coyotte508's picture
coyotte508 HF Staff
Add 1 files
21dd449 verified
/* sha256.c - an implementation of SHA-256/224 hash functions
* based on FIPS 180-3 (Federal Information Processing Standart).
*
* Copyright (c) 2010, Aleksey Kravchenko <rhash.admin@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
* Modified for hash-wasm by Dani Biró
*/
#define WITH_BUFFER
//////////////////////////////////////////////////////////////////////////
#include <stdint.h>
#include <stdalign.h>
#ifndef NULL
#define NULL 0
#endif
#ifdef _MSC_VER
#define WASM_EXPORT
#define __inline__
#else
#define WASM_EXPORT __attribute__((visibility("default")))
#endif
#ifdef WITH_BUFFER
#define MAIN_BUFFER_SIZE 8 * 1024 * 1024
alignas(128) uint8_t main_buffer[MAIN_BUFFER_SIZE];
WASM_EXPORT
uint8_t *Hash_GetBuffer() {
return main_buffer;
}
#endif
// Sometimes LLVM emits these functions during the optimization step
// even with -nostdlib -fno-builtin flags
static __inline__ void* memcpy(void* dst, const void* src, uint32_t cnt) {
uint8_t *destination = dst;
const uint8_t *source = src;
while (cnt) {
*(destination++)= *(source++);
--cnt;
}
return dst;
}
static __inline__ void* memset(void* dst, const uint8_t value, uint32_t cnt) {
uint8_t *p = dst;
while (cnt--) {
*p++ = value;
}
return dst;
}
static __inline__ void* memcpy2(void* dst, const void* src, uint32_t cnt) {
uint64_t *destination64 = dst;
const uint64_t *source64 = src;
while (cnt >= 8) {
*(destination64++)= *(source64++);
cnt -= 8;
}
uint8_t *destination = (uint8_t*)destination64;
const uint8_t *source = (uint8_t*)source64;
while (cnt) {
*(destination++)= *(source++);
--cnt;
}
return dst;
}
static __inline__ void memcpy16(void* dst, const void* src) {
uint64_t* dst64 = (uint64_t*)dst;
uint64_t* src64 = (uint64_t*)src;
dst64[0] = src64[0];
dst64[1] = src64[1];
}
static __inline__ void memcpy32(void* dst, const void* src) {
uint64_t* dst64 = (uint64_t*)dst;
uint64_t* src64 = (uint64_t*)src;
#pragma clang loop unroll(full)
for (int i = 0; i < 4; i++) {
dst64[i] = src64[i];
}
}
static __inline__ void memcpy64(void* dst, const void* src) {
uint64_t* dst64 = (uint64_t*)dst;
uint64_t* src64 = (uint64_t*)src;
#pragma clang loop unroll(full)
for (int i = 0; i < 8; i++) {
dst64[i] = src64[i];
}
}
static __inline__ uint64_t widen8to64(const uint8_t value) {
return value | (value << 8) | (value << 16) | (value << 24);
}
static __inline__ void memset16(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
dst64[0] = val;
dst64[1] = val;
}
static __inline__ void memset32(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
#pragma clang loop unroll(full)
for (int i = 0; i < 4; i++) {
dst64[i] = val;
}
}
static __inline__ void memset64(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
#pragma clang loop unroll(full)
for (int i = 0; i < 8; i++) {
dst64[i] = val;
}
}
static __inline__ void memset128(void* dst, const uint8_t value) {
uint64_t val = widen8to64(value);
uint64_t* dst64 = (uint64_t*)dst;
#pragma clang loop unroll(full)
for (int i = 0; i < 16; i++) {
dst64[i] = val;
}
}
//////////////////////////////////////////////////////////////////////////
#define sha256_block_size 64
#define sha256_hash_size 32
#define sha224_hash_size 28
#define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n))))
#define bswap_32(x) __builtin_bswap32(x)
struct sha256_ctx {
uint32_t message[16]; /* 512-bit buffer for leftovers */
uint64_t length; /* number of processed bytes */
uint32_t hash[8]; /* 256-bit algorithm internal hashing state */
uint32_t digest_length; /* length of the algorithm digest in bytes */
};
struct sha256_ctx sctx;
struct sha256_ctx* ctx = &sctx;
/* SHA-224 and SHA-256 constants for 64 rounds. These words represent
* the first 32 bits of the fractional parts of the cube
* roots of the first 64 prime numbers. */
static const uint32_t rhash_k256[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* The SHA256/224 functions defined by FIPS 180-3, 4.1.2 */
/* Optimized version of Ch(x,y,z)=((x & y) | (~x & z)) */
#define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
/* Optimized version of Maj(x,y,z)=((x & y) ^ (x & z) ^ (y & z)) */
#define Maj(x, y, z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))
#define Sigma0(x) (ROTR32((x), 2) ^ ROTR32((x), 13) ^ ROTR32((x), 22))
#define Sigma1(x) (ROTR32((x), 6) ^ ROTR32((x), 11) ^ ROTR32((x), 25))
#define sigma0(x) (ROTR32((x), 7) ^ ROTR32((x), 18) ^ ((x) >> 3))
#define sigma1(x) (ROTR32((x), 17) ^ ROTR32((x), 19) ^ ((x) >> 10))
/* Recalculate element n-th of circular buffer W using formula
* W[n] = sigma1(W[n - 2]) + W[n - 7] + sigma0(W[n - 15]) + W[n - 16]; */
#define RECALCULATE_W(W, n) \
(W[n] += \
(sigma1(W[(n - 2) & 15]) + W[(n - 7) & 15] + sigma0(W[(n - 15) & 15])))
#define ROUND(a, b, c, d, e, f, g, h, k, data) \
{ \
uint32_t T1 = h + Sigma1(e) + Ch(e, f, g) + k + (data); \
d += T1, h = T1 + Sigma0(a) + Maj(a, b, c); \
}
#define ROUND_1_16(a, b, c, d, e, f, g, h, n) \
ROUND(a, b, c, d, e, f, g, h, rhash_k256[n], W[n] = bswap_32(block[n]))
#define ROUND_17_64(a, b, c, d, e, f, g, h, n) \
ROUND(a, b, c, d, e, f, g, h, k[n], RECALCULATE_W(W, n))
/**
* Initialize context before calculaing hash.
*
*/
void sha256_init() {
/* Initial values. These words were obtained by taking the first 32
* bits of the fractional parts of the square roots of the first
* eight prime numbers. */
static const uint32_t SHA256_H0[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
ctx->length = 0;
ctx->digest_length = sha256_hash_size;
/* initialize algorithm state */
#pragma clang loop vectorize(enable)
for (uint8_t i = 0; i < 8; i += 2) {
*(uint64_t*)&ctx->hash[i] = *(uint64_t*)&SHA256_H0[i];
}
}
/**
* Initialize context before calculaing hash.
*
*/
void sha224_init() {
/* Initial values from FIPS 180-3. These words were obtained by taking
* bits from 33th to 64th of the fractional parts of the square
* roots of ninth through sixteenth prime numbers. */
static const uint32_t SHA224_H0[8] = {
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
};
ctx->length = 0;
ctx->digest_length = sha224_hash_size;
#pragma clang loop vectorize(enable)
for (uint8_t i = 0; i < 8; i += 2) {
*(uint64_t*)&ctx->hash[i] = *(uint64_t*)&SHA224_H0[i];
}
}
/**
* The core transformation. Process a 512-bit block.
*
* @param hash algorithm state
* @param block the message block to process
*/
static void sha256_process_block(uint32_t hash[8], uint32_t block[16]) {
uint32_t A, B, C, D, E, F, G, H;
uint32_t W[16];
const uint32_t* k;
int i;
A = hash[0], B = hash[1], C = hash[2], D = hash[3];
E = hash[4], F = hash[5], G = hash[6], H = hash[7];
/* Compute SHA using alternate Method: FIPS 180-3 6.1.3 */
ROUND_1_16(A, B, C, D, E, F, G, H, 0);
ROUND_1_16(H, A, B, C, D, E, F, G, 1);
ROUND_1_16(G, H, A, B, C, D, E, F, 2);
ROUND_1_16(F, G, H, A, B, C, D, E, 3);
ROUND_1_16(E, F, G, H, A, B, C, D, 4);
ROUND_1_16(D, E, F, G, H, A, B, C, 5);
ROUND_1_16(C, D, E, F, G, H, A, B, 6);
ROUND_1_16(B, C, D, E, F, G, H, A, 7);
ROUND_1_16(A, B, C, D, E, F, G, H, 8);
ROUND_1_16(H, A, B, C, D, E, F, G, 9);
ROUND_1_16(G, H, A, B, C, D, E, F, 10);
ROUND_1_16(F, G, H, A, B, C, D, E, 11);
ROUND_1_16(E, F, G, H, A, B, C, D, 12);
ROUND_1_16(D, E, F, G, H, A, B, C, 13);
ROUND_1_16(C, D, E, F, G, H, A, B, 14);
ROUND_1_16(B, C, D, E, F, G, H, A, 15);
#pragma clang loop vectorize(enable)
for (i = 16, k = &rhash_k256[16]; i < 64; i += 16, k += 16) {
ROUND_17_64(A, B, C, D, E, F, G, H, 0);
ROUND_17_64(H, A, B, C, D, E, F, G, 1);
ROUND_17_64(G, H, A, B, C, D, E, F, 2);
ROUND_17_64(F, G, H, A, B, C, D, E, 3);
ROUND_17_64(E, F, G, H, A, B, C, D, 4);
ROUND_17_64(D, E, F, G, H, A, B, C, 5);
ROUND_17_64(C, D, E, F, G, H, A, B, 6);
ROUND_17_64(B, C, D, E, F, G, H, A, 7);
ROUND_17_64(A, B, C, D, E, F, G, H, 8);
ROUND_17_64(H, A, B, C, D, E, F, G, 9);
ROUND_17_64(G, H, A, B, C, D, E, F, 10);
ROUND_17_64(F, G, H, A, B, C, D, E, 11);
ROUND_17_64(E, F, G, H, A, B, C, D, 12);
ROUND_17_64(D, E, F, G, H, A, B, C, 13);
ROUND_17_64(C, D, E, F, G, H, A, B, 14);
ROUND_17_64(B, C, D, E, F, G, H, A, 15);
}
hash[0] += A, hash[1] += B, hash[2] += C, hash[3] += D;
hash[4] += E, hash[5] += F, hash[6] += G, hash[7] += H;
}
/**
* Calculate message hash.
* Can be called repeatedly with chunks of the message to be hashed.
*
* @param size length of the message chunk
*/
WASM_EXPORT
void Hash_Update(uint32_t size) {
const uint8_t* msg = main_buffer;
uint32_t index = (uint32_t)ctx->length & 63;
ctx->length += size;
/* fill partial block */
if (index) {
uint32_t left = sha256_block_size - index;
uint32_t end = size < left ? size : left;
uint8_t* message8 = (uint8_t*)ctx->message;
for (uint8_t i = 0; i < end; i++) {
*(message8 + index + i) = msg[i];
}
if (size < left) return;
/* process partial block */
sha256_process_block(ctx->hash, (uint32_t*)ctx->message);
msg += left;
size -= left;
}
while (size >= sha256_block_size) {
uint32_t* aligned_message_block = (uint32_t*)msg;
sha256_process_block(ctx->hash, aligned_message_block);
msg += sha256_block_size;
size -= sha256_block_size;
}
if (size) {
/* save leftovers */
for (uint8_t i = 0; i < size; i++) {
*(((uint8_t*)ctx->message) + i) = msg[i];
}
}
}
/**
* Store calculated hash into the given array.
*
*/
WASM_EXPORT
void Hash_Final() {
uint32_t index = ((uint32_t)ctx->length & 63) >> 2;
uint32_t shift = ((uint32_t)ctx->length & 3) * 8;
/* pad message and run for last block */
/* append the byte 0x80 to the message */
ctx->message[index] &= ~(0xFFFFFFFFu << shift);
ctx->message[index++] ^= 0x80u << shift;
/* if no room left in the message to store 64-bit message length */
if (index > 14) {
/* then fill the rest with zeros and process it */
while (index < 16) {
ctx->message[index++] = 0;
}
sha256_process_block(ctx->hash, ctx->message);
index = 0;
}
while (index < 14) {
ctx->message[index++] = 0;
}
ctx->message[14] = bswap_32((uint32_t)(ctx->length >> 29));
ctx->message[15] = bswap_32((uint32_t)(ctx->length << 3));
sha256_process_block(ctx->hash, ctx->message);
#pragma clang loop vectorize(enable)
for (int32_t i = 7; i >= 0; i--) {
ctx->hash[i] = bswap_32(ctx->hash[i]);
}
for (uint8_t i = 0; i < ctx->digest_length; i++) {
main_buffer[i] = *(((uint8_t*)ctx->hash) + i);
}
}
WASM_EXPORT
uint32_t Hash_Init(uint32_t bits) {
if (bits == 224) {
sha224_init();
} else {
sha256_init();
}
return 0;
}
WASM_EXPORT
const uint32_t STATE_SIZE = sizeof(*ctx);
WASM_EXPORT
uint8_t* Hash_GetState() {
return (uint8_t*) ctx;
}
WASM_EXPORT
uint32_t GetBufferPtr() {
return (uint32_t) main_buffer;
}