.011523867, -0.025980417, 0.072999895, 0.11091378, -0.081685916, 0.014416728, 0.043229222, 0.034178585, -0.07530371, 0.035837382, -0.085607, -0.007721233, -0.03287832, -0.043848954, -0.06404588, -0.06632928, -0.073643476, 0.008214239, -0.045984086, 0.039764922, 0.03474462, 0.060612556, -0.080590084, 0.049127717, 0.04151091, -0.030063879, 0.008801774, -0.023021035, -0.019558564, 0.05158114, -0.010947698, -0.011825728, 0.0075720972, 0.0699727, -0.0039981045, 0.069350146, 0.08799282, 0.016156472, 0.035502106, 0.11695009, 0.006217345, 0.13392477, -0.037875112, 0.025745004, 0.08940699, -0.00924166, 0.0046702605, -0.036598757, -0.08811812, 0.10522024, -0.032441203, 0.008176899, -0.04454919, 0.07058152, 0.0067963637, 0.039206743, 0.03259838, 0.03725492, -0.09515802, 0.013326398, -0.052055415, -0.025676316, 0.03198509, -0.015951829, -0.058556724, 0.036879618, 0.043357447, 0.028362012, -0.05908629, 0.0059240665, -0.04995891, -0.019187413, 0.0276265, -0.01628143, 0.0025863599, 0.08800015, 0.035250366, -0.022165963, -0.07328642, -0.009415526, -0.07455109, 0.11690406, 0.0363299, 0.07411125, 0.042103454, -0.009660886, 0.019076364, 0.018299393, -0.046004917, 0.08891175, 0.0431396, -0.026327137, -0.051502608, 0.08979574, -0.051670972, 0.04940282, -0.07491107, -0.021240504, 0.022596184, -0.034280192, 0.060163025, -0.058211457, -0.051837247, -0.01349775, -0.04639988, -0.035936575, -0.011681591, 0.064818054, 0.0073146066, -0.021745546, -0.043124277, -0.06471268, -0.07053354, -0.029321948, -0.05330136, 0.016933719, -0.053782392, 0.13747959, -0.1361751, -0.11569455, 0.0033329215, 0.05693899, -0.053219706, 0.063698, 0.07977434, -0.07924483, 0.06936997, 0.0034815092, -0.007305279, -0.037325785, -0.07251102, -0.033633437, -0.08677009, 0.091591336, -0.14165086, 0.021752775, 0.019683983, 0.0011612234, -0.058154266, 0.049996935, 0.0288841, -0.0024567875, -0.14345716, 0.010955264, -0.10234828, 0.1183656, -0.0010731248, -0.023590032, -0.072285876, -0.0724771, -0.026382286, -0.0014920527, 0.042667855, 0.0018776858, 0.02986552, 0.009814309, 0.0733756, 0.12289186, 0.018043943, -0.0458958, 0.049412545, 0.033632483, 0.05495232, 0.036686596, -0.013781798, -0.010036754, 0.02576849, -0.08307328, 0.010112348, 0.042521734, -0.05869831, -0.071689695, 0.03876447, -0.13275425, -0.0352966, -0.023077697, 0.10285965, 0.084736146, 0.15568255, -0.00040734606, 0.027835453, -0.10292561, -0.032401145, 0.10053256, -0.026142767, -0.08271222, -0.0030240538, -0.016368777, 0.1070414, 0.042672627, 0.013456989, -0.0437609, -0.022309763, 0.11576483, 0.04108048, 0.061026827, -0.0190714, -0.0869359, 0.037901703, 0.0610107, 0.07202949, 0.01675338, 0.086139716, -0.08795751, -0.014898893, -0.023771819, -0.01965048, 0.007955471, -0.043740474, 0.03346837, -0.10549954, 0.090567775, 0.042013682, -0.03176985, 0.12569028, -0.02421228, -0.029526481, 0.023851605, 0.031539805, 0.05292009, -0.02344001, -0.07811758, -0.08834428, 0.10094801, 0.16594367, -0.06861939, -0.021256343, -0.041093912, -0.06669611, 0.035498552, 0.021757556, -0.09302526, -0.015403468, -0.06614931, -0.051798206, -0.013874718, 0.03630673, 0.010412845, -0.08077351, 0.046185967, 0.0035662893, 0.03541868, -0.094149634, -0.034814864, 0.003128424, -0.020674974, -0.03944324, -0.008110165, -0.11113267, 0.08484226, 0.043586485, 0.040582247, 0.0968012, -0.065249965, -0.028036479, 0.0050708856, 0.0017462453, 0.0326779, 0.041296225, 0.09164146, -0.047743853, -0.015952192, -0.034451712, 0.084197424, -0.05347844, -0.11768019, 0.085926116, -0.08251791, -0.045081906, 0.0948852, 0.068401024, 0.024856757, 0.06978981, -0.057309967, -0.012775832, -0.0032452994, 0.01977615, -0.041040014, -0.024264973, 0.063464895, 0.05431621, }); lstm.SetCellToInputWeights( {0.040369894, 0.030746894, 0.24704495, 0.018586371, -0.037586458, -0.15312155, -0.11812848, -0.11465643, 0.20259799, 0.11418174, -0.10116027, -0.011334949, 0.12411352, -0.076769054, -0.052169047, 0.21198851, -0.38871562, -0.09061183, -0.09683246, -0.21929175}); lstm.SetCellToForgetWeights( {-0.01998659, -0.15568835, -0.24248174, -0.012770197, 0.041331276, -0.072311886, -0.052123554, -0.0066330447, -0.043891653, 0.036225766, -0.047248036, 0.021479502, 0.033189066, 0.11952997, -0.020432774, 0.64658105, -0.06650122, -0.03467612, 0.095340036, 0.23647355}); lstm.SetCellToOutputWeights( {0.08286371, -0.08261836, -0.51210177, 0.002913762, 0.17764764, -0.5495371, -0.08460716, -0.24552552, 0.030037103, 0.04123544, -0.11940523, 0.007358328, 0.1890978, 0.4833202, -0.34441817, 0.36312827, -0.26375428, 0.1457655, -0.19724406, 0.15548733}); lstm.SetProjectionWeights( {-0.009802181, 0.09401916, 0.0717386, -0.13895074, 0.09641832, 0.060420845, 0.08539281, 0.054285463, 0.061395317, 0.034448683, -0.042991187, 0.019801661, -0.16840284, -0.015726732, -0.23041931, -0.024478018, -0.10959692, -0.013875541, 0.18600968, -0.061274476, 0.0138165, -0.08160894, -0.07661644, 0.032372914, 0.16169067, 0.22465782, -0.03993472, -0.004017731, 0.08633481, -0.28869787, 0.08682067, 0.17240396, 0.014975425, 0.056431185, 0.031037588, 0.16702051, 0.0077946745, 0.15140012, 0.29405436, 0.120285, -0.188994, -0.027265169, 0.043389652, -0.022061434, 0.014777949, -0.20203483, 0.094781205, 0.19100232, 0.13987629, -0.036132768, -0.06426278, -0.05108664, 0.13221376, 0.009441198, -0.16715929, 0.15859416, -0.040437475, 0.050779544, -0.022187516, 0.012166504, 0.027685808, -0.07675938, -0.0055694645, -0.09444123, 0.0046453946, 0.050794356, 0.10770313, -0.20790008, -0.07149004, -0.11425117, 0.008225835, -0.035802525, 0.14374903, 0.15262283, 0.048710253, 0.1847461, -0.007487823, 0.11000021, -0.09542012, 0.22619456, -0.029149994, 0.08527916, 0.009043713, 0.0042746216, 0.016261552, 0.022461696, 0.12689082, -0.043589946, -0.12035478, -0.08361797, -0.050666027, -0.1248618, -0.1275799, -0.071875185, 0.07377272, 0.09944291, -0.18897448, -0.1593054, -0.06526116, -0.040107165, -0.004618631, -0.067624845, -0.007576253, 0.10727444, 0.041546922, -0.20424393, 0.06907816, 0.050412357, 0.00724631, 0.039827548, 0.12449835, 0.10747581, 0.13708383, 0.09134148, -0.12617786, -0.06428341, 0.09956831, 0.1208086, -0.14676677, -0.0727722, 0.1126304, 0.010139365, 0.015571211, -0.038128063, 0.022913318, -0.042050496, 0.16842307, -0.060597885, 0.10531834, -0.06411776, -0.07451711, -0.03410368, -0.13393489, 0.06534304, 0.003620307, 0.04490757, 0.05970546, 0.05197996, 0.02839995, 0.10434969, -0.013699693, -0.028353551, -0.07260381, 0.047201227, -0.024575593, -0.036445823, 0.07155557, 0.009672501, -0.02328883, 0.009533515, -0.03606021, -0.07421458, -0.028082801, -0.2678904, -0.13221288, 0.18419984, -0.13012612, -0.014588381, -0.035059117, -0.04824723, 0.07830115, -0.056184657, 0.03277091, 0.025466874, 0.14494097, -0.12522776, -0.098633975, -0.10766018, -0.08317623, 0.08594209, 0.07749552, 0.039474737, 0.1776665, -0.07409566, -0.0477268, 0.29323658, 0.10801441, 0.1154011, 0.013952499, 0.10739139, 0.10708251, -0.051456142, 0.0074137426, -0.10430189, 0.10034707, 0.045594677, 0.0635285, -0.0715442, -0.089667566, -0.10811871, 0.00026344223, 0.08298446, -0.009525053, 0.006585689, -0.24567553, -0.09450807, 0.09648481, 0.026996298, -0.06419476, -0.04752702, -0.11063944, -0.23441927, -0.17608605, -0.052156363, 0.067035615, 0.19271925, -0.0032889997, -0.043264326, 0.09663576, -0.057112187, -0.10100678, 0.0628376, 0.04447668, 0.017961001, -0.10094388, -0.10190601, 0.18335468, 0.10494553, -0.052095775, -0.0026118709, 0.10539724, -0.04383912, -0.042349473, 0.08438151, -0.1947263, 0.02251204, 0.11216432, -0.10307853, 0.17351969, -0.039091777, 0.08066188, -0.00561982, 0.12633002, 0.11335965, -0.0088127935, -0.019777594, 0.06864014, -0.059751723, 0.016233567, -0.06894641, -0.28651384, -0.004228674, 0.019708522, -0.16305895, -0.07468996, -0.0855457, 0.099339016, -0.07580735, -0.13775392, 0.08434318, 0.08330512, -0.12131499, 0.031935584, 0.09180414, -0.08876437, -0.08049874, 0.008753825, 0.03498998, 0.030215185, 0.03907079, 0.089751154, 0.029194152, -0.03337423, -0.019092513, 0.04331237, 0.04299654, -0.036394123, -0.12915532, 0.09793732, 0.07512415, -0.11319543, -0.032502122, 0.15661901, 0.07671967, -0.005491124, -0.19379048, -0.218606, 0.21448623, 0.017840758, 0.1416943, -0.07051762, 0.19488361, 0.02664691, -0.18104725, -0.09334311, 0.15026465, -0.15493552, -0.057762887, -0.11604192, -0.262013, -0.01391798, 0.012185008, 0.11156489, -0.07483202, 0.06693364, -0.26151478, 0.046425626, 0.036540434, -0.16435726, 0.17338543, -0.21401681, -0.11385144, -0.08283257, -0.069031075, 0.030635102, 0.010969227, 0.11109743, 0.010919218, 0.027526086, 0.13519906, 0.01891392, -0.046839405, -0.040167913, 0.017953383, -0.09700955, 0.0061885654, -0.07000971, 0.026893595, -0.038844477, 0.14543656}); static float lstm_input[][20] = { { 0.787926, 0.151646, 0.071352, 0.118426, 0.458058, 0.596268, 0.998386, 0.568695, 0.864524, 0.571277, 0.073204, 0.296072, 0.743333, 0.069199, 0.045348, 0.867394, 0.291279, 0.013714, 0.482521, 0.626339}, { 0.295743, 0.544053, 0.690064, 0.858138, 0.497181, 0.642421, 0.524260, 0.134799, 0.003639, 0.162482, 0.640394, 0.930399, 0.050782, 0.432485, 0.988078, 0.082922, 0.563329, 0.865614, 0.333232, 0.259916}}; static float lstm_fw_golden_output[][64] = { { -0.00396806, 0.029352, -0.00279226, 0.0159977, -0.00835576, -0.0211779, 0.0283512, -0.0114597, 0.00907307, -0.0244004, -0.0152191, -0.0259063, 0.00914318, 0.00415118, 0.017147, 0.0134203, -0.0166936, 0.0381209, 0.000889694, 0.0143363, -0.0328911, -0.0234288, 0.0333051, -0.012229, 0.0110322, -0.0457725, -0.000832209, -0.0202817, 0.0327257, 0.0121308, 0.0155969, 0.0312091, -0.0213783, 0.0350169, 0.000324794, 0.0276012, -0.0263374, -0.0371449, 0.0446149, -0.0205474, 0.0103729, -0.0576349, -0.0150052, -0.0292043, 0.0376827, 0.0136115, 0.0243435, 0.0354492, -0.0189322, 0.0464512, -0.00251373, 0.0225745, -0.0308346, -0.0317124, 0.0460407, -0.0189395, 0.0149363, -0.0530162, -0.0150767, -0.0340193, 0.0286833, 0.00824207, 0.0264887, 0.0305169}, { -0.013869, 0.0287268, -0.00334693, 0.00733398, -0.0287926, -0.0186926, 0.0193662, -0.0115437, 0.00422612, -0.0345232, 0.00223253, -0.00957321, 0.0210624, 0.013331, 0.0150954, 0.02168, -0.0141913, 0.0322082, 0.00227024, 0.0260507, -0.0188721, -0.0296489, 0.0399134, -0.0160509, 0.0116039, -0.0447318, -0.0150515, -0.0277406, 0.0316596, 0.0118233, 0.0214762, 0.0293641, -0.0204549, 0.0450315, -0.00117378, 0.0167673, -0.0375007, -0.0238314, 0.038784, -0.0174034, 0.0131743, -0.0506589, -0.0048447, -0.0240239, 0.0325789, 0.00790065, 0.0220157, 0.0333314, -0.0264787, 0.0387855, -0.000764675, 0.0217599, -0.037537, -0.0335206, 0.0431679, -0.0211424, 0.010203, -0.062785, -0.00832363, -0.025181, 0.0412031, 0.0118723, 0.0239643, 0.0394009}}; static float lstm_combined_golden_output[][64] = { {-0.022014, 0.073544, -0.002235, 0.040068, -0.037136, -0.052788, 0.075325, -0.029378, 0.024298, -0.07733, -0.030674, -0.060229, 0.040599, 0.011608, 0.042005, 0.045977, -0.039225, 0.076294, 0.000735, 0.032852, -0.069869, -0.053312, 0.073527, -0.028136, 0.021585, -0.102679, -0.004327, -0.043304, 0.072861, 0.027077, 0.034558, 0.068292, -0.036292, 0.069832, -0.003032, 0.053829, -0.043821, -0.072713, 0.085029, -0.040374, 0.020014, -0.104521, -0.034504, -0.059759, 0.062569, 0.025652, 0.049306, 0.061189, -0.025146, 0.079643, -0.005188, 0.033080, -0.048079, -0.048082, 0.069369, -0.028900, 0.024572, -0.077547, -0.022517, -0.054477, 0.038857, 0.013336, 0.043234, 0.044788}, {-0.039186, 0.070792, -0.005913, 0.02642, -0.068274, -0.05022, 0.061444, -0.031241, 0.014996, -0.094544, -0.004146, -0.03464, 0.058981, 0.026097, 0.039781, 0.058408, -0.031887, 0.069252, 0.00576, 0.054062, -0.042801, -0.059974, 0.085272, -0.034453, 0.026097, -0.0959, -0.031164, -0.058699, 0.06839, 0.020512, 0.044727, 0.063609, -0.039863, 0.084819, -0.003909, 0.028666, -0.075677, -0.045125, 0.070379, -0.033895, 0.022111, -0.097184, -0.004921, -0.040851, 0.062316, 0.017435, 0.041437, 0.064568, -0.039656, 0.060726, -0.003402, 0.036854, -0.056503, -0.058554, 0.068588, -0.034879, 0.01352, -0.09962, -0.01434, -0.039505, 0.065133, 0.024321, 0.038473, 0.062438}}; const int input_sequence_size = lstm.sequence_length() * lstm.num_inputs(); EXPECT_EQ(input_sequence_size, 20); float* batch0_start = lstm_input[0]; float* batch0_end = batch0_start + input_sequence_size; lstm.SetInput(0, batch0_start, batch0_end); float* batch1_start = lstm_input[1]; float* batch1_end = batch1_start + input_sequence_size; lstm.SetInput(input_sequence_size, batch1_start, batch1_end); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); const int output_sequence_size = lstm.sequence_length() * lstm.num_fw_outputs(); EXPECT_EQ(output_sequence_size, 64); std::vector<float> expected; const float* golden_start_batch0 = lstm_fw_golden_output[0]; const float* golden_end_batch0 = golden_start_batch0 + output_sequence_size; expected.insert(expected.end(), golden_start_batch0, golden_end_batch0); const float* golden_start_batch1 = lstm_fw_golden_output[1]; const float* golden_end_batch1 = golden_start_batch1 + output_sequence_size; expected.insert(expected.end(), golden_start_batch1, golden_end_batch1); EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray(ArrayFloatNear(expected))); expected.clear(); golden_start_batch0 = lstm_combined_golden_output[0]; golden_end_batch0 = golden_start_batch0 + output_sequence_size; expected.insert(expected.end(), golden_start_batch0, golden_end_batch0); golden_start_batch1 = lstm_combined_golden_output[1]; golden_end_batch1 = golden_start_batch1 + output_sequence_size; expected.insert(expected.end(), golden_start_batch1, golden_end_batch1); std::vector<float> combined; for (int i = 0; i < lstm.GetFwOutput().size(); ++i) { combined.push_back(lstm.GetFwOutput()[i] + lstm.GetBwOutput()[i]); } EXPECT_THAT(combined, ElementsAreArray(ArrayFloatNear(expected))); } TEST_P(LSTMOpTest, BlackBoxTestWithAuxInputZeroAuxWeight) { const int n_batch = 1; const int n_input = 2; const int n_cell = 4; const int n_output = 4; const int sequence_length = 3; auto params = GetParam(); const bool quantize_weights = std::get<0>(params); const bool asymmetric_quantize_inputs = std::get<1>(params); BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, false, false, false, false, false, true, 0.0, 0.0, quantize_weights, true, { {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, }, asymmetric_quantize_inputs); lstm.SetInputToInputWeights({-0.45018822, -0.02338299, -0.0870589, -0.34550029, 0.04266912, -0.15680569, -0.34856534, 0.43890524}); lstm.SetInputToCellWeights({-0.50013041, 0.1370284, 0.11810488, 0.2013163, -0.20583314, 0.44344562, 0.22077113, -0.29909778}); lstm.SetInputToForgetWeights({0.09701663, 0.20334584, -0.50592935, -0.31343272, -0.40032279, 0.44781327, 0.01387155, -0.35593212}); lstm.SetInputToOutputWeights({-0.25065863, -0.28290087, 0.04613829, 0.40525138, 0.44272184, 0.03897077, -0.1556896, 0.19487578}); lstm.SetInputGateBias({0., 0., 0., 0.}); lstm.SetCellBias({0., 0., 0., 0.}); lstm.SetForgetGateBias({1., 1., 1., 1.}); lstm.SetOutputGateBias({0., 0., 0., 0.}); lstm.SetRecurrentToInputWeights( {-0.0063535, -0.2042388, 0.31454784, -0.35746509, 0.28902304, 0.08183324, -0.16555229, 0.02286911, -0.13566875, 0.03034258, 0.48091322, -0.12528998, 0.24077177, -0.51332325, -0.33502164, 0.10629296}); lstm.SetRecurrentToCellWeights( {-0.3407414, 0.24443203, -0.2078532, 0.26320225, 0.05695659, -0.00123841, -0.4744786, -0.35869038, -0.06418842, -0.13502428, -0.501764, 0.22830659, -0.46367589, 0.26016325, -0.03894562, -0.16368064}); lstm.SetRecurrentToForgetWeights( {-0.48684245, -0.06655136, 0.42224967, 0.2112639, 0.27654213, 0.20864892, -0.07646349, 0.45877004, 0.00141793, -0.14609534, 0.36447752, 0.09196436, 0.28053468, 0.01560611, -0.20127171, -0.01140004}); lstm.SetRecurrentToOutputWeights( {0.43385774, -0.17194885, 0.2718237, 0.09215671, 0.24107647, -0.39835793, 0.18212086, 0.01301402, 0.48572797, -0.50656658, 0.20047462, -0.20607421, -0.51818722, -0.15390486, 0.0468148, 0.39922136}); static float lstm_input[] = {2., 3., 3., 4., 1., 1.}; static float lstm_fw_golden_output[] = { -0.02973187, 0.1229473, 0.20885126, -0.15358765, -0.03716109, 0.12507336, 0.41193449, -0.20860538, -0.15053082, 0.09120187, 0.24278517, -0.12222792}; static float lstm_bw_golden_output[] = { -0.0806187, 0.139077, 0.400476, -0.197842, -0.0332076, 0.123838, 0.309777, -0.17621, -0.0490733, 0.0739237, 0.067706, -0.0208124}; float* batch0_start = lstm_input; float* batch0_end = batch0_start + lstm.num_inputs() * lstm.sequence_length(); lstm.SetInput(0, batch0_start, batch0_end); lstm.SetAuxInput(0, batch0_start, batch0_end); std::vector<float> dummy_weights(n_cell * n_input, 0.0f); lstm.SetAuxInputToInputWeights(dummy_weights); lstm.SetAuxInputToForgetWeights(dummy_weights); lstm.SetAuxInputToCellWeights(dummy_weights); lstm.SetAuxInputToOutputWeights(dummy_weights); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); float* fw_golden_start = lstm_fw_golden_output; float* fw_golden_end = fw_golden_start + lstm.num_fw_outputs() * lstm.sequence_length(); std::vector<float> fw_expected; fw_expected.insert(fw_expected.end(), fw_golden_start, fw_golden_end); EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray( ArrayFloatNear(fw_expected, quantize_weights ? 1e-2 : 1e-5))); float* bw_golden_start = lstm_bw_golden_output; float* bw_golden_end = bw_golden_start + lstm.num_bw_outputs() * lstm.sequence_length(); std::vector<float> bw_expected; bw_expected.insert(bw_expected.end(), bw_golden_start, bw_golden_end); EXPECT_THAT(lstm.GetBwOutput(), ElementsAreArray( ArrayFloatNear(bw_expected, quantize_weights ? 1e-2 : 1e-5))); } TEST_P(LSTMOpTest, BlackBoxTestWithAuxInput) { const int n_batch = 1; const int n_input = 2; const int n_cell = 4; const int n_output = 4; const int sequence_length = 3; auto params = GetParam(); const bool quantize_weights = std::get<0>(params); const bool asymmetric_quantize_inputs = std::get<1>(params); BidirectionalLSTMOpModel lstm( n_batch, n_input, n_cell, n_output, sequence_length, false, false, false, false, false, true, 0.0, 0.0, quantize_weights, true, { {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {n_cell, n_output}, {0}, {0}, {0}, {n_cell}, {n_cell}, {n_cell}, {n_cell}, {0, 0}, {0}, {n_batch, n_output}, {n_batch, n_cell}, {n_batch, n_output}, {n_batch, n_cell}, {sequence_length, n_batch, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, {n_cell, n_input}, }, asymmetric_quantize_inputs); lstm.SetInputToInputWeights({-0.45018822, -0.02338299, -0.0870589, -0.34550029, 0.04266912, -0.15680569, -0.34856534, 0.43890524}); lstm.SetInputToCellWeights({-0.50013041, 0.1370284, 0.11810488, 0.2013163, -0.20583314, 0.44344562, 0.22077113, -0.29909778}); lstm.SetInputToForgetWeights({0.09701663, 0.20334584, -0.50592935, -0.31343272, -0.40032279, 0.44781327, 0.01387155, -0.35593212}); lstm.SetInputToOutputWeights({-0.25065863, -0.28290087, 0.04613829, 0.40525138, 0.44272184, 0.03897077, -0.1556896, 0.19487578}); lstm.SetInputGateBias({0., 0., 0., 0.}); lstm.SetCellBias({0., 0., 0., 0.}); lstm.SetForgetGateBias({1., 1., 1., 1.}); lstm.SetOutputGateBias({0., 0., 0., 0.}); lstm.SetRecurrentToInputWeights( {-0.0063535, -0.2042388, 0.31454784, -0.35746509, 0.28902304, 0.08183324, -0.16555229, 0.02286911, -0.13566875, 0.03034258, 0.48091322, -0.12528998, 0.24077177, -0.51332325, -0.33502164, 0.10629296}); lstm.SetRecurrentToCellWeights( {-0.3407414, 0.24443203, -0.2078532, 0.26320225, 0.05695659, -0.00123841, -0.4744786, -0.35869038, -0.06418842, -0.13502428, -0.501764, 0.22830659, -0.46367589, 0.26016325, -0.03894562, -0.16368064}); lstm.SetRecurrentToForgetWeights( {-0.48684245, -0.06655136, 0.42224967, 0.2112639, 0.27654213, 0.20864892, -0.07646349, 0.45877004, 0.00141793, -0.14609534, 0.36447752, 0.09196436, 0.28053468, 0.01560611, -0.20127171, -0.01140004}); lstm.SetRecurrentToOutputWeights( {0.43385774, -0.17194885, 0.2718237, 0.09215671, 0.24107647, -0.39835793, 0.18212086, 0.01301402, 0.48572797, -0.50656658, 0.20047462, -0.20607421, -0.51818722, -0.15390486, 0.0468148, 0.39922136}); static float lstm_input[] = {2., 3., 3., 4., 1., 1.}; static float lstm_fw_golden_output[] = { 0.153335, 0.542754, 0.708602, 0.742855, 0.247581, 0.835739, 0.947797, 0.958177, 0.410892, 0.672268, 0.761909, 0.829133}; static float lstm_bw_golden_output[] = { 0.342275, 0.883431, 0.955930, 0.975621, 0.204939, 0.806858, 0.914849, 0.934871, 0.123236, 0.373087, 0.465377, 0.517630}; lstm.SetAuxInputToInputWeights({0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); lstm.SetAuxInputToForgetWeights({0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 1.0}); lstm.SetAuxInputToCellWeights({0.5, 0.6, 0.7, 0.8, 0.5, 0.6, 0.7, 0.8}); lstm.SetAuxInputToOutputWeights({0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}); float* batch0_start = lstm_input; float* batch0_end = batch0_start + lstm.num_inputs() * lstm.sequence_length(); lstm.SetInput(0, batch0_start, batch0_end); lstm.SetAuxInput(0, batch0_start, batch0_end); ASSERT_EQ(lstm.Invoke(), kTfLiteOk); float* fw_golden_start = lstm_fw_golden_output; float* fw_golden_end = fw_golden_start + lstm.num_fw_outputs() * lstm.sequence_length(); std::vector<float> fw_expected; fw_expected.insert(fw_expected.end(), fw_golden_start, fw_golden_end); EXPECT_THAT(lstm.GetFwOutput(), ElementsAreArray( ArrayFloatNear(fw_expected, quantize_weights ? 1e-2 : 1e-5))); float* bw_golden_start = lstm_bw_golden_output; float* bw_golden_end = bw_golden_start + lstm.num_bw_outputs() * lstm.sequence_length(); std::vector<float> bw_expected; bw_expected.insert(bw_expected.end(), bw_golden_start, bw_golden_end); EXPECT_THAT(lstm.GetBwOutput(), ElementsAreArray( ArrayFloatNear(bw_expected, quantize_weights ? 1e-2 : 1e-5))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/bidirectional_sequence_lstm.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/bidirectional_sequence_lstm_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a162ff7a-8c7a-4e67-a748-3a3d8af56cdc
cpp
tensorflow/tensorflow
hlo_value_semantics_analysis
third_party/xla/xla/service/hlo_value_semantics_analysis.cc
third_party/xla/xla/service/hlo_value_semantics_analysis_test.cc
#include "xla/service/hlo_value_semantics_analysis.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <numeric> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/side_effect_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { SendRecvGroupMap::SendRecvGroupMap(const HloModule& hlo_module) { for (HloComputation* computation : hlo_module.computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kSend && instruction->opcode() != HloOpcode::kRecv) { continue; } std::string rendezvous = instruction->frontend_attributes().map().at( kXlaHostTransferRendezvousNameAttr); auto send_recv_iter = host_transfer_rendezvous_map_.find(rendezvous); if (send_recv_iter == host_transfer_rendezvous_map_.end()) { auto insert_success = host_transfer_rendezvous_map_.insert( {rendezvous, SendRecvGroup{nullptr, nullptr}}); send_recv_iter = insert_success.first; } if (instruction->opcode() == HloOpcode::kSend) { send_recv_iter->second.send = instruction; } else { send_recv_iter->second.recv = instruction; } } } } absl::StatusOr<HloInstruction*> SendRecvGroupMap::GetMatchingSendOrRecv( HloInstruction* send_or_recv) const { if (send_or_recv->opcode() != HloOpcode::kSend && send_or_recv->opcode() != HloOpcode::kRecv) { return InvalidArgument("Expecting only send or recv"); } std::string rendezvous = send_or_recv->frontend_attributes().map().at( kXlaHostTransferRendezvousNameAttr); auto send_recv_iter = host_transfer_rendezvous_map_.find(rendezvous); if (send_recv_iter == host_transfer_rendezvous_map_.end()) { return Internal("Missing send or recv from send recv group."); } if (send_or_recv->opcode() == HloOpcode::kSend) { return send_recv_iter->second.recv; } return send_recv_iter->second.send; } bool HloPreOrderDFS::IsReady(const HloInstruction* instruction) const { for (HloInstruction* user : instruction->users()) { if (!visited_.contains(user)) { return false; } } return true; } namespace { std::vector<HloInstruction*> GetAllInstructionsWithZeroUsers( const HloComputation& computation) { std::vector<HloInstruction*> results; for (HloInstruction* instruction : computation.instructions()) { if (instruction->users().empty()) { results.push_back(instruction); } } return results; } } absl::Status HloPreOrderDFS::Run(const HloComputation& computation, DfsHloVisitorBase<HloInstruction*>* visitor) { stack_.clear(); visited_.clear(); std::vector<HloInstruction*> roots = GetAllInstructionsWithZeroUsers(computation); for (HloInstruction* root : roots) { stack_.push_back(root); } while (!stack_.empty()) { HloInstruction* to_visit = stack_.back(); stack_.pop_back(); if (visited_.contains(to_visit)) { continue; } visited_.insert(to_visit); for (HloInstruction* operand : to_visit->mutable_operands()) { if (IsReady(operand)) { stack_.push_back(operand); } } TF_RETURN_IF_ERROR(visitor->Preprocess(to_visit)); TF_RETURN_IF_ERROR(to_visit->Visit(visitor)); TF_RETURN_IF_ERROR(visitor->Postprocess(to_visit)); } return absl::OkStatus(); } namespace { template <typename T> std::string ToString(T element) { return absl::StrCat(element); } template <> std::string ToString(const HloValueSemantics* element) { return element->ToString(); } template <typename T> std::string ToString(const ShapeTree<T>& tree) { std::string str; tree.ForEachElement([&str, &tree](const ShapeIndex& shape_index, T element) { auto subshape = ShapeUtil::GetSubshape(tree.shape(), (shape_index)); absl::StrAppend(&str, shape_index.ToString(), ", ", subshape.ToString(), ": ", ToString(element), "\n"); }); return str; } } absl::Status EinsumDepthAnalysis::RunInternal( const HloComputation& computation, const std::optional<ShapeTree<int>>& root_depth) { std::vector<HloInstruction*> roots = GetAllInstructionsWithZeroUsers(computation); for (HloInstruction* root : roots) { if (root == computation.root_instruction()) { if (root_depth.has_value()) { TF_RETURN_IF_ERROR(SetInstructionDepth(root, *root_depth)); } else { TF_RETURN_IF_ERROR(SetInstructionDepth(root, 0)); } } else { GetOrCreateDepthTree(root); } } HloPreOrderDFS dfs; return dfs.Run(computation, this); } absl::StatusOr<std::unique_ptr<EinsumDepthAnalysis>> EinsumDepthAnalysis::Run( const HloComputation& computation, const SendRecvGroupMap& send_recv_group_map) { EinsumDepthAnalysis* analysis_ptr = new EinsumDepthAnalysis(send_recv_group_map); std::unique_ptr<EinsumDepthAnalysis> analysis(analysis_ptr); TF_RETURN_IF_ERROR(analysis->RunInternal(computation, std::nullopt)); return analysis; } namespace { int MergeDepth(int original_depth, int new_depth) { if (new_depth >= 0) { return std::max(original_depth, new_depth); } if (new_depth < 0 && original_depth < 0) { return std::min(original_depth, new_depth); } return original_depth; } void SetDepth(ShapeTree<int>& depth_tree, int depth) { depth_tree.ForEachMutableElement( [depth, &depth_tree](const ShapeIndex& shape_index, int* depth_ptr) { if (depth_tree.IsLeaf(shape_index)) { *depth_ptr = MergeDepth(*depth_ptr, depth); } }); } void SetDepth(ShapeTree<int>& depth_tree, const ShapeTree<int>& source) { depth_tree.ForEachMutableElement( [&depth_tree, &source](const ShapeIndex& shape_index, int* depth_ptr) { if (depth_tree.IsLeaf(shape_index)) { *depth_ptr = MergeDepth(*depth_ptr, source.element(shape_index)); } }); } int GetMaxDepth(const ShapeTree<int>& depth_tree) { int max_depth = -1; depth_tree.ForEachElement( [&max_depth](const ShapeIndex& shape_index, int depth) { max_depth = std::max(max_depth, depth); return absl::OkStatus(); }); if (max_depth >= 0) { return max_depth; } depth_tree.ForEachElement( [&max_depth](const ShapeIndex& shape_index, int depth) { max_depth = std::min(max_depth, depth); return absl::OkStatus(); }); return max_depth; } void SetDepthFromTupleDepth(ShapeTree<int>& depth_tree, const ShapeTree<int>& tuple_depth_tree, int tuple_index) { depth_tree.ForEachMutableElement( [&depth_tree, &tuple_depth_tree, tuple_index]( const ShapeIndex& shape_index, int* depth_ptr) { if (depth_tree.IsLeaf(shape_index)) { ShapeIndex output_index = shape_index; output_index.push_front(tuple_index); *depth_ptr = MergeDepth(*depth_ptr, tuple_depth_tree.element(output_index)); } }); } } ShapeTree<int>& EinsumDepthAnalysis::GetOrCreateDepthTree( const HloInstruction* instruction) { auto depth_iter = einsum_depth_map_.find(instruction); if (depth_iter == einsum_depth_map_.end()) { ShapeTree<int> depth_tree(instruction->shape(), -1); auto inserted = einsum_depth_map_.insert( std::make_pair(instruction, std::move(depth_tree))); depth_iter = inserted.first; } return depth_iter->second; } ShapeTree<int>& EinsumDepthAnalysis::GetDepthTreeOrDie( const HloInstruction* instruction) { auto depth_iter = einsum_depth_map_.find(instruction); CHECK(depth_iter != einsum_depth_map_.end()) << "No depth tree found for instruction: " << instruction->ToString(); return depth_iter->second; } absl::Status EinsumDepthAnalysis::SetInstructionDepth( const HloInstruction* instruction, int depth) { ShapeTree<int>& depth_tree = GetOrCreateDepthTree(instruction); SetDepth(depth_tree, depth); return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::SetInstructionDepth( const HloInstruction* instruction, const ShapeTree<int>& depth) { ShapeTree<int>& depth_tree = GetOrCreateDepthTree(instruction); SetDepth(depth_tree, depth); return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::SetInstructionDepthFromTupleDepth( const HloInstruction* instruction, const ShapeTree<int>& tuple_depth_tree, int tuple_index) { ShapeTree<int>& depth_tree = GetOrCreateDepthTree(instruction); SetDepthFromTupleDepth(depth_tree, tuple_depth_tree, tuple_index); return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::DefaultAction(HloInstruction* instruction) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(instruction); int max_depth = GetMaxDepth(depth_tree); for (int operand_index = 0; operand_index < instruction->operand_count(); ++operand_index) { const HloInstruction* operand = instruction->operand(operand_index); TF_RETURN_IF_ERROR(SetInstructionDepth(operand, max_depth)); } return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleTuple(HloInstruction* tuple) { return HandleTupleLike(tuple); } absl::Status EinsumDepthAnalysis::HandleAllReduce(HloInstruction* all_reduce) { if (all_reduce->shape().IsArray()) { return DefaultAction(all_reduce); } return HandleTupleLike(all_reduce); } absl::Status EinsumDepthAnalysis::HandleTupleLike(HloInstruction* tuple_like) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(tuple_like); for (int operand_index = 0; operand_index < tuple_like->operand_count(); ++operand_index) { HloInstruction* operand = tuple_like->mutable_operand(operand_index); ShapeTree<int>& operand_depth = GetOrCreateDepthTree(operand); SetDepthFromTupleDepth(operand_depth, depth_tree, operand_index); } return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleGetTupleElement( HloInstruction* get_tuple_element) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(get_tuple_element); HloInstruction* operand = get_tuple_element->mutable_operand(0); int tuple_index = get_tuple_element->tuple_index(); ShapeTree<int>& operand_depth = GetOrCreateDepthTree(operand); operand_depth.ForEachMutableElement( [&operand_depth, &depth_tree, tuple_index](const ShapeIndex& shape_index, int* depth_ptr) { if (shape_index.empty() || shape_index.front() != tuple_index) { return; } if (operand_depth.IsLeaf(shape_index)) { ShapeIndex output_index = shape_index; output_index.pop_front(); *depth_ptr = MergeDepth(*depth_ptr, depth_tree.element(output_index)); } }); return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleDepthIncrementInstruction( HloInstruction* instruction) { ShapeTree<int>& depth_tree = GetDepthTreeOrDie(instruction); int instruction_depth = depth_tree.element({}); for (HloInstruction* operand : instruction->mutable_operands()) { TF_RETURN_IF_ERROR(SetInstructionDepth( operand, instruction_depth >= 0 ? instruction_depth + 1 : instruction_depth - 1)); } return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleDot(HloInstruction* dot) { return HandleDepthIncrementInstruction(dot); } absl::Status EinsumDepthAnalysis::HandleConvolution( HloInstruction* convolution) { return HandleDepthIncrementInstruction(convolution); } absl::Status EinsumDepthAnalysis::HandleCall(HloInstruction* call) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(call); return HandleCalledComputation(*call->called_computations()[0], depth_tree, call->operands()); } absl::Status EinsumDepthAnalysis::HandleFusion(HloInstruction* fusion) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(fusion); return HandleCalledComputation(*fusion->called_computations()[0], depth_tree, fusion->operands()); } absl::Status EinsumDepthAnalysis::HandleWhile(HloInstruction* xla_while) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(xla_while); int max_depth = GetMaxDepth(depth_tree); HloComputation* condition_computation = xla_while->while_condition(); HloInstruction* condition_root = condition_computation->root_instruction(); ShapeTree<int> condition_depth(condition_root->shape(), max_depth); TF_RETURN_IF_ERROR(HandleCalledComputation( *condition_computation, condition_depth, xla_while->operands())); const ShapeTree<int>* root_depth_ptr = &depth_tree; HloComputation* body_computation = xla_while->while_body(); bool run_depth_propagation_on_body = true; ShapeTree<int>& root_depth = GetOrCreateDepthTree(body_computation->root_instruction()); while (run_depth_propagation_on_body) { run_depth_propagation_on_body = false; TF_RETURN_IF_ERROR(HandleCalledComputation( *body_computation, *root_depth_ptr, xla_while->operands())); HloInstruction* operand = body_computation->parameter_instruction(0); const ShapeTree<int>& operand_depth = GetOrCreateDepthTree(operand); root_depth.ForEachMutableElement( [&run_depth_propagation_on_body, &root_depth, &operand_depth]( const ShapeIndex& shape_index, int* depth_ptr) { if (!root_depth.IsLeaf(shape_index)) { return; } if (root_depth.element(shape_index) < 0 && operand_depth.element(shape_index) >= 0) { *depth_ptr = operand_depth.element(shape_index); run_depth_propagation_on_body = true; } }); root_depth_ptr = &root_depth; } return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleConditional( HloInstruction* conditional) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(conditional); TF_RETURN_IF_ERROR( SetInstructionDepth(conditional->operands()[0], depth_tree)); for (int i = 0; i < conditional->branch_count(); ++i) { TF_RETURN_IF_ERROR( HandleCalledComputation(*conditional->called_computations()[i], depth_tree, {conditional->operands()[i + 1]})); } return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleCalledComputation( const HloComputation& called_computation, const ShapeTree<int>& root_depth, absl::Span<HloInstruction* const> operands) { TF_RETURN_IF_ERROR(RunInternal(called_computation, std::optional<ShapeTree<int>>(root_depth))); for (int i = 0; i < operands.size(); ++i) { HloInstruction* operand = operands[i]; HloInstruction* parameter = called_computation.parameter_instruction(i); const ShapeTree<int>& parameter_depth = GetOrCreateDepthTree(parameter); TF_RETURN_IF_ERROR(SetInstructionDepth(operand, parameter_depth)); } return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleAfterAll(HloInstruction* after_all) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(after_all); int max_depth = GetMaxDepth(depth_tree); for (HloInstruction* operand_token : after_all->mutable_operands()) { CHECK(operand_token->shape().IsToken()); TF_RETURN_IF_ERROR(SetInstructionDepth(operand_token, max_depth)); } return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleSend(HloInstruction* send) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(send); HloInstruction* send_buffer = send->mutable_operand(0); ShapeTree<int>& send_buffer_depth = GetOrCreateDepthTree(send_buffer); SetDepthFromTupleDepth(send_buffer_depth, depth_tree, 0); int max_depth = GetMaxDepth(depth_tree); HloInstruction* token = send->mutable_operand(1); return SetInstructionDepth(token, max_depth); } absl::Status EinsumDepthAnalysis::HandleRecv(HloInstruction* recv) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(recv); TF_ASSIGN_OR_RETURN(HloInstruction * send, send_recv_group_map_->GetMatchingSendOrRecv(recv)); CHECK(send) << "recv: " << recv->name() << " not found in send_recv_group_map: " << recv->ToString(); ShapeTree<int>& send_depth = GetOrCreateDepthTree(send); int max_depth = GetMaxDepth(depth_tree); send_depth.ForEachMutableElement([&depth_tree, &send_depth, max_depth]( const ShapeIndex& index, int* depth) { if (!send_depth.IsLeaf(index)) { return; } if (index.front() == 0) { *depth = MergeDepth(*depth, depth_tree.element(index)); return; } *depth = MergeDepth(*depth, max_depth); }); HloInstruction* after_all = recv->mutable_operand(0); return SetInstructionDepth(after_all, max_depth); } absl::Status EinsumDepthAnalysis::HandleSendDone(HloInstruction* send_done) { HloInstruction* send = send_done->mutable_operand(0); const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(send_done); int max_depth = GetMaxDepth(depth_tree); return SetInstructionDepth(send, max_depth); } absl::Status EinsumDepthAnalysis::HandleRecvDone(HloInstruction* recv_done) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(recv_done); int max_depth = GetMaxDepth(depth_tree); HloInstruction* recv = recv_done->mutable_operand(0); ShapeTree<int>& recv_depth = GetOrCreateDepthTree(recv); recv_depth.ForEachMutableElement([&depth_tree, &recv_depth, max_depth]( const ShapeIndex& index, int* depth) { if (!recv_depth.IsLeaf(index)) { return; } if (index.front() == 0) { *depth = MergeDepth(*depth, depth_tree.element(index)); return; } *depth = MergeDepth(*depth, max_depth); }); return absl::OkStatus(); } absl::Status EinsumDepthAnalysis::HandleAsyncStart( HloInstruction* async_start) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(async_start); TF_ASSIGN_OR_RETURN(ShapeTree<int> output_depth_tree, depth_tree.SubShapeTree({1})); return HandleCalledComputation(*(async_start->async_wrapped_computation()), output_depth_tree, async_start->operands()); } absl::Status EinsumDepthAnalysis::HandleAsyncDone(HloInstruction* async_done) { const ShapeTree<int>& depth_tree = GetDepthTreeOrDie(async_done); HloInstruction* async_start = async_done->mutable_operand(0); ShapeTree<int>& async_start_depth = GetOrCreateDepthTree(async_start); async_start_depth.ForEachMutableElement( [&depth_tree, &async_start_depth](const ShapeIndex& index, int* depth) { if (!async_start_depth.IsLeaf(index)) { return; } if (index.front() == 1) { ShapeIndex output_index = index; output_index.pop_front(); *depth = MergeDepth(*depth, depth_tree.element(output_index)); } }); return absl::OkStatus(); } namespace { int MergeHeight(int original_height, int new_height) { return std::max(original_height, new_height); } void SetHeight(ShapeTree<int>& height_tree, int height) { height_tree.ForEachMutableElement( [height, &height_tree](const ShapeIndex& shape_index, int* height_ptr) { if (height_tree.IsLeaf(shape_index)) { *height_ptr = MergeHeight(*height_ptr, height); } }); } void SetHeight(ShapeTree<int>& height_tree, const ShapeTree<int>& source, const ShapeIndex& source_index = {}, const ShapeIndex& target_index = {}) { height_tree.ForEachMutableElement( [&source, &source_index, &target_index](const ShapeIndex& shape_index, int* height_ptr) { if (shape_index.size() < target_index.size()) { return; } for (int i = 0; i < target_index.size(); ++i) { if (shape_index[i] != target_index[i]) { return; } } ShapeIndex complete_source_index = source_index; for (int i = target_index.size(); i < shape_index.size(); ++i) { complete_source_index.push_back(shape_index[i]); } *height_ptr = MergeHeight(*height_ptr, source.element(complete_source_index)); }); } int GetMaxHeight(const ShapeTree<int>& height_tree) { int max_height = 0; height_tree.ForEachElement( [&max_height](const ShapeIndex& shape_index, int height) { max_height = std::max(max_height, height); return absl::OkStatus(); }); return max_height; } int GetMaxOperandHeight(HloInstruction* instruction, const EinsumHeightMap& einsum_height_map) { int max_height = 0; for (HloInstruction* operand : instruction->mutable_operands()) { auto operand_height_iter = einsum_height_map.find(operand); CHECK(operand_height_iter != einsum_height_map.end()) << "operand: " << operand->name(); const ShapeTree<int>& operand_height_tree = operand_height_iter->second; int max_operand_height = GetMaxHeight(operand_height_tree); max_height = std::max(max_height, max_operand_height); } return max_height; } } absl::StatusOr<std::unique_ptr<EinsumHeightAnalysis>> EinsumHeightAnalysis::Run( const HloComputation& computation, const SendRecvGroupMap& send_recv_group_map) { EinsumHeightAnalysis* analysis_ptr = new EinsumHeightAnalysis(send_recv_group_map); std::unique_ptr<EinsumHeightAnalysis> analysis(analysis_ptr); TF_RETURN_IF_ERROR(analysis->RunInternal(computation, {})); TF_RETURN_IF_ERROR(analysis->RunInternal(computation, {})); return analysis; } absl::Status EinsumHeightAnalysis::RunInternal( const HloComputation& computation, absl::Span<HloInstruction* const> operands) { return HandleCalledComputation(computation, operands); } ShapeTree<int>& EinsumHeightAnalysis::GetOrCreateHeightTree( const HloInstruction* instruction) { auto height_iter = einsum_height_map_.find(instruction); if (height_iter == einsum_height_map_.end()) { ShapeTree<int> height_tree(instruction->shape(), 0); auto inserted = einsum_height_map_.insert( std::make_pair(instruction, std::move(height_tree))); height_iter = inserted.first; } return height_iter->second; } ShapeTree<int>& EinsumHeightAnalysis::GetHeightTreeOrDie( const HloInstruction* instruction) { auto height_iter = einsum_height_map_.find(instruction); CHECK(height_iter != einsum_height_map_.end()); return height_iter->second; } bool EinsumHeightAnalysis::HasHeightFor( const HloInstruction* instruction) const { return einsum_height_map_.contains(instruction); } absl::Status EinsumHeightAnalysis::SetInstructionHeight( const HloInstruction* instruction, int height) { ShapeTree<int>& height_tree = GetOrCreateHeightTree(instruction); SetHeight(height_tree, height); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::SetInstructionHeight( const HloInstruction* instruction, const ShapeTree<int>& height) { ShapeTree<int>& height_tree = GetOrCreateHeightTree(instruction); SetHeight(height_tree, height); return absl::OkStatus(); } #define RETURN_IF_HEIGHT_EXISTS(instruction) \ if (HasHeightFor(instruction)) { \ return absl::OkStatus(); \ } absl::Status EinsumHeightAnalysis::HandleHeightIncrementInstruction( HloInstruction* instruction) { ShapeTree<int>& height_tree = GetOrCreateHeightTree(instruction); for (HloInstruction* operand : instruction->mutable_operands()) { const ShapeTree<int>& operand_height_tree = GetHeightTreeOrDie(operand); SetHeight(height_tree, operand_height_tree.element({}) + 1); } return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleCalledComputation( const HloComputation& computation, absl::Span<HloInstruction* const> operands) { if (!operands.empty()) { if (computation.num_parameters() != operands.size()) { return absl::InvalidArgumentError(absl::StrCat( operands.size(), " operands were passed for the computation ", computation.name(), " with ", computation.num_parameters(), " parameters.")); } for (int parameter_index = 0; parameter_index < computation.num_parameters(); ++parameter_index) { HloInstruction* parameter = computation.parameter_instruction(parameter_index); HloInstruction* operand = operands[parameter_index]; const ShapeTree<int>& operand_height_tree = GetHeightTreeOrDie(operand); TF_RETURN_IF_ERROR(SetInstructionHeight(parameter, operand_height_tree)); } } for (HloInstruction* instruction : computation.instructions()) { if (instruction->user_count() == 0) { TF_RETURN_IF_ERROR(instruction->Accept(this)); } } return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::DefaultAction(HloInstruction* instruction) { RETURN_IF_HEIGHT_EXISTS(instruction); int instruction_height = GetMaxOperandHeight(instruction, einsum_height_map_); return SetInstructionHeight(instruction, instruction_height); } absl::Status EinsumHeightAnalysis::HandleTupleLike(HloInstruction* tuple_like) { ShapeTree<int>& height_tree = GetOrCreateHeightTree(tuple_like); height_tree.ForEachMutableElement([&height_tree, tuple_like, this]( const ShapeIndex& index, int* height) { if (!height_tree.IsLeaf(index)) { return; } int operand_index = index.front(); const HloInstruction* operand = tuple_like->operand(operand_index); const ShapeTree<int>& operand_height_tree = GetHeightTreeOrDie(operand); ShapeIndex source_index = index; source_index.pop_front(); *height = MergeHeight(*height, operand_height_tree.element(source_index)); }); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleTuple(HloInstruction* tuple) { RETURN_IF_HEIGHT_EXISTS(tuple); return HandleTupleLike(tuple); } absl::Status EinsumHeightAnalysis::HandleGetTupleElement( HloInstruction* get_tuple_element) { RETURN_IF_HEIGHT_EXISTS(get_tuple_element); ShapeTree<int>& height_tree = GetOrCreateHeightTree(get_tuple_element); const ShapeTree<int>& tuple_height_tree = GetHeightTreeOrDie(get_tuple_element->operand(0)); int tuple_index = get_tuple_element->tuple_index(); SetHeight(height_tree, tuple_height_tree, {tuple_index}, {}); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleDot(HloInstruction* dot) { RETURN_IF_HEIGHT_EXISTS(dot); return HandleHeightIncrementInstruction(dot); } absl::Status EinsumHeightAnalysis::HandleConvolution( HloInstruction* convolution) { RETURN_IF_HEIGHT_EXISTS(convolution); return HandleHeightIncrementInstruction(convolution); } absl::Status EinsumHeightAnalysis::HandleCall(HloInstruction* call) { RETURN_IF_HEIGHT_EXISTS(call); TF_RETURN_IF_ERROR(HandleCalledComputation(*(call->called_computations()[0]), call->mutable_operands())); const ShapeTree<int>& root_height_tree = GetHeightTreeOrDie(call->called_computations()[0]->root_instruction()); TF_RETURN_IF_ERROR(SetInstructionHeight(call, root_height_tree)); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleFusion(HloInstruction* fusion) { RETURN_IF_HEIGHT_EXISTS(fusion); return HandleCall(fusion); } absl::Status EinsumHeightAnalysis::HandleWhile(HloInstruction* xla_while) { RETURN_IF_HEIGHT_EXISTS(xla_while); TF_RETURN_IF_ERROR(HandleCalledComputation(*(xla_while->while_condition()), xla_while->mutable_operands())); TF_RETURN_IF_ERROR(HandleCalledComputation(*(xla_while->while_body()), xla_while->mutable_operands())); const ShapeTree<int>& root_height_tree = GetHeightTreeOrDie(xla_while->while_body()->root_instruction()); return SetInstructionHeight(xla_while, root_height_tree); } absl::Status EinsumHeightAnalysis::HandleConditional( HloInstruction* conditional) { RETURN_IF_HEIGHT_EXISTS(conditional); ShapeTree<int>& height_tree = GetOrCreateHeightTree(conditional); for (size_t i = 0; i < conditional->branch_count(); ++i) { HloComputation* computation = conditional->branch_computation(i); TF_RETURN_IF_ERROR(HandleCalledComputation( *computation, {conditional->mutable_operands()[i + 1]})); ShapeTree<int>& branch_root_height_tree = GetHeightTreeOrDie(computation->root_instruction()); SetHeight(height_tree, branch_root_height_tree); } return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleSend(HloInstruction* send) { RETURN_IF_HEIGHT_EXISTS(send); HloInstruction* send_buffer = send->mutable_operand(0); const ShapeTree<int>& send_buffer_height_tree = GetHeightTreeOrDie(send_buffer); ShapeTree<int>& height_tree = GetOrCreateHeightTree(send); SetHeight(height_tree, send_buffer_height_tree, {}, {0}); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleRecv(HloInstruction* recv) { RETURN_IF_HEIGHT_EXISTS(recv); TF_ASSIGN_OR_RETURN(HloInstruction * send, send_recv_group_map_->GetMatchingSendOrRecv(recv)); TF_RETURN_IF_ERROR(send->Accept(this)); HloInstruction* send_buffer = send->mutable_operand(0); const ShapeTree<int>& send_buffer_height_tree = GetHeightTreeOrDie(send_buffer); ShapeTree<int>& height_tree = GetOrCreateHeightTree(recv); SetHeight(height_tree, send_buffer_height_tree, {}, {0}); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleSendDone(HloInstruction* send_done) { RETURN_IF_HEIGHT_EXISTS(send_done); GetOrCreateHeightTree(send_done); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleRecvDone(HloInstruction* recv_done) { RETURN_IF_HEIGHT_EXISTS(recv_done); HloInstruction* recv = recv_done->mutable_operand(0); const ShapeTree<int>& recv_height_tree = GetHeightTreeOrDie(recv); ShapeTree<int>& height_tree = GetOrCreateHeightTree(recv_done); SetHeight(height_tree, recv_height_tree, {0}, {0}); return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleAllReduce(HloInstruction* all_reduce) { RETURN_IF_HEIGHT_EXISTS(all_reduce); if (all_reduce->shape().IsArray()) { return DefaultAction(all_reduce); } return HandleTupleLike(all_reduce); } absl::Status EinsumHeightAnalysis::HandleAsyncStart( HloInstruction* async_start) { RETURN_IF_HEIGHT_EXISTS(async_start); TF_RETURN_IF_ERROR( HandleCalledComputation(*(async_start->async_wrapped_computation()), async_start->mutable_operands())); const ShapeTree<int>& root_height_tree = GetHeightTreeOrDie( async_start->async_wrapped_computation()->root_instruction()); ShapeTree<int>& height_tree = GetOrCreateHeightTree(async_start); SetHeight(height_tree, root_height_tree, {}, {1}); for (int operand_index = 0; operand_index < async_start->operands().size(); ++operand_index) { HloInstruction* operand = async_start->mutable_operands()[operand_index]; const ShapeTree<int>& operand_height_tree = GetHeightTreeOrDie(operand); SetHeight(height_tree, operand_height_tree, {}, {0, operand_index}); } return absl::OkStatus(); } absl::Status EinsumHeightAnalysis::HandleAsyncDone(HloInstruction* async_done) { RETURN_IF_HEIGHT_EXISTS(async_done); ShapeTree<int>& height_tree = GetOrCreateHeightTree(async_done); HloInstruction* async_start = async_done->mutable_operand(0); const ShapeTree<int>& async_start_height_tree = GetHeightTreeOrDie(async_start); SetHeight(height_tree, async_start_height_tree, {1}, {}); return absl::OkStatus(); } std::string HloValueSemanticLabelToString(HloValueSemanticLabel label) { switch (label) { case HloValueSemanticLabel::kStatic: return "Static"; case HloValueSemanticLabel::kRandom: return "Random"; case HloValueSemanticLabel::kWeight: return "Weight"; case HloValueSemanticLabel::kActivation: return "Activation"; case HloValueSemanticLabel::kActivationGradient: return "ActivationGradient"; case HloValueSemanticLabel::kWeightGradient: return "WeightGradient"; case HloValueSemanticLabel::kTupleOrToken: return "TupleOrToken"; } } std::string HloValueSemantics::ToString() const { std::string content = absl::StrJoin( {absl::StrCat("label: ", HloValueSemanticLabelToString(label_)), absl::StrCat("origin: ", origin_.ToString())}, ", "); return absl::StrCat("{", content, "}"); } HloValueSemantics::HloValueSemantics(HloValueSemanticLabel label, const HloPosition& origin) : HloValueSemantics(0, label, origin) {} HloValueSemantics::HloValueSemantics(Id id, HloValueSemanticLabel label, const HloPosition& origin) : id_(id), label_(label), origin_(origin) {} std::string HloValueSemanticsTreeToString( const ShapeTree<const HloValueSemantics*>& tree) { return ToString(tree); } HloValueSemanticsAnalysis::HloValueSemanticsAnalysis( const HloModule& module, const absl::flat_hash_set<std::string_view>& execution_threads) : module_(module), execution_threads_(execution_threads), next_id_(0) {} const HloValueSemantics* HloValueSemanticsAnalysis::GetSemantics( const HloInstruction* instruction, const ShapeIndex& index) const { return GetInstructionSemantics(instruction).element(index); } int HloValueSemanticsAnalysis::GetDepth(const HloInstruction* instruction, const ShapeIndex& index) const { auto depth_iter = einsum_depth_map_.find(instruction); CHECK(depth_iter != einsum_depth_map_.end()); return depth_iter->second.element(index); } int HloValueSemanticsAnalysis::GetHeight(const HloInstruction* instruction, const ShapeIndex& index) const { auto height_iter = einsum_height_map_.find(instruction); CHECK(height_iter != einsum_height_map_.end()); return height_iter->second.element(index); } absl::StatusOr<std::unique_ptr<HloValueSemanticsAnalysis>> HloValueSemanticsAnalysis::Run( const HloModule& module, const absl::flat_hash_set<std::string_view>& execution_threads) { std::unique_ptr<HloValueSemanticsAnalysis> value_semantics_analysis = absl::WrapUnique( new HloValueSemanticsAnalysis(module, execution_threads)); value_semantics_analysis->InitializeSendRecvGroups(); TF_RETURN_IF_ERROR(value_semantics_analysis->InitializeEinsumDepth()); TF_RETURN_IF_ERROR(value_semantics_analysis->InitializeEinsumHeight()); value_semantics_analysis->AnnotateWeights(); TF_RETURN_IF_ERROR( value_semantics_analysis->RunOnComputation(*module.entry_computation())); return value_semantics_analysis; } absl::Status HloValueSemanticsAnalysis::InitializeEinsumDepth() { TF_ASSIGN_OR_RETURN( std::unique_ptr<EinsumDepthAnalysis> einsum_depth_analysis, EinsumDepthAnalysis::Run(*module_.entry_computation(), *send_recv_group_map_)); einsum_depth_map_ = einsum_depth_analysis->GetEinsumDepthMap(); return absl::OkStatus(); } absl::Status HloValueSemanticsAnalysis::InitializeEinsumHeight() { TF_ASSIGN_OR_RETURN( std::unique_ptr<EinsumHeightAnalysis> einsum_height_analysis, EinsumHeightAnalysis::Run(*module_.entry_computation(), *send_recv_group_map_)); einsum_height_map_ = einsum_height_analysis->GetEinsumHeightMap(); return absl::OkStatus(); } void HloValueSemanticsAnalysis::InitializeSendRecvGroups() { send_recv_group_map_ = std::make_unique<SendRecvGroupMap>(module_); } bool HloValueSemanticsAnalysis::HasSemanticsFor( const HloInstruction* instruction) const { return value_semantics_.contains(instruction); } absl::StatusOr<HloInstruction*> HloValueSemanticsAnalysis::GetMatchingSendOrRecv( HloInstruction* send_or_recv) const { return send_recv_group_map_->GetMatchingSendOrRecv(send_or_recv); } HloValueSemantics::Id HloValueSemanticsAnalysis::NextId() { return next_id_++; } const HloValueSemantics* HloValueSemanticsAnalysis::NewHloValueSemantics( HloValueSemanticLabel label, const HloPosition& origin) { HloValueSemantics::Id id = NextId(); auto inserted = value_semantics_map_.insert(std::make_pair( id, std::make_unique<HloValueSemantics>(id, label, origin))); return inserted.first->second.get(); } const ShapeTree<const HloValueSemantics*>& HloValueSemanticsAnalysis::GetInstructionSemantics( const HloInstruction* instruction) const { auto semantics_iter = value_semantics_.find(instruction); CHECK(semantics_iter != value_semantics_.end()) << "instruction: " << instruction->ToString(); return semantics_iter->second; } void HloValueSemanticsAnalysis::DeepCopyHloValueSemantics( ShapeTree<const HloValueSemantics*>& copy_to, const ShapeTree<const HloValueSemantics*>& copy_from, const ShapeIndex& source_index, const ShapeIndex& destination_index) { copy_to.ForEachMutableElement( [this, &copy_from, &source_index, &destination_index]( const ShapeIndex& index, const HloValueSemantics** semantics) { if (index.size() < destination_index.size()) { return; } bool in_subtree_to_copy = true; for (int i = 0; i < destination_index.size(); ++i) { if (index[i] != destination_index[i]) { in_subtree_to_copy = false; break; } } if (!in_subtree_to_copy) { return; } ShapeIndex full_source_index = source_index; for (int i = destination_index.size(); i < index.size(); ++i) { full_source_index.push_back(index[i]); } const HloValueSemantics* source_semantics = copy_from.element(full_source_index); *semantics = NewHloValueSemantics(source_semantics->label(), source_semantics->origin()); }); } void HloValueSemanticsAnalysis::DeepCopyHloValueSemantics( const HloInstruction* target, const ShapeTree<const HloValueSemantics*>& copy_from, const ShapeIndex& source_index) { auto semantics_iter = value_semantics_.find(target); if (semantics_iter != value_semantics_.end()) { DeleteHloValueSemantics(semantics_iter->second); DeepCopyHloValueSemantics(semantics_iter->second, copy_from, source_index, {}); return; } ShapeTree<const HloValueSemantics*> semantics_shape_tree(target->shape(), nullptr); DeepCopyHloValueSemantics(semantics_shape_tree, copy_from, source_index, {}); value_semantics_[target] = std::move(semantics_shape_tree); } void HloValueSemanticsAnalysis::SetHloValueSemantics( const HloInstruction* target, const ShapeTree<const HloValueSemantics*>& semantics) { auto semantics_iter = value_semantics_.find(target); if (semantics_iter != value_semantics_.end()) { DeleteHloValueSemantics(semantics_iter->second); } value_semantics_[target] = semantics; } void HloValueSemanticsAnalysis::DeleteHloValueSemantics( const HloValueSemantics* to_delete) { value_semantics_map_.erase(to_delete->id()); } void HloValueSemanticsAnalysis::DeleteHloValueSemantics( const ShapeTree<const HloValueSemantics*>& to_delete) { to_delete.ForEachElement( [this](const ShapeIndex& index, const HloValueSemantics* semantics) { DeleteHloValueSemantics(semantics); }); } void HloValueSemanticsAnalysis::AnnotateWeights() { const HloComputation* entry_computation = module_.entry_computation(); for (HloInstruction* parameter : entry_computation->parameter_instructions()) { ShapeTree<const HloValueSemantics*> semantics_shape_tree(parameter->shape(), nullptr); semantics_shape_tree.ForEachMutableElement( [this, &semantics_shape_tree, parameter]( const ShapeIndex& index, const HloValueSemantics** semantics) { if (!semantics_shape_tree.IsLeaf(index)) { *semantics = NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {parameter, index}); } *semantics = NewHloValueSemantics(HloValueSemanticLabel::kWeight, {parameter, index}); }); value_semantics_[parameter] = std::move(semantics_shape_tree); } } absl::Status HloValueSemanticsAnalysis::RunOnComputation( const HloComputation& computation, absl::Span<const HloInstruction* const> operands) { CHECK_EQ(computation.num_parameters(), operands.size()); for (int i = 0; i < computation.num_parameters(); ++i) { auto semantics_iter = value_semantics_.find(operands[i]); CHECK(semantics_iter != value_semantics_.end()); DeepCopyHloValueSemantics(computation.parameter_instructions()[i], semantics_iter->second); } return RunOnComputation(computation); } absl::Status HloValueSemanticsAnalysis::RunOnComputation( const HloComputation& computation) { if (HloInstruction::IsThreadIncluded(computation.execution_thread(), execution_threads_)) { HloValueSemanticsPropagation propagation(this); return propagation.Run(computation); } return absl::OkStatus(); } HloValueSemanticsPropagation::HloValueSemanticsPropagation( HloValueSemanticsAnalysis* analysis) : analysis_(analysis) {} absl::Status HloValueSemanticsPropagation::Run( const HloComputation& computation) { TF_RETURN_IF_ERROR(computation.root_instruction()->Accept(this)); for (HloInstruction* instruction : computation.instructions()) { if (instruction->user_count() == 0) { TF_RETURN_IF_ERROR(instruction->Accept(this)); } } return absl::OkStatus(); } HloValueSemantics HloValueSemanticsPropagation::CopySemantics( const HloValueSemantics& semantics) const { return HloValueSemantics(semantics.label(), semantics.origin()); } HloValueSemantics HloValueSemanticsPropagation::CopySemanticsWithNewOrigin( const HloValueSemantics& semantics, HloInstruction* new_origin, const ShapeIndex& index) const { return HloValueSemantics(semantics.label(), {new_origin, index}); } const HloValueSemantics* HloValueSemanticsPropagation::AddSemantics( const HloValueSemantics& semantics) { return analysis_->NewHloValueSemantics(semantics.label(), semantics.origin()); } std::vector<HloValueSemanticsPropagation::EinsumAndOperandIndex> HloValueSemanticsPropagation::FindEinsumsWhereOriginDependsOnOther( const HloValueSemantics& semantics, const HloPosition& origin_dependence, bool recursive) const { std::vector<HloPosition> stack; absl::flat_hash_set<HloPosition> visited; std::vector<HloValueSemanticsPropagation::EinsumAndOperandIndex> dependent_einsums; stack.push_back(semantics.origin()); while (!stack.empty()) { HloPosition origin = stack.back(); stack.pop_back(); if (visited.contains(origin)) { continue; } visited.insert(origin); absl::Span<const HloInstruction* const> operands = origin.instruction->operands(); if (origin.instruction->opcode() == HloOpcode::kDynamicUpdateSlice) { operands = operands.subspan(0, 2); } if (origin.instruction->opcode() == HloOpcode::kDynamicSlice) { operands = operands.subspan(0, 1); } bool is_einsum = origin.instruction->opcode() == HloOpcode::kDot || origin.instruction->opcode() == HloOpcode::kConvolution; bool found_einsum = false; if (is_einsum) { for (int64_t operand_index = 0; operand_index < operands.size(); ++operand_index) { const HloInstruction* origin_operand = operands[operand_index]; const HloValueSemantics* origin_operand_semantics = analysis_->GetSemantics(origin_operand); if (origin_operand_semantics->origin() == origin_dependence) { dependent_einsums.push_back({origin.instruction, operand_index}); found_einsum = true; } } } if (!found_einsum && recursive) { for (int64_t operand_index = 0; operand_index < operands.size(); ++operand_index) { const HloInstruction* origin_operand = operands[operand_index]; const HloValueSemantics* origin_operand_semantics = analysis_->GetSemantics(origin_operand); stack.push_back(origin_operand_semantics->origin()); } } } return dependent_einsums; } bool HloValueSemanticsPropagation::OriginDependsOn( const HloValueSemantics& semantics, const HloPosition& origin_dependence, bool recursive) const { auto dependent_einsums = FindEinsumsWhereOriginDependsOnOther( semantics, origin_dependence, recursive); return !dependent_einsums.empty(); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::ComputeSemanticsFromStaticAndOther( const HloValueSemantics& static_semantics, const HloValueSemantics& other_semantics, HloInstruction* instruction) const { CHECK(static_semantics.label() == HloValueSemanticLabel::kStatic) << __func__ << ", : " << static_semantics.ToString(); if (other_semantics.label() == HloValueSemanticLabel::kStatic) { return CopySemanticsWithNewOrigin(other_semantics, instruction); } bool is_dot_or_convolution = instruction->opcode() == HloOpcode::kDot || instruction->opcode() == HloOpcode::kConvolution; if (is_dot_or_convolution && other_semantics.label() == HloValueSemanticLabel::kActivationGradient) { return MaybeCreateGradientSemantics( instruction, HloValueSemanticLabel::kActivationGradient); } return CopySemantics(other_semantics); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::ComputeSemanticsFromRandomAndOther( const HloValueSemantics& random_semantics, const HloValueSemantics& other_semantics, HloInstruction* instruction) const { CHECK(random_semantics.label() == HloValueSemanticLabel::kRandom); CHECK(other_semantics.label() != HloValueSemanticLabel::kStatic); if (other_semantics.label() == HloValueSemanticLabel::kRandom) { return CopySemanticsWithNewOrigin(other_semantics, instruction); } return CopySemantics(other_semantics); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::MaybeCreateGradientSemantics( HloInstruction* gradient_candidate, HloValueSemanticLabel fallback_label) const { int gradient_depth = analysis_->GetDepth(gradient_candidate, {}); if (gradient_depth < 0) { return HloValueSemantics(HloValueSemanticLabel::kActivation, {gradient_candidate, {}}); } if (gradient_depth == 0) { return HloValueSemantics(HloValueSemanticLabel::kWeightGradient, {gradient_candidate, {}}); } return HloValueSemantics(fallback_label, {gradient_candidate, {}}); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::ComputeSemanticsFromWeightAndOther( const HloValueSemantics& weight_semantics, const HloValueSemantics& other_semantics, HloInstruction* instruction) const { CHECK(weight_semantics.label() == HloValueSemanticLabel::kWeight); CHECK(other_semantics.label() != HloValueSemanticLabel::kStatic && other_semantics.label() != HloValueSemanticLabel::kRandom); bool is_dot_or_convolution = instruction->opcode() == HloOpcode::kDot || instruction->opcode() == HloOpcode::kConvolution; if (other_semantics.label() == HloValueSemanticLabel::kWeight) { if (!is_dot_or_convolution) { if (weight_semantics.origin() == other_semantics.origin()) { return CopySemantics(other_semantics); } return CopySemanticsWithNewOrigin(other_semantics, instruction); } return HloValueSemantics(HloValueSemanticLabel::kActivation, {instruction, {}}); } if (!is_dot_or_convolution) { return CopySemantics(other_semantics); } if (other_semantics.label() == HloValueSemanticLabel::kActivation) { int instruction_depth = analysis_->GetDepth(instruction, {}); auto dependent_einsums = FindEinsumsWhereOriginDependsOnOther( other_semantics, weight_semantics.origin(), true); bool all_dependent_einsums_immediately_proceeds_instruction = absl::c_all_of(dependent_einsums, [instruction_depth, this](const EinsumAndOperandIndex& dependent_einsum) { int dependent_einsum_depth = analysis_->GetDepth(dependent_einsum.einsum, {}); return dependent_einsum_depth > 0 && dependent_einsum_depth == instruction_depth + 1; }); if (!dependent_einsums.empty() && all_dependent_einsums_immediately_proceeds_instruction) { return MaybeCreateGradientSemantics( instruction, HloValueSemanticLabel::kActivationGradient); } return CopySemanticsWithNewOrigin(other_semantics, instruction); } if (other_semantics.label() == HloValueSemanticLabel::kActivationGradient) { return MaybeCreateGradientSemantics( instruction, HloValueSemanticLabel::kActivationGradient); } CHECK(other_semantics.label() == HloValueSemanticLabel::kWeightGradient); return CopySemantics(other_semantics); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::ComputeSemanticsFromActivationAndOther( const HloValueSemantics& activation_semantics, const HloValueSemantics& other_semantics, HloInstruction* instruction) const { CHECK(activation_semantics.label() == HloValueSemanticLabel::kActivation); CHECK(other_semantics.label() != HloValueSemanticLabel::kStatic && other_semantics.label() != HloValueSemanticLabel::kRandom && other_semantics.label() != HloValueSemanticLabel::kWeight); bool is_dot_or_convolution = instruction->opcode() == HloOpcode::kDot || instruction->opcode() == HloOpcode::kConvolution; if (!is_dot_or_convolution) { if (activation_semantics.origin() == other_semantics.origin()) { return CopySemantics(other_semantics); } return CopySemanticsWithNewOrigin(other_semantics, instruction); } if (other_semantics.label() == HloValueSemanticLabel::kActivation) { bool other_depends_on_activation = OriginDependsOn( other_semantics, activation_semantics.origin(), true); bool activation_depends_on_other = OriginDependsOn(activation_semantics, other_semantics.origin(), true); CHECK(!other_depends_on_activation || !activation_depends_on_other); if (other_depends_on_activation || activation_depends_on_other) { return MaybeCreateGradientSemantics(instruction, HloValueSemanticLabel::kActivation); } return CopySemanticsWithNewOrigin(other_semantics, instruction); } if (other_semantics.label() == HloValueSemanticLabel::kActivationGradient) { return MaybeCreateGradientSemantics( instruction, HloValueSemanticLabel::kActivationGradient); } CHECK(other_semantics.label() == HloValueSemanticLabel::kWeightGradient) << "instruction: " << instruction->ToString() << ", semantics: " << other_semantics.ToString() << ", expected: WeightGradient."; return CopySemantics(other_semantics); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::ComputeSemanticsFromActivationGradientAndOther( const HloValueSemantics& activation_gradient_semantics, const HloValueSemantics& other_semantics, HloInstruction* instruction) const { CHECK(activation_gradient_semantics.label() == HloValueSemanticLabel::kActivationGradient); CHECK(other_semantics.label() != HloValueSemanticLabel::kStatic && other_semantics.label() != HloValueSemanticLabel::kRandom && other_semantics.label() != HloValueSemanticLabel::kWeight && other_semantics.label() != HloValueSemanticLabel::kActivation); if (other_semantics.label() == HloValueSemanticLabel::kActivationGradient) { if (other_semantics.origin() == activation_gradient_semantics.origin()) { return CopySemantics(activation_gradient_semantics); } return CopySemanticsWithNewOrigin(other_semantics, instruction); } CHECK(other_semantics.label() == HloValueSemanticLabel::kWeightGradient); return CopySemantics(other_semantics); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::ComputeSemanticsFromWeightGradientAndOther( const HloValueSemantics& weight_gradient_semantics, const HloValueSemantics& other_semantics, HloInstruction* instruction) const { CHECK(weight_gradient_semantics.label() == HloValueSemanticLabel::kWeightGradient); CHECK(other_semantics.label() != HloValueSemanticLabel::kStatic && other_semantics.label() != HloValueSemanticLabel::kRandom && other_semantics.label() != HloValueSemanticLabel::kWeight && other_semantics.label() != HloValueSemanticLabel::kActivation && other_semantics.label() != HloValueSemanticLabel::kActivationGradient); return CopySemantics(weight_gradient_semantics); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::MergeSemanticsForAnInstruction( HloInstruction* instruction, std::vector<HloValueSemantics>& semantics_vec) const { while (semantics_vec.size() >= 2) { absl::Span<const HloValueSemantics> operand_list = absl::MakeConstSpan(semantics_vec).subspan(semantics_vec.size() - 2, 2); auto find_operand_index_with_label = [&operand_list](HloValueSemanticLabel label) -> std::optional<int64_t> { auto iter = absl::c_find_if(operand_list, [label](const HloValueSemantics& operand) { return operand.label() == label; }); return (iter != operand_list.end()) ? std::optional<int64_t>( std::distance(operand_list.begin(), iter)) : std::nullopt; }; auto replace_operands_semantics_with = [&semantics_vec](const HloValueSemantics& result_semantics) { semantics_vec.pop_back(); semantics_vec.pop_back(); semantics_vec.push_back(result_semantics); }; if (auto index = find_operand_index_with_label(HloValueSemanticLabel::kStatic)) { TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromStaticAndOther( operand_list[*index], operand_list[1 - *index], instruction)); replace_operands_semantics_with(semantics); continue; } if (auto index = find_operand_index_with_label(HloValueSemanticLabel::kRandom)) { TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromRandomAndOther( operand_list[*index], operand_list[1 - *index], instruction)); replace_operands_semantics_with(semantics); continue; } if (auto index = find_operand_index_with_label(HloValueSemanticLabel::kWeight)) { TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromWeightAndOther( operand_list[*index], operand_list[1 - *index], instruction)); replace_operands_semantics_with(semantics); continue; } if (auto index = find_operand_index_with_label(HloValueSemanticLabel::kActivation)) { TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromActivationAndOther( operand_list[*index], operand_list[1 - *index], instruction)); replace_operands_semantics_with(semantics); continue; } if (auto index = find_operand_index_with_label( HloValueSemanticLabel::kActivationGradient)) { TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromActivationGradientAndOther( operand_list[*index], operand_list[1 - *index], instruction)); replace_operands_semantics_with(semantics); continue; } if (auto index = find_operand_index_with_label( HloValueSemanticLabel::kWeightGradient)) { TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromWeightGradientAndOther( operand_list[*index], operand_list[1 - *index], instruction)); replace_operands_semantics_with(semantics); continue; } if (operand_list[0].label() == HloValueSemanticLabel::kTupleOrToken && operand_list[1].label() == HloValueSemanticLabel::kTupleOrToken) { HloValueSemantics semantics = CopySemanticsWithNewOrigin(operand_list[0], instruction); replace_operands_semantics_with(semantics); continue; } LOG(FATAL) << "We don't expect to handle operands of label " << HloValueSemanticLabelToString(operand_list[0].label()) << " and " << HloValueSemanticLabelToString(operand_list[1].label()) << " in ComputeSemanticsFromOperands. Instruction: " << instruction->name() << " should be handled in its own handler instead of the " "default handler."; } VLOG(3) << __func__ << ", result semantics: " << semantics_vec.back().ToString(); return semantics_vec.back(); } absl::StatusOr<HloValueSemantics> HloValueSemanticsPropagation::ComputeSemanticsFromOperands( HloInstruction* instruction, absl::Span<const int64_t> operand_indices, absl::Span<const ShapeIndex> operand_shape_indices) const { CHECK(!operand_indices.empty()); CHECK(operand_shape_indices.empty() || operand_indices.size() == operand_shape_indices.size()); VLOG(3) << __func__ << ", instruction: " << instruction->ToString(); std::vector<HloValueSemantics> semantics_vec; for (int64_t operand_index : operand_indices) { const HloInstruction* operand = instruction->operand(operand_index); const HloValueSemantics* operand_semantics = analysis_->GetSemantics( operand, operand_shape_indices.empty() ? ShapeIndex() : operand_shape_indices[operand_index]); auto operand_height_iter = analysis_->GetEinsumHeightMap().find(operand); CHECK(operand_height_iter != analysis_->GetEinsumHeightMap().end()) << "operand: " << operand->name(); VLOG(3) << __func__ << ", operand_index: " << operand_index << ", operand: " << operand->name() << ", operand_semantics: " << operand_semantics->ToString() << ", height: " << ToString(operand_height_iter->second); semantics_vec.push_back(*operand_semantics); } return MergeSemanticsForAnInstruction(instruction, semantics_vec); } #define RETURN_IF_ALREADY_PROPAGATED(instruction) \ if (analysis_->HasSemanticsFor(instruction)) { \ return absl::OkStatus(); \ } absl::Status HloValueSemanticsPropagation::DefaultAction( HloInstruction* instruction) { RETURN_IF_ALREADY_PROPAGATED(instruction); std::vector<int64_t> operand_indices(instruction->operand_count()); std::iota(operand_indices.begin(), operand_indices.end(), 0); TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromOperands(instruction, operand_indices)); if (instruction->shape().IsTuple()) { ShapeTree<const HloValueSemantics*> semantics_shape_tree( instruction->shape(), nullptr); semantics_shape_tree.ForEachMutableElement( [this, &semantics, &semantics_shape_tree, instruction]( const ShapeIndex& index, const HloValueSemantics** semantics_ptr) { if (semantics_shape_tree.IsLeaf(index)) { HloValueSemantics sub_semantics = CopySemanticsWithNewOrigin(semantics, instruction, index); *semantics_ptr = AddSemantics(sub_semantics); } else { HloValueSemantics sub_semantics( HloValueSemanticLabel::kTupleOrToken, {instruction, index}); *semantics_ptr = AddSemantics(sub_semantics); } }); analysis_->SetHloValueSemantics(instruction, semantics_shape_tree); } else { const HloValueSemantics* semantics_ptr = AddSemantics(semantics); ShapeTree<const HloValueSemantics*> semantics_shape_tree( instruction->shape(), semantics_ptr); analysis_->SetHloValueSemantics(instruction, semantics_shape_tree); } return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleParameter( HloInstruction* parameter) { return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleConstant( HloInstruction* constant) { RETURN_IF_ALREADY_PROPAGATED(constant); const HloValueSemantics* constant_semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kStatic, {constant, {}}); ShapeTree<const HloValueSemantics*> semantics_shape_tree(constant->shape(), constant_semantics); analysis_->SetHloValueSemantics(constant, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleIota(HloInstruction* iota) { RETURN_IF_ALREADY_PROPAGATED(iota); const HloValueSemantics* semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kStatic, {iota, {}}); ShapeTree<const HloValueSemantics*> semantics_shape_tree(iota->shape(), semantics); analysis_->SetHloValueSemantics(iota, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandlePartitionId( HloInstruction* partition_id) { RETURN_IF_ALREADY_PROPAGATED(partition_id); const HloValueSemantics* semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kStatic, {partition_id, {}}); ShapeTree<const HloValueSemantics*> semantics_shape_tree( partition_id->shape(), semantics); analysis_->SetHloValueSemantics(partition_id, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleReplicaId( HloInstruction* replica_id) { RETURN_IF_ALREADY_PROPAGATED(replica_id); const HloValueSemantics* semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kStatic, {replica_id, {}}); ShapeTree<const HloValueSemantics*> semantics_shape_tree(replica_id->shape(), semantics); analysis_->SetHloValueSemantics(replica_id, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleRngBitGenerator( HloInstruction* rng_bit_generator) { const HloValueSemantics* semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kRandom, {rng_bit_generator, {}}); ShapeTree<const HloValueSemantics*> rbg_semantics_tree( rng_bit_generator->shape(), semantics); analysis_->SetHloValueSemantics(rng_bit_generator, rbg_semantics_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleClamp(HloInstruction* clamp) { RETURN_IF_ALREADY_PROPAGATED(clamp); const ShapeTree<const HloValueSemantics*>& operand_semantics = analysis_->GetInstructionSemantics(clamp->operand(1)); analysis_->DeepCopyHloValueSemantics(clamp, operand_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleTuple(HloInstruction* tuple) { RETURN_IF_ALREADY_PROPAGATED(tuple); return HandleTupleLike(tuple); } absl::Status HloValueSemanticsPropagation::HandleGetTupleElement( HloInstruction* get_tuple_element) { RETURN_IF_ALREADY_PROPAGATED(get_tuple_element); const HloInstruction* tuple = get_tuple_element->operand(0); int64_t tuple_index = get_tuple_element->tuple_index(); const ShapeTree<const HloValueSemantics*>& tuple_semantics = analysis_->GetInstructionSemantics(tuple); TF_ASSIGN_OR_RETURN( ShapeTree<const HloValueSemantics*> tuple_element_semantics, tuple_semantics.SubShapeTree({tuple_index})); analysis_->DeepCopyHloValueSemantics(get_tuple_element, tuple_element_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleCall(HloInstruction* call) { RETURN_IF_ALREADY_PROPAGATED(call); HloComputation* computation = call->called_computations()[0]; TF_RETURN_IF_ERROR( analysis_->RunOnComputation(*computation, call->operands())); const ShapeTree<const HloValueSemantics*>& root_semantics = analysis_->GetInstructionSemantics(computation->root_instruction()); analysis_->DeepCopyHloValueSemantics(call, root_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleFusion( HloInstruction* fusion) { return HandleCall(fusion); } absl::Status HloValueSemanticsPropagation::HandleWhile( HloInstruction* xla_while) { RETURN_IF_ALREADY_PROPAGATED(xla_while); TF_RETURN_IF_ERROR(analysis_->RunOnComputation(*xla_while->while_condition(), xla_while->operands())); HloComputation* computation = xla_while->while_body(); TF_RETURN_IF_ERROR( analysis_->RunOnComputation(*computation, xla_while->operands())); const ShapeTree<const HloValueSemantics*>& root_semantics = analysis_->GetInstructionSemantics(computation->root_instruction()); analysis_->DeepCopyHloValueSemantics(xla_while, root_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleCustomCall( HloInstruction* custom_call) { RETURN_IF_ALREADY_PROPAGATED(custom_call); if (custom_call->custom_call_target() == "Sharding" || custom_call->custom_call_target() == "SPMDFullToShardShape" || custom_call->custom_call_target() == "SPMDShardToFullShape") { const ShapeTree<const HloValueSemantics*>& operand_semantics = analysis_->GetInstructionSemantics(custom_call->operand(0)); analysis_->DeepCopyHloValueSemantics(custom_call, operand_semantics); return absl::OkStatus(); } return Unimplemented("Unimplemented custom-call: %s", custom_call->custom_call_target()); } absl::Status HloValueSemanticsPropagation::HandleConditional( HloInstruction* conditional) { RETURN_IF_ALREADY_PROPAGATED(conditional); std::vector<ShapeTree<const HloValueSemantics*>> semantics_tree_vec; for (int i = 0; i < conditional->called_computations().size(); ++i) { HloComputation* computation = conditional->called_computations()[i]; TF_RETURN_IF_ERROR(analysis_->RunOnComputation( *computation, {conditional->operands()[i + 1]})); const ShapeTree<const HloValueSemantics*>& root_semantics = analysis_->GetInstructionSemantics(computation->root_instruction()); semantics_tree_vec.push_back(root_semantics); } std::vector<HloValueSemantics> merged_semantics_leaves; TF_RETURN_IF_ERROR(semantics_tree_vec[0].ForEachElementWithStatus( [&](const ShapeIndex& index, const HloValueSemantics* semantics) -> absl::Status { std::vector<HloValueSemantics> semantics_vector; semantics_vector.reserve(semantics_tree_vec.size()); for (size_t i = 0; i < semantics_tree_vec.size(); ++i) { semantics_vector.push_back( *(semantics_tree_vec[i].find(index)->second)); } TF_ASSIGN_OR_RETURN( HloValueSemantics merged, MergeSemanticsForAnInstruction(conditional, semantics_vector)); merged_semantics_leaves.push_back(merged); return absl::OkStatus(); })); ShapeTree<const HloValueSemantics*> merged_semantics(conditional->shape()); int idx = 0; merged_semantics.ForEachMutableElement( [&](const ShapeIndex& index, const HloValueSemantics** semantics) -> void { *semantics = &merged_semantics_leaves[idx++]; }); analysis_->DeepCopyHloValueSemantics(conditional, merged_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleSelect( HloInstruction* select) { RETURN_IF_ALREADY_PROPAGATED(select); TF_ASSIGN_OR_RETURN(HloValueSemantics semantics, ComputeSemanticsFromOperands(select, {1, 2})); const HloValueSemantics* semantics_ptr = AddSemantics(semantics); ShapeTree<const HloValueSemantics*> semantics_shape_tree(select->shape(), semantics_ptr); analysis_->SetHloValueSemantics(select, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleConcatenate( HloInstruction* concatenate) { RETURN_IF_ALREADY_PROPAGATED(concatenate); const ShapeTree<const HloValueSemantics*>& operand_semantics = analysis_->GetInstructionSemantics(concatenate->operand(0)); analysis_->DeepCopyHloValueSemantics(concatenate, operand_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleDynamicSlice( HloInstruction* dynamic_slice) { RETURN_IF_ALREADY_PROPAGATED(dynamic_slice); const HloInstruction* dynamic_slice_operand = dynamic_slice->operand(0); const HloValueSemantics* operand_semantics = analysis_->GetSemantics(dynamic_slice_operand); const HloValueSemantics* semantics = AddSemantics(*operand_semantics); ShapeTree<const HloValueSemantics*> semantics_shape_tree( dynamic_slice->shape(), semantics); analysis_->SetHloValueSemantics(dynamic_slice, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleDynamicUpdateSlice( HloInstruction* dynamic_update_slice) { RETURN_IF_ALREADY_PROPAGATED(dynamic_update_slice); TF_ASSIGN_OR_RETURN( HloValueSemantics semantics, ComputeSemanticsFromOperands(dynamic_update_slice, {0, 1})); const HloValueSemantics* semantics_ptr = AddSemantics(semantics); ShapeTree<const HloValueSemantics*> semantics_shape_tree( dynamic_update_slice->shape(), semantics_ptr); analysis_->SetHloValueSemantics(dynamic_update_slice, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleCopyStart( HloInstruction* copy_start) { return HandleCollectiveOrCopyStart(copy_start); } absl::Status HloValueSemanticsPropagation::HandleCopyDone( HloInstruction* copy_done) { return HandleCollectiveOrCopyDone(copy_done); } absl::Status HloValueSemanticsPropagation::HandleCollectiveOrCopyStart( HloInstruction* op_start) { RETURN_IF_ALREADY_PROPAGATED(op_start); ShapeTree<const HloValueSemantics*> semantics_shape_tree(op_start->shape()); const ShapeTree<const HloValueSemantics*>& operand_semantics_shape_tree = analysis_->GetInstructionSemantics(op_start->operand(0)); analysis_->DeepCopyHloValueSemantics(semantics_shape_tree, operand_semantics_shape_tree, {}, {0}); analysis_->DeepCopyHloValueSemantics(semantics_shape_tree, operand_semantics_shape_tree, {}, {1}); semantics_shape_tree.ForEachMutableElement( [this, op_start](const ShapeIndex& shape_index, const HloValueSemantics** semantics) { if (shape_index.empty()) { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {op_start, {}}); } if (shape_index == ShapeIndex{2}) { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kRandom, {op_start, shape_index}); } if (shape_index == ShapeIndex{3}) { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kRandom, {op_start, shape_index}); } }); analysis_->SetHloValueSemantics(op_start, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleCollectiveOrCopyDone( HloInstruction* op_done) { RETURN_IF_ALREADY_PROPAGATED(op_done); const ShapeTree<const HloValueSemantics*>& operand_semantics_shape_tree = analysis_->GetInstructionSemantics(op_done->operand(0)); analysis_->DeepCopyHloValueSemantics(op_done, operand_semantics_shape_tree, {1}); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleAllGatherStart( HloInstruction* all_gather_start) { return HandleCollectiveOrCopyStart(all_gather_start); } absl::Status HloValueSemanticsPropagation::HandleAllGatherDone( HloInstruction* all_gather_done) { return HandleCollectiveOrCopyDone(all_gather_done); } absl::Status HloValueSemanticsPropagation::HandleCollectivePermuteStart( HloInstruction* collective_permute_start) { return HandleCollectiveOrCopyStart(collective_permute_start); } absl::Status HloValueSemanticsPropagation::HandleCollectivePermuteDone( HloInstruction* collective_permute_done) { return HandleCollectiveOrCopyDone(collective_permute_done); } absl::Status HloValueSemanticsPropagation::HandleGather( HloInstruction* gather) { RETURN_IF_ALREADY_PROPAGATED(gather); const ShapeTree<const HloValueSemantics*>& operand_semantics_shape_tree = analysis_->GetInstructionSemantics(gather->operand(0)); analysis_->DeepCopyHloValueSemantics(gather, operand_semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleScatter( HloInstruction* scatter) { RETURN_IF_ALREADY_PROPAGATED(scatter); TF_ASSIGN_OR_RETURN(HloValueSemantics semantics, ComputeSemanticsFromOperands(scatter, {0, 2})); const HloValueSemantics* semantics_ptr = AddSemantics(semantics); ShapeTree<const HloValueSemantics*> semantics_shape_tree(scatter->shape(), semantics_ptr); analysis_->SetHloValueSemantics(scatter, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleAfterAll( HloInstruction* after_all) { RETURN_IF_ALREADY_PROPAGATED(after_all); const HloValueSemantics* semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {after_all, {}}); ShapeTree<const HloValueSemantics*> semantics_shape_tree(after_all->shape(), semantics); analysis_->SetHloValueSemantics(after_all, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleAllReduce( HloInstruction* all_reduce) { RETURN_IF_ALREADY_PROPAGATED(all_reduce); if (all_reduce->shape().IsArray()) { return DefaultAction(all_reduce); } CHECK(all_reduce->shape().IsTuple()); return HandleTupleLike(all_reduce); } absl::Status HloValueSemanticsPropagation::HandleAsyncStart( HloInstruction* async_start) { RETURN_IF_ALREADY_PROPAGATED(async_start); ShapeTree<const HloValueSemantics*> semantics_shape_tree(async_start->shape(), nullptr); HloComputation* computation = async_start->async_wrapped_computation(); const bool is_thread_included = HloInstruction::IsThreadIncluded( computation->execution_thread(), analysis_->execution_threads_); if (is_thread_included) { TF_RETURN_IF_ERROR( analysis_->RunOnComputation(*computation, async_start->operands())); const ShapeTree<const HloValueSemantics*>& root_semantics = analysis_->GetInstructionSemantics(computation->root_instruction()); analysis_->DeepCopyHloValueSemantics(semantics_shape_tree, root_semantics, {}, {1}); } for (int operand_index = 0; operand_index < async_start->operand_count(); ++operand_index) { HloInstruction* operand = async_start->mutable_operand(operand_index); const ShapeTree<const HloValueSemantics*>& operand_semantics_tree = analysis_->GetInstructionSemantics(operand); analysis_->DeepCopyHloValueSemantics( semantics_shape_tree, operand_semantics_tree, {}, {0, operand_index}); } semantics_shape_tree.ForEachMutableElement( [&semantics_shape_tree, this, async_start, is_thread_included]( const ShapeIndex& index, const HloValueSemantics** semantics_ptr) { if (!semantics_shape_tree.IsLeaf(index)) { *semantics_ptr = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {async_start, {}}); return; } if ((!is_thread_included && index.front() == 1) || index.front() == 2 || index.front() == 3) { *semantics_ptr = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kRandom, {async_start, {}}); } }); analysis_->SetHloValueSemantics(async_start, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleAsyncDone( HloInstruction* async_done) { RETURN_IF_ALREADY_PROPAGATED(async_done); const ShapeTree<const HloValueSemantics*>& operand_semantics_tree = analysis_->GetInstructionSemantics(async_done->operand(0)); analysis_->DeepCopyHloValueSemantics(async_done, operand_semantics_tree, {1}); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleInfeed( HloInstruction* infeed) { RETURN_IF_ALREADY_PROPAGATED(infeed); ShapeTree<const HloValueSemantics*> semantics_shape_tree(infeed->shape(), nullptr); semantics_shape_tree.ForEachMutableElement( [this, &semantics_shape_tree, infeed]( const ShapeIndex& shape_index, const HloValueSemantics** semantics) { if (semantics_shape_tree.IsLeaf(shape_index)) { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kWeight, {infeed, shape_index}); } else { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {infeed, shape_index}); } }); analysis_->SetHloValueSemantics(infeed, semantics_shape_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleOutfeed( HloInstruction* outfeed) { RETURN_IF_ALREADY_PROPAGATED(outfeed); const HloValueSemantics* semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {outfeed, {}}); ShapeTree<const HloValueSemantics*> outfeed_semantics_tree(outfeed->shape(), semantics); analysis_->SetHloValueSemantics(outfeed, outfeed_semantics_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleDomain( HloInstruction* domain) { RETURN_IF_ALREADY_PROPAGATED(domain); HloInstruction* domain_operand = domain->mutable_operand(0); const ShapeTree<const HloValueSemantics*>& operand_semantics = analysis_->GetInstructionSemantics(domain_operand); analysis_->DeepCopyHloValueSemantics(domain, operand_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleOptimizationBarrier( HloInstruction* opt_barrier) { RETURN_IF_ALREADY_PROPAGATED(opt_barrier); HloInstruction* opt_barrier_operand = opt_barrier->mutable_operand(0); const ShapeTree<const HloValueSemantics*>& operand_semantics = analysis_->GetInstructionSemantics(opt_barrier_operand); analysis_->DeepCopyHloValueSemantics(opt_barrier, operand_semantics); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleSend(HloInstruction* send) { RETURN_IF_ALREADY_PROPAGATED(send); ShapeTree<const HloValueSemantics*> semantics_tree(send->shape(), nullptr); HloInstruction* source_buffer = send->mutable_operand(0); const ShapeTree<const HloValueSemantics*>& source_buffer_semantics = analysis_->GetInstructionSemantics(source_buffer); analysis_->DeepCopyHloValueSemantics(semantics_tree, source_buffer_semantics, {}, {0}); semantics_tree.ForEachMutableElement( [this, send, &semantics_tree](const ShapeIndex& index, const HloValueSemantics** semantics) { if (!index.empty()) { if (index.front() == 1 && semantics_tree.IsLeaf(index)) { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kRandom, {send, index}); return; } if (index.front() == 0) { return; } } *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {send, index}); }); analysis_->SetHloValueSemantics(send, semantics_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleRecv(HloInstruction* recv) { RETURN_IF_ALREADY_PROPAGATED(recv); TF_ASSIGN_OR_RETURN(HloInstruction * send, analysis_->GetMatchingSendOrRecv(recv)); TF_RETURN_IF_ERROR(send->Accept(this)); ShapeTree<const HloValueSemantics*> semantics_tree(recv->shape(), nullptr); const ShapeTree<const HloValueSemantics*>& send_buffer_semantics = analysis_->GetInstructionSemantics(send); analysis_->DeepCopyHloValueSemantics(semantics_tree, send_buffer_semantics, {0}, {0}); semantics_tree.ForEachMutableElement( [this, recv, &semantics_tree](const ShapeIndex& index, const HloValueSemantics** semantics) { if (!index.empty()) { if (index.front() == 1 && semantics_tree.IsLeaf(index)) { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kRandom, {recv, index}); return; } if (index.front() == 0) { return; } } *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {recv, index}); }); analysis_->SetHloValueSemantics(recv, semantics_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleSendDone( HloInstruction* send_done) { RETURN_IF_ALREADY_PROPAGATED(send_done); const HloValueSemantics* semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {send_done, {}}); ShapeTree<const HloValueSemantics*> send_done_semantics_tree( send_done->shape(), semantics); analysis_->SetHloValueSemantics(send_done, send_done_semantics_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleRecvDone( HloInstruction* recv_done) { RETURN_IF_ALREADY_PROPAGATED(recv_done); ShapeTree<const HloValueSemantics*> semantics_tree(recv_done->shape(), nullptr); HloInstruction* recv = recv_done->mutable_operand(0); const ShapeTree<const HloValueSemantics*>& recv_semantics = analysis_->GetInstructionSemantics(recv); analysis_->DeepCopyHloValueSemantics(semantics_tree, recv_semantics, {0}, {0}); semantics_tree.ForEachMutableElement( [this, recv_done](const ShapeIndex& index, const HloValueSemantics** semantics) { if (!index.empty() && index.front() == 0) { return; } *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {recv_done, index}); }); analysis_->SetHloValueSemantics(recv_done, semantics_tree); return absl::OkStatus(); } absl::Status HloValueSemanticsPropagation::HandleTupleLike( HloInstruction* tuple_like) { ShapeTree<const HloValueSemantics*> semantics_shape_tree(tuple_like->shape(), nullptr); for (int operand_index = 0; operand_index < tuple_like->operand_count(); ++operand_index) { const HloInstruction* operand = tuple_like->operand(operand_index); const ShapeTree<const HloValueSemantics*>& operand_semantics = analysis_->GetInstructionSemantics(operand); analysis_->DeepCopyHloValueSemantics( semantics_shape_tree, operand_semantics, {}, {operand_index}); } semantics_shape_tree.ForEachMutableElement( [tuple_like, this](const ShapeIndex& index, const HloValueSemantics** semantics) { if (index.empty()) { *semantics = analysis_->NewHloValueSemantics( HloValueSemanticLabel::kTupleOrToken, {tuple_like, {}}); return; } }); analysis_->SetHloValueSemantics(tuple_like, semantics_shape_tree); return absl::OkStatus(); } }
#include "xla/service/hlo_value_semantics_analysis.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { const char kMnistHlo[] = R"( HloModule MnistTrainingLoopWithInfeed.140, entry_computation_layout={(f32[784,128]{1,0:T(8,128)},f32[128]{0:T(256)},f32[128,32]{1,0:T(8,128)},f32[32]{0:T(256)},f32[32,10]{1,0:T(8,128)},f32[10]{0:T(256)})->(f32[784,128]{1,0:T(8,128)}, f32[128]{0:T(256)}, f32[128,32]{1,0:T(8,128)}, f32[32]{0:T(256)}, f32[32,10]{1,0:T(8,128)}, f32[10]{0:T(256)})} relu.9 { x.10 = f32[] parameter(0) constant.11 = f32[] constant(0) ROOT maximum.12 = f32[] maximum(x.10, constant.11) } max_F32.17 { lhs.18 = f32[] parameter(0) rhs.19 = f32[] parameter(1) ROOT maximum.20 = f32[] maximum(lhs.18, rhs.19) } add_F32.1 { lhs.22 = f32[] parameter(0) rhs.23 = f32[] parameter(1) ROOT add.24 = f32[] add(lhs.22, rhs.23) } relu_gradients.29 { activation.30 = f32[] parameter(0) constant.32 = f32[] constant(0) compare.33 = pred[] compare(activation.30, constant.32), direction=GT backprop.31 = f32[] parameter(1) ROOT select.34 = f32[] select(compare.33, backprop.31, constant.32) } body.49 { after-all.51 = token[] after-all() infeed.52 = ((f32[100,784]{1,0}, f32[100,10]{1,0}, pred[]), token[]) infeed(after-all.51) get.53 = (f32[100,784]{1,0}, f32[100,10]{1,0}, pred[]) get-tuple-element(infeed.52), index=0 get.54 = f32[100,784]{1,0} get-tuple-element(get.53), index=0 prev.50 = (f32[784,128]{1,0}, f32[128]{0}, f32[128,32]{1,0}, f32[32]{0}, f32[32,10]{1,0}, f32[10]{0}, pred[]) parameter(0) get.57 = f32[784,128]{1,0} get-tuple-element(prev.50), index=0 dot.63 = f32[100,128]{1,0} dot(get.54, get.57), lhs_contracting_dims={1}, rhs_contracting_dims={0} get.58 = f32[128]{0} get-tuple-element(prev.50), index=1 broadcast.64 = f32[100,128]{1,0} broadcast(get.58), dimensions={1} add.65 = f32[100,128]{1,0} add(dot.63, broadcast.64) map.66 = f32[100,128]{1,0} map(add.65), dimensions={0,1}, to_apply=relu.9 get.59 = f32[128,32]{1,0} get-tuple-element(prev.50), index=2 dot.67 = f32[100,32]{1,0} dot(map.66, get.59), lhs_contracting_dims={1}, rhs_contracting_dims={0} get.60 = f32[32]{0} get-tuple-element(prev.50), index=3 broadcast.68 = f32[100,32]{1,0} broadcast(get.60), dimensions={1} add.69 = f32[100,32]{1,0} add(dot.67, broadcast.68) map.70 = f32[100,32]{1,0} map(add.69), dimensions={0,1}, to_apply=relu.9 get.61 = f32[32,10]{1,0} get-tuple-element(prev.50), index=4 dot.71 = f32[100,10]{1,0} dot(map.70, get.61), lhs_contracting_dims={1}, rhs_contracting_dims={0} get.62 = f32[10]{0} get-tuple-element(prev.50), index=5 broadcast.72 = f32[100,10]{1,0} broadcast(get.62), dimensions={1} add.73 = f32[100,10]{1,0} add(dot.71, broadcast.72) constant.74 = f32[] constant(-inf) reduce.75 = f32[100]{0} reduce(add.73, constant.74), dimensions={1}, to_apply=max_F32.17 broadcast.76 = f32[100,10]{1,0} broadcast(reduce.75), dimensions={0} subtract.77 = f32[100,10]{1,0} subtract(add.73, broadcast.76) exponential.78 = f32[100,10]{1,0} exponential(subtract.77) constant.79 = f32[] constant(0) reduce.80 = f32[100]{0} reduce(exponential.78, constant.79), dimensions={1}, to_apply=add_F32.1 broadcast.81 = f32[100,10]{1,0} broadcast(reduce.80), dimensions={0} divide.82 = f32[100,10]{1,0} divide(exponential.78, broadcast.81) get.55 = f32[100,10]{1,0} get-tuple-element(get.53), index=1 subtract.83 = f32[100,10]{1,0} subtract(divide.82, get.55) transpose.88 = f32[10,32]{0,1} transpose(get.61), dimensions={1,0} dot.89 = f32[100,32]{1,0} dot(subtract.83, transpose.88), lhs_contracting_dims={1}, rhs_contracting_dims={0} map.90 = f32[100,32]{1,0} map(map.70, dot.89), dimensions={0,1}, to_apply=relu_gradients.29 transpose.95 = f32[32,128]{0,1} transpose(get.59), dimensions={1,0} dot.96 = f32[100,128]{1,0} dot(map.90, transpose.95), lhs_contracting_dims={1}, rhs_contracting_dims={0} map.97 = f32[100,128]{1,0} map(map.66, dot.96), dimensions={0,1}, to_apply=relu_gradients.29 transpose.98 = f32[784,100]{0,1} transpose(get.54), dimensions={1,0} dot.99 = f32[784,128]{1,0} dot(transpose.98, map.97), lhs_contracting_dims={1}, rhs_contracting_dims={0} constant.104 = f32[] constant(0.01) broadcast.105 = f32[784,128]{1,0} broadcast(constant.104), dimensions={} multiply.106 = f32[784,128]{1,0} multiply(dot.99, broadcast.105) subtract.107 = f32[784,128]{1,0} subtract(get.57, multiply.106) reduce.101 = f32[128]{0} reduce(map.97, constant.79), dimensions={0}, to_apply=add_F32.1 broadcast.109 = f32[128]{0} broadcast(constant.104), dimensions={} multiply.110 = f32[128]{0} multiply(reduce.101, broadcast.109) subtract.111 = f32[128]{0} subtract(get.58, multiply.110) transpose.91 = f32[128,100]{0,1} transpose(map.66), dimensions={1,0} dot.92 = f32[128,32]{1,0} dot(transpose.91, map.90), lhs_contracting_dims={1}, rhs_contracting_dims={0} broadcast.113 = f32[128,32]{1,0} broadcast(constant.104), dimensions={} multiply.114 = f32[128,32]{1,0} multiply(dot.92, broadcast.113) subtract.115 = f32[128,32]{1,0} subtract(get.59, multiply.114) reduce.94 = f32[32]{0} reduce(map.90, constant.79), dimensions={0}, to_apply=add_F32.1 broadcast.117 = f32[32]{0} broadcast(constant.104), dimensions={} multiply.118 = f32[32]{0} multiply(reduce.94, broadcast.117) subtract.119 = f32[32]{0} subtract(get.60, multiply.118) transpose.84 = f32[32,100]{0,1} transpose(map.70), dimensions={1,0} dot.85 = f32[32,10]{1,0} dot(transpose.84, subtract.83), lhs_contracting_dims={1}, rhs_contracting_dims={0} broadcast.121 = f32[32,10]{1,0} broadcast(constant.104), dimensions={} multiply.122 = f32[32,10]{1,0} multiply(dot.85, broadcast.121) subtract.123 = f32[32,10]{1,0} subtract(get.61, multiply.122) reduce.87 = f32[10]{0} reduce(subtract.83, constant.79), dimensions={0}, to_apply=add_F32.1 broadcast.125 = f32[10]{0} broadcast(constant.104), dimensions={} multiply.126 = f32[10]{0} multiply(reduce.87, broadcast.125) subtract.127 = f32[10]{0} subtract(get.62, multiply.126) get.56 = pred[] get-tuple-element(get.53), index=2 ROOT tuple.128 = (f32[784,128]{1,0}, f32[128]{0}, f32[128,32]{1,0}, f32[32]{0}, f32[32,10]{1,0}, f32[10]{0}, pred[]) tuple(subtract.107, subtract.111, subtract.115, subtract.119, subtract.123, subtract.127, get.56) } condition.129 { prev.130 = (f32[784,128]{1,0}, f32[128]{0}, f32[128,32]{1,0}, f32[32]{0}, f32[32,10]{1,0}, f32[10]{0}, pred[]) parameter(0) ROOT get.131 = pred[] get-tuple-element(prev.130), index=6 } ENTRY MnistTrainingLoopWithInfeed.140 { layer1_weights.1 = f32[784,128]{1,0} parameter(0) layer1_biases.2 = f32[128]{0} parameter(1) layer2_weights.3 = f32[128,32]{1,0} parameter(2) layer2_biases.4 = f32[32]{0} parameter(3) layer3_weights.5 = f32[32,10]{1,0} parameter(4) layer3_biases.6 = f32[10]{0} parameter(5) constant.7 = pred[] constant(true) tuple.8 = (f32[784,128]{1,0}, f32[128]{0}, f32[128,32]{1,0}, f32[32]{0}, f32[32,10]{1,0}, f32[10]{0}, pred[]) tuple(layer1_weights.1, layer1_biases.2, layer2_weights.3, layer2_biases.4, layer3_weights.5, layer3_biases.6, constant.7) while.132 = (f32[784,128]{1,0}, f32[128]{0}, f32[128,32]{1,0}, f32[32]{0}, f32[32,10]{1,0}, f32[10]{0}, pred[]) while(tuple.8), condition=condition.129, body=body.49 get.133 = f32[784,128]{1,0} get-tuple-element(while.132), index=0 get.134 = f32[128]{0} get-tuple-element(while.132), index=1 get.135 = f32[128,32]{1,0} get-tuple-element(while.132), index=2 get.136 = f32[32]{0} get-tuple-element(while.132), index=3 get.137 = f32[32,10]{1,0} get-tuple-element(while.132), index=4 get.138 = f32[10]{0} get-tuple-element(while.132), index=5 ROOT tuple.139 = (f32[784,128]{1,0}, f32[128]{0}, f32[128,32]{1,0}, f32[32]{0}, f32[32,10]{1,0}, f32[10]{0}) tuple(get.133, get.134, get.135, get.136, get.137, get.138) } )"; class HloValueSemanticsAnalysisTest : public HloTestBase { public: bool HasLabel(const HloValueSemanticsAnalysis& hlo_value_semantics_analysis, HloModule* module, absl::string_view instruction_name, const HloValueSemanticLabel& expected_label) { HloInstruction* instruction = FindInstruction(module, instruction_name); const HloValueSemantics* semantics = hlo_value_semantics_analysis.GetSemantics(instruction); LOG(INFO) << "instruction: " << instruction->ToString() << semantics->ToString(); return semantics->label() == expected_label; } bool IsStatic(const HloValueSemanticsAnalysis& hlo_value_semantics_analysis, HloModule* module, absl::string_view instruction_name) { return HasLabel(hlo_value_semantics_analysis, module, instruction_name, HloValueSemanticLabel::kStatic); } bool IsWeight(const HloValueSemanticsAnalysis& hlo_value_semantics_analysis, HloModule* module, absl::string_view instruction_name) { return HasLabel(hlo_value_semantics_analysis, module, instruction_name, HloValueSemanticLabel::kWeight); } bool IsActivation( const HloValueSemanticsAnalysis& hlo_value_semantics_analysis, HloModule* module, absl::string_view instruction_name) { return HasLabel(hlo_value_semantics_analysis, module, instruction_name, HloValueSemanticLabel::kActivation); } bool IsActivationGradient( const HloValueSemanticsAnalysis& hlo_value_semantics_analysis, HloModule* module, absl::string_view instruction_name) { return HasLabel(hlo_value_semantics_analysis, module, instruction_name, HloValueSemanticLabel::kActivationGradient); } bool IsWeightGradient( const HloValueSemanticsAnalysis& hlo_value_semantics_analysis, HloModule* module, absl::string_view instruction_name) { return HasLabel(hlo_value_semantics_analysis, module, instruction_name, HloValueSemanticLabel::kWeightGradient); } bool IsTupleOrToken( const HloValueSemanticsAnalysis& hlo_value_semantics_analysis, HloModule* module, absl::string_view instruction_name) { return HasLabel(hlo_value_semantics_analysis, module, instruction_name, HloValueSemanticLabel::kTupleOrToken); } }; TEST_F(HloValueSemanticsAnalysisTest, OneMatmul) { const std::string module_str = R"( HloModule OneMatmul region_0.39 { Arg_0.40 = f32[] parameter(0) Arg_1.41 = f32[] parameter(1) ROOT add.42 = f32[] add(Arg_0.40, Arg_1.41) } ENTRY entry { Arg_1.2 = f32[32,128]{1,0} parameter(0), sharding={devices=[2,1]0,1} Arg_7.8 = f32[4,32]{1,0} parameter(1), sharding={devices=[2,1]0,1} copy = f32[4,32]{1,0} copy(Arg_7.8), sharding={devices=[2,1]0,1} dot.0 = f32[4,128]{1,0} dot(copy, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sharding={devices=[2,1]0,1} constant.5 = f32[] constant(0), sharding={replicated} broadcast.2 = f32[4,128]{1,0} broadcast(constant.5), dimensions={}, sharding={devices=[2,1]0,1} maximum.33 = f32[4,128]{1,0} maximum(dot.0, broadcast.2), sharding={devices=[2,1]0,1} compare.34 = pred[4,128]{1,0} compare(dot.0, maximum.33), direction=EQ, sharding={devices=[2,1]0,1} constant.4 = f32[] constant(1), sharding={replicated} broadcast.1 = f32[4,128]{1,0} broadcast(constant.4), dimensions={}, sharding={devices=[2,1]0,1} select.35 = f32[4,128]{1,0} select(compare.34, broadcast.1, broadcast.2), sharding={devices=[2,1]0,1} dot.2 = f32[32,128]{0,1} dot(copy, select.35), lhs_contracting_dims={0}, rhs_contracting_dims={0}, sharding={devices=[2,1]0,1} constant.11 = f32[] constant(-0.01), sharding={replicated} broadcast.12 = f32[32,128]{1,0} broadcast(constant.11), dimensions={}, sharding={devices=[2,1]0,1} multiply.52 = f32[32,128]{0,1} multiply(dot.2, broadcast.12), sharding={devices=[2,1]0,1} add.93 = f32[32,128]{1,0} add(Arg_1.2, multiply.52), sharding={devices=[2,1]0,1} reduce.43 = f32[] reduce(maximum.33, constant.5), dimensions={0,1}, to_apply=region_0.39, sharding={replicated} ROOT tuple.109 = (f32[32,128]{1,0}, f32[]) tuple(add.93, reduce.43), sharding={{devices=[2,1]0,1}, {replicated}} } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(module_str, 1, 2)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloValueSemanticsAnalysis> hlo_value_semantics_analysis, HloValueSemanticsAnalysis::Run(*module)); EXPECT_TRUE(IsWeight(*hlo_value_semantics_analysis, module.get(), "copy")); EXPECT_TRUE(IsWeight(*hlo_value_semantics_analysis, module.get(), "Arg_1.2")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.0")); EXPECT_TRUE( IsStatic(*hlo_value_semantics_analysis, module.get(), "select.35")); EXPECT_TRUE(IsWeight(*hlo_value_semantics_analysis, module.get(), "dot.2")); } TEST_F(HloValueSemanticsAnalysisTest, HandleConditional) { const std::string module_str = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) tgte1 = f32[4] ceil(tparam) ROOT tuple = (f32[4], f32[4]) tuple(tparam, tgte1) } branch1 { fparam = f32[4] parameter(0) %async-start = ((f32[4]), f32[4], s32[]) abs-start(f32[4] fparam), async_execution_thread="parallel_thread" %async-done = f32[4] abs-done(((f32[4]), f32[4], s32[]) %async-start) ROOT tuple = (f32[4], f32[4]) tuple(fparam, %async-done) } ENTRY entry { p0 = f32[4] parameter(0) b0 = s32[] parameter(1) ROOT conditional = (f32[4], f32[4]) conditional(b0, p0, p0), branch_computations={branch0, branch1} } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(module_str, 1, 2)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloValueSemanticsAnalysis> hlo_value_semantics_analysis, HloValueSemanticsAnalysis::Run(*module)); EXPECT_TRUE(IsTupleOrToken(*hlo_value_semantics_analysis, module.get(), "conditional")); } TEST_F(HloValueSemanticsAnalysisTest, TwoMatmuls) { const std::string module_str = R"( HloModule TwoMatmuls region_0.44 { Arg_0.45 = f32[] parameter(0) Arg_1.46 = f32[] parameter(1) ROOT add.47 = f32[] add(Arg_0.45, Arg_1.46) } ENTRY entry { Arg_1.2 = f32[32,128]{1,0} parameter(0), sharding={devices=[2,1]0,1} Arg_8.9 = f32[4,32]{1,0} parameter(2), sharding={devices=[2,1]0,1} copy = f32[4,32]{1,0} copy(Arg_8.9), sharding={devices=[2,1]0,1} dot.0 = f32[4,128]{1,0} dot(copy, Arg_1.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sharding={devices=[2,1]0,1} Arg_2.3 = f32[128,8]{1,0} parameter(1), sharding={devices=[1,2]0,1} dot.1 = f32[4,8]{1,0} dot(dot.0, Arg_2.3), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sharding={devices=[1,2]0,1} constant.5 = f32[] constant(0), sharding={replicated} broadcast.1 = f32[4,8]{1,0} broadcast(constant.5), dimensions={}, sharding={devices=[1,2]0,1} maximum.38 = f32[4,8]{1,0} maximum(dot.1, broadcast.1), sharding={devices=[1,2]0,1} compare.39 = pred[4,8]{1,0} compare(dot.1, maximum.38), direction=EQ, sharding={devices=[1,2]0,1} constant.4 = f32[] constant(1), sharding={replicated} broadcast.0 = f32[4,8]{1,0} broadcast(constant.4), dimensions={}, sharding={devices=[1,2]0,1} select.40 = f32[4,8]{1,0} select(compare.39, broadcast.0, broadcast.1), sharding={devices=[1,2]0,1} dot.2 = f32[4,128]{1,0} dot(select.40, Arg_2.3), lhs_contracting_dims={1}, rhs_contracting_dims={1}, sharding={devices=[2,1]0,1} dot.5 = f32[32,128]{0,1} dot(copy, dot.2), lhs_contracting_dims={0}, rhs_contracting_dims={0}, sharding={devices=[2,1]0,1} constant.12 = f32[] constant(-0.01), sharding={replicated} broadcast.13 = f32[32,128]{1,0} broadcast(constant.12), dimensions={}, sharding={devices=[2,1]0,1} multiply.68 = f32[32,128]{0,1} multiply(dot.5, broadcast.13), sharding={devices=[2,1]0,1} add.79 = f32[32,128]{1,0} add(Arg_1.2, multiply.68), sharding={devices=[2,1]0,1} dot.6 = f32[128,8]{0,1} dot(dot.0, select.40), lhs_contracting_dims={0}, rhs_contracting_dims={0}, sharding={devices=[1,2]0,1} broadcast.11 = f32[128,8]{1,0} broadcast(constant.12), dimensions={}, sharding={devices=[1,2]0,1} multiply.69 = f32[128,8]{0,1} multiply(dot.6, broadcast.11), sharding={devices=[1,2]0,1} add.80 = f32[128,8]{1,0} add(Arg_2.3, multiply.69), sharding={devices=[1,2]0,1} reduce.48 = f32[] reduce(maximum.38, constant.5), dimensions={0,1}, to_apply=region_0.44, sharding={replicated} ROOT tuple.95 = (f32[32,128]{1,0}, f32[128,8]{1,0}, f32[]) tuple(add.79, add.80, reduce.48), sharding={{devices=[2,1]0,1}, {devices=[1,2]0,1}, {replicated}} } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(module_str, 1, 2)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloValueSemanticsAnalysis> hlo_value_semantics_analysis, HloValueSemanticsAnalysis::Run(*module)); EXPECT_FALSE( IsActivation(*hlo_value_semantics_analysis, module.get(), "copy")); EXPECT_FALSE( IsActivation(*hlo_value_semantics_analysis, module.get(), "Arg_1.2")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.0")); EXPECT_FALSE( IsActivation(*hlo_value_semantics_analysis, module.get(), "Arg_2.3")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.1")); EXPECT_TRUE( IsStatic(*hlo_value_semantics_analysis, module.get(), "select.40")); EXPECT_TRUE(IsWeight(*hlo_value_semantics_analysis, module.get(), "dot.2")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.5")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.6")); } TEST_F(HloValueSemanticsAnalysisTest, RepeatWhile) { const std::string module_str = R"( HloModule RepeatWhile region_0.52 { arg_tuple.53 = (s32[], f32[4,32]{1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}) parameter(0), sharding={{replicated}, {devices=[2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}} get-tuple-element.54 = s32[] get-tuple-element(arg_tuple.53), index=0, sharding={replicated} constant.61 = s32[] constant(1), sharding={replicated} add.105 = s32[] add(get-tuple-element.54, constant.61), sharding={replicated} get-tuple-element.55 = f32[4,32]{1,0} get-tuple-element(arg_tuple.53), index=1, sharding={devices=[2,1]0,1} get-tuple-element.59 = f32[3,32,128]{2,1,0} get-tuple-element(arg_tuple.53), index=5, sharding={devices=[1,2,1]0,1} constant.69 = s32[] constant(0), sharding={replicated} compare.70 = pred[] compare(get-tuple-element.54, constant.69), direction=LT, sharding={replicated} constant.68 = s32[] constant(3), sharding={replicated} add.71 = s32[] add(get-tuple-element.54, constant.68), sharding={replicated} select.72 = s32[] select(compare.70, add.71, get-tuple-element.54), sharding={replicated} dynamic-slice.73 = f32[1,32,128]{2,1,0} dynamic-slice(get-tuple-element.59, select.72, constant.69, constant.69), dynamic_slice_sizes={1,32,128}, sharding={devices=[1,2,1]0,1} reshape.74 = f32[32,128]{1,0} reshape(dynamic-slice.73), sharding={devices=[2,1]0,1} dot.0 = f32[4,128]{1,0} dot(get-tuple-element.55, reshape.74), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sharding={devices=[2,1]0,1} get-tuple-element.60 = f32[3,128,32]{2,1,0} get-tuple-element(arg_tuple.53), index=6, sharding={devices=[1,1,2]0,1} dynamic-slice.78 = f32[1,128,32]{2,1,0} dynamic-slice(get-tuple-element.60, select.72, constant.69, constant.69), dynamic_slice_sizes={1,128,32}, sharding={devices=[1,1,2]0,1} reshape.79 = f32[128,32]{1,0} reshape(dynamic-slice.78), sharding={devices=[1,2]0,1} dot.1 = f32[4,32]{1,0} dot(dot.0, reshape.79), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sharding={devices=[2,1]0,1} constant.43 = f32[] constant(0), sharding={replicated} broadcast.2 = f32[4,32]{1,0} broadcast(constant.43), dimensions={}, sharding={devices=[2,1]0,1} maximum.84 = f32[4,32]{1,0} maximum(dot.1, broadcast.2), sharding={devices=[2,1]0,1} get-tuple-element.56 = f32[3,4,128]{2,1,0} get-tuple-element(arg_tuple.53), index=2, sharding={devices=[1,2,1]0,1} reshape.90 = f32[1,4,128]{2,1,0} reshape(dot.0), sharding={devices=[1,2,1]0,1} dynamic-update-slice.94 = f32[3,4,128]{2,1,0} dynamic-update-slice(get-tuple-element.56, reshape.90, select.72, constant.69, constant.69), sharding={devices=[1,2,1]0,1} get-tuple-element.57 = f32[3,4,32]{2,1,0} get-tuple-element(arg_tuple.53), index=3, sharding={devices=[1,2,1]0,1} compare.85 = pred[4,32]{1,0} compare(dot.1, maximum.84), direction=EQ, sharding={devices=[2,1]0,1} constant.42 = f32[] constant(1), sharding={replicated} broadcast.1 = f32[4,32]{1,0} broadcast(constant.42), dimensions={}, sharding={devices=[2,1]0,1} select.86 = f32[4,32]{1,0} select(compare.85, broadcast.1, broadcast.2), sharding={devices=[2,1]0,1} reshape.95 = f32[1,4,32]{2,1,0} reshape(select.86), sharding={devices=[1,2,1]0,1} dynamic-update-slice.99 = f32[3,4,32]{2,1,0} dynamic-update-slice(get-tuple-element.57, reshape.95, select.72, constant.69, constant.69), sharding={devices=[1,2,1]0,1} get-tuple-element.58 = f32[3,4,32]{2,1,0} get-tuple-element(arg_tuple.53), index=4, sharding={devices=[1,2,1]0,1} reshape.100 = f32[1,4,32]{2,1,0} reshape(get-tuple-element.55), sharding={devices=[1,2,1]0,1} dynamic-update-slice.104 = f32[3,4,32]{2,1,0} dynamic-update-slice(get-tuple-element.58, reshape.100, select.72, constant.69, constant.69), sharding={devices=[1,2,1]0,1} ROOT tuple.106 = (s32[], f32[4,32]{1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}) tuple(add.105, maximum.84, dynamic-update-slice.94, dynamic-update-slice.99, dynamic-update-slice.104, get-tuple-element.59, get-tuple-element.60), sharding={{replicated}, {devices=[2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}} } region_1.107 { arg_tuple.108 = (s32[], f32[4,32]{1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}) parameter(0), sharding={{replicated}, {devices=[2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}} get-tuple-element.109 = s32[] get-tuple-element(arg_tuple.108), index=0, sharding={replicated} constant.116 = s32[] constant(3) ROOT compare.117 = pred[] compare(get-tuple-element.109, constant.116), direction=LT } region_2.126 { Arg_0.127 = f32[] parameter(0) Arg_1.128 = f32[] parameter(1) ROOT add.129 = f32[] add(Arg_0.127, Arg_1.128) } wide.wide.region_3.156.clone.clone { wide_param.7 = (s32[], f32[4,32]{1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,32]{2,1,0}) parameter(0), sharding={{replicated}, {devices=[1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}} get-tuple-element.185 = s32[] get-tuple-element(wide_param.7), index=0, sharding={replicated} constant.34 = s32[] constant(1), sharding={replicated} add.14 = s32[] add(get-tuple-element.185, constant.34), sharding={replicated} get-tuple-element.186 = f32[4,32]{1,0} get-tuple-element(wide_param.7), index=1, sharding={devices=[2,1]0,1} get-tuple-element.190 = f32[3,4,32]{2,1,0} get-tuple-element(wide_param.7), index=5, sharding={devices=[1,2,1]0,1} constant.35 = s32[] constant(3), sharding={replicated} subtract.3 = s32[] subtract(constant.35, get-tuple-element.185), sharding={replicated} constant.6..sunk.4 = s32[] constant(-1), sharding={replicated} add.15 = s32[] add(subtract.3, constant.6..sunk.4), sharding={replicated} constant.36 = s32[] constant(0), sharding={replicated} compare.7 = pred[] compare(add.15, constant.36), direction=LT, sharding={replicated} constant.26..sunk.1 = s32[] constant(2), sharding={replicated} add.16 = s32[] add(subtract.3, constant.26..sunk.1), sharding={replicated} select.4 = s32[] select(compare.7, add.16, add.15), sharding={replicated} dynamic-slice.15 = f32[1,4,32]{2,1,0} dynamic-slice(get-tuple-element.190, select.4, constant.36, constant.36), dynamic_slice_sizes={1,4,32}, sharding={devices=[1,2,1]0,1} reshape.21 = f32[4,32]{1,0} reshape(dynamic-slice.15), sharding={devices=[2,1]0,1} multiply.3 = f32[4,32]{1,0} multiply(get-tuple-element.186, reshape.21), sharding={devices=[2,1]0,1} get-tuple-element.192 = f32[3,128,32]{2,1,0} get-tuple-element(wide_param.7), index=7, sharding={devices=[1,1,2]0,1} dynamic-slice.16 = f32[1,128,32]{2,1,0} dynamic-slice(get-tuple-element.192, select.4, constant.36, constant.36), dynamic_slice_sizes={1,128,32}, sharding={devices=[1,1,2]0,1} reshape.22 = f32[128,32]{1,0} reshape(dynamic-slice.16), sharding={devices=[1,2]0,1} dot.20 = f32[4,128]{1,0} dot(multiply.3, reshape.22), lhs_contracting_dims={1}, rhs_contracting_dims={1}, sharding={devices=[2,1]0,1} get-tuple-element.191 = f32[3,32,128]{2,1,0} get-tuple-element(wide_param.7), index=6, sharding={devices=[1,2,1]0,1} dynamic-slice.17 = f32[1,32,128]{2,1,0} dynamic-slice(get-tuple-element.191, select.4, constant.36, constant.36), dynamic_slice_sizes={1,32,128}, sharding={devices=[1,2,1]0,1} reshape.23 = f32[32,128]{1,0} reshape(dynamic-slice.17), sharding={devices=[2,1]0,1} dot.21 = f32[4,32]{1,0} dot(dot.20, reshape.23), lhs_contracting_dims={1}, rhs_contracting_dims={1}, sharding={devices=[1,2]0,1} get-tuple-element.187 = f32[3,32,128]{2,1,0} get-tuple-element(wide_param.7), index=2, sharding={devices=[1,2,1]0,1} get-tuple-element.193 = f32[3,4,32]{2,1,0} get-tuple-element(wide_param.7), index=8, sharding={devices=[1,2,1]0,1} dynamic-slice.18 = f32[1,4,32]{2,1,0} dynamic-slice(get-tuple-element.193, select.4, constant.36, constant.36), dynamic_slice_sizes={1,4,32}, sharding={devices=[1,2,1]0,1} reshape.24 = f32[4,32]{1,0} reshape(dynamic-slice.18), sharding={devices=[2,1]0,1} dot.22 = f32[32,128]{0,1} dot(reshape.24, dot.20), lhs_contracting_dims={0}, rhs_contracting_dims={0}, sharding={devices=[2,1]0,1} reshape.25 = f32[1,32,128]{2,1,0} reshape(dot.22), sharding={devices=[1,2,1]0,1} dynamic-update-slice.6 = f32[3,32,128]{2,1,0} dynamic-update-slice(get-tuple-element.187, reshape.25, select.4, constant.36, constant.36), sharding={devices=[1,2,1]0,1} get-tuple-element.188 = f32[3,128,32]{2,1,0} get-tuple-element(wide_param.7), index=3, sharding={devices=[1,1,2]0,1} get-tuple-element.189 = f32[3,4,128]{2,1,0} get-tuple-element(wide_param.7), index=4, sharding={devices=[1,2,1]0,1} dynamic-slice.19 = f32[1,4,128]{2,1,0} dynamic-slice(get-tuple-element.189, select.4, constant.36, constant.36), dynamic_slice_sizes={1,4,128}, sharding={devices=[1,2,1]0,1} reshape.26 = f32[4,128]{1,0} reshape(dynamic-slice.19), sharding={devices=[2,1]0,1} dot.23 = f32[128,32]{0,1} dot(reshape.26, multiply.3), lhs_contracting_dims={0}, rhs_contracting_dims={0}, sharding={devices=[1,2]0,1} reshape.27 = f32[1,128,32]{2,1,0} reshape(dot.23), sharding={devices=[1,1,2]0,1} dynamic-update-slice.7 = f32[3,128,32]{2,1,0} dynamic-update-slice(get-tuple-element.188, reshape.27, select.4, constant.36, constant.36), sharding={devices=[1,1,2]0,1} ROOT tuple.19 = (s32[], f32[4,32]{1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,32]{2,1,0}) tuple(add.14, dot.21, dynamic-update-slice.6, dynamic-update-slice.7, get-tuple-element.189, get-tuple-element.190, get-tuple-element.191, get-tuple-element.192, get-tuple-element.193), sharding={{replicated}, {devices=[1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}} } wide.wide.region_4.218.clone.clone { wide_param.6 = (s32[], f32[4,32]{1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,32]{2,1,0}) parameter(0), sharding={{replicated}, {devices=[1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}} get-tuple-element.184 = s32[] get-tuple-element(wide_param.6), index=0, sharding={replicated} constant.28 = s32[] constant(3) ROOT compare.6 = pred[] compare(get-tuple-element.184, constant.28), direction=LT } ENTRY entry { Arg_1.2 = f32[3,32,128]{2,1,0} parameter(0), sharding={devices=[1,2,1]0,1} constant.45 = s32[] constant(0), sharding={replicated} constant.23 = f32[] constant(1), sharding={replicated} broadcast.24 = f32[4,32]{1,0} broadcast(constant.23), dimensions={}, sharding={devices=[1,2]0,1} constant.21 = f32[] constant(0), sharding={replicated} broadcast.22 = f32[3,32,128]{2,1,0} broadcast(constant.21), dimensions={}, sharding={devices=[1,2,1]0,1} broadcast.20 = f32[3,128,32]{2,1,0} broadcast(constant.21), dimensions={}, sharding={devices=[1,1,2]0,1} Arg_8.9 = f32[4,32]{1,0} parameter(2), sharding={devices=[2,1]0,1} copy = f32[4,32]{1,0} copy(Arg_8.9), sharding={devices=[2,1]0,1} broadcast.28 = f32[3,4,128]{2,1,0} broadcast(constant.21), dimensions={}, sharding={devices=[1,2,1]0,1} broadcast.26 = f32[3,4,32]{2,1,0} broadcast(constant.21), dimensions={}, sharding={devices=[1,2,1]0,1} Arg_2.3 = f32[3,128,32]{2,1,0} parameter(1), sharding={devices=[1,1,2]0,1} tuple.42 = (s32[], f32[4,32]{1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}) tuple(constant.45, copy, broadcast.28, broadcast.26, broadcast.26, Arg_1.2, Arg_2.3), sharding={{replicated}, {devices=[2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}} while.118 = (s32[], f32[4,32]{1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}) while(tuple.42), condition=region_1.107, body=region_0.52, sharding={{replicated}, {devices=[2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}} get-tuple-element.179 = f32[3,4,128]{2,1,0} get-tuple-element(while.118), index=2, sharding={devices=[1,2,1]0,1} get-tuple-element.180 = f32[3,4,32]{2,1,0} get-tuple-element(while.118), index=3, sharding={devices=[1,2,1]0,1} get-tuple-element.183 = f32[3,4,32]{2,1,0} get-tuple-element(while.118), index=4, sharding={devices=[1,2,1]0,1} tuple.18 = (s32[], f32[4,32]{1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,32]{2,1,0}) tuple(constant.45, broadcast.24, broadcast.22, broadcast.20, get-tuple-element.179, get-tuple-element.180, Arg_1.2, Arg_2.3, get-tuple-element.183), sharding={{replicated}, {devices=[1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}} while.3 = (s32[], f32[4,32]{1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,128]{2,1,0}, f32[3,4,32]{2,1,0}, f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[3,4,32]{2,1,0}) while(tuple.18), condition=wide.wide.region_4.218.clone.clone, body=wide.wide.region_3.156.clone.clone, sharding={{replicated}, {devices=[1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {devices=[1,2,1]0,1}} get-tuple-element.234 = f32[3,32,128]{2,1,0} get-tuple-element(while.3), index=2, sharding={devices=[1,2,1]0,1} constant.16 = f32[] constant(-0.01), sharding={replicated} broadcast.17 = f32[3,32,128]{2,1,0} broadcast(constant.16), dimensions={}, sharding={devices=[1,2,1]0,1} multiply.243 = f32[3,32,128]{2,1,0} multiply(get-tuple-element.234, broadcast.17), sharding={devices=[1,2,1]0,1} add.255 = f32[3,32,128]{2,1,0} add(Arg_1.2, multiply.243), sharding={devices=[1,2,1]0,1} get-tuple-element.235 = f32[3,128,32]{2,1,0} get-tuple-element(while.3), index=3, sharding={devices=[1,1,2]0,1} broadcast.15 = f32[3,128,32]{2,1,0} broadcast(constant.16), dimensions={}, sharding={devices=[1,1,2]0,1} multiply.244 = f32[3,128,32]{2,1,0} multiply(get-tuple-element.235, broadcast.15), sharding={devices=[1,1,2]0,1} add.256 = f32[3,128,32]{2,1,0} add(Arg_2.3, multiply.244), sharding={devices=[1,1,2]0,1} get-tuple-element.120 = f32[4,32]{1,0} get-tuple-element(while.118), index=1, sharding={devices=[2,1]0,1} reduce.130 = f32[] reduce(get-tuple-element.120, constant.21), dimensions={0,1}, to_apply=region_2.126, sharding={replicated} ROOT tuple.271 = (f32[3,32,128]{2,1,0}, f32[3,128,32]{2,1,0}, f32[]) tuple(add.255, add.256, reduce.130), sharding={{devices=[1,2,1]0,1}, {devices=[1,1,2]0,1}, {replicated}} } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(module_str, 1, 2)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloValueSemanticsAnalysis> hlo_value_semantics_analysis, HloValueSemanticsAnalysis::Run(*module)); EXPECT_TRUE(IsWeight(*hlo_value_semantics_analysis, module.get(), "get-tuple-element.55")); EXPECT_TRUE( IsWeight(*hlo_value_semantics_analysis, module.get(), "reshape.74")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.0")); EXPECT_TRUE( IsWeight(*hlo_value_semantics_analysis, module.get(), "reshape.79")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.1")); EXPECT_TRUE( IsWeight(*hlo_value_semantics_analysis, module.get(), "reshape.22")); EXPECT_TRUE( IsStatic(*hlo_value_semantics_analysis, module.get(), "reshape.95")); EXPECT_TRUE(IsStatic(*hlo_value_semantics_analysis, module.get(), "dynamic-update-slice.99")); EXPECT_TRUE(IsStatic(*hlo_value_semantics_analysis, module.get(), "get-tuple-element.180")); EXPECT_TRUE(IsStatic(*hlo_value_semantics_analysis, module.get(), "get-tuple-element.190")); EXPECT_TRUE( IsStatic(*hlo_value_semantics_analysis, module.get(), "reshape.21")); EXPECT_TRUE( IsStatic(*hlo_value_semantics_analysis, module.get(), "multiply.3")); EXPECT_TRUE(IsWeight(*hlo_value_semantics_analysis, module.get(), "dot.20")); EXPECT_TRUE( IsWeight(*hlo_value_semantics_analysis, module.get(), "reshape.23")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.21")); EXPECT_TRUE( IsWeight(*hlo_value_semantics_analysis, module.get(), "reshape.24")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.22")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "reshape.26")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.23")); } TEST_F(HloValueSemanticsAnalysisTest, ConvWithClamp) { const std::string module_str = R"( HloModule ConvWithClamp ENTRY entry { constant.123 = bf16[]{:T(256)} constant(127) constant.127 = bf16[]{:T(256)} constant(-128) arg_0 = bf16[128,14,14,1024]{3,0,2,1:T(8,128)(2,1)} parameter(0) broadcast.819 = bf16[1,1,1024,512]{3,2,1,0:T(8,128)(2,1)} broadcast(constant.127), dimensions={} arg_1 = bf16[1,1,1024,512]{3,2,1,0:T(8,128)(2,1)} parameter(1) broadcast.818 = bf16[1,1,1024,512]{3,2,1,0:T(8,128)(2,1)} broadcast(constant.123), dimensions={} clamp.42 = bf16[1,1,1024,512]{3,2,1,0:T(8,128)(2,1)} clamp(broadcast.819, arg_1, broadcast.818) round-nearest-even.42 = bf16[1,1,1024,512]{3,2,1,0:T(8,128)(2,1)} round-nearest-even(clamp.42) convert.219 = s8[1,1,1024,512]{3,2,1,0:T(8,128)(4,1)} convert(round-nearest-even.42) ROOT convolution.43 = bf16[128,14,14,512]{3,0,2,1:T(8,128)(2,1)} convolution(arg_0, convert.219), window={size=1x1}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_str, 1, 1)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloValueSemanticsAnalysis> hlo_value_semantics_analysis, HloValueSemanticsAnalysis::Run(*module)); EXPECT_TRUE( IsWeight(*hlo_value_semantics_analysis, module.get(), "convert.219")); } TEST_F(HloValueSemanticsAnalysisTest, MnistTrainingLoop) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kMnistHlo, 1, 1)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloValueSemanticsAnalysis> hlo_value_semantics_analysis, HloValueSemanticsAnalysis::Run(*module)); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.63")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.67")); EXPECT_TRUE( IsActivation(*hlo_value_semantics_analysis, module.get(), "dot.71")); EXPECT_TRUE( IsWeightGradient(*hlo_value_semantics_analysis, module.get(), "dot.85")); EXPECT_TRUE(IsActivationGradient(*hlo_value_semantics_analysis, module.get(), "dot.89")); EXPECT_TRUE( IsWeightGradient(*hlo_value_semantics_analysis, module.get(), "dot.92")); EXPECT_TRUE(IsActivationGradient(*hlo_value_semantics_analysis, module.get(), "dot.96")); EXPECT_TRUE( IsWeightGradient(*hlo_value_semantics_analysis, module.get(), "dot.99")); } class EinsumDepthAnalysisTest : public HloTestBase { public: int GetInstructionDepth(const EinsumDepthMap& depth_map, HloComputation* computation, absl::string_view name) { HloInstruction* instruction = computation->GetInstructionWithName(name); auto depth_iter = depth_map.find(instruction); EXPECT_NE(depth_iter, depth_map.end()); return depth_iter->second.element({}); } }; TEST_F(EinsumDepthAnalysisTest, MnistTrainingLoop) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kMnistHlo, 1, 1)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<EinsumDepthAnalysis> einsum_depth_analysis, EinsumDepthAnalysis::Run(*module->entry_computation(), SendRecvGroupMap(*module))); const EinsumDepthMap& einsum_depth_map = einsum_depth_analysis->GetEinsumDepthMap(); HloComputation* computation = module->GetComputationWithName("body.49"); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.63"), 5); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.67"), 4); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.71"), 3); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.89"), 2); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.96"), 1); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.92"), 0); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.99"), 0); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "dot.85"), 0); } TEST_F(EinsumDepthAnalysisTest, HandleConditional) { const char* const hlo_string = R"( HloModule Module branch0 { tparam = f32[4] parameter(0) ROOT tgte1 = f32[4] ceil(tparam) } branch1 { fparam = f32[4] parameter(0) %async-start = ((f32[4]), f32[4], s32[]) abs-start(f32[4] fparam), async_execution_thread="parallel_thread" ROOT %async-done = f32[4] abs-done(((f32[4]), f32[4], s32[]) %async-start) } branch2 { sparam = f32[4] parameter(0) ROOT sgte1 = f32[4] ceil(sparam) } ENTRY entry { p0 = f32[4] parameter(0) b0 = s32[] parameter(1) ROOT conditional = f32[4] conditional(b0, p0, p0, p0), branch_computations={branch0, branch1, branch2} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<EinsumDepthAnalysis> einsum_depth_analysis, EinsumDepthAnalysis::Run(*module->entry_computation(), SendRecvGroupMap(*module))); const EinsumDepthMap& einsum_depth_map = einsum_depth_analysis->GetEinsumDepthMap(); HloComputation* computation = module->GetComputationWithName("entry"); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "conditional"), 0); } TEST_F(EinsumDepthAnalysisTest, HandleAfterAll) { const char* const hlo_string = R"( ENTRY entry { after-all.1 = token[] after-all() parameter.1 = f32[] parameter(0) send.1 = (f32[], u32[], token[]) send(parameter.1, after-all.1), channel_id=1, is_host_transfer=true, frontend_attributes={_xla_host_transfer_handler_name="tf_rendezvous",_xla_host_transfer_rendezvous="rendezvous1"} send-done.1 = token[] send-done(send.1), channel_id=1, is_host_transfer=true, frontend_attributes={_xla_host_transfer_handler_name="tf_rendezvous",_xla_host_transfer_rendezvous="rendezvous1"} ROOT after-all.2 = token[] after-all(send-done.1), frontend_attributes={_xla_host_transfer_handler_name="tf_rendezvous",_xla_host_transfer_rendezvous="rendezvous1"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<EinsumDepthAnalysis> einsum_depth_analysis, EinsumDepthAnalysis::Run(*module->entry_computation(), SendRecvGroupMap(*module))); const EinsumDepthMap& einsum_depth_map = einsum_depth_analysis->GetEinsumDepthMap(); HloComputation* computation = module->GetComputationWithName("entry"); EXPECT_EQ(GetInstructionDepth(einsum_depth_map, computation, "after-all.2"), 0); } class EinsumHeightAnalysisTest : public HloTestBase { public: int GetInstructionHeight(const EinsumHeightMap& height_map, HloComputation* computation, absl::string_view name) { HloInstruction* instruction = computation->GetInstructionWithName(name); auto height_iter = height_map.find(instruction); EXPECT_NE(height_iter, height_map.end()); return height_iter->second.element({}); } }; TEST_F(EinsumHeightAnalysisTest, MnistTrainingLoop) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kMnistHlo, 1, 1)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<EinsumHeightAnalysis> einsum_height_analysis, EinsumHeightAnalysis::Run(*module->entry_computation(), SendRecvGroupMap(*module))); const EinsumHeightMap& einsum_height_map = einsum_height_analysis->GetEinsumHeightMap(); HloComputation* computation = module->GetComputationWithName("body.49"); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.63"), 1); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.67"), 2); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.71"), 3); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.89"), 4); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.96"), 5); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.92"), 5); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.99"), 6); EXPECT_EQ(GetInstructionHeight(einsum_height_map, computation, "dot.85"), 4); } TEST_F(HloValueSemanticsAnalysisTest, HandleIncompleteForeignThreadComputation) { constexpr std::string_view hlo = R"( HloModule Module ENTRY entry { foreign-call-start = ((), s32[], s32[]) custom-call-start(), custom_call_target="ThreadSpecificCustomCall", async_execution_thread="foreign_thread" ROOT foreign-call-done = s32[] custom-call-done(foreign-call-start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloValueSemanticsAnalysis> hlo_value_semantics_analysis, HloValueSemanticsAnalysis::Run( *module, {HloInstruction::kMainExecutionThread})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_value_semantics_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_value_semantics_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e0c0dc3d-b684-49ac-9164-5f32170d6e03
cpp
tensorflow/tensorflow
graph_runner
tensorflow/core/common_runtime/graph_runner.cc
tensorflow/core/common_runtime/graph_runner_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/executor.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/memory_types.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/common_runtime/single_threaded_cpu_device.h" #include "tensorflow/core/framework/log_memory.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { class SimpleRendezvous : public RendezvousInterface { public: explicit SimpleRendezvous() {} Status Send(const ParsedKey& parsed, const Args& send_args, const Tensor& val, const bool is_dead) override { if (is_dead) { return errors::Internal("Send of a dead tensor"); } mutex_lock l(mu_); string edge_name(parsed.edge_name); if (table_.count(edge_name) > 0) { return errors::Internal("Send of an already sent tensor"); } table_[edge_name] = val; return absl::OkStatus(); } void RecvAsync(const ParsedKey& parsed, const Args& recv_args, DoneCallback done) override { Tensor tensor; Status status = absl::OkStatus(); { string key(parsed.edge_name); mutex_lock l(mu_); if (table_.count(key) <= 0) { status = errors::Internal("Did not find key ", key); } else { tensor = table_[key]; } } done(status, Args{}, recv_args, tensor, false); } void StartAbort(const Status& status) override {} private: typedef std::unordered_map<string, Tensor> Table; mutex mu_; Table table_ TF_GUARDED_BY(mu_); }; } GraphRunner::GraphRunner(Env* env) : device_deleter_(NewSingleThreadedCpuDevice(env)), device_(device_deleter_.get()) {} GraphRunner::GraphRunner(Device* device) : device_(device) {} GraphRunner::~GraphRunner() {} Status GraphRunner::Run(Graph* graph, FunctionLibraryRuntime* function_library, const NamedTensorList& inputs, const std::vector<string>& output_names, std::vector<Tensor>* outputs) { if (device_ == nullptr) { return errors::NotFound("Cannot find a device for GraphRunner."); } if (function_library && function_library->device() && function_library->device()->device_type() != device_->device_type()) { VLOG(1) << "Cannot run on: " << device_->device_type() << " with a function library for a " << function_library->device()->device_type() << " device."; function_library = nullptr; } std::unique_ptr<Graph> graph_to_run(new Graph(graph->op_registry())); CopyGraph(*graph, graph_to_run.get()); SimpleRendezvous rendez; std::vector<string> input_names; for (const auto& in : inputs) { const string& tensor_name = in.first; input_names.emplace_back(tensor_name); string full_key = Rendezvous::CreateKey("/device:CPU:0", 1, "/device:CPU:1", tensor_name, FrameAndIter(0, 0)); Rendezvous::ParsedKey parsed; TF_RETURN_IF_ERROR(Rendezvous::ParseKey(full_key, &parsed)); TF_RETURN_IF_ERROR(rendez.Send(parsed, Rendezvous::Args(), in.second, false )); } subgraph::RewriteGraphMetadata metadata; TF_RETURN_IF_ERROR(subgraph::RewriteGraphForExecution( graph_to_run.get(), input_names, output_names, {} , device_->attributes(), false , &metadata)); auto runner = [](Executor::Args::Closure c) { c(); }; LocalExecutorParams params; params.device = device_; params.function_library = function_library; const int producer = graph_to_run->versions().producer(); params.create_kernel = [this, function_library, producer]( const std::shared_ptr<const NodeProperties>& props, OpKernel** kernel) { return CreateNonCachedKernel(device_, function_library, props, producer, kernel); }; params.delete_kernel = [](OpKernel* kernel) { delete kernel; }; Executor* executor; TF_RETURN_IF_ERROR(NewLocalExecutor(params, *graph_to_run, &executor)); std::unique_ptr<Executor> executor_unref(executor); Executor::Args args; args.step_id = LogMemory::CONSTANT_FOLDING_STEP_ID; args.runner = runner; args.rendezvous = &rendez; args.collective_executor = nullptr; CancellationManager cancellation_manager; args.cancellation_manager = &cancellation_manager; if (function_library != nullptr) { args.session_config = function_library->config_proto(); } TF_RETURN_IF_ERROR(executor->Run(args)); outputs->resize(output_names.size()); for (size_t i = 0; i < output_names.size(); ++i) { const string& output_key = Rendezvous::CreateKey("/device:CPU:0", 1, "/device:CPU:1", output_names[i], FrameAndIter(0, 0)); Rendezvous::ParsedKey parsed; TF_RETURN_IF_ERROR(Rendezvous::ParseKey(output_key, &parsed)); bool is_dead; Tensor output_tensor; TF_RETURN_IF_ERROR( rendez.Recv(parsed, Rendezvous::Args(), &output_tensor, &is_dead)); (*outputs)[i] = tensor::DeepCopy(output_tensor); } return absl::OkStatus(); } }
#include <map> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { TEST(GraphRunnerTest, SingleConst) { Scope root = Scope::NewRootScope(); auto c = ops::Const(root, 42.0f); GraphRunner graph_runner(Env::Default()); std::vector<Tensor> outputs; Status s = graph_runner.Run(root.graph(), nullptr, {}, {c.name()}, &outputs); TF_ASSERT_OK(s); test::ExpectEqual(test::AsScalar(42.0f), outputs[0]); } TEST(GraphRunnerTest, DeepCopy) { Scope root = Scope::NewRootScope(); auto p1 = ops::Placeholder(root.WithOpName("p1"), DT_FLOAT); auto p2 = ops::Placeholder(root.WithOpName("p2"), DT_FLOAT); auto add = ops::Add(root.WithOpName("add"), p1, p2); Tensor p1_data(DT_FLOAT, TensorShape({})); Tensor p2_data(DT_FLOAT, TensorShape({})); p1_data.scalar<float>()() = 1.0f; p2_data.scalar<float>()() = 2.0f; std::vector<std::pair<string, Tensor>> inputs = {{"p1:0", p1_data}, {"p2:0", p2_data}}; std::vector<Tensor> outputs; { GraphRunner graph_runner(Env::Default()); Status s = graph_runner.Run(root.graph(), nullptr, inputs, {"add:0"}, &outputs); TF_ASSERT_OK(s); } test::ExpectEqual(test::AsScalar(3.0f), outputs[0]); } TEST(GraphRunnerTest, MultiFetchConst) { Scope root = Scope::NewRootScope(); auto c = ops::Const(root, 42.0f); auto pi = ops::Const(root, 3.14f); GraphRunner graph_runner(Env::Default()); std::vector<Tensor> outputs; Status s = graph_runner.Run(root.graph(), nullptr, {}, {c.name(), pi.name()}, &outputs); TF_ASSERT_OK(s); test::ExpectEqual(test::AsScalar(42.0f), outputs[0]); test::ExpectEqual(test::AsScalar(3.14f), outputs[1]); } TEST(GraphRunnerTest, FeedAndFetch) { Scope root = Scope::NewRootScope(); auto p1 = ops::Placeholder(root.WithOpName("p1"), DT_FLOAT); auto p2 = ops::Placeholder(root.WithOpName("p2"), DT_FLOAT); auto add = ops::Add(root.WithOpName("add"), p1, p2); Tensor p1_data(DT_FLOAT, TensorShape({})); Tensor p2_data(DT_FLOAT, TensorShape({})); p1_data.scalar<float>()() = 1.0f; p2_data.scalar<float>()() = 2.0f; std::vector<std::pair<string, Tensor>> inputs = {{"p1:0", p1_data}, {"p2:0", p2_data}}; GraphRunner graph_runner(Env::Default()); std::vector<Tensor> outputs; Status s = graph_runner.Run(root.graph(), nullptr, inputs, {"add:0"}, &outputs); TF_ASSERT_OK(s); test::ExpectEqual(test::AsScalar(3.0f), outputs[0]); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/graph_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/graph_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f048a1a5-6f7c-4d47-b8b9-224c351315fd
cpp
google/leveldb
cache
util/cache.cc
util/cache_test.cc
#include "leveldb/cache.h" #include <cassert> #include <cstdio> #include <cstdlib> #include "port/port.h" #include "port/thread_annotations.h" #include "util/hash.h" #include "util/mutexlock.h" namespace leveldb { Cache::~Cache() {} namespace { struct LRUHandle { void* value; void (*deleter)(const Slice&, void* value); LRUHandle* next_hash; LRUHandle* next; LRUHandle* prev; size_t charge; size_t key_length; bool in_cache; uint32_t refs; uint32_t hash; char key_data[1]; Slice key() const { assert(next != this); return Slice(key_data, key_length); } }; class HandleTable { public: HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); } ~HandleTable() { delete[] list_; } LRUHandle* Lookup(const Slice& key, uint32_t hash) { return *FindPointer(key, hash); } LRUHandle* Insert(LRUHandle* h) { LRUHandle** ptr = FindPointer(h->key(), h->hash); LRUHandle* old = *ptr; h->next_hash = (old == nullptr ? nullptr : old->next_hash); *ptr = h; if (old == nullptr) { ++elems_; if (elems_ > length_) { Resize(); } } return old; } LRUHandle* Remove(const Slice& key, uint32_t hash) { LRUHandle** ptr = FindPointer(key, hash); LRUHandle* result = *ptr; if (result != nullptr) { *ptr = result->next_hash; --elems_; } return result; } private: uint32_t length_; uint32_t elems_; LRUHandle** list_; LRUHandle** FindPointer(const Slice& key, uint32_t hash) { LRUHandle** ptr = &list_[hash & (length_ - 1)]; while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { ptr = &(*ptr)->next_hash; } return ptr; } void Resize() { uint32_t new_length = 4; while (new_length < elems_) { new_length *= 2; } LRUHandle** new_list = new LRUHandle*[new_length]; memset(new_list, 0, sizeof(new_list[0]) * new_length); uint32_t count = 0; for (uint32_t i = 0; i < length_; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { LRUHandle* next = h->next_hash; uint32_t hash = h->hash; LRUHandle** ptr = &new_list[hash & (new_length - 1)]; h->next_hash = *ptr; *ptr = h; h = next; count++; } } assert(elems_ == count); delete[] list_; list_ = new_list; length_ = new_length; } }; class LRUCache { public: LRUCache(); ~LRUCache(); void SetCapacity(size_t capacity) { capacity_ = capacity; } Cache::Handle* Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)); Cache::Handle* Lookup(const Slice& key, uint32_t hash); void Release(Cache::Handle* handle); void Erase(const Slice& key, uint32_t hash); void Prune(); size_t TotalCharge() const { MutexLock l(&mutex_); return usage_; } private: void LRU_Remove(LRUHandle* e); void LRU_Append(LRUHandle* list, LRUHandle* e); void Ref(LRUHandle* e); void Unref(LRUHandle* e); bool FinishErase(LRUHandle* e) EXCLUSIVE_LOCKS_REQUIRED(mutex_); size_t capacity_; mutable port::Mutex mutex_; size_t usage_ GUARDED_BY(mutex_); LRUHandle lru_ GUARDED_BY(mutex_); LRUHandle in_use_ GUARDED_BY(mutex_); HandleTable table_ GUARDED_BY(mutex_); }; LRUCache::LRUCache() : capacity_(0), usage_(0) { lru_.next = &lru_; lru_.prev = &lru_; in_use_.next = &in_use_; in_use_.prev = &in_use_; } LRUCache::~LRUCache() { assert(in_use_.next == &in_use_); for (LRUHandle* e = lru_.next; e != &lru_;) { LRUHandle* next = e->next; assert(e->in_cache); e->in_cache = false; assert(e->refs == 1); Unref(e); e = next; } } void LRUCache::Ref(LRUHandle* e) { if (e->refs == 1 && e->in_cache) { LRU_Remove(e); LRU_Append(&in_use_, e); } e->refs++; } void LRUCache::Unref(LRUHandle* e) { assert(e->refs > 0); e->refs--; if (e->refs == 0) { assert(!e->in_cache); (*e->deleter)(e->key(), e->value); free(e); } else if (e->in_cache && e->refs == 1) { LRU_Remove(e); LRU_Append(&lru_, e); } } void LRUCache::LRU_Remove(LRUHandle* e) { e->next->prev = e->prev; e->prev->next = e->next; } void LRUCache::LRU_Append(LRUHandle* list, LRUHandle* e) { e->next = list; e->prev = list->prev; e->prev->next = e; e->next->prev = e; } Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) { MutexLock l(&mutex_); LRUHandle* e = table_.Lookup(key, hash); if (e != nullptr) { Ref(e); } return reinterpret_cast<Cache::Handle*>(e); } void LRUCache::Release(Cache::Handle* handle) { MutexLock l(&mutex_); Unref(reinterpret_cast<LRUHandle*>(handle)); } Cache::Handle* LRUCache::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) { MutexLock l(&mutex_); LRUHandle* e = reinterpret_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size())); e->value = value; e->deleter = deleter; e->charge = charge; e->key_length = key.size(); e->hash = hash; e->in_cache = false; e->refs = 1; std::memcpy(e->key_data, key.data(), key.size()); if (capacity_ > 0) { e->refs++; e->in_cache = true; LRU_Append(&in_use_, e); usage_ += charge; FinishErase(table_.Insert(e)); } else { e->next = nullptr; } while (usage_ > capacity_ && lru_.next != &lru_) { LRUHandle* old = lru_.next; assert(old->refs == 1); bool erased = FinishErase(table_.Remove(old->key(), old->hash)); if (!erased) { assert(erased); } } return reinterpret_cast<Cache::Handle*>(e); } bool LRUCache::FinishErase(LRUHandle* e) { if (e != nullptr) { assert(e->in_cache); LRU_Remove(e); e->in_cache = false; usage_ -= e->charge; Unref(e); } return e != nullptr; } void LRUCache::Erase(const Slice& key, uint32_t hash) { MutexLock l(&mutex_); FinishErase(table_.Remove(key, hash)); } void LRUCache::Prune() { MutexLock l(&mutex_); while (lru_.next != &lru_) { LRUHandle* e = lru_.next; assert(e->refs == 1); bool erased = FinishErase(table_.Remove(e->key(), e->hash)); if (!erased) { assert(erased); } } } static const int kNumShardBits = 4; static const int kNumShards = 1 << kNumShardBits; class ShardedLRUCache : public Cache { private: LRUCache shard_[kNumShards]; port::Mutex id_mutex_; uint64_t last_id_; static inline uint32_t HashSlice(const Slice& s) { return Hash(s.data(), s.size(), 0); } static uint32_t Shard(uint32_t hash) { return hash >> (32 - kNumShardBits); } public: explicit ShardedLRUCache(size_t capacity) : last_id_(0) { const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards; for (int s = 0; s < kNumShards; s++) { shard_[s].SetCapacity(per_shard); } } ~ShardedLRUCache() override {} Handle* Insert(const Slice& key, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter); } Handle* Lookup(const Slice& key) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Lookup(key, hash); } void Release(Handle* handle) override { LRUHandle* h = reinterpret_cast<LRUHandle*>(handle); shard_[Shard(h->hash)].Release(handle); } void Erase(const Slice& key) override { const uint32_t hash = HashSlice(key); shard_[Shard(hash)].Erase(key, hash); } void* Value(Handle* handle) override { return reinterpret_cast<LRUHandle*>(handle)->value; } uint64_t NewId() override { MutexLock l(&id_mutex_); return ++(last_id_); } void Prune() override { for (int s = 0; s < kNumShards; s++) { shard_[s].Prune(); } } size_t TotalCharge() const override { size_t total = 0; for (int s = 0; s < kNumShards; s++) { total += shard_[s].TotalCharge(); } return total; } }; } Cache* NewLRUCache(size_t capacity) { return new ShardedLRUCache(capacity); } }
#include "leveldb/cache.h" #include <vector> #include "gtest/gtest.h" #include "util/coding.h" namespace leveldb { static std::string EncodeKey(int k) { std::string result; PutFixed32(&result, k); return result; } static int DecodeKey(const Slice& k) { assert(k.size() == 4); return DecodeFixed32(k.data()); } static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); } static int DecodeValue(void* v) { return reinterpret_cast<uintptr_t>(v); } class CacheTest : public testing::Test { public: static void Deleter(const Slice& key, void* v) { current_->deleted_keys_.push_back(DecodeKey(key)); current_->deleted_values_.push_back(DecodeValue(v)); } static constexpr int kCacheSize = 1000; std::vector<int> deleted_keys_; std::vector<int> deleted_values_; Cache* cache_; CacheTest() : cache_(NewLRUCache(kCacheSize)) { current_ = this; } ~CacheTest() { delete cache_; } int Lookup(int key) { Cache::Handle* handle = cache_->Lookup(EncodeKey(key)); const int r = (handle == nullptr) ? -1 : DecodeValue(cache_->Value(handle)); if (handle != nullptr) { cache_->Release(handle); } return r; } void Insert(int key, int value, int charge = 1) { cache_->Release(cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter)); } Cache::Handle* InsertAndReturnHandle(int key, int value, int charge = 1) { return cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter); } void Erase(int key) { cache_->Erase(EncodeKey(key)); } static CacheTest* current_; }; CacheTest* CacheTest::current_; TEST_F(CacheTest, HitAndMiss) { ASSERT_EQ(-1, Lookup(100)); Insert(100, 101); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(200, 201); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(100, 102); ASSERT_EQ(102, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); } TEST_F(CacheTest, Erase) { Erase(200); ASSERT_EQ(0, deleted_keys_.size()); Insert(100, 101); Insert(200, 201); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); } TEST_F(CacheTest, EntriesArePinned) { Insert(100, 101); Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(101, DecodeValue(cache_->Value(h1))); Insert(100, 102); Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(102, DecodeValue(cache_->Value(h2))); ASSERT_EQ(0, deleted_keys_.size()); cache_->Release(h1); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(1, deleted_keys_.size()); cache_->Release(h2); ASSERT_EQ(2, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[1]); ASSERT_EQ(102, deleted_values_[1]); } TEST_F(CacheTest, EvictionPolicy) { Insert(100, 101); Insert(200, 201); Insert(300, 301); Cache::Handle* h = cache_->Lookup(EncodeKey(300)); for (int i = 0; i < kCacheSize + 100; i++) { Insert(1000 + i, 2000 + i); ASSERT_EQ(2000 + i, Lookup(1000 + i)); ASSERT_EQ(101, Lookup(100)); } ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(301, Lookup(300)); cache_->Release(h); } TEST_F(CacheTest, UseExceedsCacheSize) { std::vector<Cache::Handle*> h; for (int i = 0; i < kCacheSize + 100; i++) { h.push_back(InsertAndReturnHandle(1000 + i, 2000 + i)); } for (int i = 0; i < h.size(); i++) { ASSERT_EQ(2000 + i, Lookup(1000 + i)); } for (int i = 0; i < h.size(); i++) { cache_->Release(h[i]); } } TEST_F(CacheTest, HeavyEntries) { const int kLight = 1; const int kHeavy = 10; int added = 0; int index = 0; while (added < 2 * kCacheSize) { const int weight = (index & 1) ? kLight : kHeavy; Insert(index, 1000 + index, weight); added += weight; index++; } int cached_weight = 0; for (int i = 0; i < index; i++) { const int weight = (i & 1 ? kLight : kHeavy); int r = Lookup(i); if (r >= 0) { cached_weight += weight; ASSERT_EQ(1000 + i, r); } } ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10); } TEST_F(CacheTest, NewId) { uint64_t a = cache_->NewId(); uint64_t b = cache_->NewId(); ASSERT_NE(a, b); } TEST_F(CacheTest, Prune) { Insert(1, 100); Insert(2, 200); Cache::Handle* handle = cache_->Lookup(EncodeKey(1)); ASSERT_TRUE(handle); cache_->Prune(); cache_->Release(handle); ASSERT_EQ(100, Lookup(1)); ASSERT_EQ(-1, Lookup(2)); } TEST_F(CacheTest, ZeroSizeCache) { delete cache_; cache_ = NewLRUCache(0); Insert(1, 100); ASSERT_EQ(-1, Lookup(1)); } }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/cache.cc
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/cache_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
0edc4c8a-f0c9-41bf-9ec3-d20068361023
cpp
google/cel-cpp
logical_function_registrar
eval/public/logical_function_registrar.cc
eval/public/logical_function_registrar_test.cc
#include "eval/public/logical_function_registrar.h" #include "absl/status/status.h" #include "eval/public/cel_function_registry.h" #include "eval/public/cel_options.h" #include "runtime/standard/logical_functions.h" namespace google::api::expr::runtime { absl::Status RegisterLogicalFunctions(CelFunctionRegistry* registry, const InterpreterOptions& options) { return cel::RegisterLogicalFunctions(registry->InternalGetRegistry(), ConvertToRuntimeOptions(options)); } }
#include "eval/public/logical_function_registrar.h" #include <memory> #include <string> #include <utility> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/protobuf/arena.h" #include "absl/base/no_destructor.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "eval/public/activation.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_expression.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "eval/public/portable_cel_function_adapter.h" #include "eval/public/testing/matchers.h" #include "internal/testing.h" #include "parser/parser.h" namespace google::api::expr::runtime { namespace { using google::api::expr::v1alpha1::Expr; using google::api::expr::v1alpha1::SourceInfo; using ::absl_testing::StatusIs; using ::testing::HasSubstr; struct TestCase { std::string test_name; std::string expr; absl::StatusOr<CelValue> result = CelValue::CreateBool(true); }; const CelError* ExampleError() { static absl::NoDestructor<absl::Status> error( absl::InternalError("test example error")); return &*error; } void ExpectResult(const TestCase& test_case) { auto parsed_expr = parser::Parse(test_case.expr); ASSERT_OK(parsed_expr); const Expr& expr_ast = parsed_expr->expr(); const SourceInfo& source_info = parsed_expr->source_info(); InterpreterOptions options; options.short_circuiting = true; std::unique_ptr<CelExpressionBuilder> builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterLogicalFunctions(builder->GetRegistry(), options)); ASSERT_OK(builder->GetRegistry()->Register( PortableUnaryFunctionAdapter<CelValue, CelValue::StringHolder>::Create( "toBool", false, [](google::protobuf::Arena*, CelValue::StringHolder holder) -> CelValue { if (holder.value() == "true") { return CelValue::CreateBool(true); } else if (holder.value() == "false") { return CelValue::CreateBool(false); } return CelValue::CreateError(ExampleError()); }))); ASSERT_OK_AND_ASSIGN(auto cel_expression, builder->CreateExpression(&expr_ast, &source_info)); Activation activation; google::protobuf::Arena arena; ASSERT_OK_AND_ASSIGN(auto value, cel_expression->Evaluate(activation, &arena)); if (!test_case.result.ok()) { EXPECT_TRUE(value.IsError()); EXPECT_THAT(*value.ErrorOrDie(), StatusIs(test_case.result.status().code(), HasSubstr(test_case.result.status().message()))); return; } EXPECT_THAT(value, test::EqualsCelValue(*test_case.result)); } using BuiltinFuncParamsTest = testing::TestWithParam<TestCase>; TEST_P(BuiltinFuncParamsTest, StandardFunctions) { ExpectResult(GetParam()); } INSTANTIATE_TEST_SUITE_P( BuiltinFuncParamsTest, BuiltinFuncParamsTest, testing::ValuesIn<TestCase>({ {"LogicalNotOfTrue", "!true", CelValue::CreateBool(false)}, {"LogicalNotOfFalse", "!false", CelValue::CreateBool(true)}, {"NotStrictlyFalseTrue", "[true, true, true].all(x, x)", CelValue::CreateBool(true)}, {"NotStrictlyFalseErrorShortcircuit", "['true', 'false', 'error'].all(x, toBool(x))", CelValue::CreateBool(false)}, {"NotStrictlyFalseError", "['true', 'true', 'error'].all(x, toBool(x))", CelValue::CreateError(ExampleError())}, {"NotStrictlyFalseFalse", "[false, false, false].all(x, x)", CelValue::CreateBool(false)}, }), [](const testing::TestParamInfo<BuiltinFuncParamsTest::ParamType>& info) { return info.param.test_name; }); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/logical_function_registrar.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/logical_function_registrar_test.cc
4552db5798fb0853b131b783d8875794334fae7f
cf22b863-770e-44ee-9819-8cef360eb2f4
cpp
abseil/abseil-cpp
crc_memcpy
absl/crc/internal/crc_memcpy.h
absl/crc/internal/crc_memcpy_test.cc
#ifndef ABSL_CRC_INTERNAL_CRC_MEMCPY_H_ #define ABSL_CRC_INTERNAL_CRC_MEMCPY_H_ #include <cstddef> #include <memory> #include "absl/base/config.h" #include "absl/crc/crc32c.h" #include "absl/crc/internal/crc32_x86_arm_combined_simd.h" #if defined(ABSL_CRC_INTERNAL_HAVE_X86_SIMD) #define ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE 1 #elif defined(ABSL_CRC_INTERNAL_HAVE_ARM_SIMD) #define ABSL_INTERNAL_HAVE_ARM_ACCELERATED_CRC_MEMCPY_ENGINE 1 #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace crc_internal { class CrcMemcpyEngine { public: virtual ~CrcMemcpyEngine() = default; virtual crc32c_t Compute(void* __restrict dst, const void* __restrict src, std::size_t length, crc32c_t initial_crc) const = 0; protected: CrcMemcpyEngine() = default; }; class CrcMemcpy { public: static crc32c_t CrcAndCopy(void* __restrict dst, const void* __restrict src, std::size_t length, crc32c_t initial_crc = crc32c_t{0}, bool non_temporal = false) { static const ArchSpecificEngines engines = GetArchSpecificEngines(); auto* engine = non_temporal ? engines.non_temporal : engines.temporal; return engine->Compute(dst, src, length, initial_crc); } static std::unique_ptr<CrcMemcpyEngine> GetTestEngine(int vector, int integer); private: struct ArchSpecificEngines { CrcMemcpyEngine* temporal; CrcMemcpyEngine* non_temporal; }; static ArchSpecificEngines GetArchSpecificEngines(); }; class FallbackCrcMemcpyEngine : public CrcMemcpyEngine { public: FallbackCrcMemcpyEngine() = default; FallbackCrcMemcpyEngine(const FallbackCrcMemcpyEngine&) = delete; FallbackCrcMemcpyEngine operator=(const FallbackCrcMemcpyEngine&) = delete; crc32c_t Compute(void* __restrict dst, const void* __restrict src, std::size_t length, crc32c_t initial_crc) const override; }; class CrcNonTemporalMemcpyEngine : public CrcMemcpyEngine { public: CrcNonTemporalMemcpyEngine() = default; CrcNonTemporalMemcpyEngine(const CrcNonTemporalMemcpyEngine&) = delete; CrcNonTemporalMemcpyEngine operator=(const CrcNonTemporalMemcpyEngine&) = delete; crc32c_t Compute(void* __restrict dst, const void* __restrict src, std::size_t length, crc32c_t initial_crc) const override; }; class CrcNonTemporalMemcpyAVXEngine : public CrcMemcpyEngine { public: CrcNonTemporalMemcpyAVXEngine() = default; CrcNonTemporalMemcpyAVXEngine(const CrcNonTemporalMemcpyAVXEngine&) = delete; CrcNonTemporalMemcpyAVXEngine operator=( const CrcNonTemporalMemcpyAVXEngine&) = delete; crc32c_t Compute(void* __restrict dst, const void* __restrict src, std::size_t length, crc32c_t initial_crc) const override; }; inline crc32c_t Crc32CAndCopy(void* __restrict dst, const void* __restrict src, std::size_t length, crc32c_t initial_crc = crc32c_t{0}, bool non_temporal = false) { return CrcMemcpy::CrcAndCopy(dst, src, length, initial_crc, non_temporal); } } ABSL_NAMESPACE_END } #endif
#include "absl/crc/internal/crc_memcpy.h" #include <cstddef> #include <cstdint> #include <cstring> #include <limits> #include <memory> #include <string> #include <utility> #include "gtest/gtest.h" #include "absl/crc/crc32c.h" #include "absl/memory/memory.h" #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace { enum CrcEngine { ACCELERATED = 0, NONTEMPORAL = 1, FALLBACK = 2, }; template <size_t max_size> class CrcMemcpyTest : public testing::Test { protected: CrcMemcpyTest() { source_ = std::make_unique<char[]>(kSize); destination_ = std::make_unique<char[]>(kSize); } static constexpr size_t kAlignment = 16; static constexpr size_t kMaxCopySize = max_size; static constexpr size_t kSize = kAlignment + kMaxCopySize; std::unique_ptr<char[]> source_; std::unique_ptr<char[]> destination_; absl::BitGen gen_; }; typedef CrcMemcpyTest<4500> CrcSmallTest; typedef CrcMemcpyTest<(1 << 24)> CrcLargeTest; template <typename ParamsT> class EngineParamTestTemplate : public CrcSmallTest, public ::testing::WithParamInterface<ParamsT> { protected: EngineParamTestTemplate() { if (GetParam().crc_engine_selector == FALLBACK) { engine_ = std::make_unique<absl::crc_internal::FallbackCrcMemcpyEngine>(); } else if (GetParam().crc_engine_selector == NONTEMPORAL) { engine_ = std::make_unique<absl::crc_internal::CrcNonTemporalMemcpyEngine>(); } else { engine_ = absl::crc_internal::CrcMemcpy::GetTestEngine( GetParam().vector_lanes, GetParam().integer_lanes); } } ParamsT GetParam() const { return ::testing::WithParamInterface<ParamsT>::GetParam(); } std::unique_ptr<absl::crc_internal::CrcMemcpyEngine> engine_; }; struct TestParams { CrcEngine crc_engine_selector = ACCELERATED; int vector_lanes = 0; int integer_lanes = 0; }; using EngineParamTest = EngineParamTestTemplate<TestParams>; TEST_P(EngineParamTest, SmallCorrectnessCheckSourceAlignment) { constexpr size_t kTestSizes[] = {0, 100, 255, 512, 1024, 4000, kMaxCopySize}; for (size_t source_alignment = 0; source_alignment < kAlignment; source_alignment++) { for (auto size : kTestSizes) { char* base_data = static_cast<char*>(source_.get()) + source_alignment; for (size_t i = 0; i < size; i++) { *(base_data + i) = static_cast<char>(absl::Uniform<unsigned char>(gen_)); } SCOPED_TRACE(absl::StrCat("engine=<", GetParam().vector_lanes, ",", GetParam().integer_lanes, ">, ", "size=", size, ", source_alignment=", source_alignment)); absl::crc32c_t initial_crc = absl::crc32c_t{absl::Uniform<uint32_t>(gen_)}; absl::crc32c_t experiment_crc = engine_->Compute(destination_.get(), source_.get() + source_alignment, size, initial_crc); int mem_comparison = memcmp(destination_.get(), source_.get() + source_alignment, size); SCOPED_TRACE(absl::StrCat("Error in memcpy of size: ", size, " with source alignment: ", source_alignment)); ASSERT_EQ(mem_comparison, 0); absl::crc32c_t baseline_crc = absl::ExtendCrc32c( initial_crc, absl::string_view( static_cast<char*>(source_.get()) + source_alignment, size)); ASSERT_EQ(baseline_crc, experiment_crc); } } } TEST_P(EngineParamTest, SmallCorrectnessCheckDestAlignment) { constexpr size_t kTestSizes[] = {0, 100, 255, 512, 1024, 4000, kMaxCopySize}; for (size_t dest_alignment = 0; dest_alignment < kAlignment; dest_alignment++) { for (auto size : kTestSizes) { char* base_data = static_cast<char*>(source_.get()); for (size_t i = 0; i < size; i++) { *(base_data + i) = static_cast<char>(absl::Uniform<unsigned char>(gen_)); } SCOPED_TRACE(absl::StrCat("engine=<", GetParam().vector_lanes, ",", GetParam().integer_lanes, ">, ", "size=", size, ", destination_alignment=", dest_alignment)); absl::crc32c_t initial_crc = absl::crc32c_t{absl::Uniform<uint32_t>(gen_)}; absl::crc32c_t experiment_crc = engine_->Compute(destination_.get() + dest_alignment, source_.get(), size, initial_crc); int mem_comparison = memcmp(destination_.get() + dest_alignment, source_.get(), size); SCOPED_TRACE(absl::StrCat("Error in memcpy of size: ", size, " with dest alignment: ", dest_alignment)); ASSERT_EQ(mem_comparison, 0); absl::crc32c_t baseline_crc = absl::ExtendCrc32c( initial_crc, absl::string_view(static_cast<char*>(source_.get()), size)); ASSERT_EQ(baseline_crc, experiment_crc); } } } INSTANTIATE_TEST_SUITE_P(EngineParamTest, EngineParamTest, ::testing::Values( TestParams{ACCELERATED, 3, 0}, TestParams{ACCELERATED, 1, 2}, TestParams{ACCELERATED, 1, 0}, TestParams{FALLBACK, 0, 0}, TestParams{NONTEMPORAL, 0, 0})); }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/crc/internal/crc_memcpy.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/crc/internal/crc_memcpy_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
5cf01089-e79f-4ce7-a37b-9125f745fbbb
cpp
tensorflow/tensorflow
convolution_transposed
tensorflow/lite/delegates/gpu/common/tasks/convolution_transposed.cc
tensorflow/lite/delegates/gpu/cl/kernels/convolution_transposed_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/convolution_transposed.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/substitute.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/weights_layout.h" #include "tensorflow/lite/delegates/gpu/common/task/work_group_picking.h" namespace tflite { namespace gpu { namespace { bool UseBufferForWeights(const GpuInfo& gpu_info) { return gpu_info.IsMali() || gpu_info.IsApple() || gpu_info.IsAMD(); } } ConvolutionTransposed::ConvolutionTransposed( const OperationDef& definition, const ConvolutionTransposedAttributes& attr, const GpuInfo& gpu_info) : GPUOperation(definition), stride_(attr.stride.w, attr.stride.h, 1, 1), block_size_(2, 2, 1, 2) { if (UseBufferForWeights(gpu_info)) { if (gpu_info.IsApple()) { weights_layout_ = WeightsLayout::kOSpatialIOGroupO4I4; } else { weights_layout_ = WeightsLayout::kOSpatialIOGroupI4O4; } } else { if (gpu_info.IsApple()) { weights_layout_ = WeightsLayout::k2DX4O4YIsSpatialIAndXIsOOGroupI4; } else { weights_layout_ = WeightsLayout::k2DX4I4YIsSpatialIAndXIsOOGroupO4; } } const bool is_f16 = definition.precision == CalculationsPrecision::F16; if (gpu_info.IsMali()) { if (gpu_info.mali_info.IsMidgard()) { block_size_ = is_f16 ? int4(2, 1, 1, 2) : int4(2, 1, 1, 1); } else { block_size_ = is_f16 ? int4(2, 2, 1, 2) : int4(2, 2, 1, 1); } compiler_options_.push_back(CompilerOptions::kClFastRelaxedMath); } const int dst_depth = DivideRoundUp(attr.weights.shape.o, 4); if (dst_depth == 1 || dst_depth == 3) { if (!gpu_info.IsMali()) { block_size_.y *= block_size_.w; } block_size_.w = 1; } args_.AddInt("stride_x", stride_.x); args_.AddInt("stride_y", stride_.y); args_.AddInt("padding_x", attr.padding.prepended.w); args_.AddInt("padding_y", attr.padding.prepended.h); args_.AddInt("kernel_size_x", attr.weights.shape.w); args_.AddInt("kernel_size_y", attr.weights.shape.h); code_ = GenerateConvolutionTransposedCode(definition_, gpu_info, block_size_); } ConvolutionTransposed::ConvolutionTransposed( const OperationDef& definition, const ConvolutionTransposed3DAttributes& attr, const GpuInfo& gpu_info) : GPUOperation(definition), stride_(attr.stride.w, attr.stride.h, attr.stride.d, 1), block_size_(2, 2, 1, 2) { if (UseBufferForWeights(gpu_info)) { if (gpu_info.IsApple()) { weights_layout_ = WeightsLayout::kOSpatialIOGroupO4I4; } else { weights_layout_ = WeightsLayout::kOSpatialIOGroupI4O4; } } else { if (gpu_info.IsApple()) { weights_layout_ = WeightsLayout::k2DX4O4YIsSpatialIAndXIsOOGroupI4; } else { weights_layout_ = WeightsLayout::k2DX4I4YIsSpatialIAndXIsOOGroupO4; } } const bool is_f16 = definition.precision == CalculationsPrecision::F16; if (gpu_info.IsMali()) { if (gpu_info.mali_info.IsMidgard()) { block_size_ = is_f16 ? int4(2, 1, 1, 2) : int4(2, 1, 1, 1); } else { block_size_ = is_f16 ? int4(2, 2, 1, 2) : int4(2, 2, 1, 1); } compiler_options_.push_back(CompilerOptions::kClFastRelaxedMath); } const int dst_depth = DivideRoundUp(attr.weights.shape.o, 4); if (dst_depth == 1 || dst_depth == 3) { if (!gpu_info.IsMali()) { block_size_.y *= block_size_.w; } block_size_.w = 1; } args_.AddInt("stride_x", stride_.x); args_.AddInt("stride_y", stride_.y); args_.AddInt("stride_z", stride_.z); args_.AddInt("padding_x", attr.padding.prepended.w); args_.AddInt("padding_y", attr.padding.prepended.h); args_.AddInt("padding_z", attr.padding.prepended.d); args_.AddInt("kernel_size_x", attr.weights.shape.w); args_.AddInt("kernel_size_y", attr.weights.shape.h); args_.AddInt("kernel_size_z", attr.weights.shape.d); args_.AddInt("grid_size_y"); code_ = GenerateConvolutionTransposedCode(definition_, gpu_info, block_size_); } std::string ConvolutionTransposed::GenerateConvolutionTransposedCode( const OperationDef& op_def, const GpuInfo& gpu_info, const int4& block_size) { AddSrcTensor("src_tensor", op_def.src_tensors[0]); AddDstTensor("dst_tensor", op_def.dst_tensors[0]); if (op_def.src_tensors.size() != 1) { if (weights_layout_ == WeightsLayout::kOSpatialIOGroupI4O4 || weights_layout_ == WeightsLayout::kOSpatialIOGroupO4I4) { BufferDescriptor desc; desc.element_type = op_def.src_tensors[1].GetDataType(); desc.element_size = 4; desc.memory_type = MemoryType::GLOBAL; AddSrcBuffer("weights", desc); } else { for (int i = 0; i < 4; ++i) { const std::string name = "weights" + std::to_string(i); AddSrcTensor(name, definition_.src_tensors[1 + i]); } } } const auto& src_def = op_def.src_tensors[0]; std::string c; const bool weights_are_buffer = UseBufferForWeights(gpu_info); for (int s = 0; s < block_size.w; ++s) { std::string f0, f1, f2, f3; if (weights_are_buffer) { if (gpu_info.SupportsPointersInKernels()) { f0 = "weights_cache[" + std::to_string(s * 4 + 0) + "]"; f1 = "weights_cache[" + std::to_string(s * 4 + 1) + "]"; f2 = "weights_cache[" + std::to_string(s * 4 + 2) + "]"; f3 = "weights_cache[" + std::to_string(s * 4 + 3) + "]"; } else { f0 = "f0"; f1 = "f1"; f2 = "f2"; f3 = "f3"; } } else { f0 = "f" + std::to_string(s * 4 + 0); f1 = "f" + std::to_string(s * 4 + 1); f2 = "f" + std::to_string(s * 4 + 2); f3 = "f" + std::to_string(s * 4 + 3); } bool use_fma = gpu_info.IsAMD() && gpu_info.IsApiOpenCl(); if (GetWeightsDescription().IsI4O4()) { switch (op_def.precision) { case CalculationsPrecision::F32: case CalculationsPrecision::F16: if (use_fma) { c += "#define CONV" + std::to_string(s) + "(R, S) \\\n"; c += "R = fma(" + f0 + ", S.x, R); \\\n"; c += "R = fma(" + f1 + ", S.y, R); \\\n"; c += "R = fma(" + f2 + ", S.z, R); \\\n"; c += "R = fma(" + f3 + ", S.w, R); \n"; } else { c += "#define CONV" + std::to_string(s) + "(R, S) \\\n"; c += "R += S.x * " + f0 + "; \\\n"; c += "R += S.y * " + f1 + "; \\\n"; c += "R += S.z * " + f2 + "; \\\n"; c += "R += S.w * " + f3 + "; \n"; } break; case CalculationsPrecision::F32_F16: c += "#define CONV" + std::to_string(s) + "(R, S) \\\n"; c += "R += TO_ACCUM_TYPE(S.x * " + f0 + " + S.y * " + f1 + " + S.z * " + f2 + " + S.w * " + f3 + ");\n"; break; } } else { c += "#define CONV" + std::to_string(s) + "(R, S) \\\n"; c += "R.x += dot(S, " + f0 + "); \\\n"; c += "R.y += dot(S, " + f1 + "); \\\n"; c += "R.z += dot(S, " + f2 + "); \\\n"; c += "R.w += dot(S, " + f3 + "); \n"; } } auto generate_id = [&](const std::string& x, const std::string& y, const std::string& z) { std::string id; if (src_def.HasAxis(Axis::WIDTH)) { id += "_w" + x; } if (src_def.HasAxis(Axis::HEIGHT)) { id += "_h" + y; } if (src_def.HasAxis(Axis::DEPTH)) { id += "_d" + z; } return id; }; auto generate_id_full = [&](const std::string& x, const std::string& y, const std::string& z, const std::string& s) { return generate_id(x, y, z) + "_s" + s; }; auto generate_check = [&](const std::string& x, const std::string& y, const std::string& z) { std::string check; const std::vector<Axis> axes{Axis::WIDTH, Axis::HEIGHT, Axis::DEPTH}; const std::vector<std::string> names{"in_x", "in_y", "in_z"}; const std::vector<std::string> coords{x, y, z}; for (int i = 0; i < axes.size(); ++i) { const auto& axis = axes[i]; if (src_def.HasAxis(axis) && !src_def.SupportsZeroClamp(axis, gpu_info) && block_size[i] != 1) { if (!check.empty()) { check += " && "; } check += names[i] + coords[i]; } } return check; }; c += "MAIN_FUNCTION($0) {\n"; if (op_def.IsBatchSupported()) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int dst_x = (linear_id / args.dst_tensor.Batch());\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; c += " args.src_tensor.SetBatchRef(B);\n"; } else { c += " int dst_x = GLOBAL_ID_0;\n"; } c += " int rem_x = dst_x % args.stride_x;\n"; c += " int ceil_x = dst_x / args.stride_x;\n"; c += " dst_x = ceil_x * args.stride_x * " + std::to_string(block_size.x) + " + rem_x;\n"; if (src_def.HasAxis(Axis::DEPTH)) { c += " int linear_id_y = GLOBAL_ID_1;\n"; c += " int dst_y = linear_id_y % args.grid_size_y;\n"; c += " int dst_z = linear_id_y / args.grid_size_y;\n"; c += " int rem_z = dst_z % args.stride_z;\n"; c += " int ceil_z = dst_z / args.stride_z;\n"; c += " dst_z = ceil_z * args.stride_z * " + std::to_string(block_size.z) + " + rem_z;\n"; c += " if (dst_z >= args.dst_tensor.Depth()) return;\n"; } else { c += " int dst_y = GLOBAL_ID_1;\n"; } c += " int rem_y = dst_y % args.stride_y;\n"; c += " int ceil_y = dst_y / args.stride_y;\n"; c += " dst_y = ceil_y * args.stride_y * " + std::to_string(block_size.y) + " + rem_y;\n"; c += " int dst_s = GLOBAL_ID_2 * " + std::to_string(block_size.w) + ";\n"; c += " if (dst_x >= args.dst_tensor.Width() || dst_y >= " "args.dst_tensor.Height() || dst_s >= " "args.dst_tensor.Slices()) return;\n"; if (weights_are_buffer) { c += " int f_base = dst_s * args.src_tensor.Slices() * args.kernel_size_x " "* args.kernel_size_y"; if (src_def.HasAxis(Axis::DEPTH)) { c += " * args.kernel_size_z"; } c += " * 4;\n"; } for (int s = 0; s < block_size.w; ++s) { const std::string sind = std::to_string(s); for (int z = 0; z < block_size.z; ++z) { const std::string zind = std::to_string(z); for (int y = 0; y < block_size.y; ++y) { const std::string yind = std::to_string(y); for (int x = 0; x < block_size.x; ++x) { const std::string xind = std::to_string(x); c += " ACCUM_FLT4 r" + generate_id_full(xind, yind, zind, sind) + " = INIT_ACCUM_FLT4(0.0f);\n"; } } } } c += " int kernel_first_dst_x = dst_x + args.padding_x;\n"; c += " int kernel_first_dst_y = dst_y + args.padding_y;\n"; c += " int kernel_last_dst_x = kernel_first_dst_x - args.kernel_size_x;\n"; c += " int kernel_last_dst_y = kernel_first_dst_y - args.kernel_size_y;\n"; c += " int offset_x = abs(args.padding_x);\n"; c += " int offset_x_strided = offset_x * args.stride_x;\n"; c += " int src_x = (kernel_first_dst_x + offset_x_strided) / args.stride_x - " "offset_x;\n"; c += " int offset_y = abs(args.padding_y);\n"; c += " int offset_y_strided = offset_y * args.stride_y;\n"; c += " int src_y = (kernel_first_dst_y + offset_y_strided) / args.stride_y - " "offset_y;\n"; if (src_def.HasAxis(Axis::DEPTH)) { c += " int kernel_first_dst_z = dst_z + args.padding_z;\n"; c += " int kernel_last_dst_z = kernel_first_dst_z - args.kernel_size_z;\n"; c += " int offset_z = abs(args.padding_z);\n"; c += " int offset_z_strided = offset_z * args.stride_z;\n"; c += " int src_z = (kernel_first_dst_z + offset_z_strided) / " "args.stride_z - offset_z;\n"; c += " int src_as_dst_z = src_z * args.stride_z;\n"; c += " for (;src_as_dst_z > kernel_last_dst_z; src_z -= 1, src_as_dst_z -= " "args.stride_z) {\n"; for (int z = 0; z < block_size.z; ++z) { const std::string zindex = std::to_string(z); c += " int sz" + zindex + " = src_z + " + zindex + ";\n"; if (!src_def.SupportsZeroClamp(Axis::DEPTH, gpu_info)) { c += " bool in_z" + zindex + " = sz" + zindex + " >= 0 && sz" + zindex + " < args.src_tensor.Depth();\n"; if (!src_def.CanReadOutOfBorder(Axis::DEPTH)) { c += " sz" + zindex + " = clamp(sz" + zindex + ", 0, args.src_tensor.Depth() - 1);\n"; } } } if (block_size.z == 1 && !src_def.SupportsZeroClamp(Axis::DEPTH, gpu_info)) { c += " if (!in_z0) continue;\n"; } c += " int kernel_z = kernel_first_dst_z - src_as_dst_z;\n"; c += " int src_as_dst_y = src_y * args.stride_y;\n"; c += " int src_y_copy = src_y;\n"; c += " for (;src_as_dst_y > kernel_last_dst_y; src_y_copy -= 1, " "src_as_dst_y -= args.stride_y) {\n"; } else { c += " int src_as_dst_y = src_y * args.stride_y;\n"; c += " for (;src_as_dst_y > kernel_last_dst_y; src_y -= 1, src_as_dst_y " "-= args.stride_y) {\n"; } for (int y = 0; y < block_size.y; ++y) { const std::string yindex = std::to_string(y); const std::string src_y = src_def.HasAxis(Axis::DEPTH) ? "src_y_copy" : "src_y"; c += " int sy" + yindex + " = " + src_y + " + " + yindex + ";\n"; if (!src_def.SupportsZeroClamp(Axis::HEIGHT, gpu_info)) { c += " bool in_y" + yindex + " = sy" + yindex + " >= 0 && sy" + yindex + " < args.src_tensor.Height();\n"; if (!src_def.CanReadOutOfBorder(Axis::HEIGHT)) { c += " sy" + yindex + " = clamp(sy" + yindex + ", 0, args.src_tensor.Height() - 1);\n"; } } } if (block_size.y == 1 && !src_def.SupportsZeroClamp(Axis::HEIGHT, gpu_info)) { c += " if (!in_y0) continue;\n"; } c += " int kernel_y = kernel_first_dst_y - src_as_dst_y;\n"; c += " int src_as_dst_x = src_x * args.stride_x;\n"; c += " int src_x_copy = src_x;\n"; c += " for (;src_as_dst_x > kernel_last_dst_x; src_x_copy -= 1, " "src_as_dst_x " "-= args.stride_x) {\n"; for (int x = 0; x < block_size.x; ++x) { const std::string xindex = std::to_string(x); c += " int sx" + xindex + " = src_x_copy + " + xindex + ";\n"; if (!src_def.SupportsZeroClamp(Axis::WIDTH, gpu_info)) { c += " bool in_x" + xindex + " = sx" + xindex + " >= 0 && sx" + xindex + " < args.src_tensor.Width();\n"; if (!src_def.CanReadOutOfBorder(Axis::WIDTH)) { c += " sx" + xindex + " = clamp(sx" + xindex + ", 0, args.src_tensor.Width() - 1);\n"; } } } if (block_size.x == 1 && !src_def.SupportsZeroClamp(Axis::WIDTH, gpu_info)) { c += " if (!in_x0) continue;\n"; } for (int z = 0; z < block_size.z; ++z) { const std::string zind = std::to_string(z); for (int y = 0; y < block_size.y; ++y) { const std::string yind = std::to_string(y); for (int x = 0; x < block_size.x; ++x) { const std::string xind = std::to_string(x); const std::string id = generate_id(xind, yind, zind); const std::string check = generate_check(xind, yind, zind); std::string coords = "sx" + xind + ", sy" + yind; if (src_def.HasAxis(Axis::DEPTH)) { coords += ", sz" + zind; } if (src_def.IsLinear()) { c += " int addr" + id + " = args.src_tensor.GetAddress(" + coords + ", 0);\n"; if (src_def.ReturnsZeroForNegOneRead(gpu_info)) { c += " addr" + id + " = select(-1, addr" + id + ", (" + check + "));\n"; c += " int ds" + id + " = select(0, args.src_tensor.SliceStride(), (" + check + "));\n"; } } } } } if (src_def.IsLinear() && !src_def.ReturnsZeroForNegOneRead(gpu_info)) { c += " int ds = args.src_tensor.SliceStride();\n"; } c += " int kernel_x = kernel_first_dst_x - src_as_dst_x;\n"; if (src_def.HasAxis(Axis::DEPTH)) { c += " int kernel_index = (kernel_z * args.kernel_size_y + kernel_y) " "* args.kernel_size_x + kernel_x;\n"; } else { c += " int kernel_index = kernel_y * args.kernel_size_x + kernel_x;\n"; } if (weights_are_buffer) { c += " int f_offset = f_base + kernel_index * " "args.src_tensor.Slices() * " + std::to_string(block_size.w * 4) + ";\n"; } else { c += " int x_c = kernel_index * args.src_tensor.Slices();\n"; } c += " for (int s = 0; s < args.src_tensor.Slices(); ++s) {\n"; const bool conditional_read = gpu_info.IsMali(); for (int z = 0; z < block_size.z; ++z) { const std::string zind = std::to_string(z); for (int y = 0; y < block_size.y; ++y) { const std::string yind = std::to_string(y); for (int x = 0; x < block_size.x; ++x) { const std::string xind = std::to_string(x); const std::string id = generate_id(xind, yind, zind); std::string address; if (src_def.IsLinear()) { address = "addr" + id; } else { address = "sx" + xind + ", sy" + yind; if (src_def.HasAxis(Axis::DEPTH)) { address += ", sz" + zind; } address += ", s"; } if (src_def.ReturnsZeroForNegOneRead(gpu_info)) { c += " FLT4 src" + id + " = args.src_tensor.Read(" + address + "); " + address + " += ds" + id + ";\n"; } else { const std::string check = generate_check(xind, yind, zind); if (!check.empty()) { if (conditional_read) { c += " FLT4 src" + id + " = " + check + " ? args.src_tensor.Read(" + address + ") : INIT_FLT4(0.0f);\n"; } else { c += " FLT4 src" + id + " = args.src_tensor.Read(" + address + ") * INIT_FLT(" + check + ");\n"; } } else { c += " FLT4 src" + id + " = args.src_tensor.Read(" + address + ");\n"; } if (src_def.IsLinear()) { c += " addr" + id + " += ds;\n"; } } } } } if (weights_are_buffer) { if (gpu_info.SupportsPointersInKernels()) { c += " __global FLT4* weights_cache = " "args.weights.GetPtr(f_offset);\n"; } } else { for (int s = 0; s < block_size.w; ++s) { c += absl::Substitute( R"( FLT4 f$1 = args.weights0.Read(dst_s + $0, x_c); FLT4 f$2 = args.weights1.Read(dst_s + $0, x_c); FLT4 f$3 = args.weights2.Read(dst_s + $0, x_c); FLT4 f$4 = args.weights3.Read(dst_s + $0, x_c); )", s, s * 4 + 0, s * 4 + 1, s * 4 + 2, s * 4 + 3); } c += " x_c++;\n"; } if (weights_are_buffer && !gpu_info.SupportsPointersInKernels()) { c += " FLT4 f0, f1, f2, f3;\n"; } for (int s = 0; s < block_size.w; ++s) { if (weights_are_buffer && !gpu_info.SupportsPointersInKernels()) { c += " f0 = args.weights.Read(f_offset + " + std::to_string(s * 4 + 0) + ");\n"; c += " f1 = args.weights.Read(f_offset + " + std::to_string(s * 4 + 1) + ");\n"; c += " f2 = args.weights.Read(f_offset + " + std::to_string(s * 4 + 2) + ");\n"; c += " f3 = args.weights.Read(f_offset + " + std::to_string(s * 4 + 3) + ");\n"; } const std::string sind = std::to_string(s); for (int z = 0; z < block_size.z; ++z) { const std::string zind = std::to_string(z); for (int y = 0; y < block_size.y; ++y) { const std::string yind = std::to_string(y); for (int x = 0; x < block_size.x; ++x) { const std::string xind = std::to_string(x); const std::string id = generate_id(xind, yind, zind); const std::string full_id = generate_id_full(xind, yind, zind, sind); c += " CONV" + sind + "(r" + full_id + ", src" + id + ");\n"; } } } } if (weights_are_buffer) { c += " f_offset += " + std::to_string(block_size.w * 4) + ";\n"; } c += " }\n"; c += " }\n"; c += " }\n"; if (src_def.HasAxis(Axis::DEPTH)) { c += " }\n"; } for (int s = 0; s < block_size.w; ++s) { const std::string sind = std::to_string(s); c += " if (dst_s < args.dst_tensor.Slices()) {\n"; c += " FLT4 bias_val = args.biases.Read(dst_s);\n"; for (int z = 0; z < block_size.z; ++z) { const std::string zind = std::to_string(z); for (int y = 0; y < block_size.y; ++y) { const std::string yind = std::to_string(y); for (int x = 0; x < block_size.x; ++x) { const std::string xind = std::to_string(x); const std::string id = generate_id_full(xind, yind, zind, sind); std::string checks = "xc < args.dst_tensor.Width() && yc < args.dst_tensor.Height()"; std::string coords = "xc, yc"; c += " {\n"; c += " int xc = dst_x + args.stride_x * " + xind + ";\n"; c += " int yc = dst_y + args.stride_y * " + yind + ";\n"; if (src_def.HasAxis(Axis::DEPTH)) { c += " int zc = dst_z + args.stride_z * " + zind + ";\n"; checks += " && zc < args.dst_tensor.Depth()"; coords += ", zc"; } c += " if (" + checks + ") {\n"; c += " FLT4 res = TO_FLT4(r" + id + ") + bias_val;\n"; c += " args.dst_tensor.Write(res, " + coords + ", dst_s);\n"; c += " }\n"; c += " }\n"; } } } c += " }\n"; c += " dst_s++;\n"; } c += "}\n"; return c; } absl::Status ConvolutionTransposed::BindArguments(ArgumentsBinder* args) { if (definition_.src_tensors[0].HasAxis(Axis::DEPTH)) { const int aligned_h = AlignByN(dst_[0]->Height(), stride_.y * block_size_.y); RETURN_IF_ERROR( args->SetInt("grid_size_y", DivideRoundUp(aligned_h, block_size_.y))); } return absl::OkStatus(); } int3 ConvolutionTransposed::GetGridSize() const { const int aligned_w = AlignByN(dst_[0]->Width(), stride_.x * block_size_.x); const int aligned_h = AlignByN(dst_[0]->Height(), stride_.y * block_size_.y); const int aligned_d = AlignByN(dst_[0]->Depth(), stride_.z * block_size_.z); const int grid_x = DivideRoundUp(aligned_w, block_size_.x) * dst_[0]->Batch(); const int grid_y = DivideRoundUp(aligned_h, block_size_.y) * DivideRoundUp(aligned_d, block_size_.z); const int grid_z = DivideRoundUp(dst_[0]->Slices(), block_size_.w); return int3(grid_x, grid_y, grid_z); } void ConvolutionTransposed::GetPossibleKernelWorkGroups( TuningType tuning_type, const GpuInfo& gpu_info, const KernelInfo& kernel_info, std::vector<int3>* work_groups) const { GetPossibleWorkGroupsConv(tuning_type, gpu_info, kernel_info, grid_size_, work_groups); } ConvolutionTransposed CreateConvolutionTransposed( const GpuInfo& gpu_info, const OperationDef& definition, const ConvolutionTransposedAttributes& attr) { ConvolutionTransposed result(definition, attr, gpu_info); result.UploadWeights(attr.weights, UseBufferForWeights(gpu_info)); TensorDescriptor bias_tensor_desc = CreateConstantLinearTensorDescriptor( gpu_info, definition.src_tensors[0].GetDataType(), attr.bias); result.args_.AddObject("biases", std::make_unique<TensorDescriptor>( std::move(bias_tensor_desc))); return result; } ConvolutionTransposed CreateConvolutionTransposed3D( const GpuInfo& gpu_info, const OperationDef& definition, const ConvolutionTransposed3DAttributes& attr) { ConvolutionTransposed result(definition, attr, gpu_info); result.UploadWeights(attr.weights, UseBufferForWeights(gpu_info)); TensorDescriptor bias_tensor_desc = CreateConstantLinearTensorDescriptor( gpu_info, definition.src_tensors[0].GetDataType(), attr.bias); result.args_.AddObject("biases", std::make_unique<TensorDescriptor>( std::move(bias_tensor_desc))); return result; } ConvolutionTransposed CreateConvolutionTransposedDynamicWeights( const GpuInfo& gpu_info, const OperationDef& definition, const ConvolutionTransposedAttributes& attr) { OperationDef new_def = definition; new_def.src_tensors = { definition.src_tensors[0]}; const DataType weights_type = definition.GetDataType(); if (UseBufferForWeights(gpu_info)) { new_def.src_tensors.push_back( {weights_type, TensorStorageType::BUFFER, Layout::HWC}); } else { new_def.src_tensors.push_back( {weights_type, TensorStorageType::TEXTURE_2D, Layout::HW}); new_def.src_tensors.push_back( {weights_type, TensorStorageType::TEXTURE_2D, Layout::HW}); new_def.src_tensors.push_back( {weights_type, TensorStorageType::TEXTURE_2D, Layout::HW}); new_def.src_tensors.push_back( {weights_type, TensorStorageType::TEXTURE_2D, Layout::HW}); } ConvolutionTransposed result(new_def, attr, gpu_info); TensorDescriptor bias_tensor_desc = CreateConstantLinearTensorDescriptor( gpu_info, definition.src_tensors[0].GetDataType(), attr.bias); result.args_.AddObject("biases", std::make_unique<TensorDescriptor>( std::move(bias_tensor_desc))); return result; } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/convolution_transposed_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, ConvolutionTransposedSimpleWeights) { auto status = ConvolutionTransposedSimpleWeightsTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, ConvolutionTransposed) { auto status = ConvolutionTransposedTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/convolution_transposed.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/convolution_transposed_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fb36523d-3c6a-4c05-8511-c90aa28acc00
cpp
tensorflow/tensorflow
resolve_svdf
tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf.cc
tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf_test.cc
#include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf.h" #include <ctype.h> #include <stddef.h> #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster_utils.h" #include "tensorflow/lite/toco/toco_port.h" #include "tensorflow/lite/toco/toco_types.h" using tensorflow::GraphDef; using tensorflow::NodeDef; namespace toco { namespace { void FilterPartitionedConstNodes( const std::string& const_pattern, const std::vector<const NodeDef*>& cluster_nodes, std::vector<const NodeDef*>* const_node_parts) { for (const NodeDef* node : cluster_nodes) { std::string node_name_to_upper = node->name(); std::transform(node_name_to_upper.begin(), node_name_to_upper.end(), node_name_to_upper.begin(), ::toupper); if (StrContains(node->name(), const_pattern) && node->op() == "Const") { if (StrContains(node_name_to_upper, "/PART_")) { const_node_parts->push_back(node); } else if (StrContains(node->name(), "AXIS") && StrContains(node->name(), "CONCAT")) { const auto& value_attr = node->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); CHECK_EQ(tensor.int_val(0), 0); } } } std::sort(const_node_parts->begin(), const_node_parts->end(), [](const NodeDef* a, const NodeDef* b) { return (a->name().compare(b->name()) < 0 && (a->name().size() < b->name().size())); }); } } int SvdfCluster::InferFilterRank() { for (const NodeDef* node : nodes_) { if (StrContains(node->name(), "Reshape/shape")) { const auto& value_attr = node->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); std::vector<int32> shape_values( tensor.tensor_content().size() / sizeof(int), 0); port::CopyToBuffer(tensor.tensor_content(), reinterpret_cast<char*>(shape_values.data())); CHECK_EQ(shape_values.size(), 3); CHECK_EQ(shape_values[2], -1); return shape_values[1]; } } return -1; } void SvdfCluster::CreateNodes() { for (const std::string& const_pattern : const_node_patterns_) { CreateConstNode(const_pattern); } std::unique_ptr<tensorflow::NodeDef> svdf_node(new NodeDef); svdf_node->set_op("Svdf"); svdf_node->set_name(name_); svdf_node->set_device(device_); svdf_node->add_input(inputs_[0]); CHECK(new_nodes_.size() == 3 || new_nodes_.size() == 2); std::string* weights_feature_input = svdf_node->add_input(); std::string* weights_time_input = svdf_node->add_input(); std::string* bias_input; if (new_nodes_.size() == 3) { bias_input = svdf_node->add_input(); } for (const std::unique_ptr<tensorflow::NodeDef>& node : new_nodes_) { const std::string node_name = node->name(); if (StrContains(node_name, "SVDF_weights_feature")) { *weights_feature_input = node_name; } else if (StrContains(node_name, "SVDF_weights_time")) { *weights_time_input = node_name; } else if (StrContains(node_name, "SVDF_bias")) { CHECK(bias_input) << "Bias input cannot be provided when there are only " "two Const input nodes!"; *bias_input = node_name; } else { LOG(FATAL) << "Unexpected input node for SVDF op! Accepted inputs are: " "weights_feature, weights_time and bias."; } } const int rank = InferFilterRank(); CHECK_GT(rank, 0); std::string activation_function = StrContains(outputs_[0], "Relu") ? "Relu" : "None"; (*svdf_node->mutable_attr())["ActivationFunction"].set_s(activation_function); (*svdf_node->mutable_attr())["Rank"].set_i(rank); new_nodes_.push_back(std::move(svdf_node)); } void SvdfCluster::CreateConstNode(const std::string& const_pattern) { std::vector<const NodeDef*> const_node_parts; FilterPartitionedConstNodes(const_pattern, nodes_, &const_node_parts); if (const_node_parts.empty()) return; bool transpose_tensor_value = StrContains(const_pattern, "SVDF_weights_feature"); std::unique_ptr<tensorflow::NodeDef> merged_node(new NodeDef); MaybeMergeConstNodes(const_node_parts, transpose_tensor_value, merged_node); new_nodes_.push_back(std::move(merged_node)); } void SvdfCluster::MaybeMergeConstNodes( const std::vector<const NodeDef*>& const_node_parts, bool transpose_tensor_value, const std::unique_ptr<tensorflow::NodeDef>& merged_node) { merged_node->set_name(const_node_parts[0]->name()); merged_node->set_op("Const"); merged_node->set_device(const_node_parts[0]->device()); (*merged_node->mutable_attr())["dtype"].set_type( const_node_parts[0]->attr().at("dtype").type()); int dim0_size = 0; int dim1_size = 1; tensorflow::TensorProto* allocated_tensor = (*merged_node->mutable_attr())["value"].mutable_tensor(); tensorflow::TensorShapeProto* allocated_tensor_shape = allocated_tensor->mutable_tensor_shape(); auto tensor_shape_dim0 = allocated_tensor_shape->add_dim(); int allocated_content_flat_size = 0; for (size_t i = 0; i < const_node_parts.size(); i++) { const auto& value_attr = const_node_parts[i]->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); if (i == 0) { allocated_tensor->set_dtype(tensor.dtype()); } else { CHECK_EQ(allocated_tensor->dtype(), tensor.dtype()); } allocated_content_flat_size += tensor.tensor_content().size(); CHECK(tensor.has_tensor_shape()); const tensorflow::TensorShapeProto shape = tensor.tensor_shape(); dim0_size += shape.dim(0).size(); for (int d = 1; d < shape.dim_size(); d++) { if (i == 0) { allocated_tensor_shape->add_dim()->set_size(shape.dim(d).size()); allocated_tensor_shape->set_unknown_rank(shape.unknown_rank()); dim1_size *= shape.dim(d).size(); } else { CHECK_EQ(shape.dim(d).size(), allocated_tensor_shape->dim(d).size()); CHECK_EQ(allocated_tensor_shape->unknown_rank(), shape.unknown_rank()); } } } std::unique_ptr<char[]> allocated_content( new char[allocated_content_flat_size]); char* content_ptr = allocated_content.get(); for (size_t i = 0; i < const_node_parts.size(); i++) { const auto& value_attr = const_node_parts[i]->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); port::CopyToBuffer(tensor.tensor_content(), content_ptr); content_ptr += tensor.tensor_content().size(); } if (transpose_tensor_value) { std::unique_ptr<float[]> transposed_tensor( new float[dim0_size * dim1_size]); Transpose2DTensor(reinterpret_cast<float*>(allocated_content.get()), dim0_size, dim1_size, transposed_tensor.get()); allocated_tensor_shape->clear_dim(); allocated_tensor_shape->add_dim()->set_size(dim1_size); allocated_tensor_shape->add_dim()->set_size(dim0_size); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(transposed_tensor.get()), allocated_content_flat_size)); } else { tensor_shape_dim0->set_size(dim0_size); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(allocated_content.get()), allocated_content_flat_size)); } } std::unique_ptr<Cluster> SvdfClusterFactory::CreateCluster( const NodeDef& node, const GraphDef& graph_def) const { std::vector<std::string> node_patterns = {"SVDF_weights_feature", "SVDF_weights_time", "SVDF_bias"}; std::string node_name_to_upper = node.name(); std::transform(node_name_to_upper.begin(), node_name_to_upper.end(), node_name_to_upper.begin(), ::toupper); std::unique_ptr<SvdfCluster> cluster = nullptr; if (node_name_to_upper.find("SVDF", 0) != std::string::npos) { size_t weights_pos = node.name().find(node_patterns[0]); if (weights_pos != std::string::npos) { size_t cell_pos = node.name().rfind('/', weights_pos - 2) + 1; std::string cell_name = node.name().substr(cell_pos, weights_pos - cell_pos - 1); cluster = std::make_unique<SvdfCluster>(); cluster->SetName(cell_name); cluster->SetDevice(node.device()); cluster->SetGraphDefInfo(&graph_def); CHECK(cluster->FindClusterInputsAndOutputs()); for (const std::string& const_pattern : node_patterns) { cluster->AddConstNodePattern(const_pattern); } } } return std::move(cluster); } }
#include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf.h" #include <string> #include <unordered_map> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster_utils.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_cluster.h" #include "tensorflow/lite/toco/toco_port.h" using tensorflow::GraphDef; using tensorflow::NodeDef; namespace toco { class ResolveSvdfTest : public ::testing::Test { public: ResolveSvdfTest() { AddNewNode("Input1", "Const", {}); AddNewNode("Svdf1/SVDF_weights_feature/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf1/SVDF_weights_feature/part_0/read", "Identity", {"Svdf1/SVDF_weights_feature/part_0"}); AddNewNode("Svdf1/SVDF_weights_time/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf1/SVDF_weights_time/part_0/read", "Identity", {"Svdf1/SVDF_weights_time/part_0"}); AddNewNode("Svdf1/f1", "SVDF_F1", {"Input1", "Svdf1/SVDF_weights_feature/part_0/read"}); AddNewNode("Svdf1/f2", "SVDF_F2", {"Svdf1/SVDF_weights_time/part_0/read", "Svdf1/f1"}); AddNewNode("Svdf1/Relu", "Relu", {"Svdf1/f2"}); AddShapeNode("Svdf1/Reshape/shape", {10, 1, -1}); AddNewNode("Output1", "Const", {"Svdf1/Relu"}); AddNewNode("Input2", "Const", {}); AddNewNode("Svdf2/SVDF_weights_feature/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf2/SVDF_weights_feature/part_0/read", "Identity", {"Svdf2/SVDF_weights_feature/part_0"}); AddNewNode("Svdf2/SVDF_weights_time/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf2/SVDF_weights_time/part_0/read", "Identity", {"Svdf2/SVDF_weights_time/part_0"}); AddNewNode("Svdf2/f1", "SVDF_F1", {"Input1", "Svdf2/SVDF_weights_feature/part_0/read"}); AddNewNode("Svdf2/f2", "SVDF_F2", {"Svdf2/SVDF_weights_time/part_0/read", "Svdf2/f1"}); AddNewNode("Svdf2/Relu", "Relu", {"Svdf2/f2"}); AddShapeNode("Svdf2/Reshape/shape", {10, 2, -1}); AddNewNode("Output2", "Const", {"Svdf2/Relu"}); } ~ResolveSvdfTest() override {} protected: void AddNewNode(const std::string& name, const std::string& op, const std::vector<std::string>& inputs) { NodeDef* node = graph_.add_node(); node->set_name(name); node->set_op(op); node->set_device(""); for (int i = 0; i < inputs.size(); i++) { node->add_input(); node->set_input(i, inputs[i]); } } void AddNewNode(const std::string& name, const std::string& op, const std::vector<std::string>& inputs, const std::vector<float>& values) { NodeDef* node = graph_.add_node(); node->set_name(name); node->set_op(op); node->set_device(""); for (int i = 0; i < inputs.size(); i++) { node->add_input(); node->set_input(i, inputs[i]); } (*node->mutable_attr())["dtype"].set_type(tensorflow::DT_FLOAT); tensorflow::TensorProto* allocated_tensor = new tensorflow::TensorProto; tensorflow::TensorShapeProto* allocated_tensor_shape = new tensorflow::TensorShapeProto; auto tensor_shape_dim0 = allocated_tensor_shape->add_dim(); tensor_shape_dim0->set_size(values.size()); allocated_tensor->set_allocated_tensor_shape(allocated_tensor_shape); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(values.data()), values.size() * sizeof(float))); (*node->mutable_attr())["value"].set_allocated_tensor(allocated_tensor); } void AddShapeNode(const std::string& name, const std::vector<int>& values) { NodeDef* node = graph_.add_node(); node->set_name(name); node->set_op("Const"); node->set_device(""); (*node->mutable_attr())["dtype"].set_type(tensorflow::DT_INT32); tensorflow::TensorProto* allocated_tensor = new tensorflow::TensorProto; tensorflow::TensorShapeProto* allocated_tensor_shape = new tensorflow::TensorShapeProto; auto tensor_shape_dim0 = allocated_tensor_shape->add_dim(); tensor_shape_dim0->set_size(values.size()); allocated_tensor->set_allocated_tensor_shape(allocated_tensor_shape); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(values.data()), values.size() * sizeof(int))); (*node->mutable_attr())["value"].set_allocated_tensor(allocated_tensor); } GraphDef graph_; SvdfClusterFactory svdf_cluster_factory_; std::vector<std::unique_ptr<Cluster>> clusters_; }; TEST_F(ResolveSvdfTest, TestTranspose2DTensor) { static float matrix[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.}; static float expected_transposed_matrix[] = {1., 5., 9., 2., 6., 10., 3., 7., 11., 4., 8., 12.}; float* transposed_matrix = new float[12]; Transpose2DTensor(matrix, 3, 4, transposed_matrix); std::vector<float> actual; actual.insert( actual.end(), transposed_matrix, transposed_matrix + sizeof(expected_transposed_matrix) / sizeof(float)); std::vector<float> expected; expected.insert(expected.end(), expected_transposed_matrix, expected_transposed_matrix + sizeof(expected_transposed_matrix) / sizeof(float)); delete[] transposed_matrix; } TEST_F(ResolveSvdfTest, TestResolveSvdfFlow) { std::unordered_map<std::string, bool> is_node_in_cluster; for (const NodeDef& node : graph_.node()) { is_node_in_cluster[node.name()] = false; } std::vector<std::string> cluster_names; CHECK(FindCluster(svdf_cluster_factory_, graph_, &is_node_in_cluster, &clusters_)); for (const std::unique_ptr<Cluster>& cluster : clusters_) { cluster_names.push_back(cluster->GetName()); cluster->CreateNodes(); } EXPECT_THAT(cluster_names, testing::UnorderedElementsAreArray({"Svdf1", "Svdf2"})); std::vector<std::string> new_node_names; std::vector<float> content_array(3); for (const std::unique_ptr<Cluster>& cluster : clusters_) { CHECK_EQ(cluster->GetNewNodes().size(), 3); for (const std::unique_ptr<tensorflow::NodeDef>& node : cluster->GetNewNodes()) { new_node_names.push_back(node->name()); if (node->op() == "Const") { CHECK_EQ(node->attr().at("dtype").type(), tensorflow::DT_FLOAT); toco::port::CopyToBuffer( node->attr().at("value").tensor().tensor_content(), reinterpret_cast<char*>(content_array.data())); EXPECT_THAT(content_array, testing::UnorderedElementsAreArray({0.1, 0.2, 0.3})); } else { if (node->name() == "Svdf1") { CHECK_EQ(node->attr().at("Rank").i(), 1); } else if (node->name() == "Svdf2") { CHECK_EQ(node->attr().at("Rank").i(), 2); } CHECK_EQ(node->attr().at("ActivationFunction").s(), "Relu"); } } } EXPECT_THAT(new_node_names, testing::UnorderedElementsAreArray( {"Svdf2/SVDF_weights_feature/part_0", "Svdf2/SVDF_weights_time/part_0", "Svdf2", "Svdf1/SVDF_weights_feature/part_0", "Svdf1/SVDF_weights_time/part_0", "Svdf1"})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e65f0543-478e-4b0b-b8a2-0f371f5de206
cpp
google/arolla
array
arolla/array/array.cc
arolla/qexpr/operators/array/array_test.cc
#include "arolla/array/array.h" #include "absl/strings/str_cat.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" namespace arolla { void FingerprintHasherTraits<ArrayShape>::operator()( FingerprintHasher* hasher, const ArrayShape& value) const { hasher->Combine(value.size); } ReprToken ReprTraits<ArrayShape>::operator()(const ArrayShape& value) const { return ReprToken{absl::StrCat("array_shape{size=", value.size, "}")}; } }
#include "arolla/array/array.h" #include <optional> #include <type_traits> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/array/edge.h" #include "arolla/memory/frame.h" #include "arolla/memory/optional_value.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/lift_to_optional_operator.h" #include "arolla/qexpr/lifting.h" #include "arolla/qexpr/operators.h" #include "arolla/qexpr/operators/array/lifter.h" #include "arolla/qexpr/operators/dense_array/lifter.h" #include "arolla/qexpr/operators/testing/accumulators.h" #include "arolla/util/meta.h" #include "arolla/util/text.h" #include "arolla/util/unit.h" namespace arolla::testing { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::ElementsAre; using ::testing::HasSubstr; struct TemplatedAddFn { template <typename T> T operator()(T a, T b) const { return a + b; } }; struct TemplatedAddOneFn { template <typename T> T operator()(T a) const { return a + 1; } }; TEST(LifterTest, SimpleCase) { Array<int> arr1 = CreateArray<int>({1, {}, 2, 3}); Array<int> arr2 = CreateArray<int>({3, 6, {}, 2}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifter<TemplatedAddFn, meta::type_list<int, int>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, arr1, arr2)); EXPECT_THAT(res, ElementsAre(4, std::nullopt, std::nullopt, 5)); } struct LogicalOrOp { using run_on_missing = std::true_type; bool operator()(bool lhs, bool rhs) const { return lhs || rhs; } OptionalValue<bool> operator()(const OptionalValue<bool>& lhs, const OptionalValue<bool>& rhs) const { if (lhs.present) { return lhs.value ? true : rhs; } else if (rhs.present) { return rhs.value ? true : lhs; } else { return OptionalValue<bool>{}; } } }; TEST(LifterTest, OptionalBoolResultArrays) { Array<bool> arr1 = CreateArray<bool>({true, {}, false, true, {}}); Array<bool> arr2 = CreateArray<bool>({false, true, {}, true, {}}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifter<LogicalOrOp, meta::type_list<::arolla::OptionalValue<bool>, ::arolla::OptionalValue<bool>>>(); ASSERT_OK_AND_ASSIGN(Array<bool> res, op(&ctx, arr1, arr2)); EXPECT_THAT(res, ElementsAre(true, true, std::nullopt, true, std::nullopt)); } TEST(LifterTest, OptionalBoolResultArrayAndConst) { Array<bool> arr1 = Array<bool>(5, std::nullopt); Array<bool> arr2 = CreateArray<bool>({false, true, {}, true, {}}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifter<LogicalOrOp, meta::type_list<::arolla::OptionalValue<bool>, ::arolla::OptionalValue<bool>>>(); ASSERT_OK_AND_ASSIGN(Array<bool> res, op(&ctx, arr1, arr2)); EXPECT_THAT( res, ElementsAre(std::nullopt, true, std::nullopt, true, std::nullopt)); } TEST(LifterTest, OptionalBoolResultConstAndConst) { std::vector<OptionalValue<bool>> cases = {std::nullopt, true, false}; for (OptionalValue<bool> x : cases) { for (OptionalValue<bool> y : cases) { Array<bool> arr1 = Array<bool>(1, x); Array<bool> arr2 = Array<bool>(1, y); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifter< LogicalOrOp, meta::type_list<::arolla::OptionalValue<bool>, ::arolla::OptionalValue<bool>>>(); ASSERT_OK_AND_ASSIGN(Array<bool> res, op(&ctx, arr1, arr2)); EXPECT_THAT(res, ElementsAre(LogicalOrOp()(x, y))) << x << " " << y; } } } TEST(LifterTest, SizeMismatch) { Array<int> arr1 = CreateArray<int>({1, {}, 2, 3}); Array<int> arr2 = CreateArray<int>({3, 6, {}}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifter<TemplatedAddFn, meta::type_list<int, int>>(); EXPECT_THAT(op(&ctx, arr1, arr2), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("argument sizes mismatch: (4, 3)"))); } TEST(LifterTest, UnaryOperation) { Array<int> arr = CreateArray<int>({1, {}, 2, 3}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifter<TemplatedAddOneFn, meta::type_list<int>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, arr)); EXPECT_THAT(res, ElementsAre(2, std::nullopt, 3, 4)); } struct MyInt { int value; friend int operator+(int x, MyInt y) { return y.value + x; } }; template <typename... Ts> struct TemplatedVariadicAddFn { int operator()(Ts... vs) const { return (0 + ... + vs); } }; TEST(LifterTest, NonLiftableArg) { Array<int> arr = CreateArray<int>({1, {}, 2, 3}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifter<TemplatedVariadicAddFn<MyInt, int>, meta::type_list<DoNotLiftTag<MyInt>, int>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, MyInt{5}, arr)); EXPECT_THAT(res, ElementsAre(6, std::nullopt, 7, 8)); } TEST(LifterTest, NonLiftableArgs) { Array<int> arr = CreateArray<int>({1, {}, 2, 3}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); { auto op = ArrayPointwiseLifter< TemplatedVariadicAddFn<MyInt, MyInt, int>, meta::type_list<DoNotLiftTag<MyInt>, DoNotLiftTag<MyInt>, int>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, MyInt{3}, MyInt{5}, arr)); EXPECT_THAT(res, ElementsAre(9, std::nullopt, 10, 11)); } { auto op = ArrayPointwiseLifter< TemplatedVariadicAddFn<MyInt, int, MyInt>, meta::type_list<DoNotLiftTag<MyInt>, int, DoNotLiftTag<MyInt>>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, MyInt{3}, arr, MyInt{5})); EXPECT_THAT(res, ElementsAre(9, std::nullopt, 10, 11)); } { auto op = ArrayPointwiseLifter< TemplatedVariadicAddFn<int, MyInt, MyInt>, meta::type_list<int, DoNotLiftTag<MyInt>, DoNotLiftTag<MyInt>>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, arr, MyInt{3}, MyInt{5})); EXPECT_THAT(res, ElementsAre(9, std::nullopt, 10, 11)); } { auto op = ArrayPointwiseLifter<TemplatedVariadicAddFn<int, MyInt, int>, meta::type_list<int, DoNotLiftTag<MyInt>, int>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, arr, MyInt{3}, arr)); EXPECT_THAT(res, ElementsAre(5, std::nullopt, 7, 9)); } { auto op = ArrayPointwiseLifter< TemplatedVariadicAddFn<MyInt, int, MyInt, int>, meta::type_list<DoNotLiftTag<MyInt>, int, DoNotLiftTag<MyInt>, int>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, MyInt{5}, arr, MyInt{3}, arr)); EXPECT_THAT(res, ElementsAre(10, std::nullopt, 12, 14)); } { auto op = ArrayPointwiseLifter< TemplatedVariadicAddFn<int, MyInt, int, MyInt>, meta::type_list<int, DoNotLiftTag<MyInt>, int, DoNotLiftTag<MyInt>>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, arr, MyInt{3}, arr, MyInt{5})); EXPECT_THAT(res, ElementsAre(10, std::nullopt, 12, 14)); } { auto op = ArrayPointwiseLifter< TemplatedVariadicAddFn<int, MyInt, int, MyInt, MyInt>, meta::type_list<int, DoNotLiftTag<MyInt>, int, DoNotLiftTag<MyInt>, DoNotLiftTag<MyInt>>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, arr, MyInt{3}, arr, MyInt{5}, MyInt{4})); EXPECT_THAT(res, ElementsAre(14, std::nullopt, 16, 18)); } } TEST(LifterTest, ArrayPointwiseLifterOnDenseOp) { Array<int> arr = CreateArray<int>({1, {}, 2, 3}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayPointwiseLifterOnDenseOp< DenseArrayLifter<TemplatedAddFn, meta::type_list<int, int>>, OptionalLiftedOperator<TemplatedAddFn, meta::type_list<int, int>>, meta::type_list<int, int>>(); ASSERT_OK_AND_ASSIGN(Array<int> res, op(&ctx, arr, arr)); EXPECT_THAT(res, ElementsAre(2, std::nullopt, 4, 6)); } TEST(LifterTest, AggTextAccumulator) { auto values = CreateArray<Text>( {Text("w1"), std::nullopt, Text("w3"), Text("w4"), Text("w5")}); auto comments = CreateArray<Text>({std::nullopt, Text("it is word #2"), std::nullopt, Text("it is word #4"), std::nullopt}); FrameLayout frame_layout; RootEvaluationContext root_ctx(&frame_layout, GetHeapBufferFactory()); EvaluationContext ctx(root_ctx); auto op = ArrayGroupLifter<AggTextAccumulator, meta::type_list<OptionalValue<Text>>, meta::type_list<Text, OptionalValue<Text>>>(); ASSERT_OK_AND_ASSIGN(Text res, op(&ctx, Text("prefix:"), values, comments, ArrayGroupScalarEdge(values.size()))); EXPECT_EQ(res.view(), "prefix:w1\nw3\nw4 (it is word #4)\nw5\n"); } TEST(LifterTest, ArrayPresenceAndOp) { EXPECT_THAT(InvokeOperator<Array<int>>( "core.presence_and", CreateArray<int>({1, 2, 3}), CreateArray<Unit>({kUnit, std::nullopt, kUnit})), IsOkAndHolds(ElementsAre(1, std::nullopt, 3))); EXPECT_THAT(InvokeOperator<Array<int>>( "core.presence_and", CreateArray<int>({1, 2, std::nullopt}), CreateArray<Unit>({kUnit, std::nullopt, kUnit})), IsOkAndHolds(ElementsAre(1, std::nullopt, std::nullopt))); EXPECT_THAT(InvokeOperator<Array<int>>( "core.presence_and", CreateArray<int>({1, 2, std::nullopt}), CreateArray<Unit>({kUnit, kUnit, kUnit})), IsOkAndHolds(ElementsAre(1, 2, std::nullopt))); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/array/array.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/array/array_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
90271454-bf3f-42dc-9c08-ea7578e1c82a
cpp
tensorflow/tensorflow
constants
tensorflow/lite/core/async/interop/c/constants.cc
third_party/xla/xla/hlo/builder/lib/constants_test.cc
#include "tensorflow/lite/core/async/interop/c/constants.h" extern "C" { const char kTfLiteSyncTypeNoSyncObj[] = "no_sync_obj"; }
#include "xla/hlo/builder/lib/constants.h" #include <limits> #include "xla/hlo/builder/xla_builder.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using ConstantsTest = ClientLibraryTestBase; using ::testing::HasSubstr; XLA_TEST_F(ConstantsTest, ConstantR0WithTypeS32) { XlaBuilder builder(TestName()); ConstantR0WithType(&builder, xla::S32, 4); ComputeAndCompareR0<int32_t>(&builder, 4, {}); } XLA_TEST_F(ConstantsTest, ConstantR0WithTypeS32DoesNotAcceptFloats) { XlaBuilder builder(TestName()); ConstantR0WithType(&builder, xla::S32, 4.5); auto statusor = builder.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("Invalid cast")); } XLA_TEST_F(ConstantsTest, ConstantR0WithTypeF32) { XlaBuilder builder(TestName()); ConstantR0WithType(&builder, xla::F32, -7); ComputeAndCompareR0<float>(&builder, -7, {}); ConstantR0WithType(&builder, xla::F32, 0.5); ComputeAndCompareR0<float>(&builder, 0.5, {}); } XLA_TEST_F(ConstantsTest, ScalarLikeS32) { XlaBuilder builder(TestName()); ScalarLike(ConstantR0<int32_t>(&builder, 42), -3); ComputeAndCompareR0<int32_t>(&builder, -3, {}); } XLA_TEST_F(ConstantsTest, ScalarLikeF32) { XlaBuilder builder(TestName()); ScalarLike(ConstantR0<float>(&builder, 42.75), -3.2); ComputeAndCompareR0<float>(&builder, -3.2, {}); } XLA_TEST_F(ConstantsTest, ZeroS32) { XlaBuilder builder(TestName()); Zero(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, 0, {}); } XLA_TEST_F(ConstantsTest, ZeroF32) { XlaBuilder builder(TestName()); Zero(&builder, F32); ComputeAndCompareR0<float>(&builder, 0.0, {}); } XLA_TEST_F(ConstantsTest, ZerosS32) { XlaBuilder builder(TestName()); Zeros(&builder, ShapeUtil::MakeShape(S32, {2, 2})); ComputeAndCompareR2<int32_t>(&builder, {{0, 0}, {0, 0}}, {}); } XLA_TEST_F(ConstantsTest, ZerosLikeF32) { XlaBuilder builder(TestName()); ZerosLike(ConstantR1<float>(&builder, {1., 2., 3.})); ComputeAndCompareR1<float>(&builder, {0., 0., 0.}, {}); } XLA_TEST_F(ConstantsTest, OneS32) { XlaBuilder builder(TestName()); One(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, 1, {}); } XLA_TEST_F(ConstantsTest, OneF32) { XlaBuilder builder(TestName()); One(&builder, F32); ComputeAndCompareR0<float>(&builder, 1., {}); } XLA_TEST_F(ConstantsTest, EpsilonF32) { XlaBuilder builder(TestName()); Epsilon(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::epsilon(), {}); } XLA_TEST_F(ConstantsTest, MinFiniteValueS32) { XlaBuilder builder(TestName()); MinFiniteValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::min(), {}); } XLA_TEST_F(ConstantsTest, MaxFiniteValueS32) { XlaBuilder builder(TestName()); MaxFiniteValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::max(), {}); } XLA_TEST_F(ConstantsTest, MinFiniteValueF32) { XlaBuilder builder(TestName()); MinFiniteValue(&builder, F32); ComputeAndCompareR0<float>(&builder, -std::numeric_limits<float>::max(), {}); } XLA_TEST_F(ConstantsTest, MaxFiniteValueF32) { XlaBuilder builder(TestName()); MaxFiniteValue(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::max(), {}); } XLA_TEST_F(ConstantsTest, MinValueS32) { XlaBuilder builder(TestName()); MinValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::min(), {}); } XLA_TEST_F(ConstantsTest, MaxValueS32) { XlaBuilder builder(TestName()); MaxValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::max(), {}); } XLA_TEST_F(ConstantsTest, MinValueF32) { XlaBuilder builder(TestName()); MinValue(&builder, F32); ComputeAndCompareR0<float>(&builder, -std::numeric_limits<float>::infinity(), {}); } XLA_TEST_F(ConstantsTest, MaxValueF32) { XlaBuilder builder(TestName()); MaxValue(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::infinity(), {}); } XLA_TEST_F(ConstantsTest, NanValueF32) { XlaBuilder builder(TestName()); NanValue(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::quiet_NaN(), {}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/interop/c/constants.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/constants_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6c55f973-6e2e-407f-b8de-4c527b9f2072
cpp
tensorflow/tensorflow
pipelined_p2p_rewriter
third_party/xla/xla/service/gpu/transforms/pipelined_p2p_rewriter.cc
third_party/xla/xla/service/gpu/transforms/pipelined_p2p_rewriter_test.cc
#include "xla/service/gpu/transforms/pipelined_p2p_rewriter.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using CollectiveInComputation = absl::flat_hash_map<const HloComputation*, bool>; using InstructionVector = HloInstruction::InstructionVector; struct PipelinedP2PInfo { int64_t opnd_start; int64_t opnd_end; }; bool IsCollectiveOp(const HloInstruction* op) { HloOpcode opcode = op->opcode(); if (opcode == HloOpcode::kCustomCall) { return true; } return hlo_query::IsCollectiveCommunicationOp(opcode) || opcode == HloOpcode::kSend || opcode == HloOpcode::kRecv; } bool MayInvokeCollectiveOp( const HloInstruction* hlo, const CollectiveInComputation& collective_in_computation) { if (IsCollectiveOp(hlo)) { return true; } for (HloComputation* callee : hlo->called_computations()) { auto collective_in_comp = collective_in_computation.find(callee); CHECK(collective_in_comp != collective_in_computation.end()); if (collective_in_comp->second) { return true; } } return false; } HloInstruction* FindUniqueGTEUserWithIndex(const HloInstruction* op, int64_t idx) { CHECK(op->shape().IsTuple()); HloInstruction* gte = nullptr; for (auto user : op->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { continue; } if (user->tuple_index() == idx) { if (gte == nullptr) { gte = user; } else { return nullptr; } } } return gte; } bool HasGTEUserWithIndex(const HloInstruction* op, int64_t idx) { CHECK(op->shape().IsTuple()); for (auto user : op->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { continue; } if (user->tuple_index() == idx) { return true; } } return false; } HloInstruction* MaySkipTrivialTuple(HloInstruction* op) { if (op->opcode() != HloOpcode::kTuple) { return op; } HloInstruction* hidden_op = nullptr; for (auto opnd : op->mutable_operands()) { if (opnd->opcode() != HloOpcode::kGetTupleElement) { return op; } if (hidden_op == nullptr) { hidden_op = opnd->mutable_operand(0); } else if (opnd->mutable_operand(0) != hidden_op) { return op; } } return hidden_op; } const HloInstruction* MaySkipTrivialTuple(const HloInstruction* op) { return MaySkipTrivialTuple(const_cast<HloInstruction*>(op)); } std::optional<PipelinedP2PInfo> FindConsecutiveAndBalanceBlockOfSendDoneRecvDone( const HloInstruction* while_init) { PipelinedP2PInfo pipelined_p2p_info{0, 0}; auto has_started = [&]() { return pipelined_p2p_info.opnd_start != pipelined_p2p_info.opnd_end; }; int difference = 0; for (int64_t i = 0; i < while_init->operand_count(); ++i) { const HloInstruction* op = while_init->operand(i); if ((op->opcode() == HloOpcode::kRecvDone || op->opcode() == HloOpcode::kSendDone) && op->frontend_attributes().map().count(kSendRecvPipelineAttr) > 0) { if (op->opcode() == HloOpcode::kRecvDone) { difference++; } else { difference--; } if (!has_started()) { pipelined_p2p_info.opnd_start = i; } pipelined_p2p_info.opnd_end = i + 1; } else { if (has_started()) { VLOG(10) << "End a consecutive block"; break; } } } if (difference != 0) { VLOG(10) << "Mismatch number of SendDone and RecvDone: " << difference; return std::nullopt; } if (has_started()) { for (int64_t i = pipelined_p2p_info.opnd_end; i < while_init->operand_count(); ++i) { const HloInstruction* op = while_init->operand(i); if (op->opcode() == HloOpcode::kRecvDone || op->opcode() == HloOpcode::kSendDone) { VLOG(10) << "SendDone/RecvDone outside the consecutive block"; return std::nullopt; break; } } } if (!has_started()) { VLOG(10) << "No SendDone/RecvDone in while-init "; return std::nullopt; } return pipelined_p2p_info; } std::optional<PipelinedP2PInfo> FindPipelinedP2P( const HloInstruction* while_op) { VLOG(10) << "while_op: " << while_op->ToString(); const HloInstruction* while_init = while_op->while_init(); if (while_init->opcode() != HloOpcode::kTuple || while_init->user_count() != 1) { return std::nullopt; } const HloComputation* while_body = while_op->while_body(); const HloComputation* while_condition = while_op->while_condition(); if (while_body->num_parameters() != 1 || while_condition->num_parameters() != 1) { return std::nullopt; } std::optional<PipelinedP2PInfo> pipelined_p2p_info = FindConsecutiveAndBalanceBlockOfSendDoneRecvDone(while_init); if (!pipelined_p2p_info.has_value()) { return std::nullopt; } VLOG(10) << "opnd_start " << pipelined_p2p_info->opnd_start << " opnd_end " << pipelined_p2p_info->opnd_end; for (int64_t i = pipelined_p2p_info->opnd_start; i < pipelined_p2p_info->opnd_end; ++i) { const HloInstruction* op = while_init->operand(i); if (op->opcode() == HloOpcode::kRecvDone) { if (!FindUniqueGTEUserWithIndex(while_op, i)) { VLOG(10) << "While result get-tuple-element user with index " << i << " not unique"; return std::nullopt; } if (!FindUniqueGTEUserWithIndex(while_body->parameter_instruction(0), i)) { VLOG(10) << "While-body parameter get-tuple-element user with index " << i << " not unique"; return std::nullopt; } } else { CHECK(op->opcode() == HloOpcode::kSendDone); if (HasGTEUserWithIndex(while_op, i) || HasGTEUserWithIndex(while_body->parameter_instruction(0), i)) { VLOG(10) << "SendDone with index " << i << " has unexpected users"; return std::nullopt; } } } const HloInstruction* root = while_body->root_instruction(); for (int64_t i = pipelined_p2p_info->opnd_start; i < pipelined_p2p_info->opnd_end; ++i) { const HloInstruction* op_init = while_init->operand(i); const HloInstruction* op_root = root->operand(i); op_root = MaySkipTrivialTuple(op_root); if (op_init->opcode() != op_root->opcode()) { VLOG(10) << "Mismatching opcode, op_init: " << op_init->ToString() << " op_root: " << op_root->ToString(); return std::nullopt; } } return pipelined_p2p_info.value(); } absl::Status RemoveOpFromParent(HloInstruction* op) { TF_RETURN_IF_ERROR(op->DropAllControlDeps()); TF_RETURN_IF_ERROR(op->parent()->RemoveInstruction(op)); return absl::OkStatus(); } absl::Status ReplaceOpInSequence(HloInstruction* old_op, HloInstruction* new_op, HloInstructionSequence& instruction_sequence) { VLOG(10) << "old_op: " << old_op->ToString(); VLOG(10) << "new_op: " << new_op->ToString(); instruction_sequence.replace_instruction(old_op, new_op); return RemoveOpFromParent(old_op); } absl::Status ReplaceUsesAndUpdateSequence( HloInstruction* old_op, HloInstruction* new_op, HloInstructionSequence& instruction_sequence, bool diff_shape = false) { VLOG(10) << "old_op: " << old_op->ToString(); VLOG(10) << "new_op: " << new_op->ToString(); if (diff_shape) { TF_RETURN_IF_ERROR(old_op->ReplaceAllUsesWithDifferentShape(new_op)); } else { TF_RETURN_IF_ERROR(old_op->ReplaceAllUsesWith(new_op)); } return ReplaceOpInSequence(old_op, new_op, instruction_sequence); } absl::Status ReplaceUsesAndUpdateSequence( const InstructionVector& old_ops, const InstructionVector& new_ops, HloInstructionSequence& instruction_sequence) { CHECK(old_ops.size() == new_ops.size()); for (int64_t i = 0; i < old_ops.size(); ++i) { TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence(old_ops[i], new_ops[i], instruction_sequence)); } return absl::OkStatus(); } absl::Status RemoveDoneOpsAndUpdateSequence( const InstructionVector& ops, HloInstructionSequence& instruction_sequence) { auto remove_op = [&](HloInstruction* op) { VLOG(10) << "op: " << op->ToString(); TF_RETURN_IF_ERROR(RemoveOpFromParent(op)); instruction_sequence.remove_instruction(op); return absl::OkStatus(); }; for (auto op : ops) { if (op->opcode() == HloOpcode::kTuple) { InstructionVector to_remove; HloInstruction* tuple_op = op; op = MaySkipTrivialTuple(tuple_op); to_remove.push_back(tuple_op); for (auto opnd : tuple_op->mutable_operands()) { to_remove.push_back(opnd); } for (auto opnd : to_remove) { TF_RETURN_IF_ERROR(remove_op(opnd)); } } TF_RETURN_IF_ERROR(remove_op(op)); } return absl::OkStatus(); } bool InsertBeforeFirstCollectiveOp( const InstructionVector& ops, const CollectiveInComputation& collective_in_computation, HloInstructionSequence& instruction_sequence, int64_t& idx, int64_t& idx_tot) { bool inserted = false; while (idx < idx_tot) { HloInstruction* hlo = instruction_sequence.instructions()[idx]; if (MayInvokeCollectiveOp(hlo, collective_in_computation)) { for (auto op : ops) { instruction_sequence.insert_instruction(op, idx); idx++; idx_tot++; } inserted = true; break; } idx++; } return inserted; } void CopyInstructionInfo(const HloInstruction* old_op, HloInstruction* new_op) { new_op->SetAndSanitizeName(absl::StrCat(old_op->name(), ".clone")); new_op->set_metadata(old_op->metadata()); new_op->add_frontend_attributes(old_op->frontend_attributes()); new_op->CopyBackendConfigFrom(old_op); } HloInstruction* CreateRecvDoneFrom(const HloInstruction* old_recv_done, HloInstruction* recv, HloComputation* computation) { HloInstruction* recv_done = computation->AddInstruction(HloInstruction::CreateRecvDone( recv, old_recv_done->channel_id().value())); CopyInstructionInfo(old_recv_done, recv_done); return recv_done; } HloInstruction* CreateSendDoneFrom(const HloInstruction* old_send_done, HloInstruction* send, HloComputation* computation) { HloInstruction* send_done = computation->AddInstruction(HloInstruction::CreateSendDone( send, old_send_done->channel_id().value())); CopyInstructionInfo(old_send_done, send_done); return send_done; } absl::Status RewritePipelinedP2PWhileBody( const CollectiveInComputation& collective_in_computation, const std::vector<Shape>& new_parameter_shapes, HloInstruction* while_op, int64_t opnd_start, int64_t opnd_end) { HloComputation* computation = while_op->while_body(); HloInstruction* while_init = while_op->while_init(); HloInstruction* root = computation->root_instruction(); HloInstructionSequence& instruction_sequence = computation->parent()->schedule().GetOrCreateSequence(computation); HloInstruction* param = computation->parameter_instruction(0); *param->mutable_shape() = ShapeUtil::MakeTupleShape(new_parameter_shapes); InstructionVector recv_dones; InstructionVector new_recv_dones; InstructionVector new_send_dones; for (int64_t i = opnd_start; i < opnd_end; ++i) { const HloInstruction* op = root->operand(i); op = MaySkipTrivialTuple(op); if (op->opcode() == HloOpcode::kRecvDone) { HloInstruction* gte = FindUniqueGTEUserWithIndex(param, i); CHECK(gte != nullptr); recv_dones.push_back(gte); HloInstruction* recv = computation->AddInstruction( HloInstruction::CreateGetTupleElement(param, i)); HloInstruction* recv_done = CreateRecvDoneFrom(op, recv, computation); new_recv_dones.push_back(recv_done); continue; } CHECK(op->opcode() == HloOpcode::kSendDone); HloInstruction* send = computation->AddInstruction( HloInstruction::CreateGetTupleElement(param, i)); HloInstruction* send_done = CreateSendDoneFrom(op, send, computation); new_send_dones.push_back(send_done); } TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence(recv_dones, new_recv_dones, instruction_sequence)); InstructionVector done_ops; InstructionVector new_opnds; for (int64_t i = 0; i < while_init->operand_count(); ++i) { HloInstruction* op = root->mutable_operand(i); if (i >= opnd_start && i < opnd_end) { new_opnds.push_back(MaySkipTrivialTuple(op)->mutable_operand(0)); done_ops.push_back(op); } else { new_opnds.push_back(op); } } HloInstruction* new_root = computation->AddInstruction(HloInstruction::CreateTuple(new_opnds)); computation->set_root_instruction(new_root, true); TF_RETURN_IF_ERROR(computation->RemoveInstruction(root)); instruction_sequence.replace_instruction(root, new_root); TF_RETURN_IF_ERROR( RemoveDoneOpsAndUpdateSequence(done_ops, instruction_sequence)); int64_t idx = 0; int64_t idx_end = instruction_sequence.size(); bool inserted = InsertBeforeFirstCollectiveOp(new_send_dones, collective_in_computation, instruction_sequence, idx, idx_end); CHECK(inserted); CHECK(idx_end == instruction_sequence.size()); return absl::OkStatus(); } void RewritePipelinedP2PWhileCond( const std::vector<Shape>& new_parameter_shapes, HloInstruction* while_op) { HloComputation* computation = while_op->while_condition(); HloInstruction* param = computation->parameter_instruction(0); *param->mutable_shape() = ShapeUtil::MakeTupleShape(new_parameter_shapes); VLOG(10) << computation->ToString(); } absl::Status TransformLoop( const PipelinedP2PInfo& pipelined_info, const CollectiveInComputation& collective_in_computation, int64_t& idx, int64_t& idx_end, HloInstructionSequence& instruction_sequence, HloInstruction* while_op) { HloComputation* computation = while_op->parent(); int64_t opnd_start = pipelined_info.opnd_start; int64_t opnd_end = pipelined_info.opnd_end; VLOG(10) << "Transform pipelined while-op " << while_op->ToString(); HloInstruction* while_init = while_op->while_init(); InstructionVector new_while_init_opnds; std::vector<Shape> new_parameter_shapes; for (int64_t i = 0; i < while_init->operand_count(); ++i) { HloInstruction* op = while_init->mutable_operand(i); if (i >= opnd_start && i < opnd_end) { new_while_init_opnds.push_back(op->mutable_operand(0)); } else { new_while_init_opnds.push_back(op); } new_parameter_shapes.push_back(new_while_init_opnds.back()->shape()); } RewritePipelinedP2PWhileCond(new_parameter_shapes, while_op); TF_RETURN_IF_ERROR(RewritePipelinedP2PWhileBody( collective_in_computation, new_parameter_shapes, while_op, opnd_start, opnd_end)); HloInstruction* new_while_init = computation->AddInstruction( HloInstruction::CreateTuple(new_while_init_opnds), "while-init"); VLOG(10) << "new_while_init: " << new_while_init->ToString(); HloInstruction* new_while_op = computation->AddInstruction( HloInstruction::CreateWhile( while_op->while_body()->root_instruction()->shape(), while_op->while_condition(), while_op->while_body(), new_while_init), "while-result"); CopyInstructionInfo(while_op, new_while_op); VLOG(10) << "new_while_op: " << new_while_op->ToString(); InstructionVector recv_dones; InstructionVector new_recv_dones; InstructionVector new_send_dones; InstructionVector done_ops; for (int64_t i = opnd_start; i < opnd_end; ++i) { HloInstruction* op = while_init->mutable_operand(i); done_ops.push_back(op); if (op->opcode() == HloOpcode::kRecvDone) { HloInstruction* gte = FindUniqueGTEUserWithIndex(while_op, i); CHECK(gte != nullptr); recv_dones.push_back(gte); HloInstruction* recv = computation->AddInstruction( HloInstruction::CreateGetTupleElement(new_while_op, i)); HloInstruction* recv_done = computation->AddInstruction( HloInstruction::CreateRecvDone(recv, op->channel_id().value())); new_recv_dones.push_back(recv_done); CopyInstructionInfo(op, recv_done); continue; } CHECK(op->opcode() == HloOpcode::kSendDone); HloInstruction* send = computation->AddInstruction( HloInstruction::CreateGetTupleElement(new_while_op, i)); HloInstruction* send_done = computation->AddInstruction( HloInstruction::CreateSendDone(send, op->channel_id().value())); new_send_dones.push_back(send_done); CopyInstructionInfo(op, send_done); } TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence( while_op, new_while_op, instruction_sequence, true)); TF_RETURN_IF_ERROR( ReplaceOpInSequence(while_init, new_while_init, instruction_sequence)); TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence(recv_dones, new_recv_dones, instruction_sequence)); TF_RETURN_IF_ERROR( RemoveDoneOpsAndUpdateSequence(done_ops, instruction_sequence)); int64_t opnd_tot = opnd_end - opnd_start; CHECK(idx_end == instruction_sequence.size() + opnd_tot); CHECK(instruction_sequence.instructions()[idx - opnd_tot] == new_while_op); idx_end -= opnd_tot; idx = idx - opnd_tot + 1; bool inserted = InsertBeforeFirstCollectiveOp(new_send_dones, collective_in_computation, instruction_sequence, idx, idx_end); CHECK(idx_end == instruction_sequence.size()); if (!inserted) { CHECK(idx_end == idx); idx--; for (auto send_done : new_send_dones) { instruction_sequence.insert_instruction(send_done, idx++); } } return absl::OkStatus(); } absl::StatusOr<bool> ProcessComputation( HloModule* module, HloComputation* computation, CollectiveInComputation& collective_in_computation) { VLOG(10) << "Process compuation " << computation->name(); bool changed = false; HloInstructionSequence& instruction_sequence = module->schedule().GetOrCreateSequence(computation); int64_t idx = 0; int64_t idx_end = instruction_sequence.size(); while (idx < idx_end) { HloInstruction* hlo = instruction_sequence.instructions()[idx]; if (MayInvokeCollectiveOp(hlo, collective_in_computation)) { collective_in_computation[computation] = true; } if (hlo->opcode() != HloOpcode::kWhile) { idx++; continue; } std::optional<PipelinedP2PInfo> pipelined_info = FindPipelinedP2P(hlo); if (!pipelined_info.has_value()) { idx++; continue; } TF_RETURN_IF_ERROR(TransformLoop(pipelined_info.value(), collective_in_computation, idx, idx_end, instruction_sequence, hlo)); changed = true; } return changed; } } absl::StatusOr<bool> PipelinedP2PRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; if (!module->has_schedule()) return changed; CollectiveInComputation collective_in_computation; for (auto* computation : module->MakeComputationPostOrder(execution_threads)) { if (computation->IsFusionComputation()) { collective_in_computation[computation] = false; continue; } TF_ASSIGN_OR_RETURN( bool cur_changed, ProcessComputation(module, computation, collective_in_computation)); changed |= cur_changed; } if (changed) { TF_RETURN_IF_ERROR(module->schedule().Update()); } return changed; } } }
#include "xla/service/gpu/transforms/pipelined_p2p_rewriter.h" #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class PipelinedP2pRewriterTest : public HloTestBase { protected: void DoFileCheck(const HloModule* module, absl::string_view expected) { HloPrintOptions options; options.set_print_operand_shape(false); options.set_print_result_shape(false); TF_ASSERT_OK_AND_ASSIGN(bool filecheck_matched, RunFileCheck(module->ToString(options), expected)); EXPECT_TRUE(filecheck_matched); } }; TEST_F(PipelinedP2pRewriterTest, SendRecUnpipelinedNotTransform) { const char* kModuleStr = R"( HloModule test cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(11) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = u32[2] get-tuple-element(param), index=1 after-all.0.n = token[] after-all() recv.0 = (u32[2], u32[], token[]) recv(after-all.0.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } send.0 = (u32[2], u32[], token[]) send(send-data, after-all.0.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.0 = token[] send-done(send.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data = u32[2] get-tuple-element(recv-done.0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond, backend_config={"known_trip_count":{"n":"11"}} ROOT recv-data = u32[2] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(PipelinedP2pRewriterTest, SendRecvPipelined1) { const char* kModuleStr = R"( HloModule test, is_scheduled=true while-cond { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done.q), index=0 c1 = u32[] constant(1) new-count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} send-data = f32[1, 1024, 1024] add(c, s) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } gte.0 = f32[1,1024,1024] get-tuple-element(recv-done.p), index=0 gte.1 = token[] get-tuple-element(recv-done.p), index=1 recv-done-tuple = (f32[1,1024,1024], token[]) tuple(gte.0, gte.1) ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done-tuple, send-done.p) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.1 = token[] after-all() recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send.1 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.1.p = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.1.p = token[] send-done(send.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } while-init.p = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.1.p, send-done.1.p) while-result.p = (u32[], (f32[1,1024,1024], token[]), token[]) while(while-init.p), body=while-body, condition=while-cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=1 ROOT entry-result = f32[1, 1024, 1024] get-tuple-element(recv-done.1.q), index=0 } )"; const char* kExpected = R"( CHECK: %while-body (param.1: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[])) { CHECK: %param.1 = parameter(0) CHECK: %get-tuple-element = get-tuple-element(%param.1), index=1 CHECK: %get-tuple-element.1 = get-tuple-element(%param.1), index=2 CHECK: %count.1 = get-tuple-element(%param.1), index=0 CHECK: %recv-done.p.clone = recv-done(%get-tuple-element), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %recv-data = get-tuple-element(%recv-done.p.clone), index=0 CHECK: %c1 = constant(1) CHECK: %new-count = add(%count.1, %c1) CHECK: %replica = replica-id() CHECK: %c10 = constant(10) CHECK: %sum = add(%replica, %c10) CHECK: %sum2 = add(%sum, %count.1) CHECK: %conv = convert(%sum2) CHECK: %p = broadcast(%conv), dimensions={} CHECK: %b = add(%p, %recv-data) CHECK: %c = multiply(%b, %b) CHECK: %d = tan(%c) CHECK: %s = dot(%c, %d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} CHECK: %send-data = add(%c, %s) CHECK: %after-all = after-all() CHECK: %send-done.p.clone = send-done(%get-tuple-element.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK{LITERAL}: %recv = recv(%after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}} CHECK{LITERAL}: %send = send(%send-data, %after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}} CHECK: ROOT %tuple = tuple(%new-count, %recv, %send) CHECK: } CHECK: %while-cond (param: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> pred[] { CHECK: %param = parameter(0) CHECK: %count = get-tuple-element(%param), index=0 CHECK: %ub = constant(25) CHECK: ROOT %cond-result = compare(%count, %ub), direction=LT CHECK: } CHECK: ENTRY %main () -> f32[1,1024,1024] { CHECK: %c0 = constant(0) CHECK: %f0 = constant(0) CHECK: %init = broadcast(%f0), dimensions={} CHECK: %after-all.1 = after-all() CHECK{LITERAL}: %recv.1 = recv(%after-all.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}} CHECK{LITERAL}: %send.1 = send(%init, %after-all.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}} CHECK: %while-init = tuple(%c0, %recv.1, %send.1) CHECK: %while-result.p.clone = while(%while-init), condition=%while-cond, body=%while-body, CHECK-SAME{LITERAL}: backend_config={"known_trip_count":{"n":"25"}} CHECK: %get-tuple-element.2 = get-tuple-element(%while-result.p.clone), index=1 CHECK: %get-tuple-element.3 = get-tuple-element(%while-result.p.clone), index=2 CHECK: %recv-done.1.p.clone = recv-done(%get-tuple-element.2), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %send-done.1.p.clone = send-done(%get-tuple-element.3), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: ROOT %entry-result = get-tuple-element(%recv-done.1.p.clone), index=0 CHECK: })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_TRUE(changed); DoFileCheck(module.get(), kExpected); } TEST_F(PipelinedP2pRewriterTest, SendRecvTwoPipelinedWhileLoops) { const char* kModuleStr = R"( HloModule test, is_scheduled=true while-cond { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 send-data = f32[1, 1024, 1024] get-tuple-element(recv-done.q), index=0 c1 = u32[] constant(1) new-count = u32[] add(count, c1) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } gte.0 = f32[1,1024,1024] get-tuple-element(recv-done.p), index=0 gte.1 = token[] get-tuple-element(recv-done.p), index=1 recv-done-tuple = (f32[1,1024,1024], token[]) tuple(gte.0, gte.1) ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done-tuple, send-done.p) } while-cond-2 { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body-2 { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 send-data = f32[1, 1024, 1024] get-tuple-element(recv-done.q), index=0 c1 = u32[] constant(1) new-count = u32[] add(count, c1) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } gte.0 = f32[1,1024,1024] get-tuple-element(recv-done.p), index=0 gte.1 = token[] get-tuple-element(recv-done.p), index=1 recv-done-tuple = (f32[1,1024,1024], token[]) tuple(gte.0, gte.1) ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done-tuple, send-done.p) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.1 = token[] after-all() recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send.1 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.1.p = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.1.p = token[] send-done(send.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } while-init.p = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.1.p, send-done.1.p) while-result.p = (u32[], (f32[1,1024,1024], token[]), token[]) while(while-init.p), body=while-body, condition=while-cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=1 after-all-2.1 = token[] after-all() recv-2.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send-2.1 = (f32[1, 1024, 1024], u32[], token[]) send(recv-done.1.q, after-all-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done-2.1.p = (f32[1,1024,1024], token[]) recv-done(recv-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done-2.1.p = token[] send-done(send-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="0" } while-init-2.p = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done-2.1.p, send-done-2.1.p) while-result-2.p = (u32[], (f32[1,1024,1024], token[]), token[]) while(while-init-2.p), body=while-body-2, condition=while-cond-2, backend_config={"known_trip_count":{"n":"25"}} recv-done-2.1.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result-2.p), index=1 ROOT entry-result = f32[1, 1024, 1024] get-tuple-element(recv-done-2.1.q), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_TRUE(changed); } TEST_F(PipelinedP2pRewriterTest, SendRecvPipelined2) { const char* kModuleStr = R"( HloModule test, is_scheduled=true while-cond { param = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body { param = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.0.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 recv-data.0 = f32[1, 1024, 1024] get-tuple-element(recv-done.0.q), index=0 recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=3 recv-data.1 = f32[1, 1024, 1024] get-tuple-element(recv-done.1.q), index=0 replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[1, 1024, 1024] broadcast(compare0), dimensions={} recv-data = f32[1, 1024, 1024] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new-count = u32[] add(count, c1) c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} send-data = f32[1, 1024, 1024] add(c, s) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.1 = token[] after-all() recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } send.1 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } recv-done.1.p = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } send-done.1.p = token[] send-done(send.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done.p, send-done.p, recv-done.1.p, send-done.1.p) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.2 = token[] after-all() recv.2 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } send.2 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.2.p = (f32[1,1024,1024], token[]) recv-done(recv.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.2.p = token[] send-done(send.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.3 = token[] after-all() recv.3 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.3), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } send.3 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.3), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } recv-done.3.p = (f32[1,1024,1024], token[]) recv-done(recv.3), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } send-done.3.p = token[] send-done(send.3), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } while-init.p = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.2.p, send-done.2.p, recv-done.3.p, send-done.3.p) while-result.p = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) while(while-init.p), body=while-body, condition=while-cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.2.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=1 recv-data.2 = f32[1, 1024, 1024] get-tuple-element(recv-done.2.q), index=0 recv-done.3.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=3 recv-data.3 = f32[1, 1024, 1024] get-tuple-element(recv-done.3.q), index=0 replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[1, 1024, 1024] broadcast(compare0), dimensions={} ROOT entry-result = f32[1, 1024, 1024] select(compare, recv-data.2, recv-data.3) } )"; const char* kExpected = R"( CHECK: %while-body (param.1: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[])) { CHECK: %param.1 = parameter(0) CHECK: %get-tuple-element = get-tuple-element(%param.1), index=1 CHECK: %get-tuple-element.1 = get-tuple-element(%param.1), index=2 CHECK: %get-tuple-element.2 = get-tuple-element(%param.1), index=3 CHECK: %get-tuple-element.3 = get-tuple-element(%param.1), index=4 CHECK: %count.1 = get-tuple-element(%param.1), index=0 CHECK: %recv-done.p.clone = recv-done(%get-tuple-element), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %recv-data.0 = get-tuple-element(%recv-done.p.clone), index=0 CHECK: %recv-done.1.p.clone = recv-done(%get-tuple-element.2), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %recv-data.1 = get-tuple-element(%recv-done.1.p.clone), index=0 CHECK: %replica = replica-id() CHECK: %constant0 = constant(0) CHECK: %compare0 = compare(%replica, %constant0), direction=EQ CHECK: %compare = broadcast(%compare0), dimensions={} CHECK: %recv-data.2 = select(%compare, %recv-data.0, %recv-data.1) CHECK: %c1 = constant(1) CHECK: %new-count = add(%count.1, %c1) CHECK: %c10 = constant(10) CHECK: %sum = add(%replica, %c10) CHECK: %sum2 = add(%sum, %count.1) CHECK: %conv = convert(%sum2) CHECK: %p = broadcast(%conv), dimensions={} CHECK: %b = add(%p, %recv-data.2) CHECK: %c = multiply(%b, %b) CHECK: %d = tan(%c) CHECK: %s = dot(%c, %d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} CHECK: %send-data = add(%c, %s) CHECK: %after-all = after-all() CHECK: %send-done.p.clone = send-done(%get-tuple-element.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %send-done.1.p.clone = send-done(%get-tuple-element.3), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK{LITERAL}: %recv = recv(%after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{3,0}}} CHECK{LITERAL}: %send = send(%send-data, %after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{3,0}}} CHECK: %after-all.1 = after-all() CHECK{LITERAL}: %recv.1 = recv(%after-all.1), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}}} CHECK{LITERAL}: %send.1 = send(%send-data, %after-all.1), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}}} CHECK: ROOT %tuple = tuple(%new-count, %recv, %send, %recv.1, %send.1) CHECK: } CHECK: %while-cond (param: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> pred[] { CHECK: %param = parameter(0) CHECK: %count = get-tuple-element(%param), index=0 CHECK: %ub = constant(25) CHECK: ROOT %cond-result = compare(%count, %ub), direction=LT CHECK: } CHECK: ENTRY %main () -> f32[1,1024,1024] { CHECK: %c0 = constant(0) CHECK: %f0 = constant(0) CHECK: %init = broadcast(%f0), dimensions={} CHECK: %after-all.2 = after-all() CHECK{LITERAL}: %recv.2 = recv(%after-all.2), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{3,0}}} CHECK{LITERAL}: %send.2 = send(%init, %after-all.2), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs={{3,0}}} CHECK: %after-all.3 = after-all() CHECK{LITERAL}: %recv.3 = recv(%after-all.3), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}}} CHECK{LITERAL}: %send.3 = send(%init, %after-all.3), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs={{0,1}, {1,2}, {2,3}}} CHECK: %while-init = tuple(%c0, %recv.2, %send.2, %recv.3, %send.3) CHECK{LITERAL}: %while-result.p.clone = while(%while-init), condition=%while-cond, body=%while-body, backend_config={"known_trip_count":{"n":"25"}} CHECK: %get-tuple-element.4 = get-tuple-element(%while-result.p.clone), index=1 CHECK: %get-tuple-element.5 = get-tuple-element(%while-result.p.clone), index=2 CHECK: %get-tuple-element.6 = get-tuple-element(%while-result.p.clone), index=3 CHECK: %get-tuple-element.7 = get-tuple-element(%while-result.p.clone), index=4 CHECK: %recv-done.2.p.clone = recv-done(%get-tuple-element.4), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %recv-data.3 = get-tuple-element(%recv-done.2.p.clone), index=0 CHECK: %recv-done.3.p.clone = recv-done(%get-tuple-element.6), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %recv-data.4 = get-tuple-element(%recv-done.3.p.clone), index=0 CHECK: %replica.1 = replica-id() CHECK: %constant0.1 = constant(0) CHECK: %compare0.1 = compare(%replica.1, %constant0.1), direction=EQ CHECK: %compare.1 = broadcast(%compare0.1), dimensions={} CHECK: %send-done.2.p.clone = send-done(%get-tuple-element.5), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %send-done.3.p.clone = send-done(%get-tuple-element.7), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: ROOT %entry-result = select(%compare.1, %recv-data.3, %recv-data.4) CHECK: })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_TRUE(changed); DoFileCheck(module.get(), kExpected); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/pipelined_p2p_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/pipelined_p2p_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
735cb486-ca91-4254-8dcb-7d65517afcb1
cpp
google/cel-cpp
int_wrapper_type
common/types/int_wrapper_type.h
common/types/int_wrapper_type_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_INT_WRAPPER_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_INT_WRAPPER_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeParameters; class IntWrapperType final { public: static constexpr TypeKind kKind = TypeKind::kIntWrapper; static constexpr absl::string_view kName = "google.protobuf.Int64Value"; IntWrapperType() = default; IntWrapperType(const IntWrapperType&) = default; IntWrapperType(IntWrapperType&&) = default; IntWrapperType& operator=(const IntWrapperType&) = default; IntWrapperType& operator=(IntWrapperType&&) = default; static TypeKind kind() { return kKind; } static absl::string_view name() { return kName; } static TypeParameters GetParameters(); static std::string DebugString() { return std::string(name()); } constexpr void swap(IntWrapperType&) noexcept {} }; inline constexpr void swap(IntWrapperType& lhs, IntWrapperType& rhs) noexcept { lhs.swap(rhs); } inline constexpr bool operator==(IntWrapperType, IntWrapperType) { return true; } inline constexpr bool operator!=(IntWrapperType lhs, IntWrapperType rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, IntWrapperType) { return std::move(state); } inline std::ostream& operator<<(std::ostream& out, const IntWrapperType& type) { return out << type.DebugString(); } } #endif
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { TEST(IntWrapperType, Kind) { EXPECT_EQ(IntWrapperType().kind(), IntWrapperType::kKind); EXPECT_EQ(Type(IntWrapperType()).kind(), IntWrapperType::kKind); } TEST(IntWrapperType, Name) { EXPECT_EQ(IntWrapperType().name(), IntWrapperType::kName); EXPECT_EQ(Type(IntWrapperType()).name(), IntWrapperType::kName); } TEST(IntWrapperType, DebugString) { { std::ostringstream out; out << IntWrapperType(); EXPECT_EQ(out.str(), IntWrapperType::kName); } { std::ostringstream out; out << Type(IntWrapperType()); EXPECT_EQ(out.str(), IntWrapperType::kName); } } TEST(IntWrapperType, Hash) { EXPECT_EQ(absl::HashOf(IntWrapperType()), absl::HashOf(IntWrapperType())); } TEST(IntWrapperType, Equal) { EXPECT_EQ(IntWrapperType(), IntWrapperType()); EXPECT_EQ(Type(IntWrapperType()), IntWrapperType()); EXPECT_EQ(IntWrapperType(), Type(IntWrapperType())); EXPECT_EQ(Type(IntWrapperType()), Type(IntWrapperType())); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/int_wrapper_type.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/int_wrapper_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
90913fc5-ee46-4fb6-91db-f159b0b8b5f7
cpp
google/quiche
nghttp2_adapter
quiche/http2/adapter/nghttp2_adapter.cc
quiche/http2/adapter/nghttp2_adapter_test.cc
#include "quiche/http2/adapter/nghttp2_adapter.h" #include <cstring> #include <iterator> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/http2/adapter/http2_visitor_interface.h" #include "quiche/http2/adapter/nghttp2.h" #include "quiche/http2/adapter/nghttp2_callbacks.h" #include "quiche/http2/adapter/nghttp2_data_provider.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_endian.h" namespace http2 { namespace adapter { namespace { using ConnectionError = Http2VisitorInterface::ConnectionError; const size_t kFrameHeaderSize = 9; ssize_t DataFrameReadCallback(nghttp2_session* , int32_t stream_id, uint8_t* , size_t length, uint32_t* data_flags, nghttp2_data_source* source, void* ) { NgHttp2Adapter* adapter = reinterpret_cast<NgHttp2Adapter*>(source->ptr); return adapter->DelegateReadCallback(stream_id, length, data_flags); } int DataFrameSendCallback(nghttp2_session* , nghttp2_frame* frame, const uint8_t* framehd, size_t length, nghttp2_data_source* source, void* ) { NgHttp2Adapter* adapter = reinterpret_cast<NgHttp2Adapter*>(source->ptr); return adapter->DelegateSendCallback(frame->hd.stream_id, framehd, length); } } class NgHttp2Adapter::NotifyingMetadataSource : public MetadataSource { public: explicit NotifyingMetadataSource(NgHttp2Adapter* adapter, Http2StreamId stream_id, std::unique_ptr<MetadataSource> source) : adapter_(adapter), stream_id_(stream_id), source_(std::move(source)) {} size_t NumFrames(size_t max_frame_size) const override { return source_->NumFrames(max_frame_size); } std::pair<int64_t, bool> Pack(uint8_t* dest, size_t dest_len) override { const auto result = source_->Pack(dest, dest_len); if (result.first < 0 || result.second) { adapter_->RemovePendingMetadata(stream_id_); } return result; } void OnFailure() override { source_->OnFailure(); adapter_->RemovePendingMetadata(stream_id_); } private: NgHttp2Adapter* const adapter_; const Http2StreamId stream_id_; std::unique_ptr<MetadataSource> source_; }; class NgHttp2Adapter::NotifyingVisitorMetadataSource : public MetadataSource { public: explicit NotifyingVisitorMetadataSource(NgHttp2Adapter* adapter, Http2StreamId stream_id, Http2VisitorInterface& visitor) : adapter_(adapter), stream_id_(stream_id), visitor_(visitor) {} size_t NumFrames(size_t ) const override { QUICHE_LOG(DFATAL) << "Should not be invoked."; return 0; } std::pair<int64_t, bool> Pack(uint8_t* dest, size_t dest_len) override { const auto [packed, end_metadata] = visitor_.PackMetadataForStream(stream_id_, dest, dest_len); if (packed < 0 || end_metadata) { adapter_->RemovePendingMetadata(stream_id_); } return {packed, end_metadata}; } void OnFailure() override { adapter_->RemovePendingMetadata(stream_id_); } private: NgHttp2Adapter* const adapter_; const Http2StreamId stream_id_; Http2VisitorInterface& visitor_; }; std::unique_ptr<NgHttp2Adapter> NgHttp2Adapter::CreateClientAdapter( Http2VisitorInterface& visitor, const nghttp2_option* options) { auto adapter = new NgHttp2Adapter(visitor, Perspective::kClient, options); adapter->Initialize(); return absl::WrapUnique(adapter); } std::unique_ptr<NgHttp2Adapter> NgHttp2Adapter::CreateServerAdapter( Http2VisitorInterface& visitor, const nghttp2_option* options) { auto adapter = new NgHttp2Adapter(visitor, Perspective::kServer, options); adapter->Initialize(); return absl::WrapUnique(adapter); } bool NgHttp2Adapter::IsServerSession() const { int result = nghttp2_session_check_server_session(session_->raw_ptr()); QUICHE_DCHECK_EQ(perspective_ == Perspective::kServer, result > 0); return result > 0; } int64_t NgHttp2Adapter::ProcessBytes(absl::string_view bytes) { const int64_t processed_bytes = session_->ProcessBytes(bytes); if (processed_bytes < 0) { visitor_.OnConnectionError(ConnectionError::kParseError); } return processed_bytes; } void NgHttp2Adapter::SubmitSettings(absl::Span<const Http2Setting> settings) { std::vector<nghttp2_settings_entry> nghttp2_settings; absl::c_transform(settings, std::back_inserter(nghttp2_settings), [](const Http2Setting& setting) { return nghttp2_settings_entry{setting.id, setting.value}; }); nghttp2_submit_settings(session_->raw_ptr(), NGHTTP2_FLAG_NONE, nghttp2_settings.data(), nghttp2_settings.size()); } void NgHttp2Adapter::SubmitPriorityForStream(Http2StreamId stream_id, Http2StreamId parent_stream_id, int weight, bool exclusive) { nghttp2_priority_spec priority_spec; nghttp2_priority_spec_init(&priority_spec, parent_stream_id, weight, static_cast<int>(exclusive)); nghttp2_submit_priority(session_->raw_ptr(), NGHTTP2_FLAG_NONE, stream_id, &priority_spec); } void NgHttp2Adapter::SubmitPing(Http2PingId ping_id) { uint8_t opaque_data[8] = {}; Http2PingId ping_id_to_serialize = quiche::QuicheEndian::HostToNet64(ping_id); std::memcpy(opaque_data, &ping_id_to_serialize, sizeof(Http2PingId)); nghttp2_submit_ping(session_->raw_ptr(), NGHTTP2_FLAG_NONE, opaque_data); } void NgHttp2Adapter::SubmitShutdownNotice() { nghttp2_submit_shutdown_notice(session_->raw_ptr()); } void NgHttp2Adapter::SubmitGoAway(Http2StreamId last_accepted_stream_id, Http2ErrorCode error_code, absl::string_view opaque_data) { nghttp2_submit_goaway(session_->raw_ptr(), NGHTTP2_FLAG_NONE, last_accepted_stream_id, static_cast<uint32_t>(error_code), ToUint8Ptr(opaque_data.data()), opaque_data.size()); } void NgHttp2Adapter::SubmitWindowUpdate(Http2StreamId stream_id, int window_increment) { nghttp2_submit_window_update(session_->raw_ptr(), NGHTTP2_FLAG_NONE, stream_id, window_increment); } void NgHttp2Adapter::SubmitMetadata(Http2StreamId stream_id, size_t max_frame_size, std::unique_ptr<MetadataSource> source) { auto wrapped_source = std::make_unique<NotifyingMetadataSource>( this, stream_id, std::move(source)); const size_t num_frames = wrapped_source->NumFrames(max_frame_size); size_t num_successes = 0; for (size_t i = 1; i <= num_frames; ++i) { const int result = nghttp2_submit_extension(session_->raw_ptr(), kMetadataFrameType, i == num_frames ? kMetadataEndFlag : 0, stream_id, wrapped_source.get()); if (result != 0) { QUICHE_LOG(DFATAL) << "Failed to submit extension frame " << i << " of " << num_frames; break; } ++num_successes; } if (num_successes > 0) { auto [it, _] = stream_metadata_.insert({stream_id, MetadataSourceVec{}}); it->second.push_back(std::move(wrapped_source)); } } void NgHttp2Adapter::SubmitMetadata(Http2StreamId stream_id, size_t num_frames) { auto wrapped_source = std::make_unique<NotifyingVisitorMetadataSource>( this, stream_id, visitor_); size_t num_successes = 0; for (size_t i = 1; i <= num_frames; ++i) { const int result = nghttp2_submit_extension(session_->raw_ptr(), kMetadataFrameType, i == num_frames ? kMetadataEndFlag : 0, stream_id, wrapped_source.get()); if (result != 0) { QUICHE_LOG(DFATAL) << "Failed to submit extension frame " << i << " of " << num_frames; break; } ++num_successes; } if (num_successes > 0) { auto [it, _] = stream_metadata_.insert({stream_id, MetadataSourceVec{}}); it->second.push_back(std::move(wrapped_source)); } } int NgHttp2Adapter::Send() { const int result = nghttp2_session_send(session_->raw_ptr()); if (result != 0) { QUICHE_VLOG(1) << "nghttp2_session_send returned " << result; visitor_.OnConnectionError(ConnectionError::kSendError); } return result; } int NgHttp2Adapter::GetSendWindowSize() const { return session_->GetRemoteWindowSize(); } int NgHttp2Adapter::GetStreamSendWindowSize(Http2StreamId stream_id) const { return nghttp2_session_get_stream_remote_window_size(session_->raw_ptr(), stream_id); } int NgHttp2Adapter::GetStreamReceiveWindowLimit(Http2StreamId stream_id) const { return nghttp2_session_get_stream_effective_local_window_size( session_->raw_ptr(), stream_id); } int NgHttp2Adapter::GetStreamReceiveWindowSize(Http2StreamId stream_id) const { return nghttp2_session_get_stream_local_window_size(session_->raw_ptr(), stream_id); } int NgHttp2Adapter::GetReceiveWindowSize() const { return nghttp2_session_get_local_window_size(session_->raw_ptr()); } int NgHttp2Adapter::GetHpackEncoderDynamicTableSize() const { return nghttp2_session_get_hd_deflate_dynamic_table_size(session_->raw_ptr()); } int NgHttp2Adapter::GetHpackDecoderDynamicTableSize() const { return nghttp2_session_get_hd_inflate_dynamic_table_size(session_->raw_ptr()); } Http2StreamId NgHttp2Adapter::GetHighestReceivedStreamId() const { return nghttp2_session_get_last_proc_stream_id(session_->raw_ptr()); } void NgHttp2Adapter::MarkDataConsumedForStream(Http2StreamId stream_id, size_t num_bytes) { int rc = session_->Consume(stream_id, num_bytes); if (rc != 0) { QUICHE_LOG(ERROR) << "Error " << rc << " marking " << num_bytes << " bytes consumed for stream " << stream_id; } } void NgHttp2Adapter::SubmitRst(Http2StreamId stream_id, Http2ErrorCode error_code) { int status = nghttp2_submit_rst_stream(session_->raw_ptr(), NGHTTP2_FLAG_NONE, stream_id, static_cast<uint32_t>(error_code)); if (status < 0) { QUICHE_LOG(WARNING) << "Reset stream failed: " << stream_id << " with status code " << status; } } int32_t NgHttp2Adapter::SubmitRequest( absl::Span<const Header> headers, std::unique_ptr<DataFrameSource> data_source, bool end_stream, void* stream_user_data) { auto nvs = GetNghttp2Nvs(headers); std::unique_ptr<nghttp2_data_provider> provider; if (data_source != nullptr || !end_stream) { provider = std::make_unique<nghttp2_data_provider>(); provider->source.ptr = this; provider->read_callback = &DataFrameReadCallback; } int32_t stream_id = nghttp2_submit_request(session_->raw_ptr(), nullptr, nvs.data(), nvs.size(), provider.get(), stream_user_data); if (data_source != nullptr) { sources_.emplace(stream_id, std::move(data_source)); } QUICHE_VLOG(1) << "Submitted request with " << nvs.size() << " request headers and user data " << stream_user_data << "; resulted in stream " << stream_id; return stream_id; } int NgHttp2Adapter::SubmitResponse(Http2StreamId stream_id, absl::Span<const Header> headers, std::unique_ptr<DataFrameSource> data_source, bool end_stream) { auto nvs = GetNghttp2Nvs(headers); std::unique_ptr<nghttp2_data_provider> provider; if (data_source != nullptr || !end_stream) { provider = std::make_unique<nghttp2_data_provider>(); provider->source.ptr = this; provider->read_callback = &DataFrameReadCallback; } if (data_source != nullptr) { sources_.emplace(stream_id, std::move(data_source)); } int result = nghttp2_submit_response(session_->raw_ptr(), stream_id, nvs.data(), nvs.size(), provider.get()); QUICHE_VLOG(1) << "Submitted response with " << nvs.size() << " response headers; result = " << result; return result; } int NgHttp2Adapter::SubmitTrailer(Http2StreamId stream_id, absl::Span<const Header> trailers) { auto nvs = GetNghttp2Nvs(trailers); int result = nghttp2_submit_trailer(session_->raw_ptr(), stream_id, nvs.data(), nvs.size()); QUICHE_VLOG(1) << "Submitted trailers with " << nvs.size() << " response trailers; result = " << result; return result; } void NgHttp2Adapter::SetStreamUserData(Http2StreamId stream_id, void* stream_user_data) { nghttp2_session_set_stream_user_data(session_->raw_ptr(), stream_id, stream_user_data); } void* NgHttp2Adapter::GetStreamUserData(Http2StreamId stream_id) { return nghttp2_session_get_stream_user_data(session_->raw_ptr(), stream_id); } bool NgHttp2Adapter::ResumeStream(Http2StreamId stream_id) { return 0 == nghttp2_session_resume_data(session_->raw_ptr(), stream_id); } void NgHttp2Adapter::FrameNotSent(Http2StreamId stream_id, uint8_t frame_type) { if (frame_type == kMetadataFrameType) { RemovePendingMetadata(stream_id); } } void NgHttp2Adapter::RemoveStream(Http2StreamId stream_id) { sources_.erase(stream_id); } ssize_t NgHttp2Adapter::DelegateReadCallback(int32_t stream_id, size_t max_length, uint32_t* data_flags) { auto it = sources_.find(stream_id); if (it == sources_.end()) { return callbacks::VisitorReadCallback(visitor_, stream_id, max_length, data_flags); } else { return callbacks::DataFrameSourceReadCallback(*it->second, max_length, data_flags); } } int NgHttp2Adapter::DelegateSendCallback(int32_t stream_id, const uint8_t* framehd, size_t length) { auto it = sources_.find(stream_id); if (it == sources_.end()) { visitor_.SendDataFrame(stream_id, ToStringView(framehd, kFrameHeaderSize), length); } else { it->second->Send(ToStringView(framehd, kFrameHeaderSize), length); } return 0; } NgHttp2Adapter::NgHttp2Adapter(Http2VisitorInterface& visitor, Perspective perspective, const nghttp2_option* options) : Http2Adapter(visitor), visitor_(visitor), options_(options), perspective_(perspective) {} NgHttp2Adapter::~NgHttp2Adapter() {} void NgHttp2Adapter::Initialize() { nghttp2_option* owned_options = nullptr; if (options_ == nullptr) { nghttp2_option_new(&owned_options); nghttp2_option_set_no_closed_streams(owned_options, 1); nghttp2_option_set_no_auto_window_update(owned_options, 1); nghttp2_option_set_max_send_header_block_length(owned_options, 0x2000000); nghttp2_option_set_max_outbound_ack(owned_options, 10000); nghttp2_option_set_user_recv_extension_type(owned_options, kMetadataFrameType); options_ = owned_options; } session_ = std::make_unique<NgHttp2Session>( perspective_, callbacks::Create(&DataFrameSendCallback), options_, static_cast<void*>(&visitor_)); if (owned_options != nullptr) { nghttp2_option_del(owned_options); } options_ = nullptr; } void NgHttp2Adapter::RemovePendingMetadata(Http2StreamId stream_id) { auto it = stream_metadata_.find(stream_id); if (it != stream_metadata_.end()) { it->second.erase(it->second.begin()); if (it->second.empty()) { stream_metadata_.erase(it); } } } } }
#include "quiche/http2/adapter/nghttp2_adapter.h" #include <memory> #include <string> #include <vector> #include "quiche/http2/adapter/http2_protocol.h" #include "quiche/http2/adapter/http2_visitor_interface.h" #include "quiche/http2/adapter/mock_http2_visitor.h" #include "quiche/http2/adapter/nghttp2.h" #include "quiche/http2/adapter/nghttp2_test_utils.h" #include "quiche/http2/adapter/oghttp2_util.h" #include "quiche/http2/adapter/test_frame_sequence.h" #include "quiche/http2/adapter/test_utils.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace adapter { namespace test { namespace { using ConnectionError = Http2VisitorInterface::ConnectionError; using spdy::SpdyFrameType; using testing::_; enum FrameType { DATA, HEADERS, PRIORITY, RST_STREAM, SETTINGS, PUSH_PROMISE, PING, GOAWAY, WINDOW_UPDATE, CONTINUATION, }; int TestSendCallback(nghttp2_session*, nghttp2_frame* , const uint8_t* framehd, size_t length, nghttp2_data_source* source, void* user_data) { auto* visitor = static_cast<Http2VisitorInterface*>(user_data); ssize_t result = visitor->OnReadyToSend(ToStringView(framehd, 9)); if (result == 0) { return NGHTTP2_ERR_WOULDBLOCK; } auto* test_source = static_cast<TestDataSource*>(source->ptr); absl::string_view payload = test_source->ReadNext(length); visitor->OnReadyToSend(payload); return 0; } TEST(NgHttp2AdapterTest, ClientConstruction) { testing::StrictMock<MockHttp2Visitor> visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); ASSERT_NE(nullptr, adapter); EXPECT_TRUE(adapter->want_read()); EXPECT_FALSE(adapter->want_write()); EXPECT_FALSE(adapter->IsServerSession()); } TEST(NgHttp2AdapterTest, ClientHandlesFrames) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::StrEq(spdy::kHttp2ConnectionHeaderPrefix)); visitor.Clear(); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string initial_frames = TestFrameSequence() .ServerPreface() .Ping(42) .WindowUpdate(0, 1000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 8, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 1000)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_EQ(adapter->GetSendWindowSize(), kInitialFlowControlWindowSize + 1000); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, 8, 0x1)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, 8, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::PING})); visitor.Clear(); const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const std::vector<Header> headers3 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/three"}}); const char* kSentinel1 = "arbitrary pointer 1"; const char* kSentinel3 = "arbitrary pointer 3"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id2; const int32_t stream_id3 = adapter->SubmitRequest( headers3, nullptr, true, const_cast<char*>(kSentinel3)); ASSERT_GT(stream_id3, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id3; const char* kSentinel2 = "arbitrary pointer 2"; adapter->SetStreamUserData(stream_id2, const_cast<char*>(kSentinel2)); adapter->SetStreamUserData(stream_id3, nullptr); EXPECT_EQ(adapter->sources_size(), 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, 0x5, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id3, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id3, _, 0x5, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::HEADERS, SpdyFrameType::HEADERS})); visitor.Clear(); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowSize(stream_id1)); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowSize(stream_id2)); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowSize(stream_id3)); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowLimit(stream_id1)); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetReceiveWindowSize()); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); EXPECT_EQ(kSentinel1, adapter->GetStreamUserData(stream_id1)); EXPECT_EQ(kSentinel2, adapter->GetStreamUserData(stream_id2)); EXPECT_EQ(nullptr, adapter->GetStreamUserData(stream_id3)); EXPECT_EQ(0, adapter->GetHpackDecoderDynamicTableSize()); const std::string stream_frames = TestFrameSequence() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .RstStream(3, Http2ErrorCode::INTERNAL_ERROR) .GoAway(5, Http2ErrorCode::ENHANCE_YOUR_CALM, "calm down!!") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 26, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 26)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the response body.")); EXPECT_CALL(visitor, OnFrameHeader(3, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(3, Http2ErrorCode::INTERNAL_ERROR)); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::INTERNAL_ERROR)) .WillOnce( [&adapter](Http2StreamId stream_id, Http2ErrorCode ) { adapter->RemoveStream(stream_id); return true; }); EXPECT_CALL(visitor, OnFrameHeader(0, 19, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(5, Http2ErrorCode::ENHANCE_YOUR_CALM, "calm down!!")); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_GT(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowSize(stream_id1)); EXPECT_EQ(-1, adapter->GetStreamReceiveWindowSize(stream_id2)); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowSize(stream_id3)); EXPECT_EQ(adapter->GetReceiveWindowSize(), adapter->GetStreamReceiveWindowSize(stream_id1)); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowLimit(stream_id1)); EXPECT_GT(adapter->GetHpackDecoderDynamicTableSize(), 0); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_read()); EXPECT_CALL(visitor, OnFrameHeader(1, 0, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 0)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)) .WillOnce( [&adapter](Http2StreamId stream_id, Http2ErrorCode ) { adapter->RemoveStream(stream_id); return true; }); EXPECT_CALL(visitor, OnFrameHeader(5, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(5, Http2ErrorCode::REFUSED_STREAM)); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::REFUSED_STREAM)) .WillOnce( [&adapter](Http2StreamId stream_id, Http2ErrorCode ) { adapter->RemoveStream(stream_id); return true; }); adapter->ProcessBytes(TestFrameSequence() .Data(1, "", true) .RstStream(5, Http2ErrorCode::REFUSED_STREAM) .Serialize()); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); EXPECT_FALSE(adapter->want_read()); EXPECT_FALSE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); } TEST(NgHttp2AdapterTest, QueuingWindowUpdateAffectsWindow) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); EXPECT_EQ(adapter->GetReceiveWindowSize(), kInitialFlowControlWindowSize); adapter->SubmitWindowUpdate(0, 10000); EXPECT_EQ(adapter->GetReceiveWindowSize(), kInitialFlowControlWindowSize + 10000); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id), kInitialFlowControlWindowSize); adapter->SubmitWindowUpdate(1, 20000); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id), kInitialFlowControlWindowSize + 20000); } TEST(NgHttp2AdapterTest, AckOfSettingInitialWindowSizeAffectsWindow) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers, nullptr, true, nullptr); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); int64_t parse_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(parse_result)); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), kInitialFlowControlWindowSize); adapter->SubmitSettings({{INITIAL_WINDOW_SIZE, 80000u}}); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), kInitialFlowControlWindowSize); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), kInitialFlowControlWindowSize); const std::string settings_ack = TestFrameSequence().SettingsAck().Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck); parse_result = adapter->ProcessBytes(settings_ack); EXPECT_EQ(settings_ack.size(), static_cast<size_t>(parse_result)); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), 80000); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers, nullptr, true, nullptr); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, 0x5, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id2), 80000); } TEST(NgHttp2AdapterTest, ClientRejects100HeadersWithFin) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "100"}}, false) .Headers(1, {{":status", "100"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL(visitor, OnInvalidFrame( 1, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, 1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ClientRejects100HeadersWithContent) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "100"}}, false) .Data(1, "We needed the final headers before data, whoops") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ClientRejects100HeadersWithContentLength) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "100"}, {"content-length", "42"}}, false) .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [content-length], value: [42]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } class ResponseCompleteBeforeRequestTest : public quiche::test::QuicheTestWithParam<std::tuple<bool, bool>> { public: bool HasTrailers() const { return std::get<0>(GetParam()); } bool HasRstStream() const { return std::get<1>(GetParam()); } }; INSTANTIATE_TEST_SUITE_P(TrailersAndRstStreamAllCombinations, ResponseCompleteBeforeRequestTest, testing::Combine(testing::Bool(), testing::Bool())); TEST_P(ResponseCompleteBeforeRequestTest, ClientHandlesResponseBeforeRequestComplete) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); adapter->SubmitSettings({}); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int32_t stream_id1 = adapter->SubmitRequest(headers1, std::move(body1), false, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); TestFrameSequence response; response.ServerPreface() .Headers(1, {{":status", "200"}, {"content-length", "2"}}, false) .Data(1, "hi", !HasTrailers(), 10); if (HasTrailers()) { response.Headers(1, {{"my-weird-trailer", "has a value"}}, true); } if (HasRstStream()) { response.RstStream(1, Http2ErrorCode::HTTP2_NO_ERROR); } const std::string stream_frames = response.Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "2")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 2 + 10, DATA, HasTrailers() ? 0x8 : 0x9)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 2 + 10)); EXPECT_CALL(visitor, OnDataForStream(1, "hi")); EXPECT_CALL(visitor, OnDataPaddingLength(1, 10)); if (HasTrailers()) { EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, "my-weird-trailer", "has a value")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); } EXPECT_CALL(visitor, OnEndStream(1)); if (HasRstStream()) { EXPECT_CALL(visitor, OnFrameHeader(1, _, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); } const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({ SpdyFrameType::SETTINGS, })); if (!HasRstStream()) { visitor.AppendPayloadForStream(1, "final fragment"); } visitor.SetEndData(1, true); adapter->ResumeStream(1); if (!HasRstStream()) { EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, END_STREAM_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); } result = adapter->Send(); EXPECT_EQ(0, result); } TEST(NgHttp2AdapterTest, ClientHandles204WithContent) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "204"}, {"content-length", "2"}}, false) .Data(1, "hi") .Headers(3, {{":status", "204"}}, false) .Data(3, "hi") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "204")); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [content-length], value: [2]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":status", "204")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 2)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ClientHandles304WithContent) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "304"}, {"content-length", "2"}}, false) .Data(1, "hi") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "304")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "2")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 2)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ClientHandles304WithContentLength) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "304"}, {"content-length", "2"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "304")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "2")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientHandlesTrailers) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Headers(1, {{"final-status", "A-OK"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 26, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 26)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the response body.")); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, "final-status", "A-OK")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } class NgHttp2AdapterDataTest : public quiche::test::QuicheTestWithParam<bool> { }; INSTANTIATE_TEST_SUITE_P(BothValues, NgHttp2AdapterDataTest, testing::Bool()); TEST_P(NgHttp2AdapterDataTest, ClientSendsTrailers) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const Http2StreamId kStreamId = 1; const std::string kBody = "This is an example request body."; visitor.AppendPayloadForStream(kStreamId, kBody); visitor.SetEndData(kStreamId, false); auto body1 = std::make_unique<VisitorDataSource>(visitor, kStreamId); const int32_t stream_id1 = adapter->SubmitRequest( headers1, GetParam() ? nullptr : std::move(body1), false, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_EQ(stream_id1, kStreamId); EXPECT_EQ(adapter->sources_size(), GetParam() ? 0 : 1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id1, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); visitor.Clear(); const std::vector<Header> trailers1 = ToHeaders({{"extra-info", "Trailers are weird but good?"}}); adapter->SubmitTrailer(stream_id1, trailers1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); result = adapter->Send(); EXPECT_EQ(0, result); data = visitor.data(); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); } TEST(NgHttp2AdapterTest, ClientHandlesMetadata) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Metadata(0, "Example connection metadata") .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Metadata(1, "Example stream metadata") .Data(1, "This is the response body.", true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(0, _)); EXPECT_CALL(visitor, OnMetadataForStream(0, _)); EXPECT_CALL(visitor, OnMetadataEndForStream(0)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataEndForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 26, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 26)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the response body.")); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientHandlesMetadataWithEmptyPayload) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Metadata(1, "") .Data(1, "This is the response body.", true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(3); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataEndForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the response body.")); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); } TEST(NgHttp2AdapterTest, ClientHandlesMetadataWithError) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Metadata(0, "Example connection metadata") .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Metadata(1, "Example stream metadata") .Data(1, "This is the response body.", true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(0, _)); EXPECT_CALL(visitor, OnMetadataForStream(0, _)); EXPECT_CALL(visitor, OnMetadataEndForStream(0)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataForStream(1, _)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_result, NGHTTP2_ERR_CALLBACK_FAILURE); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); EXPECT_TRUE(adapter->want_read()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientHandlesHpackHeaderTableSetting) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({ {":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"x-i-do-not-like", "green eggs and ham"}, {"x-i-will-not-eat-them", "here or there, in a box, with a fox"}, {"x-like-them-in-a-house", "no"}, {"x-like-them-with-a-mouse", "no"}, }); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); EXPECT_GT(adapter->GetHpackEncoderDynamicTableSize(), 100); const std::string stream_frames = TestFrameSequence().Settings({{HEADER_TABLE_SIZE, 100u}}).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{HEADER_TABLE_SIZE, 100u})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_LE(adapter->GetHpackEncoderDynamicTableSize(), 100); } TEST(NgHttp2AdapterTest, ClientHandlesInvalidTrailers) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Headers(1, {{":bad-status", "9000"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 26, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 26)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the response body.")); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [:bad-status], value: [9000]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, stream_id1, 4, 0x0, 1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ClientRstStreamWhileHandlingHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")) .WillOnce(testing::DoAll( testing::InvokeWithoutArgs([&adapter]() { adapter->SubmitRst(1, Http2ErrorCode::REFUSED_STREAM); }), testing::Return(Http2VisitorInterface::HEADER_RST_STREAM))); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, stream_id1, 4, 0x0, static_cast<int>(Http2ErrorCode::REFUSED_STREAM))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::REFUSED_STREAM)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ClientConnectionErrorWhileHandlingHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")) .WillOnce( testing::Return(Http2VisitorInterface::HEADER_CONNECTION_ERROR)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(-902 , stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientConnectionErrorWhileHandlingHeadersOnly) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")) .WillOnce( testing::Return(Http2VisitorInterface::HEADER_CONNECTION_ERROR)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(-902 , stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientRejectsHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(NGHTTP2_ERR_CALLBACK_FAILURE, stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientStartsShutdown) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); EXPECT_FALSE(adapter->want_write()); adapter->SubmitShutdownNotice(); EXPECT_FALSE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(visitor.data(), spdy::kHttp2ConnectionHeaderPrefix); } TEST(NgHttp2AdapterTest, ClientReceivesGoAway) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::HEADERS})); visitor.Clear(); adapter->SubmitWindowUpdate(3, 42); const std::string stream_frames = TestFrameSequence() .ServerPreface() .RstStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM) .GoAway(1, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .WindowUpdate(0, 42) .WindowUpdate(1, 42) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(1, Http2ErrorCode::INTERNAL_ERROR, "indigestion")); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::REFUSED_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 42)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientReceivesMultipleGoAways) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string initial_frames = TestFrameSequence() .ServerPreface() .GoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "indigestion")); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); adapter->SubmitWindowUpdate(1, 42); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, 4, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::WINDOW_UPDATE})); visitor.Clear(); const std::string final_frames = TestFrameSequence() .GoAway(0, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::INTERNAL_ERROR, "indigestion")); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::REFUSED_STREAM)); const int64_t final_result = adapter->ProcessBytes(final_frames); EXPECT_EQ(final_frames.size(), static_cast<size_t>(final_result)); EXPECT_FALSE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); } TEST(NgHttp2AdapterTest, ClientReceivesMultipleGoAwaysWithIncreasingStreamId) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); auto source = std::make_unique<TestMetadataSource>(ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}}))); adapter->SubmitMetadata(stream_id1, 16384u, std::move(source)); const std::string frames = TestFrameSequence() .ServerPreface() .GoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "") .GoAway(0, Http2ErrorCode::ENHANCE_YOUR_CALM, "") .GoAway(1, Http2ErrorCode::INTERNAL_ERROR, "") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "")); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::REFUSED_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::ENHANCE_YOUR_CALM, "")); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); const int64_t frames_result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(frames_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ClientReceivesGoAwayWithPendingStreams) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::StrEq(spdy::kHttp2ConnectionHeaderPrefix)); visitor.Clear(); testing::InSequence s; const std::string initial_frames = TestFrameSequence() .ServerPreface({{MAX_CONCURRENT_STREAMS, 1}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .GoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Settings({{MAX_CONCURRENT_STREAMS, 42u}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "indigestion")); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{MAX_CONCURRENT_STREAMS, 42u})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::REFUSED_STREAM)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::vector<Header> headers3 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/three"}}); const int32_t stream_id3 = adapter->SubmitRequest(headers3, nullptr, true, nullptr); ASSERT_GT(stream_id3, stream_id2); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::REFUSED_STREAM)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ClientFailsOnGoAway) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .GoAway(1, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(1, Http2ErrorCode::INTERNAL_ERROR, "indigestion")) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(NGHTTP2_ERR_CALLBACK_FAILURE, stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ClientRejects101Response) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"upgrade", "new-protocol"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "101"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [:status], value: [101]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(static_cast<int64_t>(stream_frames.size()), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL( visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<uint32_t>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST_P(NgHttp2AdapterDataTest, ClientSubmitRequest) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::StrEq(spdy::kHttp2ConnectionHeaderPrefix)); visitor.Clear(); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_EQ(0, adapter->GetHpackEncoderDynamicTableSize()); EXPECT_FALSE(adapter->want_write()); const char* kSentinel = ""; const absl::string_view kBody = "This is an example request body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), GetParam() ? nullptr : std::move(body1), false, const_cast<char*>(kSentinel)); ASSERT_EQ(1, stream_id); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, _, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowSize(stream_id)); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetReceiveWindowSize()); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowLimit(stream_id)); EXPECT_GT(adapter->GetHpackEncoderDynamicTableSize(), 0); EXPECT_LT(adapter->GetStreamSendWindowSize(stream_id), kInitialFlowControlWindowSize); EXPECT_GT(adapter->GetStreamSendWindowSize(stream_id), 0); EXPECT_EQ(-1, adapter->GetStreamSendWindowSize(stream_id + 2)); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); const char* kSentinel2 = "arbitrary pointer 2"; EXPECT_EQ(nullptr, adapter->GetStreamUserData(stream_id)); adapter->SetStreamUserData(stream_id, const_cast<char*>(kSentinel2)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); EXPECT_EQ(kSentinel2, adapter->GetStreamUserData(stream_id)); EXPECT_EQ(adapter->GetStreamSendWindowSize(stream_id), kInitialFlowControlWindowSize); } TEST(NgHttp2AdapterTest, ClientSubmitRequestWithDataProvider) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::StrEq(spdy::kHttp2ConnectionHeaderPrefix)); visitor.Clear(); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const absl::string_view kBody = "This is an example request body."; TestDataSource body1{kBody}; nghttp2_data_provider provider = body1.MakeDataProvider(); nghttp2_send_data_callback send_callback = &TestSendCallback; std::unique_ptr<DataFrameSource> frame_source = MakeZeroCopyDataFrameSource(provider, &visitor, std::move(send_callback)); int stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), std::move(frame_source), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, _, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ClientSubmitRequestWithDataProviderAndReadBlock) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const absl::string_view kBody = "This is an example request body."; TestDataSource body1{kBody}; body1.set_is_data_available(false); nghttp2_data_provider provider = body1.MakeDataProvider(); nghttp2_send_data_callback send_callback = &TestSendCallback; std::unique_ptr<DataFrameSource> frame_source = MakeZeroCopyDataFrameSource(provider, &visitor, std::move(send_callback)); int stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), std::move(frame_source), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); body1.set_is_data_available(true); EXPECT_TRUE(adapter->ResumeStream(stream_id)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, _, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::DATA})); EXPECT_FALSE(adapter->want_write()); EXPECT_FALSE(adapter->ResumeStream(stream_id)); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ClientSubmitRequestEmptyDataWithFin) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const absl::string_view kEmptyBody = ""; TestDataSource body1{kEmptyBody}; body1.set_is_data_available(false); nghttp2_data_provider provider = body1.MakeDataProvider(); nghttp2_send_data_callback send_callback = &TestSendCallback; std::unique_ptr<DataFrameSource> frame_source = MakeZeroCopyDataFrameSource(provider, &visitor, std::move(send_callback)); int stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), std::move(frame_source), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); body1.set_is_data_available(true); EXPECT_TRUE(adapter->ResumeStream(stream_id)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 0, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::DATA})); EXPECT_FALSE(adapter->want_write()); EXPECT_FALSE(adapter->ResumeStream(stream_id)); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ClientSubmitRequestWithDataProviderAndWriteBlock) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const absl::string_view kBody = "This is an example request body."; TestDataSource body1{kBody}; nghttp2_data_provider provider = body1.MakeDataProvider(); nghttp2_send_data_callback send_callback = &TestSendCallback; std::unique_ptr<DataFrameSource> frame_source = MakeZeroCopyDataFrameSource(provider, &visitor, std::move(send_callback)); int stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), std::move(frame_source), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); visitor.set_is_write_blocked(true); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, _, 0x1, 0)); visitor.set_is_write_blocked(false); result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ClientReceivesDataOnClosedStream) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::StrEq(spdy::kHttp2ConnectionHeaderPrefix)); visitor.Clear(); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); int stream_id = adapter->SubmitRequest(ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); adapter->SubmitRst(stream_id, Http2ErrorCode::CANCEL); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, stream_id, _, 0x0, static_cast<int>(Http2ErrorCode::CANCEL))); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::CANCEL)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::RST_STREAM})); visitor.Clear(); const std::string response_frames = TestFrameSequence() .Headers(stream_id, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(stream_id, "This is the response body.", true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 0x4)); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, DATA, _)).Times(0); const int64_t response_result = adapter->ProcessBytes(response_frames); EXPECT_EQ(response_frames.size(), response_result); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ClientQueuesRequests) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; adapter->SubmitSettings({}); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); adapter->Send(); const std::string initial_frames = TestFrameSequence() .ServerPreface({{MAX_CONCURRENT_STREAMS, 2}}) .SettingsAck() .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{ Http2KnownSettingsId::MAX_CONCURRENT_STREAMS, 2u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck()); adapter->ProcessBytes(initial_frames); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/example/request"}}); std::vector<int32_t> stream_ids; int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[0], _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[0], _, 0x5, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[1], _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[1], _, 0x5, 0)); adapter->Send(); const std::string update_streams = TestFrameSequence().Settings({{MAX_CONCURRENT_STREAMS, 5}}).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{ Http2KnownSettingsId::MAX_CONCURRENT_STREAMS, 5u})); EXPECT_CALL(visitor, OnSettingsEnd()); adapter->ProcessBytes(update_streams); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[2], _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[2], _, 0x5, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[3], _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[3], _, 0x5, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[4], _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[4], _, 0x5, 0)); adapter->Send(); } TEST(NgHttp2AdapterTest, ClientAcceptsHeadResponseWithContentLength) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const std::vector<Header> headers = ToHeaders({{":method", "HEAD"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); adapter->Send(); const std::string initial_frames = TestFrameSequence() .ServerPreface() .Headers(stream_id, {{":status", "200"}, {"content-length", "101"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnHeaderForStream).Times(2); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnEndStream(stream_id)); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::HTTP2_NO_ERROR)); adapter->ProcessBytes(initial_frames); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); adapter->Send(); } class MetadataApiTest : public quiche::test::QuicheTestWithParam<bool> {}; INSTANTIATE_TEST_SUITE_P(WithAndWithoutNewApi, MetadataApiTest, testing::Bool()); TEST_P(MetadataApiTest, SubmitMetadata) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const quiche::HttpHeaderBlock block = ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}})); if (GetParam()) { visitor.AppendMetadataForStream(1, block); adapter->SubmitMetadata(1, 1); } else { auto source = std::make_unique<TestMetadataSource>(block); adapter->SubmitMetadata(1, 16384u, std::move(source)); } EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x4, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({static_cast<SpdyFrameType>(kMetadataFrameType)})); EXPECT_FALSE(adapter->want_write()); } size_t DivRoundUp(size_t numerator, size_t denominator) { return numerator / denominator + (numerator % denominator == 0 ? 0 : 1); } TEST_P(MetadataApiTest, SubmitMetadataMultipleFrames) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const auto kLargeValue = std::string(63 * 1024, 'a'); const quiche::HttpHeaderBlock block = ToHeaderBlock(ToHeaders({{"large-value", kLargeValue}})); if (GetParam()) { visitor.AppendMetadataForStream(1, block); adapter->SubmitMetadata(1, DivRoundUp(kLargeValue.size(), 16384u)); } else { auto source = std::make_unique<TestMetadataSource>(block); adapter->SubmitMetadata(1, 16384u, std::move(source)); } EXPECT_TRUE(adapter->want_write()); testing::InSequence seq; EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x4, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({static_cast<SpdyFrameType>(kMetadataFrameType), static_cast<SpdyFrameType>(kMetadataFrameType), static_cast<SpdyFrameType>(kMetadataFrameType), static_cast<SpdyFrameType>(kMetadataFrameType)})); EXPECT_FALSE(adapter->want_write()); } TEST_P(MetadataApiTest, SubmitConnectionMetadata) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const quiche::HttpHeaderBlock block = ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}})); if (GetParam()) { visitor.AppendMetadataForStream(0, block); adapter->SubmitMetadata(0, 1); } else { auto source = std::make_unique<TestMetadataSource>(block); adapter->SubmitMetadata(0, 16384u, std::move(source)); } EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 0, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 0, _, 0x4, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({static_cast<SpdyFrameType>(kMetadataFrameType)})); EXPECT_FALSE(adapter->want_write()); } TEST_P(MetadataApiTest, ClientSubmitMetadataWithGoaway) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); adapter->SubmitSettings({}); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, _, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, _, _, 0x0, 0)); adapter->Send(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); const quiche::HttpHeaderBlock block = ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}})); if (GetParam()) { visitor.AppendMetadataForStream(stream_id, block); adapter->SubmitMetadata(stream_id, 1); } else { auto source = std::make_unique<TestMetadataSource>(block); adapter->SubmitMetadata(stream_id, 16384u, std::move(source)); } EXPECT_TRUE(adapter->want_write()); const std::string initial_frames = TestFrameSequence() .ServerPreface() .GoAway(3, Http2ErrorCode::HTTP2_NO_ERROR, "server shutting down") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(3, Http2ErrorCode::HTTP2_NO_ERROR, _)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::REFUSED_STREAM)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, static_cast<SpdyFrameType>(kMetadataFrameType)})); EXPECT_FALSE(adapter->want_write()); } TEST_P(MetadataApiTest, ClientSubmitMetadataWithFailureBefore) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); adapter->SubmitSettings({}); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, _, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, _, _, 0x0, 0)); adapter->Send(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); const quiche::HttpHeaderBlock block = ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}})); if (GetParam()) { visitor.AppendMetadataForStream(stream_id, block); adapter->SubmitMetadata(stream_id, 1); } else { auto source = std::make_unique<TestMetadataSource>(block); adapter->SubmitMetadata(stream_id, 16384u, std::move(source)); } EXPECT_TRUE(adapter->want_write()); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, stream_id, _, 0x4)) .WillOnce(testing::Return(NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE)); EXPECT_CALL(visitor, OnConnectionError( Http2VisitorInterface::ConnectionError::kSendError)); int result = adapter->Send(); EXPECT_EQ(NGHTTP2_ERR_CALLBACK_FAILURE, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); } TEST_P(MetadataApiTest, ClientSubmitMetadataWithFailureDuring) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); adapter->SubmitSettings({}); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, _, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, _, _, 0x0, 0)); adapter->Send(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); const quiche::HttpHeaderBlock block = ToHeaderBlock( ToHeaders({{"more-than-one-frame", std::string(20000, 'a')}})); if (GetParam()) { visitor.AppendMetadataForStream(stream_id, block); adapter->SubmitMetadata(stream_id, 2); } else { auto source = std::make_unique<TestMetadataSource>(block); adapter->SubmitMetadata(stream_id, 16384u, std::move(source)); } EXPECT_TRUE(adapter->want_write()); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, stream_id, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, stream_id, _, 0x0, 0)) .WillOnce(testing::Return(NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE)); EXPECT_CALL(visitor, OnConnectionError( Http2VisitorInterface::ConnectionError::kSendError)); int result = adapter->Send(); EXPECT_EQ(NGHTTP2_ERR_CALLBACK_FAILURE, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, static_cast<SpdyFrameType>(kMetadataFrameType)})); } TEST_P(MetadataApiTest, ClientSubmitMetadataWithFailureSending) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); adapter->SubmitSettings({}); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, _, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, _, _, 0x0, 0)); adapter->Send(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); if (GetParam()) { adapter->SubmitMetadata(stream_id, 2); } else { auto source = std::make_unique<TestMetadataSource>(ToHeaderBlock( ToHeaders({{"more-than-one-frame", std::string(20000, 'a')}}))); source->InjectFailure(); adapter->SubmitMetadata(stream_id, 16384u, std::move(source)); } EXPECT_TRUE(adapter->want_write()); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnConnectionError( Http2VisitorInterface::ConnectionError::kSendError)); int result = adapter->Send(); EXPECT_EQ(NGHTTP2_ERR_CALLBACK_FAILURE, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({ SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, })); } TEST_P(NgHttp2AdapterDataTest, ClientObeysMaxConcurrentStreams) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::StrEq(spdy::kHttp2ConnectionHeaderPrefix)); visitor.Clear(); const std::string initial_frames = TestFrameSequence() .ServerPreface({{MAX_CONCURRENT_STREAMS, 1}}) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const absl::string_view kBody = "This is an example request body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int stream_id = adapter->SubmitRequest( ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), GetParam() ? nullptr : std::move(body1), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, _, 0x1, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const int next_stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}), nullptr, true, nullptr); EXPECT_GT(next_stream_id, stream_id); EXPECT_FALSE(adapter->want_write()); const std::string stream_frames = TestFrameSequence() .Headers(stream_id, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(stream_id, "This is the response body.", true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnFrameHeader(stream_id, 26, DATA, 0x1)); EXPECT_CALL(visitor, OnBeginDataForStream(stream_id, 26)); EXPECT_CALL(visitor, OnDataForStream(stream_id, "This is the response body.")); EXPECT_CALL(visitor, OnEndStream(stream_id)); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, next_stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, next_stream_id, _, 0x5, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); } TEST_P(NgHttp2AdapterDataTest, ClientReceivesInitialWindowSetting) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const std::string initial_frames = TestFrameSequence() .Settings({{INITIAL_WINDOW_SIZE, 80000u}}) .WindowUpdate(0, 65536) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{INITIAL_WINDOW_SIZE, 80000u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 65536)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); int64_t result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string kLongBody = std::string(81000, 'c'); visitor.AppendPayloadForStream(1, kLongBody); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, true); const int stream_id = adapter->SubmitRequest( ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), GetParam() ? nullptr : std::move(body1), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 16384, 0x0, 0)).Times(4); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 14464, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA})); } TEST_P(NgHttp2AdapterDataTest, ClientReceivesInitialWindowSettingAfterStreamStart) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const std::string initial_frames = TestFrameSequence().ServerPreface().WindowUpdate(0, 65536).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 65536)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); int64_t result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string kLongBody = std::string(81000, 'c'); visitor.AppendPayloadForStream(1, kLongBody); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int stream_id = adapter->SubmitRequest( ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), GetParam() ? nullptr : std::move(body1), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 16384, 0x0, 0)).Times(3); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 16383, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const std::string settings_frame = TestFrameSequence().Settings({{INITIAL_WINDOW_SIZE, 80000u}}).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{INITIAL_WINDOW_SIZE, 80000u})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t settings_result = adapter->ProcessBytes(settings_frame); EXPECT_EQ(settings_frame.size(), static_cast<size_t>(settings_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 14465, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::DATA})); } TEST(NgHttp2AdapterTest, InvalidInitialWindowSetting) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const uint32_t kTooLargeInitialWindow = 1u << 31; const std::string initial_frames = TestFrameSequence() .Settings({{INITIAL_WINDOW_SIZE, kTooLargeInitialWindow}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnInvalidFrame( 0, Http2VisitorInterface::InvalidFrameError::kFlowControl)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); int64_t result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::GOAWAY})); visitor.Clear(); } TEST(NgHttp2AdapterTest, InitialWindowSettingCausesOverflow) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); testing::InSequence s; const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); int64_t write_result = adapter->Send(); EXPECT_EQ(0, write_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const uint32_t kLargeInitialWindow = (1u << 31) - 1; const std::string frames = TestFrameSequence() .ServerPreface() .Headers(stream_id, {{":status", "200"}}, false) .WindowUpdate(stream_id, 65536u) .Settings({{INITIAL_WINDOW_SIZE, kLargeInitialWindow}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 0x4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, ":status", "200")); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnFrameHeader(stream_id, 4, WINDOW_UPDATE, 0x0)); EXPECT_CALL(visitor, OnWindowUpdate(stream_id, 65536)); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{INITIAL_WINDOW_SIZE, kLargeInitialWindow})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id, 4, 0x0)); EXPECT_CALL( visitor, OnFrameSent(RST_STREAM, stream_id, 4, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::FLOW_CONTROL_ERROR)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ClientForbidsPushPromise) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); adapter->SubmitSettings({{ENABLE_PUSH, 0}}); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); int write_result = adapter->Send(); EXPECT_EQ(0, write_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); write_result = adapter->Send(); EXPECT_EQ(0, write_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::vector<Header> push_headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/push"}}); const std::string frames = TestFrameSequence() .ServerPreface() .SettingsAck() .PushPromise(stream_id, 2, push_headers) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, PUSH_PROMISE, _)); EXPECT_CALL(visitor, OnInvalidFrame(stream_id, _)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), read_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int32_t>(Http2ErrorCode::PROTOCOL_ERROR))); write_result = adapter->Send(); EXPECT_EQ(0, write_result); } TEST(NgHttp2AdapterTest, ClientForbidsPushStream) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); adapter->SubmitSettings({{ENABLE_PUSH, 0}}); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); int write_result = adapter->Send(); EXPECT_EQ(0, write_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); write_result = adapter->Send(); EXPECT_EQ(0, write_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string frames = TestFrameSequence() .ServerPreface() .SettingsAck() .Headers(2, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck); EXPECT_CALL(visitor, OnFrameHeader(2, _, HEADERS, _)); EXPECT_CALL(visitor, OnInvalidFrame(2, _)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), read_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int32_t>(Http2ErrorCode::PROTOCOL_ERROR))); write_result = adapter->Send(); EXPECT_EQ(0, write_result); } TEST(NgHttp2AdapterTest, FailureSendingConnectionPreface) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); visitor.set_has_write_error(); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kSendError)); int result = adapter->Send(); EXPECT_EQ(result, NGHTTP2_ERR_CALLBACK_FAILURE); } TEST(NgHttp2AdapterTest, MaxFrameSizeSettingNotAppliedBeforeAck) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const uint32_t large_frame_size = kDefaultFramePayloadSizeLimit + 42; adapter->SubmitSettings({{MAX_FRAME_SIZE, large_frame_size}}); const int32_t stream_id = adapter->SubmitRequest( ToHeaders({{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string server_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}}, false) .Data(1, std::string(large_frame_size, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); const int64_t process_result = adapter->ProcessBytes(server_frames); EXPECT_EQ(server_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FRAME_SIZE_ERROR))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, MaxFrameSizeSettingAppliedAfterAck) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateClientAdapter(visitor); const uint32_t large_frame_size = kDefaultFramePayloadSizeLimit + 42; adapter->SubmitSettings({{MAX_FRAME_SIZE, large_frame_size}}); const int32_t stream_id = adapter->SubmitRequest( ToHeaders({{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x5, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string server_frames = TestFrameSequence() .ServerPreface() .SettingsAck() .Headers(1, {{":status", "200"}}, false) .Data(1, std::string(large_frame_size, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, large_frame_size, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, large_frame_size)); EXPECT_CALL(visitor, OnDataForStream(1, _)); const int64_t process_result = adapter->ProcessBytes(server_frames); EXPECT_EQ(server_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, WindowUpdateRaisesFlowControlWindowLimit) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string data_chunk(kDefaultFramePayloadSizeLimit, 'a'); const std::string request = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}}, false) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); adapter->ProcessBytes(request); adapter->SubmitWindowUpdate(0, 2 * kDefaultFramePayloadSizeLimit); adapter->SubmitWindowUpdate(1, 2 * kDefaultFramePayloadSizeLimit); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, 4, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(kInitialFlowControlWindowSize + 2 * kDefaultFramePayloadSizeLimit, adapter->GetReceiveWindowSize()); EXPECT_EQ(kInitialFlowControlWindowSize + 2 * kDefaultFramePayloadSizeLimit, adapter->GetStreamReceiveWindowSize(1)); const std::string request_body = TestFrameSequence() .Data(1, data_chunk) .Data(1, data_chunk) .Data(1, data_chunk) .Data(1, data_chunk) .Data(1, data_chunk) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)).Times(5); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)).Times(5); EXPECT_CALL(visitor, OnDataForStream(1, _)).Times(5); adapter->ProcessBytes(request_body); EXPECT_EQ(kInitialFlowControlWindowSize - 3 * kDefaultFramePayloadSizeLimit, adapter->GetReceiveWindowSize()); EXPECT_EQ(kInitialFlowControlWindowSize - 3 * kDefaultFramePayloadSizeLimit, adapter->GetStreamReceiveWindowSize(1)); adapter->MarkDataConsumedForStream(1, 4 * kDefaultFramePayloadSizeLimit); EXPECT_GT(adapter->GetReceiveWindowSize(), kInitialFlowControlWindowSize); EXPECT_GT(adapter->GetStreamReceiveWindowSize(1), kInitialFlowControlWindowSize); } TEST(NgHttp2AdapterTest, ConnectionErrorOnControlFrameSent) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence().ClientPreface().Ping(42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)) .WillOnce(testing::Return(-902)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kSendError)); int send_result = adapter->Send(); EXPECT_LT(send_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, _, 0x1, 0)); send_result = adapter->Send(); EXPECT_EQ(send_result, 0); EXPECT_FALSE(adapter->want_write()); } TEST_P(NgHttp2AdapterDataTest, ConnectionErrorOnDataFrameSent) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); auto body = std::make_unique<VisitorDataSource>(visitor, 1); visitor.AppendPayloadForStream( 1, "Here is some data, which will lead to a fatal error"); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)) .WillOnce(testing::Return(-902)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kSendError)); int send_result = adapter->Send(); EXPECT_LT(send_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(send_result, 0); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ServerConstruction) { testing::StrictMock<MockHttp2Visitor> visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); ASSERT_NE(nullptr, adapter); EXPECT_TRUE(adapter->want_read()); EXPECT_FALSE(adapter->want_write()); EXPECT_TRUE(adapter->IsServerSession()); } TEST(NgHttp2AdapterTest, ServerHandlesFrames) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); EXPECT_EQ(0, adapter->GetHpackDecoderDynamicTableSize()); const std::string frames = TestFrameSequence() .ClientPreface() .Ping(42) .WindowUpdate(0, 1000) .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .RstStream(3, Http2ErrorCode::CANCEL) .Ping(47) .Serialize(); testing::InSequence s; const char* kSentinel1 = "arbitrary pointer 1"; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 8, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 1000)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)) .WillOnce(testing::InvokeWithoutArgs([&adapter, kSentinel1]() { adapter->SetStreamUserData(1, const_cast<char*>(kSentinel1)); return true; })); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 2000)); EXPECT_CALL(visitor, OnFrameHeader(1, 25, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 25)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the request body.")); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "http")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":path", "/this/is/request/two")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(3, Http2ErrorCode::CANCEL)); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::CANCEL)); EXPECT_CALL(visitor, OnFrameHeader(0, 8, PING, 0)); EXPECT_CALL(visitor, OnPing(47, false)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(kSentinel1, adapter->GetStreamUserData(1)); EXPECT_GT(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowSize(1)); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(1), adapter->GetReceiveWindowSize()); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamReceiveWindowLimit(1)); EXPECT_GT(adapter->GetHpackDecoderDynamicTableSize(), 0); const char* kSentinel3 = "another arbitrary pointer"; adapter->SetStreamUserData(3, const_cast<char*>(kSentinel3)); EXPECT_EQ(nullptr, adapter->GetStreamUserData(3)); EXPECT_EQ(3, adapter->GetHighestReceivedStreamId()); EXPECT_EQ(adapter->GetSendWindowSize(), kInitialFlowControlWindowSize + 1000); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, 8, 0x1)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, 8, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, 8, 0x1)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, 8, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::PING, SpdyFrameType::PING})); } TEST(NgHttp2AdapterTest, ServerVisitorRejectsHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"header1", "ok"}, {"header2", "rejected"}, {"header3", "not processed"}, {"header4", "not processed"}, {"header5", "not processed"}, {"header6", "not processed"}, {"header7", "not processed"}, {"header8", "not processed"}}, false, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x0)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnHeaderForStream(1, "header2", _)) .WillOnce(testing::Return(Http2VisitorInterface::HEADER_RST_STREAM)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::INTERNAL_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, HeaderValuesWithObsTextAllowed) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {"name", "val\xa1ue"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/")); EXPECT_CALL(visitor, OnHeaderForStream(1, "name", "val\xa1ue")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST(NgHttp2AdapterTest, ServerHandlesDataWithPadding) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the request body.", true, 39) .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 25 + 39, DATA, 0x9)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 25 + 39)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the request body.")); EXPECT_CALL(visitor, OnDataPaddingLength(1, 39)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ServerHandlesHostHeader) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":path", "/this/is/request/one"}, {"host", "example.com"}}, true) .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"host", "example.com"}}, true) .Headers(5, {{":method", "POST"}, {":scheme", "https"}, {":authority", "foo.com"}, {":path", "/this/is/request/one"}, {"host", "bar.com"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(5)); EXPECT_CALL(visitor, OnEndStream(5)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); } TEST_P(NgHttp2AdapterDataTest, ServerSubmitsTrailersWhileDataDeferred) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 2000)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the request body.")); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 2000)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); int trailer_result = adapter->SubmitTrailer(1, ToHeaders({{"final-status", "a-ok"}})); ASSERT_EQ(trailer_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x5, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, true); adapter->ResumeStream(1); EXPECT_TRUE(adapter->want_write()); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); EXPECT_FALSE(adapter->want_write()); } TEST_P(NgHttp2AdapterDataTest, ServerSubmitsTrailersWithDataEndStream) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}) .Data(1, "Example data, woohoo.") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, true); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(submit_result, 0); const std::vector<Header> trailers = ToHeaders({{"extra-info", "Trailers are weird but good?"}}); submit_result = adapter->SubmitTrailer(1, trailers); ASSERT_EQ(submit_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_HEADERS_FLAG | END_STREAM_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_HEADERS_FLAG | END_STREAM_FLAG, 0)); const int send_result = adapter->Send(); EXPECT_EQ(send_result, 0); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::HEADERS})); } TEST_P(NgHttp2AdapterDataTest, ServerSubmitsTrailersWithDataEndStreamAndDeferral) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}) .Data(1, "Example data, woohoo.") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(submit_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); visitor.Clear(); const std::vector<Header> trailers = ToHeaders({{"extra-info", "Trailers are weird but good?"}}); submit_result = adapter->SubmitTrailer(1, trailers); ASSERT_EQ(submit_result, 0); visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, false); adapter->ResumeStream(1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_HEADERS_FLAG | END_STREAM_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_HEADERS_FLAG | END_STREAM_FLAG, 0)); send_result = adapter->Send(); EXPECT_EQ(send_result, 0); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); } TEST(NgHttp2AdapterTest, ClientDisobeysConnectionFlowControl) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(4464, 'a')) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ClientDisobeysConnectionFlowControlWithOneDataFrame) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const uint32_t window_overflow_bytes = kInitialFlowControlWindowSize + 1; adapter->SubmitSettings({{MAX_FRAME_SIZE, window_overflow_bytes}}); const std::string initial_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); int64_t process_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string overflow_frames = TestFrameSequence() .SettingsAck() .Data(1, std::string(window_overflow_bytes, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, window_overflow_bytes, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, window_overflow_bytes)); process_result = adapter->ProcessBytes(overflow_frames); EXPECT_EQ(overflow_frames.size(), static_cast<size_t>(process_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ClientDisobeysConnectionFlowControlAcrossReads) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const uint32_t window_overflow_bytes = kInitialFlowControlWindowSize + 1; adapter->SubmitSettings({{MAX_FRAME_SIZE, window_overflow_bytes}}); const std::string initial_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); int64_t process_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string overflow_frames = TestFrameSequence() .SettingsAck() .Data(1, std::string(window_overflow_bytes, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, window_overflow_bytes, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, window_overflow_bytes)); EXPECT_CALL(visitor, OnDataForStream(1, _)) .WillRepeatedly( [&adapter](Http2StreamId stream_id, absl::string_view data) { adapter->MarkDataConsumedForStream(stream_id, data.size()); return true; }); const size_t chunk_length = 16384; ASSERT_GE(overflow_frames.size(), chunk_length); absl::string_view remaining = overflow_frames; while (!remaining.empty()) { absl::string_view chunk = remaining.substr(0, chunk_length); process_result = adapter->ProcessBytes(chunk); EXPECT_EQ(chunk.length(), static_cast<size_t>(process_result)); remaining.remove_prefix(chunk.length()); } EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, 4, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::WINDOW_UPDATE, SpdyFrameType::WINDOW_UPDATE})); } TEST(NgHttp2AdapterTest, ClientDisobeysStreamFlowControl) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .Serialize(); const std::string more_frames = TestFrameSequence() .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(4464, 'a')) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); adapter->SubmitWindowUpdate(0, 20000); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::WINDOW_UPDATE})); visitor.Clear(); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); result = adapter->ProcessBytes(more_frames); EXPECT_EQ(more_frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL( visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::FLOW_CONTROL_ERROR)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerErrorWhileHandlingHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "some bogus value!")) .WillOnce(testing::Return(Http2VisitorInterface::HEADER_RST_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 2000)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 2000)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::INTERNAL_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerErrorWhileHandlingHeadersDropsFrames) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .Metadata(1, "This is the request metadata.") .RstStream(1, Http2ErrorCode::CANCEL) .WindowUpdate(0, 2000) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, false) .Metadata(3, "This is the request metadata.", true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "some bogus value!")) .WillOnce(testing::Return(Http2VisitorInterface::HEADER_RST_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 2000)); EXPECT_CALL(visitor, OnFrameHeader(1, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataEndForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::CANCEL)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::CANCEL)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 2000)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, _, kMetadataFrameType, 0)); EXPECT_CALL(visitor, OnBeginMetadataForStream(3, _)); EXPECT_CALL(visitor, OnMetadataForStream(3, "This is the re")) .WillOnce(testing::DoAll(testing::InvokeWithoutArgs([&adapter]() { adapter->SubmitRst( 3, Http2ErrorCode::REFUSED_STREAM); }), testing::Return(true))); EXPECT_CALL(visitor, OnFrameHeader(3, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(3, _)); EXPECT_CALL(visitor, OnMetadataForStream(3, "quest metadata.")); EXPECT_CALL(visitor, OnMetadataEndForStream(3)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, 4, 0x0, static_cast<int>(Http2ErrorCode::REFUSED_STREAM))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::REFUSED_STREAM)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerConnectionErrorWhileHandlingHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"Accept", "uppercase, oh boy!"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnErrorDebug); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(result, NGHTTP2_ERR_CALLBACK_FAILURE); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerErrorAfterHandlingHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(-902, result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ServerRejectsFrameHeader) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Ping(64) .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 8, PING, 0)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(-902, result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ServerRejectsBeginningOfData) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the request body.") .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .RstStream(3, Http2ErrorCode::CANCEL) .Ping(47) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 25, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 25)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(NGHTTP2_ERR_CALLBACK_FAILURE, result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ServerRejectsStreamData) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the request body.") .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .RstStream(3, Http2ErrorCode::CANCEL) .Ping(47) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 25, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 25)); EXPECT_CALL(visitor, OnDataForStream(1, _)).WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(NGHTTP2_ERR_CALLBACK_FAILURE, result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ServerReceivesTooLargeHeader) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string too_large_value = std::string(80 * 1024, 'q'); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"x-toobig", too_large_value}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, 8, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, 8, 0x0, static_cast<int>(Http2ErrorCode::COMPRESSION_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ServerReceivesInvalidAuthority) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "ex|ample.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [:authority], value: [ex|ample.com]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0x0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttpAdapterTest, ServerReceivesGoAway) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .GoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0x0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "")); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<int64_t>(frames.size()), result); const int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), nullptr, true); ASSERT_EQ(0, submit_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0x0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x5, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); } TEST_P(NgHttp2AdapterDataTest, ServerSubmitResponse) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; const char* kSentinel1 = "arbitrary pointer 1"; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)) .WillOnce(testing::InvokeWithoutArgs([&adapter, kSentinel1]() { adapter->SetStreamUserData(1, const_cast<char*>(kSentinel1)); return true; })); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(1, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_EQ(0, adapter->GetHpackEncoderDynamicTableSize()); EXPECT_FALSE(adapter->want_write()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "404"}, {"x-comment", "I have no idea what you're talking about."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_EQ(kSentinel1, adapter->GetStreamUserData(1)); adapter->SetStreamUserData(1, nullptr); EXPECT_EQ(nullptr, adapter->GetStreamUserData(1)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); EXPECT_FALSE(adapter->want_write()); EXPECT_LT(adapter->GetStreamSendWindowSize(1), kInitialFlowControlWindowSize); EXPECT_GT(adapter->GetStreamSendWindowSize(1), 0); EXPECT_EQ(adapter->GetStreamSendWindowSize(3), -1); EXPECT_GT(adapter->GetHpackEncoderDynamicTableSize(), 0); } TEST_P(NgHttp2AdapterDataTest, ServerSubmitResponseWithResetFromClient) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(1, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "404"}, {"x-comment", "I have no idea what you're talking about."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_EQ(adapter->sources_size(), GetParam() ? 0 : 1); const std::string reset = TestFrameSequence().RstStream(1, Http2ErrorCode::CANCEL).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::CANCEL)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::CANCEL)) .WillOnce( [&adapter](Http2StreamId stream_id, Http2ErrorCode ) { adapter->RemoveStream(stream_id); return true; }); const int64_t reset_result = adapter->ProcessBytes(reset); EXPECT_EQ(reset.size(), static_cast<size_t>(reset_result)); EXPECT_EQ(adapter->sources_size(), 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, _)).Times(0); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, _, _)).Times(0); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, _, _)).Times(0); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); } TEST(NgHttp2AdapterTest, ServerSendsShutdown) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); adapter->SubmitShutdownNotice(); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST_P(NgHttp2AdapterDataTest, ServerSendsTrailers) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, false); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); int trailer_result = adapter->SubmitTrailer( 1, ToHeaders({{"final-status", "a-ok"}, {"x-comment", "trailers sure are cool"}})); ASSERT_EQ(trailer_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x5, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); } TEST(NgHttp2AdapterTest, ClientSendsContinuation) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 1)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnFrameHeader(1, _, CONTINUATION, 4)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); } TEST(NgHttp2AdapterTest, ClientSendsMetadataWithContinuation) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Metadata(0, "Example connection metadata in multiple frames", true) .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false, true) .Metadata(1, "Some stream metadata that's also sent in multiple frames", true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, kMetadataFrameType, 0)); EXPECT_CALL(visitor, OnBeginMetadataForStream(0, _)); EXPECT_CALL(visitor, OnMetadataForStream(0, _)); EXPECT_CALL(visitor, OnFrameHeader(0, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(0, _)); EXPECT_CALL(visitor, OnMetadataForStream(0, _)); EXPECT_CALL(visitor, OnMetadataEndForStream(0)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnFrameHeader(1, _, CONTINUATION, 4)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, kMetadataFrameType, 0)); EXPECT_CALL(visitor, OnBeginMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, _, kMetadataFrameType, 4)); EXPECT_CALL(visitor, OnBeginMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataForStream(1, _)); EXPECT_CALL(visitor, OnMetadataEndForStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ("Example connection metadata in multiple frames", absl::StrJoin(visitor.GetMetadata(0), "")); EXPECT_EQ("Some stream metadata that's also sent in multiple frames", absl::StrJoin(visitor.GetMetadata(1), "")); } TEST_P(NgHttp2AdapterDataTest, RepeatedHeaderNames) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "text/plain"}, {"accept", "text/html"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "text/plain")); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "text/html")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); const std::vector<Header> headers1 = ToHeaders( {{":status", "200"}, {"content-length", "10"}, {"content-length", "10"}}); visitor.AppendPayloadForStream(1, "perfection"); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, headers1, GetParam() ? nullptr : std::move(body1), false); ASSERT_EQ(0, submit_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, 10, 0x1, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); } TEST_P(NgHttp2AdapterDataTest, ServerRespondsToRequestWithTrailers) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}) .Data(1, "Example data, woohoo.") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); const std::vector<Header> headers1 = ToHeaders({{":status", "200"}}); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, headers1, GetParam() ? nullptr : std::move(body1), false); ASSERT_EQ(0, submit_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string more_frames = TestFrameSequence() .Headers(1, {{"extra-info", "Trailers are weird but good?"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, "extra-info", "Trailers are weird but good?")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); result = adapter->ProcessBytes(more_frames); EXPECT_EQ(more_frames.size(), static_cast<size_t>(result)); visitor.SetEndData(1, true); EXPECT_EQ(true, adapter->ResumeStream(1)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, 0, 0x1, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::DATA})); } TEST_P(NgHttp2AdapterDataTest, ServerSubmitsResponseWithDataSourceError) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); visitor.SimulateError(1); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, 2)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::INTERNAL_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::RST_STREAM})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); int trailer_result = adapter->SubmitTrailer(1, ToHeaders({{":final-status", "a-ok"}})); EXPECT_EQ(trailer_result, 0); } TEST(NgHttp2AdapterTest, CompleteRequestWithServerResponse) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the response body.", true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}}), nullptr, true); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x5, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, IncompleteRequestWithServerResponse) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}}), nullptr, true); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x5, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ServerHandlesMultipleContentLength) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/1"}, {"content-length", "7"}, {"content-length", "7"}}, false) .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/3"}, {"content-length", "11"}, {"content-length", "13"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/1")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "7")); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [content-length], value: [7]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":path", "/3")); EXPECT_CALL(visitor, OnHeaderForStream(3, "content-length", "11")); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 3, name: [content-length], value: [13]")); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST_P(NgHttp2AdapterDataTest, ServerSendsInvalidTrailers) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, false); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); int trailer_result = adapter->SubmitTrailer(1, ToHeaders({{":final-status", "a-ok"}})); ASSERT_EQ(trailer_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x5)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x5, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); } TEST(NgHttp2AdapterTest, ServerDropsNewStreamBelowWatermark) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(3, "This is the request body.") .Headers(1, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, 25, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 25)); EXPECT_CALL(visitor, OnDataForStream(3, "This is the request body.")); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnInvalidFrame).Times(0); EXPECT_CALL(visitor, OnConnectionError).Times(0); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(3, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterInteractionTest, ClientServerInteractionRepeatedHeaderNames) { TestVisitor client_visitor; auto client_adapter = NgHttp2Adapter::CreateClientAdapter(client_visitor); client_adapter->SubmitSettings({}); const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "text/plain"}, {"accept", "text/html"}}); const int32_t stream_id1 = client_adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(client_visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x5)); EXPECT_CALL(client_visitor, OnFrameSent(HEADERS, stream_id1, _, 0x5, 0)); int send_result = client_adapter->Send(); EXPECT_EQ(0, send_result); TestVisitor server_visitor; auto server_adapter = NgHttp2Adapter::CreateServerAdapter(server_visitor); testing::InSequence s; EXPECT_CALL(server_visitor, OnFrameHeader(0, _, SETTINGS, 0)); EXPECT_CALL(server_visitor, OnSettingsStart()); EXPECT_CALL(server_visitor, OnSetting(_)).Times(testing::AnyNumber()); EXPECT_CALL(server_visitor, OnSettingsEnd()); EXPECT_CALL(server_visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(server_visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":scheme", "http")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, "accept", "text/plain")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, "accept", "text/html")); EXPECT_CALL(server_visitor, OnEndHeadersForStream(1)); EXPECT_CALL(server_visitor, OnEndStream(1)); int64_t result = server_adapter->ProcessBytes(client_visitor.data()); EXPECT_EQ(client_visitor.data().size(), static_cast<size_t>(result)); } TEST(NgHttp2AdapterInteractionTest, ClientServerInteractionWithCookies) { TestVisitor client_visitor; auto client_adapter = NgHttp2Adapter::CreateClientAdapter(client_visitor); client_adapter->SubmitSettings({}); const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"cookie", "a; b=2; c"}, {"cookie", "d=e, f, g; h"}}); const int32_t stream_id1 = client_adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(client_visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(client_visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int send_result = client_adapter->Send(); EXPECT_EQ(0, send_result); TestVisitor server_visitor; auto server_adapter = NgHttp2Adapter::CreateServerAdapter(server_visitor); testing::InSequence s; EXPECT_CALL(server_visitor, OnFrameHeader(0, _, SETTINGS, 0)); EXPECT_CALL(server_visitor, OnSettingsStart()); EXPECT_CALL(server_visitor, OnSetting).Times(testing::AnyNumber()); EXPECT_CALL(server_visitor, OnSettingsEnd()); EXPECT_CALL(server_visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(server_visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":scheme", "http")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, "cookie", "a; b=2; c")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, "cookie", "d=e, f, g; h")); EXPECT_CALL(server_visitor, OnEndHeadersForStream(1)); EXPECT_CALL(server_visitor, OnEndStream(1)); int64_t result = server_adapter->ProcessBytes(client_visitor.data()); EXPECT_EQ(client_visitor.data().size(), static_cast<size_t>(result)); } TEST(NgHttp2AdapterTest, ServerForbidsWindowUpdateOnIdleStream) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence().ClientPreface().WindowUpdate(1, 42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnInvalidFrame(1, _)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ServerForbidsDataOnIdleStream) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence() .ClientPreface() .Data(1, "Sorry, out of order") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ServerForbidsRstStreamOnIdleStream) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence() .ClientPreface() .RstStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, RST_STREAM, 0)); EXPECT_CALL(visitor, OnInvalidFrame(1, _)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ServerForbidsNewStreamAboveStreamLimit) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); adapter->SubmitSettings({{MAX_CONCURRENT_STREAMS, 1}}); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .SettingsAck() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 0x5)); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kProtocol)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), stream_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ServerRstStreamsNewStreamAboveStreamLimitBeforeAck) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); adapter->SubmitSettings({{MAX_CONCURRENT_STREAMS, 1}}); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), initial_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnInvalidFrame( 3, Http2VisitorInterface::InvalidFrameError::kRefusedStream)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_result, stream_frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::REFUSED_STREAM))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, AutomaticSettingsAndPingAcks) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence().ClientPreface().Ping(42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, _, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::PING})); } TEST(NgHttp2AdapterTest, AutomaticPingAcksDisabled) { TestVisitor visitor; nghttp2_option* options; nghttp2_option_new(&options); nghttp2_option_set_no_auto_ping_ack(options, 1); auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor, options); nghttp2_option_del(options); const std::string frames = TestFrameSequence().ClientPreface().Ping(42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, InvalidMaxFrameSizeSetting) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence().ClientPreface({{MAX_FRAME_SIZE, 3u}}).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, InvalidPushSetting) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence().ClientPreface({{ENABLE_PUSH, 3u}}).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnInvalidFrame(0, _)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, InvalidConnectProtocolSetting) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface({{ENABLE_CONNECT_PROTOCOL, 3u}}) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); auto adapter2 = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames2 = TestFrameSequence() .ClientPreface({{ENABLE_CONNECT_PROTOCOL, 1}}) .Settings({{ENABLE_CONNECT_PROTOCOL, 0}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{ENABLE_CONNECT_PROTOCOL, 1u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{ENABLE_CONNECT_PROTOCOL, 0u})); EXPECT_CALL(visitor, OnSettingsEnd()); read_result = adapter2->ProcessBytes(frames2); EXPECT_EQ(static_cast<size_t>(read_result), frames2.size()); EXPECT_TRUE(adapter2->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); adapter2->Send(); } TEST(NgHttp2AdapterTest, ServerForbidsProtocolPseudoheaderBeforeAck) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); const std::string stream1_frames = TestFrameSequence() .Headers(1, {{":method", "CONNECT"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {":protocol", "websocket"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [:protocol], value: [websocket]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); int64_t stream_result = adapter->ProcessBytes(stream1_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream1_frames.size()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); adapter->SubmitSettings({{ENABLE_CONNECT_PROTOCOL, 1}}); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); visitor.Clear(); const std::string stream3_frames = TestFrameSequence() .Headers(3, {{":method", "CONNECT"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}, {":protocol", "websocket"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); stream_result = adapter->ProcessBytes(stream3_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream3_frames.size()); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ServerAllowsProtocolPseudoheaderAfterAck) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); adapter->SubmitSettings({{ENABLE_CONNECT_PROTOCOL, 1}}); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .SettingsAck() .Headers(1, {{":method", "CONNECT"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {":protocol", "websocket"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, SETTINGS, 0x1)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream_frames.size()); EXPECT_FALSE(adapter->want_write()); } TEST_P(NgHttp2AdapterDataTest, SkipsSendingFramesForRejectedStream) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string initial_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); visitor.AppendPayloadForStream( 1, "Here is some data, which will be completely ignored!"); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); auto source = std::make_unique<TestMetadataSource>(ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}}))); adapter->SubmitMetadata(1, 16384u, std::move(source)); adapter->SubmitWindowUpdate(1, 1024); adapter->SubmitRst(1, Http2ErrorCode::INTERNAL_ERROR); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::INTERNAL_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, static_cast<SpdyFrameType>(kMetadataFrameType), SpdyFrameType::RST_STREAM})); } TEST_P(NgHttp2AdapterDataTest, ServerQueuesMetadataWithStreamReset) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string initial_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); visitor.AppendPayloadForStream( 1, "Here is some data, which will be completely ignored!"); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); auto source = std::make_unique<TestMetadataSource>(ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}}))); adapter->SubmitMetadata(1, 16384u, std::move(source)); adapter->SubmitWindowUpdate(1, 1024); const std::string reset_frame = TestFrameSequence().RstStream(1, Http2ErrorCode::CANCEL).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, RST_STREAM, 0x0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::CANCEL)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::CANCEL)); adapter->ProcessBytes(reset_frame); source = std::make_unique<TestMetadataSource>( ToHeaderBlock(ToHeaders({{"really-important", "information!"}}))); adapter->SubmitMetadata(1, 16384u, std::move(source)); EXPECT_EQ(1, adapter->stream_metadata_size()); EXPECT_EQ(2, adapter->pending_metadata_count(1)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(kMetadataFrameType, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(kMetadataFrameType, 1, _, 0x4, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, static_cast<SpdyFrameType>(kMetadataFrameType), static_cast<SpdyFrameType>(kMetadataFrameType)})); EXPECT_EQ(0, adapter->stream_metadata_size()); EXPECT_EQ(0, adapter->pending_metadata_count(1)); } TEST(NgHttp2AdapterTest, ServerStartsShutdown) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); adapter->SubmitShutdownNotice(); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(NgHttp2AdapterTest, ServerStartsShutdownAfterGoaway) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); EXPECT_FALSE(adapter->want_write()); adapter->SubmitGoAway(1, Http2ErrorCode::HTTP2_NO_ERROR, "and don't come back!"); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); adapter->SubmitShutdownNotice(); EXPECT_FALSE(adapter->want_write()); } TEST(NgHttp2AdapterTest, ConnectionErrorWithBlackholeSinkingData) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence().ClientPreface().WindowUpdate(1, 42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnInvalidFrame(1, _)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); const std::string next_frame = TestFrameSequence().Ping(42).Serialize(); const int64_t next_result = adapter->ProcessBytes(next_frame); EXPECT_EQ(static_cast<size_t>(next_result), next_frame.size()); } TEST_P(NgHttp2AdapterDataTest, ServerDoesNotSendFramesAfterImmediateGoAway) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); adapter->SubmitSettings({{HEADER_TABLE_SIZE, 100u}}); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); visitor.AppendPayloadForStream(1, "This data is doomed to never be written."); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); adapter->SubmitWindowUpdate(kConnectionStreamId, 42); adapter->SubmitSettings({}); auto source = std::make_unique<TestMetadataSource>(ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}}))); adapter->SubmitMetadata(1, 16384u, std::move(source)); EXPECT_TRUE(adapter->want_write()); const std::string connection_error_frames = TestFrameSequence().WindowUpdate(3, 42).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(3, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnInvalidFrame(3, _)); const int64_t result = adapter->ProcessBytes(connection_error_frames); EXPECT_EQ(static_cast<size_t>(result), connection_error_frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); visitor.Clear(); adapter->SubmitPing(42); EXPECT_FALSE(adapter->want_write()); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); } TEST(NgHttp2AdapterTest, ServerHandlesContentLength) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"content-length", "2"}}) .Data(1, "hi", true) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}, {"content-length", "nan"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 2)); EXPECT_CALL(visitor, OnDataForStream(1, "hi")); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 3, name: [content-length], value: [nan]")); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerHandlesContentLengthMismatch) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}, {"content-length", "2"}}) .Data(1, "h", true) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/three"}, {"content-length", "2"}}) .Data(3, "howdy", true) .Headers(5, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/four"}, {"content-length", "2"}}, true) .Headers(7, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/four"}, {"content-length", "2"}}, false) .Data(7, "h", false) .Headers(7, {{"extra-info", "Trailers with content-length mismatch"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 1)); EXPECT_CALL(visitor, OnDataForStream(1, "h")); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 5)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(5); EXPECT_CALL(visitor, OnInvalidFrame( 5, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); EXPECT_CALL(visitor, OnFrameHeader(7, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(7)); EXPECT_CALL(visitor, OnHeaderForStream(7, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(7)); EXPECT_CALL(visitor, OnFrameHeader(7, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(7, 1)); EXPECT_CALL(visitor, OnDataForStream(7, "h")); EXPECT_CALL(visitor, OnFrameHeader(7, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(7)); EXPECT_CALL(visitor, OnHeaderForStream(7, _, _)); EXPECT_CALL(visitor, OnInvalidFrame( 7, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 5, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 5, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 7, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 7, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(7, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerHandlesAsteriskPathForOptions) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "*"}, {":method", "OPTIONS"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(NgHttp2AdapterTest, ServerHandlesInvalidPath) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "*"}, {":method", "GET"}}, true) .Headers(3, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "other/non/slash/starter"}, {":method", "GET"}}, true) .Headers(5, {{":scheme", "https"}, {":authority", "example.com"}, {":path", ""}, {":method", "GET"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnInvalidFrame( 1, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL(visitor, OnInvalidFrame( 3, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(2); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 5, name: [:path], value: []")); EXPECT_CALL( visitor, OnInvalidFrame(5, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 5, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 5, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerHandlesTeHeader) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"te", "trailers"}}, true) .Headers(3, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"te", "trailers, deflate"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 3, name: [te], value: [trailers, deflate]")); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(NgHttp2AdapterTest, ServerHandlesConnectionSpecificHeaders) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"connection", "keep-alive"}}, true) .Headers(3, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"proxy-connection", "keep-alive"}}, true) .Headers(5, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"keep-alive", "timeout=42"}}, true) .Headers(7, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"transfer-encoding", "chunked"}}, true) .Headers(9, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"upgrade", "h2c"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 1, name: [connection], value: [keep-alive]")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 3, name: [proxy-connection], value: [keep-alive]")); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 5, name: [keep-alive], value: [timeout=42]")); EXPECT_CALL( visitor, OnInvalidFrame(5, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(7, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(7)); EXPECT_CALL(visitor, OnHeaderForStream(7, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 7, name: [transfer-encoding], value: [chunked]")); EXPECT_CALL( visitor, OnInvalidFrame(7, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(9, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(9)); EXPECT_CALL(visitor, OnHeaderForStream(9, _, _)).Times(4); EXPECT_CALL( visitor, OnErrorDebug("Invalid HTTP header field was received: frame type: 1, " "stream: 9, name: [upgrade], value: [h2c]")); EXPECT_CALL( visitor, OnInvalidFrame(9, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 5, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 5, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 7, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 7, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(7, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 9, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 9, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(9, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerConsumesDataWithPadding) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); TestFrameSequence seq = std::move(TestFrameSequence().ClientPreface().Headers( 1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false)); size_t total_size = 0; while (total_size < 62 * 1024) { seq.Data(1, "a", false, 254); total_size += 255; } const std::string frames = seq.Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0x8)) .Times(testing::AtLeast(1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)).Times(testing::AtLeast(1)); EXPECT_CALL(visitor, OnDataForStream(1, "a")).Times(testing::AtLeast(1)); EXPECT_CALL(visitor, OnDataPaddingLength(1, _)).Times(testing::AtLeast(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(result, frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, _, 0x0)).Times(1); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, _, 0x0, 0)).Times(1); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, _, 0x0)).Times(1); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, _, 0x0, 0)).Times(1); const int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::WINDOW_UPDATE, SpdyFrameType::WINDOW_UPDATE})); } TEST_P(NgHttp2AdapterDataTest, NegativeFlowControlStreamResumption) { TestVisitor visitor; auto adapter = NgHttp2Adapter::CreateServerAdapter(visitor); const std::string frames = TestFrameSequence() .ClientPreface({{INITIAL_WINDOW_SIZE, 128u * 1024u}}) .WindowUpdate(0, 1 << 20) .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{Http2KnownSettingsId::INITIAL_WINDOW_SIZE, 128u * 1024u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 1 << 20)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); visitor.AppendPayloadForStream(1, std::string(70000, 'a')); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)).Times(5); adapter->Send(); EXPECT_FALSE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{Http2KnownSettingsId::INITIAL_WINDOW_SIZE, 64u * 1024u})); EXPECT_CALL(visitor, OnSettingsEnd()); adapter->ProcessBytes(TestFrameSequence() .Settings({{INITIAL_WINDOW_SIZE, 64u * 1024u}}) .Serialize()); EXPECT_TRUE(adapter->want_write()); EXPECT_EQ(adapter->GetStreamSendWindowSize(1), 0); visitor.AppendPayloadForStream(1, "Stream should be resumed."); adapter->ResumeStream(1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); adapter->Send(); EXPECT_FALSE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 10000)); adapter->ProcessBytes(TestFrameSequence().WindowUpdate(1, 10000).Serialize()); EXPECT_TRUE(adapter->want_write()); EXPECT_GT(adapter->GetStreamSendWindowSize(1), 0); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); adapter->Send(); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/nghttp2_adapter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/nghttp2_adapter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
23427dcf-22eb-4675-9011-32fc7381c6eb
cpp
google/tensorstore
apply_members
tensorstore/util/apply_members/apply_members.h
tensorstore/util/apply_members/apply_members_test.cc
#ifndef TENSORSTORE_UTIL_APPLY_MEMBERS_APPLY_MEMBERS_H_ #define TENSORSTORE_UTIL_APPLY_MEMBERS_APPLY_MEMBERS_H_ #include <type_traits> #include <utility> #include "absl/base/attributes.h" namespace half_float { class half; } namespace tensorstore { class BFloat16; template <typename T, typename SFINAE = void> struct ApplyMembers { using NotSpecialized = void; }; namespace internal_apply_members { struct IgnoreMembers { template <typename... T> constexpr void operator()(const T&...) const {} }; template <typename T, typename SFINAE = void> struct SupportsApplyMembersImpl : public std::true_type {}; template <typename T> struct SupportsApplyMembersImpl<T, typename ApplyMembers<T>::NotSpecialized> : public std::false_type {}; template <typename T> using MemberApplyMembersCallExpr = decltype(T::ApplyMembers( std::declval<const T&>(), internal_apply_members::IgnoreMembers{})); } template <typename T> struct ApplyMembers< T, std::enable_if_t< !std::is_empty_v<T>, std::void_t<internal_apply_members::MemberApplyMembersCallExpr<T>>>> { template <typename X, typename F> ABSL_ATTRIBUTE_ALWAYS_INLINE static constexpr auto Apply(X&& x, F f) { return T::ApplyMembers(x, std::move(f)); } }; template <typename T> struct ApplyMembers<T, std::enable_if_t<std::is_empty_v<T>>> { template <typename X, typename F> ABSL_ATTRIBUTE_ALWAYS_INLINE static constexpr auto Apply(X&& x, F f) { return f(); } }; template <typename T> constexpr inline bool SupportsApplyMembers = internal_apply_members::SupportsApplyMembersImpl<T>::value; template <typename T, typename SFINAE = void> constexpr inline bool SerializeUsingMemcpy = std::is_integral_v<T> || std::is_floating_point_v<T> || std::is_enum_v<T>; template <> constexpr inline bool SerializeUsingMemcpy<BFloat16> = true; template <> constexpr inline bool SerializeUsingMemcpy<half_float::half> = true; } #endif
#include "tensorstore/util/apply_members/apply_members.h" #include <array> #include <complex> #include <tuple> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/apply_members/std_array.h" #include "tensorstore/util/apply_members/std_complex.h" #include "tensorstore/util/apply_members/std_pair.h" #include "tensorstore/util/apply_members/std_tuple.h" namespace { struct Foo { int x, y; static constexpr auto ApplyMembers = [](auto&& x, auto f) { return f(x.x, x.y); }; }; struct Bar {}; struct Baz { int x, y; }; [[maybe_unused]] void TestFooApplyMembers() { Foo value; tensorstore::ApplyMembers<Foo>::Apply(value, [&](int& x, int& y) {}); } [[maybe_unused]] void TestBarApplyMembers() { Bar value; tensorstore::ApplyMembers<Bar>::Apply(value, [&]() {}); } [[maybe_unused]] void TestTupleApplyMembers() { using T = std::tuple<int, double>; T value; tensorstore::ApplyMembers<T>::Apply(value, [&](int& x, double& y) {}); } [[maybe_unused]] void TestStdArrayApplyMembers() { using T = std::array<int, 3>; T value; tensorstore::ApplyMembers<T>::Apply(value, [&](int& x, int& y, int& z) {}); } [[maybe_unused]] void TestArrayApplyMembers() { using T = int[3]; T value; tensorstore::ApplyMembers<T>::Apply(value, [&](int& x, int& y, int& z) {}); } [[maybe_unused]] void TestPairApplyMembers() { using T = std::pair<int, double>; T value; tensorstore::ApplyMembers<T>::Apply(value, [&](int& x, double& y) {}); } [[maybe_unused]] void TestComplexApplyMembers() { using T = std::complex<double>; T value; tensorstore::ApplyMembers<T>::Apply(value, [&](double& r, double& i) {}); } static_assert(tensorstore::SupportsApplyMembers<Foo>); static_assert(tensorstore::SupportsApplyMembers<Bar>); static_assert(tensorstore::SupportsApplyMembers<std::complex<float>>); static_assert(tensorstore::SupportsApplyMembers<std::pair<int, double>>); static_assert(tensorstore::SupportsApplyMembers<std::tuple<>>); static_assert(tensorstore::SupportsApplyMembers<std::tuple<int>>); static_assert(tensorstore::SupportsApplyMembers<std::tuple<int, double>>); static_assert(tensorstore::SupportsApplyMembers<std::array<int, 3>>); static_assert(!tensorstore::SupportsApplyMembers<Baz>); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/apply_members/apply_members.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/apply_members/apply_members_test.cc
4f887a6430414cd6088e1743555015b10f116d50
67162720-7b91-4e49-9f0d-59f369b55439
cpp
google/cel-cpp
kind
common/kind.cc
common/kind_test.cc
#include "common/kind.h" #include "absl/strings/string_view.h" namespace cel { absl::string_view KindToString(Kind kind) { switch (kind) { case Kind::kNullType: return "null_type"; case Kind::kDyn: return "dyn"; case Kind::kAny: return "any"; case Kind::kType: return "type"; case Kind::kTypeParam: return "type_param"; case Kind::kFunction: return "function"; case Kind::kBool: return "bool"; case Kind::kInt: return "int"; case Kind::kUint: return "uint"; case Kind::kDouble: return "double"; case Kind::kString: return "string"; case Kind::kBytes: return "bytes"; case Kind::kDuration: return "duration"; case Kind::kTimestamp: return "timestamp"; case Kind::kList: return "list"; case Kind::kMap: return "map"; case Kind::kStruct: return "struct"; case Kind::kUnknown: return "*unknown*"; case Kind::kOpaque: return "*opaque*"; case Kind::kBoolWrapper: return "google.protobuf.BoolValue"; case Kind::kIntWrapper: return "google.protobuf.Int64Value"; case Kind::kUintWrapper: return "google.protobuf.UInt64Value"; case Kind::kDoubleWrapper: return "google.protobuf.DoubleValue"; case Kind::kStringWrapper: return "google.protobuf.StringValue"; case Kind::kBytesWrapper: return "google.protobuf.BytesValue"; case Kind::kEnum: return "enum"; default: return "*error*"; } } }
#include "common/kind.h" #include <limits> #include <type_traits> #include "common/type_kind.h" #include "common/value_kind.h" #include "internal/testing.h" namespace cel { namespace { static_assert(std::is_same_v<std::underlying_type_t<TypeKind>, std::underlying_type_t<ValueKind>>, "TypeKind and ValueKind must have the same underlying type"); TEST(Kind, ToString) { EXPECT_EQ(KindToString(Kind::kError), "*error*"); EXPECT_EQ(KindToString(Kind::kNullType), "null_type"); EXPECT_EQ(KindToString(Kind::kDyn), "dyn"); EXPECT_EQ(KindToString(Kind::kAny), "any"); EXPECT_EQ(KindToString(Kind::kType), "type"); EXPECT_EQ(KindToString(Kind::kBool), "bool"); EXPECT_EQ(KindToString(Kind::kInt), "int"); EXPECT_EQ(KindToString(Kind::kUint), "uint"); EXPECT_EQ(KindToString(Kind::kDouble), "double"); EXPECT_EQ(KindToString(Kind::kString), "string"); EXPECT_EQ(KindToString(Kind::kBytes), "bytes"); EXPECT_EQ(KindToString(Kind::kDuration), "duration"); EXPECT_EQ(KindToString(Kind::kTimestamp), "timestamp"); EXPECT_EQ(KindToString(Kind::kList), "list"); EXPECT_EQ(KindToString(Kind::kMap), "map"); EXPECT_EQ(KindToString(Kind::kStruct), "struct"); EXPECT_EQ(KindToString(Kind::kUnknown), "*unknown*"); EXPECT_EQ(KindToString(Kind::kOpaque), "*opaque*"); EXPECT_EQ(KindToString(Kind::kBoolWrapper), "google.protobuf.BoolValue"); EXPECT_EQ(KindToString(Kind::kIntWrapper), "google.protobuf.Int64Value"); EXPECT_EQ(KindToString(Kind::kUintWrapper), "google.protobuf.UInt64Value"); EXPECT_EQ(KindToString(Kind::kDoubleWrapper), "google.protobuf.DoubleValue"); EXPECT_EQ(KindToString(Kind::kStringWrapper), "google.protobuf.StringValue"); EXPECT_EQ(KindToString(Kind::kBytesWrapper), "google.protobuf.BytesValue"); EXPECT_EQ(KindToString(static_cast<Kind>(std::numeric_limits<int>::max())), "*error*"); } TEST(Kind, TypeKindRoundtrip) { EXPECT_EQ(TypeKindToKind(KindToTypeKind(Kind::kBool)), Kind::kBool); } TEST(Kind, ValueKindRoundtrip) { EXPECT_EQ(ValueKindToKind(KindToValueKind(Kind::kBool)), Kind::kBool); } TEST(Kind, IsTypeKind) { EXPECT_TRUE(KindIsTypeKind(Kind::kBool)); EXPECT_TRUE(KindIsTypeKind(Kind::kAny)); EXPECT_TRUE(KindIsTypeKind(Kind::kDyn)); } TEST(Kind, IsValueKind) { EXPECT_TRUE(KindIsValueKind(Kind::kBool)); EXPECT_FALSE(KindIsValueKind(Kind::kAny)); EXPECT_FALSE(KindIsValueKind(Kind::kDyn)); } TEST(Kind, Equality) { EXPECT_EQ(Kind::kBool, TypeKind::kBool); EXPECT_EQ(TypeKind::kBool, Kind::kBool); EXPECT_EQ(Kind::kBool, ValueKind::kBool); EXPECT_EQ(ValueKind::kBool, Kind::kBool); EXPECT_NE(Kind::kBool, TypeKind::kInt); EXPECT_NE(TypeKind::kInt, Kind::kBool); EXPECT_NE(Kind::kBool, ValueKind::kInt); EXPECT_NE(ValueKind::kInt, Kind::kBool); } TEST(TypeKind, ToString) { EXPECT_EQ(TypeKindToString(TypeKind::kBool), KindToString(Kind::kBool)); } TEST(ValueKind, ToString) { EXPECT_EQ(ValueKindToString(ValueKind::kBool), KindToString(Kind::kBool)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/kind.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/kind_test.cc
4552db5798fb0853b131b783d8875794334fae7f
c4ea70b1-9d47-4f07-af1c-0c17c795a89a
cpp
tensorflow/tensorflow
cuda_executor
third_party/xla/xla/stream_executor/cuda/cuda_executor.cc
third_party/xla/xla/stream_executor/cuda/cuda_executor_test.cc
#include "xla/stream_executor/cuda/cuda_executor.h" #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <variant> #include "absl/log/check.h" #include "absl/numeric/int128.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "third_party/gpus/cuda/include/cuda.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/cuda/cuda_collectives.h" #include "xla/stream_executor/cuda/cuda_event.h" #include "xla/stream_executor/cuda/cuda_kernel.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #include "xla/stream_executor/cuda/cuda_runtime.h" #include "xla/stream_executor/cuda/cuda_status.h" #include "xla/stream_executor/cuda/cuda_version_parser.h" #include "xla/stream_executor/cuda/delay_kernel.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/event_based_timer.h" #include "xla/stream_executor/fft.h" #include "xla/stream_executor/gpu/context.h" #include "xla/stream_executor/gpu/gpu_command_buffer.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_event.h" #include "xla/stream_executor/gpu/gpu_kernel.h" #include "xla/stream_executor/gpu/gpu_semaphore.h" #include "xla/stream_executor/gpu/gpu_stream.h" #include "xla/stream_executor/gpu/gpu_timer.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/gpu/read_numa_node.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/module_spec.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/plugin_registry.h" #include "xla/stream_executor/semantic_version.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace stream_executor { namespace gpu { namespace { bool ShouldLaunchDelayKernel() { static bool value = [] { const char* blocking = std::getenv("CUDA_LAUNCH_BLOCKING"); return !blocking || std::string_view{blocking} != "1"; }(); return value; } absl::Status FuncGetAttribute(CUfunction_attribute attribute, CUfunction func, int* attribute_value) { return cuda::ToStatus( cuFuncGetAttribute(attribute_value, attribute, func), absl::StrCat("Failed to query kernel attribute: ", attribute)); } } static CUdeviceptr AsCudaDevicePtr(const DeviceMemoryBase& gpu_mem) { return reinterpret_cast<CUdeviceptr>(gpu_mem.opaque()); } static CUdeviceptr AsCudaDevicePtr(DeviceMemoryBase* gpu_mem) { return AsCudaDevicePtr(*gpu_mem); } CudaExecutor::~CudaExecutor() { CHECK(kernel_to_gpu_binary_.empty()) << "GpuExecutor has live kernels."; CHECK(gpu_binary_to_module_.empty()) << "GpuExecutor has loaded modules."; if (gpu_context() != nullptr) { GpuDriver::DestroyContext(gpu_context()); } } absl::Status CudaExecutor::Init() { TF_RETURN_IF_ERROR(GpuDriver::Init()); TF_RETURN_IF_ERROR(GpuDriver::GetDevice(device_ordinal(), &device_)); Context* context; TF_RETURN_IF_ERROR( GpuDriver::CreateContext(device_ordinal(), device_, &context)); set_context(context); TF_RETURN_IF_ERROR( GpuDriver::GetComputeCapability(&cc_major_, &cc_minor_, device_)); TF_ASSIGN_OR_RETURN(delay_kernels_supported_, DelayKernelIsSupported()); return absl::OkStatus(); } absl::StatusOr<bool> CudaExecutor::DelayKernelIsSupported() { TF_ASSIGN_OR_RETURN(int status, GpuDriver::GetDeviceAttribute( CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, device_)); return static_cast<bool>(status); } absl::Status CudaExecutor::LoadModuleFromCuBin(const char* cubin, CUmodule* module) { uint64_t module_refcount; std::tie(*module, module_refcount) = gpu_binary_to_module_[cubin]; if (*module == nullptr) { TF_RETURN_IF_ERROR(GpuDriver::LoadCubin(gpu_context(), cubin, module)); module_refcount = 1; VLOG(3) << "Loaded CUBIN " << static_cast<const void*>(cubin) << " as module " << *module; } else { ++module_refcount; VLOG(3) << "CUBIN " << static_cast<const void*>(cubin) << " is already loaded as module " << *module; } gpu_binary_to_module_[cubin] = {*module, module_refcount}; return absl::OkStatus(); } absl::Status CudaExecutor::LoadModuleFromPtx(const char* ptx, CUmodule* module) { uint64_t module_refcount; std::tie(*module, module_refcount) = gpu_binary_to_module_[ptx]; if (*module == nullptr) { TF_RETURN_IF_ERROR(GpuDriver::LoadPtx(gpu_context(), ptx, module)); VLOG(3) << "Loaded PTX " << static_cast<const void*>(ptx) << " as module " << *module; module_refcount = 1; } else { ++module_refcount; VLOG(3) << "PTX " << static_cast<const void*>(ptx) << " is already loaded as module " << module; } gpu_binary_to_module_[ptx] = {*module, module_refcount}; return absl::OkStatus(); } absl::Status CudaExecutor::LoadModuleFromHsaco(const char* hsaco, CUmodule* module) { return absl::InternalError( "Feature not supported on CUDA platform (LoadModuleFromHsaco)"); } absl::StatusOr<std::unique_ptr<Kernel>> CudaExecutor::LoadKernel( const MultiKernelLoaderSpec& spec) { auto cuda_kernel = std::make_unique<CudaKernel>(this); CUmodule module; const std::string* kernel_name; if (spec.has_cuda_cubin_in_memory()) { absl::MutexLock lock{&in_memory_modules_mu_}; kernel_name = &spec.cuda_cubin_in_memory().kernel_name(); const char* cubin = reinterpret_cast<const char*>( spec.cuda_cubin_in_memory().cubin_bytes().data()); TF_RETURN_IF_ERROR(LoadModuleFromCuBin(cubin, &module)); kernel_to_gpu_binary_[cuda_kernel.get()] = cubin; } else if (spec.has_cuda_ptx_in_memory()) { kernel_name = &spec.cuda_ptx_in_memory().kernel_name(); if (cc_major_ == 0 && cc_minor_ == 0) { return absl::InternalError("Compute capability not set"); } const char* ptx = spec.cuda_ptx_in_memory().text(cc_major_, cc_minor_); if (ptx == nullptr) { ptx = spec.cuda_ptx_in_memory().default_text(); } if (ptx == nullptr) { LOG(FATAL) << "Loader spec has no ptx for kernel " << *kernel_name; } absl::MutexLock lock{&in_memory_modules_mu_}; TF_RETURN_IF_ERROR(LoadModuleFromPtx(ptx, &module)); kernel_to_gpu_binary_[cuda_kernel.get()] = ptx; } else if (spec.has_in_process_symbol()) { kernel_name = &spec.in_process_symbol().kernel_name(); void* symbol = spec.in_process_symbol().symbol(); VLOG(2) << "Resolve CUDA kernel " << *kernel_name << " from symbol pointer: " << symbol; TF_ASSIGN_OR_RETURN( GpuFunctionHandle function, CudaRuntime::GetFuncBySymbol(spec.in_process_symbol().symbol())); cuda_kernel->set_gpu_function(function); } else { return absl::InternalError("No method of loading CUDA kernel provided"); } VLOG(3) << "LoadKernel on kernel : " << *kernel_name; if (!spec.has_in_process_symbol()) { VLOG(2) << "getting function " << *kernel_name << " from module " << module; GpuFunctionHandle function; TF_RETURN_IF_ERROR(GpuDriver::GetModuleFunction( gpu_context(), module, kernel_name->c_str(), &function)); cuda_kernel->set_gpu_function(function); } cuda_kernel->set_name(*kernel_name); cuda_kernel->set_arity(spec.arity()); KernelMetadata kernel_metadata; TF_RETURN_IF_ERROR(GetKernelMetadata(cuda_kernel.get(), &kernel_metadata)); cuda_kernel->set_metadata(kernel_metadata); cuda_kernel->set_name(*kernel_name); cuda_kernel->set_args_packing(spec.kernel_args_packing()); return std::move(cuda_kernel); } absl::StatusOr<std::unique_ptr<EventBasedTimer>> CudaExecutor::CreateEventBasedTimer(GpuStream* stream, bool use_delay_kernel) { GpuSemaphore semaphore{}; if (use_delay_kernel && ShouldLaunchDelayKernel() && delay_kernels_supported_) { TF_ASSIGN_OR_RETURN(semaphore, LaunchDelayKernel(stream)); } TF_ASSIGN_OR_RETURN(auto start_event, CreateGpuEvent(true)); TF_ASSIGN_OR_RETURN(auto stop_event, CreateGpuEvent(true)); TF_RETURN_IF_ERROR(start_event->Record(stream->gpu_stream())); return std::make_unique<GpuTimer>(gpu_context(), std::move(start_event), std::move(stop_event), stream, std::move(semaphore)); } bool CudaExecutor::UnloadGpuBinary(const void* gpu_binary) { auto module_it = gpu_binary_to_module_.find(gpu_binary); if (gpu_binary_to_module_.end() == module_it) { VLOG(3) << "No loaded CUDA module for " << gpu_binary; return false; } auto& module = module_it->second.first; auto& refcount = module_it->second.second; VLOG(3) << "Found CUDA module " << module << " with refcount " << refcount; if (--refcount == 0) { VLOG(3) << "Unloading CUDA module " << module; GpuDriver::UnloadModule(gpu_context(), module); gpu_binary_to_module_.erase(module_it); } return true; } void CudaExecutor::UnloadKernel(const Kernel* kernel) { VLOG(3) << "Unloading kernel " << kernel << " : " << kernel->name(); absl::MutexLock lock{&in_memory_modules_mu_}; auto gpu_binary_it = kernel_to_gpu_binary_.find(kernel); if (kernel_to_gpu_binary_.end() == gpu_binary_it) { VLOG(3) << "Kernel " << kernel << " : " << kernel->name() << " has never been loaded."; return; } VLOG(3) << "Kernel " << kernel << " : " << kernel->name() << " has loaded GPU code " << gpu_binary_it->second; UnloadGpuBinary(gpu_binary_it->second); kernel_to_gpu_binary_.erase(gpu_binary_it); } absl::Status CudaExecutor::LoadModule(const MultiModuleLoaderSpec& spec, ModuleHandle* module_handle) { CUmodule cu_module; if (spec.has_cuda_cubin_in_memory()) { absl::MutexLock lock{&in_memory_modules_mu_}; TF_RETURN_IF_ERROR(LoadModuleFromCuBin( reinterpret_cast<const char*>(spec.cuda_cubin_in_memory().data()), &cu_module)); *module_handle = ModuleHandle(const_cast<void*>( static_cast<const void*>(spec.cuda_cubin_in_memory().data()))); return absl::OkStatus(); } else if (spec.has_cuda_ptx_in_memory()) { if (cc_major_ == 0 && cc_minor_ == 0) { return absl::InternalError("Compute capability not set"); } if (!spec.cuda_ptx_in_memory()) { return absl::InternalError("PTX not found in spec"); } absl::MutexLock lock{&in_memory_modules_mu_}; TF_RETURN_IF_ERROR( LoadModuleFromPtx(spec.cuda_ptx_in_memory(), &cu_module)); *module_handle = ModuleHandle( const_cast<void*>(static_cast<const void*>(spec.cuda_ptx_in_memory()))); return absl::OkStatus(); } return absl::InternalError("No method of loading CUDA module provided"); } bool CudaExecutor::UnloadModule(ModuleHandle module_handle) { const char* gpu_binary = reinterpret_cast<const char*>(module_handle.id()); absl::MutexLock lock{&in_memory_modules_mu_}; return UnloadGpuBinary(gpu_binary); } namespace { absl::uint128 Fingerprint128(const absl::string_view s) { auto fp = tsl::Fingerprint128(s); return absl::MakeUint128(fp.high64, fp.low64); } int fpus_per_core(int cc_major, int cc_minor) { int n = 128; if (cc_major == 3) { n = 192; } else if ((cc_major == 6 && cc_minor == 0) || (cc_major == 7) || (cc_major == 8 && cc_minor == 0)) { n = 64; } return n; } } absl::StatusOr<std::shared_ptr<DeviceMemoryBase>> CudaExecutor::CreateOrShareConstant(Stream* stream, absl::Span<const uint8_t> content) { absl::MutexLock lock{&shared_constants_mu_}; absl::uint128 fingerprint = Fingerprint128(absl::string_view( reinterpret_cast<const char*>(content.data()), content.size())); auto insert_result = shared_constants_.insert( {fingerprint, std::weak_ptr<DeviceMemoryBase>()}); auto it = insert_result.first; bool was_already_in_cache = !insert_result.second; std::shared_ptr<DeviceMemoryBase> shared_constant; if (was_already_in_cache) { shared_constant = it->second.lock(); } if (shared_constant == nullptr) { auto new_constant = std::make_unique<DeviceMemoryBase>( Allocate(content.size(), 0)); if (new_constant->opaque() == nullptr) { return absl::InternalError(absl::StrFormat( "Failed to allocate %d bytes for new constant", content.size())); } TF_RETURN_IF_ERROR( stream->Memcpy(new_constant.get(), content.data(), content.size())); absl::Status status = stream->BlockHostUntilDone(); if (!status.ok()) { Deallocate(new_constant.get()); status.Update(absl::InternalError(absl::StrFormat( "Memcpy to device address %p failed", new_constant->opaque()))); return status; } shared_constant = std::shared_ptr<DeviceMemoryBase>( new_constant.release(), [this](DeviceMemoryBase* p) { Deallocate(p); delete p; }); it->second = std::weak_ptr<DeviceMemoryBase>(shared_constant); } return shared_constant; } absl::Status CudaExecutor::GetKernelMetadata(GpuKernel* cuda_kernel, KernelMetadata* kernel_metadata) { int value; TF_RETURN_IF_ERROR(FuncGetAttribute(CU_FUNC_ATTRIBUTE_NUM_REGS, cuda_kernel->gpu_function(), &value)); kernel_metadata->set_registers_per_thread(value); TF_RETURN_IF_ERROR(FuncGetAttribute(CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES, cuda_kernel->gpu_function(), &value)); kernel_metadata->set_shared_memory_bytes(value); return absl::OkStatus(); } DeviceMemoryBase CudaExecutor::Allocate(uint64_t size, int64_t memory_space) { if (memory_space == 1) { auto result = CudaCollectives::CollectiveMemoryAllocate(gpu_context(), size); if (!result.ok()) { LOG(ERROR) << result.status(); } return DeviceMemoryBase(nullptr, 0); } else if (memory_space == static_cast<int64_t>(stream_executor::MemoryType::kHost)) { return DeviceMemoryBase(GpuDriver::HostAllocate(gpu_context(), size), size); } CHECK_EQ(memory_space, 0); return DeviceMemoryBase(GpuDriver::DeviceAllocate(gpu_context(), size), size); } void CudaExecutor::Deallocate(DeviceMemoryBase* mem) { auto status_or_memory_space = GetPointerMemorySpace(mem->opaque()); if (!status_or_memory_space.ok()) { LOG(ERROR) << status_or_memory_space.status(); return; } auto memory_space = status_or_memory_space.value(); if (memory_space == MemoryType::kHost) { GpuDriver::HostDeallocate(gpu_context(), mem->opaque()); } else { GpuDriver::DeviceDeallocate(gpu_context(), mem->opaque()); } } bool CudaExecutor::SynchronizeAllActivity() { return GpuDriver::SynchronizeContext(gpu_context()).ok(); } bool CudaExecutor::HostMemoryRegister(void* location, uint64_t size) { VLOG(1) << "Called StreamExecutor::HostMemoryRegister(data=" << location << ")"; return GpuDriver::HostRegister(gpu_context(), location, size); } bool CudaExecutor::HostMemoryUnregister(void* location) { VLOG(1) << "Called StreamExecutor::HostUnregister(data=" << location << ")"; return GpuDriver::HostUnregister(gpu_context(), location); } absl::Status CudaExecutor::SynchronousMemZero(DeviceMemoryBase* location, uint64_t size) { if (reinterpret_cast<uintptr_t>(location->opaque()) % 4 == 0 && size % 4 == 0) { return GpuDriver::SynchronousMemsetUint32( gpu_context(), AsCudaDevicePtr(location), 0x0, size / 4); } return GpuDriver::SynchronousMemsetUint8( gpu_context(), AsCudaDevicePtr(location), 0x0, size); } absl::Status CudaExecutor::SynchronousMemcpy(DeviceMemoryBase* gpu_dst, const void* host_src, uint64_t size) { return GpuDriver::SynchronousMemcpyH2D( gpu_context(), AsCudaDevicePtr(gpu_dst), host_src, size); } absl::Status CudaExecutor::SynchronousMemcpy(void* host_dst, const DeviceMemoryBase& gpu_src, uint64_t size) { return GpuDriver::SynchronousMemcpyD2H(gpu_context(), host_dst, AsCudaDevicePtr(gpu_src), size); } void CudaExecutor::DeallocateStream(Stream* stream) { { absl::MutexLock lock(&mu_); if (dnn_ != nullptr) { dnn_->NotifyStreamDestroyed(stream); } } GpuStream* gpu_stream = AsGpuStream(stream); absl::MutexLock l(&alive_gpu_streams_mu_); alive_gpu_streams_.erase(gpu_stream->gpu_stream()); } absl::Status CudaExecutor::BlockHostUntilDone(Stream* stream) { return GpuDriver::SynchronizeStream(gpu_context(), AsGpuStreamValue(stream)); } blas::BlasSupport* CudaExecutor::AsBlas() { absl::MutexLock lock(&mu_); if (blas_ != nullptr) { return blas_.get(); } PluginRegistry* registry = PluginRegistry::Instance(); absl::StatusOr<PluginRegistry::BlasFactory> status = registry->GetFactory<PluginRegistry::BlasFactory>(cuda::kCudaPlatformId); if (!status.ok()) { LOG(ERROR) << "Unable to retrieve BLAS factory: " << status.status().message(); return nullptr; } auto blas = status.value()(this); blas_.reset(blas); return blas_.get(); } dnn::DnnSupport* CudaExecutor::AsDnn() { absl::MutexLock lock(&mu_); if (dnn_ != nullptr) { return dnn_.get(); } PluginRegistry* registry = PluginRegistry::Instance(); absl::StatusOr<PluginRegistry::DnnFactory> status = registry->GetFactory<PluginRegistry::DnnFactory>(cuda::kCudaPlatformId); if (!status.ok()) { LOG(ERROR) << "Unable to retrieve DNN factory: " << status.status().message(); return nullptr; } auto dnn = status.value()(this); dnn_.reset(dnn); return dnn_.get(); } fft::FftSupport* CudaExecutor::AsFft() { absl::MutexLock lock(&mu_); if (fft_ != nullptr) { return fft_.get(); } PluginRegistry* registry = PluginRegistry::Instance(); absl::StatusOr<PluginRegistry::FftFactory> status = registry->GetFactory<PluginRegistry::FftFactory>(cuda::kCudaPlatformId); if (!status.ok()) { LOG(ERROR) << "Unable to retrieve FFT factory: " << status.status().message(); return nullptr; } auto fft = status.value()(this); fft_.reset(fft); return fft_.get(); } bool CudaExecutor::CanEnablePeerAccessTo(StreamExecutor* other) { GpuExecutor* cuda_other = static_cast<GpuExecutor*>(other); return GpuDriver::CanEnablePeerAccess(gpu_context(), cuda_other->gpu_context()); } absl::Status CudaExecutor::EnablePeerAccessTo(StreamExecutor* other) { GpuExecutor* cuda_other = static_cast<GpuExecutor*>(other); return GpuDriver::EnablePeerAccess(gpu_context(), cuda_other->gpu_context()); } bool CudaExecutor::DeviceMemoryUsage(int64_t* free, int64_t* total) const { return GpuDriver::GetDeviceMemoryInfo(gpu_context(), free, total); } absl::StatusOr<DeviceMemoryBase> CudaExecutor::GetSymbol( const std::string& symbol_name, ModuleHandle module_handle) { void* mem = nullptr; size_t bytes = 0; CHECK(static_cast<bool>(module_handle)); { absl::MutexLock lock{&in_memory_modules_mu_}; auto it = gpu_binary_to_module_.find(module_handle.id()); CHECK(it != gpu_binary_to_module_.end()); GpuModuleHandle gpu_module_handle = it->second.first; CHECK(gpu_module_handle != nullptr); TF_RETURN_IF_ERROR(GpuDriver::GetModuleSymbol( gpu_context(), gpu_module_handle, symbol_name.c_str(), reinterpret_cast<CUdeviceptr*>(&mem), &bytes)); return DeviceMemoryBase(mem, bytes); } return absl::NotFoundError( absl::StrCat("Check if module containing symbol ", symbol_name, " is loaded (module_handle = ", reinterpret_cast<uintptr_t>(module_handle.id()), ")")); } absl::Status FillBlockDimLimit(GpuDeviceHandle device, BlockDim* block_dim_limit) { int x, y, z; TF_RETURN_IF_ERROR(GpuDriver::GetGridLimits(&x, &y, &z, device)); block_dim_limit->x = x; block_dim_limit->y = y; block_dim_limit->z = z; return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<GpuEvent>> CudaExecutor::CreateGpuEvent( bool allow_timing) { auto gpu_event = std::make_unique<CudaEvent>(gpu_context()); TF_RETURN_IF_ERROR(gpu_event->Init(allow_timing)); return std::move(gpu_event); } absl::StatusOr<std::unique_ptr<Event>> CudaExecutor::CreateEvent() { return CreateGpuEvent(false); } absl::StatusOr<std::unique_ptr<Stream>> CudaExecutor::CreateStream( std::optional<std::variant<StreamPriority, int>> priority) { TF_ASSIGN_OR_RETURN(auto event, CreateGpuEvent(false)); auto stream = std::make_unique<GpuStream>(this, std::move(event), priority); absl::MutexLock l(&alive_gpu_streams_mu_); TF_RETURN_IF_ERROR(stream->Init()); auto gpu_stream = stream->gpu_stream(); alive_gpu_streams_[gpu_stream] = stream.get(); return std::move(stream); } absl::StatusOr<std::unique_ptr<CommandBuffer>> CudaExecutor::CreateCommandBuffer(CommandBuffer::Mode mode) { VLOG(2) << "Create CUDA command buffer (CUDA graph)"; GpuGraphHandle graph = nullptr; TF_RETURN_IF_ERROR(GpuDriver::CreateGraph(&graph)); return std::make_unique<GpuCommandBuffer>(mode, this, graph); } absl::Status CudaExecutor::TrimGraphMemory() { return GpuDriver::DeviceGraphMemTrim(device_); } absl::StatusOr<std::unique_ptr<DeviceDescription>> CudaExecutor::CreateDeviceDescription(int device_ordinal) { GpuDeviceHandle device; TF_RETURN_IF_ERROR(GpuDriver::GetDevice(device_ordinal, &device)); int cc_major; int cc_minor; TF_RETURN_IF_ERROR( GpuDriver::GetComputeCapability(&cc_major, &cc_minor, device)); DeviceDescription desc; desc.set_driver_version( ParseCudaVersion(GpuDriver::GetDriverVersion().value_or(0)) .value_or(SemanticVersion{0, 0, 0})); desc.set_runtime_version( ParseCudaVersion(CudaRuntime::GetRuntimeVersion().value_or(0)) .value_or(SemanticVersion{0, 0, 0})); desc.set_compile_time_toolkit_version( ParseCudaVersion(CUDA_VERSION).value_or(SemanticVersion{0, 0, 0})); { std::string pci_bus_id = GpuDriver::GetPCIBusID(device); pci_bus_id = absl::AsciiStrToLower(pci_bus_id); desc.set_pci_bus_id(pci_bus_id); int numa_node = ReadNumaNode(pci_bus_id, device_ordinal); desc.set_numa_node(numa_node); } { desc.set_threads_per_block_limit( GpuDriver::GetDeviceAttribute(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, device) .value()); ThreadDim thread_dim_limit; thread_dim_limit.x = GpuDriver::GetDeviceAttribute( CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, device) .value(); thread_dim_limit.y = GpuDriver::GetDeviceAttribute( CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, device) .value(); thread_dim_limit.z = GpuDriver::GetDeviceAttribute( CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, device) .value(); desc.set_thread_dim_limit(thread_dim_limit); } int sm_clock_khz = GpuDriver::GetDeviceAttribute(CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device) .value(); desc.set_clock_rate_ghz(static_cast<float>(sm_clock_khz) / 1e6); { bool ecc_enabled = false; (void)GpuDriver::IsEccEnabled(device, &ecc_enabled); desc.set_ecc_enabled(ecc_enabled); } uint64_t device_memory_size = static_cast<uint64_t>(-1); (void)GpuDriver::GetDeviceTotalMemory(device, &device_memory_size); desc.set_device_memory_size(device_memory_size); int64_t l2_cache_bytes = GpuDriver::GetDeviceAttribute(CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, device) .value(); desc.set_l2_cache_size(l2_cache_bytes); absl::StatusOr<int> mem_clock_khz = GpuDriver::GetDeviceAttribute( CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device_ordinal); absl::StatusOr<int> mem_bus_width_bits = GpuDriver::GetDeviceAttribute( CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, device_ordinal); if (mem_clock_khz.ok() && mem_bus_width_bits.ok()) { desc.set_memory_bandwidth(2 * int64_t{mem_clock_khz.value()} * 1000 * int64_t{mem_bus_width_bits.value()} / 8); } { BlockDim block_dim_limit; TF_RETURN_IF_ERROR(FillBlockDimLimit(device, &block_dim_limit)); desc.set_block_dim_limit(block_dim_limit); } { std::string device_name; TF_RETURN_IF_ERROR(GpuDriver::GetDeviceName(device, &device_name)); desc.set_name(device_name); } desc.set_platform_version( absl::StrCat("Compute Capability ", cc_major, ".", cc_minor)); desc.set_device_address_bits(64); desc.set_device_vendor("NVIDIA Corporation"); desc.set_cuda_compute_capability(cc_major, cc_minor); desc.set_shared_memory_per_core( GpuDriver::GetMaxSharedMemoryPerCore(device).value()); desc.set_shared_memory_per_block( GpuDriver::GetMaxSharedMemoryPerBlock(device).value()); desc.set_shared_memory_per_block_optin( GpuDriver::GetMaxSharedMemoryPerBlockOptin(device).value()); int core_count = GpuDriver::GetMultiprocessorCount(device).value(); desc.set_core_count(core_count); desc.set_fpus_per_core(fpus_per_core(cc_major, cc_minor)); desc.set_threads_per_core_limit( GpuDriver::GetMaxThreadsPerMultiprocessor(device).value()); desc.set_registers_per_block_limit( GpuDriver::GetMaxRegistersPerBlock(device).value()); desc.set_threads_per_warp(GpuDriver::GetThreadsPerWarp(device).value()); desc.set_registers_per_core_limit( GpuDriver::GetDeviceAttribute( CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR, device) .value()); auto value_or = [](const auto& status_or, auto default_val) { if (status_or.ok()) return *status_or; return default_val; }; desc.set_model_str(absl::StrFormat( "sm_%d.%d with %dB RAM, %d cores, %dKHz clock, %dKHz mem clock, %dB L2$", cc_major, cc_minor, device_memory_size, core_count, sm_clock_khz, value_or(mem_clock_khz, 0), l2_cache_bytes)); return std::make_unique<DeviceDescription>(std::move(desc)); } } }
#include "xla/stream_executor/cuda/cuda_executor.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/semantic_version.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor::gpu { namespace { using testing::Ge; using testing::IsEmpty; using testing::Not; using testing::VariantWith; TEST(CudaExecutorTest, CreateDeviceDescription) { TF_ASSERT_OK(GpuDriver::Init()); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DeviceDescription> result, CudaExecutor::CreateDeviceDescription(0)); constexpr SemanticVersion kNullVersion{0, 0, 0}; EXPECT_NE(result->runtime_version(), kNullVersion); EXPECT_NE(result->driver_version(), kNullVersion); EXPECT_NE(result->compile_time_toolkit_version(), kNullVersion); EXPECT_THAT(result->platform_version(), Not(IsEmpty())); EXPECT_THAT(result->name(), Not(IsEmpty())); EXPECT_THAT(result->model_str(), Not(IsEmpty())); EXPECT_THAT(result->device_vendor(), "NVIDIA Corporation"); EXPECT_THAT( result->gpu_compute_capability(), VariantWith<CudaComputeCapability>(Ge(CudaComputeCapability{1, 0}))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/cuda_executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/cuda_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c0931f4d-cd5e-4947-b16f-94cba53908d8
cpp
tensorflow/tensorflow
cl_arguments
tensorflow/lite/delegates/gpu/cl/cl_arguments.cc
tensorflow/lite/delegates/gpu/cl/cl_arguments_test.cc
#include "tensorflow/lite/delegates/gpu/cl/cl_arguments.h" #include <memory> #include <string> #include <utility> #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/lite/delegates/gpu/cl/buffer.h" #include "tensorflow/lite/delegates/gpu/cl/gpu_object.h" #include "tensorflow/lite/delegates/gpu/cl/qcom_thin_filter.h" #include "tensorflow/lite/delegates/gpu/cl/tensor.h" #include "tensorflow/lite/delegates/gpu/common/task/util.h" #include "tensorflow/lite/delegates/gpu/common/util.h" namespace tflite { namespace gpu { namespace cl { namespace { bool IsWordSymbol(char symbol) { return absl::ascii_isalnum(symbol) || symbol == '_'; } void ReplaceAllWords(const std::string& old_word, const std::string& new_word, std::string* str) { size_t position = str->find(old_word); while (position != std::string::npos) { char prev = position == 0 ? '.' : (*str)[position - 1]; char next = position + old_word.size() < str->size() ? (*str)[position + old_word.size()] : '.'; if (IsWordSymbol(prev) || IsWordSymbol(next)) { position = str->find(old_word, position + 1); continue; } str->replace(position, old_word.size(), new_word); position = str->find(old_word, position + new_word.size()); } } void AppendArgument(const std::string& arg, std::string* args) { if (!args->empty()) { absl::StrAppend(args, ",\n "); } absl::StrAppend(args, arg); } std::string GetImageModifier(AccessType access) { switch (access) { case AccessType::READ: return "__read_only"; case AccessType::WRITE: return "__write_only"; case AccessType::READ_WRITE: return "__read_write"; } } std::string GetDefaultSamplers(const GpuInfo& gpu_info) { std::string result; result += "__constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | " "CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;\n"; if (gpu_info.IsAdreno() && gpu_info.adreno_info.IsAdreno3xx()) { result += "__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | " "CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;\n"; } else { result += "__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | " "CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;\n"; } return result; } absl::Status CreateCLObject(GPUObjectDescriptor* desc, CLContext* context, GPUObjectPtr* result) { const auto* buffer_desc = dynamic_cast<const BufferDescriptor*>(desc); if (buffer_desc) { Buffer gpu_buffer; RETURN_IF_ERROR( gpu_buffer.CreateFromBufferDescriptor(*buffer_desc, context)); *result = std::make_unique<Buffer>(std::move(gpu_buffer)); return absl::OkStatus(); } const auto* tensor_desc = dynamic_cast<const TensorDescriptor*>(desc); if (tensor_desc) { Tensor gpu_tensor; RETURN_IF_ERROR(gpu_tensor.CreateFromDescriptor(*tensor_desc, context)); *result = std::make_unique<Tensor>(std::move(gpu_tensor)); return absl::OkStatus(); } const auto* qcom_thin_filter_desc = dynamic_cast<const QcomThinFilterDescriptor*>(desc); if (qcom_thin_filter_desc) { QcomThinFilter thin_filter; RETURN_IF_ERROR( thin_filter.CreateFromDescriptor(*qcom_thin_filter_desc, context)); *result = std::make_unique<QcomThinFilter>(std::move(thin_filter)); return absl::OkStatus(); } return absl::InvalidArgumentError("Unknown GPU descriptor."); } } constexpr char CLArguments::kArgsPrefix[]; absl::Status CLArguments::Init(const GpuInfo& gpu_info, CLContext* context, Arguments* args, std::string* code) { RETURN_IF_ERROR(AllocateObjects(*args, context)); RETURN_IF_ERROR(AddObjectArgs(gpu_info, *args)); args->MoveObjectRefs(&object_refs_); const bool use_f32_for_halfs = gpu_info.IsPowerVR(); CopyArguments(*args, use_f32_for_halfs); RETURN_IF_ERROR(SetObjectsResources(*args)); RenameArgumentsInCode(code); args->ResolveArgsPass(code); *code = absl::Substitute(*code, GetListOfArgs()); if (gpu_info.SupportsImages()) { *code = GetDefaultSamplers(gpu_info) + *code; } return absl::OkStatus(); } absl::Status CLArguments::Init(const GpuInfo& gpu_info, Arguments* args, CLContext* context) { RETURN_IF_ERROR(AllocateObjects(*args, context)); RETURN_IF_ERROR(AddObjectArgs(gpu_info, *args)); args->MoveObjectRefs(&object_refs_); const bool use_f32_for_halfs = gpu_info.IsPowerVR(); CopyArguments(*args, use_f32_for_halfs); RETURN_IF_ERROR(SetObjectsResources(*args)); return absl::OkStatus(); } absl::Status CLArguments::AllocateObjects(const Arguments& args, CLContext* context) { objects_.resize(args.GetObjects().size()); int i = 0; for (auto& t : args.GetObjects()) { RETURN_IF_ERROR(CreateCLObject(t.second.get(), context, &objects_[i])); i++; } return absl::OkStatus(); } absl::Status CLArguments::AddObjectArgs(const GpuInfo& gpu_info, const Arguments& args) { for (const auto& t : args.GetObjects()) { AddGPUResources(t.first, t.second->GetGPUResources(gpu_info)); } for (const auto& t : args.GetObjectRefs()) { AddGPUResources(t.first, t.second->GetGPUResources(gpu_info)); } return absl::OkStatus(); } absl::Status CLArguments::SetObjectsResources(const Arguments& args) { int i = 0; for (const auto& t : args.GetObjects()) { GPUResourcesWithValue resources; RETURN_IF_ERROR(objects_[i]->GetGPUResources(t.second.get(), &resources)); RETURN_IF_ERROR(SetGPUResources(t.first, resources)); i++; } return absl::OkStatus(); } void CLArguments::CopyArguments(const Arguments& args, bool use_f32_for_halfs) { for (const auto& fvalue : args.GetFloatValues()) { auto& new_val = float_values_[fvalue.first]; new_val.value = fvalue.second.value; new_val.active = fvalue.second.active; if (fvalue.second.active) { new_val.offset = shared_float4s_data_.size(); shared_float4s_data_.push_back(new_val.value); } } for (const auto& ivalue : args.GetIntValues()) { auto& new_val = int_values_[ivalue.first]; new_val.value = ivalue.second.value; new_val.active = ivalue.second.active; if (ivalue.second.active) { new_val.offset = shared_int4s_data_.size(); shared_int4s_data_.push_back(new_val.value); } } for (const auto& hfvalue : args.GetHalfValues()) { auto& new_val = half_values_[hfvalue.first]; new_val.value = hfvalue.second.value; new_val.active = hfvalue.second.active; if (hfvalue.second.active) { if (use_f32_for_halfs) { new_val.store_as_f32 = true; new_val.offset = shared_float4s_data_.size(); shared_float4s_data_.push_back(new_val.value); } else { new_val.store_as_f32 = false; new_val.offset = shared_half4s_data_.size(); shared_half4s_data_.push_back(new_val.value); } } } int shared_int4s_aligned_size = AlignByN(shared_int4s_data_.size(), 4); shared_int4s_data_.resize(shared_int4s_aligned_size); int shared_float4s_aligned_size = AlignByN(shared_float4s_data_.size(), 4); shared_float4s_data_.resize(shared_float4s_aligned_size); int shared_half4s_aligned_size = AlignByN(shared_half4s_data_.size(), 4); shared_half4s_data_.resize(shared_half4s_aligned_size); } void CLArguments::RenameArgumentsInCode(std::string* code) { const std::string postfixes[4] = {"x", "y", "z", "w"}; for (const auto& fvalue : float_values_) { if (fvalue.second.active) { std::string index = std::to_string(fvalue.second.offset / 4); std::string new_name = "shared_float4_" + index + "." + postfixes[fvalue.second.offset % 4]; ReplaceAllWords(kArgsPrefix + fvalue.first, new_name, code); } } for (const auto& ivalue : int_values_) { if (ivalue.second.active) { std::string index = std::to_string(ivalue.second.offset / 4); std::string new_name = "shared_int4_" + index + "." + postfixes[ivalue.second.offset % 4]; ReplaceAllWords(kArgsPrefix + ivalue.first, new_name, code); } } for (const auto& hfvalue : half_values_) { if (hfvalue.second.active) { std::string index = std::to_string(hfvalue.second.offset / 4); std::string new_name; if (hfvalue.second.store_as_f32) { new_name = "(half)(shared_float4_" + index + "." + postfixes[hfvalue.second.offset % 4] + ")"; } else { new_name = "shared_half4_" + index + "." + postfixes[hfvalue.second.offset % 4]; } ReplaceAllWords(kArgsPrefix + hfvalue.first, new_name, code); } } } void CLArguments::AddBuffer(const std::string& name, const GPUBufferDescriptor& desc) { buffers_[name].desc = desc; } void CLArguments::AddImage2D(const std::string& name, const GPUImage2DDescriptor& desc) { images2d_[name].desc = desc; } void CLArguments::AddImage2DArray(const std::string& name, const GPUImage2DArrayDescriptor& desc) { image2d_arrays_[name].desc = desc; } void CLArguments::AddImage3D(const std::string& name, const GPUImage3DDescriptor& desc) { images3d_[name].desc = desc; } void CLArguments::AddImageBuffer(const std::string& name, const GPUImageBufferDescriptor& desc) { image_buffers_[name].desc = desc; } void CLArguments::AddCustomMemory(const std::string& name, const GPUCustomMemoryDescriptor& desc) { custom_memories_[name].desc = desc; } void CLArguments::AddGPUResources(const std::string& name, const GPUResources& resources) { for (const auto& r : resources.buffers) { AddBuffer(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.images2d) { AddImage2D(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.image2d_arrays) { AddImage2DArray(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.images3d) { AddImage3D(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.image_buffers) { AddImageBuffer(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.custom_memories) { AddCustomMemory(absl::StrCat(name, "_", r.first), r.second); } } absl::Status CLArguments::SetInt(const std::string& name, int value) { auto it = int_values_.find(name); if (it == int_values_.end()) { return absl::NotFoundError( absl::StrCat("No int argument with name - ", name)); } it->second.value = value; if (it->second.active) { shared_int4s_data_[it->second.offset] = value; } return absl::OkStatus(); } absl::Status CLArguments::SetFloat(const std::string& name, float value) { auto it = float_values_.find(name); if (it == float_values_.end()) { return absl::NotFoundError( absl::StrCat("No float argument with name - ", name)); } it->second.value = value; if (it->second.active) { shared_float4s_data_[it->second.offset] = value; } return absl::OkStatus(); } absl::Status CLArguments::SetHalf(const std::string& name, half value) { auto it = half_values_.find(name); if (it == half_values_.end()) { return absl::NotFoundError( absl::StrCat("No half argument with name - ", name)); } it->second.value = value; if (it->second.active) { if (it->second.store_as_f32) { shared_float4s_data_[it->second.offset] = value; } else { shared_half4s_data_[it->second.offset] = value; } } return absl::OkStatus(); } absl::Status CLArguments::SetImage2D(const std::string& name, cl_mem memory) { auto it = images2d_.find(name); if (it == images2d_.end()) { return absl::NotFoundError( absl::StrCat("No image2D argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetBuffer(const std::string& name, cl_mem memory) { auto it = buffers_.find(name); if (it == buffers_.end()) { return absl::NotFoundError( absl::StrCat("No buffer argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetImage2DArray(const std::string& name, cl_mem memory) { auto it = image2d_arrays_.find(name); if (it == image2d_arrays_.end()) { return absl::NotFoundError( absl::StrCat("No image2D array argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetImage3D(const std::string& name, cl_mem memory) { auto it = images3d_.find(name); if (it == images3d_.end()) { return absl::NotFoundError( absl::StrCat("No image3D argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetImageBuffer(const std::string& name, cl_mem memory) { auto it = image_buffers_.find(name); if (it == image_buffers_.end()) { return absl::NotFoundError( absl::StrCat("No image buffer argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetCustomMemory(const std::string& name, cl_mem memory) { auto it = custom_memories_.find(name); if (it == custom_memories_.end()) { return absl::NotFoundError( absl::StrCat("No custom memory argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetObjectRef(const std::string& name, const GPUObject* object) { auto it = object_refs_.find(name); if (it == object_refs_.end()) { return absl::NotFoundError( absl::StrCat("No object ref with name - ", name)); } GPUResourcesWithValue resources; RETURN_IF_ERROR(object->GetGPUResources(it->second.get(), &resources)); return SetGPUResources(name, resources); } absl::Status CLArguments::SetGPUResources( const std::string& name, const GPUResourcesWithValue& resources) { for (const auto& r : resources.generic.ints) { RETURN_IF_ERROR(SetInt(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.generic.floats) { RETURN_IF_ERROR(SetFloat(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.buffers) { RETURN_IF_ERROR(SetBuffer(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.images2d) { RETURN_IF_ERROR(SetImage2D(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.image2d_arrays) { RETURN_IF_ERROR( SetImage2DArray(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.images3d) { RETURN_IF_ERROR(SetImage3D(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.image_buffers) { RETURN_IF_ERROR(SetImageBuffer(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.custom_memories) { RETURN_IF_ERROR( SetCustomMemory(absl::StrCat(name, "_", r.first), r.second)); } return absl::OkStatus(); } std::string CLArguments::GetListOfArgs() { std::string result; for (auto& t : buffers_) { const std::string type_name = t.second.desc.data_type == DataType::FLOAT32 ? "float" : "half"; std::string attributes; for (const auto& attr : t.second.desc.attributes) { attributes += absl::StrCat(" __attribute__((", attr, "))"); } std::string cl_type; if (t.second.desc.data_type == DataType::BOOL) { cl_type = ToCLDataType(DataType::UINT8, t.second.desc.element_size); } else { cl_type = ToCLDataType(t.second.desc.data_type, t.second.desc.element_size); } AppendArgument(absl::StrCat(MemoryTypeToCLType(t.second.desc.memory_type), " ", cl_type, "* ", t.first, attributes), &result); } for (auto& t : image_buffers_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image1d_buffer_t ", t.first), &result); } for (auto& t : images2d_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image2d_t ", t.first), &result); } for (auto& t : image2d_arrays_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image2d_array_t ", t.first), &result); } for (auto& t : images3d_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image3d_t ", t.first), &result); } for (auto& t : custom_memories_) { AppendArgument(absl::StrCat(t.second.desc.type_name, " ", t.first), &result); } for (int i = 0; i < shared_int4s_data_.size() / 4; ++i) { AppendArgument(absl::StrCat("int4 shared_int4_", i), &result); } for (int i = 0; i < shared_float4s_data_.size() / 4; ++i) { AppendArgument(absl::StrCat("float4 shared_float4_", i), &result); } for (int i = 0; i < shared_half4s_data_.size() / 4; ++i) { AppendArgument(absl::StrCat("half4 shared_half4_", i), &result); } return result; } absl::Status CLArguments::Bind(cl_kernel kernel, int offset) { for (auto& t : buffers_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : image_buffers_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : images2d_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : image2d_arrays_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : images3d_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : custom_memories_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (int i = 0; i < shared_int4s_data_.size() / 4; ++i) { const int error_code = clSetKernelArg(kernel, offset, sizeof(int32_t) * 4, &shared_int4s_data_[i * 4]); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (int i = 0; i < shared_float4s_data_.size() / 4; ++i) { const int error_code = clSetKernelArg(kernel, offset, sizeof(int32_t) * 4, &shared_float4s_data_[i * 4]); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (int i = 0; i < shared_half4s_data_.size() / 4; ++i) { const int error_code = clSetKernelArg(kernel, offset, sizeof(int16_t) * 4, &shared_half4s_data_[i * 4]); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } return absl::OkStatus(); } bool CLArguments::HasEqualScalarArguments(const CLArguments& other) const { return (other.int_values_ == int_values_ && other.float_values_ == float_values_ && other.half_values_ == half_values_); } } } }
#include "tensorflow/lite/delegates/gpu/cl/cl_arguments.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "tensorflow/lite/delegates/gpu/cl/buffer.h" #include "tensorflow/lite/delegates/gpu/cl/cl_test.h" #include "tensorflow/lite/delegates/gpu/cl/gpu_object.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" namespace tflite { namespace gpu { namespace cl { TEST(CLArgumentsTest, TestSelectorResolve) { BufferDescriptor desc; desc.element_type = DataType::FLOAT32; desc.element_size = 4; desc.memory_type = MemoryType::GLOBAL; Arguments args; args.AddObjectRef("weights", AccessType::READ, std::make_unique<BufferDescriptor>(std::move(desc))); std::string sample_code = R"( __kernel void main_function($0) { if (a < 3) { value = args.weights.Read(id); } })"; CLArguments cl_args; GpuInfo gpu_info; ASSERT_OK(cl_args.Init(gpu_info, nullptr, &args, &sample_code)); EXPECT_TRUE(absl::StrContains(sample_code, "value = weights_buffer[id];")); EXPECT_TRUE( absl::StrContains(sample_code, "__global float4* weights_buffer")); } TEST(CLArgumentsTest, TestNoSelector) { BufferDescriptor desc; desc.element_type = DataType::FLOAT32; desc.element_size = 4; desc.memory_type = MemoryType::GLOBAL; Arguments args; args.AddObjectRef("weights", AccessType::READ, std::make_unique<BufferDescriptor>(std::move(desc))); std::string sample_code = R"( if (a < 3) { value = args.weights.UnknownSelector(id); } )"; CLArguments cl_args; GpuInfo gpu_info; EXPECT_FALSE(cl_args.Init(gpu_info, nullptr, &args, &sample_code).ok()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/cl_arguments.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/cl_arguments_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea