|
--- |
|
language: |
|
- en |
|
pretty_name: "MedBrowseComp: Medical Browsing and Comparison Dataset" |
|
tags: |
|
- medical |
|
- healthcare |
|
- browsing |
|
- comparison |
|
license: "apache-2.0" |
|
task_categories: |
|
- question-answering |
|
- text-retrieval |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: MedBrowseComp_50 |
|
path: MedBrowseComp_50.csv |
|
- split: MedBrowseComp_605 |
|
path: MedBrowseComp_605.csv |
|
- split: MedBrowseComp_CUA |
|
path: MedBrowseComp_CUA.csv |
|
|
|
--- |
|
|
|
# MedBrowseComp Dataset |
|
|
|
This repository contains datasets for medical information-seeking-oriented deep research and computer use tasks. |
|
|
|
 |
|
|
|
## Datasets |
|
|
|
The repository contains three harmonized datasets: |
|
|
|
1. **MedBrowseComp_50**: A collection of 50 medical entries for browsing and comparison. |
|
2. **MedBrowseComp_605**: A comprehensive collection of 605 medical entries. |
|
3. **MedBrowseComp_CUA**: A curated collection of medical data for comparison and analysis. |
|
|
|
## Usage |
|
|
|
These datasets can be used for various medical text processing tasks, information retrieval, and comparative analysis. |
|
|
|
Example usage with the Hugging Face datasets library: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("AIM-Harvard/MedBrowseComp") |
|
|
|
# Access specific splits |
|
med50_data = dataset["MedBrowseComp_50"] |
|
med605_data = dataset["MedBrowseComp_605"] |
|
cua_data = dataset["MedBrowseComp_CUA"] |
|
``` |
|
|
|
## GitHub Repository |
|
|
|
For more information and related tools, visit: [https://github.com/MedBrowseComp](https://github.com/MedBrowseComp) |
|
|
|
## Citation |
|
|
|
If you use this dataset in your research, please cite: https://arxiv.org/abs/2505.14963 |
|
|
|
``` |
|
@misc{chen2025medbrowsecompbenchmarkingmedicaldeep, |
|
title={MedBrowseComp: Benchmarking Medical Deep Research and Computer Use}, |
|
author={Shan Chen and Pedro Moreira and Yuxin Xiao and Sam Schmidgall and Jeremy Warner and Hugo Aerts and Thomas Hartvigsen and Jack Gallifant and Danielle S. Bitterman}, |
|
year={2025}, |
|
eprint={2505.14963}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2505.14963}, |
|
} |
|
``` |
|
|