Unnamed: 0
int64
0
2.93k
code
stringlengths
101
62.2k
docs
stringlengths
51
10.7k
doc_len
int64
4
1.74k
words
int64
4
4.82k
lang
stringclasses
1 value
prompt
stringlengths
320
71.2k
1,900
def _pi_coeff(arg, cycles=1): r arg = sympify(arg) if arg is pi: return S.One elif not arg: return S.Zero elif arg.is_Mul: cx = arg.coeff(pi) if cx: c, x = cx.as_coeff_Mul() # pi is not included as coeff if c.is_Float: # recast exact binary fractions to Rationals f = abs(c) % 1 if f != 0: p = -int(round(log(f, 2).evalf())) m = 2**p cm = c*m i = int(cm) if i == cm: c = Rational(i, m) cx = c*x else: c = Rational(int(c)) cx = c*x if x.is_integer: c2 = c % 2 if c2 == 1: return x elif not c2: if x.is_even is not None: # known parity return S.Zero return Integer(2) else: return c2*x return cx elif arg.is_zero: return S.Zero
When arg is a Number times $\pi$ (e.g. $3\pi/2$) then return the Number normalized to be in the range $[0, 2]$, else `None`. When an even multiple of $\pi$ is encountered, if it is multiplying something with known parity then the multiple is returned as 0 otherwise as 2. Examples ======== >>> from sympy.functions.elementary.trigonometric import _pi_coeff >>> from sympy import pi, Dummy >>> from sympy.abc import x >>> _pi_coeff(3*x*pi) 3*x >>> _pi_coeff(11*pi/7) 11/7 >>> _pi_coeff(-11*pi/7) 3/7 >>> _pi_coeff(4*pi) 0 >>> _pi_coeff(5*pi) 1 >>> _pi_coeff(5.0*pi) 1 >>> _pi_coeff(5.5*pi) 3/2 >>> _pi_coeff(2 + pi) >>> _pi_coeff(2*Dummy(integer=True)*pi) 2 >>> _pi_coeff(2*Dummy(even=True)*pi) 0
98
122
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _pi_coeff(arg, cycles=1): r arg = sympify(arg) if arg is pi: return S.One elif not arg: return S.Zero elif arg.is_Mul: cx = arg.coeff(pi) if cx: c, x = cx.as_coeff_Mul() # pi is not included as coeff if c.is_Float: # recast exact binary fractions to Rationals f = abs(c) % 1 if f != 0: p = -int(round(log(f, 2).evalf())) m = 2**p cm = c*m i = int(cm) if i == cm: c = Rational(i, m) cx = c*x else: c = Rational(int(c)) cx = c*x if x.is_integer: c2 = c % 2 if c2 == 1: return x elif not c2: if x.is_even is not None: # known parity return S.Zero return Integer(2) else: return c2*x return cx elif arg.is_zero: return S.Zero ``` ###Assistant : When arg is a Number times $\pi$ (e.g. $3\pi/2$) then return the Number normalized to be in the range $[0, 2]$, else `None`. When an even multiple of $\pi$ is encountered, if it is multiplying something with known parity then the multiple is returned as 0 otherwise as 2. Examples ======== >>> from sympy.functions.elementary.trigonometric import _pi_coeff >>> from sympy import pi, Dummy >>> from sympy.abc import x >>> _pi_coeff(3*x*pi) 3*x >>> _pi_coeff(11*pi/7) 11/7 >>> _pi_coeff(-11*pi/7) 3/7 >>> _pi_coeff(4*pi) 0 >>> _pi_coeff(5*pi) 1 >>> _pi_coeff(5.0*pi) 1 >>> _pi_coeff(5.5*pi) 3/2 >>> _pi_coeff(2 + pi) >>> _pi_coeff(2*Dummy(integer=True)*pi) 2 >>> _pi_coeff(2*Dummy(even=True)*pi) 0
1,901
async def async_test_still(hass, info) -> tuple[dict[str, str], str | None]: fmt = None if not (url := info.get(CONF_STILL_IMAGE_URL)): return {}, None if not isinstance(url, template_helper.Template) and url: url = cv.template(url) url.hass = hass try: url = url.async_render(parse_result=False) except TemplateError as err: _LOGGER.error("Error parsing template %s: %s", url, err) return {CONF_STILL_IMAGE_URL: "template_error"}, None verify_ssl = info.get(CONF_VERIFY_SSL) auth = generate_auth(info) try: async_client = get_async_client(hass, verify_ssl=verify_ssl)
Verify that the still image is valid before we create an entity.
12
63
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def async_test_still(hass, info) -> tuple[dict[str, str], str | None]: fmt = None if not (url := info.get(CONF_STILL_IMAGE_URL)): return {}, None if not isinstance(url, template_helper.Template) and url: url = cv.template(url) url.hass = hass try: url = url.async_render(parse_result=False) except TemplateError as err: _LOGGER.error("Error parsing template %s: %s", url, err) return {CONF_STILL_IMAGE_URL: "template_error"}, None verify_ssl = info.get(CONF_VERIFY_SSL) auth = generate_auth(info) try: async_client = get_async_client(hass, verify_ssl=verify_ssl) ``` ###Assistant : Verify that the still image is valid before we create an entity.
1,902
def normalize(self, a): a = _convert_other(a, raiseit=True) return a.normalize(context=self)
normalize reduces an operand to its simplest form. Essentially a plus operation with all trailing zeros removed from the result. >>> ExtendedContext.normalize(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.normalize(Decimal('-2.0')) Decimal('-2') >>> ExtendedContext.normalize(Decimal('1.200')) Decimal('1.2') >>> ExtendedContext.normalize(Decimal('-120')) Decimal('-1.2E+2') >>> ExtendedContext.normalize(Decimal('120.00')) Decimal('1.2E+2') >>> ExtendedContext.normalize(Decimal('0.00')) Decimal('0') >>> ExtendedContext.normalize(6) Decimal('6')
41
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def normalize(self, a): a = _convert_other(a, raiseit=True) return a.normalize(context=self) ``` ###Assistant : normalize reduces an operand to its simplest form. Essentially a plus operation with all trailing zeros removed from the result. >>> ExtendedContext.normalize(Decimal('2.1')) Decimal('2.1') >>> ExtendedContext.normalize(Decimal('-2.0')) Decimal('-2') >>> ExtendedContext.normalize(Decimal('1.200')) Decimal('1.2') >>> ExtendedContext.normalize(Decimal('-120')) Decimal('-1.2E+2') >>> ExtendedContext.normalize(Decimal('120.00')) Decimal('1.2E+2') >>> ExtendedContext.normalize(Decimal('0.00')) Decimal('0') >>> ExtendedContext.normalize(6) Decimal('6')
1,903
def get_tables(self) -> StatusResponse: query = result = self.native_query(query) df = result.data_frame df = df[['TABLE_NAME' 'TABLE_TYPE']] result.data_frame = df.rename(columns={'TABLE_NAME': 'table_name', 'TABLE_TYPE': 'table_type'}) return result
Return list of entities that will be accessible as tables. Returns: HandlerResponse SELECT * FROM INFORMATION_SCHEMA.TABLES
16
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_tables(self) -> StatusResponse: query = result = self.native_query(query) df = result.data_frame df = df[['TABLE_NAME' 'TABLE_TYPE']] result.data_frame = df.rename(columns={'TABLE_NAME': 'table_name', 'TABLE_TYPE': 'table_type'}) return result ``` ###Assistant : Return list of entities that will be accessible as tables. Returns: HandlerResponse SELECT * FROM INFORMATION_SCHEMA.TABLES
1,904
def get_expected_values(self, image_inputs, batched=False): if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] scale = self.size / min(w, h) if h < w: newh, neww = self.size, scale * w else: newh, neww = scale * h, self.size max_size = int((1333 / 800) * self.size) if max(newh, neww) > max_size: scale = max_size / max(newh, neww) newh = newh * scale neww = neww * scale newh, neww = int(newh + 0.5), int(neww + 0.5) expected_height, expected_width = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width @require_torch @require_vision
This function computes the expected height and width when providing images to ViltFeatureExtractor, assuming do_resize is set to True with a scalar size and size_divisor.
25
131
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_expected_values(self, image_inputs, batched=False): if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] scale = self.size / min(w, h) if h < w: newh, neww = self.size, scale * w else: newh, neww = scale * h, self.size max_size = int((1333 / 800) * self.size) if max(newh, neww) > max_size: scale = max_size / max(newh, neww) newh = newh * scale neww = neww * scale newh, neww = int(newh + 0.5), int(neww + 0.5) expected_height, expected_width = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width @require_torch @require_vision ``` ###Assistant : This function computes the expected height and width when providing images to ViltFeatureExtractor, assuming do_resize is set to True with a scalar size and size_divisor.
1,905
def preprocss_testing_data(self, data): num_augs = len(data[0]['img']) batch_size = len(data) aug_batch_imgs = [] aug_batch_data_samples = [] # adjust `images` and `data_samples` to a list of list # outer list is test-time augmentation and inter list # is batch dimension for aug_index in range(num_augs): batch_imgs = [] batch_data_samples = [] for batch_index in range(batch_size): single_img = data[batch_index]['img'][aug_index] # to gpu and normalize single_img = single_img.to(self.device) if self.to_rgb and single_img[0].size(0) == 3: single_img = single_img[[2, 1, 0], ...] single_img = (single_img - self.pixel_mean) / self.pixel_std batch_imgs.append(single_img) batch_data_samples.append( data[batch_index]['data_sample'][aug_index]) aug_batch_imgs.append(stack_batch(batch_imgs)) aug_batch_data_samples.append(batch_data_samples) return aug_batch_imgs, aug_batch_data_samples
Process input data during training and testing phases. Args: data (list[dict]): The data to be processed, which comes from dataloader. The list indicate the batch dimension. Each dict contains these keys: - `img` (list[Tensor]): Image tensor with different test-time augmentation. - `data_sample` (list[:obj:`GeneralData`]): Meta information and annotations under different test-time augmentation. Returns: tuple: It should contain 2 items. - aug_batch_imgs (list[Tensor]): List of batch image tensor. The list indicate the test-time augmentations. Note that the batch size always is 1 when do the augtest. - aug_batch_data_samples (list[list[:obj:`GeneralData`]], Optional): The Data Samples. It usually includes information such as `gt_instance`. Return None If the input datas does not contain `data_sample`. The outer list indicate the number of augmentations and inter list indicate the batch dimension.
123
90
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def preprocss_testing_data(self, data): num_augs = len(data[0]['img']) batch_size = len(data) aug_batch_imgs = [] aug_batch_data_samples = [] # adjust `images` and `data_samples` to a list of list # outer list is test-time augmentation and inter list # is batch dimension for aug_index in range(num_augs): batch_imgs = [] batch_data_samples = [] for batch_index in range(batch_size): single_img = data[batch_index]['img'][aug_index] # to gpu and normalize single_img = single_img.to(self.device) if self.to_rgb and single_img[0].size(0) == 3: single_img = single_img[[2, 1, 0], ...] single_img = (single_img - self.pixel_mean) / self.pixel_std batch_imgs.append(single_img) batch_data_samples.append( data[batch_index]['data_sample'][aug_index]) aug_batch_imgs.append(stack_batch(batch_imgs)) aug_batch_data_samples.append(batch_data_samples) return aug_batch_imgs, aug_batch_data_samples ``` ###Assistant : Process input data during training and testing phases. Args: data (list[dict]): The data to be processed, which comes from dataloader. The list indicate the batch dimension. Each dict contains these keys: - `img` (list[Tensor]): Image tensor with different test-time augmentation. - `data_sample` (list[:obj:`GeneralData`]): Meta information and annotations under different test-time augmentation. Returns: tuple: It should contain 2 items. - aug_batch_imgs (list[Tensor]): List of batch image tensor. The list indicate the test-time augmentations. Note that the batch size always is 1 when do the augtest. - aug_batch_data_samples (list[list[:obj:`GeneralData`]], Optional): The Data Samples. It usually includes information such as `gt_instance`. Return None If the input datas does not contain `data_sample`. The outer list indicate the number of augmentations and inter list indicate the batch dimension.
1,906
def list_templates() -> List[pathlib.Path]: return (pathlib.Path(__file__).parent / "templates").glob("*.html.j2")
List the available HTML templates. Returns: List[pathlib.Path]: A list of files with .html.j2 extensions inside ./templates/
16
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def list_templates() -> List[pathlib.Path]: return (pathlib.Path(__file__).parent / "templates").glob("*.html.j2") ``` ###Assistant : List the available HTML templates. Returns: List[pathlib.Path]: A list of files with .html.j2 extensions inside ./templates/
1,907
def usable_pip_file(path): # type: (t.Optional[str]) -> bool return bool(path) and os.path.exists(path) and bool(os.path.getsize(path)) # Cryptography
Return True if the specified pip file is usable, otherwise False.
11
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def usable_pip_file(path): # type: (t.Optional[str]) -> bool return bool(path) and os.path.exists(path) and bool(os.path.getsize(path)) # Cryptography ``` ###Assistant : Return True if the specified pip file is usable, otherwise False.
1,908
def binary_accuracy(y_true, y_pred, threshold=0.5): y_pred = tf.convert_to_tensor(y_pred) threshold = tf.cast(threshold, y_pred.dtype) y_pred = tf.cast(y_pred > threshold, y_pred.dtype) return backend.mean(tf.equal(y_true, y_pred), axis=-1) @keras_export('keras.metrics.categorical_accuracy') @tf.__internal__.dispatch.add_dispatch_support
Calculates how often predictions match binary labels. Standalone usage: >>> y_true = [[1], [1], [0], [0]] >>> y_pred = [[1], [1], [0], [0]] >>> m = tf.keras.metrics.binary_accuracy(y_true, y_pred) >>> assert m.shape == (4,) >>> m.numpy() array([1., 1., 1., 1.], dtype=float32) Args: y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. threshold: (Optional) Float representing the threshold for deciding whether prediction values are 1 or 0. Returns: Binary accuracy values. shape = `[batch_size, d0, .. dN-1]`
86
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def binary_accuracy(y_true, y_pred, threshold=0.5): y_pred = tf.convert_to_tensor(y_pred) threshold = tf.cast(threshold, y_pred.dtype) y_pred = tf.cast(y_pred > threshold, y_pred.dtype) return backend.mean(tf.equal(y_true, y_pred), axis=-1) @keras_export('keras.metrics.categorical_accuracy') @tf.__internal__.dispatch.add_dispatch_support ``` ###Assistant : Calculates how often predictions match binary labels. Standalone usage: >>> y_true = [[1], [1], [0], [0]] >>> y_pred = [[1], [1], [0], [0]] >>> m = tf.keras.metrics.binary_accuracy(y_true, y_pred) >>> assert m.shape == (4,) >>> m.numpy() array([1., 1., 1., 1.], dtype=float32) Args: y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. threshold: (Optional) Float representing the threshold for deciding whether prediction values are 1 or 0. Returns: Binary accuracy values. shape = `[batch_size, d0, .. dN-1]`
1,909
def _object2proto(self) -> SyftOblvClient_PB: return SyftOblvClient_PB( token=self.token, oblivious_user_id=self.oblivious_user_id, cookies=self.cookies, headers=self.headers, timeout=self.timeout, verify_ssl=self.verify_ssl, )
Returns a protobuf serialization of self. As a requirement of all objects which inherit from Serializable, this method transforms the current object into the corresponding Protobuf object so that it can be further serialized. :return: returns a protobuf object :rtype: SyftOblvClient_PB .. note:: This method is purely an internal method. Please use serialize(object) or one of the other public serialization methods if you wish to serialize an object.
68
13
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _object2proto(self) -> SyftOblvClient_PB: return SyftOblvClient_PB( token=self.token, oblivious_user_id=self.oblivious_user_id, cookies=self.cookies, headers=self.headers, timeout=self.timeout, verify_ssl=self.verify_ssl, ) ``` ###Assistant : Returns a protobuf serialization of self. As a requirement of all objects which inherit from Serializable, this method transforms the current object into the corresponding Protobuf object so that it can be further serialized. :return: returns a protobuf object :rtype: SyftOblvClient_PB .. note:: This method is purely an internal method. Please use serialize(object) or one of the other public serialization methods if you wish to serialize an object.
1,910
def test_bulk_handle_digest_email_skips_deactivated_users(self) -> None: realm = get_realm("zulip") hamlet = self.example_user("hamlet") user_ids = list( UserProfile.objects.filter(is_bot=False, realm=realm).values_list("id", flat=True) ) do_deactivate_user(hamlet, acting_user=None) with mock.patch("zerver.lib.digest.enough_traffic", return_value=True), mock.patch( "zerver.lib.digest.send_future_email" ) as mock_send_email: bulk_handle_digest_email(user_ids, 1) emailed_user_ids = [ call_args[1]["to_user_ids"][0] for call_args in mock_send_email.call_args_list ] self.assertEqual( set(emailed_user_ids), set(user_id for user_id in user_ids if user_id != hamlet.id) )
A user id may be added to the queue before the user is deactivated. In such a case, the function responsible for sending the email should correctly skip them.
29
50
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_bulk_handle_digest_email_skips_deactivated_users(self) -> None: realm = get_realm("zulip") hamlet = self.example_user("hamlet") user_ids = list( UserProfile.objects.filter(is_bot=False, realm=realm).values_list("id", flat=True) ) do_deactivate_user(hamlet, acting_user=None) with mock.patch("zerver.lib.digest.enough_traffic", return_value=True), mock.patch( "zerver.lib.digest.send_future_email" ) as mock_send_email: bulk_handle_digest_email(user_ids, 1) emailed_user_ids = [ call_args[1]["to_user_ids"][0] for call_args in mock_send_email.call_args_list ] self.assertEqual( set(emailed_user_ids), set(user_id for user_id in user_ids if user_id != hamlet.id) ) ``` ###Assistant : A user id may be added to the queue before the user is deactivated. In such a case, the function responsible for sending the email should correctly skip them.
1,911
def test_driver_4(): args_list = [ 'tests/tests.csv', '-is', ',', '-target', 'class', '-g', '1', '-p', '2', '-cv', '3', '-s', '42', '-config', 'TPOT light', '-v', '3' ] args = _get_arg_parser().parse_args(args_list) with captured_output() as (out, err): tpot_driver(args) ret_stdout = out.getvalue() assert "TPOT settings" in ret_stdout assert "Final Pareto front testing scores" in ret_stdout try: ret_val = float(ret_stdout.split('\n')[-2].split('\t')[1]) except Exception: ret_val = -float('inf') assert ret_val > 0.0
Assert that the tpot_driver() in TPOT driver outputs normal result with verbosity = 3.
14
62
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_driver_4(): args_list = [ 'tests/tests.csv', '-is', ',', '-target', 'class', '-g', '1', '-p', '2', '-cv', '3', '-s', '42', '-config', 'TPOT light', '-v', '3' ] args = _get_arg_parser().parse_args(args_list) with captured_output() as (out, err): tpot_driver(args) ret_stdout = out.getvalue() assert "TPOT settings" in ret_stdout assert "Final Pareto front testing scores" in ret_stdout try: ret_val = float(ret_stdout.split('\n')[-2].split('\t')[1]) except Exception: ret_val = -float('inf') assert ret_val > 0.0 ``` ###Assistant : Assert that the tpot_driver() in TPOT driver outputs normal result with verbosity = 3.
1,912
async def test_set_avatar(self) -> None: handler = self.hs.get_sso_handler() # Create a new user to set avatar for reg_handler = self.hs.get_registration_handler() user_id = self.get_success(reg_handler.register_user(approved=True)) self.assertTrue( self.get_success(handler.set_avatar(user_id, "http://my.server/me.png")) ) # Ensure avatar is set on this newly created user, # so no need to compare for the exact image profile_handler = self.hs.get_profile_handler() profile = self.get_success(profile_handler.get_profile(user_id)) self.assertIsNot(profile["avatar_url"], None)
Tests successfully setting the avatar of a newly created user
10
55
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_set_avatar(self) -> None: handler = self.hs.get_sso_handler() # Create a new user to set avatar for reg_handler = self.hs.get_registration_handler() user_id = self.get_success(reg_handler.register_user(approved=True)) self.assertTrue( self.get_success(handler.set_avatar(user_id, "http://my.server/me.png")) ) # Ensure avatar is set on this newly created user, # so no need to compare for the exact image profile_handler = self.hs.get_profile_handler() profile = self.get_success(profile_handler.get_profile(user_id)) self.assertIsNot(profile["avatar_url"], None) ``` ###Assistant : Tests successfully setting the avatar of a newly created user
1,913
def tune_decorated(api_key_file): tuner = tune.Tuner( decorated_train_function, tune_config=tune.TuneConfig( metric="loss", mode="min", ), param_space={ "mean": tune.grid_search([1, 2, 3, 4, 5]), "sd": tune.uniform(0.2, 0.8), "wandb": {"api_key_file": api_key_file, "project": "Wandb_example"}, }, ) tuner.fit()
Example for using the @wandb_mixin decorator with the function API
10
28
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def tune_decorated(api_key_file): tuner = tune.Tuner( decorated_train_function, tune_config=tune.TuneConfig( metric="loss", mode="min", ), param_space={ "mean": tune.grid_search([1, 2, 3, 4, 5]), "sd": tune.uniform(0.2, 0.8), "wandb": {"api_key_file": api_key_file, "project": "Wandb_example"}, }, ) tuner.fit() ``` ###Assistant : Example for using the @wandb_mixin decorator with the function API
1,914
def format_usage(self, usage): # type: (str) -> str msg = "\nUsage: {}\n".format(self.indent_lines(textwrap.dedent(usage), " ")) return msg
Ensure there is only one newline between usage and the first heading if there is no description.
17
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def format_usage(self, usage): # type: (str) -> str msg = "\nUsage: {}\n".format(self.indent_lines(textwrap.dedent(usage), " ")) return msg ``` ###Assistant : Ensure there is only one newline between usage and the first heading if there is no description.
1,915
def from_index_summation(expr, first_index=None, last_index=None, dimensions=None): r from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix first_indices = [] if first_index is not None: first_indices.append(first_index) if last_index is not None: first_indices.append(last_index) arr = convert_indexed_to_array(expr, first_indices=first_indices) return convert_array_to_matrix(arr)
Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible. This transformation expressed in mathematical notation: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Optional parameter ``first_index``: specify which free index to use as the index starting the expression. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum >>> from sympy.abc import i, j, k, l, N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A.T*B Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) Trace(A) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B.T*A.T
133
35
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def from_index_summation(expr, first_index=None, last_index=None, dimensions=None): r from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix first_indices = [] if first_index is not None: first_indices.append(first_index) if last_index is not None: first_indices.append(last_index) arr = convert_indexed_to_array(expr, first_indices=first_indices) return convert_array_to_matrix(arr) ``` ###Assistant : Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible. This transformation expressed in mathematical notation: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Optional parameter ``first_index``: specify which free index to use as the index starting the expression. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum >>> from sympy.abc import i, j, k, l, N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A.T*B Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) Trace(A) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B.T*A.T
1,916
def get_views(self): q = f"SHOW FULL TABLES IN {self.database} WHERE TABLE_TYPE LIKE 'VIEW';" result = self.native_query(q) return result
Get more information about specific database views
7
18
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_views(self): q = f"SHOW FULL TABLES IN {self.database} WHERE TABLE_TYPE LIKE 'VIEW';" result = self.native_query(q) return result ``` ###Assistant : Get more information about specific database views
1,917
def _mac(model, obs, h): B, n_agents = obs.size(0), obs.size(1) if not isinstance(obs, dict): obs = {"obs": obs} obs_agents_as_batches = {k: _drop_agent_dim(v) for k, v in obs.items()} h_flat = [s.reshape([B * n_agents, -1]) for s in h] q_flat, h_flat = model(obs_agents_as_batches, h_flat, None) return q_flat.reshape([B, n_agents, -1]), [ s.reshape([B, n_agents, -1]) for s in h_flat ]
Forward pass of the multi-agent controller. Args: model: TorchModelV2 class obs: Tensor of shape [B, n_agents, obs_size] h: List of tensors of shape [B, n_agents, h_size] Returns: q_vals: Tensor of shape [B, n_agents, n_actions] h: Tensor of shape [B, n_agents, h_size]
41
55
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _mac(model, obs, h): B, n_agents = obs.size(0), obs.size(1) if not isinstance(obs, dict): obs = {"obs": obs} obs_agents_as_batches = {k: _drop_agent_dim(v) for k, v in obs.items()} h_flat = [s.reshape([B * n_agents, -1]) for s in h] q_flat, h_flat = model(obs_agents_as_batches, h_flat, None) return q_flat.reshape([B, n_agents, -1]), [ s.reshape([B, n_agents, -1]) for s in h_flat ] ``` ###Assistant : Forward pass of the multi-agent controller. Args: model: TorchModelV2 class obs: Tensor of shape [B, n_agents, obs_size] h: List of tensors of shape [B, n_agents, h_size] Returns: q_vals: Tensor of shape [B, n_agents, n_actions] h: Tensor of shape [B, n_agents, h_size]
1,918
def _get_count(self): has_meta = all(val is not None for val in self._alignments.video_meta_data.values()) retval = len(self._alignments.video_meta_data["pts_time"]) if has_meta else None logger.debug("Frame count from alignments file: (has_meta: %s, %s", has_meta, retval) return retval
If the alignments file has been run through the manual tool, then it will hold video meta information, meaning that the count of frames in the alignment file can be relied on to be accurate. Returns ------- int or ``None`` For video input which contain video meta-data in the alignments file then the count of frames is returned. In all other cases ``None`` is returned
65
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_count(self): has_meta = all(val is not None for val in self._alignments.video_meta_data.values()) retval = len(self._alignments.video_meta_data["pts_time"]) if has_meta else None logger.debug("Frame count from alignments file: (has_meta: %s, %s", has_meta, retval) return retval ``` ###Assistant : If the alignments file has been run through the manual tool, then it will hold video meta information, meaning that the count of frames in the alignment file can be relied on to be accurate. Returns ------- int or ``None`` For video input which contain video meta-data in the alignments file then the count of frames is returned. In all other cases ``None`` is returned
1,919
def test_sparse1_with_non_sparse_components(): fit_then_transform( sparse1_paratial_1h.todense(), sparse1, categorical_features=[True, False] )
Test fit_transform a sparse matrix with specifying categorical_features.
8
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_sparse1_with_non_sparse_components(): fit_then_transform( sparse1_paratial_1h.todense(), sparse1, categorical_features=[True, False] ) ``` ###Assistant : Test fit_transform a sparse matrix with specifying categorical_features.
1,920
def test_mod_gen_f77(capfd, hello_world_f90, monkeypatch): MNAME = "hi" foutl = get_io_paths(hello_world_f90, mname=MNAME) ipath = foutl.f90inp monkeypatch.setattr(sys, "argv", f'f2py {ipath} -m {MNAME}'.split()) with util.switchdir(ipath.parent): f2pycli() # Always generate C module assert Path.exists(foutl.cmodf) # File contains a function, check for F77 wrappers assert Path.exists(foutl.wrap77)
Checks the generation of files based on a module name CLI :: -m
13
41
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_mod_gen_f77(capfd, hello_world_f90, monkeypatch): MNAME = "hi" foutl = get_io_paths(hello_world_f90, mname=MNAME) ipath = foutl.f90inp monkeypatch.setattr(sys, "argv", f'f2py {ipath} -m {MNAME}'.split()) with util.switchdir(ipath.parent): f2pycli() # Always generate C module assert Path.exists(foutl.cmodf) # File contains a function, check for F77 wrappers assert Path.exists(foutl.wrap77) ``` ###Assistant : Checks the generation of files based on a module name CLI :: -m
1,921
def delegate(args, host_state, exclude, require): # type: (CommonConfig, HostState, t.List[str], t.List[str]) -> None assert isinstance(args, EnvironmentConfig) with delegation_context(args, host_state): if isinstance(args, TestConfig): args.metadata.ci_provider = get_ci_provider().code make_dirs(ResultType.TMP.path) with tempfile.NamedTemporaryFile(prefix='metadata-', suffix='.json', dir=ResultType.TMP.path) as metadata_fd: args.metadata_path = os.path.join(ResultType.TMP.relative_path, os.path.basename(metadata_fd.name)) args.metadata.to_file(args.metadata_path) try: delegate_command(args, host_state, exclude, require) finally: args.metadata_path = None else: delegate_command(args, host_state, exclude, require)
Delegate execution of ansible-test to another environment.
7
51
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def delegate(args, host_state, exclude, require): # type: (CommonConfig, HostState, t.List[str], t.List[str]) -> None assert isinstance(args, EnvironmentConfig) with delegation_context(args, host_state): if isinstance(args, TestConfig): args.metadata.ci_provider = get_ci_provider().code make_dirs(ResultType.TMP.path) with tempfile.NamedTemporaryFile(prefix='metadata-', suffix='.json', dir=ResultType.TMP.path) as metadata_fd: args.metadata_path = os.path.join(ResultType.TMP.relative_path, os.path.basename(metadata_fd.name)) args.metadata.to_file(args.metadata_path) try: delegate_command(args, host_state, exclude, require) finally: args.metadata_path = None else: delegate_command(args, host_state, exclude, require) ``` ###Assistant : Delegate execution of ansible-test to another environment.
1,922
def require_torch_non_multi_gpu(test_case): if not is_torch_available(): return unittest.skip("test requires PyTorch")(test_case) import torch return unittest.skipUnless(torch.cuda.device_count() < 2, "test requires 0 or 1 GPU")(test_case)
Decorator marking a test that requires 0 or 1 GPU setup (in PyTorch).
13
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def require_torch_non_multi_gpu(test_case): if not is_torch_available(): return unittest.skip("test requires PyTorch")(test_case) import torch return unittest.skipUnless(torch.cuda.device_count() < 2, "test requires 0 or 1 GPU")(test_case) ``` ###Assistant : Decorator marking a test that requires 0 or 1 GPU setup (in PyTorch).
1,923
def _ReturnKeyHandler(self, event): # if the element is disabled, ignore the event if self.Disabled: return MyForm = self.ParentForm button_element = self._FindReturnKeyBoundButton(MyForm) if button_element is not None: button_element.ButtonCallBack()
Internal callback for the ENTER / RETURN key. Results in calling the ButtonCallBack for element that has the return key bound to it, just as if button was clicked. :param event: :type event:
33
27
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _ReturnKeyHandler(self, event): # if the element is disabled, ignore the event if self.Disabled: return MyForm = self.ParentForm button_element = self._FindReturnKeyBoundButton(MyForm) if button_element is not None: button_element.ButtonCallBack() ``` ###Assistant : Internal callback for the ENTER / RETURN key. Results in calling the ButtonCallBack for element that has the return key bound to it, just as if button was clicked. :param event: :type event:
1,924
def uint64_frame(): return DataFrame( {"A": np.arange(3), "B": [2**63, 2**63 + 5, 2**63 + 10]}, dtype=np.uint64 ) @pytest.fixture
Fixture for DataFrame with uint64 values Columns are ['A', 'B']
10
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def uint64_frame(): return DataFrame( {"A": np.arange(3), "B": [2**63, 2**63 + 5, 2**63 + 10]}, dtype=np.uint64 ) @pytest.fixture ``` ###Assistant : Fixture for DataFrame with uint64 values Columns are ['A', 'B']
1,925
def test_null_annotation(self): book = Book.objects.annotate( no_value=Value(None, output_field=IntegerField()) ).first() self.assertIsNone(book.no_value)
Annotating None onto a model round-trips
6
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_null_annotation(self): book = Book.objects.annotate( no_value=Value(None, output_field=IntegerField()) ).first() self.assertIsNone(book.no_value) ``` ###Assistant : Annotating None onto a model round-trips
1,926
def icosahedral_graph(create_using=None): description = [ "adjacencylist", "Platonic Icosahedral Graph", 12, [ [2, 6, 8, 9, 12], [3, 6, 7, 9], [4, 7, 9, 10], [5, 7, 10, 11], [6, 7, 11, 12], [7, 12], [], [9, 10, 11, 12], [10], [11], [12], [], ], ] G = make_small_undirected_graph(description, create_using) return G
Returns the Platonic Icosahedral graph. The icosahedral graph has 12 nodes and 30 edges. It is a Platonic graph whose nodes have the connectivity of the icosahedron. It is undirected, regular and Hamiltonian [1]_. Parameters ---------- create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : networkx Graph Icosahedral graph with 12 nodes and 30 edges. References ---------- .. [1] https://mathworld.wolfram.com/IcosahedralGraph.html
73
51
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def icosahedral_graph(create_using=None): description = [ "adjacencylist", "Platonic Icosahedral Graph", 12, [ [2, 6, 8, 9, 12], [3, 6, 7, 9], [4, 7, 9, 10], [5, 7, 10, 11], [6, 7, 11, 12], [7, 12], [], [9, 10, 11, 12], [10], [11], [12], [], ], ] G = make_small_undirected_graph(description, create_using) return G ``` ###Assistant : Returns the Platonic Icosahedral graph. The icosahedral graph has 12 nodes and 30 edges. It is a Platonic graph whose nodes have the connectivity of the icosahedron. It is undirected, regular and Hamiltonian [1]_. Parameters ---------- create_using : NetworkX graph constructor, optional (default=nx.Graph) Graph type to create. If graph instance, then cleared before populated. Returns ------- G : networkx Graph Icosahedral graph with 12 nodes and 30 edges. References ---------- .. [1] https://mathworld.wolfram.com/IcosahedralGraph.html
1,927
def evaluate(model, criterion, metric, data_loader): model.eval() metric.reset() losses = [] for batch in tqdm(data_loader): input_ids, token_type_ids, position_ids, masks, ent_label, spo_label = batch max_batch_len = input_ids.shape[-1] ent_mask = paddle.unsqueeze(masks, axis=2) spo_mask = paddle.matmul(ent_mask, ent_mask, transpose_y=True) spo_mask = paddle.unsqueeze(spo_mask, axis=1) logits = model(input_ids, token_type_ids, position_ids) ent_loss = criterion( logits[0], ent_label[0], weight=ent_mask, reduction='sum') spo_loss = criterion( logits[1], spo_label[0], weight=spo_mask, reduction='sum') loss = ent_loss + spo_loss losses.append(loss.numpy()) lengths = paddle.sum(masks, axis=-1) correct = metric.compute(lengths, logits[0], logits[1], ent_label[1], spo_label[1]) metric.update(correct) results = metric.accumulate() print('eval loss: %.5f, entity f1: %.5f, spo f1: %.5f' % (np.mean(losses), results['entity'][2], results['spo'][2])) model.train() metric.reset()
Given a dataset, it evals model and compute the metric. Args: model(obj:`paddle.nn.Layer`): A model to classify texts. dataloader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches. criterion(`paddle.nn.functional`): It can compute the loss. metric(obj:`paddle.metric.Metric`): The evaluation metric.
34
93
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def evaluate(model, criterion, metric, data_loader): model.eval() metric.reset() losses = [] for batch in tqdm(data_loader): input_ids, token_type_ids, position_ids, masks, ent_label, spo_label = batch max_batch_len = input_ids.shape[-1] ent_mask = paddle.unsqueeze(masks, axis=2) spo_mask = paddle.matmul(ent_mask, ent_mask, transpose_y=True) spo_mask = paddle.unsqueeze(spo_mask, axis=1) logits = model(input_ids, token_type_ids, position_ids) ent_loss = criterion( logits[0], ent_label[0], weight=ent_mask, reduction='sum') spo_loss = criterion( logits[1], spo_label[0], weight=spo_mask, reduction='sum') loss = ent_loss + spo_loss losses.append(loss.numpy()) lengths = paddle.sum(masks, axis=-1) correct = metric.compute(lengths, logits[0], logits[1], ent_label[1], spo_label[1]) metric.update(correct) results = metric.accumulate() print('eval loss: %.5f, entity f1: %.5f, spo f1: %.5f' % (np.mean(losses), results['entity'][2], results['spo'][2])) model.train() metric.reset() ``` ###Assistant : Given a dataset, it evals model and compute the metric. Args: model(obj:`paddle.nn.Layer`): A model to classify texts. dataloader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches. criterion(`paddle.nn.functional`): It can compute the loss. metric(obj:`paddle.metric.Metric`): The evaluation metric.
1,928
def get_fields(self, include_parents=True, include_hidden=False): if include_parents is False: include_parents = PROXY_PARENTS return self._get_fields( include_parents=include_parents, include_hidden=include_hidden )
Return a list of fields associated to the model. By default, include forward and reverse fields, fields derived from inheritance, but not hidden fields. The returned fields can be changed using the parameters: - include_parents: include fields derived from inheritance - include_hidden: include fields that have a related_name that starts with a "+"
53
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_fields(self, include_parents=True, include_hidden=False): if include_parents is False: include_parents = PROXY_PARENTS return self._get_fields( include_parents=include_parents, include_hidden=include_hidden ) ``` ###Assistant : Return a list of fields associated to the model. By default, include forward and reverse fields, fields derived from inheritance, but not hidden fields. The returned fields can be changed using the parameters: - include_parents: include fields derived from inheritance - include_hidden: include fields that have a related_name that starts with a "+"
1,929
def _key_to_file(self, session_key=None): if session_key is None: session_key = self._get_or_create_session_key() # Make sure we're not vulnerable to directory traversal. Session keys # should always be md5s, so they should never contain directory # components. if not set(session_key).issubset(VALID_KEY_CHARS): raise InvalidSessionKey("Invalid characters in session key") return os.path.join(self.storage_path, self.file_prefix + session_key)
Get the file associated with this session key.
8
48
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _key_to_file(self, session_key=None): if session_key is None: session_key = self._get_or_create_session_key() # Make sure we're not vulnerable to directory traversal. Session keys # should always be md5s, so they should never contain directory # components. if not set(session_key).issubset(VALID_KEY_CHARS): raise InvalidSessionKey("Invalid characters in session key") return os.path.join(self.storage_path, self.file_prefix + session_key) ``` ###Assistant : Get the file associated with this session key.
1,930
def check_against_chunks(self, chunks): # type: (Iterator[bytes]) -> None gots = {} for hash_name in self._allowed.keys(): try: gots[hash_name] = hashlib.new(hash_name) except (ValueError, TypeError): raise InstallationError(f"Unknown hash name: {hash_name}") for chunk in chunks: for hash in gots.values(): hash.update(chunk) for hash_name, got in gots.items(): if got.hexdigest() in self._allowed[hash_name]: return self._raise(gots)
Check good hashes against ones built from iterable of chunks of data. Raise HashMismatch if none match.
17
47
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_against_chunks(self, chunks): # type: (Iterator[bytes]) -> None gots = {} for hash_name in self._allowed.keys(): try: gots[hash_name] = hashlib.new(hash_name) except (ValueError, TypeError): raise InstallationError(f"Unknown hash name: {hash_name}") for chunk in chunks: for hash in gots.values(): hash.update(chunk) for hash_name, got in gots.items(): if got.hexdigest() in self._allowed[hash_name]: return self._raise(gots) ``` ###Assistant : Check good hashes against ones built from iterable of chunks of data. Raise HashMismatch if none match.
1,931
def _expand_onehot_labels(labels, label_weights, label_channels, ignore_index): bin_labels = labels.new_full((labels.size(0), label_channels), 0) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero( valid_mask & (labels < label_channels), as_tuple=False) if inds.numel() > 0: bin_labels[inds, labels[inds]] = 1 valid_mask = valid_mask.view(-1, 1).expand(labels.size(0), label_channels).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.view(-1, 1).repeat(1, label_channels) bin_label_weights *= valid_mask return bin_labels, bin_label_weights, valid_mask
Expand onehot labels to match the size of prediction.
9
61
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _expand_onehot_labels(labels, label_weights, label_channels, ignore_index): bin_labels = labels.new_full((labels.size(0), label_channels), 0) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero( valid_mask & (labels < label_channels), as_tuple=False) if inds.numel() > 0: bin_labels[inds, labels[inds]] = 1 valid_mask = valid_mask.view(-1, 1).expand(labels.size(0), label_channels).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.view(-1, 1).repeat(1, label_channels) bin_label_weights *= valid_mask return bin_labels, bin_label_weights, valid_mask ``` ###Assistant : Expand onehot labels to match the size of prediction.
1,932
def test_sequence_input_types(self, input_type): if not tf.executing_eagerly(): self.skipTest("Improved checking is only present in data_adapter.") xy_function, x_function = self._make_sequence_input_functions( input_type ) fit_kwargs, evaluate_kwargs, predict_kwargs = {}, {}, {} if input_type == "generator": fit_kwargs["steps_per_epoch"] = 4 evaluate_kwargs["steps"] = 4 predict_kwargs["steps"] = 4 model = test_utils.get_small_mlp(1, 1, 1) model.compile( loss="mse", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) model.fit(xy_function(use_namedtuple=False), **fit_kwargs) model.evaluate(xy_function(use_namedtuple=False), **evaluate_kwargs) model.predict(x_function(use_namedtuple=False), **predict_kwargs)
Ensure that namedtuples and tuples are plumbed identically.
8
55
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_sequence_input_types(self, input_type): if not tf.executing_eagerly(): self.skipTest("Improved checking is only present in data_adapter.") xy_function, x_function = self._make_sequence_input_functions( input_type ) fit_kwargs, evaluate_kwargs, predict_kwargs = {}, {}, {} if input_type == "generator": fit_kwargs["steps_per_epoch"] = 4 evaluate_kwargs["steps"] = 4 predict_kwargs["steps"] = 4 model = test_utils.get_small_mlp(1, 1, 1) model.compile( loss="mse", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) model.fit(xy_function(use_namedtuple=False), **fit_kwargs) model.evaluate(xy_function(use_namedtuple=False), **evaluate_kwargs) model.predict(x_function(use_namedtuple=False), **predict_kwargs) ``` ###Assistant : Ensure that namedtuples and tuples are plumbed identically.
1,933
def get_stock_value_on(warehouse=None, posting_date=None, item_code=None): if not posting_date: posting_date = nowdate() values, condition = [posting_date], "" if warehouse: lft, rgt, is_group = frappe.db.get_value("Warehouse", warehouse, ["lft", "rgt", "is_group"]) if is_group: values.extend([lft, rgt]) condition += "and exists (\ select name from `tabWarehouse` wh where wh.name = sle.warehouse\ and wh.lft >= %s and wh.rgt <= %s)" else: values.append(warehouse) condition += " AND warehouse = %s" if item_code: values.append(item_code) condition += " AND item_code = %s" stock_ledger_entries = frappe.db.sql( .format( condition ), values, as_dict=1, ) sle_map = {} for sle in stock_ledger_entries: if not (sle.item_code, sle.warehouse) in sle_map: sle_map[(sle.item_code, sle.warehouse)] = flt(sle.stock_value) return sum(sle_map.values()) @frappe.whitelist()
SELECT item_code, stock_value, name, warehouse FROM `tabStock Ledger Entry` sle WHERE posting_date <= %s {0} and is_cancelled = 0 ORDER BY timestamp(posting_date, posting_time) DESC, creation DESC
26
100
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_stock_value_on(warehouse=None, posting_date=None, item_code=None): if not posting_date: posting_date = nowdate() values, condition = [posting_date], "" if warehouse: lft, rgt, is_group = frappe.db.get_value("Warehouse", warehouse, ["lft", "rgt", "is_group"]) if is_group: values.extend([lft, rgt]) condition += "and exists (\ select name from `tabWarehouse` wh where wh.name = sle.warehouse\ and wh.lft >= %s and wh.rgt <= %s)" else: values.append(warehouse) condition += " AND warehouse = %s" if item_code: values.append(item_code) condition += " AND item_code = %s" stock_ledger_entries = frappe.db.sql( .format( condition ), values, as_dict=1, ) sle_map = {} for sle in stock_ledger_entries: if not (sle.item_code, sle.warehouse) in sle_map: sle_map[(sle.item_code, sle.warehouse)] = flt(sle.stock_value) return sum(sle_map.values()) @frappe.whitelist() ``` ###Assistant : SELECT item_code, stock_value, name, warehouse FROM `tabStock Ledger Entry` sle WHERE posting_date <= %s {0} and is_cancelled = 0 ORDER BY timestamp(posting_date, posting_time) DESC, creation DESC
1,934
def _is_installed_rpm(name): log.debug(f"_is_installed_rpm '{name}'") cmd = ["/usr/bin/rpm", "-q", name] return __salt__["cmd.retcode"](cmd) == 0
Returns True if the rpm package is installed. Otherwise returns False.
11
13
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _is_installed_rpm(name): log.debug(f"_is_installed_rpm '{name}'") cmd = ["/usr/bin/rpm", "-q", name] return __salt__["cmd.retcode"](cmd) == 0 ``` ###Assistant : Returns True if the rpm package is installed. Otherwise returns False.
1,935
def iter_tree_files(root, on_error=None, follow_links=None): if on_error is not None and not callable(on_error): raise TypeError("on_error:{!r} is not callable.".format(on_error)) if follow_links is None: follow_links = True for entry in _iter_tree_entries_next(os.path.abspath(root), '', {}, on_error, follow_links): if not entry.is_dir(follow_links): yield entry.path # Alias `iter_tree_files()` as `iter_tree()`. iter_tree = iter_tree_files
Walks the specified directory for all files. *root* (:class:`str`) is the root directory to search for files. *on_error* (:class:`~collections.abc.Callable` or :data:`None`) optionally is the error handler for file-system exceptions. It will be called with the exception (:exc:`OSError`). Reraise the exception to abort the walk. Default is :data:`None` to ignore file-system exceptions. *follow_links* (:class:`bool` or :data:`None`) optionally is whether to walk symbolic links that resolve to directories. Default is :data:`None` for :data:`True`. Raises :exc:`RecursionError` if recursion is detected. Returns an :class:`~collections.abc.Iterable` yielding the path to each file (:class:`str`) relative to *root*.
90
45
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def iter_tree_files(root, on_error=None, follow_links=None): if on_error is not None and not callable(on_error): raise TypeError("on_error:{!r} is not callable.".format(on_error)) if follow_links is None: follow_links = True for entry in _iter_tree_entries_next(os.path.abspath(root), '', {}, on_error, follow_links): if not entry.is_dir(follow_links): yield entry.path # Alias `iter_tree_files()` as `iter_tree()`. iter_tree = iter_tree_files ``` ###Assistant : Walks the specified directory for all files. *root* (:class:`str`) is the root directory to search for files. *on_error* (:class:`~collections.abc.Callable` or :data:`None`) optionally is the error handler for file-system exceptions. It will be called with the exception (:exc:`OSError`). Reraise the exception to abort the walk. Default is :data:`None` to ignore file-system exceptions. *follow_links* (:class:`bool` or :data:`None`) optionally is whether to walk symbolic links that resolve to directories. Default is :data:`None` for :data:`True`. Raises :exc:`RecursionError` if recursion is detected. Returns an :class:`~collections.abc.Iterable` yielding the path to each file (:class:`str`) relative to *root*.
1,936
def _get_url_from_path(path, name): # type: (str, str) -> Optional[str] if _looks_like_path(name) and os.path.isdir(path): if is_installable_dir(path): return path_to_url(path) raise InstallationError( f"Directory {name!r} is not installable. Neither 'setup.py' " "nor 'pyproject.toml' found." ) if not is_archive_file(path): return None if os.path.isfile(path): return path_to_url(path) urlreq_parts = name.split('@', 1) if len(urlreq_parts) >= 2 and not _looks_like_path(urlreq_parts[0]): # If the path contains '@' and the part before it does not look # like a path, try to treat it as a PEP 440 URL req instead. return None logger.warning( 'Requirement %r looks like a filename, but the ' 'file does not exist', name ) return path_to_url(path)
First, it checks whether a provided path is an installable directory (e.g. it has a setup.py). If it is, returns the path. If false, check if the path is an archive file (such as a .whl). The function checks if the path is a file. If false, if the path has an @, it will treat it as a PEP 440 URL requirement and return the path.
67
100
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_url_from_path(path, name): # type: (str, str) -> Optional[str] if _looks_like_path(name) and os.path.isdir(path): if is_installable_dir(path): return path_to_url(path) raise InstallationError( f"Directory {name!r} is not installable. Neither 'setup.py' " "nor 'pyproject.toml' found." ) if not is_archive_file(path): return None if os.path.isfile(path): return path_to_url(path) urlreq_parts = name.split('@', 1) if len(urlreq_parts) >= 2 and not _looks_like_path(urlreq_parts[0]): # If the path contains '@' and the part before it does not look # like a path, try to treat it as a PEP 440 URL req instead. return None logger.warning( 'Requirement %r looks like a filename, but the ' 'file does not exist', name ) return path_to_url(path) ``` ###Assistant : First, it checks whether a provided path is an installable directory (e.g. it has a setup.py). If it is, returns the path. If false, check if the path is an archive file (such as a .whl). The function checks if the path is a file. If false, if the path has an @, it will treat it as a PEP 440 URL requirement and return the path.
1,937
def test_install_fileset_with_bff_extension(): installp_call = MagicMock(return_value={"retcode": 0, "stdout": ""}) fileset_pkg_name = ( "/cecc/repos/aix72/TL3/BASE/installp/ppc/bos.rte.printers_7.2.2.0.bff" ) list_pkgs_mock = MagicMock( side_effect=[{"bos.rte.printers": "7.1.6.0"}, {"bos.rte.printers": "7.2.4.0"}] ) with patch("pathlib.Path.is_file", return_value=True): with patch.dict( aixpkg.__salt__, {"cmd.run_all": installp_call, "config.get": MagicMock(return_value=False)}, ), patch.object(aixpkg, "list_pkgs", list_pkgs_mock): result = aixpkg.install(fileset_pkg_name) assert installp_call.call_count == 1 installp_call.assert_any_call( "/usr/sbin/installp -acYXg -d /cecc/repos/aix72/TL3/BASE/installp/ppc bos.rte.printers_7.2.2.0.bff", python_shell=False, ) expected = {"bos.rte.printers": {"old": "7.1.6.0", "new": "7.2.4.0"}} assert result == expected
Test install of fileset with bff extension
7
61
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_install_fileset_with_bff_extension(): installp_call = MagicMock(return_value={"retcode": 0, "stdout": ""}) fileset_pkg_name = ( "/cecc/repos/aix72/TL3/BASE/installp/ppc/bos.rte.printers_7.2.2.0.bff" ) list_pkgs_mock = MagicMock( side_effect=[{"bos.rte.printers": "7.1.6.0"}, {"bos.rte.printers": "7.2.4.0"}] ) with patch("pathlib.Path.is_file", return_value=True): with patch.dict( aixpkg.__salt__, {"cmd.run_all": installp_call, "config.get": MagicMock(return_value=False)}, ), patch.object(aixpkg, "list_pkgs", list_pkgs_mock): result = aixpkg.install(fileset_pkg_name) assert installp_call.call_count == 1 installp_call.assert_any_call( "/usr/sbin/installp -acYXg -d /cecc/repos/aix72/TL3/BASE/installp/ppc bos.rte.printers_7.2.2.0.bff", python_shell=False, ) expected = {"bos.rte.printers": {"old": "7.1.6.0", "new": "7.2.4.0"}} assert result == expected ``` ###Assistant : Test install of fileset with bff extension
1,938
def is_user_in_allow_list(block_list): return frappe.session.user in frappe.db.sql_list( , block_list, )
select allow_user from `tabLeave Block List Allow` where parent=%s
9
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def is_user_in_allow_list(block_list): return frappe.session.user in frappe.db.sql_list( , block_list, ) ``` ###Assistant : select allow_user from `tabLeave Block List Allow` where parent=%s
1,939
def test_normalization(push_channel): types = { "list": list, } msgs = [ {"list": tuple([1, 2, 3])}, ] for msg in msgs: ret = push_channel.send(msg, timeout=5, tries=1) for key, value in ret["load"].items(): assert types[key] == type(value)
Since we use msgpack, we need to test that list types are converted to lists
15
34
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_normalization(push_channel): types = { "list": list, } msgs = [ {"list": tuple([1, 2, 3])}, ] for msg in msgs: ret = push_channel.send(msg, timeout=5, tries=1) for key, value in ret["load"].items(): assert types[key] == type(value) ``` ###Assistant : Since we use msgpack, we need to test that list types are converted to lists
1,940
def to_perioddelta(self, freq) -> TimedeltaArray: # Deprecaation GH#34853 warnings.warn( "to_perioddelta is deprecated and will be removed in a " "future version. " "Use `dtindex - dtindex.to_period(freq).to_timestamp()` instead.", FutureWarning, # stacklevel chosen to be correct for when called from DatetimeIndex stacklevel=find_stack_level(inspect.currentframe()), ) from pandas.core.arrays.timedeltas import TimedeltaArray if self._ndarray.dtype != "M8[ns]": raise NotImplementedError("Only supported for nanosecond resolution.") i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8 m8delta = i8delta.view("m8[ns]") return TimedeltaArray(m8delta) # ----------------------------------------------------------------- # Properties - Vectorized Timestamp Properties/Methods
Calculate deltas between self values and self converted to Periods at a freq. Used for vectorized offsets. Parameters ---------- freq : Period frequency Returns ------- TimedeltaArray/Index
26
73
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def to_perioddelta(self, freq) -> TimedeltaArray: # Deprecaation GH#34853 warnings.warn( "to_perioddelta is deprecated and will be removed in a " "future version. " "Use `dtindex - dtindex.to_period(freq).to_timestamp()` instead.", FutureWarning, # stacklevel chosen to be correct for when called from DatetimeIndex stacklevel=find_stack_level(inspect.currentframe()), ) from pandas.core.arrays.timedeltas import TimedeltaArray if self._ndarray.dtype != "M8[ns]": raise NotImplementedError("Only supported for nanosecond resolution.") i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8 m8delta = i8delta.view("m8[ns]") return TimedeltaArray(m8delta) # ----------------------------------------------------------------- # Properties - Vectorized Timestamp Properties/Methods ``` ###Assistant : Calculate deltas between self values and self converted to Periods at a freq. Used for vectorized offsets. Parameters ---------- freq : Period frequency Returns ------- TimedeltaArray/Index
1,941
def set(self, components): if len(components) > 0: self.__components = components else: raise Exception("please give any vector")
input: new components changes the components of the vector. replace the components with newer one.
15
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def set(self, components): if len(components) > 0: self.__components = components else: raise Exception("please give any vector") ``` ###Assistant : input: new components changes the components of the vector. replace the components with newer one.
1,942
def get_best_result(self) -> Optional[Tuple[Union[int, str], Module, Dict[str, Dict[str, Tensor]], Optional[float], List[Dict]]]: if self._best_task_id is not None: compact_model = torch.load(Path(self._log_dir_root, 'best_result', 'model.pth')) compact_model_masks = torch.load(Path(self._log_dir_root, 'best_result', 'masks.pth')) with Path(self._log_dir_root, 'best_result', 'config_list.json').open('r') as f: config_list = json_tricks.load(f) return self._best_task_id, compact_model, compact_model_masks, self._best_score, config_list return None
Returns ------- Optional[Tuple[int, Module, Dict[str, Dict[str, Tensor]], float, List[Dict]]] If self._best_task_id is not None, return best task id, best compact model, masks on the compact model, score, config list used in this task.
33
43
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_best_result(self) -> Optional[Tuple[Union[int, str], Module, Dict[str, Dict[str, Tensor]], Optional[float], List[Dict]]]: if self._best_task_id is not None: compact_model = torch.load(Path(self._log_dir_root, 'best_result', 'model.pth')) compact_model_masks = torch.load(Path(self._log_dir_root, 'best_result', 'masks.pth')) with Path(self._log_dir_root, 'best_result', 'config_list.json').open('r') as f: config_list = json_tricks.load(f) return self._best_task_id, compact_model, compact_model_masks, self._best_score, config_list return None ``` ###Assistant : Returns ------- Optional[Tuple[int, Module, Dict[str, Dict[str, Tensor]], float, List[Dict]]] If self._best_task_id is not None, return best task id, best compact model, masks on the compact model, score, config list used in this task.
1,943
def set_variation_by_axes(self, axes): try: self.font.setvaraxes(axes) except AttributeError as e: msg = "FreeType 2.9.1 or greater is required" raise NotImplementedError(msg) from e
:param axes: A list of values for each axis. :exception OSError: If the font is not a variation font.
19
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def set_variation_by_axes(self, axes): try: self.font.setvaraxes(axes) except AttributeError as e: msg = "FreeType 2.9.1 or greater is required" raise NotImplementedError(msg) from e ``` ###Assistant : :param axes: A list of values for each axis. :exception OSError: If the font is not a variation font.
1,944
def dispatch_line(self, frame): if self.stop_here(frame) or self.break_here(frame): self.user_line(frame) if self.quitting: raise BdbQuit return self.trace_dispatch
Invoke user function and return trace function for line event. If the debugger stops on the current line, invoke self.user_line(). Raise BdbQuit if self.quitting is set. Return self.trace_dispatch to continue tracing in this scope.
34
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def dispatch_line(self, frame): if self.stop_here(frame) or self.break_here(frame): self.user_line(frame) if self.quitting: raise BdbQuit return self.trace_dispatch ``` ###Assistant : Invoke user function and return trace function for line event. If the debugger stops on the current line, invoke self.user_line(). Raise BdbQuit if self.quitting is set. Return self.trace_dispatch to continue tracing in this scope.
1,945
def clear(self) -> None: self._in_blocks.clear() self._snapshot_blocks = None self._snapshot_stats = None # We're erasing the snapshot, so put all stages into the "after snapshot" # bucket. self._stages_after_snapshot = ( self._stages_before_snapshot + self._stages_after_snapshot ) self._stages_before_snapshot = []
Clear all cached block references of this plan, including input blocks. This will render the plan un-executable unless the root is a LazyBlockList.
23
36
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def clear(self) -> None: self._in_blocks.clear() self._snapshot_blocks = None self._snapshot_stats = None # We're erasing the snapshot, so put all stages into the "after snapshot" # bucket. self._stages_after_snapshot = ( self._stages_before_snapshot + self._stages_after_snapshot ) self._stages_before_snapshot = [] ``` ###Assistant : Clear all cached block references of this plan, including input blocks. This will render the plan un-executable unless the root is a LazyBlockList.
1,946
def _global_clustering(self, X=None): clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, Integral): clusterer = AgglomerativeClustering(n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True # To use in predict to avoid recalculation. self._subcluster_norms = row_norms(self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by BIRCH is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters), ConvergenceWarning, ) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict(self.subcluster_centers_) if compute_labels: self.labels_ = self._predict(X)
Global clustering for the subclusters obtained after fitting
8
131
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _global_clustering(self, X=None): clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, Integral): clusterer = AgglomerativeClustering(n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True # To use in predict to avoid recalculation. self._subcluster_norms = row_norms(self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by BIRCH is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters), ConvergenceWarning, ) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict(self.subcluster_centers_) if compute_labels: self.labels_ = self._predict(X) ``` ###Assistant : Global clustering for the subclusters obtained after fitting
1,947
def test_prefill_form_backcompat(extras, expected): mock_form = mock.Mock() mock_form.data = {"conn_id": "test", "extra": json.dumps(extras), "conn_type": "test"} cmv = ConnectionModelView() cmv.extra_fields = ['extra__test__my_param'] # this is set by `lazy_add_provider_discovered_options_to_connection_form` cmv.extra_field_name_mapping['extra__test__my_param'] = 'my_param' cmv.prefill_form(form=mock_form, pk=1) assert mock_form.extra__test__my_param.data == expected @pytest.mark.parametrize('field_name', ['extra__test__custom_field', 'custom_field']) @mock.patch('airflow.utils.module_loading.import_string') @mock.patch('airflow.providers_manager.ProvidersManager.hooks', new_callable=PropertyMock)
When populating custom fields in the connection form we should first check for the non-prefixed value (since prefixes in extra are deprecated) and then fallback to the prefixed value. Either way, the field is known internally to the model view as the prefixed value.
44
41
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_prefill_form_backcompat(extras, expected): mock_form = mock.Mock() mock_form.data = {"conn_id": "test", "extra": json.dumps(extras), "conn_type": "test"} cmv = ConnectionModelView() cmv.extra_fields = ['extra__test__my_param'] # this is set by `lazy_add_provider_discovered_options_to_connection_form` cmv.extra_field_name_mapping['extra__test__my_param'] = 'my_param' cmv.prefill_form(form=mock_form, pk=1) assert mock_form.extra__test__my_param.data == expected @pytest.mark.parametrize('field_name', ['extra__test__custom_field', 'custom_field']) @mock.patch('airflow.utils.module_loading.import_string') @mock.patch('airflow.providers_manager.ProvidersManager.hooks', new_callable=PropertyMock) ``` ###Assistant : When populating custom fields in the connection form we should first check for the non-prefixed value (since prefixes in extra are deprecated) and then fallback to the prefixed value. Either way, the field is known internally to the model view as the prefixed value.
1,948
def tokenize_query(query): result = defaultdict(list) query_params = defaultdict(list) tokens = split_query_into_tokens(query) for token in tokens: if token.upper() in ["OR", "AND"] or token.strip("()") == "": continue state = "query" for idx, char in enumerate(token): next_char = token[idx + 1] if idx < len(token) - 1 else None if idx == 0 and char in ('"', "'", ":"): break if char == ":": if next_char in (":", " "): state = "query" else: state = "tags" break query_params[state].append(token) if "query" in query_params: result["query"] = [format_query(query) for query in query_params["query"]] for tag in query_params["tags"]: key, value = format_tag(tag) result[key].append(value) return dict(result)
Tokenizes a standard Sentry search query. Example: >>> query = 'is:resolved foo bar tag:value' >>> tokenize_query(query) { 'is': ['resolved'], 'query': ['foo', 'bar'], 'tag': ['value'], } Has a companion implementation in static/app/utils/tokenizeSearch.tsx
31
98
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def tokenize_query(query): result = defaultdict(list) query_params = defaultdict(list) tokens = split_query_into_tokens(query) for token in tokens: if token.upper() in ["OR", "AND"] or token.strip("()") == "": continue state = "query" for idx, char in enumerate(token): next_char = token[idx + 1] if idx < len(token) - 1 else None if idx == 0 and char in ('"', "'", ":"): break if char == ":": if next_char in (":", " "): state = "query" else: state = "tags" break query_params[state].append(token) if "query" in query_params: result["query"] = [format_query(query) for query in query_params["query"]] for tag in query_params["tags"]: key, value = format_tag(tag) result[key].append(value) return dict(result) ``` ###Assistant : Tokenizes a standard Sentry search query. Example: >>> query = 'is:resolved foo bar tag:value' >>> tokenize_query(query) { 'is': ['resolved'], 'query': ['foo', 'bar'], 'tag': ['value'], } Has a companion implementation in static/app/utils/tokenizeSearch.tsx
1,949
def save_model(model, filepath, overwrite=True, save_format=None, **kwargs): save_format = get_save_format(filepath, save_format) if save_format not in ("keras", "tf", "h5", "keras_v3"): raise ValueError( "Unknown `save_format` argument. Expected one of " "'keras', 'tf', or 'h5'. " f"Received: save_format{save_format}" ) if save_format == "keras_v3" or ( saving_lib.saving_v3_enabled() and save_format == "keras" ): # If file exists and should not be overwritten. try: exists = os.path.exists(filepath) except TypeError: exists = False if exists and not overwrite: proceed = io_utils.ask_to_proceed_with_overwrite(filepath) if not proceed: return if kwargs: raise ValueError( "The following argument(s) are not supported " f"with the native Keras format: {list(kwargs.keys())}" ) saving_lib.save_model(model, filepath) else: # Legacy case return legacy_sm_saving_lib.save_model( model, filepath, overwrite=overwrite, save_format=save_format, **kwargs, ) @keras_export("keras.models.load_model")
Saves a model as a TensorFlow SavedModel or HDF5 file. See the [Serialization and Saving guide]( https://keras.io/guides/serialization_and_saving/) for details. Args: model: Keras model instance to be saved. filepath: `str` or `pathlib.Path` object. Path where to save the model. overwrite: Whether we should overwrite any existing model at the target location, or instead ask the user via an interactive prompt. save_format: Either `"keras"`, `"tf"`, `"h5"`, indicating whether to save the model in the native Keras format (`.keras`), in the TensorFlow SavedModel format (referred to as "SavedModel" below), or in the legacy HDF5 format (`.h5`). Defaults to `"tf"` in TF 2.X, and `"h5"` in TF 1.X. SavedModel format arguments: include_optimizer: Only applied to SavedModel and legacy HDF5 formats. If False, do not save the optimizer state. Defaults to True. signatures: Only applies to SavedModel format. Signatures to save with the SavedModel. See the `signatures` argument in `tf.saved_model.save` for details. options: Only applies to SavedModel format. `tf.saved_model.SaveOptions` object that specifies SavedModel saving options. save_traces: Only applies to SavedModel format. When enabled, the SavedModel will store the function traces for each layer. This can be disabled, so that only the configs of each layer are stored. Defaults to `True`. Disabling this will decrease serialization time and reduce file size, but it requires that all custom layers/models implement a `get_config()` method. Example: ```python model = tf.keras.Sequential([ tf.keras.layers.Dense(5, input_shape=(3,)), tf.keras.layers.Softmax()]) model.save("model.keras") loaded_model = tf.keras.models.load_model("model.keras") x = tf.random.uniform((10, 3)) assert np.allclose(model.predict(x), loaded_model.predict(x)) ``` Note that `model.save()` is an alias for `tf.keras.models.save_model()`. The SavedModel or HDF5 file contains: - The model's configuration (architecture) - The model's weights - The model's optimizer's state (if any) Thus models can be reinstantiated in the exact same state, without any of the code used for model definition or training. Note that the model weights may have different scoped names after being loaded. Scoped names include the model/layer names, such as `"dense_1/kernel:0"`. It is recommended that you use the layer properties to access specific variables, e.g. `model.get_layer("dense_1").kernel`. __SavedModel serialization format__ With `save_format="tf"`, the model and all trackable objects attached to the it (e.g. layers and variables) are saved as a TensorFlow SavedModel. The model config, weights, and optimizer are included in the SavedModel. Additionally, for every Keras layer attached to the model, the SavedModel stores: * The config and metadata -- e.g. name, dtype, trainable status * Traced call and loss functions, which are stored as TensorFlow subgraphs. The traced functions allow the SavedModel format to save and load custom layers without the original class definition. You can choose to not save the traced functions by disabling the `save_traces` option. This will decrease the time it takes to save the model and the amount of disk space occupied by the output SavedModel. If you enable this option, then you _must_ provide all custom class definitions when loading the model. See the `custom_objects` argument in `tf.keras.models.load_model`.
472
110
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def save_model(model, filepath, overwrite=True, save_format=None, **kwargs): save_format = get_save_format(filepath, save_format) if save_format not in ("keras", "tf", "h5", "keras_v3"): raise ValueError( "Unknown `save_format` argument. Expected one of " "'keras', 'tf', or 'h5'. " f"Received: save_format{save_format}" ) if save_format == "keras_v3" or ( saving_lib.saving_v3_enabled() and save_format == "keras" ): # If file exists and should not be overwritten. try: exists = os.path.exists(filepath) except TypeError: exists = False if exists and not overwrite: proceed = io_utils.ask_to_proceed_with_overwrite(filepath) if not proceed: return if kwargs: raise ValueError( "The following argument(s) are not supported " f"with the native Keras format: {list(kwargs.keys())}" ) saving_lib.save_model(model, filepath) else: # Legacy case return legacy_sm_saving_lib.save_model( model, filepath, overwrite=overwrite, save_format=save_format, **kwargs, ) @keras_export("keras.models.load_model") ``` ###Assistant : Saves a model as a TensorFlow SavedModel or HDF5 file. See the [Serialization and Saving guide]( https://keras.io/guides/serialization_and_saving/) for details. Args: model: Keras model instance to be saved. filepath: `str` or `pathlib.Path` object. Path where to save the model. overwrite: Whether we should overwrite any existing model at the target location, or instead ask the user via an interactive prompt. save_format: Either `"keras"`, `"tf"`, `"h5"`, indicating whether to save the model in the native Keras format (`.keras`), in the TensorFlow SavedModel format (referred to as "SavedModel" below), or in the legacy HDF5 format (`.h5`). Defaults to `"tf"` in TF 2.X, and `"h5"` in TF 1.X. SavedModel format arguments: include_optimizer: Only applied to SavedModel and legacy HDF5 formats. If False, do not save the optimizer state. Defaults to True. signatures: Only applies to SavedModel format. Signatures to save with the SavedModel. See the `signatures` argument in `tf.saved_model.save` for details. options: Only applies to SavedModel format. `tf.saved_model.SaveOptions` object that specifies SavedModel saving options. save_traces: Only applies to SavedModel format. When enabled, the SavedModel will store the function traces for each layer. This can be disabled, so that only the configs of each layer are stored. Defaults to `True`. Disabling this will decrease serialization time and reduce file size, but it requires that all custom layers/models implement a `get_config()` method. Example: ```python model = tf.keras.Sequential([ tf.keras.layers.Dense(5, input_shape=(3,)), tf.keras.layers.Softmax()]) model.save("model.keras") loaded_model = tf.keras.models.load_model("model.keras") x = tf.random.uniform((10, 3)) assert np.allclose(model.predict(x), loaded_model.predict(x)) ``` Note that `model.save()` is an alias for `tf.keras.models.save_model()`. The SavedModel or HDF5 file contains: - The model's configuration (architecture) - The model's weights - The model's optimizer's state (if any) Thus models can be reinstantiated in the exact same state, without any of the code used for model definition or training. Note that the model weights may have different scoped names after being loaded. Scoped names include the model/layer names, such as `"dense_1/kernel:0"`. It is recommended that you use the layer properties to access specific variables, e.g. `model.get_layer("dense_1").kernel`. __SavedModel serialization format__ With `save_format="tf"`, the model and all trackable objects attached to the it (e.g. layers and variables) are saved as a TensorFlow SavedModel. The model config, weights, and optimizer are included in the SavedModel. Additionally, for every Keras layer attached to the model, the SavedModel stores: * The config and metadata -- e.g. name, dtype, trainable status * Traced call and loss functions, which are stored as TensorFlow subgraphs. The traced functions allow the SavedModel format to save and load custom layers without the original class definition. You can choose to not save the traced functions by disabling the `save_traces` option. This will decrease the time it takes to save the model and the amount of disk space occupied by the output SavedModel. If you enable this option, then you _must_ provide all custom class definitions when loading the model. See the `custom_objects` argument in `tf.keras.models.load_model`.
1,950
def test_random_spanning_tree_additive_small(): pytest.importorskip("numpy") edges = { (0, 1): 1, (0, 2): 1, (0, 5): 3, (1, 2): 2, (1, 4): 3, (2, 3): 3, (5, 3): 4, (5, 4): 5, (4, 3): 4, } # Build the graph G = nx.Graph() for u, v in edges: G.add_edge(u, v, weight=edges[(u, v)]) solution_edges = [(0, 2), (1, 2), (2, 3), (3, 4), (3, 5)] solution = nx.Graph() solution.add_edges_from(solution_edges) sampled_tree = nx.random_spanning_tree( G, weight="weight", multiplicative=False, seed=37 ) assert nx.utils.edges_equal(solution.edges, sampled_tree.edges) @pytest.mark.slow
Sample a single spanning tree from the additive method.
9
78
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_random_spanning_tree_additive_small(): pytest.importorskip("numpy") edges = { (0, 1): 1, (0, 2): 1, (0, 5): 3, (1, 2): 2, (1, 4): 3, (2, 3): 3, (5, 3): 4, (5, 4): 5, (4, 3): 4, } # Build the graph G = nx.Graph() for u, v in edges: G.add_edge(u, v, weight=edges[(u, v)]) solution_edges = [(0, 2), (1, 2), (2, 3), (3, 4), (3, 5)] solution = nx.Graph() solution.add_edges_from(solution_edges) sampled_tree = nx.random_spanning_tree( G, weight="weight", multiplicative=False, seed=37 ) assert nx.utils.edges_equal(solution.edges, sampled_tree.edges) @pytest.mark.slow ``` ###Assistant : Sample a single spanning tree from the additive method.
1,951
def sequence_loss(flow_preds, flow_gt, valid_flow_mask, gamma=0.8, max_flow=400): if gamma > 1: raise ValueError(f"Gamma should be < 1, got {gamma}.") # exlude invalid pixels and extremely large diplacements flow_norm = torch.sum(flow_gt**2, dim=1).sqrt() valid_flow_mask = valid_flow_mask & (flow_norm < max_flow) valid_flow_mask = valid_flow_mask[:, None, :, :] flow_preds = torch.stack(flow_preds) # shape = (num_flow_updates, batch_size, 2, H, W) abs_diff = (flow_preds - flow_gt).abs() abs_diff = (abs_diff * valid_flow_mask).mean(axis=(1, 2, 3, 4)) num_predictions = flow_preds.shape[0] weights = gamma ** torch.arange(num_predictions - 1, -1, -1).to(flow_gt.device) flow_loss = (abs_diff * weights).sum() return flow_loss
Loss function defined over sequence of flow predictions
8
86
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def sequence_loss(flow_preds, flow_gt, valid_flow_mask, gamma=0.8, max_flow=400): if gamma > 1: raise ValueError(f"Gamma should be < 1, got {gamma}.") # exlude invalid pixels and extremely large diplacements flow_norm = torch.sum(flow_gt**2, dim=1).sqrt() valid_flow_mask = valid_flow_mask & (flow_norm < max_flow) valid_flow_mask = valid_flow_mask[:, None, :, :] flow_preds = torch.stack(flow_preds) # shape = (num_flow_updates, batch_size, 2, H, W) abs_diff = (flow_preds - flow_gt).abs() abs_diff = (abs_diff * valid_flow_mask).mean(axis=(1, 2, 3, 4)) num_predictions = flow_preds.shape[0] weights = gamma ** torch.arange(num_predictions - 1, -1, -1).to(flow_gt.device) flow_loss = (abs_diff * weights).sum() return flow_loss ``` ###Assistant : Loss function defined over sequence of flow predictions
1,952
def booleans_processing(config, **kwargs): final_booleans = {} if tf.executing_eagerly(): final_booleans["output_attentions"] = ( kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions ) final_booleans["output_hidden_states"] = ( kwargs["output_hidden_states"] if kwargs["output_hidden_states"] is not None else config.output_hidden_states ) final_booleans["return_dict"] = ( kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict ) if "use_cache" in kwargs: final_booleans["use_cache"] = ( kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None) ) else: final_booleans["output_attentions"] = config.output_attentions final_booleans["output_hidden_states"] = config.output_hidden_states if kwargs.get("return_dict", None) not in (None, True): tf_logger.warning( "The parameter `return_dict` cannot be set in graph mode and will always be set to `True`." ) final_booleans["return_dict"] = True if "use_cache" in kwargs: final_booleans["use_cache"] = getattr(config, "use_cache", None) return final_booleans
Process the input booleans of each model in order to be sure they are compliant with the execution mode (eager or graph) Args: config ([`PretrainedConfig`]): The config of the running model. **kwargs: The boolean parameters Returns: A dictionary with the proper values for each boolean
45
108
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def booleans_processing(config, **kwargs): final_booleans = {} if tf.executing_eagerly(): final_booleans["output_attentions"] = ( kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions ) final_booleans["output_hidden_states"] = ( kwargs["output_hidden_states"] if kwargs["output_hidden_states"] is not None else config.output_hidden_states ) final_booleans["return_dict"] = ( kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict ) if "use_cache" in kwargs: final_booleans["use_cache"] = ( kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None) ) else: final_booleans["output_attentions"] = config.output_attentions final_booleans["output_hidden_states"] = config.output_hidden_states if kwargs.get("return_dict", None) not in (None, True): tf_logger.warning( "The parameter `return_dict` cannot be set in graph mode and will always be set to `True`." ) final_booleans["return_dict"] = True if "use_cache" in kwargs: final_booleans["use_cache"] = getattr(config, "use_cache", None) return final_booleans ``` ###Assistant : Process the input booleans of each model in order to be sure they are compliant with the execution mode (eager or graph) Args: config ([`PretrainedConfig`]): The config of the running model. **kwargs: The boolean parameters Returns: A dictionary with the proper values for each boolean
1,953
def test_dagrun_root_fail_unfinished(self): # TODO: this should live in test_dagrun.py # Run both the failed and successful tasks dag_id = 'test_dagrun_states_root_fail_unfinished' dag = self.dagbag.get_dag(dag_id) dr = dag.create_dagrun( run_type=DagRunType.SCHEDULED, execution_date=DEFAULT_DATE, state=None, ) self.null_exec.mock_task_fail(dag_id, 'test_dagrun_fail', dr.run_id) with pytest.raises(AirflowException): dag.run(start_date=dr.execution_date, end_date=dr.execution_date, executor=self.null_exec) # Mark the successful task as never having run since we want to see if the # dagrun will be in a running state despite having an unfinished task. with create_session() as session: ti = dr.get_task_instance('test_dagrun_unfinished', session=session) ti.state = State.NONE session.commit() dr.update_state() assert dr.state == State.RUNNING
DagRuns with one unfinished and one failed root task -> RUNNING
11
84
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_dagrun_root_fail_unfinished(self): # TODO: this should live in test_dagrun.py # Run both the failed and successful tasks dag_id = 'test_dagrun_states_root_fail_unfinished' dag = self.dagbag.get_dag(dag_id) dr = dag.create_dagrun( run_type=DagRunType.SCHEDULED, execution_date=DEFAULT_DATE, state=None, ) self.null_exec.mock_task_fail(dag_id, 'test_dagrun_fail', dr.run_id) with pytest.raises(AirflowException): dag.run(start_date=dr.execution_date, end_date=dr.execution_date, executor=self.null_exec) # Mark the successful task as never having run since we want to see if the # dagrun will be in a running state despite having an unfinished task. with create_session() as session: ti = dr.get_task_instance('test_dagrun_unfinished', session=session) ti.state = State.NONE session.commit() dr.update_state() assert dr.state == State.RUNNING ``` ###Assistant : DagRuns with one unfinished and one failed root task -> RUNNING
1,954
def _get_call_args(backend_name, data, args, kwargs): if isinstance(data, ABCSeries): arg_def = [ ("kind", "line"), ("ax", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", False), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("label", None), ("secondary_y", False), ("xlabel", None), ("ylabel", None), ] elif isinstance(data, ABCDataFrame): arg_def = [ ("x", None), ("y", None), ("kind", "line"), ("ax", None), ("subplots", False), ("sharex", None), ("sharey", False), ("layout", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", True), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("secondary_y", False), ("sort_columns", False), ("xlabel", None), ("ylabel", None), ] else: raise TypeError( f"Called plot accessor for type {type(data).__name__}, " "expected Series or DataFrame" ) if "sort_columns" in itertools.chain(args, kwargs.keys()): warnings.warn( "`sort_columns` is deprecated and will be removed in a future " "version.", FutureWarning, stacklevel=find_stack_level(inspect.currentframe()), ) if args and isinstance(data, ABCSeries): positional_args = str(args)[1:-1] keyword_args = ", ".join( [f"{name}={repr(value)}" for (name, _), value in zip(arg_def, args)] ) msg = ( "`Series.plot()` should not be called with positional " "arguments, only keyword arguments. The order of " "positional arguments will change in the future. " f"Use `Series.plot({keyword_args})` instead of " f"`Series.plot({positional_args})`." ) raise TypeError(msg) pos_args = {name: value for (name, _), value in zip(arg_def, args)} if backend_name == "pandas.plotting._matplotlib": kwargs = dict(arg_def, **pos_args, **kwargs) else: kwargs = dict(pos_args, **kwargs) x = kwargs.pop("x", None) y = kwargs.pop("y", None) kind = kwargs.pop("kind", "line") return x, y, kind, kwargs
This function makes calls to this accessor `__call__` method compatible with the previous `SeriesPlotMethods.__call__` and `DataFramePlotMethods.__call__`. Those had slightly different signatures, since `DataFramePlotMethods` accepted `x` and `y` parameters.
28
266
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_call_args(backend_name, data, args, kwargs): if isinstance(data, ABCSeries): arg_def = [ ("kind", "line"), ("ax", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", False), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("label", None), ("secondary_y", False), ("xlabel", None), ("ylabel", None), ] elif isinstance(data, ABCDataFrame): arg_def = [ ("x", None), ("y", None), ("kind", "line"), ("ax", None), ("subplots", False), ("sharex", None), ("sharey", False), ("layout", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", True), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("secondary_y", False), ("sort_columns", False), ("xlabel", None), ("ylabel", None), ] else: raise TypeError( f"Called plot accessor for type {type(data).__name__}, " "expected Series or DataFrame" ) if "sort_columns" in itertools.chain(args, kwargs.keys()): warnings.warn( "`sort_columns` is deprecated and will be removed in a future " "version.", FutureWarning, stacklevel=find_stack_level(inspect.currentframe()), ) if args and isinstance(data, ABCSeries): positional_args = str(args)[1:-1] keyword_args = ", ".join( [f"{name}={repr(value)}" for (name, _), value in zip(arg_def, args)] ) msg = ( "`Series.plot()` should not be called with positional " "arguments, only keyword arguments. The order of " "positional arguments will change in the future. " f"Use `Series.plot({keyword_args})` instead of " f"`Series.plot({positional_args})`." ) raise TypeError(msg) pos_args = {name: value for (name, _), value in zip(arg_def, args)} if backend_name == "pandas.plotting._matplotlib": kwargs = dict(arg_def, **pos_args, **kwargs) else: kwargs = dict(pos_args, **kwargs) x = kwargs.pop("x", None) y = kwargs.pop("y", None) kind = kwargs.pop("kind", "line") return x, y, kind, kwargs ``` ###Assistant : This function makes calls to this accessor `__call__` method compatible with the previous `SeriesPlotMethods.__call__` and `DataFramePlotMethods.__call__`. Those had slightly different signatures, since `DataFramePlotMethods` accepted `x` and `y` parameters.
1,955
async def test_ahas_key(self): await cache.aset("hello1", "goodbye1") self.assertIs(await cache.ahas_key("hello1"), False) self.assertIs(await cache.ahas_key("goodbye1"), False)
ahas_key() doesn't ever return True for the dummy cache backend.
10
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_ahas_key(self): await cache.aset("hello1", "goodbye1") self.assertIs(await cache.ahas_key("hello1"), False) self.assertIs(await cache.ahas_key("goodbye1"), False) ``` ###Assistant : ahas_key() doesn't ever return True for the dummy cache backend.
1,956
def min_temp(self) -> float: if self.temperature_unit == UnitOfTemperature.CELSIUS: return TEMP_MIN return TEMP_MIN_F
Return the minimum temperature supported by the device.
8
12
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def min_temp(self) -> float: if self.temperature_unit == UnitOfTemperature.CELSIUS: return TEMP_MIN return TEMP_MIN_F ``` ###Assistant : Return the minimum temperature supported by the device.
1,957
def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0): if x and x not in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir, cdir=cdir) else: return self._eval_nseries(x, n=n, logx=logx, cdir=cdir)
Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we do not have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but only returns self unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) x**y >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y)
294
49
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0): if x and x not in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir, cdir=cdir) else: return self._eval_nseries(x, n=n, logx=logx, cdir=cdir) ``` ###Assistant : Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we do not have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but only returns self unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) x**y >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y)
1,958
def test_getitem_error(self, exception): container = self.Container(exception("failure")) with pytest.raises(validate.ValidationError) as cm: validate.validate(validate.get("foo", default="default"), container) assert_validationerror(cm.value, )
ValidationError(GetItemSchema): Could not get key 'foo' from object Container Context: failure
11
15
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_getitem_error(self, exception): container = self.Container(exception("failure")) with pytest.raises(validate.ValidationError) as cm: validate.validate(validate.get("foo", default="default"), container) assert_validationerror(cm.value, ) ``` ###Assistant : ValidationError(GetItemSchema): Could not get key 'foo' from object Container Context: failure
1,959
def num_base_priors(self) -> List[int]: return [1 for _ in range(len(self.strides))]
list[int]: The number of priors (points) at a point on the feature grid
13
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def num_base_priors(self) -> List[int]: return [1 for _ in range(len(self.strides))] ``` ###Assistant : list[int]: The number of priors (points) at a point on the feature grid
1,960
def test_logentry_change_message_localized_datetime_input(self): post_data = { "site": self.site.pk, "title": "Changed", "hist": "Some content", "created_0": "12/03/2008", "created_1": "11:54", } with translation.override("fr"): change_url = reverse( "admin:admin_utils_article_change", args=[quote(self.a1.pk)] ) response = self.client.post(change_url, post_data) self.assertRedirects( response, reverse("admin:admin_utils_article_changelist") ) logentry = LogEntry.objects.filter( content_type__model__iexact="article" ).latest("id") self.assertEqual(logentry.get_change_message(), "Changed Title and History.")
Localized date/time inputs shouldn't affect changed form data detection.
9
43
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_logentry_change_message_localized_datetime_input(self): post_data = { "site": self.site.pk, "title": "Changed", "hist": "Some content", "created_0": "12/03/2008", "created_1": "11:54", } with translation.override("fr"): change_url = reverse( "admin:admin_utils_article_change", args=[quote(self.a1.pk)] ) response = self.client.post(change_url, post_data) self.assertRedirects( response, reverse("admin:admin_utils_article_changelist") ) logentry = LogEntry.objects.filter( content_type__model__iexact="article" ).latest("id") self.assertEqual(logentry.get_change_message(), "Changed Title and History.") ``` ###Assistant : Localized date/time inputs shouldn't affect changed form data detection.
1,961
def _cleanup_code(code): return code # Nothing to do here # language=PythonVerboseRegExp _call_function_bytecode = bytecode_regex( rb ) else: # Starting with python 3.11, the bytecode is peppered with CACHE instructions (which dis module conveniently hides # unless show_caches=True is used). Dealing with these CACHE instructions in regex rules is going to render them # unreadable, so instead we pre-process the bytecode and filter the offending opcodes out.
# Matches `global_function('some', 'constant', 'arguments')`. # Load the global function. In code with >256 of names, this may require extended name references. ((?:`EXTENDED_ARG`.)* (?:`LOAD_NAME`|`LOAD_GLOBAL`|`LOAD_FAST`).) # For foo.bar.whizz(), the above is the 'foo', below is the 'bar.whizz'. ((?:(?:`EXTENDED_ARG`.)* (?:`LOAD_METHOD`|`LOAD_ATTR`).)*) # Load however many arguments it takes. These (for now) must all be constants. # Again, code with >256 constants may need extended enumeration. ((?:(?:`EXTENDED_ARG`.)* `LOAD_CONST`.)*) # Call the function. The parameter is the argument count (which may also be >256) if CALL_FUNCTION or # CALL_METHOD are used. For CALL_FUNCTION_EX, the parameter are flags. ((?:`EXTENDED_ARG`.)* (?:`CALL_FUNCTION`|`CALL_METHOD`|`CALL_FUNCTION_EX`).)
94
66
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _cleanup_code(code): return code # Nothing to do here # language=PythonVerboseRegExp _call_function_bytecode = bytecode_regex( rb ) else: # Starting with python 3.11, the bytecode is peppered with CACHE instructions (which dis module conveniently hides # unless show_caches=True is used). Dealing with these CACHE instructions in regex rules is going to render them # unreadable, so instead we pre-process the bytecode and filter the offending opcodes out. ``` ###Assistant : # Matches `global_function('some', 'constant', 'arguments')`. # Load the global function. In code with >256 of names, this may require extended name references. ((?:`EXTENDED_ARG`.)* (?:`LOAD_NAME`|`LOAD_GLOBAL`|`LOAD_FAST`).) # For foo.bar.whizz(), the above is the 'foo', below is the 'bar.whizz'. ((?:(?:`EXTENDED_ARG`.)* (?:`LOAD_METHOD`|`LOAD_ATTR`).)*) # Load however many arguments it takes. These (for now) must all be constants. # Again, code with >256 constants may need extended enumeration. ((?:(?:`EXTENDED_ARG`.)* `LOAD_CONST`.)*) # Call the function. The parameter is the argument count (which may also be >256) if CALL_FUNCTION or # CALL_METHOD are used. For CALL_FUNCTION_EX, the parameter are flags. ((?:`EXTENDED_ARG`.)* (?:`CALL_FUNCTION`|`CALL_METHOD`|`CALL_FUNCTION_EX`).)
1,962
def filemode(mode): perm = [] for table in filemode_table: for bit, char in table: if mode & bit == bit: perm.append(char) break else: perm.append("-") return "".join(perm)
Convert a file's mode to a string of the form -rwxrwxrwx. Used by TarFile.list()
14
26
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def filemode(mode): perm = [] for table in filemode_table: for bit, char in table: if mode & bit == bit: perm.append(char) break else: perm.append("-") return "".join(perm) ``` ###Assistant : Convert a file's mode to a string of the form -rwxrwxrwx. Used by TarFile.list()
1,963
def filter_2d(x, k, gain=1, data_format='NCHW', impl='cuda'): r k = _setup_kernel(k) * gain p = k.shape[0] - 1 return _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl) #----------------------------------------------------------------------------
Filter a batch of 2D images with the given FIR filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and filters each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the same shape and datatype as `x`.
130
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def filter_2d(x, k, gain=1, data_format='NCHW', impl='cuda'): r k = _setup_kernel(k) * gain p = k.shape[0] - 1 return _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl) #---------------------------------------------------------------------------- ``` ###Assistant : Filter a batch of 2D images with the given FIR filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and filters each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the same shape and datatype as `x`.
1,964
def execute(): frappe.reload_doctype("Pricing Rule") currency = frappe.db.get_default("currency") for doc in frappe.get_all("Pricing Rule", fields=["company", "name"]): if doc.company: currency = frappe.get_cached_value("Company", doc.company, "default_currency") frappe.db.sql( , (currency, doc.name) )
update `tabPricing Rule` set currency = %s where name = %s
11
26
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def execute(): frappe.reload_doctype("Pricing Rule") currency = frappe.db.get_default("currency") for doc in frappe.get_all("Pricing Rule", fields=["company", "name"]): if doc.company: currency = frappe.get_cached_value("Company", doc.company, "default_currency") frappe.db.sql( , (currency, doc.name) ) ``` ###Assistant : update `tabPricing Rule` set currency = %s where name = %s
1,965
def forward(self, x, mask=None): B_, N, C = x.shape qkv = self.qkv(x).reshape((B_, N, 3, self.num_heads, C // self.num_heads)).transpose((2, 0, 3, 1, 4)) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose((0, 1, 3, 2))) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.reshape( (-1, ))].reshape((self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.transpose((2, 0, 1)) # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.reshape((B_ // nW, nW, self.num_heads, N, N)) + mask.unsqueeze(1).unsqueeze(0) attn = attn.reshape((-1, self.num_heads, N, N)) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose((0, 2, 1, 3)).reshape((B_, N, C)) x = self.proj(x) x = self.proj_drop(x) return x
Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
21
131
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def forward(self, x, mask=None): B_, N, C = x.shape qkv = self.qkv(x).reshape((B_, N, 3, self.num_heads, C // self.num_heads)).transpose((2, 0, 3, 1, 4)) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose((0, 1, 3, 2))) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.reshape( (-1, ))].reshape((self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.transpose((2, 0, 1)) # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.reshape((B_ // nW, nW, self.num_heads, N, N)) + mask.unsqueeze(1).unsqueeze(0) attn = attn.reshape((-1, self.num_heads, N, N)) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose((0, 2, 1, 3)).reshape((B_, N, C)) x = self.proj(x) x = self.proj_drop(x) return x ``` ###Assistant : Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
1,966
def test_join_rules_invite(self): creator = "@creator:example.com" pleb = "@joiner:example.com" auth_events = { ("m.room.create", ""): _create_event(RoomVersions.V6, creator), ("m.room.member", creator): _join_event(RoomVersions.V6, creator), ("m.room.join_rules", ""): _join_rules_event( RoomVersions.V6, creator, "invite" ), } # A join without an invite is rejected. with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user cannot be force-joined to a room. with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _member_event(RoomVersions.V6, pleb, "join", sender=creator), auth_events.values(), ) # Banned should be rejected. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "ban" ) with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user who left cannot re-join. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "leave" ) with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user can send a join if they're in the room. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "join" ) event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user can accept an invite. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "invite", sender=creator ) event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), )
Test joining an invite only room.
6
154
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_join_rules_invite(self): creator = "@creator:example.com" pleb = "@joiner:example.com" auth_events = { ("m.room.create", ""): _create_event(RoomVersions.V6, creator), ("m.room.member", creator): _join_event(RoomVersions.V6, creator), ("m.room.join_rules", ""): _join_rules_event( RoomVersions.V6, creator, "invite" ), } # A join without an invite is rejected. with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user cannot be force-joined to a room. with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _member_event(RoomVersions.V6, pleb, "join", sender=creator), auth_events.values(), ) # Banned should be rejected. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "ban" ) with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user who left cannot re-join. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "leave" ) with self.assertRaises(AuthError): event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user can send a join if they're in the room. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "join" ) event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) # A user can accept an invite. auth_events[("m.room.member", pleb)] = _member_event( RoomVersions.V6, pleb, "invite", sender=creator ) event_auth.check_auth_rules_for_event( RoomVersions.V6, _join_event(RoomVersions.V6, pleb), auth_events.values(), ) ``` ###Assistant : Test joining an invite only room.
1,967
def validate_onboarding(data): logging.info(f"Validating onboarding data {data}") messages = data['outputs']['messages'] if len(messages) == 0: return False status_message = messages[-2] if status_message is None: return False submitted_data = status_message.get('data') if submitted_data is None: return False final_status = submitted_data.get('final_status') return final_status == ONBOARD_SUCCESS # TODO: find a better way to avoid duplicating this from model_chat world.py
Check the contents of the data to ensure they are valid.
11
53
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def validate_onboarding(data): logging.info(f"Validating onboarding data {data}") messages = data['outputs']['messages'] if len(messages) == 0: return False status_message = messages[-2] if status_message is None: return False submitted_data = status_message.get('data') if submitted_data is None: return False final_status = submitted_data.get('final_status') return final_status == ONBOARD_SUCCESS # TODO: find a better way to avoid duplicating this from model_chat world.py ``` ###Assistant : Check the contents of the data to ensure they are valid.
1,968
async def test_async_track_entity_registry_updated_event_with_empty_list(hass): unsub_single = async_track_entity_registry_updated_event( hass, [], ha.callback(lambda event: None) ) unsub_single2 = async_track_entity_registry_updated_event( hass, [], ha.callback(lambda event: None) ) unsub_single2() unsub_single()
Test async_track_entity_registry_updated_event passing an empty list of entities.
8
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_async_track_entity_registry_updated_event_with_empty_list(hass): unsub_single = async_track_entity_registry_updated_event( hass, [], ha.callback(lambda event: None) ) unsub_single2 = async_track_entity_registry_updated_event( hass, [], ha.callback(lambda event: None) ) unsub_single2() unsub_single() ``` ###Assistant : Test async_track_entity_registry_updated_event passing an empty list of entities.
1,969
def generate_self_signed_tls_certs(): try: from cryptography import x509 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.x509.oid import NameOID except ImportError: raise ImportError( "Using `Security.temporary` requires `cryptography`, please " "install it using either pip or conda" ) key = rsa.generate_private_key( public_exponent=65537, key_size=2048, backend=default_backend() ) key_contents = key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption(), ).decode() ray_interal = x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, "ray-internal")]) # This is the same logic used by the GCS server to acquire a # private/interal IP address to listen on. If we just use localhost + # 127.0.0.1 then we won't be able to connect to the GCS and will get # an error like "No match found for server name: 192.168.X.Y" s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) private_ip_address = s.getsockname()[0] s.close() altnames = x509.SubjectAlternativeName( [ x509.DNSName( socket.gethostbyname(socket.gethostname()) ), # Probably 127.0.0.1 x509.DNSName("127.0.0.1"), x509.DNSName(private_ip_address), # 192.168.*.* x509.DNSName("localhost"), ] ) now = datetime.datetime.utcnow() cert = ( x509.CertificateBuilder() .subject_name(ray_interal) .issuer_name(ray_interal) .add_extension(altnames, critical=False) .public_key(key.public_key()) .serial_number(x509.random_serial_number()) .not_valid_before(now) .not_valid_after(now + datetime.timedelta(days=365)) .sign(key, hashes.SHA256(), default_backend()) ) cert_contents = cert.public_bytes(serialization.Encoding.PEM).decode() return cert_contents, key_contents
Create self-signed key/cert pair for testing. This method requires the library ``cryptography`` be installed.
14
167
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def generate_self_signed_tls_certs(): try: from cryptography import x509 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.x509.oid import NameOID except ImportError: raise ImportError( "Using `Security.temporary` requires `cryptography`, please " "install it using either pip or conda" ) key = rsa.generate_private_key( public_exponent=65537, key_size=2048, backend=default_backend() ) key_contents = key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption(), ).decode() ray_interal = x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, "ray-internal")]) # This is the same logic used by the GCS server to acquire a # private/interal IP address to listen on. If we just use localhost + # 127.0.0.1 then we won't be able to connect to the GCS and will get # an error like "No match found for server name: 192.168.X.Y" s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) private_ip_address = s.getsockname()[0] s.close() altnames = x509.SubjectAlternativeName( [ x509.DNSName( socket.gethostbyname(socket.gethostname()) ), # Probably 127.0.0.1 x509.DNSName("127.0.0.1"), x509.DNSName(private_ip_address), # 192.168.*.* x509.DNSName("localhost"), ] ) now = datetime.datetime.utcnow() cert = ( x509.CertificateBuilder() .subject_name(ray_interal) .issuer_name(ray_interal) .add_extension(altnames, critical=False) .public_key(key.public_key()) .serial_number(x509.random_serial_number()) .not_valid_before(now) .not_valid_after(now + datetime.timedelta(days=365)) .sign(key, hashes.SHA256(), default_backend()) ) cert_contents = cert.public_bytes(serialization.Encoding.PEM).decode() return cert_contents, key_contents ``` ###Assistant : Create self-signed key/cert pair for testing. This method requires the library ``cryptography`` be installed.
1,970
def print_help(self): has_ticker_start = "[unvl]" if not self.ticker else "" has_ticker_end = "[/unvl]" if not self.ticker else "" help_text = f console.print(text=help_text, menu="Stocks - Government")
Print help [src][QuiverQuant][/src] [info]Explore:[/info][cmds] lasttrades last trades topbuys show most purchased stocks topsells show most sold stocks lastcontracts show last government contracts given out qtrcontracts quarterly government contracts analysis toplobbying top corporate lobbying tickers load load a specific ticker for analysis[/cmds] [param]Ticker: [/param]{self.ticker or None}{has_ticker_start}[cmds] gtrades show government trades for ticker contracts show government contracts for ticker histcont show historical quarterly government contracts for ticker lobbying corporate lobbying details for ticker[/cmds]{has_ticker_end}
71
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def print_help(self): has_ticker_start = "[unvl]" if not self.ticker else "" has_ticker_end = "[/unvl]" if not self.ticker else "" help_text = f console.print(text=help_text, menu="Stocks - Government") ``` ###Assistant : Print help [src][QuiverQuant][/src] [info]Explore:[/info][cmds] lasttrades last trades topbuys show most purchased stocks topsells show most sold stocks lastcontracts show last government contracts given out qtrcontracts quarterly government contracts analysis toplobbying top corporate lobbying tickers load load a specific ticker for analysis[/cmds] [param]Ticker: [/param]{self.ticker or None}{has_ticker_start}[cmds] gtrades show government trades for ticker contracts show government contracts for ticker histcont show historical quarterly government contracts for ticker lobbying corporate lobbying details for ticker[/cmds]{has_ticker_end}
1,971
def get_item_warehouse_projected_qty(items_to_consider): item_warehouse_projected_qty = {} for item_code, warehouse, projected_qty in frappe.db.sql( .format( ", ".join(["%s"] * len(items_to_consider)) ), items_to_consider, ): if item_code not in item_warehouse_projected_qty: item_warehouse_projected_qty.setdefault(item_code, {}) if warehouse not in item_warehouse_projected_qty.get(item_code): item_warehouse_projected_qty[item_code][warehouse] = flt(projected_qty) warehouse_doc = frappe.get_doc("Warehouse", warehouse) while warehouse_doc.parent_warehouse: if not item_warehouse_projected_qty.get(item_code, {}).get(warehouse_doc.parent_warehouse): item_warehouse_projected_qty.setdefault(item_code, {})[warehouse_doc.parent_warehouse] = flt( projected_qty ) else: item_warehouse_projected_qty[item_code][warehouse_doc.parent_warehouse] += flt(projected_qty) warehouse_doc = frappe.get_doc("Warehouse", warehouse_doc.parent_warehouse) return item_warehouse_projected_qty
select item_code, warehouse, projected_qty from tabBin where item_code in ({0}) and (warehouse != "" and warehouse is not null)
19
60
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_item_warehouse_projected_qty(items_to_consider): item_warehouse_projected_qty = {} for item_code, warehouse, projected_qty in frappe.db.sql( .format( ", ".join(["%s"] * len(items_to_consider)) ), items_to_consider, ): if item_code not in item_warehouse_projected_qty: item_warehouse_projected_qty.setdefault(item_code, {}) if warehouse not in item_warehouse_projected_qty.get(item_code): item_warehouse_projected_qty[item_code][warehouse] = flt(projected_qty) warehouse_doc = frappe.get_doc("Warehouse", warehouse) while warehouse_doc.parent_warehouse: if not item_warehouse_projected_qty.get(item_code, {}).get(warehouse_doc.parent_warehouse): item_warehouse_projected_qty.setdefault(item_code, {})[warehouse_doc.parent_warehouse] = flt( projected_qty ) else: item_warehouse_projected_qty[item_code][warehouse_doc.parent_warehouse] += flt(projected_qty) warehouse_doc = frappe.get_doc("Warehouse", warehouse_doc.parent_warehouse) return item_warehouse_projected_qty ``` ###Assistant : select item_code, warehouse, projected_qty from tabBin where item_code in ({0}) and (warehouse != "" and warehouse is not null)
1,972
def _collect_type_vars(types, typevar_types=None): if typevar_types is None: typevar_types = typing.TypeVar tvars = [] for t in types: if ( isinstance(t, typevar_types) and t not in tvars and not _is_unpack(t) ): tvars.append(t) if _should_collect_from_parameters(t): tvars.extend([t for t in t.__parameters__ if t not in tvars]) return tuple(tvars) NoReturn = typing.NoReturn # Some unconstrained type variables. These are used by the container types. # (These are not for export.) T = typing.TypeVar('T') # Any type. KT = typing.TypeVar('KT') # Key type. VT = typing.TypeVar('VT') # Value type. T_co = typing.TypeVar('T_co', covariant=True) # Any type covariant containers. T_contra = typing.TypeVar('T_contra', contravariant=True) # Ditto contravariant. ClassVar = typing.ClassVar # On older versions of typing there is an internal class named "Final". # 3.8+ if hasattr(typing, 'Final') and sys.version_info[:2] >= (3, 7): Final = typing.Final # 3.7 else:
Collect all type variable contained in types in order of first appearance (lexicographic order). For example:: _collect_type_vars((T, List[S, T])) == (T, S)
22
132
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _collect_type_vars(types, typevar_types=None): if typevar_types is None: typevar_types = typing.TypeVar tvars = [] for t in types: if ( isinstance(t, typevar_types) and t not in tvars and not _is_unpack(t) ): tvars.append(t) if _should_collect_from_parameters(t): tvars.extend([t for t in t.__parameters__ if t not in tvars]) return tuple(tvars) NoReturn = typing.NoReturn # Some unconstrained type variables. These are used by the container types. # (These are not for export.) T = typing.TypeVar('T') # Any type. KT = typing.TypeVar('KT') # Key type. VT = typing.TypeVar('VT') # Value type. T_co = typing.TypeVar('T_co', covariant=True) # Any type covariant containers. T_contra = typing.TypeVar('T_contra', contravariant=True) # Ditto contravariant. ClassVar = typing.ClassVar # On older versions of typing there is an internal class named "Final". # 3.8+ if hasattr(typing, 'Final') and sys.version_info[:2] >= (3, 7): Final = typing.Final # 3.7 else: ``` ###Assistant : Collect all type variable contained in types in order of first appearance (lexicographic order). For example:: _collect_type_vars((T, List[S, T])) == (T, S)
1,973
def from_dataframe(df, allow_copy=True): if isinstance(df, pd.DataFrame): return df if not hasattr(df, "__dataframe__"): raise ValueError("`df` does not support __dataframe__") return _from_dataframe(df.__dataframe__(allow_copy=allow_copy))
Build a ``pd.DataFrame`` from any DataFrame supporting the interchange protocol. Parameters ---------- df : DataFrameXchg Object supporting the exchange protocol, i.e. `__dataframe__` method. allow_copy : bool, default: True Whether to allow copying the memory to perform the conversion (if false then zero-copy approach is requested). Returns ------- pd.DataFrame
48
20
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def from_dataframe(df, allow_copy=True): if isinstance(df, pd.DataFrame): return df if not hasattr(df, "__dataframe__"): raise ValueError("`df` does not support __dataframe__") return _from_dataframe(df.__dataframe__(allow_copy=allow_copy)) ``` ###Assistant : Build a ``pd.DataFrame`` from any DataFrame supporting the interchange protocol. Parameters ---------- df : DataFrameXchg Object supporting the exchange protocol, i.e. `__dataframe__` method. allow_copy : bool, default: True Whether to allow copying the memory to perform the conversion (if false then zero-copy approach is requested). Returns ------- pd.DataFrame
1,974
def parse_wheel(wheel_zip, name): # type: (ZipFile, str) -> Tuple[str, Message] try: info_dir = wheel_dist_info_dir(wheel_zip, name) metadata = wheel_metadata(wheel_zip, info_dir) version = wheel_version(metadata) except UnsupportedWheel as e: raise UnsupportedWheel("{} has an invalid wheel, {}".format(name, str(e))) check_compatibility(version, name) return info_dir, metadata
Extract information from the provided wheel, ensuring it meets basic standards. Returns the name of the .dist-info directory and the parsed WHEEL metadata.
23
39
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def parse_wheel(wheel_zip, name): # type: (ZipFile, str) -> Tuple[str, Message] try: info_dir = wheel_dist_info_dir(wheel_zip, name) metadata = wheel_metadata(wheel_zip, info_dir) version = wheel_version(metadata) except UnsupportedWheel as e: raise UnsupportedWheel("{} has an invalid wheel, {}".format(name, str(e))) check_compatibility(version, name) return info_dir, metadata ``` ###Assistant : Extract information from the provided wheel, ensuring it meets basic standards. Returns the name of the .dist-info directory and the parsed WHEEL metadata.
1,975
def style_docstrings_in_code(code, max_len=119): # fmt: off splits = code.split('\"\"\"') splits = [ (s if i % 2 == 0 or _re_doc_ignore.search(splits[i - 1]) is not None else style_docstring(s, max_len=max_len)) for i, s in enumerate(splits) ] black_errors = "\n\n".join([s[1] for s in splits if isinstance(s, tuple) and len(s[1]) > 0]) splits = [s[0] if isinstance(s, tuple) else s for s in splits] clean_code = '\"\"\"'.join(splits) # fmt: on return clean_code, black_errors
Style all docstrings in some code. Args: code (`str`): The code in which we want to style the docstrings. max_len (`int`): The maximum number of characters per line. Returns: `Tuple[str, str]`: A tuple with the clean code and the black errors (if any)
43
70
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def style_docstrings_in_code(code, max_len=119): # fmt: off splits = code.split('\"\"\"') splits = [ (s if i % 2 == 0 or _re_doc_ignore.search(splits[i - 1]) is not None else style_docstring(s, max_len=max_len)) for i, s in enumerate(splits) ] black_errors = "\n\n".join([s[1] for s in splits if isinstance(s, tuple) and len(s[1]) > 0]) splits = [s[0] if isinstance(s, tuple) else s for s in splits] clean_code = '\"\"\"'.join(splits) # fmt: on return clean_code, black_errors ``` ###Assistant : Style all docstrings in some code. Args: code (`str`): The code in which we want to style the docstrings. max_len (`int`): The maximum number of characters per line. Returns: `Tuple[str, str]`: A tuple with the clean code and the black errors (if any)
1,976
def check_version_info(cluster_metadata): cluster_version_info = ( cluster_metadata["ray_version"], cluster_metadata["python_version"], ) version_info = compute_version_info() if version_info != cluster_version_info: node_ip_address = ray._private.services.get_node_ip_address() error_message = ( "Version mismatch: The cluster was started with:\n" " Ray: " + cluster_version_info[0] + "\n" " Python: " + cluster_version_info[1] + "\n" "This process on node " + node_ip_address + " was started with:" + "\n" " Ray: " + version_info[0] + "\n" " Python: " + version_info[1] + "\n" ) raise RuntimeError(error_message)
Check if the Python and Ray versions stored in GCS matches this process. Args: cluster_metadata: Ray cluster metadata from GCS. Raises: Exception: An exception is raised if there is a version mismatch.
32
73
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_version_info(cluster_metadata): cluster_version_info = ( cluster_metadata["ray_version"], cluster_metadata["python_version"], ) version_info = compute_version_info() if version_info != cluster_version_info: node_ip_address = ray._private.services.get_node_ip_address() error_message = ( "Version mismatch: The cluster was started with:\n" " Ray: " + cluster_version_info[0] + "\n" " Python: " + cluster_version_info[1] + "\n" "This process on node " + node_ip_address + " was started with:" + "\n" " Ray: " + version_info[0] + "\n" " Python: " + version_info[1] + "\n" ) raise RuntimeError(error_message) ``` ###Assistant : Check if the Python and Ray versions stored in GCS matches this process. Args: cluster_metadata: Ray cluster metadata from GCS. Raises: Exception: An exception is raised if there is a version mismatch.
1,977
def get_console() -> "Console": global _console if _console is None: from .console import Console _console = Console() return _console
Get a global :class:`~rich.console.Console` instance. This function is used when Rich requires a Console, and hasn't been explicitly given one. Returns: Console: A console instance.
25
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_console() -> "Console": global _console if _console is None: from .console import Console _console = Console() return _console ``` ###Assistant : Get a global :class:`~rich.console.Console` instance. This function is used when Rich requires a Console, and hasn't been explicitly given one. Returns: Console: A console instance.
1,978
def is_hash_allowed(self, hashes): # type: (Optional[Hashes]) -> bool if hashes is None or not self.has_hash: return False # Assert non-None so mypy knows self.hash_name and self.hash are str. assert self.hash_name is not None assert self.hash is not None return hashes.is_hash_allowed(self.hash_name, hex_digest=self.hash) # TODO: Relax this comparison logic to ignore, for example, fragments.
Return True if the link has a hash and it is allowed.
12
52
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def is_hash_allowed(self, hashes): # type: (Optional[Hashes]) -> bool if hashes is None or not self.has_hash: return False # Assert non-None so mypy knows self.hash_name and self.hash are str. assert self.hash_name is not None assert self.hash is not None return hashes.is_hash_allowed(self.hash_name, hex_digest=self.hash) # TODO: Relax this comparison logic to ignore, for example, fragments. ``` ###Assistant : Return True if the link has a hash and it is allowed.
1,979
def coverage_error(y_true, y_score, *, sample_weight=None): y_true = check_array(y_true, ensure_2d=True) y_score = check_array(y_score, ensure_2d=True) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true, input_name="y_true") if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight)
Coverage error measure. Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Note: Our implementation's score is 1 greater than the one given in Tsoumakas et al., 2010. This extends it to handle the degenerate case in which an instance has 0 true labels. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : ndarray of shape (n_samples, n_labels) True binary labels in binary indicator format. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US.
179
60
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def coverage_error(y_true, y_score, *, sample_weight=None): y_true = check_array(y_true, ensure_2d=True) y_score = check_array(y_score, ensure_2d=True) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true, input_name="y_true") if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) ``` ###Assistant : Coverage error measure. Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Note: Our implementation's score is 1 greater than the one given in Tsoumakas et al., 2010. This extends it to handle the degenerate case in which an instance has 0 true labels. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : ndarray of shape (n_samples, n_labels) True binary labels in binary indicator format. y_score : ndarray of shape (n_samples, n_labels) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US.
1,980
def total_predict_batches(self) -> int: return sum(self.trainer.num_predict_batches)
The total number of prediction batches, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the predict dataloader is of infinite size.
37
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def total_predict_batches(self) -> int: return sum(self.trainer.num_predict_batches) ``` ###Assistant : The total number of prediction batches, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the predict dataloader is of infinite size.
1,981
def shape(self) -> Dict[str, Tuple[int]]: self._check_values_type() return {k: dataset.shape for k, dataset in self.items()}
Shape of each split of the dataset (number of columns, number of rows). Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes") >>> ds.shape {'test': (1066, 2), 'train': (8530, 2), 'validation': (1066, 2)} ```
36
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def shape(self) -> Dict[str, Tuple[int]]: self._check_values_type() return {k: dataset.shape for k, dataset in self.items()} ``` ###Assistant : Shape of each split of the dataset (number of columns, number of rows). Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes") >>> ds.shape {'test': (1066, 2), 'train': (8530, 2), 'validation': (1066, 2)} ```
1,982
def is_torch_support_available(self) -> bool: if is_torch_available(): from transformers.file_utils import torch_version return torch_version >= self.torch_onnx_minimum_version else: return False
The minimum PyTorch version required to export the model. Returns: `bool`: Whether the installed version of PyTorch is compatible with the model.
22
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def is_torch_support_available(self) -> bool: if is_torch_available(): from transformers.file_utils import torch_version return torch_version >= self.torch_onnx_minimum_version else: return False ``` ###Assistant : The minimum PyTorch version required to export the model. Returns: `bool`: Whether the installed version of PyTorch is compatible with the model.
1,983
def check_connection(self, logger, config) -> Tuple[bool, any]: auth_header = TokenAuthenticator(token=config["api_key"]).get_auth_header() ping_url = ORB_API_BASE_URL + "ping" ping_response = requests.get(ping_url, headers=auth_header) try: ping_response.raise_for_status() return True, None except Exception as e: return False, e
Makes a request to the /ping endpoint, which validates that the authentication credentials are appropriate. API Docs: https://docs.withorb.com/reference/ping
18
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_connection(self, logger, config) -> Tuple[bool, any]: auth_header = TokenAuthenticator(token=config["api_key"]).get_auth_header() ping_url = ORB_API_BASE_URL + "ping" ping_response = requests.get(ping_url, headers=auth_header) try: ping_response.raise_for_status() return True, None except Exception as e: return False, e ``` ###Assistant : Makes a request to the /ping endpoint, which validates that the authentication credentials are appropriate. API Docs: https://docs.withorb.com/reference/ping
1,984
def add_items_upsert(self, content_type_pk, indexers): compiler = InsertQuery(IndexEntry).get_compiler(connection=self.connection) title_sql = [] autocomplete_sql = [] body_sql = [] data_params = [] for indexer in indexers: data_params.extend((content_type_pk, indexer.id)) # Compile title value value = compiler.prepare_value( IndexEntry._meta.get_field("title"), indexer.title ) sql, params = value.as_sql(compiler, self.connection) title_sql.append(sql) data_params.extend(params) # Compile autocomplete value value = compiler.prepare_value( IndexEntry._meta.get_field("autocomplete"), indexer.autocomplete ) sql, params = value.as_sql(compiler, self.connection) autocomplete_sql.append(sql) data_params.extend(params) # Compile body value value = compiler.prepare_value( IndexEntry._meta.get_field("body"), indexer.body ) sql, params = value.as_sql(compiler, self.connection) body_sql.append(sql) data_params.extend(params) data_sql = ", ".join( [ "(%%s, %%s, %s, %s, %s, 1.0)" % (a, b, c) for a, b, c in zip(title_sql, autocomplete_sql, body_sql) ] ) with self.connection.cursor() as cursor: cursor.execute( % (IndexEntry._meta.db_table, data_sql), data_params, ) self._refresh_title_norms()
INSERT INTO %s (content_type_id, object_id, title, autocomplete, body, title_norm) (VALUES %s) ON CONFLICT (content_type_id, object_id) DO UPDATE SET title = EXCLUDED.title, title_norm = 1.0, autocomplete = EXCLUDED.autocomplete, body = EXCLUDED.body
30
112
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def add_items_upsert(self, content_type_pk, indexers): compiler = InsertQuery(IndexEntry).get_compiler(connection=self.connection) title_sql = [] autocomplete_sql = [] body_sql = [] data_params = [] for indexer in indexers: data_params.extend((content_type_pk, indexer.id)) # Compile title value value = compiler.prepare_value( IndexEntry._meta.get_field("title"), indexer.title ) sql, params = value.as_sql(compiler, self.connection) title_sql.append(sql) data_params.extend(params) # Compile autocomplete value value = compiler.prepare_value( IndexEntry._meta.get_field("autocomplete"), indexer.autocomplete ) sql, params = value.as_sql(compiler, self.connection) autocomplete_sql.append(sql) data_params.extend(params) # Compile body value value = compiler.prepare_value( IndexEntry._meta.get_field("body"), indexer.body ) sql, params = value.as_sql(compiler, self.connection) body_sql.append(sql) data_params.extend(params) data_sql = ", ".join( [ "(%%s, %%s, %s, %s, %s, 1.0)" % (a, b, c) for a, b, c in zip(title_sql, autocomplete_sql, body_sql) ] ) with self.connection.cursor() as cursor: cursor.execute( % (IndexEntry._meta.db_table, data_sql), data_params, ) self._refresh_title_norms() ``` ###Assistant : INSERT INTO %s (content_type_id, object_id, title, autocomplete, body, title_norm) (VALUES %s) ON CONFLICT (content_type_id, object_id) DO UPDATE SET title = EXCLUDED.title, title_norm = 1.0, autocomplete = EXCLUDED.autocomplete, body = EXCLUDED.body
1,985
def test_already_created_plus_written_results(indexer, indexer_cache) -> None: org_id = 1234 raw_indexer = indexer indexer = CachingIndexer(indexer_cache, indexer) v0 = raw_indexer.record(use_case_id, org_id, "v1.2.0") v1 = raw_indexer.record(use_case_id, org_id, "v1.2.1") v2 = raw_indexer.record(use_case_id, org_id, "v1.2.2") expected_mapping = {"v1.2.0": v0, "v1.2.1": v1, "v1.2.2": v2} results = indexer.bulk_record( use_case_id=use_case_id, org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2"}} ) assert len(results[org_id]) == len(expected_mapping) == 3 for string, id in results[org_id].items(): assert expected_mapping[string] == id results = indexer.bulk_record( use_case_id=use_case_id, org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2", "v1.2.3"}}, ) v3 = raw_indexer.resolve(use_case_id, org_id, "v1.2.3") expected_mapping["v1.2.3"] = v3 assert len(results[org_id]) == len(expected_mapping) == 4 for string, id in results[org_id].items(): assert expected_mapping[string] == id fetch_meta = results.get_fetch_metadata() assert_fetch_type_for_tag_string_set( fetch_meta[org_id], FetchType.CACHE_HIT, {"v1.2.0", "v1.2.1", "v1.2.2"} ) assert_fetch_type_for_tag_string_set(fetch_meta[org_id], FetchType.FIRST_SEEN, {"v1.2.3"})
Test that we correctly combine db read results with db write results for the same organization.
16
108
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_already_created_plus_written_results(indexer, indexer_cache) -> None: org_id = 1234 raw_indexer = indexer indexer = CachingIndexer(indexer_cache, indexer) v0 = raw_indexer.record(use_case_id, org_id, "v1.2.0") v1 = raw_indexer.record(use_case_id, org_id, "v1.2.1") v2 = raw_indexer.record(use_case_id, org_id, "v1.2.2") expected_mapping = {"v1.2.0": v0, "v1.2.1": v1, "v1.2.2": v2} results = indexer.bulk_record( use_case_id=use_case_id, org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2"}} ) assert len(results[org_id]) == len(expected_mapping) == 3 for string, id in results[org_id].items(): assert expected_mapping[string] == id results = indexer.bulk_record( use_case_id=use_case_id, org_strings={org_id: {"v1.2.0", "v1.2.1", "v1.2.2", "v1.2.3"}}, ) v3 = raw_indexer.resolve(use_case_id, org_id, "v1.2.3") expected_mapping["v1.2.3"] = v3 assert len(results[org_id]) == len(expected_mapping) == 4 for string, id in results[org_id].items(): assert expected_mapping[string] == id fetch_meta = results.get_fetch_metadata() assert_fetch_type_for_tag_string_set( fetch_meta[org_id], FetchType.CACHE_HIT, {"v1.2.0", "v1.2.1", "v1.2.2"} ) assert_fetch_type_for_tag_string_set(fetch_meta[org_id], FetchType.FIRST_SEEN, {"v1.2.3"}) ``` ###Assistant : Test that we correctly combine db read results with db write results for the same organization.
1,986
def compiler_fixup(compiler_so, cc_args): stripArch = stripSysroot = False compiler_so = list(compiler_so) if not _supports_universal_builds(): # OSX before 10.4.0, these don't support -arch and -isysroot at # all. stripArch = stripSysroot = True else: stripArch = '-arch' in cc_args stripSysroot = any(arg for arg in cc_args if arg.startswith('-isysroot')) if stripArch or 'ARCHFLAGS' in os.environ: while True: try: index = compiler_so.index('-arch') # Strip this argument and the next one: del compiler_so[index:index+2] except ValueError: break elif not _supports_arm64_builds(): # Look for "-arch arm64" and drop that for idx in reversed(range(len(compiler_so))): if compiler_so[idx] == '-arch' and compiler_so[idx+1] == "arm64": del compiler_so[idx:idx+2] if 'ARCHFLAGS' in os.environ and not stripArch: # User specified different -arch flags in the environ, # see also distutils.sysconfig compiler_so = compiler_so + os.environ['ARCHFLAGS'].split() if stripSysroot: while True: indices = [i for i,x in enumerate(compiler_so) if x.startswith('-isysroot')] if not indices: break index = indices[0] if compiler_so[index] == '-isysroot': # Strip this argument and the next one: del compiler_so[index:index+2] else: # It's '-isysroot/some/path' in one arg del compiler_so[index:index+1] # Check if the SDK that is used during compilation actually exists, # the universal build requires the usage of a universal SDK and not all # users have that installed by default. sysroot = None argvar = cc_args indices = [i for i,x in enumerate(cc_args) if x.startswith('-isysroot')] if not indices: argvar = compiler_so indices = [i for i,x in enumerate(compiler_so) if x.startswith('-isysroot')] for idx in indices: if argvar[idx] == '-isysroot': sysroot = argvar[idx+1] break else: sysroot = argvar[idx][len('-isysroot'):] break if sysroot and not os.path.isdir(sysroot): sys.stderr.write(f"Compiling with an SDK that doesn't seem to exist: {sysroot}\n") sys.stderr.write("Please check your Xcode installation\n") sys.stderr.flush() return compiler_so
This function will strip '-isysroot PATH' and '-arch ARCH' from the compile flags if the user has specified one them in extra_compile_flags. This is needed because '-arch ARCH' adds another architecture to the build, without a way to remove an architecture. Furthermore GCC will barf if multiple '-isysroot' arguments are present.
51
268
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def compiler_fixup(compiler_so, cc_args): stripArch = stripSysroot = False compiler_so = list(compiler_so) if not _supports_universal_builds(): # OSX before 10.4.0, these don't support -arch and -isysroot at # all. stripArch = stripSysroot = True else: stripArch = '-arch' in cc_args stripSysroot = any(arg for arg in cc_args if arg.startswith('-isysroot')) if stripArch or 'ARCHFLAGS' in os.environ: while True: try: index = compiler_so.index('-arch') # Strip this argument and the next one: del compiler_so[index:index+2] except ValueError: break elif not _supports_arm64_builds(): # Look for "-arch arm64" and drop that for idx in reversed(range(len(compiler_so))): if compiler_so[idx] == '-arch' and compiler_so[idx+1] == "arm64": del compiler_so[idx:idx+2] if 'ARCHFLAGS' in os.environ and not stripArch: # User specified different -arch flags in the environ, # see also distutils.sysconfig compiler_so = compiler_so + os.environ['ARCHFLAGS'].split() if stripSysroot: while True: indices = [i for i,x in enumerate(compiler_so) if x.startswith('-isysroot')] if not indices: break index = indices[0] if compiler_so[index] == '-isysroot': # Strip this argument and the next one: del compiler_so[index:index+2] else: # It's '-isysroot/some/path' in one arg del compiler_so[index:index+1] # Check if the SDK that is used during compilation actually exists, # the universal build requires the usage of a universal SDK and not all # users have that installed by default. sysroot = None argvar = cc_args indices = [i for i,x in enumerate(cc_args) if x.startswith('-isysroot')] if not indices: argvar = compiler_so indices = [i for i,x in enumerate(compiler_so) if x.startswith('-isysroot')] for idx in indices: if argvar[idx] == '-isysroot': sysroot = argvar[idx+1] break else: sysroot = argvar[idx][len('-isysroot'):] break if sysroot and not os.path.isdir(sysroot): sys.stderr.write(f"Compiling with an SDK that doesn't seem to exist: {sysroot}\n") sys.stderr.write("Please check your Xcode installation\n") sys.stderr.flush() return compiler_so ``` ###Assistant : This function will strip '-isysroot PATH' and '-arch ARCH' from the compile flags if the user has specified one them in extra_compile_flags. This is needed because '-arch ARCH' adds another architecture to the build, without a way to remove an architecture. Furthermore GCC will barf if multiple '-isysroot' arguments are present.
1,987
def test_copy_page_with_excluded_parental_and_child_relations(self): try: # modify excluded fields for this test EventPage.exclude_fields_in_copy = [ "advert_placements", "categories", "signup_link", ] # set up data christmas_event = EventPage.objects.get(url_path="/home/events/christmas/") summer_category = EventCategory.objects.create(name="Summer") holiday_category = EventCategory.objects.create(name="Holidays") # add URL (to test excluding a basic field) christmas_event.signup_link = "https://christmas-is-awesome.com/rsvp" # add parental many to many relations christmas_event.categories = (summer_category, holiday_category) christmas_event.save() # Copy it new_christmas_event = christmas_event.copy( update_attrs={ "title": "New christmas event", "slug": "new-christmas-event", } ) # check that the signup_link was NOT copied self.assertEqual( christmas_event.signup_link, "https://christmas-is-awesome.com/rsvp" ) self.assertEqual(new_christmas_event.signup_link, "") # check that original event is untouched self.assertEqual( christmas_event.categories.count(), 2, "Child objects (parental many to many) defined on the superclass were removed from the original page", ) # check that parental many to many are NOT copied self.assertEqual( new_christmas_event.categories.count(), 0, "Child objects (parental many to many) were copied but should be excluded", ) # check that child objects on original event were left untouched self.assertEqual( christmas_event.advert_placements.count(), 1, "Child objects defined on the original superclass were edited when copied", ) # check that child objects were NOT copied self.assertEqual( new_christmas_event.advert_placements.count(), 0, "Child objects defined on the superclass were copied and should not be", ) finally: # reset excluded fields for future tests EventPage.exclude_fields_in_copy = []
Test that a page will be copied with parental and child relations removed if excluded.
15
197
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_copy_page_with_excluded_parental_and_child_relations(self): try: # modify excluded fields for this test EventPage.exclude_fields_in_copy = [ "advert_placements", "categories", "signup_link", ] # set up data christmas_event = EventPage.objects.get(url_path="/home/events/christmas/") summer_category = EventCategory.objects.create(name="Summer") holiday_category = EventCategory.objects.create(name="Holidays") # add URL (to test excluding a basic field) christmas_event.signup_link = "https://christmas-is-awesome.com/rsvp" # add parental many to many relations christmas_event.categories = (summer_category, holiday_category) christmas_event.save() # Copy it new_christmas_event = christmas_event.copy( update_attrs={ "title": "New christmas event", "slug": "new-christmas-event", } ) # check that the signup_link was NOT copied self.assertEqual( christmas_event.signup_link, "https://christmas-is-awesome.com/rsvp" ) self.assertEqual(new_christmas_event.signup_link, "") # check that original event is untouched self.assertEqual( christmas_event.categories.count(), 2, "Child objects (parental many to many) defined on the superclass were removed from the original page", ) # check that parental many to many are NOT copied self.assertEqual( new_christmas_event.categories.count(), 0, "Child objects (parental many to many) were copied but should be excluded", ) # check that child objects on original event were left untouched self.assertEqual( christmas_event.advert_placements.count(), 1, "Child objects defined on the original superclass were edited when copied", ) # check that child objects were NOT copied self.assertEqual( new_christmas_event.advert_placements.count(), 0, "Child objects defined on the superclass were copied and should not be", ) finally: # reset excluded fields for future tests EventPage.exclude_fields_in_copy = [] ``` ###Assistant : Test that a page will be copied with parental and child relations removed if excluded.
1,988
def test_app_model_in_list_body_class(self): response = self.client.get(reverse("admin:admin_views_section_changelist")) self.assertContains(response, '<body class=" app-admin_views model-section ')
Ensure app and model tag are correctly read by change_list template
11
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_app_model_in_list_body_class(self): response = self.client.get(reverse("admin:admin_views_section_changelist")) self.assertContains(response, '<body class=" app-admin_views model-section ') ``` ###Assistant : Ensure app and model tag are correctly read by change_list template
1,989
def version_parts(best=False): # type: (bool) -> Tuple[str, str, str] return _distro.version_parts(best)
Return the version of the current OS distribution as a tuple ``(major, minor, build_number)`` with items as follows: * ``major``: The result of :func:`distro.major_version`. * ``minor``: The result of :func:`distro.minor_version`. * ``build_number``: The result of :func:`distro.build_number`. For a description of the *best* parameter, see the :func:`distro.version` method.
47
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def version_parts(best=False): # type: (bool) -> Tuple[str, str, str] return _distro.version_parts(best) ``` ###Assistant : Return the version of the current OS distribution as a tuple ``(major, minor, build_number)`` with items as follows: * ``major``: The result of :func:`distro.major_version`. * ``minor``: The result of :func:`distro.minor_version`. * ``build_number``: The result of :func:`distro.build_number`. For a description of the *best* parameter, see the :func:`distro.version` method.
1,990
def check_status(self): status = { 'success': False } try: con = self.__connect() with closing(con) as con: #TODO: best way to check con.connected ? status['success'] = True except Exception as e: log.error(f'Error connecting to SQL Server {self.database}, {e}!') status['error'] = e return status
Check the connection of the SQL Server database :return: success status and error message if error occurs
17
42
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_status(self): status = { 'success': False } try: con = self.__connect() with closing(con) as con: #TODO: best way to check con.connected ? status['success'] = True except Exception as e: log.error(f'Error connecting to SQL Server {self.database}, {e}!') status['error'] = e return status ``` ###Assistant : Check the connection of the SQL Server database :return: success status and error message if error occurs
1,991
def model_from_config(config, custom_objects=None): if isinstance(config, list): raise TypeError( "`model_from_config` expects a dictionary, not a list. " f"Received: config={config}. Did you meant to use " "`Sequential.from_config(config)`?" ) from keras.layers import deserialize # pylint: disable=g-import-not-at-top return deserialize(config, custom_objects=custom_objects) @keras_export("keras.models.model_from_yaml")
Instantiates a Keras model from its config. Usage: ``` # for a Functional API model tf.keras.Model().from_config(model.get_config()) # for a Sequential model tf.keras.Sequential().from_config(model.get_config()) ``` Args: config: Configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). Raises: TypeError: if `config` is not a dictionary.
57
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def model_from_config(config, custom_objects=None): if isinstance(config, list): raise TypeError( "`model_from_config` expects a dictionary, not a list. " f"Received: config={config}. Did you meant to use " "`Sequential.from_config(config)`?" ) from keras.layers import deserialize # pylint: disable=g-import-not-at-top return deserialize(config, custom_objects=custom_objects) @keras_export("keras.models.model_from_yaml") ``` ###Assistant : Instantiates a Keras model from its config. Usage: ``` # for a Functional API model tf.keras.Model().from_config(model.get_config()) # for a Sequential model tf.keras.Sequential().from_config(model.get_config()) ``` Args: config: Configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). Raises: TypeError: if `config` is not a dictionary.
1,992
def test_golden_path(self): with self.assertNumQueries(0): result = self.page.cached_content_type self.assertEqual(result, ContentType.objects.get(id=self.page.content_type_id))
The return value should match the value you'd get if fetching the ContentType from the database, and shouldn't trigger any database queries when the ContentType is already in memory.
29
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_golden_path(self): with self.assertNumQueries(0): result = self.page.cached_content_type self.assertEqual(result, ContentType.objects.get(id=self.page.content_type_id)) ``` ###Assistant : The return value should match the value you'd get if fetching the ContentType from the database, and shouldn't trigger any database queries when the ContentType is already in memory.
1,993
def fold_function_name(function_name): parts = function_name.split(".") if len(parts) == 1: return function_name tail = parts.pop() grouped = [list(g) for _, g in groupby(parts)]
Fold multiple consecutive occurences of the same property name into a single group, excluding the last component. foo | foo foo.foo | foo.foo foo.foo.foo | {foo#2}.foo bar.foo.foo | bar.foo.foo bar.foo.foo.foo | bar.{foo#2}.foo bar.foo.foo.onError | bar.{foo#2}.onError bar.bar.bar.foo.foo.onError | {bar#3}.{foo#2}.onError bar.foo.foo.bar.bar.onError | bar.{foo#2}.{bar#2}.onError
41
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def fold_function_name(function_name): parts = function_name.split(".") if len(parts) == 1: return function_name tail = parts.pop() grouped = [list(g) for _, g in groupby(parts)] ``` ###Assistant : Fold multiple consecutive occurences of the same property name into a single group, excluding the last component. foo | foo foo.foo | foo.foo foo.foo.foo | {foo#2}.foo bar.foo.foo | bar.foo.foo bar.foo.foo.foo | bar.{foo#2}.foo bar.foo.foo.onError | bar.{foo#2}.onError bar.bar.bar.foo.foo.onError | {bar#3}.{foo#2}.onError bar.foo.foo.bar.bar.onError | bar.{foo#2}.{bar#2}.onError
1,994
def _laplace_rule_exp(f, t, s, doit=True, **hints): hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') z = Wild('z') k, func = f.as_independent(t, as_Add=False) ma1 = func.match(exp(y)*z) if ma1: ma2 = ma1[y].collect(t).match(a*t) if ma2: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: multiply with exp (1.5)') L = _laplace_apply_rules(ma1[z], t, s-ma2[a], doit=doit, **hints) try: r, p, c = L return (k*r, p+ma2[a], c) except TypeError: return k*L return None
This internal helper function tries to transform a product containing the `exp` function and returns `None` if it cannot do it.
21
73
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _laplace_rule_exp(f, t, s, doit=True, **hints): hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') z = Wild('z') k, func = f.as_independent(t, as_Add=False) ma1 = func.match(exp(y)*z) if ma1: ma2 = ma1[y].collect(t).match(a*t) if ma2: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: multiply with exp (1.5)') L = _laplace_apply_rules(ma1[z], t, s-ma2[a], doit=doit, **hints) try: r, p, c = L return (k*r, p+ma2[a], c) except TypeError: return k*L return None ``` ###Assistant : This internal helper function tries to transform a product containing the `exp` function and returns `None` if it cannot do it.
1,995
def FindEndOfExpressionInLine(line, startpos, depth, startchar, endchar): for i in xrange(startpos, len(line)): if line[i] == startchar: depth += 1 elif line[i] == endchar: depth -= 1 if depth == 0: return (i + 1, 0) return (-1, depth)
Find the position just after the matching endchar. Args: line: a CleansedLines line. startpos: start searching at this position. depth: nesting level at startpos. startchar: expression opening character. endchar: expression closing character. Returns: On finding matching endchar: (index just after matching endchar, 0) Otherwise: (-1, new depth at end of this line)
52
37
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def FindEndOfExpressionInLine(line, startpos, depth, startchar, endchar): for i in xrange(startpos, len(line)): if line[i] == startchar: depth += 1 elif line[i] == endchar: depth -= 1 if depth == 0: return (i + 1, 0) return (-1, depth) ``` ###Assistant : Find the position just after the matching endchar. Args: line: a CleansedLines line. startpos: start searching at this position. depth: nesting level at startpos. startchar: expression opening character. endchar: expression closing character. Returns: On finding matching endchar: (index just after matching endchar, 0) Otherwise: (-1, new depth at end of this line)
1,996
def test_toy_example_collapse_points(): rng = np.random.RandomState(42) input_dim = 5 two_points = rng.randn(2, input_dim) X = np.vstack([two_points, two_points.mean(axis=0)[np.newaxis, :]]) y = [0, 0, 1]
Test on a toy example of three points that should collapse We build a simple example: two points from the same class and a point from a different class in the middle of them. On this simple example, the new (transformed) points should all collapse into one single point. Indeed, the objective is 2/(1 + exp(d/2)), with d the euclidean distance between the two samples from the same class. This is maximized for d=0 (because d>=0), with an objective equal to 1 (loss=-1.).
83
22
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_toy_example_collapse_points(): rng = np.random.RandomState(42) input_dim = 5 two_points = rng.randn(2, input_dim) X = np.vstack([two_points, two_points.mean(axis=0)[np.newaxis, :]]) y = [0, 0, 1] ``` ###Assistant : Test on a toy example of three points that should collapse We build a simple example: two points from the same class and a point from a different class in the middle of them. On this simple example, the new (transformed) points should all collapse into one single point. Indeed, the objective is 2/(1 + exp(d/2)), with d the euclidean distance between the two samples from the same class. This is maximized for d=0 (because d>=0), with an objective equal to 1 (loss=-1.).
1,997
def _get_string_indexer_log_records(caplog): return [ ( rec.message, { k: v for k, v in rec.__dict__.items() if k in ( "string_type", "is_global_quota", "num_global_quotas", "num_global_quotas", "org_batch_size", ) }, ) for rec in caplog.records ]
Get all log records and relevant extra arguments for easy snapshotting.
11
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_string_indexer_log_records(caplog): return [ ( rec.message, { k: v for k, v in rec.__dict__.items() if k in ( "string_type", "is_global_quota", "num_global_quotas", "num_global_quotas", "org_batch_size", ) }, ) for rec in caplog.records ] ``` ###Assistant : Get all log records and relevant extra arguments for easy snapshotting.
1,998
async def test_registered_pin_required(hass, user_form): with patch(MOCK_API_CONNECT, return_value=True), patch( MOCK_API_DEVICE_REGISTERED, new_callable=PropertyMock ) as mock_device_registered, patch(MOCK_API_IS_PIN_REQUIRED, return_value=True): mock_device_registered.return_value = True await hass.config_entries.flow.async_configure( user_form["flow_id"], user_input=TEST_CREDS )
Test if the device is already registered and PIN required.
10
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_registered_pin_required(hass, user_form): with patch(MOCK_API_CONNECT, return_value=True), patch( MOCK_API_DEVICE_REGISTERED, new_callable=PropertyMock ) as mock_device_registered, patch(MOCK_API_IS_PIN_REQUIRED, return_value=True): mock_device_registered.return_value = True await hass.config_entries.flow.async_configure( user_form["flow_id"], user_input=TEST_CREDS ) ``` ###Assistant : Test if the device is already registered and PIN required.
1,999
def test_send_push_multiple_workers(self): http_client_mock1 = Mock(spec_set=["post_json_get_json"]) http_client_mock1.post_json_get_json.side_effect = ( lambda *_, **__: defer.succeed({}) ) self.make_worker_hs( "synapse.app.generic_worker", { "worker_name": "pusher1", "pusher_instances": ["pusher1", "pusher2"], }, proxied_blacklisted_http_client=http_client_mock1, ) http_client_mock2 = Mock(spec_set=["post_json_get_json"]) http_client_mock2.post_json_get_json.side_effect = ( lambda *_, **__: defer.succeed({}) ) self.make_worker_hs( "synapse.app.generic_worker", { "worker_name": "pusher2", "pusher_instances": ["pusher1", "pusher2"], }, proxied_blacklisted_http_client=http_client_mock2, ) # We choose a user name that we know should go to pusher1. event_id = self._create_pusher_and_send_msg("user2") # Advance time a bit, so the pusher will register something has happened self.pump() http_client_mock1.post_json_get_json.assert_called_once() http_client_mock2.post_json_get_json.assert_not_called() self.assertEqual( http_client_mock1.post_json_get_json.call_args[0][0], "https://push.example.com/_matrix/push/v1/notify", ) self.assertEqual( event_id, http_client_mock1.post_json_get_json.call_args[0][1]["notification"][ "event_id" ], ) http_client_mock1.post_json_get_json.reset_mock() http_client_mock2.post_json_get_json.reset_mock() # Now we choose a user name that we know should go to pusher2. event_id = self._create_pusher_and_send_msg("user4") # Advance time a bit, so the pusher will register something has happened self.pump() http_client_mock1.post_json_get_json.assert_not_called() http_client_mock2.post_json_get_json.assert_called_once() self.assertEqual( http_client_mock2.post_json_get_json.call_args[0][0], "https://push.example.com/_matrix/push/v1/notify", ) self.assertEqual( event_id, http_client_mock2.post_json_get_json.call_args[0][1]["notification"][ "event_id" ], )
Test that registration works when using sharded pusher workers.
9
133
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_send_push_multiple_workers(self): http_client_mock1 = Mock(spec_set=["post_json_get_json"]) http_client_mock1.post_json_get_json.side_effect = ( lambda *_, **__: defer.succeed({}) ) self.make_worker_hs( "synapse.app.generic_worker", { "worker_name": "pusher1", "pusher_instances": ["pusher1", "pusher2"], }, proxied_blacklisted_http_client=http_client_mock1, ) http_client_mock2 = Mock(spec_set=["post_json_get_json"]) http_client_mock2.post_json_get_json.side_effect = ( lambda *_, **__: defer.succeed({}) ) self.make_worker_hs( "synapse.app.generic_worker", { "worker_name": "pusher2", "pusher_instances": ["pusher1", "pusher2"], }, proxied_blacklisted_http_client=http_client_mock2, ) # We choose a user name that we know should go to pusher1. event_id = self._create_pusher_and_send_msg("user2") # Advance time a bit, so the pusher will register something has happened self.pump() http_client_mock1.post_json_get_json.assert_called_once() http_client_mock2.post_json_get_json.assert_not_called() self.assertEqual( http_client_mock1.post_json_get_json.call_args[0][0], "https://push.example.com/_matrix/push/v1/notify", ) self.assertEqual( event_id, http_client_mock1.post_json_get_json.call_args[0][1]["notification"][ "event_id" ], ) http_client_mock1.post_json_get_json.reset_mock() http_client_mock2.post_json_get_json.reset_mock() # Now we choose a user name that we know should go to pusher2. event_id = self._create_pusher_and_send_msg("user4") # Advance time a bit, so the pusher will register something has happened self.pump() http_client_mock1.post_json_get_json.assert_not_called() http_client_mock2.post_json_get_json.assert_called_once() self.assertEqual( http_client_mock2.post_json_get_json.call_args[0][0], "https://push.example.com/_matrix/push/v1/notify", ) self.assertEqual( event_id, http_client_mock2.post_json_get_json.call_args[0][1]["notification"][ "event_id" ], ) ``` ###Assistant : Test that registration works when using sharded pusher workers.